* gcc.dg/i386-asm-4.c: New test.
[official-gcc.git] / gcc / tree-ssa-dce.c
blobf37430d3299f91043bf069986db7d9f65ab849a1
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "errors.h"
51 #include "ggc.h"
53 /* These RTL headers are needed for basic-block.h. */
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "hard-reg-set.h"
57 #include "obstack.h"
58 #include "basic-block.h"
60 #include "tree.h"
61 #include "diagnostic.h"
62 #include "tree-flow.h"
63 #include "tree-gimple.h"
64 #include "tree-dump.h"
65 #include "tree-pass.h"
66 #include "timevar.h"
67 #include "flags.h"
69 static struct stmt_stats
71 int total;
72 int total_phis;
73 int removed;
74 int removed_phis;
75 } stats;
77 static varray_type worklist;
79 /* Vector indicating an SSA name has already been processed and marked
80 as necessary. */
81 static sbitmap processed;
83 /* Vector indicating that last_stmt if a basic block has already been
84 marked as necessary. */
85 static sbitmap last_stmt_necessary;
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 bitmap *control_dependence_map;
96 /* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
97 for which the block with index N is control dependent. */
98 #define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
99 { \
100 bitmap_iterator bi; \
102 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, bi) \
104 CODE; \
108 /* Local function prototypes. */
109 static inline void set_control_dependence_map_bit (basic_block, int);
110 static inline void clear_control_dependence_bitmap (basic_block);
111 static void find_all_control_dependences (struct edge_list *);
112 static void find_control_dependence (struct edge_list *, int);
113 static inline basic_block find_pdom (basic_block);
115 static inline void mark_stmt_necessary (tree, bool);
116 static inline void mark_operand_necessary (tree, bool);
118 static void mark_stmt_if_obviously_necessary (tree, bool);
119 static void find_obviously_necessary_stmts (struct edge_list *);
121 static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
122 static void propagate_necessity (struct edge_list *);
124 static void eliminate_unnecessary_stmts (void);
125 static void remove_dead_phis (basic_block);
126 static void remove_dead_stmt (block_stmt_iterator *, basic_block);
128 static void print_stats (void);
129 static void tree_dce_init (bool);
130 static void tree_dce_done (bool);
132 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
133 static inline void
134 set_control_dependence_map_bit (basic_block bb, int edge_index)
136 if (bb == ENTRY_BLOCK_PTR)
137 return;
138 gcc_assert (bb != EXIT_BLOCK_PTR);
139 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
142 /* Clear all control dependences for block BB. */
143 static inline
144 void clear_control_dependence_bitmap (basic_block bb)
146 bitmap_clear (control_dependence_map[bb->index]);
149 /* Record all blocks' control dependences on all edges in the edge
150 list EL, ala Morgan, Section 3.6. */
152 static void
153 find_all_control_dependences (struct edge_list *el)
155 int i;
157 for (i = 0; i < NUM_EDGES (el); ++i)
158 find_control_dependence (el, i);
161 /* Determine all blocks' control dependences on the given edge with edge_list
162 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
164 static void
165 find_control_dependence (struct edge_list *el, int edge_index)
167 basic_block current_block;
168 basic_block ending_block;
170 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
172 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
173 ending_block = ENTRY_BLOCK_PTR->next_bb;
174 else
175 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
177 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
178 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
179 current_block = find_pdom (current_block))
181 edge e = INDEX_EDGE (el, edge_index);
183 /* For abnormal edges, we don't make current_block control
184 dependent because instructions that throw are always necessary
185 anyway. */
186 if (e->flags & EDGE_ABNORMAL)
187 continue;
189 set_control_dependence_map_bit (current_block, edge_index);
193 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
194 This function is necessary because some blocks have negative numbers. */
196 static inline basic_block
197 find_pdom (basic_block block)
199 gcc_assert (block != ENTRY_BLOCK_PTR);
201 if (block == EXIT_BLOCK_PTR)
202 return EXIT_BLOCK_PTR;
203 else
205 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
206 if (! bb)
207 return EXIT_BLOCK_PTR;
208 return bb;
212 #define NECESSARY(stmt) stmt->common.asm_written_flag
214 /* If STMT is not already marked necessary, mark it, and add it to the
215 worklist if ADD_TO_WORKLIST is true. */
216 static inline void
217 mark_stmt_necessary (tree stmt, bool add_to_worklist)
219 gcc_assert (stmt);
220 gcc_assert (stmt != error_mark_node);
221 gcc_assert (!DECL_P (stmt));
223 if (NECESSARY (stmt))
224 return;
226 if (dump_file && (dump_flags & TDF_DETAILS))
228 fprintf (dump_file, "Marking useful stmt: ");
229 print_generic_stmt (dump_file, stmt, TDF_SLIM);
230 fprintf (dump_file, "\n");
233 NECESSARY (stmt) = 1;
234 if (add_to_worklist)
235 VARRAY_PUSH_TREE (worklist, stmt);
238 /* Mark the statement defining operand OP as necessary. PHIONLY is true
239 if we should only mark it necessary if it is a phi node. */
241 static inline void
242 mark_operand_necessary (tree op, bool phionly)
244 tree stmt;
245 int ver;
247 gcc_assert (op);
249 ver = SSA_NAME_VERSION (op);
250 if (TEST_BIT (processed, ver))
251 return;
252 SET_BIT (processed, ver);
254 stmt = SSA_NAME_DEF_STMT (op);
255 gcc_assert (stmt);
257 if (NECESSARY (stmt)
258 || IS_EMPTY_STMT (stmt)
259 || (phionly && TREE_CODE (stmt) != PHI_NODE))
260 return;
262 NECESSARY (stmt) = 1;
263 VARRAY_PUSH_TREE (worklist, stmt);
267 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
268 it can make other statements necessary.
270 If AGGRESSIVE is false, control statements are conservatively marked as
271 necessary. */
273 static void
274 mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
276 v_may_def_optype v_may_defs;
277 v_must_def_optype v_must_defs;
278 stmt_ann_t ann;
279 tree op, def;
280 ssa_op_iter iter;
282 /* Statements that are implicitly live. Most function calls, asm and return
283 statements are required. Labels and BIND_EXPR nodes are kept because
284 they are control flow, and we have no way of knowing whether they can be
285 removed. DCE can eliminate all the other statements in a block, and CFG
286 can then remove the block and labels. */
287 switch (TREE_CODE (stmt))
289 case BIND_EXPR:
290 case LABEL_EXPR:
291 case CASE_LABEL_EXPR:
292 mark_stmt_necessary (stmt, false);
293 return;
295 case ASM_EXPR:
296 case RESX_EXPR:
297 case RETURN_EXPR:
298 mark_stmt_necessary (stmt, true);
299 return;
301 case CALL_EXPR:
302 /* Most, but not all function calls are required. Function calls that
303 produce no result and have no side effects (i.e. const pure
304 functions) are unnecessary. */
305 if (TREE_SIDE_EFFECTS (stmt))
306 mark_stmt_necessary (stmt, true);
307 return;
309 case MODIFY_EXPR:
310 op = get_call_expr_in (stmt);
311 if (op && TREE_SIDE_EFFECTS (op))
313 mark_stmt_necessary (stmt, true);
314 return;
317 /* These values are mildly magic bits of the EH runtime. We can't
318 see the entire lifetime of these values until landing pads are
319 generated. */
320 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
321 || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
323 mark_stmt_necessary (stmt, true);
324 return;
326 break;
328 case GOTO_EXPR:
329 gcc_assert (!simple_goto_p (stmt));
330 mark_stmt_necessary (stmt, true);
331 return;
333 case COND_EXPR:
334 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt)->succs) == 2);
335 /* Fall through. */
337 case SWITCH_EXPR:
338 if (! aggressive)
339 mark_stmt_necessary (stmt, true);
340 break;
342 default:
343 break;
346 ann = stmt_ann (stmt);
348 /* If the statement has volatile operands, it needs to be preserved.
349 Same for statements that can alter control flow in unpredictable
350 ways. */
351 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
353 mark_stmt_necessary (stmt, true);
354 return;
357 get_stmt_operands (stmt);
359 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
361 if (is_global_var (SSA_NAME_VAR (def)))
363 mark_stmt_necessary (stmt, true);
364 return;
368 /* Check virtual definitions. If we get here, the only virtual
369 definitions we should see are those generated by assignment
370 statements. */
371 v_may_defs = V_MAY_DEF_OPS (ann);
372 v_must_defs = V_MUST_DEF_OPS (ann);
373 if (NUM_V_MAY_DEFS (v_may_defs) > 0 || NUM_V_MUST_DEFS (v_must_defs) > 0)
375 tree lhs;
377 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
379 /* Note that we must not check the individual virtual operands
380 here. In particular, if this is an aliased store, we could
381 end up with something like the following (SSA notation
382 redacted for brevity):
384 foo (int *p, int i)
386 int x;
387 p_1 = (i_2 > 3) ? &x : p_1;
389 # x_4 = V_MAY_DEF <x_3>
390 *p_1 = 5;
392 return 2;
395 Notice that the store to '*p_1' should be preserved, if we
396 were to check the virtual definitions in that store, we would
397 not mark it needed. This is because 'x' is not a global
398 variable.
400 Therefore, we check the base address of the LHS. If the
401 address is a pointer, we check if its name tag or type tag is
402 a global variable. Otherwise, we check if the base variable
403 is a global. */
404 lhs = TREE_OPERAND (stmt, 0);
405 if (REFERENCE_CLASS_P (lhs))
406 lhs = get_base_address (lhs);
408 if (lhs == NULL_TREE)
410 /* If LHS is NULL, it means that we couldn't get the base
411 address of the reference. In which case, we should not
412 remove this store. */
413 mark_stmt_necessary (stmt, true);
415 else if (DECL_P (lhs))
417 /* If the store is to a global symbol, we need to keep it. */
418 if (is_global_var (lhs))
419 mark_stmt_necessary (stmt, true);
421 else if (INDIRECT_REF_P (lhs))
423 tree ptr = TREE_OPERAND (lhs, 0);
424 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
425 tree nmt = (pi) ? pi->name_mem_tag : NULL_TREE;
426 tree tmt = var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
428 /* If either the name tag or the type tag for PTR is a
429 global variable, then the store is necessary. */
430 if ((nmt && is_global_var (nmt))
431 || (tmt && is_global_var (tmt)))
433 mark_stmt_necessary (stmt, true);
434 return;
437 else
438 gcc_unreachable ();
441 return;
444 /* Find obviously necessary statements. These are things like most function
445 calls, and stores to file level variables.
447 If EL is NULL, control statements are conservatively marked as
448 necessary. Otherwise it contains the list of edges used by control
449 dependence analysis. */
451 static void
452 find_obviously_necessary_stmts (struct edge_list *el)
454 basic_block bb;
455 block_stmt_iterator i;
456 edge e;
458 FOR_EACH_BB (bb)
460 tree phi;
462 /* Check any PHI nodes in the block. */
463 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
465 NECESSARY (phi) = 0;
467 /* PHIs for virtual variables do not directly affect code
468 generation and need not be considered inherently necessary
469 regardless of the bits set in their decl.
471 Thus, we only need to mark PHIs for real variables which
472 need their result preserved as being inherently necessary. */
473 if (is_gimple_reg (PHI_RESULT (phi))
474 && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
475 mark_stmt_necessary (phi, true);
478 /* Check all statements in the block. */
479 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
481 tree stmt = bsi_stmt (i);
482 NECESSARY (stmt) = 0;
483 mark_stmt_if_obviously_necessary (stmt, el != NULL);
486 /* Mark this basic block as `not visited'. A block will be marked
487 visited when the edges that it is control dependent on have been
488 marked. */
489 bb->flags &= ~BB_VISITED;
492 if (el)
494 /* Prevent the loops from being removed. We must keep the infinite loops,
495 and we currently do not have a means to recognize the finite ones. */
496 FOR_EACH_BB (bb)
498 edge_iterator ei;
499 FOR_EACH_EDGE (e, ei, bb->succs)
500 if (e->flags & EDGE_DFS_BACK)
501 mark_control_dependent_edges_necessary (e->dest, el);
506 /* Make corresponding control dependent edges necessary. We only
507 have to do this once for each basic block, so we clear the bitmap
508 after we're done. */
509 static void
510 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
512 unsigned edge_number;
514 gcc_assert (bb != EXIT_BLOCK_PTR);
516 if (bb == ENTRY_BLOCK_PTR)
517 return;
519 EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
521 tree t;
522 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
524 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
525 continue;
526 SET_BIT (last_stmt_necessary, cd_bb->index);
528 t = last_stmt (cd_bb);
529 if (t && is_ctrl_stmt (t))
530 mark_stmt_necessary (t, true);
534 /* Propagate necessity using the operands of necessary statements. Process
535 the uses on each statement in the worklist, and add all feeding statements
536 which contribute to the calculation of this value to the worklist.
538 In conservative mode, EL is NULL. */
540 static void
541 propagate_necessity (struct edge_list *el)
543 tree i;
544 bool aggressive = (el ? true : false);
546 if (dump_file && (dump_flags & TDF_DETAILS))
547 fprintf (dump_file, "\nProcessing worklist:\n");
549 while (VARRAY_ACTIVE_SIZE (worklist) > 0)
551 /* Take `i' from worklist. */
552 i = VARRAY_TOP_TREE (worklist);
553 VARRAY_POP (worklist);
555 if (dump_file && (dump_flags & TDF_DETAILS))
557 fprintf (dump_file, "processing: ");
558 print_generic_stmt (dump_file, i, TDF_SLIM);
559 fprintf (dump_file, "\n");
562 if (aggressive)
564 /* Mark the last statements of the basic blocks that the block
565 containing `i' is control dependent on, but only if we haven't
566 already done so. */
567 basic_block bb = bb_for_stmt (i);
568 if (! (bb->flags & BB_VISITED))
570 bb->flags |= BB_VISITED;
571 mark_control_dependent_edges_necessary (bb, el);
575 if (TREE_CODE (i) == PHI_NODE)
577 /* PHI nodes are somewhat special in that each PHI alternative has
578 data and control dependencies. All the statements feeding the
579 PHI node's arguments are always necessary. In aggressive mode,
580 we also consider the control dependent edges leading to the
581 predecessor block associated with each PHI alternative as
582 necessary. */
583 int k;
584 for (k = 0; k < PHI_NUM_ARGS (i); k++)
586 tree arg = PHI_ARG_DEF (i, k);
587 if (TREE_CODE (arg) == SSA_NAME)
588 mark_operand_necessary (arg, false);
591 if (aggressive)
593 for (k = 0; k < PHI_NUM_ARGS (i); k++)
595 basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
596 if (! (arg_bb->flags & BB_VISITED))
598 arg_bb->flags |= BB_VISITED;
599 mark_control_dependent_edges_necessary (arg_bb, el);
604 else
606 /* Propagate through the operands. Examine all the USE, VUSE and
607 V_MAY_DEF operands in this statement. Mark all the statements
608 which feed this statement's uses as necessary. */
609 ssa_op_iter iter;
610 tree use;
612 get_stmt_operands (i);
614 /* The operands of V_MAY_DEF expressions are also needed as they
615 represent potential definitions that may reach this
616 statement (V_MAY_DEF operands allow us to follow def-def
617 links). */
619 FOR_EACH_SSA_TREE_OPERAND (use, i, iter, SSA_OP_ALL_USES)
620 mark_operand_necessary (use, false);
626 /* Propagate necessity around virtual phi nodes used in kill operands.
627 The reason this isn't done during propagate_necessity is because we don't
628 want to keep phis around that are just there for must-defs, unless we
629 absolutely have to. After we've rewritten the reaching definitions to be
630 correct in the previous part of the fixup routine, we can simply propagate
631 around the information about which of these virtual phi nodes are really
632 used, and set the NECESSARY flag accordingly.
633 Note that we do the minimum here to ensure that we keep alive the phis that
634 are actually used in the corrected SSA form. In particular, some of these
635 phis may now have all of the same operand, and will be deleted by some
636 other pass. */
638 static void
639 mark_really_necessary_kill_operand_phis (void)
641 basic_block bb;
642 int i;
644 /* Seed the worklist with the new virtual phi arguments and virtual
645 uses */
646 FOR_EACH_BB (bb)
648 block_stmt_iterator bsi;
649 tree phi;
651 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
653 if (!is_gimple_reg (PHI_RESULT (phi)) && NECESSARY (phi))
655 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
656 mark_operand_necessary (PHI_ARG_DEF (phi, i), true);
660 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
662 tree stmt = bsi_stmt (bsi);
664 if (NECESSARY (stmt))
666 use_operand_p use_p;
667 ssa_op_iter iter;
668 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
669 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
671 tree use = USE_FROM_PTR (use_p);
672 mark_operand_necessary (use, true);
678 /* Mark all virtual phis still in use as necessary, and all of their
679 arguments that are phis as necessary. */
680 while (VARRAY_ACTIVE_SIZE (worklist) > 0)
682 tree use = VARRAY_TOP_TREE (worklist);
683 VARRAY_POP (worklist);
685 for (i = 0; i < PHI_NUM_ARGS (use); i++)
686 mark_operand_necessary (PHI_ARG_DEF (use, i), true);
693 /* Eliminate unnecessary statements. Any instruction not marked as necessary
694 contributes nothing to the program, and can be deleted. */
696 static void
697 eliminate_unnecessary_stmts (void)
699 basic_block bb;
700 block_stmt_iterator i;
702 if (dump_file && (dump_flags & TDF_DETAILS))
703 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
705 clear_special_calls ();
706 FOR_EACH_BB (bb)
708 /* Remove dead PHI nodes. */
709 remove_dead_phis (bb);
711 /* Remove dead statements. */
712 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
714 tree t = bsi_stmt (i);
716 stats.total++;
718 /* If `i' is not necessary then remove it. */
719 if (! NECESSARY (t))
720 remove_dead_stmt (&i, bb);
721 else
723 tree call = get_call_expr_in (t);
724 if (call)
725 notice_special_calls (call);
726 bsi_next (&i);
732 /* Remove dead PHI nodes from block BB. */
734 static void
735 remove_dead_phis (basic_block bb)
737 tree prev, phi;
739 prev = NULL_TREE;
740 phi = phi_nodes (bb);
741 while (phi)
743 stats.total_phis++;
745 if (! NECESSARY (phi))
747 tree next = PHI_CHAIN (phi);
749 if (dump_file && (dump_flags & TDF_DETAILS))
751 fprintf (dump_file, "Deleting : ");
752 print_generic_stmt (dump_file, phi, TDF_SLIM);
753 fprintf (dump_file, "\n");
756 remove_phi_node (phi, prev, bb);
757 stats.removed_phis++;
758 phi = next;
760 else
762 prev = phi;
763 phi = PHI_CHAIN (phi);
768 /* Remove dead statement pointed by iterator I. Receives the basic block BB
769 containing I so that we don't have to look it up. */
771 static void
772 remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
774 tree t = bsi_stmt (*i);
775 def_operand_p def_p;
777 ssa_op_iter iter;
779 if (dump_file && (dump_flags & TDF_DETAILS))
781 fprintf (dump_file, "Deleting : ");
782 print_generic_stmt (dump_file, t, TDF_SLIM);
783 fprintf (dump_file, "\n");
786 stats.removed++;
788 /* If we have determined that a conditional branch statement contributes
789 nothing to the program, then we not only remove it, but we also change
790 the flow graph so that the current block will simply fall-thru to its
791 immediate post-dominator. The blocks we are circumventing will be
792 removed by cleaup_cfg if this change in the flow graph makes them
793 unreachable. */
794 if (is_ctrl_stmt (t))
796 basic_block post_dom_bb;
797 /* The post dominance info has to be up-to-date. */
798 gcc_assert (dom_computed[CDI_POST_DOMINATORS] == DOM_OK);
799 /* Get the immediate post dominator of bb. */
800 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
801 /* Some blocks don't have an immediate post dominator. This can happen
802 for example with infinite loops. Removing an infinite loop is an
803 inappropriate transformation anyway... */
804 if (! post_dom_bb)
806 bsi_next (i);
807 return;
810 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
811 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
812 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
813 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
814 EDGE_SUCC (bb, 0)->count = bb->count;
816 /* The edge is no longer associated with a conditional, so it does
817 not have TRUE/FALSE flags. */
818 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
820 /* If the edge reaches any block other than the exit, then it is a
821 fallthru edge; if it reaches the exit, then it is not a fallthru
822 edge. */
823 if (post_dom_bb != EXIT_BLOCK_PTR)
824 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
825 else
826 EDGE_SUCC (bb, 0)->flags &= ~EDGE_FALLTHRU;
828 /* Remove the remaining the outgoing edges. */
829 while (EDGE_COUNT (bb->succs) != 1)
830 remove_edge (EDGE_SUCC (bb, 1));
833 FOR_EACH_SSA_DEF_OPERAND (def_p, t, iter,
834 SSA_OP_VIRTUAL_DEFS | SSA_OP_VIRTUAL_KILLS)
836 tree def = DEF_FROM_PTR (def_p);
837 bitmap_set_bit (vars_to_rename,
838 var_ann (SSA_NAME_VAR (def))->uid);
840 bsi_remove (i);
841 release_defs (t);
844 /* Print out removed statement statistics. */
846 static void
847 print_stats (void)
849 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
851 float percg;
853 percg = ((float) stats.removed / (float) stats.total) * 100;
854 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
855 stats.removed, stats.total, (int) percg);
857 if (stats.total_phis == 0)
858 percg = 0;
859 else
860 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
862 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
863 stats.removed_phis, stats.total_phis, (int) percg);
867 /* Initialization for this pass. Set up the used data structures. */
869 static void
870 tree_dce_init (bool aggressive)
872 memset ((void *) &stats, 0, sizeof (stats));
874 if (aggressive)
876 int i;
878 control_dependence_map
879 = xmalloc (last_basic_block * sizeof (bitmap));
880 for (i = 0; i < last_basic_block; ++i)
881 control_dependence_map[i] = BITMAP_XMALLOC ();
883 last_stmt_necessary = sbitmap_alloc (last_basic_block);
884 sbitmap_zero (last_stmt_necessary);
887 processed = sbitmap_alloc (num_ssa_names + 1);
888 sbitmap_zero (processed);
890 VARRAY_TREE_INIT (worklist, 64, "work list");
893 /* Cleanup after this pass. */
895 static void
896 tree_dce_done (bool aggressive)
898 if (aggressive)
900 int i;
902 for (i = 0; i < last_basic_block; ++i)
903 BITMAP_XFREE (control_dependence_map[i]);
904 free (control_dependence_map);
906 sbitmap_free (last_stmt_necessary);
909 sbitmap_free (processed);
912 /* Main routine to eliminate dead code.
914 AGGRESSIVE controls the aggressiveness of the algorithm.
915 In conservative mode, we ignore control dependence and simply declare
916 all but the most trivially dead branches necessary. This mode is fast.
917 In aggressive mode, control dependences are taken into account, which
918 results in more dead code elimination, but at the cost of some time.
920 FIXME: Aggressive mode before PRE doesn't work currently because
921 the dominance info is not invalidated after DCE1. This is
922 not an issue right now because we only run aggressive DCE
923 as the last tree SSA pass, but keep this in mind when you
924 start experimenting with pass ordering. */
926 static void
927 perform_tree_ssa_dce (bool aggressive)
929 struct edge_list *el = NULL;
931 tree_dce_init (aggressive);
933 if (aggressive)
935 /* Compute control dependence. */
936 timevar_push (TV_CONTROL_DEPENDENCES);
937 calculate_dominance_info (CDI_POST_DOMINATORS);
938 el = create_edge_list ();
939 find_all_control_dependences (el);
940 timevar_pop (TV_CONTROL_DEPENDENCES);
942 mark_dfs_back_edges ();
945 find_obviously_necessary_stmts (el);
947 propagate_necessity (el);
949 mark_really_necessary_kill_operand_phis ();
950 eliminate_unnecessary_stmts ();
952 if (aggressive)
953 free_dominance_info (CDI_POST_DOMINATORS);
955 /* Debugging dumps. */
956 if (dump_file)
957 print_stats ();
959 tree_dce_done (aggressive);
961 free_edge_list (el);
964 /* Pass entry points. */
965 static void
966 tree_ssa_dce (void)
968 perform_tree_ssa_dce (/*aggressive=*/false);
971 static void
972 tree_ssa_cd_dce (void)
974 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
977 static bool
978 gate_dce (void)
980 return flag_tree_dce != 0;
983 struct tree_opt_pass pass_dce =
985 "dce", /* name */
986 gate_dce, /* gate */
987 tree_ssa_dce, /* execute */
988 NULL, /* sub */
989 NULL, /* next */
990 0, /* static_pass_number */
991 TV_TREE_DCE, /* tv_id */
992 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
993 0, /* properties_provided */
994 0, /* properties_destroyed */
995 0, /* todo_flags_start */
996 TODO_dump_func | TODO_fix_def_def_chains | TODO_cleanup_cfg | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
997 0 /* letter */
1000 struct tree_opt_pass pass_cd_dce =
1002 "cddce", /* name */
1003 gate_dce, /* gate */
1004 tree_ssa_cd_dce, /* execute */
1005 NULL, /* sub */
1006 NULL, /* next */
1007 0, /* static_pass_number */
1008 TV_TREE_CD_DCE, /* tv_id */
1009 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
1010 0, /* properties_provided */
1011 0, /* properties_destroyed */
1012 0, /* todo_flags_start */
1013 TODO_dump_func | TODO_fix_def_def_chains | TODO_cleanup_cfg | TODO_ggc_collect | TODO_verify_ssa | TODO_verify_flow,
1014 /* todo_flags_finish */
1015 0 /* letter */