[AArch64] Use new target pass registration framework for FMA steering pass
[official-gcc.git] / gcc / ccmp.c
blob615b7e653f209d57374dd0745c07be243cd6af4a
1 /* Conditional compare related functions
2 Copyright (C) 2014-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "ssa.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "stor-layout.h"
35 #include "tree-ssa-live.h"
36 #include "tree-outof-ssa.h"
37 #include "cfgexpand.h"
38 #include "ccmp.h"
39 #include "predict.h"
41 /* The following functions expand conditional compare (CCMP) instructions.
42 Here is a short description about the over all algorithm:
43 * ccmp_candidate_p is used to identify the CCMP candidate
45 * expand_ccmp_expr is the main entry, which calls expand_ccmp_expr_1
46 to expand CCMP.
48 * expand_ccmp_expr_1 uses a recursive algorithm to expand CCMP.
49 It calls two target hooks gen_ccmp_first and gen_ccmp_next to generate
50 CCMP instructions.
51 - gen_ccmp_first expands the first compare in CCMP.
52 - gen_ccmp_next expands the following compares.
54 Both hooks return a comparison with the CC register that is equivalent
55 to the value of the gimple comparison. This is used by the next CCMP
56 and in the final conditional store.
58 * We use cstorecc4 pattern to convert the CCmode intermediate to
59 the integer mode result that expand_normal is expecting.
61 Since the operands of the later compares might clobber CC reg, we do not
62 emit the insns during expand. We keep the insn sequences in two seq
64 * prep_seq, which includes all the insns to prepare the operands.
65 * gen_seq, which includes all the compare and conditional compares.
67 If all checks OK in expand_ccmp_expr, it emits insns in prep_seq, then
68 insns in gen_seq. */
70 /* Check whether G is a potential conditional compare candidate. */
71 static bool
72 ccmp_candidate_p (gimple *g)
74 tree rhs = gimple_assign_rhs_to_tree (g);
75 tree lhs, op0, op1;
76 gimple *gs0, *gs1;
77 tree_code tcode, tcode0, tcode1;
78 tcode = TREE_CODE (rhs);
80 if (tcode != BIT_AND_EXPR && tcode != BIT_IOR_EXPR)
81 return false;
83 lhs = gimple_assign_lhs (g);
84 op0 = TREE_OPERAND (rhs, 0);
85 op1 = TREE_OPERAND (rhs, 1);
87 if ((TREE_CODE (op0) != SSA_NAME) || (TREE_CODE (op1) != SSA_NAME)
88 || !has_single_use (lhs))
89 return false;
91 gs0 = get_gimple_for_ssa_name (op0);
92 gs1 = get_gimple_for_ssa_name (op1);
93 if (!gs0 || !gs1 || !is_gimple_assign (gs0) || !is_gimple_assign (gs1)
94 /* g, gs0 and gs1 must be in the same basic block, since current stage
95 is out-of-ssa. We can not guarantee the correctness when forwording
96 the gs0 and gs1 into g whithout DATAFLOW analysis. */
97 || gimple_bb (gs0) != gimple_bb (gs1)
98 || gimple_bb (gs0) != gimple_bb (g))
99 return false;
101 tcode0 = gimple_assign_rhs_code (gs0);
102 tcode1 = gimple_assign_rhs_code (gs1);
103 if (TREE_CODE_CLASS (tcode0) == tcc_comparison
104 && TREE_CODE_CLASS (tcode1) == tcc_comparison)
105 return true;
106 if (TREE_CODE_CLASS (tcode0) == tcc_comparison
107 && ccmp_candidate_p (gs1))
108 return true;
109 else if (TREE_CODE_CLASS (tcode1) == tcc_comparison
110 && ccmp_candidate_p (gs0))
111 return true;
112 /* We skip ccmp_candidate_p (gs1) && ccmp_candidate_p (gs0) since
113 there is no way to set the CC flag. */
114 return false;
117 /* PREV is a comparison with the CC register which represents the
118 result of the previous CMP or CCMP. The function expands the
119 next compare based on G which is ANDed/ORed with the previous
120 compare depending on CODE.
121 PREP_SEQ returns all insns to prepare opearands for compare.
122 GEN_SEQ returns all compare insns. */
123 static rtx
124 expand_ccmp_next (gimple *g, tree_code code, rtx prev,
125 rtx *prep_seq, rtx *gen_seq)
127 rtx_code rcode;
128 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (g)));
130 gcc_assert (code == BIT_AND_EXPR || code == BIT_IOR_EXPR);
132 rcode = get_rtx_code (gimple_assign_rhs_code (g), unsignedp);
134 return targetm.gen_ccmp_next (prep_seq, gen_seq, prev, rcode,
135 gimple_assign_rhs1 (g),
136 gimple_assign_rhs2 (g),
137 get_rtx_code (code, 0));
140 /* Expand conditional compare gimple G. A typical CCMP sequence is like:
142 CC0 = CMP (a, b);
143 CC1 = CCMP (NE (CC0, 0), CMP (e, f));
145 CCn = CCMP (NE (CCn-1, 0), CMP (...));
147 hook gen_ccmp_first is used to expand the first compare.
148 hook gen_ccmp_next is used to expand the following CCMP.
149 PREP_SEQ returns all insns to prepare opearand.
150 GEN_SEQ returns all compare insns. */
151 static rtx
152 expand_ccmp_expr_1 (gimple *g, rtx *prep_seq, rtx *gen_seq)
154 rtx prep_seq_1, gen_seq_1;
155 rtx prep_seq_2, gen_seq_2;
156 tree exp = gimple_assign_rhs_to_tree (g);
157 tree_code code = TREE_CODE (exp);
158 gimple *gs0 = get_gimple_for_ssa_name (TREE_OPERAND (exp, 0));
159 gimple *gs1 = get_gimple_for_ssa_name (TREE_OPERAND (exp, 1));
160 rtx tmp;
161 tree_code code0 = gimple_assign_rhs_code (gs0);
162 tree_code code1 = gimple_assign_rhs_code (gs1);
164 gcc_assert (code == BIT_AND_EXPR || code == BIT_IOR_EXPR);
165 gcc_assert (gs0 && gs1 && is_gimple_assign (gs0) && is_gimple_assign (gs1));
167 if (TREE_CODE_CLASS (code0) == tcc_comparison)
169 if (TREE_CODE_CLASS (code1) == tcc_comparison)
171 int unsignedp0, unsignedp1;
172 rtx_code rcode0, rcode1;
173 int speed_p = optimize_insn_for_speed_p ();
174 rtx tmp2 = NULL_RTX, ret = NULL_RTX, ret2 = NULL_RTX;
175 unsigned cost1 = MAX_COST;
176 unsigned cost2 = MAX_COST;
178 unsignedp0 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (gs0)));
179 unsignedp1 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (gs1)));
180 rcode0 = get_rtx_code (code0, unsignedp0);
181 rcode1 = get_rtx_code (code1, unsignedp1);
183 tmp = targetm.gen_ccmp_first (&prep_seq_1, &gen_seq_1, rcode0,
184 gimple_assign_rhs1 (gs0),
185 gimple_assign_rhs2 (gs0));
187 if (tmp != NULL)
189 ret = expand_ccmp_next (gs1, code, tmp, &prep_seq_1, &gen_seq_1);
190 cost1 = seq_cost (safe_as_a <rtx_insn *> (prep_seq_1), speed_p);
191 cost1 += seq_cost (safe_as_a <rtx_insn *> (gen_seq_1), speed_p);
194 /* FIXME: Temporary workaround for PR69619.
195 Avoid exponential compile time due to expanding gs0 and gs1 twice.
196 If gs0 and gs1 are complex, the cost will be high, so avoid
197 reevaluation if above an arbitrary threshold. */
198 if (tmp == NULL || cost1 < COSTS_N_INSNS (25))
199 tmp2 = targetm.gen_ccmp_first (&prep_seq_2, &gen_seq_2, rcode1,
200 gimple_assign_rhs1 (gs1),
201 gimple_assign_rhs2 (gs1));
203 if (!tmp && !tmp2)
204 return NULL_RTX;
206 if (tmp2 != NULL)
208 ret2 = expand_ccmp_next (gs0, code, tmp2, &prep_seq_2,
209 &gen_seq_2);
210 cost2 = seq_cost (safe_as_a <rtx_insn *> (prep_seq_2), speed_p);
211 cost2 += seq_cost (safe_as_a <rtx_insn *> (gen_seq_2), speed_p);
214 if (cost2 < cost1)
216 *prep_seq = prep_seq_2;
217 *gen_seq = gen_seq_2;
218 return ret2;
221 *prep_seq = prep_seq_1;
222 *gen_seq = gen_seq_1;
223 return ret;
225 else
227 tmp = expand_ccmp_expr_1 (gs1, prep_seq, gen_seq);
228 if (!tmp)
229 return NULL_RTX;
231 return expand_ccmp_next (gs0, code, tmp, prep_seq, gen_seq);
234 else
236 gcc_assert (gimple_assign_rhs_code (gs0) == BIT_AND_EXPR
237 || gimple_assign_rhs_code (gs0) == BIT_IOR_EXPR);
239 if (TREE_CODE_CLASS (gimple_assign_rhs_code (gs1)) == tcc_comparison)
241 tmp = expand_ccmp_expr_1 (gs0, prep_seq, gen_seq);
242 if (!tmp)
243 return NULL_RTX;
245 return expand_ccmp_next (gs1, code, tmp, prep_seq, gen_seq);
247 else
249 gcc_assert (gimple_assign_rhs_code (gs1) == BIT_AND_EXPR
250 || gimple_assign_rhs_code (gs1) == BIT_IOR_EXPR);
254 return NULL_RTX;
257 /* Main entry to expand conditional compare statement G.
258 Return NULL_RTX if G is not a legal candidate or expand fail.
259 Otherwise return the target. */
261 expand_ccmp_expr (gimple *g)
263 rtx_insn *last;
264 rtx tmp;
265 rtx prep_seq, gen_seq;
267 prep_seq = gen_seq = NULL_RTX;
269 if (!ccmp_candidate_p (g))
270 return NULL_RTX;
272 last = get_last_insn ();
273 tmp = expand_ccmp_expr_1 (g, &prep_seq, &gen_seq);
275 if (tmp)
277 insn_code icode;
278 machine_mode cc_mode = CCmode;
279 tree lhs = gimple_assign_lhs (g);
280 rtx_code cmp_code = GET_CODE (tmp);
282 #ifdef SELECT_CC_MODE
283 cc_mode = SELECT_CC_MODE (cmp_code, XEXP (tmp, 0), const0_rtx);
284 #endif
285 icode = optab_handler (cstore_optab, cc_mode);
286 if (icode != CODE_FOR_nothing)
288 machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
289 rtx target = gen_reg_rtx (mode);
291 emit_insn (prep_seq);
292 emit_insn (gen_seq);
294 tmp = emit_cstore (target, icode, cmp_code, cc_mode, cc_mode,
295 0, XEXP (tmp, 0), const0_rtx, 1, mode);
296 if (tmp)
297 return tmp;
300 /* Clean up. */
301 delete_insns_since (last);
302 return NULL_RTX;