[AArch64] Use new target pass registration framework for FMA steering pass
[official-gcc.git] / gcc / asan.c
blobc6d924014b6f32ead3d7e2dc37ee6e8aeadec11a
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "stringpool.h"
36 #include "tree-vrp.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "asan.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "langhooks.h"
56 #include "cfgloop.h"
57 #include "gimple-builder.h"
58 #include "ubsan.h"
59 #include "params.h"
60 #include "builtins.h"
61 #include "fnmatch.h"
63 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
64 with <2x slowdown on average.
66 The tool consists of two parts:
67 instrumentation module (this file) and a run-time library.
68 The instrumentation module adds a run-time check before every memory insn.
69 For a 8- or 16- byte load accessing address X:
70 ShadowAddr = (X >> 3) + Offset
71 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
72 if (ShadowValue)
73 __asan_report_load8(X);
74 For a load of N bytes (N=1, 2 or 4) from address X:
75 ShadowAddr = (X >> 3) + Offset
76 ShadowValue = *(char*)ShadowAddr;
77 if (ShadowValue)
78 if ((X & 7) + N - 1 > ShadowValue)
79 __asan_report_loadN(X);
80 Stores are instrumented similarly, but using __asan_report_storeN functions.
81 A call too __asan_init_vN() is inserted to the list of module CTORs.
82 N is the version number of the AddressSanitizer API. The changes between the
83 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
85 The run-time library redefines malloc (so that redzone are inserted around
86 the allocated memory) and free (so that reuse of free-ed memory is delayed),
87 provides __asan_report* and __asan_init_vN functions.
89 Read more:
90 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
92 The current implementation supports detection of out-of-bounds and
93 use-after-free in the heap, on the stack and for global variables.
95 [Protection of stack variables]
97 To understand how detection of out-of-bounds and use-after-free works
98 for stack variables, lets look at this example on x86_64 where the
99 stack grows downward:
102 foo ()
104 char a[23] = {0};
105 int b[2] = {0};
107 a[5] = 1;
108 b[1] = 2;
110 return a[5] + b[1];
113 For this function, the stack protected by asan will be organized as
114 follows, from the top of the stack to the bottom:
116 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
118 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
119 the next slot be 32 bytes aligned; this one is called Partial
120 Redzone; this 32 bytes alignment is an asan constraint]
122 Slot 3/ [24 bytes for variable 'a']
124 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
126 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
128 Slot 6/ [8 bytes for variable 'b']
130 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
131 'LEFT RedZone']
133 The 32 bytes of LEFT red zone at the bottom of the stack can be
134 decomposed as such:
136 1/ The first 8 bytes contain a magical asan number that is always
137 0x41B58AB3.
139 2/ The following 8 bytes contains a pointer to a string (to be
140 parsed at runtime by the runtime asan library), which format is
141 the following:
143 "<function-name> <space> <num-of-variables-on-the-stack>
144 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
145 <length-of-var-in-bytes> ){n} "
147 where '(...){n}' means the content inside the parenthesis occurs 'n'
148 times, with 'n' being the number of variables on the stack.
150 3/ The following 8 bytes contain the PC of the current function which
151 will be used by the run-time library to print an error message.
153 4/ The following 8 bytes are reserved for internal use by the run-time.
155 The shadow memory for that stack layout is going to look like this:
157 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
158 The F1 byte pattern is a magic number called
159 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
160 the memory for that shadow byte is part of a the LEFT red zone
161 intended to seat at the bottom of the variables on the stack.
163 - content of shadow memory 8 bytes for slots 6 and 5:
164 0xF4F4F400. The F4 byte pattern is a magic number
165 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
166 memory region for this shadow byte is a PARTIAL red zone
167 intended to pad a variable A, so that the slot following
168 {A,padding} is 32 bytes aligned.
170 Note that the fact that the least significant byte of this
171 shadow memory content is 00 means that 8 bytes of its
172 corresponding memory (which corresponds to the memory of
173 variable 'b') is addressable.
175 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
176 The F2 byte pattern is a magic number called
177 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
178 region for this shadow byte is a MIDDLE red zone intended to
179 seat between two 32 aligned slots of {variable,padding}.
181 - content of shadow memory 8 bytes for slot 3 and 2:
182 0xF4000000. This represents is the concatenation of
183 variable 'a' and the partial red zone following it, like what we
184 had for variable 'b'. The least significant 3 bytes being 00
185 means that the 3 bytes of variable 'a' are addressable.
187 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
188 The F3 byte pattern is a magic number called
189 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
190 region for this shadow byte is a RIGHT red zone intended to seat
191 at the top of the variables of the stack.
193 Note that the real variable layout is done in expand_used_vars in
194 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
195 stack variables as well as the different red zones, emits some
196 prologue code to populate the shadow memory as to poison (mark as
197 non-accessible) the regions of the red zones and mark the regions of
198 stack variables as accessible, and emit some epilogue code to
199 un-poison (mark as accessible) the regions of red zones right before
200 the function exits.
202 [Protection of global variables]
204 The basic idea is to insert a red zone between two global variables
205 and install a constructor function that calls the asan runtime to do
206 the populating of the relevant shadow memory regions at load time.
208 So the global variables are laid out as to insert a red zone between
209 them. The size of the red zones is so that each variable starts on a
210 32 bytes boundary.
212 Then a constructor function is installed so that, for each global
213 variable, it calls the runtime asan library function
214 __asan_register_globals_with an instance of this type:
216 struct __asan_global
218 // Address of the beginning of the global variable.
219 const void *__beg;
221 // Initial size of the global variable.
222 uptr __size;
224 // Size of the global variable + size of the red zone. This
225 // size is 32 bytes aligned.
226 uptr __size_with_redzone;
228 // Name of the global variable.
229 const void *__name;
231 // Name of the module where the global variable is declared.
232 const void *__module_name;
234 // 1 if it has dynamic initialization, 0 otherwise.
235 uptr __has_dynamic_init;
237 // A pointer to struct that contains source location, could be NULL.
238 __asan_global_source_location *__location;
241 A destructor function that calls the runtime asan library function
242 _asan_unregister_globals is also installed. */
244 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
245 static bool asan_shadow_offset_computed;
246 static vec<char *> sanitized_sections;
248 /* Sets shadow offset to value in string VAL. */
250 bool
251 set_asan_shadow_offset (const char *val)
253 char *endp;
255 errno = 0;
256 #ifdef HAVE_LONG_LONG
257 asan_shadow_offset_value = strtoull (val, &endp, 0);
258 #else
259 asan_shadow_offset_value = strtoul (val, &endp, 0);
260 #endif
261 if (!(*val != '\0' && *endp == '\0' && errno == 0))
262 return false;
264 asan_shadow_offset_computed = true;
266 return true;
269 /* Set list of user-defined sections that need to be sanitized. */
271 void
272 set_sanitized_sections (const char *sections)
274 char *pat;
275 unsigned i;
276 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
277 free (pat);
278 sanitized_sections.truncate (0);
280 for (const char *s = sections; *s; )
282 const char *end;
283 for (end = s; *end && *end != ','; ++end);
284 size_t len = end - s;
285 sanitized_sections.safe_push (xstrndup (s, len));
286 s = *end ? end + 1 : end;
290 /* Checks whether section SEC should be sanitized. */
292 static bool
293 section_sanitized_p (const char *sec)
295 char *pat;
296 unsigned i;
297 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
298 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
299 return true;
300 return false;
303 /* Returns Asan shadow offset. */
305 static unsigned HOST_WIDE_INT
306 asan_shadow_offset ()
308 if (!asan_shadow_offset_computed)
310 asan_shadow_offset_computed = true;
311 asan_shadow_offset_value = targetm.asan_shadow_offset ();
313 return asan_shadow_offset_value;
316 alias_set_type asan_shadow_set = -1;
318 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
319 alias set is used for all shadow memory accesses. */
320 static GTY(()) tree shadow_ptr_types[2];
322 /* Decl for __asan_option_detect_stack_use_after_return. */
323 static GTY(()) tree asan_detect_stack_use_after_return;
325 /* Various flags for Asan builtins. */
326 enum asan_check_flags
328 ASAN_CHECK_STORE = 1 << 0,
329 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
330 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
331 ASAN_CHECK_LAST = 1 << 3
334 /* Hashtable support for memory references used by gimple
335 statements. */
337 /* This type represents a reference to a memory region. */
338 struct asan_mem_ref
340 /* The expression of the beginning of the memory region. */
341 tree start;
343 /* The size of the access. */
344 HOST_WIDE_INT access_size;
347 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
349 /* Initializes an instance of asan_mem_ref. */
351 static void
352 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
354 ref->start = start;
355 ref->access_size = access_size;
358 /* Allocates memory for an instance of asan_mem_ref into the memory
359 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
360 START is the address of (or the expression pointing to) the
361 beginning of memory reference. ACCESS_SIZE is the size of the
362 access to the referenced memory. */
364 static asan_mem_ref*
365 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
367 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
369 asan_mem_ref_init (ref, start, access_size);
370 return ref;
373 /* This builds and returns a pointer to the end of the memory region
374 that starts at START and of length LEN. */
376 tree
377 asan_mem_ref_get_end (tree start, tree len)
379 if (len == NULL_TREE || integer_zerop (len))
380 return start;
382 if (!ptrofftype_p (len))
383 len = convert_to_ptrofftype (len);
385 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
388 /* Return a tree expression that represents the end of the referenced
389 memory region. Beware that this function can actually build a new
390 tree expression. */
392 tree
393 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
395 return asan_mem_ref_get_end (ref->start, len);
398 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
400 static inline hashval_t hash (const asan_mem_ref *);
401 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
404 /* Hash a memory reference. */
406 inline hashval_t
407 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
409 return iterative_hash_expr (mem_ref->start, 0);
412 /* Compare two memory references. We accept the length of either
413 memory references to be NULL_TREE. */
415 inline bool
416 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
417 const asan_mem_ref *m2)
419 return operand_equal_p (m1->start, m2->start, 0);
422 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
424 /* Returns a reference to the hash table containing memory references.
425 This function ensures that the hash table is created. Note that
426 this hash table is updated by the function
427 update_mem_ref_hash_table. */
429 static hash_table<asan_mem_ref_hasher> *
430 get_mem_ref_hash_table ()
432 if (!asan_mem_ref_ht)
433 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
435 return asan_mem_ref_ht;
438 /* Clear all entries from the memory references hash table. */
440 static void
441 empty_mem_ref_hash_table ()
443 if (asan_mem_ref_ht)
444 asan_mem_ref_ht->empty ();
447 /* Free the memory references hash table. */
449 static void
450 free_mem_ref_resources ()
452 delete asan_mem_ref_ht;
453 asan_mem_ref_ht = NULL;
455 asan_mem_ref_pool.release ();
458 /* Return true iff the memory reference REF has been instrumented. */
460 static bool
461 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
463 asan_mem_ref r;
464 asan_mem_ref_init (&r, ref, access_size);
466 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
467 return saved_ref && saved_ref->access_size >= access_size;
470 /* Return true iff the memory reference REF has been instrumented. */
472 static bool
473 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
475 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
478 /* Return true iff access to memory region starting at REF and of
479 length LEN has been instrumented. */
481 static bool
482 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
484 HOST_WIDE_INT size_in_bytes
485 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
487 return size_in_bytes != -1
488 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
491 /* Set REF to the memory reference present in a gimple assignment
492 ASSIGNMENT. Return true upon successful completion, false
493 otherwise. */
495 static bool
496 get_mem_ref_of_assignment (const gassign *assignment,
497 asan_mem_ref *ref,
498 bool *ref_is_store)
500 gcc_assert (gimple_assign_single_p (assignment));
502 if (gimple_store_p (assignment)
503 && !gimple_clobber_p (assignment))
505 ref->start = gimple_assign_lhs (assignment);
506 *ref_is_store = true;
508 else if (gimple_assign_load_p (assignment))
510 ref->start = gimple_assign_rhs1 (assignment);
511 *ref_is_store = false;
513 else
514 return false;
516 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
517 return true;
520 /* Return the memory references contained in a gimple statement
521 representing a builtin call that has to do with memory access. */
523 static bool
524 get_mem_refs_of_builtin_call (const gcall *call,
525 asan_mem_ref *src0,
526 tree *src0_len,
527 bool *src0_is_store,
528 asan_mem_ref *src1,
529 tree *src1_len,
530 bool *src1_is_store,
531 asan_mem_ref *dst,
532 tree *dst_len,
533 bool *dst_is_store,
534 bool *dest_is_deref,
535 bool *intercepted_p)
537 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
539 tree callee = gimple_call_fndecl (call);
540 tree source0 = NULL_TREE, source1 = NULL_TREE,
541 dest = NULL_TREE, len = NULL_TREE;
542 bool is_store = true, got_reference_p = false;
543 HOST_WIDE_INT access_size = 1;
545 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
547 switch (DECL_FUNCTION_CODE (callee))
549 /* (s, s, n) style memops. */
550 case BUILT_IN_BCMP:
551 case BUILT_IN_MEMCMP:
552 source0 = gimple_call_arg (call, 0);
553 source1 = gimple_call_arg (call, 1);
554 len = gimple_call_arg (call, 2);
555 break;
557 /* (src, dest, n) style memops. */
558 case BUILT_IN_BCOPY:
559 source0 = gimple_call_arg (call, 0);
560 dest = gimple_call_arg (call, 1);
561 len = gimple_call_arg (call, 2);
562 break;
564 /* (dest, src, n) style memops. */
565 case BUILT_IN_MEMCPY:
566 case BUILT_IN_MEMCPY_CHK:
567 case BUILT_IN_MEMMOVE:
568 case BUILT_IN_MEMMOVE_CHK:
569 case BUILT_IN_MEMPCPY:
570 case BUILT_IN_MEMPCPY_CHK:
571 dest = gimple_call_arg (call, 0);
572 source0 = gimple_call_arg (call, 1);
573 len = gimple_call_arg (call, 2);
574 break;
576 /* (dest, n) style memops. */
577 case BUILT_IN_BZERO:
578 dest = gimple_call_arg (call, 0);
579 len = gimple_call_arg (call, 1);
580 break;
582 /* (dest, x, n) style memops*/
583 case BUILT_IN_MEMSET:
584 case BUILT_IN_MEMSET_CHK:
585 dest = gimple_call_arg (call, 0);
586 len = gimple_call_arg (call, 2);
587 break;
589 case BUILT_IN_STRLEN:
590 source0 = gimple_call_arg (call, 0);
591 len = gimple_call_lhs (call);
592 break ;
594 /* And now the __atomic* and __sync builtins.
595 These are handled differently from the classical memory memory
596 access builtins above. */
598 case BUILT_IN_ATOMIC_LOAD_1:
599 case BUILT_IN_ATOMIC_LOAD_2:
600 case BUILT_IN_ATOMIC_LOAD_4:
601 case BUILT_IN_ATOMIC_LOAD_8:
602 case BUILT_IN_ATOMIC_LOAD_16:
603 is_store = false;
604 /* fall through. */
606 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
607 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
608 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
609 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
610 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
612 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
613 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
615 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
616 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
618 case BUILT_IN_SYNC_FETCH_AND_OR_1:
619 case BUILT_IN_SYNC_FETCH_AND_OR_2:
620 case BUILT_IN_SYNC_FETCH_AND_OR_4:
621 case BUILT_IN_SYNC_FETCH_AND_OR_8:
622 case BUILT_IN_SYNC_FETCH_AND_OR_16:
624 case BUILT_IN_SYNC_FETCH_AND_AND_1:
625 case BUILT_IN_SYNC_FETCH_AND_AND_2:
626 case BUILT_IN_SYNC_FETCH_AND_AND_4:
627 case BUILT_IN_SYNC_FETCH_AND_AND_8:
628 case BUILT_IN_SYNC_FETCH_AND_AND_16:
630 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
631 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
632 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
633 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
634 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
636 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
637 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
638 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
639 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
641 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
642 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
643 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
644 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
645 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
647 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
648 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
649 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
650 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
651 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
653 case BUILT_IN_SYNC_OR_AND_FETCH_1:
654 case BUILT_IN_SYNC_OR_AND_FETCH_2:
655 case BUILT_IN_SYNC_OR_AND_FETCH_4:
656 case BUILT_IN_SYNC_OR_AND_FETCH_8:
657 case BUILT_IN_SYNC_OR_AND_FETCH_16:
659 case BUILT_IN_SYNC_AND_AND_FETCH_1:
660 case BUILT_IN_SYNC_AND_AND_FETCH_2:
661 case BUILT_IN_SYNC_AND_AND_FETCH_4:
662 case BUILT_IN_SYNC_AND_AND_FETCH_8:
663 case BUILT_IN_SYNC_AND_AND_FETCH_16:
665 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
666 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
667 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
668 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
669 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
671 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
672 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
673 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
674 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
676 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
677 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
678 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
679 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
680 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
682 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
683 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
684 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
685 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
686 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
688 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
689 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
690 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
691 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
692 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
694 case BUILT_IN_SYNC_LOCK_RELEASE_1:
695 case BUILT_IN_SYNC_LOCK_RELEASE_2:
696 case BUILT_IN_SYNC_LOCK_RELEASE_4:
697 case BUILT_IN_SYNC_LOCK_RELEASE_8:
698 case BUILT_IN_SYNC_LOCK_RELEASE_16:
700 case BUILT_IN_ATOMIC_EXCHANGE_1:
701 case BUILT_IN_ATOMIC_EXCHANGE_2:
702 case BUILT_IN_ATOMIC_EXCHANGE_4:
703 case BUILT_IN_ATOMIC_EXCHANGE_8:
704 case BUILT_IN_ATOMIC_EXCHANGE_16:
706 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
707 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
708 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
709 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
710 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
712 case BUILT_IN_ATOMIC_STORE_1:
713 case BUILT_IN_ATOMIC_STORE_2:
714 case BUILT_IN_ATOMIC_STORE_4:
715 case BUILT_IN_ATOMIC_STORE_8:
716 case BUILT_IN_ATOMIC_STORE_16:
718 case BUILT_IN_ATOMIC_ADD_FETCH_1:
719 case BUILT_IN_ATOMIC_ADD_FETCH_2:
720 case BUILT_IN_ATOMIC_ADD_FETCH_4:
721 case BUILT_IN_ATOMIC_ADD_FETCH_8:
722 case BUILT_IN_ATOMIC_ADD_FETCH_16:
724 case BUILT_IN_ATOMIC_SUB_FETCH_1:
725 case BUILT_IN_ATOMIC_SUB_FETCH_2:
726 case BUILT_IN_ATOMIC_SUB_FETCH_4:
727 case BUILT_IN_ATOMIC_SUB_FETCH_8:
728 case BUILT_IN_ATOMIC_SUB_FETCH_16:
730 case BUILT_IN_ATOMIC_AND_FETCH_1:
731 case BUILT_IN_ATOMIC_AND_FETCH_2:
732 case BUILT_IN_ATOMIC_AND_FETCH_4:
733 case BUILT_IN_ATOMIC_AND_FETCH_8:
734 case BUILT_IN_ATOMIC_AND_FETCH_16:
736 case BUILT_IN_ATOMIC_NAND_FETCH_1:
737 case BUILT_IN_ATOMIC_NAND_FETCH_2:
738 case BUILT_IN_ATOMIC_NAND_FETCH_4:
739 case BUILT_IN_ATOMIC_NAND_FETCH_8:
740 case BUILT_IN_ATOMIC_NAND_FETCH_16:
742 case BUILT_IN_ATOMIC_XOR_FETCH_1:
743 case BUILT_IN_ATOMIC_XOR_FETCH_2:
744 case BUILT_IN_ATOMIC_XOR_FETCH_4:
745 case BUILT_IN_ATOMIC_XOR_FETCH_8:
746 case BUILT_IN_ATOMIC_XOR_FETCH_16:
748 case BUILT_IN_ATOMIC_OR_FETCH_1:
749 case BUILT_IN_ATOMIC_OR_FETCH_2:
750 case BUILT_IN_ATOMIC_OR_FETCH_4:
751 case BUILT_IN_ATOMIC_OR_FETCH_8:
752 case BUILT_IN_ATOMIC_OR_FETCH_16:
754 case BUILT_IN_ATOMIC_FETCH_ADD_1:
755 case BUILT_IN_ATOMIC_FETCH_ADD_2:
756 case BUILT_IN_ATOMIC_FETCH_ADD_4:
757 case BUILT_IN_ATOMIC_FETCH_ADD_8:
758 case BUILT_IN_ATOMIC_FETCH_ADD_16:
760 case BUILT_IN_ATOMIC_FETCH_SUB_1:
761 case BUILT_IN_ATOMIC_FETCH_SUB_2:
762 case BUILT_IN_ATOMIC_FETCH_SUB_4:
763 case BUILT_IN_ATOMIC_FETCH_SUB_8:
764 case BUILT_IN_ATOMIC_FETCH_SUB_16:
766 case BUILT_IN_ATOMIC_FETCH_AND_1:
767 case BUILT_IN_ATOMIC_FETCH_AND_2:
768 case BUILT_IN_ATOMIC_FETCH_AND_4:
769 case BUILT_IN_ATOMIC_FETCH_AND_8:
770 case BUILT_IN_ATOMIC_FETCH_AND_16:
772 case BUILT_IN_ATOMIC_FETCH_NAND_1:
773 case BUILT_IN_ATOMIC_FETCH_NAND_2:
774 case BUILT_IN_ATOMIC_FETCH_NAND_4:
775 case BUILT_IN_ATOMIC_FETCH_NAND_8:
776 case BUILT_IN_ATOMIC_FETCH_NAND_16:
778 case BUILT_IN_ATOMIC_FETCH_XOR_1:
779 case BUILT_IN_ATOMIC_FETCH_XOR_2:
780 case BUILT_IN_ATOMIC_FETCH_XOR_4:
781 case BUILT_IN_ATOMIC_FETCH_XOR_8:
782 case BUILT_IN_ATOMIC_FETCH_XOR_16:
784 case BUILT_IN_ATOMIC_FETCH_OR_1:
785 case BUILT_IN_ATOMIC_FETCH_OR_2:
786 case BUILT_IN_ATOMIC_FETCH_OR_4:
787 case BUILT_IN_ATOMIC_FETCH_OR_8:
788 case BUILT_IN_ATOMIC_FETCH_OR_16:
790 dest = gimple_call_arg (call, 0);
791 /* DEST represents the address of a memory location.
792 instrument_derefs wants the memory location, so lets
793 dereference the address DEST before handing it to
794 instrument_derefs. */
795 if (TREE_CODE (dest) == ADDR_EXPR)
796 dest = TREE_OPERAND (dest, 0);
797 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
798 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
799 dest, build_int_cst (TREE_TYPE (dest), 0));
800 else
801 gcc_unreachable ();
803 access_size = int_size_in_bytes (TREE_TYPE (dest));
806 default:
807 /* The other builtins memory access are not instrumented in this
808 function because they either don't have any length parameter,
809 or their length parameter is just a limit. */
810 break;
813 if (len != NULL_TREE)
815 if (source0 != NULL_TREE)
817 src0->start = source0;
818 src0->access_size = access_size;
819 *src0_len = len;
820 *src0_is_store = false;
823 if (source1 != NULL_TREE)
825 src1->start = source1;
826 src1->access_size = access_size;
827 *src1_len = len;
828 *src1_is_store = false;
831 if (dest != NULL_TREE)
833 dst->start = dest;
834 dst->access_size = access_size;
835 *dst_len = len;
836 *dst_is_store = true;
839 got_reference_p = true;
841 else if (dest)
843 dst->start = dest;
844 dst->access_size = access_size;
845 *dst_len = NULL_TREE;
846 *dst_is_store = is_store;
847 *dest_is_deref = true;
848 got_reference_p = true;
851 return got_reference_p;
854 /* Return true iff a given gimple statement has been instrumented.
855 Note that the statement is "defined" by the memory references it
856 contains. */
858 static bool
859 has_stmt_been_instrumented_p (gimple *stmt)
861 if (gimple_assign_single_p (stmt))
863 bool r_is_store;
864 asan_mem_ref r;
865 asan_mem_ref_init (&r, NULL, 1);
867 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
868 &r_is_store))
869 return has_mem_ref_been_instrumented (&r);
871 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
873 asan_mem_ref src0, src1, dest;
874 asan_mem_ref_init (&src0, NULL, 1);
875 asan_mem_ref_init (&src1, NULL, 1);
876 asan_mem_ref_init (&dest, NULL, 1);
878 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
879 bool src0_is_store = false, src1_is_store = false,
880 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
881 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
882 &src0, &src0_len, &src0_is_store,
883 &src1, &src1_len, &src1_is_store,
884 &dest, &dest_len, &dest_is_store,
885 &dest_is_deref, &intercepted_p))
887 if (src0.start != NULL_TREE
888 && !has_mem_ref_been_instrumented (&src0, src0_len))
889 return false;
891 if (src1.start != NULL_TREE
892 && !has_mem_ref_been_instrumented (&src1, src1_len))
893 return false;
895 if (dest.start != NULL_TREE
896 && !has_mem_ref_been_instrumented (&dest, dest_len))
897 return false;
899 return true;
902 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
904 asan_mem_ref r;
905 asan_mem_ref_init (&r, NULL, 1);
907 r.start = gimple_call_lhs (stmt);
908 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
909 return has_mem_ref_been_instrumented (&r);
912 return false;
915 /* Insert a memory reference into the hash table. */
917 static void
918 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
920 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
922 asan_mem_ref r;
923 asan_mem_ref_init (&r, ref, access_size);
925 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
926 if (*slot == NULL || (*slot)->access_size < access_size)
927 *slot = asan_mem_ref_new (ref, access_size);
930 /* Initialize shadow_ptr_types array. */
932 static void
933 asan_init_shadow_ptr_types (void)
935 asan_shadow_set = new_alias_set ();
936 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
937 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
938 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
939 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
940 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
941 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
942 initialize_sanitizer_builtins ();
945 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
947 static tree
948 asan_pp_string (pretty_printer *pp)
950 const char *buf = pp_formatted_text (pp);
951 size_t len = strlen (buf);
952 tree ret = build_string (len + 1, buf);
953 TREE_TYPE (ret)
954 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
955 build_index_type (size_int (len)));
956 TREE_READONLY (ret) = 1;
957 TREE_STATIC (ret) = 1;
958 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
961 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
963 static rtx
964 asan_shadow_cst (unsigned char shadow_bytes[4])
966 int i;
967 unsigned HOST_WIDE_INT val = 0;
968 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
969 for (i = 0; i < 4; i++)
970 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
971 << (BITS_PER_UNIT * i);
972 return gen_int_mode (val, SImode);
975 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
976 though. */
978 static void
979 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
981 rtx_insn *insn, *insns, *jump;
982 rtx_code_label *top_label;
983 rtx end, addr, tmp;
985 start_sequence ();
986 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
987 insns = get_insns ();
988 end_sequence ();
989 for (insn = insns; insn; insn = NEXT_INSN (insn))
990 if (CALL_P (insn))
991 break;
992 if (insn == NULL_RTX)
994 emit_insn (insns);
995 return;
998 gcc_assert ((len & 3) == 0);
999 top_label = gen_label_rtx ();
1000 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1001 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1002 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1003 emit_label (top_label);
1005 emit_move_insn (shadow_mem, const0_rtx);
1006 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1007 true, OPTAB_LIB_WIDEN);
1008 if (tmp != addr)
1009 emit_move_insn (addr, tmp);
1010 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1011 jump = get_last_insn ();
1012 gcc_assert (JUMP_P (jump));
1013 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1016 void
1017 asan_function_start (void)
1019 section *fnsec = function_section (current_function_decl);
1020 switch_to_section (fnsec);
1021 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1022 current_function_funcdef_no);
1025 /* Insert code to protect stack vars. The prologue sequence should be emitted
1026 directly, epilogue sequence returned. BASE is the register holding the
1027 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1028 array contains pairs of offsets in reverse order, always the end offset
1029 of some gap that needs protection followed by starting offset,
1030 and DECLS is an array of representative decls for each var partition.
1031 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1032 elements long (OFFSETS include gap before the first variable as well
1033 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1034 register which stack vars DECL_RTLs are based on. Either BASE should be
1035 assigned to PBASE, when not doing use after return protection, or
1036 corresponding address based on __asan_stack_malloc* return value. */
1038 rtx_insn *
1039 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1040 HOST_WIDE_INT *offsets, tree *decls, int length)
1042 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1043 rtx_code_label *lab;
1044 rtx_insn *insns;
1045 char buf[30];
1046 unsigned char shadow_bytes[4];
1047 HOST_WIDE_INT base_offset = offsets[length - 1];
1048 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1049 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1050 HOST_WIDE_INT last_offset, last_size;
1051 int l;
1052 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1053 tree str_cst, decl, id;
1054 int use_after_return_class = -1;
1056 if (shadow_ptr_types[0] == NULL_TREE)
1057 asan_init_shadow_ptr_types ();
1059 /* First of all, prepare the description string. */
1060 pretty_printer asan_pp;
1062 pp_decimal_int (&asan_pp, length / 2 - 1);
1063 pp_space (&asan_pp);
1064 for (l = length - 2; l; l -= 2)
1066 tree decl = decls[l / 2 - 1];
1067 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1068 pp_space (&asan_pp);
1069 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1070 pp_space (&asan_pp);
1071 if (DECL_P (decl) && DECL_NAME (decl))
1073 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1074 pp_space (&asan_pp);
1075 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1077 else
1078 pp_string (&asan_pp, "9 <unknown>");
1079 pp_space (&asan_pp);
1081 str_cst = asan_pp_string (&asan_pp);
1083 /* Emit the prologue sequence. */
1084 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1085 && ASAN_USE_AFTER_RETURN)
1087 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1088 /* __asan_stack_malloc_N guarantees alignment
1089 N < 6 ? (64 << N) : 4096 bytes. */
1090 if (alignb > (use_after_return_class < 6
1091 ? (64U << use_after_return_class) : 4096U))
1092 use_after_return_class = -1;
1093 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1094 base_align_bias = ((asan_frame_size + alignb - 1)
1095 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1097 /* Align base if target is STRICT_ALIGNMENT. */
1098 if (STRICT_ALIGNMENT)
1099 base = expand_binop (Pmode, and_optab, base,
1100 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1101 << ASAN_SHADOW_SHIFT)
1102 / BITS_PER_UNIT), Pmode), NULL_RTX,
1103 1, OPTAB_DIRECT);
1105 if (use_after_return_class == -1 && pbase)
1106 emit_move_insn (pbase, base);
1108 base = expand_binop (Pmode, add_optab, base,
1109 gen_int_mode (base_offset - base_align_bias, Pmode),
1110 NULL_RTX, 1, OPTAB_DIRECT);
1111 orig_base = NULL_RTX;
1112 if (use_after_return_class != -1)
1114 if (asan_detect_stack_use_after_return == NULL_TREE)
1116 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1117 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1118 integer_type_node);
1119 SET_DECL_ASSEMBLER_NAME (decl, id);
1120 TREE_ADDRESSABLE (decl) = 1;
1121 DECL_ARTIFICIAL (decl) = 1;
1122 DECL_IGNORED_P (decl) = 1;
1123 DECL_EXTERNAL (decl) = 1;
1124 TREE_STATIC (decl) = 1;
1125 TREE_PUBLIC (decl) = 1;
1126 TREE_USED (decl) = 1;
1127 asan_detect_stack_use_after_return = decl;
1129 orig_base = gen_reg_rtx (Pmode);
1130 emit_move_insn (orig_base, base);
1131 ret = expand_normal (asan_detect_stack_use_after_return);
1132 lab = gen_label_rtx ();
1133 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1134 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1135 VOIDmode, 0, lab, very_likely);
1136 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1137 use_after_return_class);
1138 ret = init_one_libfunc (buf);
1139 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 1,
1140 GEN_INT (asan_frame_size
1141 + base_align_bias),
1142 TYPE_MODE (pointer_sized_int_node));
1143 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1144 and NULL otherwise. Check RET value is NULL here and jump over the
1145 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1146 int very_unlikely = REG_BR_PROB_BASE / 2000 - 1;
1147 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1148 VOIDmode, 0, lab, very_unlikely);
1149 ret = convert_memory_address (Pmode, ret);
1150 emit_move_insn (base, ret);
1151 emit_label (lab);
1152 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1153 gen_int_mode (base_align_bias
1154 - base_offset, Pmode),
1155 NULL_RTX, 1, OPTAB_DIRECT));
1157 mem = gen_rtx_MEM (ptr_mode, base);
1158 mem = adjust_address (mem, VOIDmode, base_align_bias);
1159 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1160 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1161 emit_move_insn (mem, expand_normal (str_cst));
1162 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1163 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1164 id = get_identifier (buf);
1165 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1166 VAR_DECL, id, char_type_node);
1167 SET_DECL_ASSEMBLER_NAME (decl, id);
1168 TREE_ADDRESSABLE (decl) = 1;
1169 TREE_READONLY (decl) = 1;
1170 DECL_ARTIFICIAL (decl) = 1;
1171 DECL_IGNORED_P (decl) = 1;
1172 TREE_STATIC (decl) = 1;
1173 TREE_PUBLIC (decl) = 0;
1174 TREE_USED (decl) = 1;
1175 DECL_INITIAL (decl) = decl;
1176 TREE_ASM_WRITTEN (decl) = 1;
1177 TREE_ASM_WRITTEN (id) = 1;
1178 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1179 shadow_base = expand_binop (Pmode, lshr_optab, base,
1180 GEN_INT (ASAN_SHADOW_SHIFT),
1181 NULL_RTX, 1, OPTAB_DIRECT);
1182 shadow_base
1183 = plus_constant (Pmode, shadow_base,
1184 asan_shadow_offset ()
1185 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1186 gcc_assert (asan_shadow_set != -1
1187 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1188 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1189 set_mem_alias_set (shadow_mem, asan_shadow_set);
1190 if (STRICT_ALIGNMENT)
1191 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1192 prev_offset = base_offset;
1193 for (l = length; l; l -= 2)
1195 if (l == 2)
1196 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1197 offset = offsets[l - 1];
1198 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1200 int i;
1201 HOST_WIDE_INT aoff
1202 = base_offset + ((offset - base_offset)
1203 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1204 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1205 (aoff - prev_offset)
1206 >> ASAN_SHADOW_SHIFT);
1207 prev_offset = aoff;
1208 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1209 if (aoff < offset)
1211 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1212 shadow_bytes[i] = 0;
1213 else
1214 shadow_bytes[i] = offset - aoff;
1216 else
1217 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1218 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1219 offset = aoff;
1221 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1223 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1224 (offset - prev_offset)
1225 >> ASAN_SHADOW_SHIFT);
1226 prev_offset = offset;
1227 memset (shadow_bytes, cur_shadow_byte, 4);
1228 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1229 offset += ASAN_RED_ZONE_SIZE;
1231 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1233 do_pending_stack_adjust ();
1235 /* Construct epilogue sequence. */
1236 start_sequence ();
1238 lab = NULL;
1239 if (use_after_return_class != -1)
1241 rtx_code_label *lab2 = gen_label_rtx ();
1242 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1243 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1244 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1245 VOIDmode, 0, lab2, very_likely);
1246 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1247 set_mem_alias_set (shadow_mem, asan_shadow_set);
1248 mem = gen_rtx_MEM (ptr_mode, base);
1249 mem = adjust_address (mem, VOIDmode, base_align_bias);
1250 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1251 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1252 if (use_after_return_class < 5
1253 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1254 BITS_PER_UNIT, true))
1255 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1256 BITS_PER_UNIT, true, 0);
1257 else if (use_after_return_class >= 5
1258 || !set_storage_via_setmem (shadow_mem,
1259 GEN_INT (sz),
1260 gen_int_mode (c, QImode),
1261 BITS_PER_UNIT, BITS_PER_UNIT,
1262 -1, sz, sz, sz))
1264 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1265 use_after_return_class);
1266 ret = init_one_libfunc (buf);
1267 rtx addr = convert_memory_address (ptr_mode, base);
1268 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1269 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1270 GEN_INT (asan_frame_size + base_align_bias),
1271 TYPE_MODE (pointer_sized_int_node),
1272 orig_addr, ptr_mode);
1274 lab = gen_label_rtx ();
1275 emit_jump (lab);
1276 emit_label (lab2);
1279 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1280 set_mem_alias_set (shadow_mem, asan_shadow_set);
1282 if (STRICT_ALIGNMENT)
1283 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1285 prev_offset = base_offset;
1286 last_offset = base_offset;
1287 last_size = 0;
1288 for (l = length; l; l -= 2)
1290 offset = base_offset + ((offsets[l - 1] - base_offset)
1291 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1292 if (last_offset + last_size != offset)
1294 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1295 (last_offset - prev_offset)
1296 >> ASAN_SHADOW_SHIFT);
1297 prev_offset = last_offset;
1298 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1299 last_offset = offset;
1300 last_size = 0;
1302 last_size += base_offset + ((offsets[l - 2] - base_offset)
1303 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1304 - offset;
1306 if (last_size)
1308 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1309 (last_offset - prev_offset)
1310 >> ASAN_SHADOW_SHIFT);
1311 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1314 do_pending_stack_adjust ();
1315 if (lab)
1316 emit_label (lab);
1318 insns = get_insns ();
1319 end_sequence ();
1320 return insns;
1323 /* Return true if DECL, a global var, might be overridden and needs
1324 therefore a local alias. */
1326 static bool
1327 asan_needs_local_alias (tree decl)
1329 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1332 /* Return true if DECL is a VAR_DECL that should be protected
1333 by Address Sanitizer, by appending a red zone with protected
1334 shadow memory after it and aligning it to at least
1335 ASAN_RED_ZONE_SIZE bytes. */
1337 bool
1338 asan_protect_global (tree decl)
1340 if (!ASAN_GLOBALS)
1341 return false;
1343 rtx rtl, symbol;
1345 if (TREE_CODE (decl) == STRING_CST)
1347 /* Instrument all STRING_CSTs except those created
1348 by asan_pp_string here. */
1349 if (shadow_ptr_types[0] != NULL_TREE
1350 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1351 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1352 return false;
1353 return true;
1355 if (!VAR_P (decl)
1356 /* TLS vars aren't statically protectable. */
1357 || DECL_THREAD_LOCAL_P (decl)
1358 /* Externs will be protected elsewhere. */
1359 || DECL_EXTERNAL (decl)
1360 || !DECL_RTL_SET_P (decl)
1361 /* Comdat vars pose an ABI problem, we can't know if
1362 the var that is selected by the linker will have
1363 padding or not. */
1364 || DECL_ONE_ONLY (decl)
1365 /* Similarly for common vars. People can use -fno-common.
1366 Note: Linux kernel is built with -fno-common, so we do instrument
1367 globals there even if it is C. */
1368 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1369 /* Don't protect if using user section, often vars placed
1370 into user section from multiple TUs are then assumed
1371 to be an array of such vars, putting padding in there
1372 breaks this assumption. */
1373 || (DECL_SECTION_NAME (decl) != NULL
1374 && !symtab_node::get (decl)->implicit_section
1375 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1376 || DECL_SIZE (decl) == 0
1377 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1378 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1379 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1380 || TREE_TYPE (decl) == ubsan_get_source_location_type ())
1381 return false;
1383 rtl = DECL_RTL (decl);
1384 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1385 return false;
1386 symbol = XEXP (rtl, 0);
1388 if (CONSTANT_POOL_ADDRESS_P (symbol)
1389 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1390 return false;
1392 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1393 return false;
1395 #ifndef ASM_OUTPUT_DEF
1396 if (asan_needs_local_alias (decl))
1397 return false;
1398 #endif
1400 return true;
1403 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1404 IS_STORE is either 1 (for a store) or 0 (for a load). */
1406 static tree
1407 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1408 int *nargs)
1410 static enum built_in_function report[2][2][6]
1411 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1412 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1413 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1414 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1415 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1416 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1417 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1418 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1419 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1420 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1421 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1422 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1423 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1424 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1425 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1426 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1427 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1428 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1429 if (size_in_bytes == -1)
1431 *nargs = 2;
1432 return builtin_decl_implicit (report[recover_p][is_store][5]);
1434 *nargs = 1;
1435 int size_log2 = exact_log2 (size_in_bytes);
1436 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1439 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1440 IS_STORE is either 1 (for a store) or 0 (for a load). */
1442 static tree
1443 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1444 int *nargs)
1446 static enum built_in_function check[2][2][6]
1447 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1448 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1449 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1450 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1451 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1452 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1453 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1454 BUILT_IN_ASAN_LOAD2_NOABORT,
1455 BUILT_IN_ASAN_LOAD4_NOABORT,
1456 BUILT_IN_ASAN_LOAD8_NOABORT,
1457 BUILT_IN_ASAN_LOAD16_NOABORT,
1458 BUILT_IN_ASAN_LOADN_NOABORT },
1459 { BUILT_IN_ASAN_STORE1_NOABORT,
1460 BUILT_IN_ASAN_STORE2_NOABORT,
1461 BUILT_IN_ASAN_STORE4_NOABORT,
1462 BUILT_IN_ASAN_STORE8_NOABORT,
1463 BUILT_IN_ASAN_STORE16_NOABORT,
1464 BUILT_IN_ASAN_STOREN_NOABORT } } };
1465 if (size_in_bytes == -1)
1467 *nargs = 2;
1468 return builtin_decl_implicit (check[recover_p][is_store][5]);
1470 *nargs = 1;
1471 int size_log2 = exact_log2 (size_in_bytes);
1472 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1475 /* Split the current basic block and create a condition statement
1476 insertion point right before or after the statement pointed to by
1477 ITER. Return an iterator to the point at which the caller might
1478 safely insert the condition statement.
1480 THEN_BLOCK must be set to the address of an uninitialized instance
1481 of basic_block. The function will then set *THEN_BLOCK to the
1482 'then block' of the condition statement to be inserted by the
1483 caller.
1485 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1486 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1488 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1489 block' of the condition statement to be inserted by the caller.
1491 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1492 statements starting from *ITER, and *THEN_BLOCK is a new empty
1493 block.
1495 *ITER is adjusted to point to always point to the first statement
1496 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1497 same as what ITER was pointing to prior to calling this function,
1498 if BEFORE_P is true; otherwise, it is its following statement. */
1500 gimple_stmt_iterator
1501 create_cond_insert_point (gimple_stmt_iterator *iter,
1502 bool before_p,
1503 bool then_more_likely_p,
1504 bool create_then_fallthru_edge,
1505 basic_block *then_block,
1506 basic_block *fallthrough_block)
1508 gimple_stmt_iterator gsi = *iter;
1510 if (!gsi_end_p (gsi) && before_p)
1511 gsi_prev (&gsi);
1513 basic_block cur_bb = gsi_bb (*iter);
1515 edge e = split_block (cur_bb, gsi_stmt (gsi));
1517 /* Get a hold on the 'condition block', the 'then block' and the
1518 'else block'. */
1519 basic_block cond_bb = e->src;
1520 basic_block fallthru_bb = e->dest;
1521 basic_block then_bb = create_empty_bb (cond_bb);
1522 if (current_loops)
1524 add_bb_to_loop (then_bb, cond_bb->loop_father);
1525 loops_state_set (LOOPS_NEED_FIXUP);
1528 /* Set up the newly created 'then block'. */
1529 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1530 int fallthrough_probability
1531 = then_more_likely_p
1532 ? PROB_VERY_UNLIKELY
1533 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1534 e->probability = PROB_ALWAYS - fallthrough_probability;
1535 if (create_then_fallthru_edge)
1536 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1538 /* Set up the fallthrough basic block. */
1539 e = find_edge (cond_bb, fallthru_bb);
1540 e->flags = EDGE_FALSE_VALUE;
1541 e->count = cond_bb->count;
1542 e->probability = fallthrough_probability;
1544 /* Update dominance info for the newly created then_bb; note that
1545 fallthru_bb's dominance info has already been updated by
1546 split_bock. */
1547 if (dom_info_available_p (CDI_DOMINATORS))
1548 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1550 *then_block = then_bb;
1551 *fallthrough_block = fallthru_bb;
1552 *iter = gsi_start_bb (fallthru_bb);
1554 return gsi_last_bb (cond_bb);
1557 /* Insert an if condition followed by a 'then block' right before the
1558 statement pointed to by ITER. The fallthrough block -- which is the
1559 else block of the condition as well as the destination of the
1560 outcoming edge of the 'then block' -- starts with the statement
1561 pointed to by ITER.
1563 COND is the condition of the if.
1565 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1566 'then block' is higher than the probability of the edge to the
1567 fallthrough block.
1569 Upon completion of the function, *THEN_BB is set to the newly
1570 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1571 fallthrough block.
1573 *ITER is adjusted to still point to the same statement it was
1574 pointing to initially. */
1576 static void
1577 insert_if_then_before_iter (gcond *cond,
1578 gimple_stmt_iterator *iter,
1579 bool then_more_likely_p,
1580 basic_block *then_bb,
1581 basic_block *fallthrough_bb)
1583 gimple_stmt_iterator cond_insert_point =
1584 create_cond_insert_point (iter,
1585 /*before_p=*/true,
1586 then_more_likely_p,
1587 /*create_then_fallthru_edge=*/true,
1588 then_bb,
1589 fallthrough_bb);
1590 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1593 /* Build
1594 (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset (). */
1596 static tree
1597 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1598 tree base_addr, tree shadow_ptr_type)
1600 tree t, uintptr_type = TREE_TYPE (base_addr);
1601 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1602 gimple *g;
1604 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1605 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1606 base_addr, t);
1607 gimple_set_location (g, location);
1608 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1610 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1611 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1612 gimple_assign_lhs (g), t);
1613 gimple_set_location (g, location);
1614 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1616 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1617 gimple_assign_lhs (g));
1618 gimple_set_location (g, location);
1619 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1621 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1622 build_int_cst (shadow_ptr_type, 0));
1623 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1624 gimple_set_location (g, location);
1625 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1626 return gimple_assign_lhs (g);
1629 /* BASE can already be an SSA_NAME; in that case, do not create a
1630 new SSA_NAME for it. */
1632 static tree
1633 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1634 bool before_p)
1636 if (TREE_CODE (base) == SSA_NAME)
1637 return base;
1638 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1639 TREE_CODE (base), base);
1640 gimple_set_location (g, loc);
1641 if (before_p)
1642 gsi_insert_before (iter, g, GSI_SAME_STMT);
1643 else
1644 gsi_insert_after (iter, g, GSI_NEW_STMT);
1645 return gimple_assign_lhs (g);
1648 /* LEN can already have necessary size and precision;
1649 in that case, do not create a new variable. */
1651 tree
1652 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1653 bool before_p)
1655 if (ptrofftype_p (len))
1656 return len;
1657 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1658 NOP_EXPR, len);
1659 gimple_set_location (g, loc);
1660 if (before_p)
1661 gsi_insert_before (iter, g, GSI_SAME_STMT);
1662 else
1663 gsi_insert_after (iter, g, GSI_NEW_STMT);
1664 return gimple_assign_lhs (g);
1667 /* Instrument the memory access instruction BASE. Insert new
1668 statements before or after ITER.
1670 Note that the memory access represented by BASE can be either an
1671 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1672 location. IS_STORE is TRUE for a store, FALSE for a load.
1673 BEFORE_P is TRUE for inserting the instrumentation code before
1674 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1675 for a scalar memory access and FALSE for memory region access.
1676 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1677 length. ALIGN tells alignment of accessed memory object.
1679 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1680 memory region have already been instrumented.
1682 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1683 statement it was pointing to prior to calling this function,
1684 otherwise, it points to the statement logically following it. */
1686 static void
1687 build_check_stmt (location_t loc, tree base, tree len,
1688 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1689 bool is_non_zero_len, bool before_p, bool is_store,
1690 bool is_scalar_access, unsigned int align = 0)
1692 gimple_stmt_iterator gsi = *iter;
1693 gimple *g;
1695 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1697 gsi = *iter;
1699 base = unshare_expr (base);
1700 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1702 if (len)
1704 len = unshare_expr (len);
1705 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1707 else
1709 gcc_assert (size_in_bytes != -1);
1710 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1713 if (size_in_bytes > 1)
1715 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1716 || size_in_bytes > 16)
1717 is_scalar_access = false;
1718 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1720 /* On non-strict alignment targets, if
1721 16-byte access is just 8-byte aligned,
1722 this will result in misaligned shadow
1723 memory 2 byte load, but otherwise can
1724 be handled using one read. */
1725 if (size_in_bytes != 16
1726 || STRICT_ALIGNMENT
1727 || align < 8 * BITS_PER_UNIT)
1728 is_scalar_access = false;
1732 HOST_WIDE_INT flags = 0;
1733 if (is_store)
1734 flags |= ASAN_CHECK_STORE;
1735 if (is_non_zero_len)
1736 flags |= ASAN_CHECK_NON_ZERO_LEN;
1737 if (is_scalar_access)
1738 flags |= ASAN_CHECK_SCALAR_ACCESS;
1740 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1741 build_int_cst (integer_type_node, flags),
1742 base, len,
1743 build_int_cst (integer_type_node,
1744 align / BITS_PER_UNIT));
1745 gimple_set_location (g, loc);
1746 if (before_p)
1747 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1748 else
1750 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1751 gsi_next (&gsi);
1752 *iter = gsi;
1756 /* If T represents a memory access, add instrumentation code before ITER.
1757 LOCATION is source code location.
1758 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1760 static void
1761 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1762 location_t location, bool is_store)
1764 if (is_store && !ASAN_INSTRUMENT_WRITES)
1765 return;
1766 if (!is_store && !ASAN_INSTRUMENT_READS)
1767 return;
1769 tree type, base;
1770 HOST_WIDE_INT size_in_bytes;
1771 if (location == UNKNOWN_LOCATION)
1772 location = EXPR_LOCATION (t);
1774 type = TREE_TYPE (t);
1775 switch (TREE_CODE (t))
1777 case ARRAY_REF:
1778 case COMPONENT_REF:
1779 case INDIRECT_REF:
1780 case MEM_REF:
1781 case VAR_DECL:
1782 case BIT_FIELD_REF:
1783 break;
1784 /* FALLTHRU */
1785 default:
1786 return;
1789 size_in_bytes = int_size_in_bytes (type);
1790 if (size_in_bytes <= 0)
1791 return;
1793 HOST_WIDE_INT bitsize, bitpos;
1794 tree offset;
1795 machine_mode mode;
1796 int unsignedp, reversep, volatilep = 0;
1797 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
1798 &unsignedp, &reversep, &volatilep);
1800 if (TREE_CODE (t) == COMPONENT_REF
1801 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1803 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1804 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1805 TREE_OPERAND (t, 0), repr,
1806 NULL_TREE), location, is_store);
1807 return;
1810 if (bitpos % BITS_PER_UNIT
1811 || bitsize != size_in_bytes * BITS_PER_UNIT)
1812 return;
1814 if (VAR_P (inner)
1815 && offset == NULL_TREE
1816 && bitpos >= 0
1817 && DECL_SIZE (inner)
1818 && tree_fits_shwi_p (DECL_SIZE (inner))
1819 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1821 if (DECL_THREAD_LOCAL_P (inner))
1822 return;
1823 if (!ASAN_GLOBALS && is_global_var (inner))
1824 return;
1825 if (!TREE_STATIC (inner))
1827 /* Automatic vars in the current function will be always
1828 accessible. */
1829 if (decl_function_context (inner) == current_function_decl)
1830 return;
1832 /* Always instrument external vars, they might be dynamically
1833 initialized. */
1834 else if (!DECL_EXTERNAL (inner))
1836 /* For static vars if they are known not to be dynamically
1837 initialized, they will be always accessible. */
1838 varpool_node *vnode = varpool_node::get (inner);
1839 if (vnode && !vnode->dynamically_initialized)
1840 return;
1844 base = build_fold_addr_expr (t);
1845 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1847 unsigned int align = get_object_alignment (t);
1848 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1849 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1850 is_store, /*is_scalar_access*/true, align);
1851 update_mem_ref_hash_table (base, size_in_bytes);
1852 update_mem_ref_hash_table (t, size_in_bytes);
1857 /* Insert a memory reference into the hash table if access length
1858 can be determined in compile time. */
1860 static void
1861 maybe_update_mem_ref_hash_table (tree base, tree len)
1863 if (!POINTER_TYPE_P (TREE_TYPE (base))
1864 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1865 return;
1867 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1869 if (size_in_bytes != -1)
1870 update_mem_ref_hash_table (base, size_in_bytes);
1873 /* Instrument an access to a contiguous memory region that starts at
1874 the address pointed to by BASE, over a length of LEN (expressed in
1875 the sizeof (*BASE) bytes). ITER points to the instruction before
1876 which the instrumentation instructions must be inserted. LOCATION
1877 is the source location that the instrumentation instructions must
1878 have. If IS_STORE is true, then the memory access is a store;
1879 otherwise, it's a load. */
1881 static void
1882 instrument_mem_region_access (tree base, tree len,
1883 gimple_stmt_iterator *iter,
1884 location_t location, bool is_store)
1886 if (!POINTER_TYPE_P (TREE_TYPE (base))
1887 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1888 || integer_zerop (len))
1889 return;
1891 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1893 if ((size_in_bytes == -1)
1894 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1896 build_check_stmt (location, base, len, size_in_bytes, iter,
1897 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1898 is_store, /*is_scalar_access*/false, /*align*/0);
1901 maybe_update_mem_ref_hash_table (base, len);
1902 *iter = gsi_for_stmt (gsi_stmt (*iter));
1905 /* Instrument the call to a built-in memory access function that is
1906 pointed to by the iterator ITER.
1908 Upon completion, return TRUE iff *ITER has been advanced to the
1909 statement following the one it was originally pointing to. */
1911 static bool
1912 instrument_builtin_call (gimple_stmt_iterator *iter)
1914 if (!ASAN_MEMINTRIN)
1915 return false;
1917 bool iter_advanced_p = false;
1918 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
1920 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1922 location_t loc = gimple_location (call);
1924 asan_mem_ref src0, src1, dest;
1925 asan_mem_ref_init (&src0, NULL, 1);
1926 asan_mem_ref_init (&src1, NULL, 1);
1927 asan_mem_ref_init (&dest, NULL, 1);
1929 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1930 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
1931 dest_is_deref = false, intercepted_p = true;
1933 if (get_mem_refs_of_builtin_call (call,
1934 &src0, &src0_len, &src0_is_store,
1935 &src1, &src1_len, &src1_is_store,
1936 &dest, &dest_len, &dest_is_store,
1937 &dest_is_deref, &intercepted_p))
1939 if (dest_is_deref)
1941 instrument_derefs (iter, dest.start, loc, dest_is_store);
1942 gsi_next (iter);
1943 iter_advanced_p = true;
1945 else if (!intercepted_p
1946 && (src0_len || src1_len || dest_len))
1948 if (src0.start != NULL_TREE)
1949 instrument_mem_region_access (src0.start, src0_len,
1950 iter, loc, /*is_store=*/false);
1951 if (src1.start != NULL_TREE)
1952 instrument_mem_region_access (src1.start, src1_len,
1953 iter, loc, /*is_store=*/false);
1954 if (dest.start != NULL_TREE)
1955 instrument_mem_region_access (dest.start, dest_len,
1956 iter, loc, /*is_store=*/true);
1958 *iter = gsi_for_stmt (call);
1959 gsi_next (iter);
1960 iter_advanced_p = true;
1962 else
1964 if (src0.start != NULL_TREE)
1965 maybe_update_mem_ref_hash_table (src0.start, src0_len);
1966 if (src1.start != NULL_TREE)
1967 maybe_update_mem_ref_hash_table (src1.start, src1_len);
1968 if (dest.start != NULL_TREE)
1969 maybe_update_mem_ref_hash_table (dest.start, dest_len);
1972 return iter_advanced_p;
1975 /* Instrument the assignment statement ITER if it is subject to
1976 instrumentation. Return TRUE iff instrumentation actually
1977 happened. In that case, the iterator ITER is advanced to the next
1978 logical expression following the one initially pointed to by ITER,
1979 and the relevant memory reference that which access has been
1980 instrumented is added to the memory references hash table. */
1982 static bool
1983 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1985 gimple *s = gsi_stmt (*iter);
1987 gcc_assert (gimple_assign_single_p (s));
1989 tree ref_expr = NULL_TREE;
1990 bool is_store, is_instrumented = false;
1992 if (gimple_store_p (s))
1994 ref_expr = gimple_assign_lhs (s);
1995 is_store = true;
1996 instrument_derefs (iter, ref_expr,
1997 gimple_location (s),
1998 is_store);
1999 is_instrumented = true;
2002 if (gimple_assign_load_p (s))
2004 ref_expr = gimple_assign_rhs1 (s);
2005 is_store = false;
2006 instrument_derefs (iter, ref_expr,
2007 gimple_location (s),
2008 is_store);
2009 is_instrumented = true;
2012 if (is_instrumented)
2013 gsi_next (iter);
2015 return is_instrumented;
2018 /* Instrument the function call pointed to by the iterator ITER, if it
2019 is subject to instrumentation. At the moment, the only function
2020 calls that are instrumented are some built-in functions that access
2021 memory. Look at instrument_builtin_call to learn more.
2023 Upon completion return TRUE iff *ITER was advanced to the statement
2024 following the one it was originally pointing to. */
2026 static bool
2027 maybe_instrument_call (gimple_stmt_iterator *iter)
2029 gimple *stmt = gsi_stmt (*iter);
2030 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2032 if (is_builtin && instrument_builtin_call (iter))
2033 return true;
2035 if (gimple_call_noreturn_p (stmt))
2037 if (is_builtin)
2039 tree callee = gimple_call_fndecl (stmt);
2040 switch (DECL_FUNCTION_CODE (callee))
2042 case BUILT_IN_UNREACHABLE:
2043 case BUILT_IN_TRAP:
2044 /* Don't instrument these. */
2045 return false;
2046 default:
2047 break;
2050 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2051 gimple *g = gimple_build_call (decl, 0);
2052 gimple_set_location (g, gimple_location (stmt));
2053 gsi_insert_before (iter, g, GSI_SAME_STMT);
2056 bool instrumented = false;
2057 if (gimple_store_p (stmt))
2059 tree ref_expr = gimple_call_lhs (stmt);
2060 instrument_derefs (iter, ref_expr,
2061 gimple_location (stmt),
2062 /*is_store=*/true);
2064 instrumented = true;
2067 /* Walk through gimple_call arguments and check them id needed. */
2068 unsigned args_num = gimple_call_num_args (stmt);
2069 for (unsigned i = 0; i < args_num; ++i)
2071 tree arg = gimple_call_arg (stmt, i);
2072 /* If ARG is not a non-aggregate register variable, compiler in general
2073 creates temporary for it and pass it as argument to gimple call.
2074 But in some cases, e.g. when we pass by value a small structure that
2075 fits to register, compiler can avoid extra overhead by pulling out
2076 these temporaries. In this case, we should check the argument. */
2077 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2079 instrument_derefs (iter, arg,
2080 gimple_location (stmt),
2081 /*is_store=*/false);
2082 instrumented = true;
2085 if (instrumented)
2086 gsi_next (iter);
2087 return instrumented;
2090 /* Walk each instruction of all basic block and instrument those that
2091 represent memory references: loads, stores, or function calls.
2092 In a given basic block, this function avoids instrumenting memory
2093 references that have already been instrumented. */
2095 static void
2096 transform_statements (void)
2098 basic_block bb, last_bb = NULL;
2099 gimple_stmt_iterator i;
2100 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2102 FOR_EACH_BB_FN (bb, cfun)
2104 basic_block prev_bb = bb;
2106 if (bb->index >= saved_last_basic_block) continue;
2108 /* Flush the mem ref hash table, if current bb doesn't have
2109 exactly one predecessor, or if that predecessor (skipping
2110 over asan created basic blocks) isn't the last processed
2111 basic block. Thus we effectively flush on extended basic
2112 block boundaries. */
2113 while (single_pred_p (prev_bb))
2115 prev_bb = single_pred (prev_bb);
2116 if (prev_bb->index < saved_last_basic_block)
2117 break;
2119 if (prev_bb != last_bb)
2120 empty_mem_ref_hash_table ();
2121 last_bb = bb;
2123 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2125 gimple *s = gsi_stmt (i);
2127 if (has_stmt_been_instrumented_p (s))
2128 gsi_next (&i);
2129 else if (gimple_assign_single_p (s)
2130 && !gimple_clobber_p (s)
2131 && maybe_instrument_assignment (&i))
2132 /* Nothing to do as maybe_instrument_assignment advanced
2133 the iterator I. */;
2134 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2135 /* Nothing to do as maybe_instrument_call
2136 advanced the iterator I. */;
2137 else
2139 /* No instrumentation happened.
2141 If the current instruction is a function call that
2142 might free something, let's forget about the memory
2143 references that got instrumented. Otherwise we might
2144 miss some instrumentation opportunities. */
2145 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2146 empty_mem_ref_hash_table ();
2148 gsi_next (&i);
2152 free_mem_ref_resources ();
2155 /* Build
2156 __asan_before_dynamic_init (module_name)
2158 __asan_after_dynamic_init ()
2159 call. */
2161 tree
2162 asan_dynamic_init_call (bool after_p)
2164 if (shadow_ptr_types[0] == NULL_TREE)
2165 asan_init_shadow_ptr_types ();
2167 tree fn = builtin_decl_implicit (after_p
2168 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2169 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2170 tree module_name_cst = NULL_TREE;
2171 if (!after_p)
2173 pretty_printer module_name_pp;
2174 pp_string (&module_name_pp, main_input_filename);
2176 module_name_cst = asan_pp_string (&module_name_pp);
2177 module_name_cst = fold_convert (const_ptr_type_node,
2178 module_name_cst);
2181 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2184 /* Build
2185 struct __asan_global
2187 const void *__beg;
2188 uptr __size;
2189 uptr __size_with_redzone;
2190 const void *__name;
2191 const void *__module_name;
2192 uptr __has_dynamic_init;
2193 __asan_global_source_location *__location;
2194 } type. */
2196 static tree
2197 asan_global_struct (void)
2199 static const char *field_names[7]
2200 = { "__beg", "__size", "__size_with_redzone",
2201 "__name", "__module_name", "__has_dynamic_init", "__location"};
2202 tree fields[7], ret;
2203 int i;
2205 ret = make_node (RECORD_TYPE);
2206 for (i = 0; i < 7; i++)
2208 fields[i]
2209 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2210 get_identifier (field_names[i]),
2211 (i == 0 || i == 3) ? const_ptr_type_node
2212 : pointer_sized_int_node);
2213 DECL_CONTEXT (fields[i]) = ret;
2214 if (i)
2215 DECL_CHAIN (fields[i - 1]) = fields[i];
2217 tree type_decl = build_decl (input_location, TYPE_DECL,
2218 get_identifier ("__asan_global"), ret);
2219 DECL_IGNORED_P (type_decl) = 1;
2220 DECL_ARTIFICIAL (type_decl) = 1;
2221 TYPE_FIELDS (ret) = fields[0];
2222 TYPE_NAME (ret) = type_decl;
2223 TYPE_STUB_DECL (ret) = type_decl;
2224 layout_type (ret);
2225 return ret;
2228 /* Append description of a single global DECL into vector V.
2229 TYPE is __asan_global struct type as returned by asan_global_struct. */
2231 static void
2232 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2234 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2235 unsigned HOST_WIDE_INT size;
2236 tree str_cst, module_name_cst, refdecl = decl;
2237 vec<constructor_elt, va_gc> *vinner = NULL;
2239 pretty_printer asan_pp, module_name_pp;
2241 if (DECL_NAME (decl))
2242 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2243 else
2244 pp_string (&asan_pp, "<unknown>");
2245 str_cst = asan_pp_string (&asan_pp);
2247 pp_string (&module_name_pp, main_input_filename);
2248 module_name_cst = asan_pp_string (&module_name_pp);
2250 if (asan_needs_local_alias (decl))
2252 char buf[20];
2253 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2254 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2255 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2256 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2257 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2258 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2259 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2260 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2261 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2262 TREE_STATIC (refdecl) = 1;
2263 TREE_PUBLIC (refdecl) = 0;
2264 TREE_USED (refdecl) = 1;
2265 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2268 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2269 fold_convert (const_ptr_type_node,
2270 build_fold_addr_expr (refdecl)));
2271 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2272 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2273 size += asan_red_zone_size (size);
2274 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2275 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2276 fold_convert (const_ptr_type_node, str_cst));
2277 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2278 fold_convert (const_ptr_type_node, module_name_cst));
2279 varpool_node *vnode = varpool_node::get (decl);
2280 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2281 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2282 build_int_cst (uptr, has_dynamic_init));
2283 tree locptr = NULL_TREE;
2284 location_t loc = DECL_SOURCE_LOCATION (decl);
2285 expanded_location xloc = expand_location (loc);
2286 if (xloc.file != NULL)
2288 static int lasanloccnt = 0;
2289 char buf[25];
2290 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2291 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2292 ubsan_get_source_location_type ());
2293 TREE_STATIC (var) = 1;
2294 TREE_PUBLIC (var) = 0;
2295 DECL_ARTIFICIAL (var) = 1;
2296 DECL_IGNORED_P (var) = 1;
2297 pretty_printer filename_pp;
2298 pp_string (&filename_pp, xloc.file);
2299 tree str = asan_pp_string (&filename_pp);
2300 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2301 NULL_TREE, str, NULL_TREE,
2302 build_int_cst (unsigned_type_node,
2303 xloc.line), NULL_TREE,
2304 build_int_cst (unsigned_type_node,
2305 xloc.column));
2306 TREE_CONSTANT (ctor) = 1;
2307 TREE_STATIC (ctor) = 1;
2308 DECL_INITIAL (var) = ctor;
2309 varpool_node::finalize_decl (var);
2310 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2312 else
2313 locptr = build_int_cst (uptr, 0);
2314 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2315 init = build_constructor (type, vinner);
2316 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2319 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2320 void
2321 initialize_sanitizer_builtins (void)
2323 tree decl;
2325 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2326 return;
2328 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2329 tree BT_FN_VOID_PTR
2330 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2331 tree BT_FN_VOID_CONST_PTR
2332 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2333 tree BT_FN_VOID_PTR_PTR
2334 = build_function_type_list (void_type_node, ptr_type_node,
2335 ptr_type_node, NULL_TREE);
2336 tree BT_FN_VOID_PTR_PTR_PTR
2337 = build_function_type_list (void_type_node, ptr_type_node,
2338 ptr_type_node, ptr_type_node, NULL_TREE);
2339 tree BT_FN_VOID_PTR_PTRMODE
2340 = build_function_type_list (void_type_node, ptr_type_node,
2341 pointer_sized_int_node, NULL_TREE);
2342 tree BT_FN_VOID_INT
2343 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2344 tree BT_FN_SIZE_CONST_PTR_INT
2345 = build_function_type_list (size_type_node, const_ptr_type_node,
2346 integer_type_node, NULL_TREE);
2347 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2348 tree BT_FN_IX_CONST_VPTR_INT[5];
2349 tree BT_FN_IX_VPTR_IX_INT[5];
2350 tree BT_FN_VOID_VPTR_IX_INT[5];
2351 tree vptr
2352 = build_pointer_type (build_qualified_type (void_type_node,
2353 TYPE_QUAL_VOLATILE));
2354 tree cvptr
2355 = build_pointer_type (build_qualified_type (void_type_node,
2356 TYPE_QUAL_VOLATILE
2357 |TYPE_QUAL_CONST));
2358 tree boolt
2359 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2360 int i;
2361 for (i = 0; i < 5; i++)
2363 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2364 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2365 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2366 integer_type_node, integer_type_node,
2367 NULL_TREE);
2368 BT_FN_IX_CONST_VPTR_INT[i]
2369 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2370 BT_FN_IX_VPTR_IX_INT[i]
2371 = build_function_type_list (ix, vptr, ix, integer_type_node,
2372 NULL_TREE);
2373 BT_FN_VOID_VPTR_IX_INT[i]
2374 = build_function_type_list (void_type_node, vptr, ix,
2375 integer_type_node, NULL_TREE);
2377 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2378 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2379 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2380 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2381 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2382 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2383 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2384 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2385 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2386 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2387 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2388 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2389 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2390 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2391 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2392 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2393 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2394 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2395 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2396 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2397 #undef ATTR_NOTHROW_LEAF_LIST
2398 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2399 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2400 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2401 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2402 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2403 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2404 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2405 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2406 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2407 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2408 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2409 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2410 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2411 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2412 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2413 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2414 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2415 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2416 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2417 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2418 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2419 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2420 #undef DEF_BUILTIN_STUB
2421 #define DEF_BUILTIN_STUB(ENUM, NAME)
2422 #undef DEF_SANITIZER_BUILTIN
2423 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2424 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2425 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2426 set_call_expr_flags (decl, ATTRS); \
2427 set_builtin_decl (ENUM, decl, true);
2429 #include "sanitizer.def"
2431 /* -fsanitize=object-size uses __builtin_object_size, but that might
2432 not be available for e.g. Fortran at this point. We use
2433 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2434 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2435 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2436 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2437 BT_FN_SIZE_CONST_PTR_INT,
2438 ATTR_PURE_NOTHROW_LEAF_LIST)
2440 #undef DEF_SANITIZER_BUILTIN
2441 #undef DEF_BUILTIN_STUB
2444 /* Called via htab_traverse. Count number of emitted
2445 STRING_CSTs in the constant hash table. */
2448 count_string_csts (constant_descriptor_tree **slot,
2449 unsigned HOST_WIDE_INT *data)
2451 struct constant_descriptor_tree *desc = *slot;
2452 if (TREE_CODE (desc->value) == STRING_CST
2453 && TREE_ASM_WRITTEN (desc->value)
2454 && asan_protect_global (desc->value))
2455 ++*data;
2456 return 1;
2459 /* Helper structure to pass two parameters to
2460 add_string_csts. */
2462 struct asan_add_string_csts_data
2464 tree type;
2465 vec<constructor_elt, va_gc> *v;
2468 /* Called via hash_table::traverse. Call asan_add_global
2469 on emitted STRING_CSTs from the constant hash table. */
2472 add_string_csts (constant_descriptor_tree **slot,
2473 asan_add_string_csts_data *aascd)
2475 struct constant_descriptor_tree *desc = *slot;
2476 if (TREE_CODE (desc->value) == STRING_CST
2477 && TREE_ASM_WRITTEN (desc->value)
2478 && asan_protect_global (desc->value))
2480 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2481 aascd->type, aascd->v);
2483 return 1;
2486 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2487 invoke ggc_collect. */
2488 static GTY(()) tree asan_ctor_statements;
2490 /* Module-level instrumentation.
2491 - Insert __asan_init_vN() into the list of CTORs.
2492 - TODO: insert redzones around globals.
2495 void
2496 asan_finish_file (void)
2498 varpool_node *vnode;
2499 unsigned HOST_WIDE_INT gcount = 0;
2501 if (shadow_ptr_types[0] == NULL_TREE)
2502 asan_init_shadow_ptr_types ();
2503 /* Avoid instrumenting code in the asan ctors/dtors.
2504 We don't need to insert padding after the description strings,
2505 nor after .LASAN* array. */
2506 flag_sanitize &= ~SANITIZE_ADDRESS;
2508 /* For user-space we want asan constructors to run first.
2509 Linux kernel does not support priorities other than default, and the only
2510 other user of constructors is coverage. So we run with the default
2511 priority. */
2512 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2513 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2515 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2517 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2518 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2519 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2520 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2522 FOR_EACH_DEFINED_VARIABLE (vnode)
2523 if (TREE_ASM_WRITTEN (vnode->decl)
2524 && asan_protect_global (vnode->decl))
2525 ++gcount;
2526 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2527 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2528 (&gcount);
2529 if (gcount)
2531 tree type = asan_global_struct (), var, ctor;
2532 tree dtor_statements = NULL_TREE;
2533 vec<constructor_elt, va_gc> *v;
2534 char buf[20];
2536 type = build_array_type_nelts (type, gcount);
2537 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2538 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2539 type);
2540 TREE_STATIC (var) = 1;
2541 TREE_PUBLIC (var) = 0;
2542 DECL_ARTIFICIAL (var) = 1;
2543 DECL_IGNORED_P (var) = 1;
2544 vec_alloc (v, gcount);
2545 FOR_EACH_DEFINED_VARIABLE (vnode)
2546 if (TREE_ASM_WRITTEN (vnode->decl)
2547 && asan_protect_global (vnode->decl))
2548 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2549 struct asan_add_string_csts_data aascd;
2550 aascd.type = TREE_TYPE (type);
2551 aascd.v = v;
2552 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2553 (&aascd);
2554 ctor = build_constructor (type, v);
2555 TREE_CONSTANT (ctor) = 1;
2556 TREE_STATIC (ctor) = 1;
2557 DECL_INITIAL (var) = ctor;
2558 varpool_node::finalize_decl (var);
2560 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2561 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2562 append_to_statement_list (build_call_expr (fn, 2,
2563 build_fold_addr_expr (var),
2564 gcount_tree),
2565 &asan_ctor_statements);
2567 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2568 append_to_statement_list (build_call_expr (fn, 2,
2569 build_fold_addr_expr (var),
2570 gcount_tree),
2571 &dtor_statements);
2572 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2574 if (asan_ctor_statements)
2575 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2576 flag_sanitize |= SANITIZE_ADDRESS;
2579 /* Expand the ASAN_{LOAD,STORE} builtins. */
2581 bool
2582 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2584 gimple *g = gsi_stmt (*iter);
2585 location_t loc = gimple_location (g);
2586 bool recover_p;
2587 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2588 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
2589 else
2590 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2592 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2593 gcc_assert (flags < ASAN_CHECK_LAST);
2594 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2595 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2596 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2598 tree base = gimple_call_arg (g, 1);
2599 tree len = gimple_call_arg (g, 2);
2600 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2602 HOST_WIDE_INT size_in_bytes
2603 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2605 if (use_calls)
2607 /* Instrument using callbacks. */
2608 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2609 NOP_EXPR, base);
2610 gimple_set_location (g, loc);
2611 gsi_insert_before (iter, g, GSI_SAME_STMT);
2612 tree base_addr = gimple_assign_lhs (g);
2614 int nargs;
2615 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2616 if (nargs == 1)
2617 g = gimple_build_call (fun, 1, base_addr);
2618 else
2620 gcc_assert (nargs == 2);
2621 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2622 NOP_EXPR, len);
2623 gimple_set_location (g, loc);
2624 gsi_insert_before (iter, g, GSI_SAME_STMT);
2625 tree sz_arg = gimple_assign_lhs (g);
2626 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2628 gimple_set_location (g, loc);
2629 gsi_replace (iter, g, false);
2630 return false;
2633 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2635 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2636 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2638 gimple_stmt_iterator gsi = *iter;
2640 if (!is_non_zero_len)
2642 /* So, the length of the memory area to asan-protect is
2643 non-constant. Let's guard the generated instrumentation code
2644 like:
2646 if (len != 0)
2648 //asan instrumentation code goes here.
2650 // falltrough instructions, starting with *ITER. */
2652 g = gimple_build_cond (NE_EXPR,
2653 len,
2654 build_int_cst (TREE_TYPE (len), 0),
2655 NULL_TREE, NULL_TREE);
2656 gimple_set_location (g, loc);
2658 basic_block then_bb, fallthrough_bb;
2659 insert_if_then_before_iter (as_a <gcond *> (g), iter,
2660 /*then_more_likely_p=*/true,
2661 &then_bb, &fallthrough_bb);
2662 /* Note that fallthrough_bb starts with the statement that was
2663 pointed to by ITER. */
2665 /* The 'then block' of the 'if (len != 0) condition is where
2666 we'll generate the asan instrumentation code now. */
2667 gsi = gsi_last_bb (then_bb);
2670 /* Get an iterator on the point where we can add the condition
2671 statement for the instrumentation. */
2672 basic_block then_bb, else_bb;
2673 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2674 /*then_more_likely_p=*/false,
2675 /*create_then_fallthru_edge*/recover_p,
2676 &then_bb,
2677 &else_bb);
2679 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2680 NOP_EXPR, base);
2681 gimple_set_location (g, loc);
2682 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2683 tree base_addr = gimple_assign_lhs (g);
2685 tree t = NULL_TREE;
2686 if (real_size_in_bytes >= 8)
2688 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2689 shadow_ptr_type);
2690 t = shadow;
2692 else
2694 /* Slow path for 1, 2 and 4 byte accesses. */
2695 /* Test (shadow != 0)
2696 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2697 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2698 shadow_ptr_type);
2699 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
2700 gimple_seq seq = NULL;
2701 gimple_seq_add_stmt (&seq, shadow_test);
2702 /* Aligned (>= 8 bytes) can test just
2703 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2704 to be 0. */
2705 if (align < 8)
2707 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2708 base_addr, 7));
2709 gimple_seq_add_stmt (&seq,
2710 build_type_cast (shadow_type,
2711 gimple_seq_last (seq)));
2712 if (real_size_in_bytes > 1)
2713 gimple_seq_add_stmt (&seq,
2714 build_assign (PLUS_EXPR,
2715 gimple_seq_last (seq),
2716 real_size_in_bytes - 1));
2717 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2719 else
2720 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2721 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2722 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2723 gimple_seq_last (seq)));
2724 t = gimple_assign_lhs (gimple_seq_last (seq));
2725 gimple_seq_set_location (seq, loc);
2726 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2728 /* For non-constant, misaligned or otherwise weird access sizes,
2729 check first and last byte. */
2730 if (size_in_bytes == -1)
2732 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2733 MINUS_EXPR, len,
2734 build_int_cst (pointer_sized_int_node, 1));
2735 gimple_set_location (g, loc);
2736 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2737 tree last = gimple_assign_lhs (g);
2738 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2739 PLUS_EXPR, base_addr, last);
2740 gimple_set_location (g, loc);
2741 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2742 tree base_end_addr = gimple_assign_lhs (g);
2744 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2745 shadow_ptr_type);
2746 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
2747 gimple_seq seq = NULL;
2748 gimple_seq_add_stmt (&seq, shadow_test);
2749 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2750 base_end_addr, 7));
2751 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2752 gimple_seq_last (seq)));
2753 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2754 gimple_seq_last (seq),
2755 shadow));
2756 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2757 gimple_seq_last (seq)));
2758 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2759 gimple_seq_last (seq)));
2760 t = gimple_assign_lhs (gimple_seq_last (seq));
2761 gimple_seq_set_location (seq, loc);
2762 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2766 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2767 NULL_TREE, NULL_TREE);
2768 gimple_set_location (g, loc);
2769 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2771 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2772 gsi = gsi_start_bb (then_bb);
2773 int nargs;
2774 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
2775 g = gimple_build_call (fun, nargs, base_addr, len);
2776 gimple_set_location (g, loc);
2777 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2779 gsi_remove (iter, true);
2780 *iter = gsi_start_bb (else_bb);
2782 return true;
2785 /* Instrument the current function. */
2787 static unsigned int
2788 asan_instrument (void)
2790 if (shadow_ptr_types[0] == NULL_TREE)
2791 asan_init_shadow_ptr_types ();
2792 transform_statements ();
2793 return 0;
2796 static bool
2797 gate_asan (void)
2799 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2800 && !lookup_attribute ("no_sanitize_address",
2801 DECL_ATTRIBUTES (current_function_decl));
2804 namespace {
2806 const pass_data pass_data_asan =
2808 GIMPLE_PASS, /* type */
2809 "asan", /* name */
2810 OPTGROUP_NONE, /* optinfo_flags */
2811 TV_NONE, /* tv_id */
2812 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2813 0, /* properties_provided */
2814 0, /* properties_destroyed */
2815 0, /* todo_flags_start */
2816 TODO_update_ssa, /* todo_flags_finish */
2819 class pass_asan : public gimple_opt_pass
2821 public:
2822 pass_asan (gcc::context *ctxt)
2823 : gimple_opt_pass (pass_data_asan, ctxt)
2826 /* opt_pass methods: */
2827 opt_pass * clone () { return new pass_asan (m_ctxt); }
2828 virtual bool gate (function *) { return gate_asan (); }
2829 virtual unsigned int execute (function *) { return asan_instrument (); }
2831 }; // class pass_asan
2833 } // anon namespace
2835 gimple_opt_pass *
2836 make_pass_asan (gcc::context *ctxt)
2838 return new pass_asan (ctxt);
2841 namespace {
2843 const pass_data pass_data_asan_O0 =
2845 GIMPLE_PASS, /* type */
2846 "asan0", /* name */
2847 OPTGROUP_NONE, /* optinfo_flags */
2848 TV_NONE, /* tv_id */
2849 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2850 0, /* properties_provided */
2851 0, /* properties_destroyed */
2852 0, /* todo_flags_start */
2853 TODO_update_ssa, /* todo_flags_finish */
2856 class pass_asan_O0 : public gimple_opt_pass
2858 public:
2859 pass_asan_O0 (gcc::context *ctxt)
2860 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2863 /* opt_pass methods: */
2864 virtual bool gate (function *) { return !optimize && gate_asan (); }
2865 virtual unsigned int execute (function *) { return asan_instrument (); }
2867 }; // class pass_asan_O0
2869 } // anon namespace
2871 gimple_opt_pass *
2872 make_pass_asan_O0 (gcc::context *ctxt)
2874 return new pass_asan_O0 (ctxt);
2877 #include "gt-asan.h"