* gcc.dg/i386-asm-4.c: New test.
[official-gcc.git] / gcc / ra-rewrite.c
blob2f4ce6cfcf1e9c431625e5d3f0b3a0f69ef0b5a4
1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
15 details.
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "df.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "except.h"
35 #include "ra.h"
36 #include "insn-config.h"
37 #include "reload.h"
39 /* This file is part of the graph coloring register allocator, and
40 contains the functions to change the insn stream. I.e. it adds
41 spill code, rewrites insns to use the new registers after
42 coloring and deletes coalesced moves. */
44 struct rewrite_info;
45 struct rtx_list;
47 static void spill_coalescing (sbitmap, sbitmap);
48 static unsigned HOST_WIDE_INT spill_prop_savings (struct web *, sbitmap);
49 static void spill_prop_insert (struct web *, sbitmap, sbitmap);
50 static int spill_propagation (sbitmap, sbitmap, sbitmap);
51 static void spill_coalprop (void);
52 static void allocate_spill_web (struct web *);
53 static void choose_spill_colors (void);
54 static void rewrite_program (bitmap);
55 static void remember_slot (struct rtx_list **, rtx);
56 static int slots_overlap_p (rtx, rtx);
57 static void delete_overlapping_slots (struct rtx_list **, rtx);
58 static int slot_member_p (struct rtx_list *, rtx);
59 static void insert_stores (bitmap);
60 static int spill_same_color_p (struct web *, struct web *);
61 static bool is_partly_live_1 (sbitmap, struct web *);
62 static void update_spill_colors (HARD_REG_SET *, struct web *, int);
63 static int spill_is_free (HARD_REG_SET *, struct web *);
64 static void emit_loads (struct rewrite_info *, int, rtx);
65 static void reloads_to_loads (struct rewrite_info *, struct ref **,
66 unsigned int, struct web **);
67 static void rewrite_program2 (bitmap);
68 static void mark_refs_for_checking (struct web *, bitmap);
69 static void detect_web_parts_to_rebuild (void);
70 static void delete_useless_defs (void);
71 static void detect_non_changed_webs (void);
72 static void reset_changed_flag (void);
74 /* For tracking some statistics, we count the number (and cost)
75 of deleted move insns. */
76 static unsigned int deleted_move_insns;
77 static unsigned HOST_WIDE_INT deleted_move_cost;
79 /* This is the spill coalescing phase. In SPILLED the IDs of all
80 already spilled webs are noted. In COALESCED the IDs of webs still
81 to check for coalescing. This tries to coalesce two webs, which were
82 spilled, are connected by a move, and don't conflict. Greatly
83 reduces memory shuffling. */
85 static void
86 spill_coalescing (sbitmap coalesce, sbitmap spilled)
88 struct move_list *ml;
89 struct move *m;
90 for (ml = wl_moves; ml; ml = ml->next)
91 if ((m = ml->move) != NULL)
93 struct web *s = alias (m->source_web);
94 struct web *t = alias (m->target_web);
95 if ((TEST_BIT (spilled, s->id) && TEST_BIT (coalesce, t->id))
96 || (TEST_BIT (spilled, t->id) && TEST_BIT (coalesce, s->id)))
98 struct conflict_link *wl;
99 if (TEST_BIT (sup_igraph, s->id * num_webs + t->id)
100 || TEST_BIT (sup_igraph, t->id * num_webs + s->id)
101 || s->pattern || t->pattern)
102 continue;
104 deleted_move_insns++;
105 deleted_move_cost += BLOCK_FOR_INSN (m->insn)->frequency + 1;
106 PUT_CODE (m->insn, NOTE);
107 NOTE_LINE_NUMBER (m->insn) = NOTE_INSN_DELETED;
108 df_insn_modify (df, BLOCK_FOR_INSN (m->insn), m->insn);
110 m->target_web->target_of_spilled_move = 1;
111 if (s == t)
112 /* May be, already coalesced due to a former move. */
113 continue;
114 /* Merge the nodes S and T in the I-graph. Beware: the merging
115 of conflicts relies on the fact, that in the conflict list
116 of T all of it's conflicts are noted. This is currently not
117 the case if T would be the target of a coalesced web, because
118 then (in combine () above) only those conflicts were noted in
119 T from the web which was coalesced into T, which at the time
120 of combine() were not already on the SELECT stack or were
121 itself coalesced to something other. */
122 gcc_assert (t->type == SPILLED
123 && s->type == SPILLED);
124 remove_list (t->dlink, &WEBS(SPILLED));
125 put_web (t, COALESCED);
126 t->alias = s;
127 s->is_coalesced = 1;
128 t->is_coalesced = 1;
129 merge_moves (s, t);
130 for (wl = t->conflict_list; wl; wl = wl->next)
132 struct web *pweb = wl->t;
133 if (wl->sub == NULL)
134 record_conflict (s, pweb);
135 else
137 struct sub_conflict *sl;
138 for (sl = wl->sub; sl; sl = sl->next)
140 struct web *sweb = NULL;
141 if (SUBWEB_P (sl->s))
142 sweb = find_subweb (s, sl->s->orig_x);
143 if (!sweb)
144 sweb = s;
145 record_conflict (sweb, sl->t);
148 /* No decrement_degree here, because we already have colored
149 the graph, and don't want to insert pweb into any other
150 list. */
151 pweb->num_conflicts -= 1 + t->add_hardregs;
157 /* Returns the probable saving of coalescing WEB with webs from
158 SPILLED, in terms of removed move insn cost. */
160 static unsigned HOST_WIDE_INT
161 spill_prop_savings (struct web *web, sbitmap spilled)
163 unsigned HOST_WIDE_INT savings = 0;
164 struct move_list *ml;
165 struct move *m;
166 unsigned int cost;
167 if (web->pattern)
168 return 0;
169 cost = 1 + MEMORY_MOVE_COST (GET_MODE (web->orig_x), web->regclass, 1);
170 cost += 1 + MEMORY_MOVE_COST (GET_MODE (web->orig_x), web->regclass, 0);
171 for (ml = wl_moves; ml; ml = ml->next)
172 if ((m = ml->move) != NULL)
174 struct web *s = alias (m->source_web);
175 struct web *t = alias (m->target_web);
176 if (s != web)
178 struct web *h = s;
179 s = t;
180 t = h;
182 if (s != web || !TEST_BIT (spilled, t->id) || t->pattern
183 || TEST_BIT (sup_igraph, s->id * num_webs + t->id)
184 || TEST_BIT (sup_igraph, t->id * num_webs + s->id))
185 continue;
186 savings += BLOCK_FOR_INSN (m->insn)->frequency * cost;
188 return savings;
191 /* This add all IDs of colored webs, which are connected to WEB by a move
192 to LIST and PROCESSED. */
194 static void
195 spill_prop_insert (struct web *web, sbitmap list, sbitmap processed)
197 struct move_list *ml;
198 struct move *m;
199 for (ml = wl_moves; ml; ml = ml->next)
200 if ((m = ml->move) != NULL)
202 struct web *s = alias (m->source_web);
203 struct web *t = alias (m->target_web);
204 if (s != web)
206 struct web *h = s;
207 s = t;
208 t = h;
210 if (s != web || t->type != COLORED || TEST_BIT (processed, t->id))
211 continue;
212 SET_BIT (list, t->id);
213 SET_BIT (processed, t->id);
217 /* The spill propagation pass. If we have to spilled webs, the first
218 connected through a move to a colored one, and the second also connected
219 to that colored one, and this colored web is only used to connect both
220 spilled webs, it might be worthwhile to spill that colored one.
221 This is the case, if the cost of the removed copy insns (all three webs
222 could be placed into the same stack slot) is higher than the spill cost
223 of the web.
224 TO_PROP are the webs we try to propagate from (i.e. spilled ones),
225 SPILLED the set of all spilled webs so far and PROCESSED the set
226 of all webs processed so far, so we don't do work twice. */
228 static int
229 spill_propagation (sbitmap to_prop, sbitmap spilled, sbitmap processed)
231 int id;
232 int again = 0;
233 sbitmap list = sbitmap_alloc (num_webs);
234 sbitmap_zero (list);
236 /* First insert colored move neighbors into the candidate list. */
237 EXECUTE_IF_SET_IN_SBITMAP (to_prop, 0, id,
239 spill_prop_insert (ID2WEB (id), list, processed);
241 sbitmap_zero (to_prop);
243 /* For all candidates, see, if the savings are higher than it's
244 spill cost. */
245 while ((id = sbitmap_first_set_bit (list)) >= 0)
247 struct web *web = ID2WEB (id);
248 RESET_BIT (list, id);
249 if (spill_prop_savings (web, spilled) >= web->spill_cost)
251 /* If so, we found a new spilled web. Insert it's colored
252 move neighbors again, and mark, that we need to repeat the
253 whole mainloop of spillprog/coalescing again. */
254 remove_web_from_list (web);
255 web->color = -1;
256 put_web (web, SPILLED);
257 SET_BIT (spilled, id);
258 SET_BIT (to_prop, id);
259 spill_prop_insert (web, list, processed);
260 again = 1;
263 sbitmap_free (list);
264 return again;
267 /* The main phase to improve spill costs. This repeatedly runs
268 spill coalescing and spill propagation, until nothing changes. */
270 static void
271 spill_coalprop (void)
273 sbitmap spilled, processed, to_prop;
274 struct dlist *d;
275 int again;
276 spilled = sbitmap_alloc (num_webs);
277 processed = sbitmap_alloc (num_webs);
278 to_prop = sbitmap_alloc (num_webs);
279 sbitmap_zero (spilled);
280 for (d = WEBS(SPILLED); d; d = d->next)
281 SET_BIT (spilled, DLIST_WEB (d)->id);
282 sbitmap_copy (to_prop, spilled);
283 sbitmap_zero (processed);
286 spill_coalescing (to_prop, spilled);
287 /* XXX Currently (with optimistic coalescing) spill_propagation()
288 doesn't give better code, sometimes it gives worse (but not by much)
289 code. I believe this is because of slightly wrong cost
290 measurements. Anyway right now it isn't worth the time it takes,
291 so deactivate it for now. */
292 again = 0 && spill_propagation (to_prop, spilled, processed);
294 while (again);
295 sbitmap_free (to_prop);
296 sbitmap_free (processed);
297 sbitmap_free (spilled);
300 /* Allocate a spill slot for a WEB. Currently we spill to pseudo
301 registers, to be able to track also webs for "stack slots", and also
302 to possibly colorize them. These pseudos are sometimes handled
303 in a special way, where we know, that they also can represent
304 MEM references. */
306 static void
307 allocate_spill_web (struct web *web)
309 int regno = web->regno;
310 rtx slot;
311 if (web->stack_slot)
312 return;
313 slot = gen_reg_rtx (PSEUDO_REGNO_MODE (regno));
314 web->stack_slot = slot;
317 /* This chooses a color for all SPILLED webs for interference region
318 spilling. The heuristic isn't good in any way. */
320 static void
321 choose_spill_colors (void)
323 struct dlist *d;
324 unsigned HOST_WIDE_INT *costs = xmalloc (FIRST_PSEUDO_REGISTER * sizeof (costs[0]));
325 for (d = WEBS(SPILLED); d; d = d->next)
327 struct web *web = DLIST_WEB (d);
328 struct conflict_link *wl;
329 int bestc, c;
330 HARD_REG_SET avail;
331 memset (costs, 0, FIRST_PSEUDO_REGISTER * sizeof (costs[0]));
332 for (wl = web->conflict_list; wl; wl = wl->next)
334 struct web *pweb = wl->t;
335 if (pweb->type == COLORED || pweb->type == PRECOLORED)
336 costs[pweb->color] += pweb->spill_cost;
339 COPY_HARD_REG_SET (avail, web->usable_regs);
340 if (web->crosses_call)
342 /* Add an arbitrary constant cost to colors not usable by
343 call-crossing webs without saves/loads. */
344 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
345 if (TEST_HARD_REG_BIT (call_used_reg_set, c))
346 costs[c] += 1000;
348 bestc = -1;
349 for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
350 if ((bestc < 0 || costs[bestc] > costs[c])
351 && TEST_HARD_REG_BIT (avail, c)
352 && HARD_REGNO_MODE_OK (c, PSEUDO_REGNO_MODE (web->regno)))
354 int i, size;
355 size = hard_regno_nregs[c][PSEUDO_REGNO_MODE (web->regno)];
356 for (i = 1; i < size
357 && TEST_HARD_REG_BIT (avail, c + i); i++);
358 if (i == size)
359 bestc = c;
361 web->color = bestc;
362 ra_debug_msg (DUMP_PROCESS, "choosing color %d for spilled web %d\n",
363 bestc, web->id);
366 free (costs);
369 /* For statistics sake we count the number and cost of all new loads,
370 stores and emitted rematerializations. */
371 static unsigned int emitted_spill_loads;
372 static unsigned int emitted_spill_stores;
373 static unsigned int emitted_remat;
374 static unsigned HOST_WIDE_INT spill_load_cost;
375 static unsigned HOST_WIDE_INT spill_store_cost;
376 static unsigned HOST_WIDE_INT spill_remat_cost;
378 /* In rewrite_program2() we detect if some def us useless, in the sense,
379 that the pseudo set is not live anymore at that point. The REF_IDs
380 of such defs are noted here. */
381 static bitmap useless_defs;
383 /* This is the simple and fast version of rewriting the program to
384 include spill code. It spills at every insn containing spilled
385 defs or uses. Loads are added only if flag_ra_spill_every_use is
386 nonzero, otherwise only stores will be added. This doesn't
387 support rematerialization.
388 NEW_DEATHS is filled with uids for insns, which probably contain
389 deaths. */
391 static void
392 rewrite_program (bitmap new_deaths)
394 unsigned int i;
395 struct dlist *d;
396 bitmap b = BITMAP_XMALLOC ();
398 /* We walk over all webs, over all uses/defs. For all webs, we need
399 to look at spilled webs, and webs coalesced to spilled ones, in case
400 their alias isn't broken up, or they got spill coalesced. */
401 for (i = 0; i < 2; i++)
402 for (d = (i == 0) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
404 struct web *web = DLIST_WEB (d);
405 struct web *aweb = alias (web);
406 unsigned int j;
407 rtx slot;
409 /* Is trivially true for spilled webs, but not for coalesced ones. */
410 if (aweb->type != SPILLED)
411 continue;
413 /* First add loads before every use, if we have to. */
414 if (flag_ra_spill_every_use)
416 bitmap_clear (b);
417 allocate_spill_web (aweb);
418 slot = aweb->stack_slot;
419 for (j = 0; j < web->num_uses; j++)
421 rtx insns, target, source;
422 rtx insn = DF_REF_INSN (web->uses[j]);
423 rtx prev = PREV_INSN (insn);
424 basic_block bb = BLOCK_FOR_INSN (insn);
425 /* Happens when spill_coalescing() deletes move insns. */
426 if (!INSN_P (insn))
427 continue;
429 /* Check that we didn't already added a load for this web
430 and insn. Happens, when the an insn uses the same web
431 multiple times. */
432 if (bitmap_bit_p (b, INSN_UID (insn)))
433 continue;
434 bitmap_set_bit (b, INSN_UID (insn));
435 target = DF_REF_REG (web->uses[j]);
436 source = slot;
437 start_sequence ();
438 if (GET_CODE (target) == SUBREG)
439 source = simplify_gen_subreg (GET_MODE (target), source,
440 GET_MODE (source),
441 SUBREG_BYTE (target));
442 ra_emit_move_insn (target, source);
443 insns = get_insns ();
444 end_sequence ();
445 emit_insn_before (insns, insn);
447 if (BB_HEAD (bb) == insn)
448 BB_HEAD (bb) = NEXT_INSN (prev);
449 for (insn = PREV_INSN (insn); insn != prev;
450 insn = PREV_INSN (insn))
452 set_block_for_insn (insn, bb);
453 df_insn_modify (df, bb, insn);
456 emitted_spill_loads++;
457 spill_load_cost += bb->frequency + 1;
461 /* Now emit the stores after each def.
462 If any uses were loaded from stackslots (compared to
463 rematerialized or not reloaded due to IR spilling),
464 aweb->stack_slot will be set. If not, we don't need to emit
465 any stack stores. */
466 slot = aweb->stack_slot;
467 bitmap_clear (b);
468 if (slot)
469 for (j = 0; j < web->num_defs; j++)
471 rtx insns, source, dest;
472 rtx insn = DF_REF_INSN (web->defs[j]);
473 rtx following = NEXT_INSN (insn);
474 basic_block bb = BLOCK_FOR_INSN (insn);
475 /* Happens when spill_coalescing() deletes move insns. */
476 if (!INSN_P (insn))
477 continue;
478 if (bitmap_bit_p (b, INSN_UID (insn)))
479 continue;
480 bitmap_set_bit (b, INSN_UID (insn));
481 start_sequence ();
482 source = DF_REF_REG (web->defs[j]);
483 dest = slot;
484 if (GET_CODE (source) == SUBREG)
485 dest = simplify_gen_subreg (GET_MODE (source), dest,
486 GET_MODE (dest),
487 SUBREG_BYTE (source));
488 ra_emit_move_insn (dest, source);
490 insns = get_insns ();
491 end_sequence ();
492 if (insns)
494 emit_insn_after (insns, insn);
495 if (BB_END (bb) == insn)
496 BB_END (bb) = PREV_INSN (following);
497 for (insn = insns; insn != following; insn = NEXT_INSN (insn))
499 set_block_for_insn (insn, bb);
500 df_insn_modify (df, bb, insn);
503 else
504 df_insn_modify (df, bb, insn);
505 emitted_spill_stores++;
506 spill_store_cost += bb->frequency + 1;
507 /* XXX we should set new_deaths for all inserted stores
508 whose pseudo dies here.
509 Note, that this isn't the case for _all_ stores. */
510 /* I.e. the next is wrong, and might cause some spilltemps
511 to be categorized as spilltemp2's (i.e. live over a death),
512 although they aren't. This might make them spill again,
513 which causes endlessness in the case, this insn is in fact
514 _no_ death. */
515 bitmap_set_bit (new_deaths, INSN_UID (PREV_INSN (following)));
519 BITMAP_XFREE (b);
522 /* A simple list of rtx's. */
523 struct rtx_list
525 struct rtx_list *next;
526 rtx x;
529 /* Adds X to *LIST. */
531 static void
532 remember_slot (struct rtx_list **list, rtx x)
534 struct rtx_list *l;
535 /* PRE: X is not already in LIST. */
536 l = ra_alloc (sizeof (*l));
537 l->next = *list;
538 l->x = x;
539 *list = l;
542 /* Given two rtx' S1 and S2, either being REGs or MEMs (or SUBREGs
543 thereof), return nonzero, if they overlap. REGs and MEMs don't
544 overlap, and if they are MEMs they must have an easy address
545 (plus (basereg) (const_inst x)), otherwise they overlap. */
547 static int
548 slots_overlap_p (rtx s1, rtx s2)
550 rtx base1, base2;
551 HOST_WIDE_INT ofs1 = 0, ofs2 = 0;
552 int size1 = GET_MODE_SIZE (GET_MODE (s1));
553 int size2 = GET_MODE_SIZE (GET_MODE (s2));
554 if (GET_CODE (s1) == SUBREG)
555 ofs1 = SUBREG_BYTE (s1), s1 = SUBREG_REG (s1);
556 if (GET_CODE (s2) == SUBREG)
557 ofs2 = SUBREG_BYTE (s2), s2 = SUBREG_REG (s2);
559 if (s1 == s2)
560 return 1;
562 if (GET_CODE (s1) != GET_CODE (s2))
563 return 0;
565 if (REG_P (s1) && REG_P (s2))
567 if (REGNO (s1) != REGNO (s2))
568 return 0;
569 if (ofs1 >= ofs2 + size2 || ofs2 >= ofs1 + size1)
570 return 0;
571 return 1;
573 gcc_assert (MEM_P (s1) && GET_CODE (s2) == MEM);
574 s1 = XEXP (s1, 0);
575 s2 = XEXP (s2, 0);
576 if (GET_CODE (s1) != PLUS || !REG_P (XEXP (s1, 0))
577 || GET_CODE (XEXP (s1, 1)) != CONST_INT)
578 return 1;
579 if (GET_CODE (s2) != PLUS || !REG_P (XEXP (s2, 0))
580 || GET_CODE (XEXP (s2, 1)) != CONST_INT)
581 return 1;
582 base1 = XEXP (s1, 0);
583 base2 = XEXP (s2, 0);
584 if (!rtx_equal_p (base1, base2))
585 return 1;
586 ofs1 += INTVAL (XEXP (s1, 1));
587 ofs2 += INTVAL (XEXP (s2, 1));
588 if (ofs1 >= ofs2 + size2 || ofs2 >= ofs1 + size1)
589 return 0;
590 return 1;
593 /* This deletes from *LIST all rtx's which overlap with X in the sense
594 of slots_overlap_p(). */
596 static void
597 delete_overlapping_slots (struct rtx_list **list, rtx x)
599 while (*list)
601 if (slots_overlap_p ((*list)->x, x))
602 *list = (*list)->next;
603 else
604 list = &((*list)->next);
608 /* Returns nonzero, of X is member of LIST. */
610 static int
611 slot_member_p (struct rtx_list *list, rtx x)
613 for (;list; list = list->next)
614 if (rtx_equal_p (list->x, x))
615 return 1;
616 return 0;
619 /* A more sophisticated (and slower) method of adding the stores, than
620 rewrite_program(). This goes backward the insn stream, adding
621 stores as it goes, but only if it hasn't just added a store to the
622 same location. NEW_DEATHS is a bitmap filled with uids of insns
623 containing deaths. */
625 static void
626 insert_stores (bitmap new_deaths)
628 rtx insn;
629 rtx last_slot = NULL_RTX;
630 struct rtx_list *slots = NULL;
632 /* We go simply backwards over basic block borders. */
633 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
635 int uid = INSN_UID (insn);
637 /* If we reach a basic block border, which has more than one
638 outgoing edge, we simply forget all already emitted stores. */
639 if (BARRIER_P (insn)
640 || JUMP_P (insn) || can_throw_internal (insn))
642 last_slot = NULL_RTX;
643 slots = NULL;
645 if (!INSN_P (insn))
646 continue;
648 /* If this insn was not just added in this pass. */
649 if (uid < insn_df_max_uid)
651 unsigned int n;
652 rtx following = NEXT_INSN (insn);
653 basic_block bb = BLOCK_FOR_INSN (insn);
654 struct ra_insn_info info;
656 info = insn_df[uid];
657 for (n = 0; n < info.num_defs; n++)
659 struct web *web = def2web[DF_REF_ID (info.defs[n])];
660 struct web *aweb = alias (find_web_for_subweb (web));
661 rtx slot, source;
662 if (aweb->type != SPILLED || !aweb->stack_slot)
663 continue;
664 slot = aweb->stack_slot;
665 source = DF_REF_REG (info.defs[n]);
666 /* adjust_address() might generate code. */
667 start_sequence ();
668 if (GET_CODE (source) == SUBREG)
669 slot = simplify_gen_subreg (GET_MODE (source), slot,
670 GET_MODE (slot),
671 SUBREG_BYTE (source));
672 /* If we have no info about emitted stores, or it didn't
673 contain the location we intend to use soon, then
674 add the store. */
675 if ((!last_slot || !rtx_equal_p (slot, last_slot))
676 && ! slot_member_p (slots, slot))
678 rtx insns, ni;
679 last_slot = slot;
680 remember_slot (&slots, slot);
681 ra_emit_move_insn (slot, source);
682 insns = get_insns ();
683 end_sequence ();
684 if (insns)
686 emit_insn_after (insns, insn);
687 if (BB_END (bb) == insn)
688 BB_END (bb) = PREV_INSN (following);
689 for (ni = insns; ni != following; ni = NEXT_INSN (ni))
691 set_block_for_insn (ni, bb);
692 df_insn_modify (df, bb, ni);
695 else
696 df_insn_modify (df, bb, insn);
697 emitted_spill_stores++;
698 spill_store_cost += bb->frequency + 1;
699 bitmap_set_bit (new_deaths, INSN_UID (PREV_INSN (following)));
701 else
703 /* Otherwise ignore insns from adjust_address() above. */
704 end_sequence ();
708 /* If we look at a load generated by the allocator, forget
709 the last emitted slot, and additionally clear all slots
710 overlapping it's source (after all, we need it again). */
711 /* XXX If we emit the stack-ref directly into the using insn the
712 following needs a change, because that is no new insn. Preferably
713 we would add some notes to the insn, what stackslots are needed
714 for it. */
715 if (uid >= last_max_uid)
717 rtx set = single_set (insn);
718 last_slot = NULL_RTX;
719 /* If this was no simple set, give up, and forget everything. */
720 if (!set)
721 slots = NULL;
722 else
724 if (1 || MEM_P (SET_SRC (set)))
725 delete_overlapping_slots (&slots, SET_SRC (set));
731 /* Returns 1 if both colored webs have some hardregs in common, even if
732 they are not the same width. */
734 static int
735 spill_same_color_p (struct web *web1, struct web *web2)
737 int c1, size1, c2, size2;
738 if ((c1 = alias (web1)->color) < 0 || c1 == an_unusable_color)
739 return 0;
740 if ((c2 = alias (web2)->color) < 0 || c2 == an_unusable_color)
741 return 0;
743 size1 = web1->type == PRECOLORED
744 ? 1 : hard_regno_nregs[c1][PSEUDO_REGNO_MODE (web1->regno)];
745 size2 = web2->type == PRECOLORED
746 ? 1 : hard_regno_nregs[c2][PSEUDO_REGNO_MODE (web2->regno)];
747 if (c1 >= c2 + size2 || c2 >= c1 + size1)
748 return 0;
749 return 1;
752 /* Given the set of live web IDs LIVE, returns nonzero, if any of WEBs
753 subwebs (or WEB itself) is live. */
755 static bool
756 is_partly_live_1 (sbitmap live, struct web *web)
759 if (TEST_BIT (live, web->id))
760 return 1;
761 while ((web = web->subreg_next));
762 return 0;
765 /* Fast version in case WEB has no subwebs. */
766 #define is_partly_live(live, web) ((!web->subreg_next) \
767 ? TEST_BIT (live, web->id) \
768 : is_partly_live_1 (live, web))
770 /* Change the set of currently IN_USE colors according to
771 WEB's color. Either add those colors to the hardreg set (if ADD
772 is nonzero), or remove them. */
774 static void
775 update_spill_colors (HARD_REG_SET *in_use, struct web *web, int add)
777 int c, size;
778 if ((c = alias (find_web_for_subweb (web))->color) < 0
779 || c == an_unusable_color)
780 return;
781 size = hard_regno_nregs[c][GET_MODE (web->orig_x)];
782 if (SUBWEB_P (web))
784 c += subreg_regno_offset (c, GET_MODE (SUBREG_REG (web->orig_x)),
785 SUBREG_BYTE (web->orig_x),
786 GET_MODE (web->orig_x));
788 else if (web->type == PRECOLORED)
789 size = 1;
790 if (add)
791 for (; size--;)
792 SET_HARD_REG_BIT (*in_use, c + size);
793 else
794 for (; size--;)
795 CLEAR_HARD_REG_BIT (*in_use, c + size);
798 /* Given a set of hardregs currently IN_USE and the color C of WEB,
799 return -1 if WEB has no color, 1 of it has the unusable color,
800 0 if one of it's used hardregs are in use, and 1 otherwise.
801 Generally, if WEB can't be left colorized return 1. */
803 static int
804 spill_is_free (HARD_REG_SET *in_use, struct web *web)
806 int c, size;
807 if ((c = alias (web)->color) < 0)
808 return -1;
809 if (c == an_unusable_color)
810 return 1;
811 size = web->type == PRECOLORED
812 ? 1 : hard_regno_nregs[c][PSEUDO_REGNO_MODE (web->regno)];
813 for (; size--;)
814 if (TEST_HARD_REG_BIT (*in_use, c + size))
815 return 0;
816 return 1;
820 /* Structure for passing between rewrite_program2() and emit_loads(). */
821 struct rewrite_info
823 /* The web IDs which currently would need a reload. These are
824 currently live spilled webs, whose color was still free. */
825 bitmap need_reload;
826 /* We need a scratch bitmap, but don't want to allocate one a zillion
827 times. */
828 bitmap scratch;
829 /* Web IDs of currently live webs. This are the precise IDs,
830 not just those of the superwebs. If only on part is live, only
831 that ID is placed here. */
832 sbitmap live;
833 /* An array of webs, which currently need a load added.
834 They will be emitted when seeing the first death. */
835 struct web **needed_loads;
836 /* The current number of entries in needed_loads. */
837 int nl_size;
838 /* The number of bits set in need_reload. */
839 int num_reloads;
840 /* The current set of hardregs not available. */
841 HARD_REG_SET colors_in_use;
842 /* Nonzero, if we just added some spill temps to need_reload or
843 needed_loads. In this case we don't wait for the next death
844 to emit their loads. */
845 int any_spilltemps_spilled;
846 /* Nonzero, if we currently need to emit the loads. E.g. when we
847 saw an insn containing deaths. */
848 int need_load;
851 /* The needed_loads list of RI contains some webs for which
852 we add the actual load insns here. They are added just before
853 their use last seen. NL_FIRST_RELOAD is the index of the first
854 load which is a converted reload, all other entries are normal
855 loads. LAST_BLOCK_INSN is the last insn of the current basic block. */
857 static void
858 emit_loads (struct rewrite_info *ri, int nl_first_reload, rtx last_block_insn)
860 int j;
861 for (j = ri->nl_size; j;)
863 struct web *web = ri->needed_loads[--j];
864 struct web *supweb;
865 struct web *aweb;
866 rtx ni, slot, reg;
867 rtx before = NULL_RTX, after = NULL_RTX;
868 basic_block bb;
869 /* When spilltemps were spilled for the last insns, their
870 loads already are emitted, which is noted by setting
871 needed_loads[] for it to 0. */
872 if (!web)
873 continue;
874 supweb = find_web_for_subweb (web);
875 gcc_assert (supweb->regno < max_normal_pseudo);
876 /* Check for web being a spilltemp, if we only want to
877 load spilltemps. Also remember, that we emitted that
878 load, which we don't need to do when we have a death,
879 because then all of needed_loads[] is emptied. */
880 if (!ri->need_load)
882 if (!supweb->spill_temp)
883 continue;
884 else
885 ri->needed_loads[j] = 0;
887 web->in_load = 0;
888 /* The adding of reloads doesn't depend on liveness. */
889 if (j < nl_first_reload && !TEST_BIT (ri->live, web->id))
890 continue;
891 aweb = alias (supweb);
892 aweb->changed = 1;
893 start_sequence ();
894 if (supweb->pattern)
896 /* XXX If we later allow non-constant sources for rematerialization
897 we must also disallow coalescing _to_ rematerialized webs
898 (at least then disallow spilling them, which we already ensure
899 when flag_ra_break_aliases), or not take the pattern but a
900 stackslot. */
901 gcc_assert (aweb == supweb);
902 slot = copy_rtx (supweb->pattern);
903 reg = copy_rtx (supweb->orig_x);
904 /* Sanity check. orig_x should be a REG rtx, which should be
905 shared over all RTL, so copy_rtx should have no effect. */
906 gcc_assert (reg == supweb->orig_x);
908 else
910 allocate_spill_web (aweb);
911 slot = aweb->stack_slot;
913 /* If we don't copy the RTL there might be some SUBREG
914 rtx shared in the next iteration although being in
915 different webs, which leads to wrong code. */
916 reg = copy_rtx (web->orig_x);
917 if (GET_CODE (reg) == SUBREG)
918 /*slot = adjust_address (slot, GET_MODE (reg), SUBREG_BYTE
919 (reg));*/
920 slot = simplify_gen_subreg (GET_MODE (reg), slot, GET_MODE (slot),
921 SUBREG_BYTE (reg));
923 ra_emit_move_insn (reg, slot);
924 ni = get_insns ();
925 end_sequence ();
926 before = web->last_use_insn;
927 web->last_use_insn = NULL_RTX;
928 if (!before)
930 if (JUMP_P (last_block_insn))
931 before = last_block_insn;
932 else
933 after = last_block_insn;
935 if (after)
937 rtx foll = NEXT_INSN (after);
938 bb = BLOCK_FOR_INSN (after);
939 emit_insn_after (ni, after);
940 if (BB_END (bb) == after)
941 BB_END (bb) = PREV_INSN (foll);
942 for (ni = NEXT_INSN (after); ni != foll; ni = NEXT_INSN (ni))
944 set_block_for_insn (ni, bb);
945 df_insn_modify (df, bb, ni);
948 else
950 rtx prev = PREV_INSN (before);
951 bb = BLOCK_FOR_INSN (before);
952 emit_insn_before (ni, before);
953 if (BB_HEAD (bb) == before)
954 BB_HEAD (bb) = NEXT_INSN (prev);
955 for (; ni != before; ni = NEXT_INSN (ni))
957 set_block_for_insn (ni, bb);
958 df_insn_modify (df, bb, ni);
961 if (supweb->pattern)
963 emitted_remat++;
964 spill_remat_cost += bb->frequency + 1;
966 else
968 emitted_spill_loads++;
969 spill_load_cost += bb->frequency + 1;
971 RESET_BIT (ri->live, web->id);
972 /* In the special case documented above only emit the reloads and
973 one load. */
974 if (ri->need_load == 2 && j < nl_first_reload)
975 break;
977 if (ri->need_load)
978 ri->nl_size = j;
981 /* Given a set of reloads in RI, an array of NUM_REFS references (either
982 uses or defs) in REFS, and REF2WEB to translate ref IDs to webs
983 (either use2web or def2web) convert some reloads to loads.
984 This looks at the webs referenced, and how they change the set of
985 available colors. Now put all still live webs, which needed reloads,
986 and whose colors isn't free anymore, on the needed_loads list. */
988 static void
989 reloads_to_loads (struct rewrite_info *ri, struct ref **refs,
990 unsigned int num_refs, struct web **ref2web)
992 unsigned int n;
993 int num_reloads = ri->num_reloads;
994 for (n = 0; n < num_refs && num_reloads; n++)
996 struct web *web = ref2web[DF_REF_ID (refs[n])];
997 struct web *supweb = find_web_for_subweb (web);
998 int is_death;
999 unsigned j;
1001 /* Only emit reloads when entering their interference
1002 region. A use of a spilled web never opens an
1003 interference region, independent of it's color. */
1004 if (alias (supweb)->type == SPILLED)
1005 continue;
1006 if (supweb->type == PRECOLORED
1007 && TEST_HARD_REG_BIT (never_use_colors, supweb->color))
1008 continue;
1009 /* Note, that if web (and supweb) are DEFs, we already cleared
1010 the corresponding bits in live. I.e. is_death becomes true, which
1011 is what we want. */
1012 is_death = !TEST_BIT (ri->live, supweb->id);
1013 is_death &= !TEST_BIT (ri->live, web->id);
1014 if (is_death)
1016 int old_num_r = num_reloads;
1017 bitmap_iterator bi;
1019 bitmap_clear (ri->scratch);
1020 EXECUTE_IF_SET_IN_BITMAP (ri->need_reload, 0, j, bi)
1022 struct web *web2 = ID2WEB (j);
1023 struct web *aweb2 = alias (find_web_for_subweb (web2));
1024 gcc_assert (spill_is_free (&(ri->colors_in_use), aweb2) != 0);
1025 if (spill_same_color_p (supweb, aweb2)
1026 /* && interfere (web, web2) */)
1028 if (!web2->in_load)
1030 ri->needed_loads[ri->nl_size++] = web2;
1031 web2->in_load = 1;
1033 bitmap_set_bit (ri->scratch, j);
1034 num_reloads--;
1037 if (num_reloads != old_num_r)
1038 bitmap_and_compl_into (ri->need_reload, ri->scratch);
1041 ri->num_reloads = num_reloads;
1044 /* This adds loads for spilled webs to the program. It uses a kind of
1045 interference region spilling. If flag_ra_ir_spilling is zero it
1046 only uses improved chaitin spilling (adding loads only at insns
1047 containing deaths). */
1049 static void
1050 rewrite_program2 (bitmap new_deaths)
1052 basic_block bb = NULL;
1053 int nl_first_reload;
1054 struct rewrite_info ri;
1055 rtx insn;
1056 ri.needed_loads = xmalloc (num_webs * sizeof (struct web *));
1057 ri.need_reload = BITMAP_XMALLOC ();
1058 ri.scratch = BITMAP_XMALLOC ();
1059 ri.live = sbitmap_alloc (num_webs);
1060 ri.nl_size = 0;
1061 ri.num_reloads = 0;
1062 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1064 basic_block last_bb = NULL;
1065 rtx last_block_insn;
1066 unsigned i, j;
1067 bitmap_iterator bi;
1069 if (!INSN_P (insn))
1070 insn = prev_real_insn (insn);
1071 while (insn && !(bb = BLOCK_FOR_INSN (insn)))
1072 insn = prev_real_insn (insn);
1073 if (!insn)
1074 break;
1075 i = bb->index + 2;
1076 last_block_insn = insn;
1078 sbitmap_zero (ri.live);
1079 CLEAR_HARD_REG_SET (ri.colors_in_use);
1080 EXECUTE_IF_SET_IN_BITMAP (live_at_end[i - 2], 0, j, bi)
1082 struct web *web = use2web[j];
1083 struct web *aweb = alias (find_web_for_subweb (web));
1084 /* A web is only live at end, if it isn't spilled. If we wouldn't
1085 check this, the last uses of spilled web per basic block
1086 wouldn't be detected as deaths, although they are in the final
1087 code. This would lead to cumulating many loads without need,
1088 only increasing register pressure. */
1089 /* XXX do add also spilled webs which got a color for IR spilling.
1090 Remember to not add to colors_in_use in that case. */
1091 if (aweb->type != SPILLED /*|| aweb->color >= 0*/)
1093 SET_BIT (ri.live, web->id);
1094 if (aweb->type != SPILLED)
1095 update_spill_colors (&(ri.colors_in_use), web, 1);
1099 bitmap_clear (ri.need_reload);
1100 ri.num_reloads = 0;
1101 ri.any_spilltemps_spilled = 0;
1102 if (flag_ra_ir_spilling)
1104 struct dlist *d;
1105 int pass;
1106 /* XXX If we don't add spilled nodes into live above, the following
1107 becomes an empty loop. */
1108 for (pass = 0; pass < 2; pass++)
1109 for (d = (pass) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
1111 struct web *web = DLIST_WEB (d);
1112 struct web *aweb = alias (web);
1113 if (aweb->type != SPILLED)
1114 continue;
1115 if (is_partly_live (ri.live, web)
1116 && spill_is_free (&(ri.colors_in_use), web) > 0)
1118 ri.num_reloads++;
1119 bitmap_set_bit (ri.need_reload, web->id);
1120 /* Last using insn is somewhere in another block. */
1121 web->last_use_insn = NULL_RTX;
1126 last_bb = bb;
1127 for (; insn; insn = PREV_INSN (insn))
1129 struct ra_insn_info info;
1130 unsigned int n;
1132 memset (&info, 0, sizeof info);
1134 if (INSN_P (insn) && BLOCK_FOR_INSN (insn) != last_bb)
1136 int index = BLOCK_FOR_INSN (insn)->index + 2;
1137 bitmap_iterator bi;
1139 EXECUTE_IF_SET_IN_BITMAP (live_at_end[index - 2], 0, j, bi)
1141 struct web *web = use2web[j];
1142 struct web *aweb = alias (find_web_for_subweb (web));
1143 if (aweb->type != SPILLED)
1145 SET_BIT (ri.live, web->id);
1146 update_spill_colors (&(ri.colors_in_use), web, 1);
1149 bitmap_clear (ri.scratch);
1150 EXECUTE_IF_SET_IN_BITMAP (ri.need_reload, 0, j, bi)
1152 struct web *web2 = ID2WEB (j);
1153 struct web *supweb2 = find_web_for_subweb (web2);
1154 struct web *aweb2 = alias (supweb2);
1155 if (spill_is_free (&(ri.colors_in_use), aweb2) <= 0)
1157 if (!web2->in_load)
1159 ri.needed_loads[ri.nl_size++] = web2;
1160 web2->in_load = 1;
1162 bitmap_set_bit (ri.scratch, j);
1163 ri.num_reloads--;
1166 bitmap_and_compl_into (ri.need_reload, ri.scratch);
1167 last_bb = BLOCK_FOR_INSN (insn);
1168 last_block_insn = insn;
1169 if (!INSN_P (last_block_insn))
1170 last_block_insn = prev_real_insn (last_block_insn);
1173 ri.need_load = 0;
1174 if (INSN_P (insn))
1175 info = insn_df[INSN_UID (insn)];
1177 if (INSN_P (insn))
1178 for (n = 0; n < info.num_defs; n++)
1180 struct ref *ref = info.defs[n];
1181 struct web *web = def2web[DF_REF_ID (ref)];
1182 struct web *supweb = find_web_for_subweb (web);
1183 int is_non_def = 0;
1184 unsigned int n2;
1186 supweb = find_web_for_subweb (web);
1187 /* Webs which are defined here, but also used in the same insn
1188 are rmw webs, or this use isn't a death because of looping
1189 constructs. In neither case makes this def available it's
1190 resources. Reloads for it are still needed, it's still
1191 live and it's colors don't become free. */
1192 for (n2 = 0; n2 < info.num_uses; n2++)
1194 struct web *web2 = use2web[DF_REF_ID (info.uses[n2])];
1195 if (supweb == find_web_for_subweb (web2))
1197 is_non_def = 1;
1198 break;
1201 if (is_non_def)
1202 continue;
1204 if (!is_partly_live (ri.live, supweb))
1205 bitmap_set_bit (useless_defs, DF_REF_ID (ref));
1207 RESET_BIT (ri.live, web->id);
1208 if (bitmap_bit_p (ri.need_reload, web->id))
1210 ri.num_reloads--;
1211 bitmap_clear_bit (ri.need_reload, web->id);
1213 if (web != supweb)
1215 /* XXX subwebs aren't precisely tracked here. We have
1216 everything we need (inverse webs), but the code isn't
1217 yet written. We need to make all completely
1218 overlapping web parts non-live here. */
1219 /* If by luck now the whole web isn't live anymore, no
1220 reloads for it are needed. */
1221 if (!is_partly_live (ri.live, supweb)
1222 && bitmap_bit_p (ri.need_reload, supweb->id))
1224 ri.num_reloads--;
1225 bitmap_clear_bit (ri.need_reload, supweb->id);
1228 else
1230 struct web *sweb;
1231 /* If the whole web is defined here, no parts of it are
1232 live anymore and no reloads are needed for them. */
1233 for (sweb = supweb->subreg_next; sweb;
1234 sweb = sweb->subreg_next)
1236 RESET_BIT (ri.live, sweb->id);
1237 if (bitmap_bit_p (ri.need_reload, sweb->id))
1239 ri.num_reloads--;
1240 bitmap_clear_bit (ri.need_reload, sweb->id);
1244 if (alias (supweb)->type != SPILLED)
1245 update_spill_colors (&(ri.colors_in_use), web, 0);
1248 nl_first_reload = ri.nl_size;
1250 /* CALL_INSNs are not really deaths, but still more registers
1251 are free after a call, than before.
1252 XXX Note, that sometimes reload barfs when we emit insns between
1253 a call and the insn which copies the return register into a
1254 pseudo. */
1255 if (CALL_P (insn))
1256 ri.need_load = 1;
1257 else if (INSN_P (insn))
1258 for (n = 0; n < info.num_uses; n++)
1260 struct web *web = use2web[DF_REF_ID (info.uses[n])];
1261 struct web *supweb = find_web_for_subweb (web);
1262 int is_death;
1263 if (supweb->type == PRECOLORED
1264 && TEST_HARD_REG_BIT (never_use_colors, supweb->color))
1265 continue;
1266 is_death = !TEST_BIT (ri.live, supweb->id);
1267 is_death &= !TEST_BIT (ri.live, web->id);
1268 if (is_death)
1270 ri.need_load = 1;
1271 bitmap_set_bit (new_deaths, INSN_UID (insn));
1272 break;
1276 if (INSN_P (insn) && ri.num_reloads)
1278 int old_num_reloads = ri.num_reloads;
1279 reloads_to_loads (&ri, info.uses, info.num_uses, use2web);
1281 /* If this insn sets a pseudo, which isn't used later
1282 (i.e. wasn't live before) it is a dead store. We need
1283 to emit all reloads which have the same color as this def.
1284 We don't need to check for non-liveness here to detect
1285 the deadness (it anyway is too late, as we already cleared
1286 the liveness in the first loop over the defs), because if it
1287 _would_ be live here, no reload could have that color, as
1288 they would already have been converted to a load. */
1289 if (ri.num_reloads)
1290 reloads_to_loads (&ri, info.defs, info.num_defs, def2web);
1291 if (ri.num_reloads != old_num_reloads && !ri.need_load)
1292 ri.need_load = 1;
1295 if (ri.nl_size && (ri.need_load || ri.any_spilltemps_spilled))
1296 emit_loads (&ri, nl_first_reload, last_block_insn);
1298 if (INSN_P (insn) && flag_ra_ir_spilling)
1299 for (n = 0; n < info.num_uses; n++)
1301 struct web *web = use2web[DF_REF_ID (info.uses[n])];
1302 struct web *aweb = alias (find_web_for_subweb (web));
1303 if (aweb->type != SPILLED)
1304 update_spill_colors (&(ri.colors_in_use), web, 1);
1307 ri.any_spilltemps_spilled = 0;
1308 if (INSN_P (insn))
1309 for (n = 0; n < info.num_uses; n++)
1311 struct web *web = use2web[DF_REF_ID (info.uses[n])];
1312 struct web *supweb = find_web_for_subweb (web);
1313 struct web *aweb = alias (supweb);
1314 SET_BIT (ri.live, web->id);
1315 if (aweb->type != SPILLED)
1316 continue;
1317 if (supweb->spill_temp)
1318 ri.any_spilltemps_spilled = 1;
1319 web->last_use_insn = insn;
1320 if (!web->in_load)
1322 if (spill_is_free (&(ri.colors_in_use), aweb) <= 0
1323 || !flag_ra_ir_spilling)
1325 ri.needed_loads[ri.nl_size++] = web;
1326 web->in_load = 1;
1327 web->one_load = 1;
1329 else if (!bitmap_bit_p (ri.need_reload, web->id))
1331 bitmap_set_bit (ri.need_reload, web->id);
1332 ri.num_reloads++;
1333 web->one_load = 1;
1335 else
1336 web->one_load = 0;
1338 else
1339 web->one_load = 0;
1342 if (LABEL_P (insn))
1343 break;
1346 nl_first_reload = ri.nl_size;
1347 if (ri.num_reloads)
1349 int in_ir = 0;
1350 edge e;
1351 int num = 0;
1352 edge_iterator ei;
1353 bitmap_iterator bi;
1355 HARD_REG_SET cum_colors, colors;
1356 CLEAR_HARD_REG_SET (cum_colors);
1357 FOR_EACH_EDGE (e, ei, bb->preds)
1359 unsigned j;
1361 if (num >= 5)
1362 break;
1363 CLEAR_HARD_REG_SET (colors);
1364 EXECUTE_IF_SET_IN_BITMAP (live_at_end[e->src->index], 0, j, bi)
1366 struct web *web = use2web[j];
1367 struct web *aweb = alias (find_web_for_subweb (web));
1368 if (aweb->type != SPILLED)
1369 update_spill_colors (&colors, web, 1);
1371 IOR_HARD_REG_SET (cum_colors, colors);
1372 num++;
1374 if (num == 5)
1375 in_ir = 1;
1377 bitmap_clear (ri.scratch);
1378 EXECUTE_IF_SET_IN_BITMAP (ri.need_reload, 0, j, bi)
1380 struct web *web2 = ID2WEB (j);
1381 struct web *supweb2 = find_web_for_subweb (web2);
1382 struct web *aweb2 = alias (supweb2);
1383 /* block entry is IR boundary for aweb2?
1384 Currently more some tries for good conditions. */
1385 if (((ra_pass > 0 || supweb2->target_of_spilled_move)
1386 && (1 || in_ir || spill_is_free (&cum_colors, aweb2) <= 0))
1387 || (ra_pass == 1
1388 && (in_ir
1389 || spill_is_free (&cum_colors, aweb2) <= 0)))
1391 if (!web2->in_load)
1393 ri.needed_loads[ri.nl_size++] = web2;
1394 web2->in_load = 1;
1396 bitmap_set_bit (ri.scratch, j);
1397 ri.num_reloads--;
1400 bitmap_and_compl_into (ri.need_reload, ri.scratch);
1403 ri.need_load = 1;
1404 emit_loads (&ri, nl_first_reload, last_block_insn);
1405 gcc_assert (ri.nl_size == 0);
1406 if (!insn)
1407 break;
1409 free (ri.needed_loads);
1410 sbitmap_free (ri.live);
1411 BITMAP_XFREE (ri.scratch);
1412 BITMAP_XFREE (ri.need_reload);
1415 /* WEBS is a web conflicting with a spilled one. Prepare it
1416 to be able to rescan it in the next pass. Mark all it's uses
1417 for checking, and clear the some members of their web parts
1418 (of defs and uses). Notably don't clear the uplink. We don't
1419 change the layout of this web, just it's conflicts.
1420 Also remember all IDs of its uses in USES_AS_BITMAP. */
1422 static void
1423 mark_refs_for_checking (struct web *web, bitmap uses_as_bitmap)
1425 unsigned int i;
1426 for (i = 0; i < web->num_uses; i++)
1428 unsigned int id = DF_REF_ID (web->uses[i]);
1429 SET_BIT (last_check_uses, id);
1430 bitmap_set_bit (uses_as_bitmap, id);
1431 web_parts[df->def_id + id].spanned_deaths = 0;
1432 web_parts[df->def_id + id].crosses_call = 0;
1434 for (i = 0; i < web->num_defs; i++)
1436 unsigned int id = DF_REF_ID (web->defs[i]);
1437 web_parts[id].spanned_deaths = 0;
1438 web_parts[id].crosses_call = 0;
1442 /* The last step of the spill phase is to set up the structures for
1443 incrementally rebuilding the interference graph. We break up
1444 the web part structure of all spilled webs, mark their uses for
1445 rechecking, look at their neighbors, and clean up some global
1446 information, we will rebuild. */
1448 static void
1449 detect_web_parts_to_rebuild (void)
1451 bitmap uses_as_bitmap;
1452 unsigned int i, pass;
1453 struct dlist *d;
1454 sbitmap already_webs = sbitmap_alloc (num_webs);
1456 uses_as_bitmap = BITMAP_XMALLOC ();
1457 if (last_check_uses)
1458 sbitmap_free (last_check_uses);
1459 last_check_uses = sbitmap_alloc (df->use_id);
1460 sbitmap_zero (last_check_uses);
1461 sbitmap_zero (already_webs);
1462 /* We need to recheck all uses of all webs involved in spilling (and the
1463 uses added by spill insns, but those are not analyzed yet).
1464 Those are the spilled webs themselves, webs coalesced to spilled ones,
1465 and webs conflicting with any of them. */
1466 for (pass = 0; pass < 2; pass++)
1467 for (d = (pass == 0) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
1469 struct web *web = DLIST_WEB (d);
1470 struct conflict_link *wl;
1471 unsigned int j;
1472 bitmap_iterator bi;
1474 /* This check is only needed for coalesced nodes, but hey. */
1475 if (alias (web)->type != SPILLED)
1476 continue;
1478 /* For the spilled web itself we also need to clear it's
1479 uplink, to be able to rebuild smaller webs. After all
1480 spilling has split the web. */
1481 for (i = 0; i < web->num_uses; i++)
1483 unsigned int id = DF_REF_ID (web->uses[i]);
1484 SET_BIT (last_check_uses, id);
1485 bitmap_set_bit (uses_as_bitmap, id);
1486 web_parts[df->def_id + id].uplink = NULL;
1487 web_parts[df->def_id + id].spanned_deaths = 0;
1488 web_parts[df->def_id + id].crosses_call = 0;
1490 for (i = 0; i < web->num_defs; i++)
1492 unsigned int id = DF_REF_ID (web->defs[i]);
1493 web_parts[id].uplink = NULL;
1494 web_parts[id].spanned_deaths = 0;
1495 web_parts[id].crosses_call = 0;
1498 /* Now look at all neighbors of this spilled web. */
1499 if (web->have_orig_conflicts)
1500 wl = web->orig_conflict_list;
1501 else
1502 wl = web->conflict_list;
1503 for (; wl; wl = wl->next)
1505 if (TEST_BIT (already_webs, wl->t->id))
1506 continue;
1507 SET_BIT (already_webs, wl->t->id);
1508 mark_refs_for_checking (wl->t, uses_as_bitmap);
1510 EXECUTE_IF_SET_IN_BITMAP (web->useless_conflicts, 0, j, bi)
1512 struct web *web2 = ID2WEB (j);
1513 if (TEST_BIT (already_webs, web2->id))
1514 continue;
1515 SET_BIT (already_webs, web2->id);
1516 mark_refs_for_checking (web2, uses_as_bitmap);
1520 /* We also recheck unconditionally all uses of any hardregs. This means
1521 we _can_ delete all these uses from the live_at_end[] bitmaps.
1522 And because we sometimes delete insn referring to hardregs (when
1523 they became useless because they setup a rematerializable pseudo, which
1524 then was rematerialized), some of those uses will go away with the next
1525 df_analyze(). This means we even _must_ delete those uses from
1526 the live_at_end[] bitmaps. For simplicity we simply delete
1527 all of them. */
1528 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1529 if (!fixed_regs[i])
1531 struct df_link *link;
1532 for (link = df->regs[i].uses; link; link = link->next)
1533 if (link->ref)
1534 bitmap_set_bit (uses_as_bitmap, DF_REF_ID (link->ref));
1537 /* The information in live_at_end[] will be rebuild for all uses
1538 we recheck, so clear it here (the uses of spilled webs, might
1539 indeed not become member of it again). */
1540 live_at_end -= 2;
1541 for (i = 0; i < (unsigned int) last_basic_block + 2; i++)
1542 bitmap_and_compl_into (live_at_end[i], uses_as_bitmap);
1543 live_at_end += 2;
1545 if (dump_file && (debug_new_regalloc & DUMP_REBUILD) != 0)
1547 ra_debug_msg (DUMP_REBUILD, "need to check these uses:\n");
1548 dump_sbitmap_file (dump_file, last_check_uses);
1550 sbitmap_free (already_webs);
1551 BITMAP_XFREE (uses_as_bitmap);
1554 /* Statistics about deleted insns, which are useless now. */
1555 static unsigned int deleted_def_insns;
1556 static unsigned HOST_WIDE_INT deleted_def_cost;
1558 /* In rewrite_program2() we noticed, when a certain insn set a pseudo
1559 which wasn't live. Try to delete all those insns. */
1561 static void
1562 delete_useless_defs (void)
1564 unsigned int i;
1565 bitmap_iterator bi;
1567 /* If the insn only sets the def without any sideeffect (besides
1568 clobbers or uses), we can delete it. single_set() also tests
1569 for INSN_P(insn). */
1570 EXECUTE_IF_SET_IN_BITMAP (useless_defs, 0, i, bi)
1572 rtx insn = DF_REF_INSN (df->defs[i]);
1573 rtx set = single_set (insn);
1574 struct web *web = find_web_for_subweb (def2web[i]);
1575 if (set && web->type == SPILLED && web->stack_slot == NULL)
1577 deleted_def_insns++;
1578 deleted_def_cost += BLOCK_FOR_INSN (insn)->frequency + 1;
1579 PUT_CODE (insn, NOTE);
1580 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1581 df_insn_modify (df, BLOCK_FOR_INSN (insn), insn);
1586 /* Look for spilled webs, on whose behalf no insns were emitted.
1587 We inversify (sp?) the changed flag of the webs, so after this function
1588 a nonzero changed flag means, that this web was not spillable (at least
1589 in this pass). */
1591 static void
1592 detect_non_changed_webs (void)
1594 struct dlist *d, *d_next;
1595 for (d = WEBS(SPILLED); d; d = d_next)
1597 struct web *web = DLIST_WEB (d);
1598 d_next = d->next;
1599 if (!web->changed)
1601 ra_debug_msg (DUMP_PROCESS, "no insns emitted for spilled web %d\n",
1602 web->id);
1603 remove_web_from_list (web);
1604 put_web (web, COLORED);
1605 web->changed = 1;
1607 else
1608 web->changed = 0;
1609 /* From now on web->changed is used as the opposite flag.
1610 I.e. colored webs, which have changed set were formerly
1611 spilled webs for which no insns were emitted. */
1615 /* Before spilling we clear the changed flags for all spilled webs. */
1617 static void
1618 reset_changed_flag (void)
1620 struct dlist *d;
1621 for (d = WEBS(SPILLED); d; d = d->next)
1622 DLIST_WEB(d)->changed = 0;
1625 /* The toplevel function for this file. Given a colorized graph,
1626 and lists of spilled, coalesced and colored webs, we add some
1627 spill code. This also sets up the structures for incrementally
1628 building the interference graph in the next pass. */
1630 void
1631 actual_spill (void)
1633 unsigned i;
1634 bitmap_iterator bi;
1635 bitmap new_deaths = BITMAP_XMALLOC ();
1637 reset_changed_flag ();
1638 spill_coalprop ();
1639 choose_spill_colors ();
1640 useless_defs = BITMAP_XMALLOC ();
1641 if (flag_ra_improved_spilling)
1642 rewrite_program2 (new_deaths);
1643 else
1644 rewrite_program (new_deaths);
1645 insert_stores (new_deaths);
1646 delete_useless_defs ();
1647 BITMAP_XFREE (useless_defs);
1648 sbitmap_free (insns_with_deaths);
1649 insns_with_deaths = sbitmap_alloc (get_max_uid ());
1650 death_insns_max_uid = get_max_uid ();
1651 sbitmap_zero (insns_with_deaths);
1652 EXECUTE_IF_SET_IN_BITMAP (new_deaths, 0, i, bi)
1654 SET_BIT (insns_with_deaths, i);
1656 detect_non_changed_webs ();
1657 detect_web_parts_to_rebuild ();
1658 BITMAP_XFREE (new_deaths);
1661 /* A bitmap of pseudo reg numbers which are coalesced directly
1662 to a hardreg. Set in emit_colors(), used and freed in
1663 remove_suspicious_death_notes(). */
1664 static bitmap regnos_coalesced_to_hardregs;
1666 /* Create new pseudos for each web we colored, change insns to
1667 use those pseudos and set up ra_reg_renumber. */
1669 void
1670 emit_colors (struct df *df)
1672 unsigned int i;
1673 int si;
1674 struct web *web;
1675 int old_max_regno = max_reg_num ();
1676 regset old_regs;
1677 basic_block bb;
1679 /* This bitmap is freed in remove_suspicious_death_notes(),
1680 which is also the user of it. */
1681 regnos_coalesced_to_hardregs = BITMAP_XMALLOC ();
1682 /* First create the (REG xx) rtx's for all webs, as we need to know
1683 the number, to make sure, flow has enough memory for them in the
1684 various tables. */
1685 for (i = 0; i < num_webs - num_subwebs; i++)
1687 web = ID2WEB (i);
1688 if (web->type != COLORED && web->type != COALESCED)
1689 continue;
1690 if (web->type == COALESCED && alias (web)->type == COLORED)
1691 continue;
1692 gcc_assert (!web->reg_rtx);
1693 gcc_assert (web->regno >= FIRST_PSEUDO_REGISTER);
1695 if (web->regno >= max_normal_pseudo)
1697 rtx place;
1698 if (web->color == an_unusable_color)
1700 unsigned int inherent_size = PSEUDO_REGNO_BYTES (web->regno);
1701 unsigned int total_size = MAX (inherent_size, 0);
1702 place = assign_stack_local (PSEUDO_REGNO_MODE (web->regno),
1703 total_size,
1704 inherent_size == total_size ? 0 : -1);
1705 set_mem_alias_set (place, new_alias_set ());
1707 else
1709 place = gen_reg_rtx (PSEUDO_REGNO_MODE (web->regno));
1711 web->reg_rtx = place;
1713 else
1715 /* Special case for i386 'fix_truncdi_nomemory' insn.
1716 We must choose mode from insns not from PSEUDO_REGNO_MODE.
1717 Actual only for clobbered register. */
1718 if (web->num_uses == 0 && web->num_defs == 1)
1719 web->reg_rtx = gen_reg_rtx (GET_MODE (DF_REF_REAL_REG (web->defs[0])));
1720 else
1721 web->reg_rtx = gen_reg_rtx (PSEUDO_REGNO_MODE (web->regno));
1722 /* Remember the different parts directly coalesced to a hardreg. */
1723 if (web->type == COALESCED)
1724 bitmap_set_bit (regnos_coalesced_to_hardregs, REGNO (web->reg_rtx));
1727 ra_max_regno = max_regno = max_reg_num ();
1728 allocate_reg_info (max_regno, FALSE, FALSE);
1729 ra_reg_renumber = xmalloc (max_regno * sizeof (short));
1730 for (si = 0; si < max_regno; si++)
1731 ra_reg_renumber[si] = -1;
1733 /* Then go through all references, and replace them by a new
1734 pseudoreg for each web. All uses. */
1735 /* XXX
1736 Beware: The order of replacements (first uses, then defs) matters only
1737 for read-mod-write insns, where the RTL expression for the REG is
1738 shared between def and use. For normal rmw insns we connected all such
1739 webs, i.e. both the use and the def (which are the same memory)
1740 there get the same new pseudo-reg, so order would not matter.
1741 _However_ we did not connect webs, were the read cycle was an
1742 uninitialized read. If we now would first replace the def reference
1743 and then the use ref, we would initialize it with a REG rtx, which
1744 gets never initialized, and yet more wrong, which would overwrite
1745 the definition of the other REG rtx. So we must replace the defs last.
1747 for (i = 0; i < df->use_id; i++)
1748 if (df->uses[i])
1750 regset rs = DF_REF_BB (df->uses[i])->global_live_at_start;
1751 rtx regrtx;
1752 web = use2web[i];
1753 web = find_web_for_subweb (web);
1754 if (web->type != COLORED && web->type != COALESCED)
1755 continue;
1756 regrtx = alias (web)->reg_rtx;
1757 if (!regrtx)
1758 regrtx = web->reg_rtx;
1759 *DF_REF_REAL_LOC (df->uses[i]) = regrtx;
1760 if (REGNO_REG_SET_P (rs, web->regno) && REG_P (regrtx))
1762 /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
1763 SET_REGNO_REG_SET (rs, REGNO (regrtx));
1767 /* And all defs. */
1768 for (i = 0; i < df->def_id; i++)
1770 regset rs;
1771 rtx regrtx;
1772 if (!df->defs[i])
1773 continue;
1774 rs = DF_REF_BB (df->defs[i])->global_live_at_start;
1775 web = def2web[i];
1776 web = find_web_for_subweb (web);
1777 if (web->type != COLORED && web->type != COALESCED)
1778 continue;
1779 regrtx = alias (web)->reg_rtx;
1780 if (!regrtx)
1781 regrtx = web->reg_rtx;
1782 *DF_REF_REAL_LOC (df->defs[i]) = regrtx;
1783 if (REGNO_REG_SET_P (rs, web->regno) && REG_P (regrtx))
1785 /* Don't simply clear the current regno, as it might be
1786 replaced by two webs. */
1787 /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
1788 SET_REGNO_REG_SET (rs, REGNO (regrtx));
1792 /* And now set up the ra_reg_renumber array for reload with all the new
1793 pseudo-regs. */
1794 for (i = 0; i < num_webs - num_subwebs; i++)
1796 web = ID2WEB (i);
1797 if (web->reg_rtx && REG_P (web->reg_rtx))
1799 int r = REGNO (web->reg_rtx);
1800 ra_reg_renumber[r] = web->color;
1801 ra_debug_msg (DUMP_COLORIZE, "Renumber pseudo %d (== web %d) to %d\n",
1802 r, web->id, ra_reg_renumber[r]);
1806 old_regs = BITMAP_XMALLOC ();
1807 for (si = FIRST_PSEUDO_REGISTER; si < old_max_regno; si++)
1808 SET_REGNO_REG_SET (old_regs, si);
1809 FOR_EACH_BB (bb)
1811 AND_COMPL_REG_SET (bb->global_live_at_start, old_regs);
1812 AND_COMPL_REG_SET (bb->global_live_at_end, old_regs);
1814 BITMAP_XFREE (old_regs);
1817 /* Delete some coalesced moves from the insn stream. */
1819 void
1820 delete_moves (void)
1822 struct move_list *ml;
1823 struct web *s, *t;
1824 /* XXX Beware: We normally would test here each copy insn, if
1825 source and target got the same color (either by coalescing or by pure
1826 luck), and then delete it.
1827 This will currently not work. One problem is, that we don't color
1828 the regs ourself, but instead defer to reload. So the colorization
1829 is only a kind of suggestion, which reload doesn't have to follow.
1830 For webs which are coalesced to a normal colored web, we only have one
1831 new pseudo, so in this case we indeed can delete copy insns involving
1832 those (because even if reload colors them different from our suggestion,
1833 it still has to color them the same, as only one pseudo exists). But for
1834 webs coalesced to precolored ones, we have not a single pseudo, but
1835 instead one for each coalesced web. This means, that we can't delete
1836 copy insns, where source and target are webs coalesced to precolored
1837 ones, because then the connection between both webs is destroyed. Note
1838 that this not only means copy insns, where one side is the precolored one
1839 itself, but also those between webs which are coalesced to one color.
1840 Also because reload we can't delete copy insns which involve any
1841 precolored web at all. These often have also special meaning (e.g.
1842 copying a return value of a call to a pseudo, or copying pseudo to the
1843 return register), and the deletion would confuse reload in thinking the
1844 pseudo isn't needed. One of those days reload will get away and we can
1845 do everything we want.
1846 In effect because of the later reload, we can't base our deletion on the
1847 colors itself, but instead need to base them on the newly created
1848 pseudos. */
1849 for (ml = wl_moves; ml; ml = ml->next)
1850 /* The real condition we would ideally use is: s->color == t->color.
1851 Additionally: s->type != PRECOLORED && t->type != PRECOLORED, in case
1852 we want to prevent deletion of "special" copies. */
1853 if (ml->move
1854 && (s = alias (ml->move->source_web))->reg_rtx
1855 == (t = alias (ml->move->target_web))->reg_rtx
1856 && s->type != PRECOLORED && t->type != PRECOLORED)
1858 basic_block bb = BLOCK_FOR_INSN (ml->move->insn);
1859 df_insn_delete (df, bb, ml->move->insn);
1860 deleted_move_insns++;
1861 deleted_move_cost += bb->frequency + 1;
1865 /* Due to reasons documented elsewhere we create different pseudos
1866 for all webs coalesced to hardregs. For these parts life_analysis()
1867 might have added REG_DEAD notes without considering, that only this part
1868 but not the whole coalesced web dies. The RTL is correct, there is no
1869 coalescing yet. But if later reload's alter_reg() substitutes the
1870 hardreg into the REG rtx it looks like that particular hardreg dies here,
1871 although (due to coalescing) it still is live. This might make different
1872 places of reload think, it can use that hardreg for reload regs,
1873 accidentally overwriting it. So we need to remove those REG_DEAD notes.
1874 (Or better teach life_analysis() and reload about our coalescing, but
1875 that comes later) Bah. */
1877 void
1878 remove_suspicious_death_notes (void)
1880 rtx insn;
1881 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
1882 if (INSN_P (insn))
1884 rtx *pnote = &REG_NOTES (insn);
1885 while (*pnote)
1887 rtx note = *pnote;
1888 if ((REG_NOTE_KIND (note) == REG_DEAD
1889 || REG_NOTE_KIND (note) == REG_UNUSED)
1890 && (REG_P (XEXP (note, 0))
1891 && bitmap_bit_p (regnos_coalesced_to_hardregs,
1892 REGNO (XEXP (note, 0)))))
1893 *pnote = XEXP (note, 1);
1894 else
1895 pnote = &XEXP (*pnote, 1);
1898 BITMAP_XFREE (regnos_coalesced_to_hardregs);
1899 regnos_coalesced_to_hardregs = NULL;
1902 /* Allocate space for max_reg_num() pseudo registers, and
1903 fill reg_renumber[] from ra_reg_renumber[]. If FREE_IT
1904 is nonzero, also free ra_reg_renumber and reset ra_max_regno. */
1906 void
1907 setup_renumber (int free_it)
1909 int i;
1910 max_regno = max_reg_num ();
1911 allocate_reg_info (max_regno, FALSE, TRUE);
1912 for (i = 0; i < max_regno; i++)
1914 reg_renumber[i] = (i < ra_max_regno) ? ra_reg_renumber[i] : -1;
1916 if (free_it)
1918 free (ra_reg_renumber);
1919 ra_reg_renumber = NULL;
1920 ra_max_regno = 0;
1924 /* Dump the costs and savings due to spilling, i.e. of added spill insns
1925 and removed moves or useless defs. */
1927 void
1928 dump_cost (unsigned int level)
1930 ra_debug_msg (level, "Instructions for spilling\n added:\n");
1931 ra_debug_msg (level, " loads =%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1932 emitted_spill_loads, spill_load_cost);
1933 ra_debug_msg (level, " stores=%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1934 emitted_spill_stores, spill_store_cost);
1935 ra_debug_msg (level, " remat =%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1936 emitted_remat, spill_remat_cost);
1937 ra_debug_msg (level, " removed:\n moves =%d cost="
1938 HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1939 deleted_move_insns, deleted_move_cost);
1940 ra_debug_msg (level, " others=%d cost=" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1941 deleted_def_insns, deleted_def_cost);
1944 /* Initialization of the rewrite phase. */
1946 void
1947 ra_rewrite_init (void)
1949 emitted_spill_loads = 0;
1950 emitted_spill_stores = 0;
1951 emitted_remat = 0;
1952 spill_load_cost = 0;
1953 spill_store_cost = 0;
1954 spill_remat_cost = 0;
1955 deleted_move_insns = 0;
1956 deleted_move_cost = 0;
1957 deleted_def_insns = 0;
1958 deleted_def_cost = 0;
1962 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: