PR testsuite/21969
[official-gcc.git] / gcc / regrename.c
blob3a596ff35dff746526402b8386fc1fd2bd4e8d9f
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "function.h"
35 #include "recog.h"
36 #include "flags.h"
37 #include "toplev.h"
38 #include "obstack.h"
40 struct du_chain
42 struct du_chain *next_chain;
43 struct du_chain *next_use;
45 rtx insn;
46 rtx *loc;
47 ENUM_BITFIELD(reg_class) cl : 16;
48 unsigned int need_caller_save_reg:1;
49 unsigned int earlyclobber:1;
52 enum scan_actions
54 terminate_all_read,
55 terminate_overlapping_read,
56 terminate_write,
57 terminate_dead,
58 mark_read,
59 mark_write
62 static const char * const scan_actions_name[] =
64 "terminate_all_read",
65 "terminate_overlapping_read",
66 "terminate_write",
67 "terminate_dead",
68 "mark_read",
69 "mark_write"
72 static struct obstack rename_obstack;
74 static void do_replace (struct du_chain *, int);
75 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
76 enum scan_actions, enum op_type, int);
77 static void scan_rtx_address (rtx, rtx *, enum reg_class,
78 enum scan_actions, enum machine_mode);
79 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
80 enum op_type, int);
81 static struct du_chain *build_def_use (basic_block);
82 static void dump_def_use_chain (struct du_chain *);
83 static void note_sets (rtx, rtx, void *);
84 static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
85 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
86 struct du_chain *);
88 /* Called through note_stores from update_life. Find sets of registers, and
89 record them in *DATA (which is actually a HARD_REG_SET *). */
91 static void
92 note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
94 HARD_REG_SET *pset = (HARD_REG_SET *) data;
95 unsigned int regno;
96 int nregs;
98 if (GET_CODE (x) == SUBREG)
99 x = SUBREG_REG (x);
100 if (!REG_P (x))
101 return;
102 regno = REGNO (x);
103 nregs = hard_regno_nregs[regno][GET_MODE (x)];
105 /* There must not be pseudos at this point. */
106 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
108 while (nregs-- > 0)
109 SET_HARD_REG_BIT (*pset, regno + nregs);
112 /* Clear all registers from *PSET for which a note of kind KIND can be found
113 in the list NOTES. */
115 static void
116 clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
118 rtx note;
119 for (note = notes; note; note = XEXP (note, 1))
120 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
122 rtx reg = XEXP (note, 0);
123 unsigned int regno = REGNO (reg);
124 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
126 /* There must not be pseudos at this point. */
127 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
129 while (nregs-- > 0)
130 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
134 /* For a def-use chain CHAIN in basic block B, find which registers overlap
135 its lifetime and set the corresponding bits in *PSET. */
137 static void
138 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
139 struct du_chain *chain)
141 struct du_chain *t = chain;
142 rtx insn;
143 HARD_REG_SET live;
145 REG_SET_TO_HARD_REG_SET (live, b->il.rtl->global_live_at_start);
146 insn = BB_HEAD (b);
147 while (t)
149 /* Search forward until the next reference to the register to be
150 renamed. */
151 while (insn != t->insn)
153 if (INSN_P (insn))
155 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
156 note_stores (PATTERN (insn), note_sets, (void *) &live);
157 /* Only record currently live regs if we are inside the
158 reg's live range. */
159 if (t != chain)
160 IOR_HARD_REG_SET (*pset, live);
161 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
163 insn = NEXT_INSN (insn);
166 IOR_HARD_REG_SET (*pset, live);
168 /* For the last reference, also merge in all registers set in the
169 same insn.
170 @@@ We only have take earlyclobbered sets into account. */
171 if (! t->next_use)
172 note_stores (PATTERN (insn), note_sets, (void *) pset);
174 t = t->next_use;
178 /* Perform register renaming on the current function. */
180 void
181 regrename_optimize (void)
183 int tick[FIRST_PSEUDO_REGISTER];
184 int this_tick = 0;
185 basic_block bb;
186 char *first_obj;
188 memset (tick, 0, sizeof tick);
190 gcc_obstack_init (&rename_obstack);
191 first_obj = obstack_alloc (&rename_obstack, 0);
193 FOR_EACH_BB (bb)
195 struct du_chain *all_chains = 0;
196 HARD_REG_SET unavailable;
197 HARD_REG_SET regs_seen;
199 CLEAR_HARD_REG_SET (unavailable);
201 if (dump_file)
202 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
204 all_chains = build_def_use (bb);
206 if (dump_file)
207 dump_def_use_chain (all_chains);
209 CLEAR_HARD_REG_SET (unavailable);
210 /* Don't clobber traceback for noreturn functions. */
211 if (frame_pointer_needed)
213 int i;
215 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
216 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
218 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
219 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
220 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
221 #endif
224 CLEAR_HARD_REG_SET (regs_seen);
225 while (all_chains)
227 int new_reg, best_new_reg;
228 int n_uses;
229 struct du_chain *this = all_chains;
230 struct du_chain *tmp, *last;
231 HARD_REG_SET this_unavailable;
232 int reg = REGNO (*this->loc);
233 int i;
235 all_chains = this->next_chain;
237 best_new_reg = reg;
239 #if 0 /* This just disables optimization opportunities. */
240 /* Only rename once we've seen the reg more than once. */
241 if (! TEST_HARD_REG_BIT (regs_seen, reg))
243 SET_HARD_REG_BIT (regs_seen, reg);
244 continue;
246 #endif
248 if (fixed_regs[reg] || global_regs[reg]
249 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
250 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
251 #else
252 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
253 #endif
255 continue;
257 COPY_HARD_REG_SET (this_unavailable, unavailable);
259 /* Find last entry on chain (which has the need_caller_save bit),
260 count number of uses, and narrow the set of registers we can
261 use for renaming. */
262 n_uses = 0;
263 for (last = this; last->next_use; last = last->next_use)
265 n_uses++;
266 IOR_COMPL_HARD_REG_SET (this_unavailable,
267 reg_class_contents[last->cl]);
269 if (n_uses < 1)
270 continue;
272 IOR_COMPL_HARD_REG_SET (this_unavailable,
273 reg_class_contents[last->cl]);
275 if (this->need_caller_save_reg)
276 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
278 merge_overlapping_regs (bb, &this_unavailable, this);
280 /* Now potential_regs is a reasonable approximation, let's
281 have a closer look at each register still in there. */
282 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
284 int nregs = hard_regno_nregs[new_reg][GET_MODE (*this->loc)];
286 for (i = nregs - 1; i >= 0; --i)
287 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
288 || fixed_regs[new_reg + i]
289 || global_regs[new_reg + i]
290 /* Can't use regs which aren't saved by the prologue. */
291 || (! regs_ever_live[new_reg + i]
292 && ! call_used_regs[new_reg + i])
293 #ifdef LEAF_REGISTERS
294 /* We can't use a non-leaf register if we're in a
295 leaf function. */
296 || (current_function_is_leaf
297 && !LEAF_REGISTERS[new_reg + i])
298 #endif
299 #ifdef HARD_REGNO_RENAME_OK
300 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
301 #endif
303 break;
304 if (i >= 0)
305 continue;
307 /* See whether it accepts all modes that occur in
308 definition and uses. */
309 for (tmp = this; tmp; tmp = tmp->next_use)
310 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
311 || (tmp->need_caller_save_reg
312 && ! (HARD_REGNO_CALL_PART_CLOBBERED
313 (reg, GET_MODE (*tmp->loc)))
314 && (HARD_REGNO_CALL_PART_CLOBBERED
315 (new_reg, GET_MODE (*tmp->loc)))))
316 break;
317 if (! tmp)
319 if (tick[best_new_reg] > tick[new_reg])
320 best_new_reg = new_reg;
324 if (dump_file)
326 fprintf (dump_file, "Register %s in insn %d",
327 reg_names[reg], INSN_UID (last->insn));
328 if (last->need_caller_save_reg)
329 fprintf (dump_file, " crosses a call");
332 if (best_new_reg == reg)
334 tick[reg] = ++this_tick;
335 if (dump_file)
336 fprintf (dump_file, "; no available better choice\n");
337 continue;
340 do_replace (this, best_new_reg);
341 tick[best_new_reg] = ++this_tick;
342 regs_ever_live[best_new_reg] = 1;
344 if (dump_file)
345 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
348 obstack_free (&rename_obstack, first_obj);
351 obstack_free (&rename_obstack, NULL);
353 if (dump_file)
354 fputc ('\n', dump_file);
356 count_or_remove_death_notes (NULL, 1);
357 update_life_info (NULL, UPDATE_LIFE_LOCAL,
358 PROP_DEATH_NOTES);
361 static void
362 do_replace (struct du_chain *chain, int reg)
364 while (chain)
366 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
367 struct reg_attrs * attr = REG_ATTRS (*chain->loc);
369 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
370 if (regno >= FIRST_PSEUDO_REGISTER)
371 ORIGINAL_REGNO (*chain->loc) = regno;
372 REG_ATTRS (*chain->loc) = attr;
373 chain = chain->next_use;
378 static struct du_chain *open_chains;
379 static struct du_chain *closed_chains;
381 static void
382 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class cl,
383 enum scan_actions action, enum op_type type, int earlyclobber)
385 struct du_chain **p;
386 rtx x = *loc;
387 enum machine_mode mode = GET_MODE (x);
388 int this_regno = REGNO (x);
389 int this_nregs = hard_regno_nregs[this_regno][mode];
391 if (action == mark_write)
393 if (type == OP_OUT)
395 struct du_chain *this
396 = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
397 this->next_use = 0;
398 this->next_chain = open_chains;
399 this->loc = loc;
400 this->insn = insn;
401 this->cl = cl;
402 this->need_caller_save_reg = 0;
403 this->earlyclobber = earlyclobber;
404 open_chains = this;
406 return;
409 if ((type == OP_OUT && action != terminate_write)
410 || (type != OP_OUT && action == terminate_write))
411 return;
413 for (p = &open_chains; *p;)
415 struct du_chain *this = *p;
417 /* Check if the chain has been terminated if it has then skip to
418 the next chain.
420 This can happen when we've already appended the location to
421 the chain in Step 3, but are trying to hide in-out operands
422 from terminate_write in Step 5. */
424 if (*this->loc == cc0_rtx)
425 p = &this->next_chain;
426 else
428 int regno = REGNO (*this->loc);
429 int nregs = hard_regno_nregs[regno][GET_MODE (*this->loc)];
430 int exact_match = (regno == this_regno && nregs == this_nregs);
432 if (regno + nregs <= this_regno
433 || this_regno + this_nregs <= regno)
435 p = &this->next_chain;
436 continue;
439 if (action == mark_read)
441 gcc_assert (exact_match);
443 /* ??? Class NO_REGS can happen if the md file makes use of
444 EXTRA_CONSTRAINTS to match registers. Which is arguably
445 wrong, but there we are. Since we know not what this may
446 be replaced with, terminate the chain. */
447 if (cl != NO_REGS)
449 this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
450 this->next_use = 0;
451 this->next_chain = (*p)->next_chain;
452 this->loc = loc;
453 this->insn = insn;
454 this->cl = cl;
455 this->need_caller_save_reg = 0;
456 while (*p)
457 p = &(*p)->next_use;
458 *p = this;
459 return;
463 if (action != terminate_overlapping_read || ! exact_match)
465 struct du_chain *next = this->next_chain;
467 /* Whether the terminated chain can be used for renaming
468 depends on the action and this being an exact match.
469 In either case, we remove this element from open_chains. */
471 if ((action == terminate_dead || action == terminate_write)
472 && exact_match)
474 this->next_chain = closed_chains;
475 closed_chains = this;
476 if (dump_file)
477 fprintf (dump_file,
478 "Closing chain %s at insn %d (%s)\n",
479 reg_names[REGNO (*this->loc)], INSN_UID (insn),
480 scan_actions_name[(int) action]);
482 else
484 if (dump_file)
485 fprintf (dump_file,
486 "Discarding chain %s at insn %d (%s)\n",
487 reg_names[REGNO (*this->loc)], INSN_UID (insn),
488 scan_actions_name[(int) action]);
490 *p = next;
492 else
493 p = &this->next_chain;
498 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
499 BASE_REG_CLASS depending on how the register is being considered. */
501 static void
502 scan_rtx_address (rtx insn, rtx *loc, enum reg_class cl,
503 enum scan_actions action, enum machine_mode mode)
505 rtx x = *loc;
506 RTX_CODE code = GET_CODE (x);
507 const char *fmt;
508 int i, j;
510 if (action == mark_write)
511 return;
513 switch (code)
515 case PLUS:
517 rtx orig_op0 = XEXP (x, 0);
518 rtx orig_op1 = XEXP (x, 1);
519 RTX_CODE code0 = GET_CODE (orig_op0);
520 RTX_CODE code1 = GET_CODE (orig_op1);
521 rtx op0 = orig_op0;
522 rtx op1 = orig_op1;
523 rtx *locI = NULL;
524 rtx *locB = NULL;
525 rtx *locB_reg = NULL;
527 if (GET_CODE (op0) == SUBREG)
529 op0 = SUBREG_REG (op0);
530 code0 = GET_CODE (op0);
533 if (GET_CODE (op1) == SUBREG)
535 op1 = SUBREG_REG (op1);
536 code1 = GET_CODE (op1);
539 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
540 || code0 == ZERO_EXTEND || code1 == MEM)
542 locI = &XEXP (x, 0);
543 locB = &XEXP (x, 1);
545 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
546 || code1 == ZERO_EXTEND || code0 == MEM)
548 locI = &XEXP (x, 1);
549 locB = &XEXP (x, 0);
551 else if (code0 == CONST_INT || code0 == CONST
552 || code0 == SYMBOL_REF || code0 == LABEL_REF)
553 locB = &XEXP (x, 1);
554 else if (code1 == CONST_INT || code1 == CONST
555 || code1 == SYMBOL_REF || code1 == LABEL_REF)
556 locB = &XEXP (x, 0);
557 else if (code0 == REG && code1 == REG)
559 int index_op;
561 if (REG_OK_FOR_INDEX_P (op0)
562 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
563 index_op = 0;
564 else if (REG_OK_FOR_INDEX_P (op1)
565 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
566 index_op = 1;
567 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
568 index_op = 0;
569 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
570 index_op = 1;
571 else if (REG_OK_FOR_INDEX_P (op1))
572 index_op = 1;
573 else
574 index_op = 0;
576 locI = &XEXP (x, index_op);
577 locB_reg = &XEXP (x, !index_op);
579 else if (code0 == REG)
581 locI = &XEXP (x, 0);
582 locB = &XEXP (x, 1);
584 else if (code1 == REG)
586 locI = &XEXP (x, 1);
587 locB = &XEXP (x, 0);
590 if (locI)
591 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
592 if (locB)
593 scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
594 if (locB_reg)
595 scan_rtx_address (insn, locB_reg, MODE_BASE_REG_REG_CLASS (mode),
596 action, mode);
597 return;
600 case POST_INC:
601 case POST_DEC:
602 case POST_MODIFY:
603 case PRE_INC:
604 case PRE_DEC:
605 case PRE_MODIFY:
606 #ifndef AUTO_INC_DEC
607 /* If the target doesn't claim to handle autoinc, this must be
608 something special, like a stack push. Kill this chain. */
609 action = terminate_all_read;
610 #endif
611 break;
613 case MEM:
614 scan_rtx_address (insn, &XEXP (x, 0),
615 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
616 GET_MODE (x));
617 return;
619 case REG:
620 scan_rtx_reg (insn, loc, cl, action, OP_IN, 0);
621 return;
623 default:
624 break;
627 fmt = GET_RTX_FORMAT (code);
628 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
630 if (fmt[i] == 'e')
631 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode);
632 else if (fmt[i] == 'E')
633 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
634 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode);
638 static void
639 scan_rtx (rtx insn, rtx *loc, enum reg_class cl,
640 enum scan_actions action, enum op_type type, int earlyclobber)
642 const char *fmt;
643 rtx x = *loc;
644 enum rtx_code code = GET_CODE (x);
645 int i, j;
647 code = GET_CODE (x);
648 switch (code)
650 case CONST:
651 case CONST_INT:
652 case CONST_DOUBLE:
653 case CONST_VECTOR:
654 case SYMBOL_REF:
655 case LABEL_REF:
656 case CC0:
657 case PC:
658 return;
660 case REG:
661 scan_rtx_reg (insn, loc, cl, action, type, earlyclobber);
662 return;
664 case MEM:
665 scan_rtx_address (insn, &XEXP (x, 0),
666 MODE_BASE_REG_CLASS (GET_MODE (x)), action,
667 GET_MODE (x));
668 return;
670 case SET:
671 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN, 0);
672 scan_rtx (insn, &SET_DEST (x), cl, action,
673 GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
674 return;
676 case STRICT_LOW_PART:
677 scan_rtx (insn, &XEXP (x, 0), cl, action, OP_INOUT, earlyclobber);
678 return;
680 case ZERO_EXTRACT:
681 case SIGN_EXTRACT:
682 scan_rtx (insn, &XEXP (x, 0), cl, action,
683 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
684 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN, 0);
685 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN, 0);
686 return;
688 case POST_INC:
689 case PRE_INC:
690 case POST_DEC:
691 case PRE_DEC:
692 case POST_MODIFY:
693 case PRE_MODIFY:
694 /* Should only happen inside MEM. */
695 gcc_unreachable ();
697 case CLOBBER:
698 scan_rtx (insn, &SET_DEST (x), cl, action,
699 GET_CODE (PATTERN (insn)) == COND_EXEC ? OP_INOUT : OP_OUT, 0);
700 return;
702 case EXPR_LIST:
703 scan_rtx (insn, &XEXP (x, 0), cl, action, type, 0);
704 if (XEXP (x, 1))
705 scan_rtx (insn, &XEXP (x, 1), cl, action, type, 0);
706 return;
708 default:
709 break;
712 fmt = GET_RTX_FORMAT (code);
713 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
715 if (fmt[i] == 'e')
716 scan_rtx (insn, &XEXP (x, i), cl, action, type, 0);
717 else if (fmt[i] == 'E')
718 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
719 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type, 0);
723 /* Build def/use chain. */
725 static struct du_chain *
726 build_def_use (basic_block bb)
728 rtx insn;
730 open_chains = closed_chains = NULL;
732 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
734 if (INSN_P (insn))
736 int n_ops;
737 rtx note;
738 rtx old_operands[MAX_RECOG_OPERANDS];
739 rtx old_dups[MAX_DUP_OPERANDS];
740 int i, icode;
741 int alt;
742 int predicated;
744 /* Process the insn, determining its effect on the def-use
745 chains. We perform the following steps with the register
746 references in the insn:
747 (1) Any read that overlaps an open chain, but doesn't exactly
748 match, causes that chain to be closed. We can't deal
749 with overlaps yet.
750 (2) Any read outside an operand causes any chain it overlaps
751 with to be closed, since we can't replace it.
752 (3) Any read inside an operand is added if there's already
753 an open chain for it.
754 (4) For any REG_DEAD note we find, close open chains that
755 overlap it.
756 (5) For any write we find, close open chains that overlap it.
757 (6) For any write we find in an operand, make a new chain.
758 (7) For any REG_UNUSED, close any chains we just opened. */
760 icode = recog_memoized (insn);
761 extract_insn (insn);
762 if (! constrain_operands (1))
763 fatal_insn_not_found (insn);
764 preprocess_constraints ();
765 alt = which_alternative;
766 n_ops = recog_data.n_operands;
768 /* Simplify the code below by rewriting things to reflect
769 matching constraints. Also promote OP_OUT to OP_INOUT
770 in predicated instructions. */
772 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
773 for (i = 0; i < n_ops; ++i)
775 int matches = recog_op_alt[i][alt].matches;
776 if (matches >= 0)
777 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
778 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
779 || (predicated && recog_data.operand_type[i] == OP_OUT))
780 recog_data.operand_type[i] = OP_INOUT;
783 /* Step 1: Close chains for which we have overlapping reads. */
784 for (i = 0; i < n_ops; i++)
785 scan_rtx (insn, recog_data.operand_loc[i],
786 NO_REGS, terminate_overlapping_read,
787 recog_data.operand_type[i], 0);
789 /* Step 2: Close chains for which we have reads outside operands.
790 We do this by munging all operands into CC0, and closing
791 everything remaining. */
793 for (i = 0; i < n_ops; i++)
795 old_operands[i] = recog_data.operand[i];
796 /* Don't squash match_operator or match_parallel here, since
797 we don't know that all of the contained registers are
798 reachable by proper operands. */
799 if (recog_data.constraints[i][0] == '\0')
800 continue;
801 *recog_data.operand_loc[i] = cc0_rtx;
803 for (i = 0; i < recog_data.n_dups; i++)
805 int dup_num = recog_data.dup_num[i];
807 old_dups[i] = *recog_data.dup_loc[i];
808 *recog_data.dup_loc[i] = cc0_rtx;
810 /* For match_dup of match_operator or match_parallel, share
811 them, so that we don't miss changes in the dup. */
812 if (icode >= 0
813 && insn_data[icode].operand[dup_num].eliminable == 0)
814 old_dups[i] = recog_data.operand[dup_num];
817 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
818 OP_IN, 0);
820 for (i = 0; i < recog_data.n_dups; i++)
821 *recog_data.dup_loc[i] = old_dups[i];
822 for (i = 0; i < n_ops; i++)
823 *recog_data.operand_loc[i] = old_operands[i];
825 /* Step 2B: Can't rename function call argument registers. */
826 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
827 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
828 NO_REGS, terminate_all_read, OP_IN, 0);
830 /* Step 2C: Can't rename asm operands that were originally
831 hard registers. */
832 if (asm_noperands (PATTERN (insn)) > 0)
833 for (i = 0; i < n_ops; i++)
835 rtx *loc = recog_data.operand_loc[i];
836 rtx op = *loc;
838 if (REG_P (op)
839 && REGNO (op) == ORIGINAL_REGNO (op)
840 && (recog_data.operand_type[i] == OP_IN
841 || recog_data.operand_type[i] == OP_INOUT))
842 scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
845 /* Step 3: Append to chains for reads inside operands. */
846 for (i = 0; i < n_ops + recog_data.n_dups; i++)
848 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
849 rtx *loc = (i < n_ops
850 ? recog_data.operand_loc[opn]
851 : recog_data.dup_loc[i - n_ops]);
852 enum reg_class cl = recog_op_alt[opn][alt].cl;
853 enum op_type type = recog_data.operand_type[opn];
855 /* Don't scan match_operand here, since we've no reg class
856 information to pass down. Any operands that we could
857 substitute in will be represented elsewhere. */
858 if (recog_data.constraints[opn][0] == '\0')
859 continue;
861 if (recog_op_alt[opn][alt].is_address)
862 scan_rtx_address (insn, loc, cl, mark_read, VOIDmode);
863 else
864 scan_rtx (insn, loc, cl, mark_read, type, 0);
867 /* Step 4: Close chains for registers that die here.
868 Also record updates for REG_INC notes. */
869 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
871 if (REG_NOTE_KIND (note) == REG_DEAD)
872 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
873 OP_IN, 0);
874 else if (REG_NOTE_KIND (note) == REG_INC)
875 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
876 OP_INOUT, 0);
879 /* Step 4B: If this is a call, any chain live at this point
880 requires a caller-saved reg. */
881 if (CALL_P (insn))
883 struct du_chain *p;
884 for (p = open_chains; p; p = p->next_chain)
885 p->need_caller_save_reg = 1;
888 /* Step 5: Close open chains that overlap writes. Similar to
889 step 2, we hide in-out operands, since we do not want to
890 close these chains. */
892 for (i = 0; i < n_ops; i++)
894 old_operands[i] = recog_data.operand[i];
895 if (recog_data.operand_type[i] == OP_INOUT)
896 *recog_data.operand_loc[i] = cc0_rtx;
898 for (i = 0; i < recog_data.n_dups; i++)
900 int opn = recog_data.dup_num[i];
901 old_dups[i] = *recog_data.dup_loc[i];
902 if (recog_data.operand_type[opn] == OP_INOUT)
903 *recog_data.dup_loc[i] = cc0_rtx;
906 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
908 for (i = 0; i < recog_data.n_dups; i++)
909 *recog_data.dup_loc[i] = old_dups[i];
910 for (i = 0; i < n_ops; i++)
911 *recog_data.operand_loc[i] = old_operands[i];
913 /* Step 6: Begin new chains for writes inside operands. */
914 /* ??? Many targets have output constraints on the SET_DEST
915 of a call insn, which is stupid, since these are certainly
916 ABI defined hard registers. Don't change calls at all.
917 Similarly take special care for asm statement that originally
918 referenced hard registers. */
919 if (asm_noperands (PATTERN (insn)) > 0)
921 for (i = 0; i < n_ops; i++)
922 if (recog_data.operand_type[i] == OP_OUT)
924 rtx *loc = recog_data.operand_loc[i];
925 rtx op = *loc;
926 enum reg_class cl = recog_op_alt[i][alt].cl;
928 if (REG_P (op)
929 && REGNO (op) == ORIGINAL_REGNO (op))
930 continue;
932 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
933 recog_op_alt[i][alt].earlyclobber);
936 else if (!CALL_P (insn))
937 for (i = 0; i < n_ops + recog_data.n_dups; i++)
939 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
940 rtx *loc = (i < n_ops
941 ? recog_data.operand_loc[opn]
942 : recog_data.dup_loc[i - n_ops]);
943 enum reg_class cl = recog_op_alt[opn][alt].cl;
945 if (recog_data.operand_type[opn] == OP_OUT)
946 scan_rtx (insn, loc, cl, mark_write, OP_OUT,
947 recog_op_alt[opn][alt].earlyclobber);
950 /* Step 7: Close chains for registers that were never
951 really used here. */
952 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
953 if (REG_NOTE_KIND (note) == REG_UNUSED)
954 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
955 OP_IN, 0);
957 if (insn == BB_END (bb))
958 break;
961 /* Since we close every chain when we find a REG_DEAD note, anything that
962 is still open lives past the basic block, so it can't be renamed. */
963 return closed_chains;
966 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
967 printed in reverse order as that's how we build them. */
969 static void
970 dump_def_use_chain (struct du_chain *chains)
972 while (chains)
974 struct du_chain *this = chains;
975 int r = REGNO (*this->loc);
976 int nregs = hard_regno_nregs[r][GET_MODE (*this->loc)];
977 fprintf (dump_file, "Register %s (%d):", reg_names[r], nregs);
978 while (this)
980 fprintf (dump_file, " %d [%s]", INSN_UID (this->insn),
981 reg_class_names[this->cl]);
982 this = this->next_use;
984 fprintf (dump_file, "\n");
985 chains = chains->next_chain;
989 /* The following code does forward propagation of hard register copies.
990 The object is to eliminate as many dependencies as possible, so that
991 we have the most scheduling freedom. As a side effect, we also clean
992 up some silly register allocation decisions made by reload. This
993 code may be obsoleted by a new register allocator. */
995 /* For each register, we have a list of registers that contain the same
996 value. The OLDEST_REGNO field points to the head of the list, and
997 the NEXT_REGNO field runs through the list. The MODE field indicates
998 what mode the data is known to be in; this field is VOIDmode when the
999 register is not known to contain valid data. */
1001 struct value_data_entry
1003 enum machine_mode mode;
1004 unsigned int oldest_regno;
1005 unsigned int next_regno;
1008 struct value_data
1010 struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1011 unsigned int max_value_regs;
1014 static void kill_value_one_regno (unsigned, struct value_data *);
1015 static void kill_value_regno (unsigned, unsigned, struct value_data *);
1016 static void kill_value (rtx, struct value_data *);
1017 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1018 static void init_value_data (struct value_data *);
1019 static void kill_clobbered_value (rtx, rtx, void *);
1020 static void kill_set_value (rtx, rtx, void *);
1021 static int kill_autoinc_value (rtx *, void *);
1022 static void copy_value (rtx, rtx, struct value_data *);
1023 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1024 unsigned int);
1025 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1026 enum machine_mode, unsigned int, unsigned int);
1027 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1028 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1029 struct value_data *);
1030 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1031 enum machine_mode, rtx,
1032 struct value_data *);
1033 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1034 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1035 extern void debug_value_data (struct value_data *);
1036 #ifdef ENABLE_CHECKING
1037 static void validate_value_data (struct value_data *);
1038 #endif
1040 /* Kill register REGNO. This involves removing it from any value
1041 lists, and resetting the value mode to VOIDmode. This is only a
1042 helper function; it does not handle any hard registers overlapping
1043 with REGNO. */
1045 static void
1046 kill_value_one_regno (unsigned int regno, struct value_data *vd)
1048 unsigned int i, next;
1050 if (vd->e[regno].oldest_regno != regno)
1052 for (i = vd->e[regno].oldest_regno;
1053 vd->e[i].next_regno != regno;
1054 i = vd->e[i].next_regno)
1055 continue;
1056 vd->e[i].next_regno = vd->e[regno].next_regno;
1058 else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1060 for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1061 vd->e[i].oldest_regno = next;
1064 vd->e[regno].mode = VOIDmode;
1065 vd->e[regno].oldest_regno = regno;
1066 vd->e[regno].next_regno = INVALID_REGNUM;
1068 #ifdef ENABLE_CHECKING
1069 validate_value_data (vd);
1070 #endif
1073 /* Kill the value in register REGNO for NREGS, and any other registers
1074 whose values overlap. */
1076 static void
1077 kill_value_regno (unsigned int regno, unsigned int nregs,
1078 struct value_data *vd)
1080 unsigned int j;
1082 /* Kill the value we're told to kill. */
1083 for (j = 0; j < nregs; ++j)
1084 kill_value_one_regno (regno + j, vd);
1086 /* Kill everything that overlapped what we're told to kill. */
1087 if (regno < vd->max_value_regs)
1088 j = 0;
1089 else
1090 j = regno - vd->max_value_regs;
1091 for (; j < regno; ++j)
1093 unsigned int i, n;
1094 if (vd->e[j].mode == VOIDmode)
1095 continue;
1096 n = hard_regno_nregs[j][vd->e[j].mode];
1097 if (j + n > regno)
1098 for (i = 0; i < n; ++i)
1099 kill_value_one_regno (j + i, vd);
1103 /* Kill X. This is a convenience function wrapping kill_value_regno
1104 so that we mind the mode the register is in. */
1106 static void
1107 kill_value (rtx x, struct value_data *vd)
1109 rtx orig_rtx = x;
1111 if (GET_CODE (x) == SUBREG)
1113 x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1114 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1115 if (x == NULL_RTX)
1116 x = SUBREG_REG (orig_rtx);
1118 if (REG_P (x))
1120 unsigned int regno = REGNO (x);
1121 unsigned int n = hard_regno_nregs[regno][GET_MODE (x)];
1123 kill_value_regno (regno, n, vd);
1127 /* Remember that REGNO is valid in MODE. */
1129 static void
1130 set_value_regno (unsigned int regno, enum machine_mode mode,
1131 struct value_data *vd)
1133 unsigned int nregs;
1135 vd->e[regno].mode = mode;
1137 nregs = hard_regno_nregs[regno][mode];
1138 if (nregs > vd->max_value_regs)
1139 vd->max_value_regs = nregs;
1142 /* Initialize VD such that there are no known relationships between regs. */
1144 static void
1145 init_value_data (struct value_data *vd)
1147 int i;
1148 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1150 vd->e[i].mode = VOIDmode;
1151 vd->e[i].oldest_regno = i;
1152 vd->e[i].next_regno = INVALID_REGNUM;
1154 vd->max_value_regs = 0;
1157 /* Called through note_stores. If X is clobbered, kill its value. */
1159 static void
1160 kill_clobbered_value (rtx x, rtx set, void *data)
1162 struct value_data *vd = data;
1163 if (GET_CODE (set) == CLOBBER)
1164 kill_value (x, vd);
1167 /* Called through note_stores. If X is set, not clobbered, kill its
1168 current value and install it as the root of its own value list. */
1170 static void
1171 kill_set_value (rtx x, rtx set, void *data)
1173 struct value_data *vd = data;
1174 if (GET_CODE (set) != CLOBBER)
1176 kill_value (x, vd);
1177 if (REG_P (x))
1178 set_value_regno (REGNO (x), GET_MODE (x), vd);
1182 /* Called through for_each_rtx. Kill any register used as the base of an
1183 auto-increment expression, and install that register as the root of its
1184 own value list. */
1186 static int
1187 kill_autoinc_value (rtx *px, void *data)
1189 rtx x = *px;
1190 struct value_data *vd = data;
1192 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
1194 x = XEXP (x, 0);
1195 kill_value (x, vd);
1196 set_value_regno (REGNO (x), Pmode, vd);
1197 return -1;
1200 return 0;
1203 /* Assert that SRC has been copied to DEST. Adjust the data structures
1204 to reflect that SRC contains an older copy of the shared value. */
1206 static void
1207 copy_value (rtx dest, rtx src, struct value_data *vd)
1209 unsigned int dr = REGNO (dest);
1210 unsigned int sr = REGNO (src);
1211 unsigned int dn, sn;
1212 unsigned int i;
1214 /* ??? At present, it's possible to see noop sets. It'd be nice if
1215 this were cleaned up beforehand... */
1216 if (sr == dr)
1217 return;
1219 /* Do not propagate copies to the stack pointer, as that can leave
1220 memory accesses with no scheduling dependency on the stack update. */
1221 if (dr == STACK_POINTER_REGNUM)
1222 return;
1224 /* Likewise with the frame pointer, if we're using one. */
1225 if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1226 return;
1228 /* Do not propagate copies to fixed or global registers, patterns
1229 can be relying to see particular fixed register or users can
1230 expect the chosen global register in asm. */
1231 if (fixed_regs[dr] || global_regs[dr])
1232 return;
1234 /* If SRC and DEST overlap, don't record anything. */
1235 dn = hard_regno_nregs[dr][GET_MODE (dest)];
1236 sn = hard_regno_nregs[sr][GET_MODE (dest)];
1237 if ((dr > sr && dr < sr + sn)
1238 || (sr > dr && sr < dr + dn))
1239 return;
1241 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1242 assign it now and assume the value came from an input argument
1243 or somesuch. */
1244 if (vd->e[sr].mode == VOIDmode)
1245 set_value_regno (sr, vd->e[dr].mode, vd);
1247 /* If we are narrowing the input to a smaller number of hard regs,
1248 and it is in big endian, we are really extracting a high part.
1249 Since we generally associate a low part of a value with the value itself,
1250 we must not do the same for the high part.
1251 Note we can still get low parts for the same mode combination through
1252 a two-step copy involving differently sized hard regs.
1253 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1254 (set (reg:DI r0) (reg:DI fr0))
1255 (set (reg:SI fr2) (reg:SI r0))
1256 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1257 (set (reg:SI fr2) (reg:SI fr0))
1258 loads the high part of (reg:DI fr0) into fr2.
1260 We can't properly represent the latter case in our tables, so don't
1261 record anything then. */
1262 else if (sn < (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode]
1263 && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1264 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1265 return;
1267 /* If SRC had been assigned a mode narrower than the copy, we can't
1268 link DEST into the chain, because not all of the pieces of the
1269 copy came from oldest_regno. */
1270 else if (sn > (unsigned int) hard_regno_nregs[sr][vd->e[sr].mode])
1271 return;
1273 /* Link DR at the end of the value chain used by SR. */
1275 vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1277 for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1278 continue;
1279 vd->e[i].next_regno = dr;
1281 #ifdef ENABLE_CHECKING
1282 validate_value_data (vd);
1283 #endif
1286 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1288 static bool
1289 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1290 unsigned int regno ATTRIBUTE_UNUSED)
1292 if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1293 return false;
1295 #ifdef CANNOT_CHANGE_MODE_CLASS
1296 return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1297 #endif
1299 return true;
1302 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1303 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1304 in NEW_MODE.
1305 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1307 static rtx
1308 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1309 enum machine_mode new_mode, unsigned int regno,
1310 unsigned int copy_regno ATTRIBUTE_UNUSED)
1312 if (orig_mode == new_mode)
1313 return gen_rtx_raw_REG (new_mode, regno);
1314 else if (mode_change_ok (orig_mode, new_mode, regno))
1316 int copy_nregs = hard_regno_nregs[copy_regno][copy_mode];
1317 int use_nregs = hard_regno_nregs[copy_regno][new_mode];
1318 int copy_offset
1319 = GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1320 int offset
1321 = GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1322 int byteoffset = offset % UNITS_PER_WORD;
1323 int wordoffset = offset - byteoffset;
1325 offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1326 + (BYTES_BIG_ENDIAN ? byteoffset : 0));
1327 return gen_rtx_raw_REG (new_mode,
1328 regno + subreg_regno_offset (regno, orig_mode,
1329 offset,
1330 new_mode));
1332 return NULL_RTX;
1335 /* Find the oldest copy of the value contained in REGNO that is in
1336 register class CL and has mode MODE. If found, return an rtx
1337 of that oldest register, otherwise return NULL. */
1339 static rtx
1340 find_oldest_value_reg (enum reg_class cl, rtx reg, struct value_data *vd)
1342 unsigned int regno = REGNO (reg);
1343 enum machine_mode mode = GET_MODE (reg);
1344 unsigned int i;
1346 /* If we are accessing REG in some mode other that what we set it in,
1347 make sure that the replacement is valid. In particular, consider
1348 (set (reg:DI r11) (...))
1349 (set (reg:SI r9) (reg:SI r11))
1350 (set (reg:SI r10) (...))
1351 (set (...) (reg:DI r9))
1352 Replacing r9 with r11 is invalid. */
1353 if (mode != vd->e[regno].mode)
1355 if (hard_regno_nregs[regno][mode]
1356 > hard_regno_nregs[regno][vd->e[regno].mode])
1357 return NULL_RTX;
1360 for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1362 enum machine_mode oldmode = vd->e[i].mode;
1363 rtx new;
1364 unsigned int last;
1366 for (last = i; last < i + hard_regno_nregs[i][mode]; last++)
1367 if (!TEST_HARD_REG_BIT (reg_class_contents[cl], last))
1368 return NULL_RTX;
1370 new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
1371 if (new)
1373 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1374 REG_ATTRS (new) = REG_ATTRS (reg);
1375 return new;
1379 return NULL_RTX;
1382 /* If possible, replace the register at *LOC with the oldest register
1383 in register class CL. Return true if successfully replaced. */
1385 static bool
1386 replace_oldest_value_reg (rtx *loc, enum reg_class cl, rtx insn,
1387 struct value_data *vd)
1389 rtx new = find_oldest_value_reg (cl, *loc, vd);
1390 if (new)
1392 if (dump_file)
1393 fprintf (dump_file, "insn %u: replaced reg %u with %u\n",
1394 INSN_UID (insn), REGNO (*loc), REGNO (new));
1396 *loc = new;
1397 return true;
1399 return false;
1402 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1403 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1404 BASE_REG_CLASS depending on how the register is being considered. */
1406 static bool
1407 replace_oldest_value_addr (rtx *loc, enum reg_class cl,
1408 enum machine_mode mode, rtx insn,
1409 struct value_data *vd)
1411 rtx x = *loc;
1412 RTX_CODE code = GET_CODE (x);
1413 const char *fmt;
1414 int i, j;
1415 bool changed = false;
1417 switch (code)
1419 case PLUS:
1421 rtx orig_op0 = XEXP (x, 0);
1422 rtx orig_op1 = XEXP (x, 1);
1423 RTX_CODE code0 = GET_CODE (orig_op0);
1424 RTX_CODE code1 = GET_CODE (orig_op1);
1425 rtx op0 = orig_op0;
1426 rtx op1 = orig_op1;
1427 rtx *locI = NULL;
1428 rtx *locB = NULL;
1429 rtx *locB_reg = NULL;
1431 if (GET_CODE (op0) == SUBREG)
1433 op0 = SUBREG_REG (op0);
1434 code0 = GET_CODE (op0);
1437 if (GET_CODE (op1) == SUBREG)
1439 op1 = SUBREG_REG (op1);
1440 code1 = GET_CODE (op1);
1443 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1444 || code0 == ZERO_EXTEND || code1 == MEM)
1446 locI = &XEXP (x, 0);
1447 locB = &XEXP (x, 1);
1449 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1450 || code1 == ZERO_EXTEND || code0 == MEM)
1452 locI = &XEXP (x, 1);
1453 locB = &XEXP (x, 0);
1455 else if (code0 == CONST_INT || code0 == CONST
1456 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1457 locB = &XEXP (x, 1);
1458 else if (code1 == CONST_INT || code1 == CONST
1459 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1460 locB = &XEXP (x, 0);
1461 else if (code0 == REG && code1 == REG)
1463 int index_op;
1465 if (REG_OK_FOR_INDEX_P (op0)
1466 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
1467 index_op = 0;
1468 else if (REG_OK_FOR_INDEX_P (op1)
1469 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
1470 index_op = 1;
1471 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
1472 index_op = 0;
1473 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
1474 index_op = 1;
1475 else if (REG_OK_FOR_INDEX_P (op1))
1476 index_op = 1;
1477 else
1478 index_op = 0;
1480 locI = &XEXP (x, index_op);
1481 locB_reg = &XEXP (x, !index_op);
1483 else if (code0 == REG)
1485 locI = &XEXP (x, 0);
1486 locB = &XEXP (x, 1);
1488 else if (code1 == REG)
1490 locI = &XEXP (x, 1);
1491 locB = &XEXP (x, 0);
1494 if (locI)
1495 changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1496 insn, vd);
1497 if (locB)
1498 changed |= replace_oldest_value_addr (locB,
1499 MODE_BASE_REG_CLASS (mode),
1500 mode, insn, vd);
1501 if (locB_reg)
1502 changed |= replace_oldest_value_addr (locB_reg,
1503 MODE_BASE_REG_REG_CLASS (mode),
1504 mode, insn, vd);
1505 return changed;
1508 case POST_INC:
1509 case POST_DEC:
1510 case POST_MODIFY:
1511 case PRE_INC:
1512 case PRE_DEC:
1513 case PRE_MODIFY:
1514 return false;
1516 case MEM:
1517 return replace_oldest_value_mem (x, insn, vd);
1519 case REG:
1520 return replace_oldest_value_reg (loc, cl, insn, vd);
1522 default:
1523 break;
1526 fmt = GET_RTX_FORMAT (code);
1527 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1529 if (fmt[i] == 'e')
1530 changed |= replace_oldest_value_addr (&XEXP (x, i), cl, mode,
1531 insn, vd);
1532 else if (fmt[i] == 'E')
1533 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1534 changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), cl,
1535 mode, insn, vd);
1538 return changed;
1541 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1543 static bool
1544 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1546 return replace_oldest_value_addr (&XEXP (x, 0),
1547 MODE_BASE_REG_CLASS (GET_MODE (x)),
1548 GET_MODE (x), insn, vd);
1551 /* Perform the forward copy propagation on basic block BB. */
1553 static bool
1554 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1556 bool changed = false;
1557 rtx insn;
1559 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1561 int n_ops, i, alt, predicated;
1562 bool is_asm;
1563 rtx set;
1565 if (! INSN_P (insn))
1567 if (insn == BB_END (bb))
1568 break;
1569 else
1570 continue;
1573 set = single_set (insn);
1574 extract_insn (insn);
1575 if (! constrain_operands (1))
1576 fatal_insn_not_found (insn);
1577 preprocess_constraints ();
1578 alt = which_alternative;
1579 n_ops = recog_data.n_operands;
1580 is_asm = asm_noperands (PATTERN (insn)) >= 0;
1582 /* Simplify the code below by rewriting things to reflect
1583 matching constraints. Also promote OP_OUT to OP_INOUT
1584 in predicated instructions. */
1586 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1587 for (i = 0; i < n_ops; ++i)
1589 int matches = recog_op_alt[i][alt].matches;
1590 if (matches >= 0)
1591 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1592 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1593 || (predicated && recog_data.operand_type[i] == OP_OUT))
1594 recog_data.operand_type[i] = OP_INOUT;
1597 /* For each earlyclobber operand, zap the value data. */
1598 for (i = 0; i < n_ops; i++)
1599 if (recog_op_alt[i][alt].earlyclobber)
1600 kill_value (recog_data.operand[i], vd);
1602 /* Within asms, a clobber cannot overlap inputs or outputs.
1603 I wouldn't think this were true for regular insns, but
1604 scan_rtx treats them like that... */
1605 note_stores (PATTERN (insn), kill_clobbered_value, vd);
1607 /* Kill all auto-incremented values. */
1608 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1609 for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1611 /* Kill all early-clobbered operands. */
1612 for (i = 0; i < n_ops; i++)
1613 if (recog_op_alt[i][alt].earlyclobber)
1614 kill_value (recog_data.operand[i], vd);
1616 /* Special-case plain move instructions, since we may well
1617 be able to do the move from a different register class. */
1618 if (set && REG_P (SET_SRC (set)))
1620 rtx src = SET_SRC (set);
1621 unsigned int regno = REGNO (src);
1622 enum machine_mode mode = GET_MODE (src);
1623 unsigned int i;
1624 rtx new;
1626 /* If we are accessing SRC in some mode other that what we
1627 set it in, make sure that the replacement is valid. */
1628 if (mode != vd->e[regno].mode)
1630 if (hard_regno_nregs[regno][mode]
1631 > hard_regno_nregs[regno][vd->e[regno].mode])
1632 goto no_move_special_case;
1635 /* If the destination is also a register, try to find a source
1636 register in the same class. */
1637 if (REG_P (SET_DEST (set)))
1639 new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1640 if (new && validate_change (insn, &SET_SRC (set), new, 0))
1642 if (dump_file)
1643 fprintf (dump_file,
1644 "insn %u: replaced reg %u with %u\n",
1645 INSN_UID (insn), regno, REGNO (new));
1646 changed = true;
1647 goto did_replacement;
1651 /* Otherwise, try all valid registers and see if its valid. */
1652 for (i = vd->e[regno].oldest_regno; i != regno;
1653 i = vd->e[i].next_regno)
1655 new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1656 mode, i, regno);
1657 if (new != NULL_RTX)
1659 if (validate_change (insn, &SET_SRC (set), new, 0))
1661 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1662 REG_ATTRS (new) = REG_ATTRS (src);
1663 if (dump_file)
1664 fprintf (dump_file,
1665 "insn %u: replaced reg %u with %u\n",
1666 INSN_UID (insn), regno, REGNO (new));
1667 changed = true;
1668 goto did_replacement;
1673 no_move_special_case:
1675 /* For each input operand, replace a hard register with the
1676 eldest live copy that's in an appropriate register class. */
1677 for (i = 0; i < n_ops; i++)
1679 bool replaced = false;
1681 /* Don't scan match_operand here, since we've no reg class
1682 information to pass down. Any operands that we could
1683 substitute in will be represented elsewhere. */
1684 if (recog_data.constraints[i][0] == '\0')
1685 continue;
1687 /* Don't replace in asms intentionally referencing hard regs. */
1688 if (is_asm && REG_P (recog_data.operand[i])
1689 && (REGNO (recog_data.operand[i])
1690 == ORIGINAL_REGNO (recog_data.operand[i])))
1691 continue;
1693 if (recog_data.operand_type[i] == OP_IN)
1695 if (recog_op_alt[i][alt].is_address)
1696 replaced
1697 = replace_oldest_value_addr (recog_data.operand_loc[i],
1698 recog_op_alt[i][alt].cl,
1699 VOIDmode, insn, vd);
1700 else if (REG_P (recog_data.operand[i]))
1701 replaced
1702 = replace_oldest_value_reg (recog_data.operand_loc[i],
1703 recog_op_alt[i][alt].cl,
1704 insn, vd);
1705 else if (MEM_P (recog_data.operand[i]))
1706 replaced = replace_oldest_value_mem (recog_data.operand[i],
1707 insn, vd);
1709 else if (MEM_P (recog_data.operand[i]))
1710 replaced = replace_oldest_value_mem (recog_data.operand[i],
1711 insn, vd);
1713 /* If we performed any replacement, update match_dups. */
1714 if (replaced)
1716 int j;
1717 rtx new;
1719 changed = true;
1721 new = *recog_data.operand_loc[i];
1722 recog_data.operand[i] = new;
1723 for (j = 0; j < recog_data.n_dups; j++)
1724 if (recog_data.dup_num[j] == i)
1725 *recog_data.dup_loc[j] = new;
1729 did_replacement:
1730 /* Clobber call-clobbered registers. */
1731 if (CALL_P (insn))
1732 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1733 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1734 kill_value_regno (i, 1, vd);
1736 /* Notice stores. */
1737 note_stores (PATTERN (insn), kill_set_value, vd);
1739 /* Notice copies. */
1740 if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1741 copy_value (SET_DEST (set), SET_SRC (set), vd);
1743 if (insn == BB_END (bb))
1744 break;
1747 return changed;
1750 /* Main entry point for the forward copy propagation optimization. */
1752 void
1753 copyprop_hardreg_forward (void)
1755 struct value_data *all_vd;
1756 bool need_refresh;
1757 basic_block bb;
1758 sbitmap visited;
1760 need_refresh = false;
1762 all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);
1764 visited = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
1765 sbitmap_zero (visited);
1767 FOR_EACH_BB (bb)
1769 SET_BIT (visited, bb->index - (INVALID_BLOCK + 1));
1771 /* If a block has a single predecessor, that we've already
1772 processed, begin with the value data that was live at
1773 the end of the predecessor block. */
1774 /* ??? Ought to use more intelligent queuing of blocks. */
1775 if (single_pred_p (bb)
1776 && TEST_BIT (visited,
1777 single_pred (bb)->index - (INVALID_BLOCK + 1))
1778 && ! (single_pred_edge (bb)->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)))
1779 all_vd[bb->index] = all_vd[single_pred (bb)->index];
1780 else
1781 init_value_data (all_vd + bb->index);
1783 if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
1784 need_refresh = true;
1787 sbitmap_free (visited);
1789 if (need_refresh)
1791 if (dump_file)
1792 fputs ("\n\n", dump_file);
1794 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1795 to scan, so we have to do a life update with no initial set of
1796 blocks Just In Case. */
1797 delete_noop_moves ();
1798 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1799 PROP_DEATH_NOTES
1800 | PROP_SCAN_DEAD_CODE
1801 | PROP_KILL_DEAD_CODE);
1804 free (all_vd);
1807 /* Dump the value chain data to stderr. */
1809 void
1810 debug_value_data (struct value_data *vd)
1812 HARD_REG_SET set;
1813 unsigned int i, j;
1815 CLEAR_HARD_REG_SET (set);
1817 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1818 if (vd->e[i].oldest_regno == i)
1820 if (vd->e[i].mode == VOIDmode)
1822 if (vd->e[i].next_regno != INVALID_REGNUM)
1823 fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1824 i, vd->e[i].next_regno);
1825 continue;
1828 SET_HARD_REG_BIT (set, i);
1829 fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1831 for (j = vd->e[i].next_regno;
1832 j != INVALID_REGNUM;
1833 j = vd->e[j].next_regno)
1835 if (TEST_HARD_REG_BIT (set, j))
1837 fprintf (stderr, "[%u] Loop in regno chain\n", j);
1838 return;
1841 if (vd->e[j].oldest_regno != i)
1843 fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1844 j, vd->e[j].oldest_regno);
1845 return;
1847 SET_HARD_REG_BIT (set, j);
1848 fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1850 fputc ('\n', stderr);
1853 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1854 if (! TEST_HARD_REG_BIT (set, i)
1855 && (vd->e[i].mode != VOIDmode
1856 || vd->e[i].oldest_regno != i
1857 || vd->e[i].next_regno != INVALID_REGNUM))
1858 fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1859 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1860 vd->e[i].next_regno);
1863 #ifdef ENABLE_CHECKING
1864 static void
1865 validate_value_data (struct value_data *vd)
1867 HARD_REG_SET set;
1868 unsigned int i, j;
1870 CLEAR_HARD_REG_SET (set);
1872 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1873 if (vd->e[i].oldest_regno == i)
1875 if (vd->e[i].mode == VOIDmode)
1877 if (vd->e[i].next_regno != INVALID_REGNUM)
1878 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1879 i, vd->e[i].next_regno);
1880 continue;
1883 SET_HARD_REG_BIT (set, i);
1885 for (j = vd->e[i].next_regno;
1886 j != INVALID_REGNUM;
1887 j = vd->e[j].next_regno)
1889 if (TEST_HARD_REG_BIT (set, j))
1890 internal_error ("validate_value_data: Loop in regno chain (%u)",
1892 if (vd->e[j].oldest_regno != i)
1893 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1894 j, vd->e[j].oldest_regno);
1896 SET_HARD_REG_BIT (set, j);
1900 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1901 if (! TEST_HARD_REG_BIT (set, i)
1902 && (vd->e[i].mode != VOIDmode
1903 || vd->e[i].oldest_regno != i
1904 || vd->e[i].next_regno != INVALID_REGNUM))
1905 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1906 i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1907 vd->e[i].next_regno);
1909 #endif