* gcc.dg/i386-asm-4.c: New test.
[official-gcc.git] / gcc / explow.c
bloba3e28ff16ec04f07ab8838d04f322cf159f51300
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode));
55 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
56 if (mode == BImode)
57 return c & 1 ? STORE_FLAG_VALUE : 0;
59 /* Sign-extend for the requested mode. */
61 if (width < HOST_BITS_PER_WIDE_INT)
63 HOST_WIDE_INT sign = 1;
64 sign <<= width - 1;
65 c &= (sign << 1) - 1;
66 c ^= sign;
67 c -= sign;
70 return c;
73 /* Return an rtx for the sum of X and the integer C. */
75 rtx
76 plus_constant (rtx x, HOST_WIDE_INT c)
78 RTX_CODE code;
79 rtx y;
80 enum machine_mode mode;
81 rtx tem;
82 int all_constant = 0;
84 if (c == 0)
85 return x;
87 restart:
89 code = GET_CODE (x);
90 mode = GET_MODE (x);
91 y = x;
93 switch (code)
95 case CONST_INT:
96 return GEN_INT (INTVAL (x) + c);
98 case CONST_DOUBLE:
100 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
101 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
102 unsigned HOST_WIDE_INT l2 = c;
103 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
104 unsigned HOST_WIDE_INT lv;
105 HOST_WIDE_INT hv;
107 add_double (l1, h1, l2, h2, &lv, &hv);
109 return immed_double_const (lv, hv, VOIDmode);
112 case MEM:
113 /* If this is a reference to the constant pool, try replacing it with
114 a reference to a new constant. If the resulting address isn't
115 valid, don't return it because we have no way to validize it. */
116 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
117 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
120 = force_const_mem (GET_MODE (x),
121 plus_constant (get_pool_constant (XEXP (x, 0)),
122 c));
123 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
124 return tem;
126 break;
128 case CONST:
129 /* If adding to something entirely constant, set a flag
130 so that we can add a CONST around the result. */
131 x = XEXP (x, 0);
132 all_constant = 1;
133 goto restart;
135 case SYMBOL_REF:
136 case LABEL_REF:
137 all_constant = 1;
138 break;
140 case PLUS:
141 /* The interesting case is adding the integer to a sum.
142 Look for constant term in the sum and combine
143 with C. For an integer constant term, we make a combined
144 integer. For a constant term that is not an explicit integer,
145 we cannot really combine, but group them together anyway.
147 Restart or use a recursive call in case the remaining operand is
148 something that we handle specially, such as a SYMBOL_REF.
150 We may not immediately return from the recursive call here, lest
151 all_constant gets lost. */
153 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
155 c += INTVAL (XEXP (x, 1));
157 if (GET_MODE (x) != VOIDmode)
158 c = trunc_int_for_mode (c, GET_MODE (x));
160 x = XEXP (x, 0);
161 goto restart;
163 else if (CONSTANT_P (XEXP (x, 1)))
165 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
166 c = 0;
168 else if (find_constant_term_loc (&y))
170 /* We need to be careful since X may be shared and we can't
171 modify it in place. */
172 rtx copy = copy_rtx (x);
173 rtx *const_loc = find_constant_term_loc (&copy);
175 *const_loc = plus_constant (*const_loc, c);
176 x = copy;
177 c = 0;
179 break;
181 default:
182 break;
185 if (c != 0)
186 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
188 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
189 return x;
190 else if (all_constant)
191 return gen_rtx_CONST (mode, x);
192 else
193 return x;
196 /* If X is a sum, return a new sum like X but lacking any constant terms.
197 Add all the removed constant terms into *CONSTPTR.
198 X itself is not altered. The result != X if and only if
199 it is not isomorphic to X. */
202 eliminate_constant_term (rtx x, rtx *constptr)
204 rtx x0, x1;
205 rtx tem;
207 if (GET_CODE (x) != PLUS)
208 return x;
210 /* First handle constants appearing at this level explicitly. */
211 if (GET_CODE (XEXP (x, 1)) == CONST_INT
212 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
213 XEXP (x, 1)))
214 && GET_CODE (tem) == CONST_INT)
216 *constptr = tem;
217 return eliminate_constant_term (XEXP (x, 0), constptr);
220 tem = const0_rtx;
221 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
222 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
223 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
224 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
225 *constptr, tem))
226 && GET_CODE (tem) == CONST_INT)
228 *constptr = tem;
229 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
232 return x;
235 /* Return an rtx for the size in bytes of the value of EXP. */
238 expr_size (tree exp)
240 tree size;
242 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
243 size = TREE_OPERAND (exp, 1);
244 else
245 size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
247 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
250 /* Return a wide integer for the size in bytes of the value of EXP, or -1
251 if the size can vary or is larger than an integer. */
253 HOST_WIDE_INT
254 int_expr_size (tree exp)
256 tree size;
258 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
259 size = TREE_OPERAND (exp, 1);
260 else
261 size = lang_hooks.expr_size (exp);
263 if (size == 0 || !host_integerp (size, 0))
264 return -1;
266 return tree_low_cst (size, 0);
269 /* Return a copy of X in which all memory references
270 and all constants that involve symbol refs
271 have been replaced with new temporary registers.
272 Also emit code to load the memory locations and constants
273 into those registers.
275 If X contains no such constants or memory references,
276 X itself (not a copy) is returned.
278 If a constant is found in the address that is not a legitimate constant
279 in an insn, it is left alone in the hope that it might be valid in the
280 address.
282 X may contain no arithmetic except addition, subtraction and multiplication.
283 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
285 static rtx
286 break_out_memory_refs (rtx x)
288 if (MEM_P (x)
289 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
290 && GET_MODE (x) != VOIDmode))
291 x = force_reg (GET_MODE (x), x);
292 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
293 || GET_CODE (x) == MULT)
295 rtx op0 = break_out_memory_refs (XEXP (x, 0));
296 rtx op1 = break_out_memory_refs (XEXP (x, 1));
298 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
299 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
302 return x;
305 /* Given X, a memory address in ptr_mode, convert it to an address
306 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
307 the fact that pointers are not allowed to overflow by commuting arithmetic
308 operations over conversions so that address arithmetic insns can be
309 used. */
312 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
313 rtx x)
315 #ifndef POINTERS_EXTEND_UNSIGNED
316 return x;
317 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
318 enum machine_mode from_mode;
319 rtx temp;
320 enum rtx_code code;
322 /* If X already has the right mode, just return it. */
323 if (GET_MODE (x) == to_mode)
324 return x;
326 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
328 /* Here we handle some special cases. If none of them apply, fall through
329 to the default case. */
330 switch (GET_CODE (x))
332 case CONST_INT:
333 case CONST_DOUBLE:
334 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
335 code = TRUNCATE;
336 else if (POINTERS_EXTEND_UNSIGNED < 0)
337 break;
338 else if (POINTERS_EXTEND_UNSIGNED > 0)
339 code = ZERO_EXTEND;
340 else
341 code = SIGN_EXTEND;
342 temp = simplify_unary_operation (code, to_mode, x, from_mode);
343 if (temp)
344 return temp;
345 break;
347 case SUBREG:
348 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
349 && GET_MODE (SUBREG_REG (x)) == to_mode)
350 return SUBREG_REG (x);
351 break;
353 case LABEL_REF:
354 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
355 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
356 return temp;
357 break;
359 case SYMBOL_REF:
360 temp = shallow_copy_rtx (x);
361 PUT_MODE (temp, to_mode);
362 return temp;
363 break;
365 case CONST:
366 return gen_rtx_CONST (to_mode,
367 convert_memory_address (to_mode, XEXP (x, 0)));
368 break;
370 case PLUS:
371 case MULT:
372 /* For addition we can safely permute the conversion and addition
373 operation if one operand is a constant and converting the constant
374 does not change it. We can always safely permute them if we are
375 making the address narrower. */
376 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
377 || (GET_CODE (x) == PLUS
378 && GET_CODE (XEXP (x, 1)) == CONST_INT
379 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
380 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
381 convert_memory_address (to_mode, XEXP (x, 0)),
382 XEXP (x, 1));
383 break;
385 default:
386 break;
389 return convert_modes (to_mode, from_mode,
390 x, POINTERS_EXTEND_UNSIGNED);
391 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
394 /* Given a memory address or facsimile X, construct a new address,
395 currently equivalent, that is stable: future stores won't change it.
397 X must be composed of constants, register and memory references
398 combined with addition, subtraction and multiplication:
399 in other words, just what you can get from expand_expr if sum_ok is 1.
401 Works by making copies of all regs and memory locations used
402 by X and combining them the same way X does.
403 You could also stabilize the reference to this address
404 by copying the address to a register with copy_to_reg;
405 but then you wouldn't get indexed addressing in the reference. */
408 copy_all_regs (rtx x)
410 if (REG_P (x))
412 if (REGNO (x) != FRAME_POINTER_REGNUM
413 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
414 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
415 #endif
417 x = copy_to_reg (x);
419 else if (MEM_P (x))
420 x = copy_to_reg (x);
421 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
422 || GET_CODE (x) == MULT)
424 rtx op0 = copy_all_regs (XEXP (x, 0));
425 rtx op1 = copy_all_regs (XEXP (x, 1));
426 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
427 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
429 return x;
432 /* Return something equivalent to X but valid as a memory address
433 for something of mode MODE. When X is not itself valid, this
434 works by copying X or subexpressions of it into registers. */
437 memory_address (enum machine_mode mode, rtx x)
439 rtx oldx = x;
441 x = convert_memory_address (Pmode, x);
443 /* By passing constant addresses through registers
444 we get a chance to cse them. */
445 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
446 x = force_reg (Pmode, x);
448 /* We get better cse by rejecting indirect addressing at this stage.
449 Let the combiner create indirect addresses where appropriate.
450 For now, generate the code so that the subexpressions useful to share
451 are visible. But not if cse won't be done! */
452 else
454 if (! cse_not_expected && !REG_P (x))
455 x = break_out_memory_refs (x);
457 /* At this point, any valid address is accepted. */
458 if (memory_address_p (mode, x))
459 goto win;
461 /* If it was valid before but breaking out memory refs invalidated it,
462 use it the old way. */
463 if (memory_address_p (mode, oldx))
464 goto win2;
466 /* Perform machine-dependent transformations on X
467 in certain cases. This is not necessary since the code
468 below can handle all possible cases, but machine-dependent
469 transformations can make better code. */
470 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
472 /* PLUS and MULT can appear in special ways
473 as the result of attempts to make an address usable for indexing.
474 Usually they are dealt with by calling force_operand, below.
475 But a sum containing constant terms is special
476 if removing them makes the sum a valid address:
477 then we generate that address in a register
478 and index off of it. We do this because it often makes
479 shorter code, and because the addresses thus generated
480 in registers often become common subexpressions. */
481 if (GET_CODE (x) == PLUS)
483 rtx constant_term = const0_rtx;
484 rtx y = eliminate_constant_term (x, &constant_term);
485 if (constant_term == const0_rtx
486 || ! memory_address_p (mode, y))
487 x = force_operand (x, NULL_RTX);
488 else
490 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
491 if (! memory_address_p (mode, y))
492 x = force_operand (x, NULL_RTX);
493 else
494 x = y;
498 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
499 x = force_operand (x, NULL_RTX);
501 /* If we have a register that's an invalid address,
502 it must be a hard reg of the wrong class. Copy it to a pseudo. */
503 else if (REG_P (x))
504 x = copy_to_reg (x);
506 /* Last resort: copy the value to a register, since
507 the register is a valid address. */
508 else
509 x = force_reg (Pmode, x);
511 goto done;
513 win2:
514 x = oldx;
515 win:
516 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
517 /* Don't copy an addr via a reg if it is one of our stack slots. */
518 && ! (GET_CODE (x) == PLUS
519 && (XEXP (x, 0) == virtual_stack_vars_rtx
520 || XEXP (x, 0) == virtual_incoming_args_rtx)))
522 if (general_operand (x, Pmode))
523 x = force_reg (Pmode, x);
524 else
525 x = force_operand (x, NULL_RTX);
529 done:
531 /* If we didn't change the address, we are done. Otherwise, mark
532 a reg as a pointer if we have REG or REG + CONST_INT. */
533 if (oldx == x)
534 return x;
535 else if (REG_P (x))
536 mark_reg_pointer (x, BITS_PER_UNIT);
537 else if (GET_CODE (x) == PLUS
538 && REG_P (XEXP (x, 0))
539 && GET_CODE (XEXP (x, 1)) == CONST_INT)
540 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
542 /* OLDX may have been the address on a temporary. Update the address
543 to indicate that X is now used. */
544 update_temp_slot_address (oldx, x);
546 return x;
549 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
552 memory_address_noforce (enum machine_mode mode, rtx x)
554 int ambient_force_addr = flag_force_addr;
555 rtx val;
557 flag_force_addr = 0;
558 val = memory_address (mode, x);
559 flag_force_addr = ambient_force_addr;
560 return val;
563 /* Convert a mem ref into one with a valid memory address.
564 Pass through anything else unchanged. */
567 validize_mem (rtx ref)
569 if (!MEM_P (ref))
570 return ref;
571 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
572 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
573 return ref;
575 /* Don't alter REF itself, since that is probably a stack slot. */
576 return replace_equiv_address (ref, XEXP (ref, 0));
579 /* Return a modified copy of X with its memory address copied
580 into a temporary register to protect it from side effects.
581 If X is not a MEM, it is returned unchanged (and not copied).
582 Perhaps even if it is a MEM, if there is no need to change it. */
585 stabilize (rtx x)
587 if (!MEM_P (x)
588 || ! rtx_unstable_p (XEXP (x, 0)))
589 return x;
591 return
592 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
598 copy_to_reg (rtx x)
600 rtx temp = gen_reg_rtx (GET_MODE (x));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
607 if (x != temp)
608 emit_move_insn (temp, x);
610 return temp;
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x)
619 return copy_to_mode_reg (Pmode, x);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 rtx temp = gen_reg_rtx (mode);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x, VOIDmode))
633 x = force_operand (x, temp);
635 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636 if (x != temp)
637 emit_move_insn (temp, x);
638 return temp;
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode, rtx x)
652 rtx temp, insn, set;
654 if (REG_P (x))
655 return x;
657 if (general_operand (x, mode))
659 temp = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp, x);
662 else
664 temp = force_operand (x, NULL_RTX);
665 if (REG_P (temp))
666 insn = get_last_insn ();
667 else
669 rtx temp2 = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp2, temp);
671 temp = temp2;
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
678 if (CONSTANT_P (x)
679 && (set = single_set (insn)) != 0
680 && SET_DEST (set) == temp
681 && ! rtx_equal_p (x, SET_SRC (set)))
682 set_unique_reg_note (insn, REG_EQUAL, x);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
687 unsigned align = 0;
688 if (GET_CODE (x) == SYMBOL_REF)
690 align = BITS_PER_UNIT;
691 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 else if (GET_CODE (x) == LABEL_REF)
695 align = BITS_PER_UNIT;
696 else if (GET_CODE (x) == CONST
697 && GET_CODE (XEXP (x, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
701 rtx s = XEXP (XEXP (x, 0), 0);
702 rtx c = XEXP (XEXP (x, 0), 1);
703 unsigned sa, ca;
705 sa = BITS_PER_UNIT;
706 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
711 align = MIN (sa, ca);
714 if (align)
715 mark_reg_pointer (temp, align);
718 return temp;
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722 that reg. Otherwise, return X. */
725 force_not_mem (rtx x)
727 rtx temp;
729 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730 return x;
732 temp = gen_reg_rtx (GET_MODE (x));
734 if (MEM_POINTER (x))
735 REG_POINTER (temp) = 1;
737 emit_move_insn (temp, x);
738 return temp;
741 /* Copy X to TARGET (if it's nonzero and a reg)
742 or to a new temp reg and return that reg.
743 MODE is the mode to use for X in case it is a constant. */
746 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
748 rtx temp;
750 if (target && REG_P (target))
751 temp = target;
752 else
753 temp = gen_reg_rtx (mode);
755 emit_move_insn (temp, x);
756 return temp;
759 /* Return the mode to use to store a scalar of TYPE and MODE.
760 PUNSIGNEDP points to the signedness of the type and may be adjusted
761 to show what signedness to use on extension operations.
763 FOR_CALL is nonzero if this call is promoting args for a call. */
765 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
766 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
767 #endif
769 enum machine_mode
770 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
771 int for_call ATTRIBUTE_UNUSED)
773 enum tree_code code = TREE_CODE (type);
774 int unsignedp = *punsignedp;
776 #ifndef PROMOTE_MODE
777 if (! for_call)
778 return mode;
779 #endif
781 switch (code)
783 #ifdef PROMOTE_FUNCTION_MODE
784 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
785 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
786 #ifdef PROMOTE_MODE
787 if (for_call)
789 #endif
790 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
791 #ifdef PROMOTE_MODE
793 else
795 PROMOTE_MODE (mode, unsignedp, type);
797 #endif
798 break;
799 #endif
801 #ifdef POINTERS_EXTEND_UNSIGNED
802 case REFERENCE_TYPE:
803 case POINTER_TYPE:
804 mode = Pmode;
805 unsignedp = POINTERS_EXTEND_UNSIGNED;
806 break;
807 #endif
809 default:
810 break;
813 *punsignedp = unsignedp;
814 return mode;
817 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
818 This pops when ADJUST is positive. ADJUST need not be constant. */
820 void
821 adjust_stack (rtx adjust)
823 rtx temp;
825 if (adjust == const0_rtx)
826 return;
828 /* We expect all variable sized adjustments to be multiple of
829 PREFERRED_STACK_BOUNDARY. */
830 if (GET_CODE (adjust) == CONST_INT)
831 stack_pointer_delta -= INTVAL (adjust);
833 temp = expand_binop (Pmode,
834 #ifdef STACK_GROWS_DOWNWARD
835 add_optab,
836 #else
837 sub_optab,
838 #endif
839 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
840 OPTAB_LIB_WIDEN);
842 if (temp != stack_pointer_rtx)
843 emit_move_insn (stack_pointer_rtx, temp);
846 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
847 This pushes when ADJUST is positive. ADJUST need not be constant. */
849 void
850 anti_adjust_stack (rtx adjust)
852 rtx temp;
854 if (adjust == const0_rtx)
855 return;
857 /* We expect all variable sized adjustments to be multiple of
858 PREFERRED_STACK_BOUNDARY. */
859 if (GET_CODE (adjust) == CONST_INT)
860 stack_pointer_delta += INTVAL (adjust);
862 temp = expand_binop (Pmode,
863 #ifdef STACK_GROWS_DOWNWARD
864 sub_optab,
865 #else
866 add_optab,
867 #endif
868 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
869 OPTAB_LIB_WIDEN);
871 if (temp != stack_pointer_rtx)
872 emit_move_insn (stack_pointer_rtx, temp);
875 /* Round the size of a block to be pushed up to the boundary required
876 by this machine. SIZE is the desired size, which need not be constant. */
878 static rtx
879 round_push (rtx size)
881 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
883 if (align == 1)
884 return size;
886 if (GET_CODE (size) == CONST_INT)
888 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
890 if (INTVAL (size) != new)
891 size = GEN_INT (new);
893 else
895 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
896 but we know it can't. So add ourselves and then do
897 TRUNC_DIV_EXPR. */
898 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
899 NULL_RTX, 1, OPTAB_LIB_WIDEN);
900 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
901 NULL_RTX, 1);
902 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
905 return size;
908 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
909 to a previously-created save area. If no save area has been allocated,
910 this function will allocate one. If a save area is specified, it
911 must be of the proper mode.
913 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
914 are emitted at the current position. */
916 void
917 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
919 rtx sa = *psave;
920 /* The default is that we use a move insn and save in a Pmode object. */
921 rtx (*fcn) (rtx, rtx) = gen_move_insn;
922 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
924 /* See if this machine has anything special to do for this kind of save. */
925 switch (save_level)
927 #ifdef HAVE_save_stack_block
928 case SAVE_BLOCK:
929 if (HAVE_save_stack_block)
930 fcn = gen_save_stack_block;
931 break;
932 #endif
933 #ifdef HAVE_save_stack_function
934 case SAVE_FUNCTION:
935 if (HAVE_save_stack_function)
936 fcn = gen_save_stack_function;
937 break;
938 #endif
939 #ifdef HAVE_save_stack_nonlocal
940 case SAVE_NONLOCAL:
941 if (HAVE_save_stack_nonlocal)
942 fcn = gen_save_stack_nonlocal;
943 break;
944 #endif
945 default:
946 break;
949 /* If there is no save area and we have to allocate one, do so. Otherwise
950 verify the save area is the proper mode. */
952 if (sa == 0)
954 if (mode != VOIDmode)
956 if (save_level == SAVE_NONLOCAL)
957 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
958 else
959 *psave = sa = gen_reg_rtx (mode);
963 if (after)
965 rtx seq;
967 start_sequence ();
968 do_pending_stack_adjust ();
969 /* We must validize inside the sequence, to ensure that any instructions
970 created by the validize call also get moved to the right place. */
971 if (sa != 0)
972 sa = validize_mem (sa);
973 emit_insn (fcn (sa, stack_pointer_rtx));
974 seq = get_insns ();
975 end_sequence ();
976 emit_insn_after (seq, after);
978 else
980 do_pending_stack_adjust ();
981 if (sa != 0)
982 sa = validize_mem (sa);
983 emit_insn (fcn (sa, stack_pointer_rtx));
987 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
988 area made by emit_stack_save. If it is zero, we have nothing to do.
990 Put any emitted insns after insn AFTER, if nonzero, otherwise at
991 current position. */
993 void
994 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
996 /* The default is that we use a move insn. */
997 rtx (*fcn) (rtx, rtx) = gen_move_insn;
999 /* See if this machine has anything special to do for this kind of save. */
1000 switch (save_level)
1002 #ifdef HAVE_restore_stack_block
1003 case SAVE_BLOCK:
1004 if (HAVE_restore_stack_block)
1005 fcn = gen_restore_stack_block;
1006 break;
1007 #endif
1008 #ifdef HAVE_restore_stack_function
1009 case SAVE_FUNCTION:
1010 if (HAVE_restore_stack_function)
1011 fcn = gen_restore_stack_function;
1012 break;
1013 #endif
1014 #ifdef HAVE_restore_stack_nonlocal
1015 case SAVE_NONLOCAL:
1016 if (HAVE_restore_stack_nonlocal)
1017 fcn = gen_restore_stack_nonlocal;
1018 break;
1019 #endif
1020 default:
1021 break;
1024 if (sa != 0)
1026 sa = validize_mem (sa);
1027 /* These clobbers prevent the scheduler from moving
1028 references to variable arrays below the code
1029 that deletes (pops) the arrays. */
1030 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1031 gen_rtx_MEM (BLKmode,
1032 gen_rtx_SCRATCH (VOIDmode))));
1033 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1034 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1037 discard_pending_stack_adjust ();
1039 if (after)
1041 rtx seq;
1043 start_sequence ();
1044 emit_insn (fcn (stack_pointer_rtx, sa));
1045 seq = get_insns ();
1046 end_sequence ();
1047 emit_insn_after (seq, after);
1049 else
1050 emit_insn (fcn (stack_pointer_rtx, sa));
1053 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1054 function. This function should be called whenever we allocate or
1055 deallocate dynamic stack space. */
1057 void
1058 update_nonlocal_goto_save_area (void)
1060 tree t_save;
1061 rtx r_save;
1063 /* The nonlocal_goto_save_area object is an array of N pointers. The
1064 first one is used for the frame pointer save; the rest are sized by
1065 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1066 of the stack save area slots. */
1067 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1068 integer_one_node, NULL_TREE, NULL_TREE);
1069 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1071 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1074 #ifdef SETJMP_VIA_SAVE_AREA
1075 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1076 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1077 platforms, the dynamic stack space used can corrupt the original
1078 frame, thus causing a crash if a longjmp unwinds to it. */
1080 void
1081 optimize_save_area_alloca (void)
1083 rtx insn;
1085 for (insn = get_insns (); insn; insn = NEXT_INSN(insn))
1087 rtx note;
1089 if (!NONJUMP_INSN_P (insn))
1090 continue;
1092 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1094 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1095 continue;
1097 if (!current_function_calls_setjmp)
1099 rtx pat = PATTERN (insn);
1101 /* If we do not see the note in a pattern matching
1102 these precise characteristics, we did something
1103 entirely wrong in allocate_dynamic_stack_space.
1105 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1106 was defined on a machine where stacks grow towards higher
1107 addresses.
1109 Right now only supported port with stack that grow upward
1110 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1111 gcc_assert (GET_CODE (pat) == SET
1112 && SET_DEST (pat) == stack_pointer_rtx
1113 && GET_CODE (SET_SRC (pat)) == MINUS
1114 && XEXP (SET_SRC (pat), 0) == stack_pointer_rtx);
1116 /* This will now be transformed into a (set REG REG)
1117 so we can just blow away all the other notes. */
1118 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1119 REG_NOTES (insn) = NULL_RTX;
1121 else
1123 /* setjmp was called, we must remove the REG_SAVE_AREA
1124 note so that later passes do not get confused by its
1125 presence. */
1126 if (note == REG_NOTES (insn))
1128 REG_NOTES (insn) = XEXP (note, 1);
1130 else
1132 rtx srch;
1134 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1135 if (XEXP (srch, 1) == note)
1136 break;
1138 gcc_assert (srch);
1140 XEXP (srch, 1) = XEXP (note, 1);
1143 /* Once we've seen the note of interest, we need not look at
1144 the rest of them. */
1145 break;
1149 #endif /* SETJMP_VIA_SAVE_AREA */
1151 /* Return an rtx representing the address of an area of memory dynamically
1152 pushed on the stack. This region of memory is always aligned to
1153 a multiple of BIGGEST_ALIGNMENT.
1155 Any required stack pointer alignment is preserved.
1157 SIZE is an rtx representing the size of the area.
1158 TARGET is a place in which the address can be placed.
1160 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1163 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1165 #ifdef SETJMP_VIA_SAVE_AREA
1166 rtx setjmpless_size = NULL_RTX;
1167 #endif
1169 /* If we're asking for zero bytes, it doesn't matter what we point
1170 to since we can't dereference it. But return a reasonable
1171 address anyway. */
1172 if (size == const0_rtx)
1173 return virtual_stack_dynamic_rtx;
1175 /* Otherwise, show we're calling alloca or equivalent. */
1176 current_function_calls_alloca = 1;
1178 /* Ensure the size is in the proper mode. */
1179 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1180 size = convert_to_mode (Pmode, size, 1);
1182 /* We can't attempt to minimize alignment necessary, because we don't
1183 know the final value of preferred_stack_boundary yet while executing
1184 this code. */
1185 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1187 /* We will need to ensure that the address we return is aligned to
1188 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1189 always know its final value at this point in the compilation (it
1190 might depend on the size of the outgoing parameter lists, for
1191 example), so we must align the value to be returned in that case.
1192 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1193 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1194 We must also do an alignment operation on the returned value if
1195 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1197 If we have to align, we must leave space in SIZE for the hole
1198 that might result from the alignment operation. */
1200 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1201 #define MUST_ALIGN 1
1202 #else
1203 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1204 #endif
1206 if (MUST_ALIGN)
1207 size
1208 = force_operand (plus_constant (size,
1209 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1210 NULL_RTX);
1212 #ifdef SETJMP_VIA_SAVE_AREA
1213 /* If setjmp restores regs from a save area in the stack frame,
1214 avoid clobbering the reg save area. Note that the offset of
1215 virtual_incoming_args_rtx includes the preallocated stack args space.
1216 It would be no problem to clobber that, but it's on the wrong side
1217 of the old save area. */
1219 rtx dynamic_offset
1220 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1221 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1223 if (!current_function_calls_setjmp)
1225 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1227 /* See optimize_save_area_alloca to understand what is being
1228 set up here. */
1230 /* ??? Code below assumes that the save area needs maximal
1231 alignment. This constraint may be too strong. */
1232 gcc_assert (PREFERRED_STACK_BOUNDARY == BIGGEST_ALIGNMENT);
1234 if (GET_CODE (size) == CONST_INT)
1236 HOST_WIDE_INT new = INTVAL (size) / align * align;
1238 if (INTVAL (size) != new)
1239 setjmpless_size = GEN_INT (new);
1240 else
1241 setjmpless_size = size;
1243 else
1245 /* Since we know overflow is not possible, we avoid using
1246 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1247 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1248 GEN_INT (align), NULL_RTX, 1);
1249 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1250 GEN_INT (align), NULL_RTX, 1);
1252 /* Our optimization works based upon being able to perform a simple
1253 transformation of this RTL into a (set REG REG) so make sure things
1254 did in fact end up in a REG. */
1255 if (!register_operand (setjmpless_size, Pmode))
1256 setjmpless_size = force_reg (Pmode, setjmpless_size);
1259 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1260 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1262 #endif /* SETJMP_VIA_SAVE_AREA */
1264 /* Round the size to a multiple of the required stack alignment.
1265 Since the stack if presumed to be rounded before this allocation,
1266 this will maintain the required alignment.
1268 If the stack grows downward, we could save an insn by subtracting
1269 SIZE from the stack pointer and then aligning the stack pointer.
1270 The problem with this is that the stack pointer may be unaligned
1271 between the execution of the subtraction and alignment insns and
1272 some machines do not allow this. Even on those that do, some
1273 signal handlers malfunction if a signal should occur between those
1274 insns. Since this is an extremely rare event, we have no reliable
1275 way of knowing which systems have this problem. So we avoid even
1276 momentarily mis-aligning the stack. */
1278 /* If we added a variable amount to SIZE,
1279 we can no longer assume it is aligned. */
1280 #if !defined (SETJMP_VIA_SAVE_AREA)
1281 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1282 #endif
1283 size = round_push (size);
1285 do_pending_stack_adjust ();
1287 /* We ought to be called always on the toplevel and stack ought to be aligned
1288 properly. */
1289 gcc_assert (!(stack_pointer_delta
1290 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1292 /* If needed, check that we have the required amount of stack. Take into
1293 account what has already been checked. */
1294 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1295 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1297 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1298 if (target == 0 || !REG_P (target)
1299 || REGNO (target) < FIRST_PSEUDO_REGISTER
1300 || GET_MODE (target) != Pmode)
1301 target = gen_reg_rtx (Pmode);
1303 mark_reg_pointer (target, known_align);
1305 /* Perform the required allocation from the stack. Some systems do
1306 this differently than simply incrementing/decrementing from the
1307 stack pointer, such as acquiring the space by calling malloc(). */
1308 #ifdef HAVE_allocate_stack
1309 if (HAVE_allocate_stack)
1311 enum machine_mode mode = STACK_SIZE_MODE;
1312 insn_operand_predicate_fn pred;
1314 /* We don't have to check against the predicate for operand 0 since
1315 TARGET is known to be a pseudo of the proper mode, which must
1316 be valid for the operand. For operand 1, convert to the
1317 proper mode and validate. */
1318 if (mode == VOIDmode)
1319 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1321 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1322 if (pred && ! ((*pred) (size, mode)))
1323 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1325 emit_insn (gen_allocate_stack (target, size));
1327 else
1328 #endif
1330 #ifndef STACK_GROWS_DOWNWARD
1331 emit_move_insn (target, virtual_stack_dynamic_rtx);
1332 #endif
1334 /* Check stack bounds if necessary. */
1335 if (current_function_limit_stack)
1337 rtx available;
1338 rtx space_available = gen_label_rtx ();
1339 #ifdef STACK_GROWS_DOWNWARD
1340 available = expand_binop (Pmode, sub_optab,
1341 stack_pointer_rtx, stack_limit_rtx,
1342 NULL_RTX, 1, OPTAB_WIDEN);
1343 #else
1344 available = expand_binop (Pmode, sub_optab,
1345 stack_limit_rtx, stack_pointer_rtx,
1346 NULL_RTX, 1, OPTAB_WIDEN);
1347 #endif
1348 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1349 space_available);
1350 #ifdef HAVE_trap
1351 if (HAVE_trap)
1352 emit_insn (gen_trap ());
1353 else
1354 #endif
1355 error ("stack limits not supported on this target");
1356 emit_barrier ();
1357 emit_label (space_available);
1360 anti_adjust_stack (size);
1361 #ifdef SETJMP_VIA_SAVE_AREA
1362 if (setjmpless_size != NULL_RTX)
1364 rtx note_target = get_last_insn ();
1366 REG_NOTES (note_target)
1367 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1368 REG_NOTES (note_target));
1370 #endif /* SETJMP_VIA_SAVE_AREA */
1372 #ifdef STACK_GROWS_DOWNWARD
1373 emit_move_insn (target, virtual_stack_dynamic_rtx);
1374 #endif
1377 if (MUST_ALIGN)
1379 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1380 but we know it can't. So add ourselves and then do
1381 TRUNC_DIV_EXPR. */
1382 target = expand_binop (Pmode, add_optab, target,
1383 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1384 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1385 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1386 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1387 NULL_RTX, 1);
1388 target = expand_mult (Pmode, target,
1389 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1390 NULL_RTX, 1);
1393 /* Record the new stack level for nonlocal gotos. */
1394 if (cfun->nonlocal_goto_save_area != 0)
1395 update_nonlocal_goto_save_area ();
1397 return target;
1400 /* A front end may want to override GCC's stack checking by providing a
1401 run-time routine to call to check the stack, so provide a mechanism for
1402 calling that routine. */
1404 static GTY(()) rtx stack_check_libfunc;
1406 void
1407 set_stack_check_libfunc (rtx libfunc)
1409 stack_check_libfunc = libfunc;
1412 /* Emit one stack probe at ADDRESS, an address within the stack. */
1414 static void
1415 emit_stack_probe (rtx address)
1417 rtx memref = gen_rtx_MEM (word_mode, address);
1419 MEM_VOLATILE_P (memref) = 1;
1421 if (STACK_CHECK_PROBE_LOAD)
1422 emit_move_insn (gen_reg_rtx (word_mode), memref);
1423 else
1424 emit_move_insn (memref, const0_rtx);
1427 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1428 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1429 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1430 subtract from the stack. If SIZE is constant, this is done
1431 with a fixed number of probes. Otherwise, we must make a loop. */
1433 #ifdef STACK_GROWS_DOWNWARD
1434 #define STACK_GROW_OP MINUS
1435 #else
1436 #define STACK_GROW_OP PLUS
1437 #endif
1439 void
1440 probe_stack_range (HOST_WIDE_INT first, rtx size)
1442 /* First ensure SIZE is Pmode. */
1443 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1444 size = convert_to_mode (Pmode, size, 1);
1446 /* Next see if the front end has set up a function for us to call to
1447 check the stack. */
1448 if (stack_check_libfunc != 0)
1450 rtx addr = memory_address (QImode,
1451 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1452 stack_pointer_rtx,
1453 plus_constant (size, first)));
1455 addr = convert_memory_address (ptr_mode, addr);
1456 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1457 ptr_mode);
1460 /* Next see if we have an insn to check the stack. Use it if so. */
1461 #ifdef HAVE_check_stack
1462 else if (HAVE_check_stack)
1464 insn_operand_predicate_fn pred;
1465 rtx last_addr
1466 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1467 stack_pointer_rtx,
1468 plus_constant (size, first)),
1469 NULL_RTX);
1471 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1472 if (pred && ! ((*pred) (last_addr, Pmode)))
1473 last_addr = copy_to_mode_reg (Pmode, last_addr);
1475 emit_insn (gen_check_stack (last_addr));
1477 #endif
1479 /* If we have to generate explicit probes, see if we have a constant
1480 small number of them to generate. If so, that's the easy case. */
1481 else if (GET_CODE (size) == CONST_INT
1482 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1484 HOST_WIDE_INT offset;
1486 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1487 for values of N from 1 until it exceeds LAST. If only one
1488 probe is needed, this will not generate any code. Then probe
1489 at LAST. */
1490 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1491 offset < INTVAL (size);
1492 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1493 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1494 stack_pointer_rtx,
1495 GEN_INT (offset)));
1497 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1498 stack_pointer_rtx,
1499 plus_constant (size, first)));
1502 /* In the variable case, do the same as above, but in a loop. We emit loop
1503 notes so that loop optimization can be done. */
1504 else
1506 rtx test_addr
1507 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1508 stack_pointer_rtx,
1509 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1510 NULL_RTX);
1511 rtx last_addr
1512 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1513 stack_pointer_rtx,
1514 plus_constant (size, first)),
1515 NULL_RTX);
1516 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1517 rtx loop_lab = gen_label_rtx ();
1518 rtx test_lab = gen_label_rtx ();
1519 rtx end_lab = gen_label_rtx ();
1520 rtx temp;
1522 if (!REG_P (test_addr)
1523 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1524 test_addr = force_reg (Pmode, test_addr);
1526 emit_jump (test_lab);
1528 emit_label (loop_lab);
1529 emit_stack_probe (test_addr);
1531 #ifdef STACK_GROWS_DOWNWARD
1532 #define CMP_OPCODE GTU
1533 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1534 1, OPTAB_WIDEN);
1535 #else
1536 #define CMP_OPCODE LTU
1537 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1538 1, OPTAB_WIDEN);
1539 #endif
1541 gcc_assert (temp == test_addr);
1543 emit_label (test_lab);
1544 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1545 NULL_RTX, Pmode, 1, loop_lab);
1546 emit_jump (end_lab);
1547 emit_label (end_lab);
1549 emit_stack_probe (last_addr);
1553 /* Return an rtx representing the register or memory location
1554 in which a scalar value of data type VALTYPE
1555 was returned by a function call to function FUNC.
1556 FUNC is a FUNCTION_DECL node if the precise function is known,
1557 otherwise 0.
1558 OUTGOING is 1 if on a machine with register windows this function
1559 should return the register in which the function will put its result
1560 and 0 otherwise. */
1563 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1564 int outgoing ATTRIBUTE_UNUSED)
1566 rtx val;
1568 #ifdef FUNCTION_OUTGOING_VALUE
1569 if (outgoing)
1570 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1571 else
1572 #endif
1573 val = FUNCTION_VALUE (valtype, func);
1575 if (REG_P (val)
1576 && GET_MODE (val) == BLKmode)
1578 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1579 enum machine_mode tmpmode;
1581 /* int_size_in_bytes can return -1. We don't need a check here
1582 since the value of bytes will be large enough that no mode
1583 will match and we will abort later in this function. */
1585 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1586 tmpmode != VOIDmode;
1587 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1589 /* Have we found a large enough mode? */
1590 if (GET_MODE_SIZE (tmpmode) >= bytes)
1591 break;
1594 /* No suitable mode found. */
1595 gcc_assert (tmpmode != VOIDmode);
1597 PUT_MODE (val, tmpmode);
1599 return val;
1602 /* Return an rtx representing the register or memory location
1603 in which a scalar value of mode MODE was returned by a library call. */
1606 hard_libcall_value (enum machine_mode mode)
1608 return LIBCALL_VALUE (mode);
1611 /* Look up the tree code for a given rtx code
1612 to provide the arithmetic operation for REAL_ARITHMETIC.
1613 The function returns an int because the caller may not know
1614 what `enum tree_code' means. */
1617 rtx_to_tree_code (enum rtx_code code)
1619 enum tree_code tcode;
1621 switch (code)
1623 case PLUS:
1624 tcode = PLUS_EXPR;
1625 break;
1626 case MINUS:
1627 tcode = MINUS_EXPR;
1628 break;
1629 case MULT:
1630 tcode = MULT_EXPR;
1631 break;
1632 case DIV:
1633 tcode = RDIV_EXPR;
1634 break;
1635 case SMIN:
1636 tcode = MIN_EXPR;
1637 break;
1638 case SMAX:
1639 tcode = MAX_EXPR;
1640 break;
1641 default:
1642 tcode = LAST_AND_UNUSED_TREE_CODE;
1643 break;
1645 return ((int) tcode);
1648 #include "gt-explow.h"