Fix (<cond> ? FOO++ : BAR++) == 2 from misoptimizing FOO++ into ++FOO without bumping...
[official-gcc.git] / gcc / combine.c
blob6010cb7905c5391eff4a351c138df8f5d00ad125
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This module is essentially the "combiner" phase of the U. of Arizona
24 Portable Optimizer, but redone to work on our list-structured
25 representation for RTL instead of their string representation.
27 The LOG_LINKS of each insn identify the most recent assignment
28 to each REG used in the insn. It is a list of previous insns,
29 each of which contains a SET for a REG that is used in this insn
30 and not used or set in between. LOG_LINKs never cross basic blocks.
31 They were set up by the preceding pass (lifetime analysis).
33 We try to combine each pair of insns joined by a logical link.
34 We also try to combine triples of insns A, B and C when
35 C has a link back to B and B has a link back to A.
37 LOG_LINKS does not have links for use of the CC0. They don't
38 need to, because the insn that sets the CC0 is always immediately
39 before the insn that tests it. So we always regard a branch
40 insn as having a logical link to the preceding insn. The same is true
41 for an insn explicitly using CC0.
43 We check (with use_crosses_set_p) to avoid combining in such a way
44 as to move a computation to a place where its value would be different.
46 Combination is done by mathematically substituting the previous
47 insn(s) values for the regs they set into the expressions in
48 the later insns that refer to these regs. If the result is a valid insn
49 for our target machine, according to the machine description,
50 we install it, delete the earlier insns, and update the data flow
51 information (LOG_LINKS and REG_NOTES) for what we did.
53 There are a few exceptions where the dataflow information created by
54 flow.c aren't completely updated:
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_regnotes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "rtl.h"
81 #include "tm_p.h"
82 #include "flags.h"
83 #include "regs.h"
84 #include "hard-reg-set.h"
85 #include "basic-block.h"
86 #include "insn-config.h"
87 #include "function.h"
88 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
89 #include "expr.h"
90 #include "insn-flags.h"
91 #include "insn-codes.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "defaults.h"
98 #ifndef ACCUMULATE_OUTGOING_ARGS
99 #define ACCUMULATE_OUTGOING_ARGS 0
100 #endif
102 /* Supply a default definition for PUSH_ARGS. */
103 #ifndef PUSH_ARGS
104 #ifdef PUSH_ROUNDING
105 #define PUSH_ARGS !ACCUMULATE_OUTGOING_ARGS
106 #else
107 #define PUSH_ARGS 0
108 #endif
109 #endif
111 /* It is not safe to use ordinary gen_lowpart in combine.
112 Use gen_lowpart_for_combine instead. See comments there. */
113 #define gen_lowpart dont_use_gen_lowpart_you_dummy
115 /* Number of attempts to combine instructions in this function. */
117 static int combine_attempts;
119 /* Number of attempts that got as far as substitution in this function. */
121 static int combine_merges;
123 /* Number of instructions combined with added SETs in this function. */
125 static int combine_extras;
127 /* Number of instructions combined in this function. */
129 static int combine_successes;
131 /* Totals over entire compilation. */
133 static int total_attempts, total_merges, total_extras, total_successes;
135 /* Define a default value for REVERSIBLE_CC_MODE.
136 We can never assume that a condition code mode is safe to reverse unless
137 the md tells us so. */
138 #ifndef REVERSIBLE_CC_MODE
139 #define REVERSIBLE_CC_MODE(MODE) 0
140 #endif
142 /* Vector mapping INSN_UIDs to cuids.
143 The cuids are like uids but increase monotonically always.
144 Combine always uses cuids so that it can compare them.
145 But actually renumbering the uids, which we used to do,
146 proves to be a bad idea because it makes it hard to compare
147 the dumps produced by earlier passes with those from later passes. */
149 static int *uid_cuid;
150 static int max_uid_cuid;
152 /* Get the cuid of an insn. */
154 #define INSN_CUID(INSN) \
155 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
157 /* Maximum register number, which is the size of the tables below. */
159 static unsigned int combine_max_regno;
161 /* Record last point of death of (hard or pseudo) register n. */
163 static rtx *reg_last_death;
165 /* Record last point of modification of (hard or pseudo) register n. */
167 static rtx *reg_last_set;
169 /* Record the cuid of the last insn that invalidated memory
170 (anything that writes memory, and subroutine calls, but not pushes). */
172 static int mem_last_set;
174 /* Record the cuid of the last CALL_INSN
175 so we can tell whether a potential combination crosses any calls. */
177 static int last_call_cuid;
179 /* When `subst' is called, this is the insn that is being modified
180 (by combining in a previous insn). The PATTERN of this insn
181 is still the old pattern partially modified and it should not be
182 looked at, but this may be used to examine the successors of the insn
183 to judge whether a simplification is valid. */
185 static rtx subst_insn;
187 /* This is an insn that belongs before subst_insn, but is not currently
188 on the insn chain. */
190 static rtx subst_prev_insn;
192 /* This is the lowest CUID that `subst' is currently dealing with.
193 get_last_value will not return a value if the register was set at or
194 after this CUID. If not for this mechanism, we could get confused if
195 I2 or I1 in try_combine were an insn that used the old value of a register
196 to obtain a new value. In that case, we might erroneously get the
197 new value of the register when we wanted the old one. */
199 static int subst_low_cuid;
201 /* This contains any hard registers that are used in newpat; reg_dead_at_p
202 must consider all these registers to be always live. */
204 static HARD_REG_SET newpat_used_regs;
206 /* This is an insn to which a LOG_LINKS entry has been added. If this
207 insn is the earlier than I2 or I3, combine should rescan starting at
208 that location. */
210 static rtx added_links_insn;
212 /* Basic block number of the block in which we are performing combines. */
213 static int this_basic_block;
215 /* A bitmap indicating which blocks had registers go dead at entry.
216 After combine, we'll need to re-do global life analysis with
217 those blocks as starting points. */
218 static sbitmap refresh_blocks;
219 static int need_refresh;
221 /* The next group of arrays allows the recording of the last value assigned
222 to (hard or pseudo) register n. We use this information to see if a
223 operation being processed is redundant given a prior operation performed
224 on the register. For example, an `and' with a constant is redundant if
225 all the zero bits are already known to be turned off.
227 We use an approach similar to that used by cse, but change it in the
228 following ways:
230 (1) We do not want to reinitialize at each label.
231 (2) It is useful, but not critical, to know the actual value assigned
232 to a register. Often just its form is helpful.
234 Therefore, we maintain the following arrays:
236 reg_last_set_value the last value assigned
237 reg_last_set_label records the value of label_tick when the
238 register was assigned
239 reg_last_set_table_tick records the value of label_tick when a
240 value using the register is assigned
241 reg_last_set_invalid set to non-zero when it is not valid
242 to use the value of this register in some
243 register's value
245 To understand the usage of these tables, it is important to understand
246 the distinction between the value in reg_last_set_value being valid
247 and the register being validly contained in some other expression in the
248 table.
250 Entry I in reg_last_set_value is valid if it is non-zero, and either
251 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
253 Register I may validly appear in any expression returned for the value
254 of another register if reg_n_sets[i] is 1. It may also appear in the
255 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
256 reg_last_set_invalid[j] is zero.
258 If an expression is found in the table containing a register which may
259 not validly appear in an expression, the register is replaced by
260 something that won't match, (clobber (const_int 0)).
262 reg_last_set_invalid[i] is set non-zero when register I is being assigned
263 to and reg_last_set_table_tick[i] == label_tick. */
265 /* Record last value assigned to (hard or pseudo) register n. */
267 static rtx *reg_last_set_value;
269 /* Record the value of label_tick when the value for register n is placed in
270 reg_last_set_value[n]. */
272 static int *reg_last_set_label;
274 /* Record the value of label_tick when an expression involving register n
275 is placed in reg_last_set_value. */
277 static int *reg_last_set_table_tick;
279 /* Set non-zero if references to register n in expressions should not be
280 used. */
282 static char *reg_last_set_invalid;
284 /* Incremented for each label. */
286 static int label_tick;
288 /* Some registers that are set more than once and used in more than one
289 basic block are nevertheless always set in similar ways. For example,
290 a QImode register may be loaded from memory in two places on a machine
291 where byte loads zero extend.
293 We record in the following array what we know about the nonzero
294 bits of a register, specifically which bits are known to be zero.
296 If an entry is zero, it means that we don't know anything special. */
298 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
300 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
301 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
303 static enum machine_mode nonzero_bits_mode;
305 /* Nonzero if we know that a register has some leading bits that are always
306 equal to the sign bit. */
308 static unsigned char *reg_sign_bit_copies;
310 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
311 It is zero while computing them and after combine has completed. This
312 former test prevents propagating values based on previously set values,
313 which can be incorrect if a variable is modified in a loop. */
315 static int nonzero_sign_valid;
317 /* These arrays are maintained in parallel with reg_last_set_value
318 and are used to store the mode in which the register was last set,
319 the bits that were known to be zero when it was last set, and the
320 number of sign bits copies it was known to have when it was last set. */
322 static enum machine_mode *reg_last_set_mode;
323 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
324 static char *reg_last_set_sign_bit_copies;
326 /* Record one modification to rtl structure
327 to be undone by storing old_contents into *where.
328 is_int is 1 if the contents are an int. */
330 struct undo
332 struct undo *next;
333 int is_int;
334 union {rtx r; int i;} old_contents;
335 union {rtx *r; int *i;} where;
338 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
339 num_undo says how many are currently recorded.
341 storage is nonzero if we must undo the allocation of new storage.
342 The value of storage is what to pass to obfree.
344 other_insn is nonzero if we have modified some other insn in the process
345 of working on subst_insn. It must be verified too.
347 previous_undos is the value of undobuf.undos when we started processing
348 this substitution. This will prevent gen_rtx_combine from re-used a piece
349 from the previous expression. Doing so can produce circular rtl
350 structures. */
352 struct undobuf
354 char *storage;
355 struct undo *undos;
356 struct undo *frees;
357 struct undo *previous_undos;
358 rtx other_insn;
361 static struct undobuf undobuf;
363 /* Number of times the pseudo being substituted for
364 was found and replaced. */
366 static int n_occurrences;
368 static void do_SUBST PARAMS ((rtx *, rtx));
369 static void do_SUBST_INT PARAMS ((int *, int));
370 static void init_reg_last_arrays PARAMS ((void));
371 static void setup_incoming_promotions PARAMS ((void));
372 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
373 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
374 static int sets_function_arg_p PARAMS ((rtx));
375 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
376 static int contains_muldiv PARAMS ((rtx));
377 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
378 static void undo_all PARAMS ((void));
379 static void undo_commit PARAMS ((void));
380 static rtx *find_split_point PARAMS ((rtx *, rtx));
381 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
382 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
383 static rtx simplify_if_then_else PARAMS ((rtx));
384 static rtx simplify_set PARAMS ((rtx));
385 static rtx simplify_logical PARAMS ((rtx, int));
386 static rtx expand_compound_operation PARAMS ((rtx));
387 static rtx expand_field_assignment PARAMS ((rtx));
388 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
389 rtx, unsigned HOST_WIDE_INT, int,
390 int, int));
391 static rtx extract_left_shift PARAMS ((rtx, int));
392 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
393 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
394 unsigned HOST_WIDE_INT *));
395 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
396 unsigned HOST_WIDE_INT, rtx, int));
397 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
398 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
399 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
400 static rtx make_field_assignment PARAMS ((rtx));
401 static rtx apply_distributive_law PARAMS ((rtx));
402 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
403 unsigned HOST_WIDE_INT));
404 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
405 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
406 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
407 enum rtx_code, HOST_WIDE_INT,
408 enum machine_mode, int *));
409 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
410 rtx, int));
411 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
412 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
413 static rtx gen_rtx_combine PARAMS ((enum rtx_code code, enum machine_mode mode,
414 ...));
415 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
416 rtx, rtx));
417 static rtx gen_unary PARAMS ((enum rtx_code, enum machine_mode,
418 enum machine_mode, rtx));
419 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
420 static int reversible_comparison_p PARAMS ((rtx));
421 static void update_table_tick PARAMS ((rtx));
422 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
423 static void check_promoted_subreg PARAMS ((rtx, rtx));
424 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
425 static void record_dead_and_set_regs PARAMS ((rtx));
426 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
427 static rtx get_last_value PARAMS ((rtx));
428 static int use_crosses_set_p PARAMS ((rtx, int));
429 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
430 static int reg_dead_at_p PARAMS ((rtx, rtx));
431 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
432 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
433 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
434 static void distribute_links PARAMS ((rtx));
435 static void mark_used_regs_combine PARAMS ((rtx));
436 static int insn_cuid PARAMS ((rtx));
437 static void record_promoted_value PARAMS ((rtx, rtx));
439 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
440 insn. The substitution can be undone by undo_all. If INTO is already
441 set to NEWVAL, do not record this change. Because computing NEWVAL might
442 also call SUBST, we have to compute it before we put anything into
443 the undo table. */
445 static void
446 do_SUBST(into, newval)
447 rtx *into, newval;
449 struct undo *buf;
450 rtx oldval = *into;
452 if (oldval == newval)
453 return;
455 if (undobuf.frees)
456 buf = undobuf.frees, undobuf.frees = buf->next;
457 else
458 buf = (struct undo *) xmalloc (sizeof (struct undo));
460 buf->is_int = 0;
461 buf->where.r = into;
462 buf->old_contents.r = oldval;
463 *into = newval;
465 buf->next = undobuf.undos, undobuf.undos = buf;
468 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
470 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
471 for the value of a HOST_WIDE_INT value (including CONST_INT) is
472 not safe. */
474 static void
475 do_SUBST_INT(into, newval)
476 int *into, newval;
478 struct undo *buf;
479 int oldval = *into;
481 if (oldval == newval)
482 return;
484 if (undobuf.frees)
485 buf = undobuf.frees, undobuf.frees = buf->next;
486 else
487 buf = (struct undo *) xmalloc (sizeof (struct undo));
489 buf->is_int = 1;
490 buf->where.i = into;
491 buf->old_contents.i = oldval;
492 *into = newval;
494 buf->next = undobuf.undos, undobuf.undos = buf;
497 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
499 /* Main entry point for combiner. F is the first insn of the function.
500 NREGS is the first unused pseudo-reg number.
502 Return non-zero if the combiner has turned an indirect jump
503 instruction into a direct jump. */
505 combine_instructions (f, nregs)
506 rtx f;
507 unsigned int nregs;
509 register rtx insn, next;
510 #ifdef HAVE_cc0
511 register rtx prev;
512 #endif
513 register int i;
514 register rtx links, nextlinks;
516 int new_direct_jump_p = 0;
518 combine_attempts = 0;
519 combine_merges = 0;
520 combine_extras = 0;
521 combine_successes = 0;
523 combine_max_regno = nregs;
525 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
526 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
527 reg_sign_bit_copies
528 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
530 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
533 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
535 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
536 reg_last_set_mode
537 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
538 reg_last_set_nonzero_bits
539 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
540 reg_last_set_sign_bit_copies
541 = (char *) xmalloc (nregs * sizeof (char));
543 init_reg_last_arrays ();
545 init_recog_no_volatile ();
547 /* Compute maximum uid value so uid_cuid can be allocated. */
549 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
550 if (INSN_UID (insn) > i)
551 i = INSN_UID (insn);
553 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
554 max_uid_cuid = i;
556 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
558 /* Don't use reg_nonzero_bits when computing it. This can cause problems
559 when, for example, we have j <<= 1 in a loop. */
561 nonzero_sign_valid = 0;
563 /* Compute the mapping from uids to cuids.
564 Cuids are numbers assigned to insns, like uids,
565 except that cuids increase monotonically through the code.
567 Scan all SETs and see if we can deduce anything about what
568 bits are known to be zero for some registers and how many copies
569 of the sign bit are known to exist for those registers.
571 Also set any known values so that we can use it while searching
572 for what bits are known to be set. */
574 label_tick = 1;
576 /* We need to initialize it here, because record_dead_and_set_regs may call
577 get_last_value. */
578 subst_prev_insn = NULL_RTX;
580 setup_incoming_promotions ();
582 refresh_blocks = sbitmap_alloc (n_basic_blocks);
583 sbitmap_zero (refresh_blocks);
584 need_refresh = 0;
586 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
588 uid_cuid[INSN_UID (insn)] = ++i;
589 subst_low_cuid = i;
590 subst_insn = insn;
592 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
594 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
595 NULL);
596 record_dead_and_set_regs (insn);
598 #ifdef AUTO_INC_DEC
599 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
600 if (REG_NOTE_KIND (links) == REG_INC)
601 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
602 NULL);
603 #endif
606 if (GET_CODE (insn) == CODE_LABEL)
607 label_tick++;
610 nonzero_sign_valid = 1;
612 /* Now scan all the insns in forward order. */
614 this_basic_block = -1;
615 label_tick = 1;
616 last_call_cuid = 0;
617 mem_last_set = 0;
618 init_reg_last_arrays ();
619 setup_incoming_promotions ();
621 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
623 next = 0;
625 /* If INSN starts a new basic block, update our basic block number. */
626 if (this_basic_block + 1 < n_basic_blocks
627 && BLOCK_HEAD (this_basic_block + 1) == insn)
628 this_basic_block++;
630 if (GET_CODE (insn) == CODE_LABEL)
631 label_tick++;
633 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
635 /* See if we know about function return values before this
636 insn based upon SUBREG flags. */
637 check_promoted_subreg (insn, PATTERN (insn));
639 /* Try this insn with each insn it links back to. */
641 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
642 if ((next = try_combine (insn, XEXP (links, 0),
643 NULL_RTX, &new_direct_jump_p)) != 0)
644 goto retry;
646 /* Try each sequence of three linked insns ending with this one. */
648 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
650 rtx link = XEXP (links, 0);
652 /* If the linked insn has been replaced by a note, then there
653 is no point in persuing this chain any further. */
654 if (GET_CODE (link) == NOTE)
655 break;
657 for (nextlinks = LOG_LINKS (link);
658 nextlinks;
659 nextlinks = XEXP (nextlinks, 1))
660 if ((next = try_combine (insn, XEXP (links, 0),
661 XEXP (nextlinks, 0),
662 &new_direct_jump_p)) != 0)
663 goto retry;
666 #ifdef HAVE_cc0
667 /* Try to combine a jump insn that uses CC0
668 with a preceding insn that sets CC0, and maybe with its
669 logical predecessor as well.
670 This is how we make decrement-and-branch insns.
671 We need this special code because data flow connections
672 via CC0 do not get entered in LOG_LINKS. */
674 if (GET_CODE (insn) == JUMP_INSN
675 && (prev = prev_nonnote_insn (insn)) != 0
676 && GET_CODE (prev) == INSN
677 && sets_cc0_p (PATTERN (prev)))
679 if ((next = try_combine (insn, prev,
680 NULL_RTX, &new_direct_jump_p)) != 0)
681 goto retry;
683 for (nextlinks = LOG_LINKS (prev); nextlinks;
684 nextlinks = XEXP (nextlinks, 1))
685 if ((next = try_combine (insn, prev,
686 XEXP (nextlinks, 0),
687 &new_direct_jump_p)) != 0)
688 goto retry;
691 /* Do the same for an insn that explicitly references CC0. */
692 if (GET_CODE (insn) == INSN
693 && (prev = prev_nonnote_insn (insn)) != 0
694 && GET_CODE (prev) == INSN
695 && sets_cc0_p (PATTERN (prev))
696 && GET_CODE (PATTERN (insn)) == SET
697 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
699 if ((next = try_combine (insn, prev,
700 NULL_RTX, &new_direct_jump_p)) != 0)
701 goto retry;
703 for (nextlinks = LOG_LINKS (prev); nextlinks;
704 nextlinks = XEXP (nextlinks, 1))
705 if ((next = try_combine (insn, prev,
706 XEXP (nextlinks, 0),
707 &new_direct_jump_p)) != 0)
708 goto retry;
711 /* Finally, see if any of the insns that this insn links to
712 explicitly references CC0. If so, try this insn, that insn,
713 and its predecessor if it sets CC0. */
714 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
715 if (GET_CODE (XEXP (links, 0)) == INSN
716 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
717 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
718 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
719 && GET_CODE (prev) == INSN
720 && sets_cc0_p (PATTERN (prev))
721 && (next = try_combine (insn, XEXP (links, 0),
722 prev, &new_direct_jump_p)) != 0)
723 goto retry;
724 #endif
726 /* Try combining an insn with two different insns whose results it
727 uses. */
728 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
729 for (nextlinks = XEXP (links, 1); nextlinks;
730 nextlinks = XEXP (nextlinks, 1))
731 if ((next = try_combine (insn, XEXP (links, 0),
732 XEXP (nextlinks, 0),
733 &new_direct_jump_p)) != 0)
734 goto retry;
736 if (GET_CODE (insn) != NOTE)
737 record_dead_and_set_regs (insn);
739 retry:
744 if (need_refresh)
746 compute_bb_for_insn (get_max_uid ());
747 update_life_info (refresh_blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
748 PROP_DEATH_NOTES);
751 /* Clean up. */
752 sbitmap_free (refresh_blocks);
753 free (reg_nonzero_bits);
754 free (reg_sign_bit_copies);
755 free (reg_last_death);
756 free (reg_last_set);
757 free (reg_last_set_value);
758 free (reg_last_set_table_tick);
759 free (reg_last_set_label);
760 free (reg_last_set_invalid);
761 free (reg_last_set_mode);
762 free (reg_last_set_nonzero_bits);
763 free (reg_last_set_sign_bit_copies);
764 free (uid_cuid);
767 struct undo *undo, *next;
768 for (undo = undobuf.frees; undo; undo = next)
770 next = undo->next;
771 free (undo);
773 undobuf.frees = 0;
776 total_attempts += combine_attempts;
777 total_merges += combine_merges;
778 total_extras += combine_extras;
779 total_successes += combine_successes;
781 nonzero_sign_valid = 0;
783 /* Make recognizer allow volatile MEMs again. */
784 init_recog ();
786 return new_direct_jump_p;
789 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
791 static void
792 init_reg_last_arrays ()
794 unsigned int nregs = combine_max_regno;
796 bzero ((char *) reg_last_death, nregs * sizeof (rtx));
797 bzero ((char *) reg_last_set, nregs * sizeof (rtx));
798 bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
799 bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
800 bzero ((char *) reg_last_set_label, nregs * sizeof (int));
801 bzero (reg_last_set_invalid, nregs * sizeof (char));
802 bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
803 bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
804 bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
807 /* Set up any promoted values for incoming argument registers. */
809 static void
810 setup_incoming_promotions ()
812 #ifdef PROMOTE_FUNCTION_ARGS
813 unsigned int regno;
814 rtx reg;
815 enum machine_mode mode;
816 int unsignedp;
817 rtx first = get_insns ();
819 #ifndef OUTGOING_REGNO
820 #define OUTGOING_REGNO(N) N
821 #endif
822 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
823 /* Check whether this register can hold an incoming pointer
824 argument. FUNCTION_ARG_REGNO_P tests outgoing register
825 numbers, so translate if necessary due to register windows. */
826 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
827 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
829 record_value_for_reg
830 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
831 : SIGN_EXTEND),
832 GET_MODE (reg),
833 gen_rtx_CLOBBER (mode, const0_rtx)));
835 #endif
838 /* Called via note_stores. If X is a pseudo that is narrower than
839 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
841 If we are setting only a portion of X and we can't figure out what
842 portion, assume all bits will be used since we don't know what will
843 be happening.
845 Similarly, set how many bits of X are known to be copies of the sign bit
846 at all locations in the function. This is the smallest number implied
847 by any set of X. */
849 static void
850 set_nonzero_bits_and_sign_copies (x, set, data)
851 rtx x;
852 rtx set;
853 void *data ATTRIBUTE_UNUSED;
855 unsigned int num;
857 if (GET_CODE (x) == REG
858 && REGNO (x) >= FIRST_PSEUDO_REGISTER
859 /* If this register is undefined at the start of the file, we can't
860 say what its contents were. */
861 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
862 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
864 if (set == 0 || GET_CODE (set) == CLOBBER)
866 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
867 reg_sign_bit_copies[REGNO (x)] = 1;
868 return;
871 /* If this is a complex assignment, see if we can convert it into a
872 simple assignment. */
873 set = expand_field_assignment (set);
875 /* If this is a simple assignment, or we have a paradoxical SUBREG,
876 set what we know about X. */
878 if (SET_DEST (set) == x
879 || (GET_CODE (SET_DEST (set)) == SUBREG
880 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
881 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
882 && SUBREG_REG (SET_DEST (set)) == x))
884 rtx src = SET_SRC (set);
886 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
887 /* If X is narrower than a word and SRC is a non-negative
888 constant that would appear negative in the mode of X,
889 sign-extend it for use in reg_nonzero_bits because some
890 machines (maybe most) will actually do the sign-extension
891 and this is the conservative approach.
893 ??? For 2.5, try to tighten up the MD files in this regard
894 instead of this kludge. */
896 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
897 && GET_CODE (src) == CONST_INT
898 && INTVAL (src) > 0
899 && 0 != (INTVAL (src)
900 & ((HOST_WIDE_INT) 1
901 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
902 src = GEN_INT (INTVAL (src)
903 | ((HOST_WIDE_INT) (-1)
904 << GET_MODE_BITSIZE (GET_MODE (x))));
905 #endif
907 reg_nonzero_bits[REGNO (x)]
908 |= nonzero_bits (src, nonzero_bits_mode);
909 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
910 if (reg_sign_bit_copies[REGNO (x)] == 0
911 || reg_sign_bit_copies[REGNO (x)] > num)
912 reg_sign_bit_copies[REGNO (x)] = num;
914 else
916 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
917 reg_sign_bit_copies[REGNO (x)] = 1;
922 /* See if INSN can be combined into I3. PRED and SUCC are optionally
923 insns that were previously combined into I3 or that will be combined
924 into the merger of INSN and I3.
926 Return 0 if the combination is not allowed for any reason.
928 If the combination is allowed, *PDEST will be set to the single
929 destination of INSN and *PSRC to the single source, and this function
930 will return 1. */
932 static int
933 can_combine_p (insn, i3, pred, succ, pdest, psrc)
934 rtx insn;
935 rtx i3;
936 rtx pred ATTRIBUTE_UNUSED;
937 rtx succ;
938 rtx *pdest, *psrc;
940 int i;
941 rtx set = 0, src, dest;
942 rtx p;
943 #ifdef AUTO_INC_DEC
944 rtx link;
945 #endif
946 int all_adjacent = (succ ? (next_active_insn (insn) == succ
947 && next_active_insn (succ) == i3)
948 : next_active_insn (insn) == i3);
950 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
951 or a PARALLEL consisting of such a SET and CLOBBERs.
953 If INSN has CLOBBER parallel parts, ignore them for our processing.
954 By definition, these happen during the execution of the insn. When it
955 is merged with another insn, all bets are off. If they are, in fact,
956 needed and aren't also supplied in I3, they may be added by
957 recog_for_combine. Otherwise, it won't match.
959 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
960 note.
962 Get the source and destination of INSN. If more than one, can't
963 combine. */
965 if (GET_CODE (PATTERN (insn)) == SET)
966 set = PATTERN (insn);
967 else if (GET_CODE (PATTERN (insn)) == PARALLEL
968 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
970 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
972 rtx elt = XVECEXP (PATTERN (insn), 0, i);
974 switch (GET_CODE (elt))
976 /* This is important to combine floating point insns
977 for the SH4 port. */
978 case USE:
979 /* Combining an isolated USE doesn't make sense.
980 We depend here on combinable_i3_pat to reject them. */
981 /* The code below this loop only verifies that the inputs of
982 the SET in INSN do not change. We call reg_set_between_p
983 to verify that the REG in the USE does not change betweeen
984 I3 and INSN.
985 If the USE in INSN was for a pseudo register, the matching
986 insn pattern will likely match any register; combining this
987 with any other USE would only be safe if we knew that the
988 used registers have identical values, or if there was
989 something to tell them apart, e.g. different modes. For
990 now, we forgo such compilcated tests and simply disallow
991 combining of USES of pseudo registers with any other USE. */
992 if (GET_CODE (XEXP (elt, 0)) == REG
993 && GET_CODE (PATTERN (i3)) == PARALLEL)
995 rtx i3pat = PATTERN (i3);
996 int i = XVECLEN (i3pat, 0) - 1;
997 unsigned int regno = REGNO (XEXP (elt, 0));
1001 rtx i3elt = XVECEXP (i3pat, 0, i);
1003 if (GET_CODE (i3elt) == USE
1004 && GET_CODE (XEXP (i3elt, 0)) == REG
1005 && (REGNO (XEXP (i3elt, 0)) == regno
1006 ? reg_set_between_p (XEXP (elt, 0),
1007 PREV_INSN (insn), i3)
1008 : regno >= FIRST_PSEUDO_REGISTER))
1009 return 0;
1011 while (--i >= 0);
1013 break;
1015 /* We can ignore CLOBBERs. */
1016 case CLOBBER:
1017 break;
1019 case SET:
1020 /* Ignore SETs whose result isn't used but not those that
1021 have side-effects. */
1022 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1023 && ! side_effects_p (elt))
1024 break;
1026 /* If we have already found a SET, this is a second one and
1027 so we cannot combine with this insn. */
1028 if (set)
1029 return 0;
1031 set = elt;
1032 break;
1034 default:
1035 /* Anything else means we can't combine. */
1036 return 0;
1040 if (set == 0
1041 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1042 so don't do anything with it. */
1043 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1044 return 0;
1046 else
1047 return 0;
1049 if (set == 0)
1050 return 0;
1052 set = expand_field_assignment (set);
1053 src = SET_SRC (set), dest = SET_DEST (set);
1055 /* Don't eliminate a store in the stack pointer. */
1056 if (dest == stack_pointer_rtx
1057 /* If we couldn't eliminate a field assignment, we can't combine. */
1058 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1059 /* Don't combine with an insn that sets a register to itself if it has
1060 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1061 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1062 /* Can't merge a function call. */
1063 || GET_CODE (src) == CALL
1064 /* Don't eliminate a function call argument. */
1065 || (GET_CODE (i3) == CALL_INSN
1066 && (find_reg_fusage (i3, USE, dest)
1067 || (GET_CODE (dest) == REG
1068 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1069 && global_regs[REGNO (dest)])))
1070 /* Don't substitute into an incremented register. */
1071 || FIND_REG_INC_NOTE (i3, dest)
1072 || (succ && FIND_REG_INC_NOTE (succ, dest))
1073 #if 0
1074 /* Don't combine the end of a libcall into anything. */
1075 /* ??? This gives worse code, and appears to be unnecessary, since no
1076 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1077 use REG_RETVAL notes for noconflict blocks, but other code here
1078 makes sure that those insns don't disappear. */
1079 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1080 #endif
1081 /* Make sure that DEST is not used after SUCC but before I3. */
1082 || (succ && ! all_adjacent
1083 && reg_used_between_p (dest, succ, i3))
1084 /* Make sure that the value that is to be substituted for the register
1085 does not use any registers whose values alter in between. However,
1086 If the insns are adjacent, a use can't cross a set even though we
1087 think it might (this can happen for a sequence of insns each setting
1088 the same destination; reg_last_set of that register might point to
1089 a NOTE). If INSN has a REG_EQUIV note, the register is always
1090 equivalent to the memory so the substitution is valid even if there
1091 are intervening stores. Also, don't move a volatile asm or
1092 UNSPEC_VOLATILE across any other insns. */
1093 || (! all_adjacent
1094 && (((GET_CODE (src) != MEM
1095 || ! find_reg_note (insn, REG_EQUIV, src))
1096 && use_crosses_set_p (src, INSN_CUID (insn)))
1097 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1098 || GET_CODE (src) == UNSPEC_VOLATILE))
1099 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1100 better register allocation by not doing the combine. */
1101 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1102 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1103 /* Don't combine across a CALL_INSN, because that would possibly
1104 change whether the life span of some REGs crosses calls or not,
1105 and it is a pain to update that information.
1106 Exception: if source is a constant, moving it later can't hurt.
1107 Accept that special case, because it helps -fforce-addr a lot. */
1108 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1109 return 0;
1111 /* DEST must either be a REG or CC0. */
1112 if (GET_CODE (dest) == REG)
1114 /* If register alignment is being enforced for multi-word items in all
1115 cases except for parameters, it is possible to have a register copy
1116 insn referencing a hard register that is not allowed to contain the
1117 mode being copied and which would not be valid as an operand of most
1118 insns. Eliminate this problem by not combining with such an insn.
1120 Also, on some machines we don't want to extend the life of a hard
1121 register.
1123 This is the same test done in can_combine except that we don't test
1124 if SRC is a CALL operation to permit a hard register with
1125 SMALL_REGISTER_CLASSES, and that we have to take all_adjacent
1126 into account. */
1128 if (GET_CODE (src) == REG
1129 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1130 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1131 /* Don't extend the life of a hard register unless it is
1132 user variable (if we have few registers) or it can't
1133 fit into the desired register (meaning something special
1134 is going on).
1135 Also avoid substituting a return register into I3, because
1136 reload can't handle a conflict with constraints of other
1137 inputs. */
1138 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1139 && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
1140 || (SMALL_REGISTER_CLASSES
1141 && ((! all_adjacent && ! REG_USERVAR_P (src))
1142 || (FUNCTION_VALUE_REGNO_P (REGNO (src))
1143 && ! REG_USERVAR_P (src))))))))
1144 return 0;
1146 else if (GET_CODE (dest) != CC0)
1147 return 0;
1149 /* Don't substitute for a register intended as a clobberable operand.
1150 Similarly, don't substitute an expression containing a register that
1151 will be clobbered in I3. */
1152 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1153 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1154 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1155 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1156 src)
1157 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1158 return 0;
1160 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1161 or not), reject, unless nothing volatile comes between it and I3 */
1163 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1165 /* Make sure succ doesn't contain a volatile reference. */
1166 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1167 return 0;
1169 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1170 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1171 && p != succ && volatile_refs_p (PATTERN (p)))
1172 return 0;
1175 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1176 to be an explicit register variable, and was chosen for a reason. */
1178 if (GET_CODE (src) == ASM_OPERANDS
1179 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1180 return 0;
1182 /* If there are any volatile insns between INSN and I3, reject, because
1183 they might affect machine state. */
1185 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1186 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1187 && p != succ && volatile_insn_p (PATTERN (p)))
1188 return 0;
1190 /* If INSN or I2 contains an autoincrement or autodecrement,
1191 make sure that register is not used between there and I3,
1192 and not already used in I3 either.
1193 Also insist that I3 not be a jump; if it were one
1194 and the incremented register were spilled, we would lose. */
1196 #ifdef AUTO_INC_DEC
1197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1198 if (REG_NOTE_KIND (link) == REG_INC
1199 && (GET_CODE (i3) == JUMP_INSN
1200 || reg_used_between_p (XEXP (link, 0), insn, i3)
1201 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1202 return 0;
1203 #endif
1205 #ifdef HAVE_cc0
1206 /* Don't combine an insn that follows a CC0-setting insn.
1207 An insn that uses CC0 must not be separated from the one that sets it.
1208 We do, however, allow I2 to follow a CC0-setting insn if that insn
1209 is passed as I1; in that case it will be deleted also.
1210 We also allow combining in this case if all the insns are adjacent
1211 because that would leave the two CC0 insns adjacent as well.
1212 It would be more logical to test whether CC0 occurs inside I1 or I2,
1213 but that would be much slower, and this ought to be equivalent. */
1215 p = prev_nonnote_insn (insn);
1216 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1217 && ! all_adjacent)
1218 return 0;
1219 #endif
1221 /* If we get here, we have passed all the tests and the combination is
1222 to be allowed. */
1224 *pdest = dest;
1225 *psrc = src;
1227 return 1;
1230 /* Check if PAT is an insn - or a part of it - used to set up an
1231 argument for a function in a hard register. */
1233 static int
1234 sets_function_arg_p (pat)
1235 rtx pat;
1237 int i;
1238 rtx inner_dest;
1240 switch (GET_CODE (pat))
1242 case INSN:
1243 return sets_function_arg_p (PATTERN (pat));
1245 case PARALLEL:
1246 for (i = XVECLEN (pat, 0); --i >= 0;)
1247 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1248 return 1;
1250 break;
1252 case SET:
1253 inner_dest = SET_DEST (pat);
1254 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1255 || GET_CODE (inner_dest) == SUBREG
1256 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1257 inner_dest = XEXP (inner_dest, 0);
1259 return (GET_CODE (inner_dest) == REG
1260 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1261 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1263 default:
1264 break;
1267 return 0;
1270 /* LOC is the location within I3 that contains its pattern or the component
1271 of a PARALLEL of the pattern. We validate that it is valid for combining.
1273 One problem is if I3 modifies its output, as opposed to replacing it
1274 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1275 so would produce an insn that is not equivalent to the original insns.
1277 Consider:
1279 (set (reg:DI 101) (reg:DI 100))
1280 (set (subreg:SI (reg:DI 101) 0) <foo>)
1282 This is NOT equivalent to:
1284 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1285 (set (reg:DI 101) (reg:DI 100))])
1287 Not only does this modify 100 (in which case it might still be valid
1288 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1290 We can also run into a problem if I2 sets a register that I1
1291 uses and I1 gets directly substituted into I3 (not via I2). In that
1292 case, we would be getting the wrong value of I2DEST into I3, so we
1293 must reject the combination. This case occurs when I2 and I1 both
1294 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1295 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1296 of a SET must prevent combination from occurring.
1298 On machines where SMALL_REGISTER_CLASSES is non-zero, we don't combine
1299 if the destination of a SET is a hard register that isn't a user
1300 variable.
1302 Before doing the above check, we first try to expand a field assignment
1303 into a set of logical operations.
1305 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1306 we place a register that is both set and used within I3. If more than one
1307 such register is detected, we fail.
1309 Return 1 if the combination is valid, zero otherwise. */
1311 static int
1312 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1313 rtx i3;
1314 rtx *loc;
1315 rtx i2dest;
1316 rtx i1dest;
1317 int i1_not_in_src;
1318 rtx *pi3dest_killed;
1320 rtx x = *loc;
1322 if (GET_CODE (x) == SET)
1324 rtx set = expand_field_assignment (x);
1325 rtx dest = SET_DEST (set);
1326 rtx src = SET_SRC (set);
1327 rtx inner_dest = dest;
1329 #if 0
1330 rtx inner_src = src;
1331 #endif
1333 SUBST (*loc, set);
1335 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1336 || GET_CODE (inner_dest) == SUBREG
1337 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1338 inner_dest = XEXP (inner_dest, 0);
1340 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1341 was added. */
1342 #if 0
1343 while (GET_CODE (inner_src) == STRICT_LOW_PART
1344 || GET_CODE (inner_src) == SUBREG
1345 || GET_CODE (inner_src) == ZERO_EXTRACT)
1346 inner_src = XEXP (inner_src, 0);
1348 /* If it is better that two different modes keep two different pseudos,
1349 avoid combining them. This avoids producing the following pattern
1350 on a 386:
1351 (set (subreg:SI (reg/v:QI 21) 0)
1352 (lshiftrt:SI (reg/v:SI 20)
1353 (const_int 24)))
1354 If that were made, reload could not handle the pair of
1355 reg 20/21, since it would try to get any GENERAL_REGS
1356 but some of them don't handle QImode. */
1358 if (rtx_equal_p (inner_src, i2dest)
1359 && GET_CODE (inner_dest) == REG
1360 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1361 return 0;
1362 #endif
1364 /* Check for the case where I3 modifies its output, as
1365 discussed above. */
1366 if ((inner_dest != dest
1367 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1368 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1370 /* This is the same test done in can_combine_p except that we
1371 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1372 CALL operation. Moreover, we can't test all_adjacent; we don't
1373 have to, since this instruction will stay in place, thus we are
1374 not considering increasing the lifetime of INNER_DEST.
1376 Also, if this insn sets a function argument, combining it with
1377 something that might need a spill could clobber a previous
1378 function argument; the all_adjacent test in can_combine_p also
1379 checks this; here, we do a more specific test for this case. */
1381 || (GET_CODE (inner_dest) == REG
1382 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1383 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1384 GET_MODE (inner_dest))
1385 || (SMALL_REGISTER_CLASSES && GET_CODE (src) != CALL
1386 && ! REG_USERVAR_P (inner_dest)
1387 && (FUNCTION_VALUE_REGNO_P (REGNO (inner_dest))
1388 || (FUNCTION_ARG_REGNO_P (REGNO (inner_dest))
1389 && i3 != 0
1390 && sets_function_arg_p (prev_nonnote_insn (i3)))))))
1391 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1392 return 0;
1394 /* If DEST is used in I3, it is being killed in this insn,
1395 so record that for later.
1396 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1397 STACK_POINTER_REGNUM, since these are always considered to be
1398 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1399 if (pi3dest_killed && GET_CODE (dest) == REG
1400 && reg_referenced_p (dest, PATTERN (i3))
1401 && REGNO (dest) != FRAME_POINTER_REGNUM
1402 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1403 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1404 #endif
1405 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1406 && (REGNO (dest) != ARG_POINTER_REGNUM
1407 || ! fixed_regs [REGNO (dest)])
1408 #endif
1409 && REGNO (dest) != STACK_POINTER_REGNUM)
1411 if (*pi3dest_killed)
1412 return 0;
1414 *pi3dest_killed = dest;
1418 else if (GET_CODE (x) == PARALLEL)
1420 int i;
1422 for (i = 0; i < XVECLEN (x, 0); i++)
1423 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1424 i1_not_in_src, pi3dest_killed))
1425 return 0;
1428 return 1;
1431 /* Return 1 if X is an arithmetic expression that contains a multiplication
1432 and division. We don't count multiplications by powers of two here. */
1434 static int
1435 contains_muldiv (x)
1436 rtx x;
1438 switch (GET_CODE (x))
1440 case MOD: case DIV: case UMOD: case UDIV:
1441 return 1;
1443 case MULT:
1444 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1445 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1446 default:
1447 switch (GET_RTX_CLASS (GET_CODE (x)))
1449 case 'c': case '<': case '2':
1450 return contains_muldiv (XEXP (x, 0))
1451 || contains_muldiv (XEXP (x, 1));
1453 case '1':
1454 return contains_muldiv (XEXP (x, 0));
1456 default:
1457 return 0;
1462 /* Try to combine the insns I1 and I2 into I3.
1463 Here I1 and I2 appear earlier than I3.
1464 I1 can be zero; then we combine just I2 into I3.
1466 It we are combining three insns and the resulting insn is not recognized,
1467 try splitting it into two insns. If that happens, I2 and I3 are retained
1468 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1469 are pseudo-deleted.
1471 Return 0 if the combination does not work. Then nothing is changed.
1472 If we did the combination, return the insn at which combine should
1473 resume scanning.
1475 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1476 new direct jump instruction. */
1478 static rtx
1479 try_combine (i3, i2, i1, new_direct_jump_p)
1480 register rtx i3, i2, i1;
1481 register int *new_direct_jump_p;
1483 /* New patterns for I3 and I2, respectively. */
1484 rtx newpat, newi2pat = 0;
1485 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1486 int added_sets_1, added_sets_2;
1487 /* Total number of SETs to put into I3. */
1488 int total_sets;
1489 /* Nonzero is I2's body now appears in I3. */
1490 int i2_is_used;
1491 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1492 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1493 /* Contains I3 if the destination of I3 is used in its source, which means
1494 that the old life of I3 is being killed. If that usage is placed into
1495 I2 and not in I3, a REG_DEAD note must be made. */
1496 rtx i3dest_killed = 0;
1497 /* SET_DEST and SET_SRC of I2 and I1. */
1498 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1499 /* PATTERN (I2), or a copy of it in certain cases. */
1500 rtx i2pat;
1501 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1502 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1503 int i1_feeds_i3 = 0;
1504 /* Notes that must be added to REG_NOTES in I3 and I2. */
1505 rtx new_i3_notes, new_i2_notes;
1506 /* Notes that we substituted I3 into I2 instead of the normal case. */
1507 int i3_subst_into_i2 = 0;
1508 /* Notes that I1, I2 or I3 is a MULT operation. */
1509 int have_mult = 0;
1511 int maxreg;
1512 rtx temp;
1513 register rtx link;
1514 int i;
1516 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1517 This can occur when flow deletes an insn that it has merged into an
1518 auto-increment address. We also can't do anything if I3 has a
1519 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1520 libcall. */
1522 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1523 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1524 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1525 #if 0
1526 /* ??? This gives worse code, and appears to be unnecessary, since no
1527 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1528 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1529 #endif
1531 return 0;
1533 combine_attempts++;
1534 undobuf.other_insn = 0;
1536 /* Save the current high-water-mark so we can free storage if we didn't
1537 accept this combination. */
1538 undobuf.storage = (char *) oballoc (0);
1540 /* Reset the hard register usage information. */
1541 CLEAR_HARD_REG_SET (newpat_used_regs);
1543 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1544 code below, set I1 to be the earlier of the two insns. */
1545 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1546 temp = i1, i1 = i2, i2 = temp;
1548 added_links_insn = 0;
1550 /* First check for one important special-case that the code below will
1551 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1552 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1553 we may be able to replace that destination with the destination of I3.
1554 This occurs in the common code where we compute both a quotient and
1555 remainder into a structure, in which case we want to do the computation
1556 directly into the structure to avoid register-register copies.
1558 We make very conservative checks below and only try to handle the
1559 most common cases of this. For example, we only handle the case
1560 where I2 and I3 are adjacent to avoid making difficult register
1561 usage tests. */
1563 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1564 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1565 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1566 && (! SMALL_REGISTER_CLASSES
1567 || (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1568 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1569 || REG_USERVAR_P (SET_DEST (PATTERN (i3)))))
1570 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1571 && GET_CODE (PATTERN (i2)) == PARALLEL
1572 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1573 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1574 below would need to check what is inside (and reg_overlap_mentioned_p
1575 doesn't support those codes anyway). Don't allow those destinations;
1576 the resulting insn isn't likely to be recognized anyway. */
1577 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1578 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1579 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1580 SET_DEST (PATTERN (i3)))
1581 && next_real_insn (i2) == i3)
1583 rtx p2 = PATTERN (i2);
1585 /* Make sure that the destination of I3,
1586 which we are going to substitute into one output of I2,
1587 is not used within another output of I2. We must avoid making this:
1588 (parallel [(set (mem (reg 69)) ...)
1589 (set (reg 69) ...)])
1590 which is not well-defined as to order of actions.
1591 (Besides, reload can't handle output reloads for this.)
1593 The problem can also happen if the dest of I3 is a memory ref,
1594 if another dest in I2 is an indirect memory ref. */
1595 for (i = 0; i < XVECLEN (p2, 0); i++)
1596 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1597 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1598 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1599 SET_DEST (XVECEXP (p2, 0, i))))
1600 break;
1602 if (i == XVECLEN (p2, 0))
1603 for (i = 0; i < XVECLEN (p2, 0); i++)
1604 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1605 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1606 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1608 combine_merges++;
1610 subst_insn = i3;
1611 subst_low_cuid = INSN_CUID (i2);
1613 added_sets_2 = added_sets_1 = 0;
1614 i2dest = SET_SRC (PATTERN (i3));
1616 /* Replace the dest in I2 with our dest and make the resulting
1617 insn the new pattern for I3. Then skip to where we
1618 validate the pattern. Everything was set up above. */
1619 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1620 SET_DEST (PATTERN (i3)));
1622 newpat = p2;
1623 i3_subst_into_i2 = 1;
1624 goto validate_replacement;
1628 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1629 one of those words to another constant, merge them by making a new
1630 constant. */
1631 if (i1 == 0
1632 && (temp = single_set (i2)) != 0
1633 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1634 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1635 && GET_CODE (SET_DEST (temp)) == REG
1636 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1637 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1638 && GET_CODE (PATTERN (i3)) == SET
1639 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1640 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1641 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1642 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1643 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1645 HOST_WIDE_INT lo, hi;
1647 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1648 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1649 else
1651 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1652 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1655 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1656 lo = INTVAL (SET_SRC (PATTERN (i3)));
1657 else
1658 hi = INTVAL (SET_SRC (PATTERN (i3)));
1660 combine_merges++;
1661 subst_insn = i3;
1662 subst_low_cuid = INSN_CUID (i2);
1663 added_sets_2 = added_sets_1 = 0;
1664 i2dest = SET_DEST (temp);
1666 SUBST (SET_SRC (temp),
1667 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1669 newpat = PATTERN (i2);
1670 i3_subst_into_i2 = 1;
1671 goto validate_replacement;
1674 #ifndef HAVE_cc0
1675 /* If we have no I1 and I2 looks like:
1676 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1677 (set Y OP)])
1678 make up a dummy I1 that is
1679 (set Y OP)
1680 and change I2 to be
1681 (set (reg:CC X) (compare:CC Y (const_int 0)))
1683 (We can ignore any trailing CLOBBERs.)
1685 This undoes a previous combination and allows us to match a branch-and-
1686 decrement insn. */
1688 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1689 && XVECLEN (PATTERN (i2), 0) >= 2
1690 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1691 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1692 == MODE_CC)
1693 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1694 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1695 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1696 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1697 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1698 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1700 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1701 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1702 break;
1704 if (i == 1)
1706 /* We make I1 with the same INSN_UID as I2. This gives it
1707 the same INSN_CUID for value tracking. Our fake I1 will
1708 never appear in the insn stream so giving it the same INSN_UID
1709 as I2 will not cause a problem. */
1711 subst_prev_insn = i1
1712 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1713 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1714 NULL_RTX);
1716 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1717 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1718 SET_DEST (PATTERN (i1)));
1721 #endif
1723 /* Verify that I2 and I1 are valid for combining. */
1724 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1725 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1727 undo_all ();
1728 return 0;
1731 /* Record whether I2DEST is used in I2SRC and similarly for the other
1732 cases. Knowing this will help in register status updating below. */
1733 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1734 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1735 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1737 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1738 in I2SRC. */
1739 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1741 /* Ensure that I3's pattern can be the destination of combines. */
1742 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1743 i1 && i2dest_in_i1src && i1_feeds_i3,
1744 &i3dest_killed))
1746 undo_all ();
1747 return 0;
1750 /* See if any of the insns is a MULT operation. Unless one is, we will
1751 reject a combination that is, since it must be slower. Be conservative
1752 here. */
1753 if (GET_CODE (i2src) == MULT
1754 || (i1 != 0 && GET_CODE (i1src) == MULT)
1755 || (GET_CODE (PATTERN (i3)) == SET
1756 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1757 have_mult = 1;
1759 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1760 We used to do this EXCEPT in one case: I3 has a post-inc in an
1761 output operand. However, that exception can give rise to insns like
1762 mov r3,(r3)+
1763 which is a famous insn on the PDP-11 where the value of r3 used as the
1764 source was model-dependent. Avoid this sort of thing. */
1766 #if 0
1767 if (!(GET_CODE (PATTERN (i3)) == SET
1768 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1769 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1770 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1771 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1772 /* It's not the exception. */
1773 #endif
1774 #ifdef AUTO_INC_DEC
1775 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1776 if (REG_NOTE_KIND (link) == REG_INC
1777 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1778 || (i1 != 0
1779 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1781 undo_all ();
1782 return 0;
1784 #endif
1786 /* See if the SETs in I1 or I2 need to be kept around in the merged
1787 instruction: whenever the value set there is still needed past I3.
1788 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1790 For the SET in I1, we have two cases: If I1 and I2 independently
1791 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1792 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1793 in I1 needs to be kept around unless I1DEST dies or is set in either
1794 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1795 I1DEST. If so, we know I1 feeds into I2. */
1797 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1799 added_sets_1
1800 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1801 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1803 /* If the set in I2 needs to be kept around, we must make a copy of
1804 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1805 PATTERN (I2), we are only substituting for the original I1DEST, not into
1806 an already-substituted copy. This also prevents making self-referential
1807 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1808 I2DEST. */
1810 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1811 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1812 : PATTERN (i2));
1814 if (added_sets_2)
1815 i2pat = copy_rtx (i2pat);
1817 combine_merges++;
1819 /* Substitute in the latest insn for the regs set by the earlier ones. */
1821 maxreg = max_reg_num ();
1823 subst_insn = i3;
1825 /* It is possible that the source of I2 or I1 may be performing an
1826 unneeded operation, such as a ZERO_EXTEND of something that is known
1827 to have the high part zero. Handle that case by letting subst look at
1828 the innermost one of them.
1830 Another way to do this would be to have a function that tries to
1831 simplify a single insn instead of merging two or more insns. We don't
1832 do this because of the potential of infinite loops and because
1833 of the potential extra memory required. However, doing it the way
1834 we are is a bit of a kludge and doesn't catch all cases.
1836 But only do this if -fexpensive-optimizations since it slows things down
1837 and doesn't usually win. */
1839 if (flag_expensive_optimizations)
1841 /* Pass pc_rtx so no substitutions are done, just simplifications.
1842 The cases that we are interested in here do not involve the few
1843 cases were is_replaced is checked. */
1844 if (i1)
1846 subst_low_cuid = INSN_CUID (i1);
1847 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1849 else
1851 subst_low_cuid = INSN_CUID (i2);
1852 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1855 undobuf.previous_undos = undobuf.undos;
1858 #ifndef HAVE_cc0
1859 /* Many machines that don't use CC0 have insns that can both perform an
1860 arithmetic operation and set the condition code. These operations will
1861 be represented as a PARALLEL with the first element of the vector
1862 being a COMPARE of an arithmetic operation with the constant zero.
1863 The second element of the vector will set some pseudo to the result
1864 of the same arithmetic operation. If we simplify the COMPARE, we won't
1865 match such a pattern and so will generate an extra insn. Here we test
1866 for this case, where both the comparison and the operation result are
1867 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1868 I2SRC. Later we will make the PARALLEL that contains I2. */
1870 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1871 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1872 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1873 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1875 #ifdef EXTRA_CC_MODES
1876 rtx *cc_use;
1877 enum machine_mode compare_mode;
1878 #endif
1880 newpat = PATTERN (i3);
1881 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1883 i2_is_used = 1;
1885 #ifdef EXTRA_CC_MODES
1886 /* See if a COMPARE with the operand we substituted in should be done
1887 with the mode that is currently being used. If not, do the same
1888 processing we do in `subst' for a SET; namely, if the destination
1889 is used only once, try to replace it with a register of the proper
1890 mode and also replace the COMPARE. */
1891 if (undobuf.other_insn == 0
1892 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1893 &undobuf.other_insn))
1894 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1895 i2src, const0_rtx))
1896 != GET_MODE (SET_DEST (newpat))))
1898 unsigned int regno = REGNO (SET_DEST (newpat));
1899 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1901 if (regno < FIRST_PSEUDO_REGISTER
1902 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1903 && ! REG_USERVAR_P (SET_DEST (newpat))))
1905 if (regno >= FIRST_PSEUDO_REGISTER)
1906 SUBST (regno_reg_rtx[regno], new_dest);
1908 SUBST (SET_DEST (newpat), new_dest);
1909 SUBST (XEXP (*cc_use, 0), new_dest);
1910 SUBST (SET_SRC (newpat),
1911 gen_rtx_combine (COMPARE, compare_mode,
1912 i2src, const0_rtx));
1914 else
1915 undobuf.other_insn = 0;
1917 #endif
1919 else
1920 #endif
1922 n_occurrences = 0; /* `subst' counts here */
1924 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1925 need to make a unique copy of I2SRC each time we substitute it
1926 to avoid self-referential rtl. */
1928 subst_low_cuid = INSN_CUID (i2);
1929 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1930 ! i1_feeds_i3 && i1dest_in_i1src);
1931 undobuf.previous_undos = undobuf.undos;
1933 /* Record whether i2's body now appears within i3's body. */
1934 i2_is_used = n_occurrences;
1937 /* If we already got a failure, don't try to do more. Otherwise,
1938 try to substitute in I1 if we have it. */
1940 if (i1 && GET_CODE (newpat) != CLOBBER)
1942 /* Before we can do this substitution, we must redo the test done
1943 above (see detailed comments there) that ensures that I1DEST
1944 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1946 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1947 0, NULL_PTR))
1949 undo_all ();
1950 return 0;
1953 n_occurrences = 0;
1954 subst_low_cuid = INSN_CUID (i1);
1955 newpat = subst (newpat, i1dest, i1src, 0, 0);
1956 undobuf.previous_undos = undobuf.undos;
1959 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1960 to count all the ways that I2SRC and I1SRC can be used. */
1961 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1962 && i2_is_used + added_sets_2 > 1)
1963 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1964 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1965 > 1))
1966 /* Fail if we tried to make a new register (we used to abort, but there's
1967 really no reason to). */
1968 || max_reg_num () != maxreg
1969 /* Fail if we couldn't do something and have a CLOBBER. */
1970 || GET_CODE (newpat) == CLOBBER
1971 /* Fail if this new pattern is a MULT and we didn't have one before
1972 at the outer level. */
1973 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1974 && ! have_mult))
1976 undo_all ();
1977 return 0;
1980 /* If the actions of the earlier insns must be kept
1981 in addition to substituting them into the latest one,
1982 we must make a new PARALLEL for the latest insn
1983 to hold additional the SETs. */
1985 if (added_sets_1 || added_sets_2)
1987 combine_extras++;
1989 if (GET_CODE (newpat) == PARALLEL)
1991 rtvec old = XVEC (newpat, 0);
1992 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1993 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1994 bcopy ((char *) &old->elem[0], (char *) XVEC (newpat, 0)->elem,
1995 sizeof (old->elem[0]) * old->num_elem);
1997 else
1999 rtx old = newpat;
2000 total_sets = 1 + added_sets_1 + added_sets_2;
2001 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2002 XVECEXP (newpat, 0, 0) = old;
2005 if (added_sets_1)
2006 XVECEXP (newpat, 0, --total_sets)
2007 = (GET_CODE (PATTERN (i1)) == PARALLEL
2008 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2010 if (added_sets_2)
2012 /* If there is no I1, use I2's body as is. We used to also not do
2013 the subst call below if I2 was substituted into I3,
2014 but that could lose a simplification. */
2015 if (i1 == 0)
2016 XVECEXP (newpat, 0, --total_sets) = i2pat;
2017 else
2018 /* See comment where i2pat is assigned. */
2019 XVECEXP (newpat, 0, --total_sets)
2020 = subst (i2pat, i1dest, i1src, 0, 0);
2024 /* We come here when we are replacing a destination in I2 with the
2025 destination of I3. */
2026 validate_replacement:
2028 /* Note which hard regs this insn has as inputs. */
2029 mark_used_regs_combine (newpat);
2031 /* Is the result of combination a valid instruction? */
2032 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2034 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2035 the second SET's destination is a register that is unused. In that case,
2036 we just need the first SET. This can occur when simplifying a divmod
2037 insn. We *must* test for this case here because the code below that
2038 splits two independent SETs doesn't handle this case correctly when it
2039 updates the register status. Also check the case where the first
2040 SET's destination is unused. That would not cause incorrect code, but
2041 does cause an unneeded insn to remain. */
2043 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2044 && XVECLEN (newpat, 0) == 2
2045 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2046 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2047 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2048 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2049 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2050 && asm_noperands (newpat) < 0)
2052 newpat = XVECEXP (newpat, 0, 0);
2053 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2056 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2057 && XVECLEN (newpat, 0) == 2
2058 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2059 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2060 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2061 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2062 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2063 && asm_noperands (newpat) < 0)
2065 newpat = XVECEXP (newpat, 0, 1);
2066 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2069 /* If we were combining three insns and the result is a simple SET
2070 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2071 insns. There are two ways to do this. It can be split using a
2072 machine-specific method (like when you have an addition of a large
2073 constant) or by combine in the function find_split_point. */
2075 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2076 && asm_noperands (newpat) < 0)
2078 rtx m_split, *split;
2079 rtx ni2dest = i2dest;
2081 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2082 use I2DEST as a scratch register will help. In the latter case,
2083 convert I2DEST to the mode of the source of NEWPAT if we can. */
2085 m_split = split_insns (newpat, i3);
2087 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2088 inputs of NEWPAT. */
2090 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2091 possible to try that as a scratch reg. This would require adding
2092 more code to make it work though. */
2094 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2096 /* If I2DEST is a hard register or the only use of a pseudo,
2097 we can change its mode. */
2098 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2099 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2100 && GET_CODE (i2dest) == REG
2101 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2102 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2103 && ! REG_USERVAR_P (i2dest))))
2104 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2105 REGNO (i2dest));
2107 m_split = split_insns (gen_rtx_PARALLEL
2108 (VOIDmode,
2109 gen_rtvec (2, newpat,
2110 gen_rtx_CLOBBER (VOIDmode,
2111 ni2dest))),
2112 i3);
2115 if (m_split && GET_CODE (m_split) == SEQUENCE
2116 && XVECLEN (m_split, 0) == 2
2117 && (next_real_insn (i2) == i3
2118 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2119 INSN_CUID (i2))))
2121 rtx i2set, i3set;
2122 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2123 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2125 i3set = single_set (XVECEXP (m_split, 0, 1));
2126 i2set = single_set (XVECEXP (m_split, 0, 0));
2128 /* In case we changed the mode of I2DEST, replace it in the
2129 pseudo-register table here. We can't do it above in case this
2130 code doesn't get executed and we do a split the other way. */
2132 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2133 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2135 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2137 /* If I2 or I3 has multiple SETs, we won't know how to track
2138 register status, so don't use these insns. If I2's destination
2139 is used between I2 and I3, we also can't use these insns. */
2141 if (i2_code_number >= 0 && i2set && i3set
2142 && (next_real_insn (i2) == i3
2143 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2144 insn_code_number = recog_for_combine (&newi3pat, i3,
2145 &new_i3_notes);
2146 if (insn_code_number >= 0)
2147 newpat = newi3pat;
2149 /* It is possible that both insns now set the destination of I3.
2150 If so, we must show an extra use of it. */
2152 if (insn_code_number >= 0)
2154 rtx new_i3_dest = SET_DEST (i3set);
2155 rtx new_i2_dest = SET_DEST (i2set);
2157 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2158 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2159 || GET_CODE (new_i3_dest) == SUBREG)
2160 new_i3_dest = XEXP (new_i3_dest, 0);
2162 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2163 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2164 || GET_CODE (new_i2_dest) == SUBREG)
2165 new_i2_dest = XEXP (new_i2_dest, 0);
2167 if (GET_CODE (new_i3_dest) == REG
2168 && GET_CODE (new_i2_dest) == REG
2169 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2170 REG_N_SETS (REGNO (new_i2_dest))++;
2174 /* If we can split it and use I2DEST, go ahead and see if that
2175 helps things be recognized. Verify that none of the registers
2176 are set between I2 and I3. */
2177 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2178 #ifdef HAVE_cc0
2179 && GET_CODE (i2dest) == REG
2180 #endif
2181 /* We need I2DEST in the proper mode. If it is a hard register
2182 or the only use of a pseudo, we can change its mode. */
2183 && (GET_MODE (*split) == GET_MODE (i2dest)
2184 || GET_MODE (*split) == VOIDmode
2185 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2186 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2187 && ! REG_USERVAR_P (i2dest)))
2188 && (next_real_insn (i2) == i3
2189 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2190 /* We can't overwrite I2DEST if its value is still used by
2191 NEWPAT. */
2192 && ! reg_referenced_p (i2dest, newpat))
2194 rtx newdest = i2dest;
2195 enum rtx_code split_code = GET_CODE (*split);
2196 enum machine_mode split_mode = GET_MODE (*split);
2198 /* Get NEWDEST as a register in the proper mode. We have already
2199 validated that we can do this. */
2200 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2202 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2204 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2205 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2208 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2209 an ASHIFT. This can occur if it was inside a PLUS and hence
2210 appeared to be a memory address. This is a kludge. */
2211 if (split_code == MULT
2212 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2213 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2215 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
2216 XEXP (*split, 0), GEN_INT (i)));
2217 /* Update split_code because we may not have a multiply
2218 anymore. */
2219 split_code = GET_CODE (*split);
2222 #ifdef INSN_SCHEDULING
2223 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2224 be written as a ZERO_EXTEND. */
2225 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2226 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
2227 XEXP (*split, 0)));
2228 #endif
2230 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
2231 SUBST (*split, newdest);
2232 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2234 /* If the split point was a MULT and we didn't have one before,
2235 don't use one now. */
2236 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2237 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2241 /* Check for a case where we loaded from memory in a narrow mode and
2242 then sign extended it, but we need both registers. In that case,
2243 we have a PARALLEL with both loads from the same memory location.
2244 We can split this into a load from memory followed by a register-register
2245 copy. This saves at least one insn, more if register allocation can
2246 eliminate the copy.
2248 We cannot do this if the destination of the second assignment is
2249 a register that we have already assumed is zero-extended. Similarly
2250 for a SUBREG of such a register. */
2252 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2253 && GET_CODE (newpat) == PARALLEL
2254 && XVECLEN (newpat, 0) == 2
2255 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2256 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2257 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2258 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2259 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2260 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2261 INSN_CUID (i2))
2262 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2263 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2264 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2265 (GET_CODE (temp) == REG
2266 && reg_nonzero_bits[REGNO (temp)] != 0
2267 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2268 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2269 && (reg_nonzero_bits[REGNO (temp)]
2270 != GET_MODE_MASK (word_mode))))
2271 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2272 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2273 (GET_CODE (temp) == REG
2274 && reg_nonzero_bits[REGNO (temp)] != 0
2275 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2276 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2277 && (reg_nonzero_bits[REGNO (temp)]
2278 != GET_MODE_MASK (word_mode)))))
2279 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2280 SET_SRC (XVECEXP (newpat, 0, 1)))
2281 && ! find_reg_note (i3, REG_UNUSED,
2282 SET_DEST (XVECEXP (newpat, 0, 0))))
2284 rtx ni2dest;
2286 newi2pat = XVECEXP (newpat, 0, 0);
2287 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2288 newpat = XVECEXP (newpat, 0, 1);
2289 SUBST (SET_SRC (newpat),
2290 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2291 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2293 if (i2_code_number >= 0)
2294 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2296 if (insn_code_number >= 0)
2298 rtx insn;
2299 rtx link;
2301 /* If we will be able to accept this, we have made a change to the
2302 destination of I3. This can invalidate a LOG_LINKS pointing
2303 to I3. No other part of combine.c makes such a transformation.
2305 The new I3 will have a destination that was previously the
2306 destination of I1 or I2 and which was used in i2 or I3. Call
2307 distribute_links to make a LOG_LINK from the next use of
2308 that destination. */
2310 PATTERN (i3) = newpat;
2311 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2313 /* I3 now uses what used to be its destination and which is
2314 now I2's destination. That means we need a LOG_LINK from
2315 I3 to I2. But we used to have one, so we still will.
2317 However, some later insn might be using I2's dest and have
2318 a LOG_LINK pointing at I3. We must remove this link.
2319 The simplest way to remove the link is to point it at I1,
2320 which we know will be a NOTE. */
2322 for (insn = NEXT_INSN (i3);
2323 insn && (this_basic_block == n_basic_blocks - 1
2324 || insn != BLOCK_HEAD (this_basic_block + 1));
2325 insn = NEXT_INSN (insn))
2327 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2328 && reg_referenced_p (ni2dest, PATTERN (insn)))
2330 for (link = LOG_LINKS (insn); link;
2331 link = XEXP (link, 1))
2332 if (XEXP (link, 0) == i3)
2333 XEXP (link, 0) = i1;
2335 break;
2341 /* Similarly, check for a case where we have a PARALLEL of two independent
2342 SETs but we started with three insns. In this case, we can do the sets
2343 as two separate insns. This case occurs when some SET allows two
2344 other insns to combine, but the destination of that SET is still live. */
2346 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2347 && GET_CODE (newpat) == PARALLEL
2348 && XVECLEN (newpat, 0) == 2
2349 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2350 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2351 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2352 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2353 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2354 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2355 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2356 INSN_CUID (i2))
2357 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2358 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2359 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2360 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2361 XVECEXP (newpat, 0, 0))
2362 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2363 XVECEXP (newpat, 0, 1))
2364 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2365 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2367 /* Normally, it doesn't matter which of the two is done first,
2368 but it does if one references cc0. In that case, it has to
2369 be first. */
2370 #ifdef HAVE_cc0
2371 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2373 newi2pat = XVECEXP (newpat, 0, 0);
2374 newpat = XVECEXP (newpat, 0, 1);
2376 else
2377 #endif
2379 newi2pat = XVECEXP (newpat, 0, 1);
2380 newpat = XVECEXP (newpat, 0, 0);
2383 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2385 if (i2_code_number >= 0)
2386 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2389 /* If it still isn't recognized, fail and change things back the way they
2390 were. */
2391 if ((insn_code_number < 0
2392 /* Is the result a reasonable ASM_OPERANDS? */
2393 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2395 undo_all ();
2396 return 0;
2399 /* If we had to change another insn, make sure it is valid also. */
2400 if (undobuf.other_insn)
2402 rtx other_pat = PATTERN (undobuf.other_insn);
2403 rtx new_other_notes;
2404 rtx note, next;
2406 CLEAR_HARD_REG_SET (newpat_used_regs);
2408 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2409 &new_other_notes);
2411 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2413 undo_all ();
2414 return 0;
2417 PATTERN (undobuf.other_insn) = other_pat;
2419 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2420 are still valid. Then add any non-duplicate notes added by
2421 recog_for_combine. */
2422 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2424 next = XEXP (note, 1);
2426 if (REG_NOTE_KIND (note) == REG_UNUSED
2427 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2429 if (GET_CODE (XEXP (note, 0)) == REG)
2430 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2432 remove_note (undobuf.other_insn, note);
2436 for (note = new_other_notes; note; note = XEXP (note, 1))
2437 if (GET_CODE (XEXP (note, 0)) == REG)
2438 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2440 distribute_notes (new_other_notes, undobuf.other_insn,
2441 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2443 #ifdef HAVE_cc0
2444 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2445 they are adjacent to each other or not. */
2447 rtx p = prev_nonnote_insn (i3);
2448 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat && sets_cc0_p (newi2pat))
2450 undo_all ();
2451 return 0;
2454 #endif
2456 /* We now know that we can do this combination. Merge the insns and
2457 update the status of registers and LOG_LINKS. */
2460 rtx i3notes, i2notes, i1notes = 0;
2461 rtx i3links, i2links, i1links = 0;
2462 rtx midnotes = 0;
2463 unsigned int regno;
2464 /* Compute which registers we expect to eliminate. newi2pat may be setting
2465 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2466 same as i3dest, in which case newi2pat may be setting i1dest. */
2467 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2468 || i2dest_in_i2src || i2dest_in_i1src
2469 ? 0 : i2dest);
2470 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2471 || (newi2pat && reg_set_p (i1dest, newi2pat))
2472 ? 0 : i1dest);
2474 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2475 clear them. */
2476 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2477 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2478 if (i1)
2479 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2481 /* Ensure that we do not have something that should not be shared but
2482 occurs multiple times in the new insns. Check this by first
2483 resetting all the `used' flags and then copying anything is shared. */
2485 reset_used_flags (i3notes);
2486 reset_used_flags (i2notes);
2487 reset_used_flags (i1notes);
2488 reset_used_flags (newpat);
2489 reset_used_flags (newi2pat);
2490 if (undobuf.other_insn)
2491 reset_used_flags (PATTERN (undobuf.other_insn));
2493 i3notes = copy_rtx_if_shared (i3notes);
2494 i2notes = copy_rtx_if_shared (i2notes);
2495 i1notes = copy_rtx_if_shared (i1notes);
2496 newpat = copy_rtx_if_shared (newpat);
2497 newi2pat = copy_rtx_if_shared (newi2pat);
2498 if (undobuf.other_insn)
2499 reset_used_flags (PATTERN (undobuf.other_insn));
2501 INSN_CODE (i3) = insn_code_number;
2502 PATTERN (i3) = newpat;
2503 if (undobuf.other_insn)
2504 INSN_CODE (undobuf.other_insn) = other_code_number;
2506 /* We had one special case above where I2 had more than one set and
2507 we replaced a destination of one of those sets with the destination
2508 of I3. In that case, we have to update LOG_LINKS of insns later
2509 in this basic block. Note that this (expensive) case is rare.
2511 Also, in this case, we must pretend that all REG_NOTEs for I2
2512 actually came from I3, so that REG_UNUSED notes from I2 will be
2513 properly handled. */
2515 if (i3_subst_into_i2 && GET_CODE (PATTERN (i2)) == PARALLEL)
2517 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2519 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2520 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2521 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2522 && ! find_reg_note (i2, REG_UNUSED,
2523 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2524 for (temp = NEXT_INSN (i2);
2525 temp && (this_basic_block == n_basic_blocks - 1
2526 || BLOCK_HEAD (this_basic_block) != temp);
2527 temp = NEXT_INSN (temp))
2528 if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
2529 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2530 if (XEXP (link, 0) == i2)
2531 XEXP (link, 0) = i3;
2534 if (i3notes)
2536 rtx link = i3notes;
2537 while (XEXP (link, 1))
2538 link = XEXP (link, 1);
2539 XEXP (link, 1) = i2notes;
2541 else
2542 i3notes = i2notes;
2543 i2notes = 0;
2546 LOG_LINKS (i3) = 0;
2547 REG_NOTES (i3) = 0;
2548 LOG_LINKS (i2) = 0;
2549 REG_NOTES (i2) = 0;
2551 if (newi2pat)
2553 INSN_CODE (i2) = i2_code_number;
2554 PATTERN (i2) = newi2pat;
2556 else
2558 PUT_CODE (i2, NOTE);
2559 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2560 NOTE_SOURCE_FILE (i2) = 0;
2563 if (i1)
2565 LOG_LINKS (i1) = 0;
2566 REG_NOTES (i1) = 0;
2567 PUT_CODE (i1, NOTE);
2568 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2569 NOTE_SOURCE_FILE (i1) = 0;
2572 /* Get death notes for everything that is now used in either I3 or
2573 I2 and used to die in a previous insn. If we built two new
2574 patterns, move from I1 to I2 then I2 to I3 so that we get the
2575 proper movement on registers that I2 modifies. */
2577 if (newi2pat)
2579 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2580 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2582 else
2583 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2584 i3, &midnotes);
2586 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2587 if (i3notes)
2588 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2589 elim_i2, elim_i1);
2590 if (i2notes)
2591 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2592 elim_i2, elim_i1);
2593 if (i1notes)
2594 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2595 elim_i2, elim_i1);
2596 if (midnotes)
2597 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2598 elim_i2, elim_i1);
2600 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2601 know these are REG_UNUSED and want them to go to the desired insn,
2602 so we always pass it as i3. We have not counted the notes in
2603 reg_n_deaths yet, so we need to do so now. */
2605 if (newi2pat && new_i2_notes)
2607 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2608 if (GET_CODE (XEXP (temp, 0)) == REG)
2609 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2611 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2614 if (new_i3_notes)
2616 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2617 if (GET_CODE (XEXP (temp, 0)) == REG)
2618 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2620 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2623 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2624 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2625 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2626 in that case, it might delete I2. Similarly for I2 and I1.
2627 Show an additional death due to the REG_DEAD note we make here. If
2628 we discard it in distribute_notes, we will decrement it again. */
2630 if (i3dest_killed)
2632 if (GET_CODE (i3dest_killed) == REG)
2633 REG_N_DEATHS (REGNO (i3dest_killed))++;
2635 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2636 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2637 NULL_RTX),
2638 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2639 else
2640 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2641 NULL_RTX),
2642 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2643 elim_i2, elim_i1);
2646 if (i2dest_in_i2src)
2648 if (GET_CODE (i2dest) == REG)
2649 REG_N_DEATHS (REGNO (i2dest))++;
2651 if (newi2pat && reg_set_p (i2dest, newi2pat))
2652 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2653 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2654 else
2655 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2656 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2657 NULL_RTX, NULL_RTX);
2660 if (i1dest_in_i1src)
2662 if (GET_CODE (i1dest) == REG)
2663 REG_N_DEATHS (REGNO (i1dest))++;
2665 if (newi2pat && reg_set_p (i1dest, newi2pat))
2666 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2667 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2668 else
2669 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2670 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2671 NULL_RTX, NULL_RTX);
2674 distribute_links (i3links);
2675 distribute_links (i2links);
2676 distribute_links (i1links);
2678 if (GET_CODE (i2dest) == REG)
2680 rtx link;
2681 rtx i2_insn = 0, i2_val = 0, set;
2683 /* The insn that used to set this register doesn't exist, and
2684 this life of the register may not exist either. See if one of
2685 I3's links points to an insn that sets I2DEST. If it does,
2686 that is now the last known value for I2DEST. If we don't update
2687 this and I2 set the register to a value that depended on its old
2688 contents, we will get confused. If this insn is used, thing
2689 will be set correctly in combine_instructions. */
2691 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2692 if ((set = single_set (XEXP (link, 0))) != 0
2693 && rtx_equal_p (i2dest, SET_DEST (set)))
2694 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2696 record_value_for_reg (i2dest, i2_insn, i2_val);
2698 /* If the reg formerly set in I2 died only once and that was in I3,
2699 zero its use count so it won't make `reload' do any work. */
2700 if (! added_sets_2
2701 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2702 && ! i2dest_in_i2src)
2704 regno = REGNO (i2dest);
2705 REG_N_SETS (regno)--;
2709 if (i1 && GET_CODE (i1dest) == REG)
2711 rtx link;
2712 rtx i1_insn = 0, i1_val = 0, set;
2714 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2715 if ((set = single_set (XEXP (link, 0))) != 0
2716 && rtx_equal_p (i1dest, SET_DEST (set)))
2717 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2719 record_value_for_reg (i1dest, i1_insn, i1_val);
2721 regno = REGNO (i1dest);
2722 if (! added_sets_1 && ! i1dest_in_i1src)
2723 REG_N_SETS (regno)--;
2726 /* Update reg_nonzero_bits et al for any changes that may have been made
2727 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2728 important. Because newi2pat can affect nonzero_bits of newpat */
2729 if (newi2pat)
2730 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2731 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2733 /* Set new_direct_jump_p if a new return or simple jump instruction
2734 has been created.
2736 If I3 is now an unconditional jump, ensure that it has a
2737 BARRIER following it since it may have initially been a
2738 conditional jump. It may also be the last nonnote insn. */
2740 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2742 *new_direct_jump_p = 1;
2744 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2745 || GET_CODE (temp) != BARRIER)
2746 emit_barrier_after (i3);
2750 combine_successes++;
2751 undo_commit ();
2753 /* Clear this here, so that subsequent get_last_value calls are not
2754 affected. */
2755 subst_prev_insn = NULL_RTX;
2757 if (added_links_insn
2758 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2759 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2760 return added_links_insn;
2761 else
2762 return newi2pat ? i2 : i3;
2765 /* Undo all the modifications recorded in undobuf. */
2767 static void
2768 undo_all ()
2770 struct undo *undo, *next;
2772 for (undo = undobuf.undos; undo; undo = next)
2774 next = undo->next;
2775 if (undo->is_int)
2776 *undo->where.i = undo->old_contents.i;
2777 else
2778 *undo->where.r = undo->old_contents.r;
2780 undo->next = undobuf.frees;
2781 undobuf.frees = undo;
2784 obfree (undobuf.storage);
2785 undobuf.undos = undobuf.previous_undos = 0;
2787 /* Clear this here, so that subsequent get_last_value calls are not
2788 affected. */
2789 subst_prev_insn = NULL_RTX;
2792 /* We've committed to accepting the changes we made. Move all
2793 of the undos to the free list. */
2795 static void
2796 undo_commit ()
2798 struct undo *undo, *next;
2800 for (undo = undobuf.undos; undo; undo = next)
2802 next = undo->next;
2803 undo->next = undobuf.frees;
2804 undobuf.frees = undo;
2806 undobuf.undos = undobuf.previous_undos = 0;
2810 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2811 where we have an arithmetic expression and return that point. LOC will
2812 be inside INSN.
2814 try_combine will call this function to see if an insn can be split into
2815 two insns. */
2817 static rtx *
2818 find_split_point (loc, insn)
2819 rtx *loc;
2820 rtx insn;
2822 rtx x = *loc;
2823 enum rtx_code code = GET_CODE (x);
2824 rtx *split;
2825 unsigned HOST_WIDE_INT len = 0;
2826 HOST_WIDE_INT pos = 0;
2827 int unsignedp = 0;
2828 rtx inner = NULL_RTX;
2830 /* First special-case some codes. */
2831 switch (code)
2833 case SUBREG:
2834 #ifdef INSN_SCHEDULING
2835 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2836 point. */
2837 if (GET_CODE (SUBREG_REG (x)) == MEM)
2838 return loc;
2839 #endif
2840 return find_split_point (&SUBREG_REG (x), insn);
2842 case MEM:
2843 #ifdef HAVE_lo_sum
2844 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2845 using LO_SUM and HIGH. */
2846 if (GET_CODE (XEXP (x, 0)) == CONST
2847 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2849 SUBST (XEXP (x, 0),
2850 gen_rtx_combine (LO_SUM, Pmode,
2851 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2852 XEXP (x, 0)));
2853 return &XEXP (XEXP (x, 0), 0);
2855 #endif
2857 /* If we have a PLUS whose second operand is a constant and the
2858 address is not valid, perhaps will can split it up using
2859 the machine-specific way to split large constants. We use
2860 the first pseudo-reg (one of the virtual regs) as a placeholder;
2861 it will not remain in the result. */
2862 if (GET_CODE (XEXP (x, 0)) == PLUS
2863 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2864 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2866 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2867 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2868 subst_insn);
2870 /* This should have produced two insns, each of which sets our
2871 placeholder. If the source of the second is a valid address,
2872 we can make put both sources together and make a split point
2873 in the middle. */
2875 if (seq && XVECLEN (seq, 0) == 2
2876 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2877 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2878 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2879 && ! reg_mentioned_p (reg,
2880 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2881 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2882 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2883 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2884 && memory_address_p (GET_MODE (x),
2885 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2887 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2888 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2890 /* Replace the placeholder in SRC2 with SRC1. If we can
2891 find where in SRC2 it was placed, that can become our
2892 split point and we can replace this address with SRC2.
2893 Just try two obvious places. */
2895 src2 = replace_rtx (src2, reg, src1);
2896 split = 0;
2897 if (XEXP (src2, 0) == src1)
2898 split = &XEXP (src2, 0);
2899 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2900 && XEXP (XEXP (src2, 0), 0) == src1)
2901 split = &XEXP (XEXP (src2, 0), 0);
2903 if (split)
2905 SUBST (XEXP (x, 0), src2);
2906 return split;
2910 /* If that didn't work, perhaps the first operand is complex and
2911 needs to be computed separately, so make a split point there.
2912 This will occur on machines that just support REG + CONST
2913 and have a constant moved through some previous computation. */
2915 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2916 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2917 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2918 == 'o')))
2919 return &XEXP (XEXP (x, 0), 0);
2921 break;
2923 case SET:
2924 #ifdef HAVE_cc0
2925 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2926 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2927 we need to put the operand into a register. So split at that
2928 point. */
2930 if (SET_DEST (x) == cc0_rtx
2931 && GET_CODE (SET_SRC (x)) != COMPARE
2932 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2933 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2934 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2935 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2936 return &SET_SRC (x);
2937 #endif
2939 /* See if we can split SET_SRC as it stands. */
2940 split = find_split_point (&SET_SRC (x), insn);
2941 if (split && split != &SET_SRC (x))
2942 return split;
2944 /* See if we can split SET_DEST as it stands. */
2945 split = find_split_point (&SET_DEST (x), insn);
2946 if (split && split != &SET_DEST (x))
2947 return split;
2949 /* See if this is a bitfield assignment with everything constant. If
2950 so, this is an IOR of an AND, so split it into that. */
2951 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2952 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2953 <= HOST_BITS_PER_WIDE_INT)
2954 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2955 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2956 && GET_CODE (SET_SRC (x)) == CONST_INT
2957 && ((INTVAL (XEXP (SET_DEST (x), 1))
2958 + INTVAL (XEXP (SET_DEST (x), 2)))
2959 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2960 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2962 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2963 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2964 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2965 rtx dest = XEXP (SET_DEST (x), 0);
2966 enum machine_mode mode = GET_MODE (dest);
2967 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2969 if (BITS_BIG_ENDIAN)
2970 pos = GET_MODE_BITSIZE (mode) - len - pos;
2972 if (src == mask)
2973 SUBST (SET_SRC (x),
2974 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2975 else
2976 SUBST (SET_SRC (x),
2977 gen_binary (IOR, mode,
2978 gen_binary (AND, mode, dest,
2979 GEN_INT (~ (mask << pos)
2980 & GET_MODE_MASK (mode))),
2981 GEN_INT (src << pos)));
2983 SUBST (SET_DEST (x), dest);
2985 split = find_split_point (&SET_SRC (x), insn);
2986 if (split && split != &SET_SRC (x))
2987 return split;
2990 /* Otherwise, see if this is an operation that we can split into two.
2991 If so, try to split that. */
2992 code = GET_CODE (SET_SRC (x));
2994 switch (code)
2996 case AND:
2997 /* If we are AND'ing with a large constant that is only a single
2998 bit and the result is only being used in a context where we
2999 need to know if it is zero or non-zero, replace it with a bit
3000 extraction. This will avoid the large constant, which might
3001 have taken more than one insn to make. If the constant were
3002 not a valid argument to the AND but took only one insn to make,
3003 this is no worse, but if it took more than one insn, it will
3004 be better. */
3006 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3007 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3008 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3009 && GET_CODE (SET_DEST (x)) == REG
3010 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
3011 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3012 && XEXP (*split, 0) == SET_DEST (x)
3013 && XEXP (*split, 1) == const0_rtx)
3015 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3016 XEXP (SET_SRC (x), 0),
3017 pos, NULL_RTX, 1, 1, 0, 0);
3018 if (extraction != 0)
3020 SUBST (SET_SRC (x), extraction);
3021 return find_split_point (loc, insn);
3024 break;
3026 case NE:
3027 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3028 is known to be on, this can be converted into a NEG of a shift. */
3029 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3030 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3031 && 1 <= (pos = exact_log2
3032 (nonzero_bits (XEXP (SET_SRC (x), 0),
3033 GET_MODE (XEXP (SET_SRC (x), 0))))))
3035 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3037 SUBST (SET_SRC (x),
3038 gen_rtx_combine (NEG, mode,
3039 gen_rtx_combine (LSHIFTRT, mode,
3040 XEXP (SET_SRC (x), 0),
3041 GEN_INT (pos))));
3043 split = find_split_point (&SET_SRC (x), insn);
3044 if (split && split != &SET_SRC (x))
3045 return split;
3047 break;
3049 case SIGN_EXTEND:
3050 inner = XEXP (SET_SRC (x), 0);
3052 /* We can't optimize if either mode is a partial integer
3053 mode as we don't know how many bits are significant
3054 in those modes. */
3055 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3056 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3057 break;
3059 pos = 0;
3060 len = GET_MODE_BITSIZE (GET_MODE (inner));
3061 unsignedp = 0;
3062 break;
3064 case SIGN_EXTRACT:
3065 case ZERO_EXTRACT:
3066 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3067 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3069 inner = XEXP (SET_SRC (x), 0);
3070 len = INTVAL (XEXP (SET_SRC (x), 1));
3071 pos = INTVAL (XEXP (SET_SRC (x), 2));
3073 if (BITS_BIG_ENDIAN)
3074 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3075 unsignedp = (code == ZERO_EXTRACT);
3077 break;
3079 default:
3080 break;
3083 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3085 enum machine_mode mode = GET_MODE (SET_SRC (x));
3087 /* For unsigned, we have a choice of a shift followed by an
3088 AND or two shifts. Use two shifts for field sizes where the
3089 constant might be too large. We assume here that we can
3090 always at least get 8-bit constants in an AND insn, which is
3091 true for every current RISC. */
3093 if (unsignedp && len <= 8)
3095 SUBST (SET_SRC (x),
3096 gen_rtx_combine
3097 (AND, mode,
3098 gen_rtx_combine (LSHIFTRT, mode,
3099 gen_lowpart_for_combine (mode, inner),
3100 GEN_INT (pos)),
3101 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3103 split = find_split_point (&SET_SRC (x), insn);
3104 if (split && split != &SET_SRC (x))
3105 return split;
3107 else
3109 SUBST (SET_SRC (x),
3110 gen_rtx_combine
3111 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3112 gen_rtx_combine (ASHIFT, mode,
3113 gen_lowpart_for_combine (mode, inner),
3114 GEN_INT (GET_MODE_BITSIZE (mode)
3115 - len - pos)),
3116 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3118 split = find_split_point (&SET_SRC (x), insn);
3119 if (split && split != &SET_SRC (x))
3120 return split;
3124 /* See if this is a simple operation with a constant as the second
3125 operand. It might be that this constant is out of range and hence
3126 could be used as a split point. */
3127 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3128 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3129 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3130 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3131 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3132 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3133 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3134 == 'o'))))
3135 return &XEXP (SET_SRC (x), 1);
3137 /* Finally, see if this is a simple operation with its first operand
3138 not in a register. The operation might require this operand in a
3139 register, so return it as a split point. We can always do this
3140 because if the first operand were another operation, we would have
3141 already found it as a split point. */
3142 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3143 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3144 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3145 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3146 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3147 return &XEXP (SET_SRC (x), 0);
3149 return 0;
3151 case AND:
3152 case IOR:
3153 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3154 it is better to write this as (not (ior A B)) so we can split it.
3155 Similarly for IOR. */
3156 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3158 SUBST (*loc,
3159 gen_rtx_combine (NOT, GET_MODE (x),
3160 gen_rtx_combine (code == IOR ? AND : IOR,
3161 GET_MODE (x),
3162 XEXP (XEXP (x, 0), 0),
3163 XEXP (XEXP (x, 1), 0))));
3164 return find_split_point (loc, insn);
3167 /* Many RISC machines have a large set of logical insns. If the
3168 second operand is a NOT, put it first so we will try to split the
3169 other operand first. */
3170 if (GET_CODE (XEXP (x, 1)) == NOT)
3172 rtx tem = XEXP (x, 0);
3173 SUBST (XEXP (x, 0), XEXP (x, 1));
3174 SUBST (XEXP (x, 1), tem);
3176 break;
3178 default:
3179 break;
3182 /* Otherwise, select our actions depending on our rtx class. */
3183 switch (GET_RTX_CLASS (code))
3185 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3186 case '3':
3187 split = find_split_point (&XEXP (x, 2), insn);
3188 if (split)
3189 return split;
3190 /* ... fall through ... */
3191 case '2':
3192 case 'c':
3193 case '<':
3194 split = find_split_point (&XEXP (x, 1), insn);
3195 if (split)
3196 return split;
3197 /* ... fall through ... */
3198 case '1':
3199 /* Some machines have (and (shift ...) ...) insns. If X is not
3200 an AND, but XEXP (X, 0) is, use it as our split point. */
3201 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3202 return &XEXP (x, 0);
3204 split = find_split_point (&XEXP (x, 0), insn);
3205 if (split)
3206 return split;
3207 return loc;
3210 /* Otherwise, we don't have a split point. */
3211 return 0;
3214 /* Throughout X, replace FROM with TO, and return the result.
3215 The result is TO if X is FROM;
3216 otherwise the result is X, but its contents may have been modified.
3217 If they were modified, a record was made in undobuf so that
3218 undo_all will (among other things) return X to its original state.
3220 If the number of changes necessary is too much to record to undo,
3221 the excess changes are not made, so the result is invalid.
3222 The changes already made can still be undone.
3223 undobuf.num_undo is incremented for such changes, so by testing that
3224 the caller can tell whether the result is valid.
3226 `n_occurrences' is incremented each time FROM is replaced.
3228 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3230 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3231 by copying if `n_occurrences' is non-zero. */
3233 static rtx
3234 subst (x, from, to, in_dest, unique_copy)
3235 register rtx x, from, to;
3236 int in_dest;
3237 int unique_copy;
3239 register enum rtx_code code = GET_CODE (x);
3240 enum machine_mode op0_mode = VOIDmode;
3241 register const char *fmt;
3242 register int len, i;
3243 rtx new;
3245 /* Two expressions are equal if they are identical copies of a shared
3246 RTX or if they are both registers with the same register number
3247 and mode. */
3249 #define COMBINE_RTX_EQUAL_P(X,Y) \
3250 ((X) == (Y) \
3251 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3252 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3254 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3256 n_occurrences++;
3257 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3260 /* If X and FROM are the same register but different modes, they will
3261 not have been seen as equal above. However, flow.c will make a
3262 LOG_LINKS entry for that case. If we do nothing, we will try to
3263 rerecognize our original insn and, when it succeeds, we will
3264 delete the feeding insn, which is incorrect.
3266 So force this insn not to match in this (rare) case. */
3267 if (! in_dest && code == REG && GET_CODE (from) == REG
3268 && REGNO (x) == REGNO (from))
3269 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3271 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3272 of which may contain things that can be combined. */
3273 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3274 return x;
3276 /* It is possible to have a subexpression appear twice in the insn.
3277 Suppose that FROM is a register that appears within TO.
3278 Then, after that subexpression has been scanned once by `subst',
3279 the second time it is scanned, TO may be found. If we were
3280 to scan TO here, we would find FROM within it and create a
3281 self-referent rtl structure which is completely wrong. */
3282 if (COMBINE_RTX_EQUAL_P (x, to))
3283 return to;
3285 /* Parallel asm_operands need special attention because all of the
3286 inputs are shared across the arms. Furthermore, unsharing the
3287 rtl results in recognition failures. Failure to handle this case
3288 specially can result in circular rtl.
3290 Solve this by doing a normal pass across the first entry of the
3291 parallel, and only processing the SET_DESTs of the subsequent
3292 entries. Ug. */
3294 if (code == PARALLEL
3295 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3296 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3298 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3300 /* If this substitution failed, this whole thing fails. */
3301 if (GET_CODE (new) == CLOBBER
3302 && XEXP (new, 0) == const0_rtx)
3303 return new;
3305 SUBST (XVECEXP (x, 0, 0), new);
3307 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3309 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3311 if (GET_CODE (dest) != REG
3312 && GET_CODE (dest) != CC0
3313 && GET_CODE (dest) != PC)
3315 new = subst (dest, from, to, 0, unique_copy);
3317 /* If this substitution failed, this whole thing fails. */
3318 if (GET_CODE (new) == CLOBBER
3319 && XEXP (new, 0) == const0_rtx)
3320 return new;
3322 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3326 else
3328 len = GET_RTX_LENGTH (code);
3329 fmt = GET_RTX_FORMAT (code);
3331 /* We don't need to process a SET_DEST that is a register, CC0,
3332 or PC, so set up to skip this common case. All other cases
3333 where we want to suppress replacing something inside a
3334 SET_SRC are handled via the IN_DEST operand. */
3335 if (code == SET
3336 && (GET_CODE (SET_DEST (x)) == REG
3337 || GET_CODE (SET_DEST (x)) == CC0
3338 || GET_CODE (SET_DEST (x)) == PC))
3339 fmt = "ie";
3341 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3342 constant. */
3343 if (fmt[0] == 'e')
3344 op0_mode = GET_MODE (XEXP (x, 0));
3346 for (i = 0; i < len; i++)
3348 if (fmt[i] == 'E')
3350 register int j;
3351 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3353 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3355 new = (unique_copy && n_occurrences
3356 ? copy_rtx (to) : to);
3357 n_occurrences++;
3359 else
3361 new = subst (XVECEXP (x, i, j), from, to, 0,
3362 unique_copy);
3364 /* If this substitution failed, this whole thing
3365 fails. */
3366 if (GET_CODE (new) == CLOBBER
3367 && XEXP (new, 0) == const0_rtx)
3368 return new;
3371 SUBST (XVECEXP (x, i, j), new);
3374 else if (fmt[i] == 'e')
3376 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3378 /* In general, don't install a subreg involving two
3379 modes not tieable. It can worsen register
3380 allocation, and can even make invalid reload
3381 insns, since the reg inside may need to be copied
3382 from in the outside mode, and that may be invalid
3383 if it is an fp reg copied in integer mode.
3385 We allow two exceptions to this: It is valid if
3386 it is inside another SUBREG and the mode of that
3387 SUBREG and the mode of the inside of TO is
3388 tieable and it is valid if X is a SET that copies
3389 FROM to CC0. */
3391 if (GET_CODE (to) == SUBREG
3392 && ! MODES_TIEABLE_P (GET_MODE (to),
3393 GET_MODE (SUBREG_REG (to)))
3394 && ! (code == SUBREG
3395 && MODES_TIEABLE_P (GET_MODE (x),
3396 GET_MODE (SUBREG_REG (to))))
3397 #ifdef HAVE_cc0
3398 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3399 #endif
3401 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3403 #ifdef CLASS_CANNOT_CHANGE_MODE
3404 if (code == SUBREG
3405 && GET_CODE (to) == REG
3406 && REGNO (to) < FIRST_PSEUDO_REGISTER
3407 && (TEST_HARD_REG_BIT
3408 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3409 REGNO (to)))
3410 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3411 GET_MODE (x)))
3412 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3413 #endif
3415 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3416 n_occurrences++;
3418 else
3419 /* If we are in a SET_DEST, suppress most cases unless we
3420 have gone inside a MEM, in which case we want to
3421 simplify the address. We assume here that things that
3422 are actually part of the destination have their inner
3423 parts in the first expression. This is true for SUBREG,
3424 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3425 things aside from REG and MEM that should appear in a
3426 SET_DEST. */
3427 new = subst (XEXP (x, i), from, to,
3428 (((in_dest
3429 && (code == SUBREG || code == STRICT_LOW_PART
3430 || code == ZERO_EXTRACT))
3431 || code == SET)
3432 && i == 0), unique_copy);
3434 /* If we found that we will have to reject this combination,
3435 indicate that by returning the CLOBBER ourselves, rather than
3436 an expression containing it. This will speed things up as
3437 well as prevent accidents where two CLOBBERs are considered
3438 to be equal, thus producing an incorrect simplification. */
3440 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3441 return new;
3443 SUBST (XEXP (x, i), new);
3448 /* Try to simplify X. If the simplification changed the code, it is likely
3449 that further simplification will help, so loop, but limit the number
3450 of repetitions that will be performed. */
3452 for (i = 0; i < 4; i++)
3454 /* If X is sufficiently simple, don't bother trying to do anything
3455 with it. */
3456 if (code != CONST_INT && code != REG && code != CLOBBER)
3457 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3459 if (GET_CODE (x) == code)
3460 break;
3462 code = GET_CODE (x);
3464 /* We no longer know the original mode of operand 0 since we
3465 have changed the form of X) */
3466 op0_mode = VOIDmode;
3469 return x;
3472 /* Simplify X, a piece of RTL. We just operate on the expression at the
3473 outer level; call `subst' to simplify recursively. Return the new
3474 expression.
3476 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3477 will be the iteration even if an expression with a code different from
3478 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3480 static rtx
3481 combine_simplify_rtx (x, op0_mode, last, in_dest)
3482 rtx x;
3483 enum machine_mode op0_mode;
3484 int last;
3485 int in_dest;
3487 enum rtx_code code = GET_CODE (x);
3488 enum machine_mode mode = GET_MODE (x);
3489 rtx temp;
3490 int i;
3492 /* If this is a commutative operation, put a constant last and a complex
3493 expression first. We don't need to do this for comparisons here. */
3494 if (GET_RTX_CLASS (code) == 'c'
3495 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3496 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3497 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3498 || (GET_CODE (XEXP (x, 0)) == SUBREG
3499 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3500 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3502 temp = XEXP (x, 0);
3503 SUBST (XEXP (x, 0), XEXP (x, 1));
3504 SUBST (XEXP (x, 1), temp);
3507 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3508 sign extension of a PLUS with a constant, reverse the order of the sign
3509 extension and the addition. Note that this not the same as the original
3510 code, but overflow is undefined for signed values. Also note that the
3511 PLUS will have been partially moved "inside" the sign-extension, so that
3512 the first operand of X will really look like:
3513 (ashiftrt (plus (ashift A C4) C5) C4).
3514 We convert this to
3515 (plus (ashiftrt (ashift A C4) C2) C4)
3516 and replace the first operand of X with that expression. Later parts
3517 of this function may simplify the expression further.
3519 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3520 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3521 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3523 We do this to simplify address expressions. */
3525 if ((code == PLUS || code == MINUS || code == MULT)
3526 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3527 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3528 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3529 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3530 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3531 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3532 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3533 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3534 XEXP (XEXP (XEXP (x, 0), 0), 1),
3535 XEXP (XEXP (x, 0), 1))) != 0)
3537 rtx new
3538 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3539 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3540 INTVAL (XEXP (XEXP (x, 0), 1)));
3542 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3543 INTVAL (XEXP (XEXP (x, 0), 1)));
3545 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3548 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3549 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3550 things. Check for cases where both arms are testing the same
3551 condition.
3553 Don't do anything if all operands are very simple. */
3555 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3556 || GET_RTX_CLASS (code) == '<')
3557 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3558 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3559 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3560 == 'o')))
3561 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3562 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3563 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3564 == 'o')))))
3565 || (GET_RTX_CLASS (code) == '1'
3566 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3567 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3568 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3569 == 'o'))))))
3571 rtx cond, true, false;
3573 cond = if_then_else_cond (x, &true, &false);
3574 if (cond != 0
3575 /* If everything is a comparison, what we have is highly unlikely
3576 to be simpler, so don't use it. */
3577 && ! (GET_RTX_CLASS (code) == '<'
3578 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3579 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3581 rtx cop1 = const0_rtx;
3582 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3584 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3585 return x;
3587 /* Simplify the alternative arms; this may collapse the true and
3588 false arms to store-flag values. */
3589 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3590 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3592 /* If true and false are not general_operands, an if_then_else
3593 is unlikely to be simpler. */
3594 if (general_operand (true, VOIDmode)
3595 && general_operand (false, VOIDmode))
3597 /* Restarting if we generate a store-flag expression will cause
3598 us to loop. Just drop through in this case. */
3600 /* If the result values are STORE_FLAG_VALUE and zero, we can
3601 just make the comparison operation. */
3602 if (true == const_true_rtx && false == const0_rtx)
3603 x = gen_binary (cond_code, mode, cond, cop1);
3604 else if (true == const0_rtx && false == const_true_rtx)
3605 x = gen_binary (reverse_condition (cond_code),
3606 mode, cond, cop1);
3608 /* Likewise, we can make the negate of a comparison operation
3609 if the result values are - STORE_FLAG_VALUE and zero. */
3610 else if (GET_CODE (true) == CONST_INT
3611 && INTVAL (true) == - STORE_FLAG_VALUE
3612 && false == const0_rtx)
3613 x = gen_unary (NEG, mode, mode,
3614 gen_binary (cond_code, mode, cond, cop1));
3615 else if (GET_CODE (false) == CONST_INT
3616 && INTVAL (false) == - STORE_FLAG_VALUE
3617 && true == const0_rtx)
3618 x = gen_unary (NEG, mode, mode,
3619 gen_binary (reverse_condition (cond_code),
3620 mode, cond, cop1));
3621 else
3622 return gen_rtx_IF_THEN_ELSE (mode,
3623 gen_binary (cond_code, VOIDmode,
3624 cond, cop1),
3625 true, false);
3627 code = GET_CODE (x);
3628 op0_mode = VOIDmode;
3633 /* Try to fold this expression in case we have constants that weren't
3634 present before. */
3635 temp = 0;
3636 switch (GET_RTX_CLASS (code))
3638 case '1':
3639 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3640 break;
3641 case '<':
3642 temp = simplify_relational_operation (code, op0_mode,
3643 XEXP (x, 0), XEXP (x, 1));
3644 #ifdef FLOAT_STORE_FLAG_VALUE
3645 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3647 if (temp == const0_rtx)
3648 temp = CONST0_RTX (mode);
3649 else
3650 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3652 #endif
3653 break;
3654 case 'c':
3655 case '2':
3656 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3657 break;
3658 case 'b':
3659 case '3':
3660 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3661 XEXP (x, 1), XEXP (x, 2));
3662 break;
3665 if (temp)
3666 x = temp, code = GET_CODE (temp);
3668 /* First see if we can apply the inverse distributive law. */
3669 if (code == PLUS || code == MINUS
3670 || code == AND || code == IOR || code == XOR)
3672 x = apply_distributive_law (x);
3673 code = GET_CODE (x);
3676 /* If CODE is an associative operation not otherwise handled, see if we
3677 can associate some operands. This can win if they are constants or
3678 if they are logically related (i.e. (a & b) & a. */
3679 if ((code == PLUS || code == MINUS
3680 || code == MULT || code == AND || code == IOR || code == XOR
3681 || code == DIV || code == UDIV
3682 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3683 && INTEGRAL_MODE_P (mode))
3685 if (GET_CODE (XEXP (x, 0)) == code)
3687 rtx other = XEXP (XEXP (x, 0), 0);
3688 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3689 rtx inner_op1 = XEXP (x, 1);
3690 rtx inner;
3692 /* Make sure we pass the constant operand if any as the second
3693 one if this is a commutative operation. */
3694 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3696 rtx tem = inner_op0;
3697 inner_op0 = inner_op1;
3698 inner_op1 = tem;
3700 inner = simplify_binary_operation (code == MINUS ? PLUS
3701 : code == DIV ? MULT
3702 : code == UDIV ? MULT
3703 : code,
3704 mode, inner_op0, inner_op1);
3706 /* For commutative operations, try the other pair if that one
3707 didn't simplify. */
3708 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3710 other = XEXP (XEXP (x, 0), 1);
3711 inner = simplify_binary_operation (code, mode,
3712 XEXP (XEXP (x, 0), 0),
3713 XEXP (x, 1));
3716 if (inner)
3717 return gen_binary (code, mode, other, inner);
3721 /* A little bit of algebraic simplification here. */
3722 switch (code)
3724 case MEM:
3725 /* Ensure that our address has any ASHIFTs converted to MULT in case
3726 address-recognizing predicates are called later. */
3727 temp = make_compound_operation (XEXP (x, 0), MEM);
3728 SUBST (XEXP (x, 0), temp);
3729 break;
3731 case SUBREG:
3732 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3733 is paradoxical. If we can't do that safely, then it becomes
3734 something nonsensical so that this combination won't take place. */
3736 if (GET_CODE (SUBREG_REG (x)) == MEM
3737 && (GET_MODE_SIZE (mode)
3738 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3740 rtx inner = SUBREG_REG (x);
3741 int endian_offset = 0;
3742 /* Don't change the mode of the MEM
3743 if that would change the meaning of the address. */
3744 if (MEM_VOLATILE_P (SUBREG_REG (x))
3745 || mode_dependent_address_p (XEXP (inner, 0)))
3746 return gen_rtx_CLOBBER (mode, const0_rtx);
3748 if (BYTES_BIG_ENDIAN)
3750 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3751 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3752 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3753 endian_offset -= (UNITS_PER_WORD
3754 - GET_MODE_SIZE (GET_MODE (inner)));
3756 /* Note if the plus_constant doesn't make a valid address
3757 then this combination won't be accepted. */
3758 x = gen_rtx_MEM (mode,
3759 plus_constant (XEXP (inner, 0),
3760 (SUBREG_WORD (x) * UNITS_PER_WORD
3761 + endian_offset)));
3762 MEM_COPY_ATTRIBUTES (x, inner);
3763 return x;
3766 /* If we are in a SET_DEST, these other cases can't apply. */
3767 if (in_dest)
3768 return x;
3770 /* Changing mode twice with SUBREG => just change it once,
3771 or not at all if changing back to starting mode. */
3772 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3774 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3775 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3776 return SUBREG_REG (SUBREG_REG (x));
3778 SUBST_INT (SUBREG_WORD (x),
3779 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3780 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3783 /* SUBREG of a hard register => just change the register number
3784 and/or mode. If the hard register is not valid in that mode,
3785 suppress this combination. If the hard register is the stack,
3786 frame, or argument pointer, leave this as a SUBREG. */
3788 if (GET_CODE (SUBREG_REG (x)) == REG
3789 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3790 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3791 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3792 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3793 #endif
3794 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3795 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3796 #endif
3797 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3799 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3800 mode))
3801 return gen_rtx_REG (mode,
3802 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3803 else
3804 return gen_rtx_CLOBBER (mode, const0_rtx);
3807 /* For a constant, try to pick up the part we want. Handle a full
3808 word and low-order part. Only do this if we are narrowing
3809 the constant; if it is being widened, we have no idea what
3810 the extra bits will have been set to. */
3812 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3813 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3814 && GET_MODE_SIZE (op0_mode) > UNITS_PER_WORD
3815 && GET_MODE_CLASS (mode) == MODE_INT)
3817 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3818 0, op0_mode);
3819 if (temp)
3820 return temp;
3823 /* If we want a subreg of a constant, at offset 0,
3824 take the low bits. On a little-endian machine, that's
3825 always valid. On a big-endian machine, it's valid
3826 only if the constant's mode fits in one word. Note that we
3827 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3828 if (CONSTANT_P (SUBREG_REG (x))
3829 && ((GET_MODE_SIZE (op0_mode) <= UNITS_PER_WORD
3830 || ! WORDS_BIG_ENDIAN)
3831 ? SUBREG_WORD (x) == 0
3832 : (SUBREG_WORD (x)
3833 == ((GET_MODE_SIZE (op0_mode)
3834 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
3835 / UNITS_PER_WORD)))
3836 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3837 && (! WORDS_BIG_ENDIAN
3838 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3839 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3841 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3842 since we are saying that the high bits don't matter. */
3843 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3844 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3846 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
3847 && (WORDS_BIG_ENDIAN || SUBREG_WORD (x) != 0))
3848 return operand_subword (SUBREG_REG (x), SUBREG_WORD (x), 0, mode);
3849 return SUBREG_REG (x);
3852 /* Note that we cannot do any narrowing for non-constants since
3853 we might have been counting on using the fact that some bits were
3854 zero. We now do this in the SET. */
3856 break;
3858 case NOT:
3859 /* (not (plus X -1)) can become (neg X). */
3860 if (GET_CODE (XEXP (x, 0)) == PLUS
3861 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3862 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3864 /* Similarly, (not (neg X)) is (plus X -1). */
3865 if (GET_CODE (XEXP (x, 0)) == NEG)
3866 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3867 constm1_rtx);
3869 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
3870 if (GET_CODE (XEXP (x, 0)) == XOR
3871 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3872 && (temp = simplify_unary_operation (NOT, mode,
3873 XEXP (XEXP (x, 0), 1),
3874 mode)) != 0)
3875 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3877 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3878 other than 1, but that is not valid. We could do a similar
3879 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3880 but this doesn't seem common enough to bother with. */
3881 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3882 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3883 return gen_rtx_ROTATE (mode, gen_unary (NOT, mode, mode, const1_rtx),
3884 XEXP (XEXP (x, 0), 1));
3886 if (GET_CODE (XEXP (x, 0)) == SUBREG
3887 && subreg_lowpart_p (XEXP (x, 0))
3888 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3889 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3890 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3891 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3893 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3895 x = gen_rtx_ROTATE (inner_mode,
3896 gen_unary (NOT, inner_mode, inner_mode,
3897 const1_rtx),
3898 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3899 return gen_lowpart_for_combine (mode, x);
3902 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3903 reversing the comparison code if valid. */
3904 if (STORE_FLAG_VALUE == -1
3905 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3906 && reversible_comparison_p (XEXP (x, 0)))
3907 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3908 mode, XEXP (XEXP (x, 0), 0),
3909 XEXP (XEXP (x, 0), 1));
3911 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3912 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3913 perform the above simplification. */
3915 if (STORE_FLAG_VALUE == -1
3916 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3917 && XEXP (x, 1) == const1_rtx
3918 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3919 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3920 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3922 /* Apply De Morgan's laws to reduce number of patterns for machines
3923 with negating logical insns (and-not, nand, etc.). If result has
3924 only one NOT, put it first, since that is how the patterns are
3925 coded. */
3927 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3929 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3931 if (GET_CODE (in1) == NOT)
3932 in1 = XEXP (in1, 0);
3933 else
3934 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3936 if (GET_CODE (in2) == NOT)
3937 in2 = XEXP (in2, 0);
3938 else if (GET_CODE (in2) == CONST_INT
3939 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3940 in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
3941 else
3942 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3944 if (GET_CODE (in2) == NOT)
3946 rtx tem = in2;
3947 in2 = in1; in1 = tem;
3950 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3951 mode, in1, in2);
3953 break;
3955 case NEG:
3956 /* (neg (plus X 1)) can become (not X). */
3957 if (GET_CODE (XEXP (x, 0)) == PLUS
3958 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3959 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3961 /* Similarly, (neg (not X)) is (plus X 1). */
3962 if (GET_CODE (XEXP (x, 0)) == NOT)
3963 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3965 /* (neg (minus X Y)) can become (minus Y X). */
3966 if (GET_CODE (XEXP (x, 0)) == MINUS
3967 && (! FLOAT_MODE_P (mode)
3968 /* x-y != -(y-x) with IEEE floating point. */
3969 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3970 || flag_fast_math))
3971 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3972 XEXP (XEXP (x, 0), 0));
3974 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3975 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3976 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3977 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3979 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3980 if we can then eliminate the NEG (e.g.,
3981 if the operand is a constant). */
3983 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3985 temp = simplify_unary_operation (NEG, mode,
3986 XEXP (XEXP (x, 0), 0), mode);
3987 if (temp)
3989 SUBST (XEXP (XEXP (x, 0), 0), temp);
3990 return XEXP (x, 0);
3994 temp = expand_compound_operation (XEXP (x, 0));
3996 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3997 replaced by (lshiftrt X C). This will convert
3998 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4000 if (GET_CODE (temp) == ASHIFTRT
4001 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4002 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4003 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4004 INTVAL (XEXP (temp, 1)));
4006 /* If X has only a single bit that might be nonzero, say, bit I, convert
4007 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4008 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4009 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4010 or a SUBREG of one since we'd be making the expression more
4011 complex if it was just a register. */
4013 if (GET_CODE (temp) != REG
4014 && ! (GET_CODE (temp) == SUBREG
4015 && GET_CODE (SUBREG_REG (temp)) == REG)
4016 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4018 rtx temp1 = simplify_shift_const
4019 (NULL_RTX, ASHIFTRT, mode,
4020 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4021 GET_MODE_BITSIZE (mode) - 1 - i),
4022 GET_MODE_BITSIZE (mode) - 1 - i);
4024 /* If all we did was surround TEMP with the two shifts, we
4025 haven't improved anything, so don't use it. Otherwise,
4026 we are better off with TEMP1. */
4027 if (GET_CODE (temp1) != ASHIFTRT
4028 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4029 || XEXP (XEXP (temp1, 0), 0) != temp)
4030 return temp1;
4032 break;
4034 case TRUNCATE:
4035 /* We can't handle truncation to a partial integer mode here
4036 because we don't know the real bitsize of the partial
4037 integer mode. */
4038 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4039 break;
4041 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4042 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4043 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4044 SUBST (XEXP (x, 0),
4045 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4046 GET_MODE_MASK (mode), NULL_RTX, 0));
4048 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4049 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4050 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4051 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4052 return XEXP (XEXP (x, 0), 0);
4054 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4055 (OP:SI foo:SI) if OP is NEG or ABS. */
4056 if ((GET_CODE (XEXP (x, 0)) == ABS
4057 || GET_CODE (XEXP (x, 0)) == NEG)
4058 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4059 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4060 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4061 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
4062 XEXP (XEXP (XEXP (x, 0), 0), 0));
4064 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4065 (truncate:SI x). */
4066 if (GET_CODE (XEXP (x, 0)) == SUBREG
4067 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4068 && subreg_lowpart_p (XEXP (x, 0)))
4069 return SUBREG_REG (XEXP (x, 0));
4071 /* If we know that the value is already truncated, we can
4072 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4073 is nonzero for the corresponding modes. But don't do this
4074 for an (LSHIFTRT (MULT ...)) since this will cause problems
4075 with the umulXi3_highpart patterns. */
4076 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4077 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4078 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4079 >= GET_MODE_BITSIZE (mode) + 1
4080 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4081 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4082 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4084 /* A truncate of a comparison can be replaced with a subreg if
4085 STORE_FLAG_VALUE permits. This is like the previous test,
4086 but it works even if the comparison is done in a mode larger
4087 than HOST_BITS_PER_WIDE_INT. */
4088 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4089 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4090 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0)
4091 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4093 /* Similarly, a truncate of a register whose value is a
4094 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4095 permits. */
4096 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4097 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0
4098 && (temp = get_last_value (XEXP (x, 0)))
4099 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4100 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4102 break;
4104 case FLOAT_TRUNCATE:
4105 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4106 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4107 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4108 return XEXP (XEXP (x, 0), 0);
4110 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4111 (OP:SF foo:SF) if OP is NEG or ABS. */
4112 if ((GET_CODE (XEXP (x, 0)) == ABS
4113 || GET_CODE (XEXP (x, 0)) == NEG)
4114 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4115 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4116 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
4117 XEXP (XEXP (XEXP (x, 0), 0), 0));
4119 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4120 is (float_truncate:SF x). */
4121 if (GET_CODE (XEXP (x, 0)) == SUBREG
4122 && subreg_lowpart_p (XEXP (x, 0))
4123 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4124 return SUBREG_REG (XEXP (x, 0));
4125 break;
4127 #ifdef HAVE_cc0
4128 case COMPARE:
4129 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4130 using cc0, in which case we want to leave it as a COMPARE
4131 so we can distinguish it from a register-register-copy. */
4132 if (XEXP (x, 1) == const0_rtx)
4133 return XEXP (x, 0);
4135 /* In IEEE floating point, x-0 is not the same as x. */
4136 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4137 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
4138 || flag_fast_math)
4139 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4140 return XEXP (x, 0);
4141 break;
4142 #endif
4144 case CONST:
4145 /* (const (const X)) can become (const X). Do it this way rather than
4146 returning the inner CONST since CONST can be shared with a
4147 REG_EQUAL note. */
4148 if (GET_CODE (XEXP (x, 0)) == CONST)
4149 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4150 break;
4152 #ifdef HAVE_lo_sum
4153 case LO_SUM:
4154 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4155 can add in an offset. find_split_point will split this address up
4156 again if it doesn't match. */
4157 if (GET_CODE (XEXP (x, 0)) == HIGH
4158 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4159 return XEXP (x, 1);
4160 break;
4161 #endif
4163 case PLUS:
4164 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4165 outermost. That's because that's the way indexed addresses are
4166 supposed to appear. This code used to check many more cases, but
4167 they are now checked elsewhere. */
4168 if (GET_CODE (XEXP (x, 0)) == PLUS
4169 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4170 return gen_binary (PLUS, mode,
4171 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4172 XEXP (x, 1)),
4173 XEXP (XEXP (x, 0), 1));
4175 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4176 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4177 bit-field and can be replaced by either a sign_extend or a
4178 sign_extract. The `and' may be a zero_extend and the two
4179 <c>, -<c> constants may be reversed. */
4180 if (GET_CODE (XEXP (x, 0)) == XOR
4181 && GET_CODE (XEXP (x, 1)) == CONST_INT
4182 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4183 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
4184 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4185 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4186 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4187 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4188 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4189 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4190 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4191 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4192 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4193 == (unsigned int) i + 1))))
4194 return simplify_shift_const
4195 (NULL_RTX, ASHIFTRT, mode,
4196 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4197 XEXP (XEXP (XEXP (x, 0), 0), 0),
4198 GET_MODE_BITSIZE (mode) - (i + 1)),
4199 GET_MODE_BITSIZE (mode) - (i + 1));
4201 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4202 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4203 is 1. This produces better code than the alternative immediately
4204 below. */
4205 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4206 && reversible_comparison_p (XEXP (x, 0))
4207 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4208 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
4209 return
4210 gen_unary (NEG, mode, mode,
4211 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
4212 mode, XEXP (XEXP (x, 0), 0),
4213 XEXP (XEXP (x, 0), 1)));
4215 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4216 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4217 the bitsize of the mode - 1. This allows simplification of
4218 "a = (b & 8) == 0;" */
4219 if (XEXP (x, 1) == constm1_rtx
4220 && GET_CODE (XEXP (x, 0)) != REG
4221 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4222 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4223 && nonzero_bits (XEXP (x, 0), mode) == 1)
4224 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4225 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4226 gen_rtx_combine (XOR, mode,
4227 XEXP (x, 0), const1_rtx),
4228 GET_MODE_BITSIZE (mode) - 1),
4229 GET_MODE_BITSIZE (mode) - 1);
4231 /* If we are adding two things that have no bits in common, convert
4232 the addition into an IOR. This will often be further simplified,
4233 for example in cases like ((a & 1) + (a & 2)), which can
4234 become a & 3. */
4236 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4237 && (nonzero_bits (XEXP (x, 0), mode)
4238 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4240 /* Try to simplify the expression further. */
4241 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4242 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4244 /* If we could, great. If not, do not go ahead with the IOR
4245 replacement, since PLUS appears in many special purpose
4246 address arithmetic instructions. */
4247 if (GET_CODE (temp) != CLOBBER && temp != tor)
4248 return temp;
4250 break;
4252 case MINUS:
4253 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4254 by reversing the comparison code if valid. */
4255 if (STORE_FLAG_VALUE == 1
4256 && XEXP (x, 0) == const1_rtx
4257 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4258 && reversible_comparison_p (XEXP (x, 1)))
4259 return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
4260 mode, XEXP (XEXP (x, 1), 0),
4261 XEXP (XEXP (x, 1), 1));
4263 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4264 (and <foo> (const_int pow2-1)) */
4265 if (GET_CODE (XEXP (x, 1)) == AND
4266 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4267 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4268 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4269 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4270 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4272 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4273 integers. */
4274 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4275 return gen_binary (MINUS, mode,
4276 gen_binary (MINUS, mode, XEXP (x, 0),
4277 XEXP (XEXP (x, 1), 0)),
4278 XEXP (XEXP (x, 1), 1));
4279 break;
4281 case MULT:
4282 /* If we have (mult (plus A B) C), apply the distributive law and then
4283 the inverse distributive law to see if things simplify. This
4284 occurs mostly in addresses, often when unrolling loops. */
4286 if (GET_CODE (XEXP (x, 0)) == PLUS)
4288 x = apply_distributive_law
4289 (gen_binary (PLUS, mode,
4290 gen_binary (MULT, mode,
4291 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4292 gen_binary (MULT, mode,
4293 XEXP (XEXP (x, 0), 1),
4294 copy_rtx (XEXP (x, 1)))));
4296 if (GET_CODE (x) != MULT)
4297 return x;
4299 break;
4301 case UDIV:
4302 /* If this is a divide by a power of two, treat it as a shift if
4303 its first operand is a shift. */
4304 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4305 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4306 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4307 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4308 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4309 || GET_CODE (XEXP (x, 0)) == ROTATE
4310 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4311 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4312 break;
4314 case EQ: case NE:
4315 case GT: case GTU: case GE: case GEU:
4316 case LT: case LTU: case LE: case LEU:
4317 /* If the first operand is a condition code, we can't do anything
4318 with it. */
4319 if (GET_CODE (XEXP (x, 0)) == COMPARE
4320 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4321 #ifdef HAVE_cc0
4322 && XEXP (x, 0) != cc0_rtx
4323 #endif
4326 rtx op0 = XEXP (x, 0);
4327 rtx op1 = XEXP (x, 1);
4328 enum rtx_code new_code;
4330 if (GET_CODE (op0) == COMPARE)
4331 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4333 /* Simplify our comparison, if possible. */
4334 new_code = simplify_comparison (code, &op0, &op1);
4336 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4337 if only the low-order bit is possibly nonzero in X (such as when
4338 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4339 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4340 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4341 (plus X 1).
4343 Remove any ZERO_EXTRACT we made when thinking this was a
4344 comparison. It may now be simpler to use, e.g., an AND. If a
4345 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4346 the call to make_compound_operation in the SET case. */
4348 if (STORE_FLAG_VALUE == 1
4349 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4350 && op1 == const0_rtx && nonzero_bits (op0, mode) == 1)
4351 return gen_lowpart_for_combine (mode,
4352 expand_compound_operation (op0));
4354 else if (STORE_FLAG_VALUE == 1
4355 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4356 && op1 == const0_rtx
4357 && (num_sign_bit_copies (op0, mode)
4358 == GET_MODE_BITSIZE (mode)))
4360 op0 = expand_compound_operation (op0);
4361 return gen_unary (NEG, mode, mode,
4362 gen_lowpart_for_combine (mode, op0));
4365 else if (STORE_FLAG_VALUE == 1
4366 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4367 && op1 == const0_rtx
4368 && nonzero_bits (op0, mode) == 1)
4370 op0 = expand_compound_operation (op0);
4371 return gen_binary (XOR, mode,
4372 gen_lowpart_for_combine (mode, op0),
4373 const1_rtx);
4376 else if (STORE_FLAG_VALUE == 1
4377 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4378 && op1 == const0_rtx
4379 && (num_sign_bit_copies (op0, mode)
4380 == GET_MODE_BITSIZE (mode)))
4382 op0 = expand_compound_operation (op0);
4383 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4386 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4387 those above. */
4388 if (STORE_FLAG_VALUE == -1
4389 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4390 && op1 == const0_rtx
4391 && (num_sign_bit_copies (op0, mode)
4392 == GET_MODE_BITSIZE (mode)))
4393 return gen_lowpart_for_combine (mode,
4394 expand_compound_operation (op0));
4396 else if (STORE_FLAG_VALUE == -1
4397 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4398 && op1 == const0_rtx
4399 && nonzero_bits (op0, mode) == 1)
4401 op0 = expand_compound_operation (op0);
4402 return gen_unary (NEG, mode, mode,
4403 gen_lowpart_for_combine (mode, op0));
4406 else if (STORE_FLAG_VALUE == -1
4407 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4408 && op1 == const0_rtx
4409 && (num_sign_bit_copies (op0, mode)
4410 == GET_MODE_BITSIZE (mode)))
4412 op0 = expand_compound_operation (op0);
4413 return gen_unary (NOT, mode, mode,
4414 gen_lowpart_for_combine (mode, op0));
4417 /* If X is 0/1, (eq X 0) is X-1. */
4418 else if (STORE_FLAG_VALUE == -1
4419 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4420 && op1 == const0_rtx
4421 && nonzero_bits (op0, mode) == 1)
4423 op0 = expand_compound_operation (op0);
4424 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4427 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4428 one bit that might be nonzero, we can convert (ne x 0) to
4429 (ashift x c) where C puts the bit in the sign bit. Remove any
4430 AND with STORE_FLAG_VALUE when we are done, since we are only
4431 going to test the sign bit. */
4432 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4433 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4434 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4435 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4436 && op1 == const0_rtx
4437 && mode == GET_MODE (op0)
4438 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4440 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4441 expand_compound_operation (op0),
4442 GET_MODE_BITSIZE (mode) - 1 - i);
4443 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4444 return XEXP (x, 0);
4445 else
4446 return x;
4449 /* If the code changed, return a whole new comparison. */
4450 if (new_code != code)
4451 return gen_rtx_combine (new_code, mode, op0, op1);
4453 /* Otherwise, keep this operation, but maybe change its operands.
4454 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4455 SUBST (XEXP (x, 0), op0);
4456 SUBST (XEXP (x, 1), op1);
4458 break;
4460 case IF_THEN_ELSE:
4461 return simplify_if_then_else (x);
4463 case ZERO_EXTRACT:
4464 case SIGN_EXTRACT:
4465 case ZERO_EXTEND:
4466 case SIGN_EXTEND:
4467 /* If we are processing SET_DEST, we are done. */
4468 if (in_dest)
4469 return x;
4471 return expand_compound_operation (x);
4473 case SET:
4474 return simplify_set (x);
4476 case AND:
4477 case IOR:
4478 case XOR:
4479 return simplify_logical (x, last);
4481 case ABS:
4482 /* (abs (neg <foo>)) -> (abs <foo>) */
4483 if (GET_CODE (XEXP (x, 0)) == NEG)
4484 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4486 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4487 do nothing. */
4488 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4489 break;
4491 /* If operand is something known to be positive, ignore the ABS. */
4492 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4493 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4494 <= HOST_BITS_PER_WIDE_INT)
4495 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4496 & ((HOST_WIDE_INT) 1
4497 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4498 == 0)))
4499 return XEXP (x, 0);
4502 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4503 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4504 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
4506 break;
4508 case FFS:
4509 /* (ffs (*_extend <X>)) = (ffs <X>) */
4510 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4511 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4512 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4513 break;
4515 case FLOAT:
4516 /* (float (sign_extend <X>)) = (float <X>). */
4517 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4518 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4519 break;
4521 case ASHIFT:
4522 case LSHIFTRT:
4523 case ASHIFTRT:
4524 case ROTATE:
4525 case ROTATERT:
4526 /* If this is a shift by a constant amount, simplify it. */
4527 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4528 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4529 INTVAL (XEXP (x, 1)));
4531 #ifdef SHIFT_COUNT_TRUNCATED
4532 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4533 SUBST (XEXP (x, 1),
4534 force_to_mode (XEXP (x, 1), GET_MODE (x),
4535 ((HOST_WIDE_INT) 1
4536 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4537 - 1,
4538 NULL_RTX, 0));
4539 #endif
4541 break;
4543 default:
4544 break;
4547 return x;
4550 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4552 static rtx
4553 simplify_if_then_else (x)
4554 rtx x;
4556 enum machine_mode mode = GET_MODE (x);
4557 rtx cond = XEXP (x, 0);
4558 rtx true = XEXP (x, 1);
4559 rtx false = XEXP (x, 2);
4560 enum rtx_code true_code = GET_CODE (cond);
4561 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4562 rtx temp;
4563 int i;
4565 /* Simplify storing of the truth value. */
4566 if (comparison_p && true == const_true_rtx && false == const0_rtx)
4567 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4569 /* Also when the truth value has to be reversed. */
4570 if (comparison_p && reversible_comparison_p (cond)
4571 && true == const0_rtx && false == const_true_rtx)
4572 return gen_binary (reverse_condition (true_code),
4573 mode, XEXP (cond, 0), XEXP (cond, 1));
4575 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4576 in it is being compared against certain values. Get the true and false
4577 comparisons and see if that says anything about the value of each arm. */
4579 if (comparison_p && reversible_comparison_p (cond)
4580 && GET_CODE (XEXP (cond, 0)) == REG)
4582 HOST_WIDE_INT nzb;
4583 rtx from = XEXP (cond, 0);
4584 enum rtx_code false_code = reverse_condition (true_code);
4585 rtx true_val = XEXP (cond, 1);
4586 rtx false_val = true_val;
4587 int swapped = 0;
4589 /* If FALSE_CODE is EQ, swap the codes and arms. */
4591 if (false_code == EQ)
4593 swapped = 1, true_code = EQ, false_code = NE;
4594 temp = true, true = false, false = temp;
4597 /* If we are comparing against zero and the expression being tested has
4598 only a single bit that might be nonzero, that is its value when it is
4599 not equal to zero. Similarly if it is known to be -1 or 0. */
4601 if (true_code == EQ && true_val == const0_rtx
4602 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4603 false_code = EQ, false_val = GEN_INT (nzb);
4604 else if (true_code == EQ && true_val == const0_rtx
4605 && (num_sign_bit_copies (from, GET_MODE (from))
4606 == GET_MODE_BITSIZE (GET_MODE (from))))
4607 false_code = EQ, false_val = constm1_rtx;
4609 /* Now simplify an arm if we know the value of the register in the
4610 branch and it is used in the arm. Be careful due to the potential
4611 of locally-shared RTL. */
4613 if (reg_mentioned_p (from, true))
4614 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4615 pc_rtx, pc_rtx, 0, 0);
4616 if (reg_mentioned_p (from, false))
4617 false = subst (known_cond (copy_rtx (false), false_code,
4618 from, false_val),
4619 pc_rtx, pc_rtx, 0, 0);
4621 SUBST (XEXP (x, 1), swapped ? false : true);
4622 SUBST (XEXP (x, 2), swapped ? true : false);
4624 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4627 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4628 reversed, do so to avoid needing two sets of patterns for
4629 subtract-and-branch insns. Similarly if we have a constant in the true
4630 arm, the false arm is the same as the first operand of the comparison, or
4631 the false arm is more complicated than the true arm. */
4633 if (comparison_p && reversible_comparison_p (cond)
4634 && (true == pc_rtx
4635 || (CONSTANT_P (true)
4636 && GET_CODE (false) != CONST_INT && false != pc_rtx)
4637 || true == const0_rtx
4638 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4639 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4640 || (GET_CODE (true) == SUBREG
4641 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4642 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4643 || reg_mentioned_p (true, false)
4644 || rtx_equal_p (false, XEXP (cond, 0))))
4646 true_code = reverse_condition (true_code);
4647 SUBST (XEXP (x, 0),
4648 gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
4649 XEXP (cond, 1)));
4651 SUBST (XEXP (x, 1), false);
4652 SUBST (XEXP (x, 2), true);
4654 temp = true, true = false, false = temp, cond = XEXP (x, 0);
4656 /* It is possible that the conditional has been simplified out. */
4657 true_code = GET_CODE (cond);
4658 comparison_p = GET_RTX_CLASS (true_code) == '<';
4661 /* If the two arms are identical, we don't need the comparison. */
4663 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4664 return true;
4666 /* Convert a == b ? b : a to "a". */
4667 if (true_code == EQ && ! side_effects_p (cond)
4668 && rtx_equal_p (XEXP (cond, 0), false)
4669 && rtx_equal_p (XEXP (cond, 1), true))
4670 return false;
4671 else if (true_code == NE && ! side_effects_p (cond)
4672 && rtx_equal_p (XEXP (cond, 0), true)
4673 && rtx_equal_p (XEXP (cond, 1), false))
4674 return true;
4676 /* Look for cases where we have (abs x) or (neg (abs X)). */
4678 if (GET_MODE_CLASS (mode) == MODE_INT
4679 && GET_CODE (false) == NEG
4680 && rtx_equal_p (true, XEXP (false, 0))
4681 && comparison_p
4682 && rtx_equal_p (true, XEXP (cond, 0))
4683 && ! side_effects_p (true))
4684 switch (true_code)
4686 case GT:
4687 case GE:
4688 return gen_unary (ABS, mode, mode, true);
4689 case LT:
4690 case LE:
4691 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4692 default:
4693 break;
4696 /* Look for MIN or MAX. */
4698 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4699 && comparison_p
4700 && rtx_equal_p (XEXP (cond, 0), true)
4701 && rtx_equal_p (XEXP (cond, 1), false)
4702 && ! side_effects_p (cond))
4703 switch (true_code)
4705 case GE:
4706 case GT:
4707 return gen_binary (SMAX, mode, true, false);
4708 case LE:
4709 case LT:
4710 return gen_binary (SMIN, mode, true, false);
4711 case GEU:
4712 case GTU:
4713 return gen_binary (UMAX, mode, true, false);
4714 case LEU:
4715 case LTU:
4716 return gen_binary (UMIN, mode, true, false);
4717 default:
4718 break;
4721 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4722 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4723 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4724 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4725 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4726 neither 1 or -1, but it isn't worth checking for. */
4728 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4729 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4731 rtx t = make_compound_operation (true, SET);
4732 rtx f = make_compound_operation (false, SET);
4733 rtx cond_op0 = XEXP (cond, 0);
4734 rtx cond_op1 = XEXP (cond, 1);
4735 enum rtx_code op = NIL, extend_op = NIL;
4736 enum machine_mode m = mode;
4737 rtx z = 0, c1 = NULL_RTX;
4739 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4740 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4741 || GET_CODE (t) == ASHIFT
4742 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4743 && rtx_equal_p (XEXP (t, 0), f))
4744 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4746 /* If an identity-zero op is commutative, check whether there
4747 would be a match if we swapped the operands. */
4748 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4749 || GET_CODE (t) == XOR)
4750 && rtx_equal_p (XEXP (t, 1), f))
4751 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4752 else if (GET_CODE (t) == SIGN_EXTEND
4753 && (GET_CODE (XEXP (t, 0)) == PLUS
4754 || GET_CODE (XEXP (t, 0)) == MINUS
4755 || GET_CODE (XEXP (t, 0)) == IOR
4756 || GET_CODE (XEXP (t, 0)) == XOR
4757 || GET_CODE (XEXP (t, 0)) == ASHIFT
4758 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4759 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4760 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4761 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4762 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4763 && (num_sign_bit_copies (f, GET_MODE (f))
4764 > (GET_MODE_BITSIZE (mode)
4765 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4767 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4768 extend_op = SIGN_EXTEND;
4769 m = GET_MODE (XEXP (t, 0));
4771 else if (GET_CODE (t) == SIGN_EXTEND
4772 && (GET_CODE (XEXP (t, 0)) == PLUS
4773 || GET_CODE (XEXP (t, 0)) == IOR
4774 || GET_CODE (XEXP (t, 0)) == XOR)
4775 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4776 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4777 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4778 && (num_sign_bit_copies (f, GET_MODE (f))
4779 > (GET_MODE_BITSIZE (mode)
4780 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4782 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4783 extend_op = SIGN_EXTEND;
4784 m = GET_MODE (XEXP (t, 0));
4786 else if (GET_CODE (t) == ZERO_EXTEND
4787 && (GET_CODE (XEXP (t, 0)) == PLUS
4788 || GET_CODE (XEXP (t, 0)) == MINUS
4789 || GET_CODE (XEXP (t, 0)) == IOR
4790 || GET_CODE (XEXP (t, 0)) == XOR
4791 || GET_CODE (XEXP (t, 0)) == ASHIFT
4792 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4793 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4794 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4795 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4796 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4797 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4798 && ((nonzero_bits (f, GET_MODE (f))
4799 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4800 == 0))
4802 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4803 extend_op = ZERO_EXTEND;
4804 m = GET_MODE (XEXP (t, 0));
4806 else if (GET_CODE (t) == ZERO_EXTEND
4807 && (GET_CODE (XEXP (t, 0)) == PLUS
4808 || GET_CODE (XEXP (t, 0)) == IOR
4809 || GET_CODE (XEXP (t, 0)) == XOR)
4810 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4811 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4812 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4813 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4814 && ((nonzero_bits (f, GET_MODE (f))
4815 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4816 == 0))
4818 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4819 extend_op = ZERO_EXTEND;
4820 m = GET_MODE (XEXP (t, 0));
4823 if (z)
4825 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4826 pc_rtx, pc_rtx, 0, 0);
4827 temp = gen_binary (MULT, m, temp,
4828 gen_binary (MULT, m, c1, const_true_rtx));
4829 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4830 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4832 if (extend_op != NIL)
4833 temp = gen_unary (extend_op, mode, m, temp);
4835 return temp;
4839 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4840 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4841 negation of a single bit, we can convert this operation to a shift. We
4842 can actually do this more generally, but it doesn't seem worth it. */
4844 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4845 && false == const0_rtx && GET_CODE (true) == CONST_INT
4846 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4847 && (i = exact_log2 (INTVAL (true))) >= 0)
4848 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4849 == GET_MODE_BITSIZE (mode))
4850 && (i = exact_log2 (- INTVAL (true))) >= 0)))
4851 return
4852 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4853 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4855 return x;
4858 /* Simplify X, a SET expression. Return the new expression. */
4860 static rtx
4861 simplify_set (x)
4862 rtx x;
4864 rtx src = SET_SRC (x);
4865 rtx dest = SET_DEST (x);
4866 enum machine_mode mode
4867 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4868 rtx other_insn;
4869 rtx *cc_use;
4871 /* (set (pc) (return)) gets written as (return). */
4872 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4873 return src;
4875 /* Now that we know for sure which bits of SRC we are using, see if we can
4876 simplify the expression for the object knowing that we only need the
4877 low-order bits. */
4879 if (GET_MODE_CLASS (mode) == MODE_INT)
4881 src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
4882 SUBST (SET_SRC (x), src);
4885 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4886 the comparison result and try to simplify it unless we already have used
4887 undobuf.other_insn. */
4888 if ((GET_CODE (src) == COMPARE
4889 #ifdef HAVE_cc0
4890 || dest == cc0_rtx
4891 #endif
4893 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4894 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4895 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4896 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4898 enum rtx_code old_code = GET_CODE (*cc_use);
4899 enum rtx_code new_code;
4900 rtx op0, op1;
4901 int other_changed = 0;
4902 enum machine_mode compare_mode = GET_MODE (dest);
4904 if (GET_CODE (src) == COMPARE)
4905 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4906 else
4907 op0 = src, op1 = const0_rtx;
4909 /* Simplify our comparison, if possible. */
4910 new_code = simplify_comparison (old_code, &op0, &op1);
4912 #ifdef EXTRA_CC_MODES
4913 /* If this machine has CC modes other than CCmode, check to see if we
4914 need to use a different CC mode here. */
4915 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4916 #endif /* EXTRA_CC_MODES */
4918 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4919 /* If the mode changed, we have to change SET_DEST, the mode in the
4920 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4921 a hard register, just build new versions with the proper mode. If it
4922 is a pseudo, we lose unless it is only time we set the pseudo, in
4923 which case we can safely change its mode. */
4924 if (compare_mode != GET_MODE (dest))
4926 unsigned int regno = REGNO (dest);
4927 rtx new_dest = gen_rtx_REG (compare_mode, regno);
4929 if (regno < FIRST_PSEUDO_REGISTER
4930 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4932 if (regno >= FIRST_PSEUDO_REGISTER)
4933 SUBST (regno_reg_rtx[regno], new_dest);
4935 SUBST (SET_DEST (x), new_dest);
4936 SUBST (XEXP (*cc_use, 0), new_dest);
4937 other_changed = 1;
4939 dest = new_dest;
4942 #endif
4944 /* If the code changed, we have to build a new comparison in
4945 undobuf.other_insn. */
4946 if (new_code != old_code)
4948 unsigned HOST_WIDE_INT mask;
4950 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4951 dest, const0_rtx));
4953 /* If the only change we made was to change an EQ into an NE or
4954 vice versa, OP0 has only one bit that might be nonzero, and OP1
4955 is zero, check if changing the user of the condition code will
4956 produce a valid insn. If it won't, we can keep the original code
4957 in that insn by surrounding our operation with an XOR. */
4959 if (((old_code == NE && new_code == EQ)
4960 || (old_code == EQ && new_code == NE))
4961 && ! other_changed && op1 == const0_rtx
4962 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4963 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4965 rtx pat = PATTERN (other_insn), note = 0;
4967 if ((recog_for_combine (&pat, other_insn, &note) < 0
4968 && ! check_asm_operands (pat)))
4970 PUT_CODE (*cc_use, old_code);
4971 other_insn = 0;
4973 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4977 other_changed = 1;
4980 if (other_changed)
4981 undobuf.other_insn = other_insn;
4983 #ifdef HAVE_cc0
4984 /* If we are now comparing against zero, change our source if
4985 needed. If we do not use cc0, we always have a COMPARE. */
4986 if (op1 == const0_rtx && dest == cc0_rtx)
4988 SUBST (SET_SRC (x), op0);
4989 src = op0;
4991 else
4992 #endif
4994 /* Otherwise, if we didn't previously have a COMPARE in the
4995 correct mode, we need one. */
4996 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4998 SUBST (SET_SRC (x),
4999 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
5000 src = SET_SRC (x);
5002 else
5004 /* Otherwise, update the COMPARE if needed. */
5005 SUBST (XEXP (src, 0), op0);
5006 SUBST (XEXP (src, 1), op1);
5009 else
5011 /* Get SET_SRC in a form where we have placed back any
5012 compound expressions. Then do the checks below. */
5013 src = make_compound_operation (src, SET);
5014 SUBST (SET_SRC (x), src);
5017 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5018 and X being a REG or (subreg (reg)), we may be able to convert this to
5019 (set (subreg:m2 x) (op)).
5021 We can always do this if M1 is narrower than M2 because that means that
5022 we only care about the low bits of the result.
5024 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5025 perform a narrower operation than requested since the high-order bits will
5026 be undefined. On machine where it is defined, this transformation is safe
5027 as long as M1 and M2 have the same number of words. */
5029 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5030 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5031 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5032 / UNITS_PER_WORD)
5033 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5034 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5035 #ifndef WORD_REGISTER_OPERATIONS
5036 && (GET_MODE_SIZE (GET_MODE (src))
5037 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5038 #endif
5039 #ifdef CLASS_CANNOT_CHANGE_MODE
5040 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5041 && (TEST_HARD_REG_BIT
5042 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5043 REGNO (dest)))
5044 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5045 GET_MODE (SUBREG_REG (src))))
5046 #endif
5047 && (GET_CODE (dest) == REG
5048 || (GET_CODE (dest) == SUBREG
5049 && GET_CODE (SUBREG_REG (dest)) == REG)))
5051 SUBST (SET_DEST (x),
5052 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5053 dest));
5054 SUBST (SET_SRC (x), SUBREG_REG (src));
5056 src = SET_SRC (x), dest = SET_DEST (x);
5059 #ifdef LOAD_EXTEND_OP
5060 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5061 would require a paradoxical subreg. Replace the subreg with a
5062 zero_extend to avoid the reload that would otherwise be required. */
5064 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5065 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5066 && SUBREG_WORD (src) == 0
5067 && (GET_MODE_SIZE (GET_MODE (src))
5068 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5069 && GET_CODE (SUBREG_REG (src)) == MEM)
5071 SUBST (SET_SRC (x),
5072 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5073 GET_MODE (src), XEXP (src, 0)));
5075 src = SET_SRC (x);
5077 #endif
5079 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5080 are comparing an item known to be 0 or -1 against 0, use a logical
5081 operation instead. Check for one of the arms being an IOR of the other
5082 arm with some value. We compute three terms to be IOR'ed together. In
5083 practice, at most two will be nonzero. Then we do the IOR's. */
5085 if (GET_CODE (dest) != PC
5086 && GET_CODE (src) == IF_THEN_ELSE
5087 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5088 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5089 && XEXP (XEXP (src, 0), 1) == const0_rtx
5090 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5091 #ifdef HAVE_conditional_move
5092 && ! can_conditionally_move_p (GET_MODE (src))
5093 #endif
5094 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5095 GET_MODE (XEXP (XEXP (src, 0), 0)))
5096 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5097 && ! side_effects_p (src))
5099 rtx true = (GET_CODE (XEXP (src, 0)) == NE
5100 ? XEXP (src, 1) : XEXP (src, 2));
5101 rtx false = (GET_CODE (XEXP (src, 0)) == NE
5102 ? XEXP (src, 2) : XEXP (src, 1));
5103 rtx term1 = const0_rtx, term2, term3;
5105 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
5106 term1 = false, true = XEXP (true, 1), false = const0_rtx;
5107 else if (GET_CODE (true) == IOR
5108 && rtx_equal_p (XEXP (true, 1), false))
5109 term1 = false, true = XEXP (true, 0), false = const0_rtx;
5110 else if (GET_CODE (false) == IOR
5111 && rtx_equal_p (XEXP (false, 0), true))
5112 term1 = true, false = XEXP (false, 1), true = const0_rtx;
5113 else if (GET_CODE (false) == IOR
5114 && rtx_equal_p (XEXP (false, 1), true))
5115 term1 = true, false = XEXP (false, 0), true = const0_rtx;
5117 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
5118 term3 = gen_binary (AND, GET_MODE (src),
5119 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
5120 XEXP (XEXP (src, 0), 0)),
5121 false);
5123 SUBST (SET_SRC (x),
5124 gen_binary (IOR, GET_MODE (src),
5125 gen_binary (IOR, GET_MODE (src), term1, term2),
5126 term3));
5128 src = SET_SRC (x);
5131 #ifdef HAVE_conditional_arithmetic
5132 /* If we have conditional arithmetic and the operand of a SET is
5133 a conditional expression, replace this with an IF_THEN_ELSE.
5134 We can either have a conditional expression or a MULT of that expression
5135 with a constant. */
5136 if ((GET_RTX_CLASS (GET_CODE (src)) == '1'
5137 || GET_RTX_CLASS (GET_CODE (src)) == '2'
5138 || GET_RTX_CLASS (GET_CODE (src)) == 'c')
5139 && (GET_RTX_CLASS (GET_CODE (XEXP (src, 0))) == '<'
5140 || (GET_CODE (XEXP (src, 0)) == MULT
5141 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (src, 0), 0))) == '<'
5142 && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT)))
5144 rtx cond = XEXP (src, 0);
5145 rtx true_val = const1_rtx;
5146 rtx false_arm, true_arm;
5148 if (GET_CODE (cond) == MULT)
5150 true_val = XEXP (cond, 1);
5151 cond = XEXP (cond, 0);
5154 if (GET_RTX_CLASS (GET_CODE (src)) == '1')
5156 true_arm = gen_unary (GET_CODE (src), GET_MODE (src),
5157 GET_MODE (XEXP (src, 0)), true_val);
5158 false_arm = gen_unary (GET_CODE (src), GET_MODE (src),
5159 GET_MODE (XEXP (src, 0)), const0_rtx);
5161 else
5163 true_arm = gen_binary (GET_CODE (src), GET_MODE (src),
5164 true_val, XEXP (src, 1));
5165 false_arm = gen_binary (GET_CODE (src), GET_MODE (src),
5166 const0_rtx, XEXP (src, 1));
5169 /* Canonicalize if true_arm is the simpler one. */
5170 if (GET_RTX_CLASS (GET_CODE (true_arm)) == 'o'
5171 && GET_RTX_CLASS (GET_CODE (false_arm)) != 'o'
5172 && reversible_comparison_p (cond))
5174 rtx temp = true_arm;
5176 true_arm = false_arm;
5177 false_arm = temp;
5179 cond = gen_rtx_combine (reverse_condition (GET_CODE (cond)),
5180 GET_MODE (cond), XEXP (cond, 0),
5181 XEXP (cond, 1));
5184 src = gen_rtx_combine (IF_THEN_ELSE, GET_MODE (src),
5185 gen_rtx_combine (GET_CODE (cond), VOIDmode,
5186 XEXP (cond, 0),
5187 XEXP (cond, 1)),
5188 true_arm, false_arm);
5189 SUBST (SET_SRC (x), src);
5191 #endif
5193 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5194 whole thing fail. */
5195 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5196 return src;
5197 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5198 return dest;
5199 else
5200 /* Convert this into a field assignment operation, if possible. */
5201 return make_field_assignment (x);
5204 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5205 result. LAST is nonzero if this is the last retry. */
5207 static rtx
5208 simplify_logical (x, last)
5209 rtx x;
5210 int last;
5212 enum machine_mode mode = GET_MODE (x);
5213 rtx op0 = XEXP (x, 0);
5214 rtx op1 = XEXP (x, 1);
5216 switch (GET_CODE (x))
5218 case AND:
5219 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
5220 insn (and may simplify more). */
5221 if (GET_CODE (op0) == XOR
5222 && rtx_equal_p (XEXP (op0, 0), op1)
5223 && ! side_effects_p (op1))
5224 x = gen_binary (AND, mode,
5225 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
5227 if (GET_CODE (op0) == XOR
5228 && rtx_equal_p (XEXP (op0, 1), op1)
5229 && ! side_effects_p (op1))
5230 x = gen_binary (AND, mode,
5231 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
5233 /* Similarly for (~ (A ^ B)) & A. */
5234 if (GET_CODE (op0) == NOT
5235 && GET_CODE (XEXP (op0, 0)) == XOR
5236 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5237 && ! side_effects_p (op1))
5238 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5240 if (GET_CODE (op0) == NOT
5241 && GET_CODE (XEXP (op0, 0)) == XOR
5242 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5243 && ! side_effects_p (op1))
5244 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5246 /* We can call simplify_and_const_int only if we don't lose
5247 any (sign) bits when converting INTVAL (op1) to
5248 "unsigned HOST_WIDE_INT". */
5249 if (GET_CODE (op1) == CONST_INT
5250 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5251 || INTVAL (op1) > 0))
5253 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5255 /* If we have (ior (and (X C1) C2)) and the next restart would be
5256 the last, simplify this by making C1 as small as possible
5257 and then exit. */
5258 if (last
5259 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5260 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5261 && GET_CODE (op1) == CONST_INT)
5262 return gen_binary (IOR, mode,
5263 gen_binary (AND, mode, XEXP (op0, 0),
5264 GEN_INT (INTVAL (XEXP (op0, 1))
5265 & ~ INTVAL (op1))), op1);
5267 if (GET_CODE (x) != AND)
5268 return x;
5270 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5271 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5272 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5275 /* Convert (A | B) & A to A. */
5276 if (GET_CODE (op0) == IOR
5277 && (rtx_equal_p (XEXP (op0, 0), op1)
5278 || rtx_equal_p (XEXP (op0, 1), op1))
5279 && ! side_effects_p (XEXP (op0, 0))
5280 && ! side_effects_p (XEXP (op0, 1)))
5281 return op1;
5283 /* In the following group of tests (and those in case IOR below),
5284 we start with some combination of logical operations and apply
5285 the distributive law followed by the inverse distributive law.
5286 Most of the time, this results in no change. However, if some of
5287 the operands are the same or inverses of each other, simplifications
5288 will result.
5290 For example, (and (ior A B) (not B)) can occur as the result of
5291 expanding a bit field assignment. When we apply the distributive
5292 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5293 which then simplifies to (and (A (not B))).
5295 If we have (and (ior A B) C), apply the distributive law and then
5296 the inverse distributive law to see if things simplify. */
5298 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5300 x = apply_distributive_law
5301 (gen_binary (GET_CODE (op0), mode,
5302 gen_binary (AND, mode, XEXP (op0, 0), op1),
5303 gen_binary (AND, mode, XEXP (op0, 1),
5304 copy_rtx (op1))));
5305 if (GET_CODE (x) != AND)
5306 return x;
5309 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5310 return apply_distributive_law
5311 (gen_binary (GET_CODE (op1), mode,
5312 gen_binary (AND, mode, XEXP (op1, 0), op0),
5313 gen_binary (AND, mode, XEXP (op1, 1),
5314 copy_rtx (op0))));
5316 /* Similarly, taking advantage of the fact that
5317 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5319 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5320 return apply_distributive_law
5321 (gen_binary (XOR, mode,
5322 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5323 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5324 XEXP (op1, 1))));
5326 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5327 return apply_distributive_law
5328 (gen_binary (XOR, mode,
5329 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5330 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5331 break;
5333 case IOR:
5334 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5335 if (GET_CODE (op1) == CONST_INT
5336 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5337 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
5338 return op1;
5340 /* Convert (A & B) | A to A. */
5341 if (GET_CODE (op0) == AND
5342 && (rtx_equal_p (XEXP (op0, 0), op1)
5343 || rtx_equal_p (XEXP (op0, 1), op1))
5344 && ! side_effects_p (XEXP (op0, 0))
5345 && ! side_effects_p (XEXP (op0, 1)))
5346 return op1;
5348 /* If we have (ior (and A B) C), apply the distributive law and then
5349 the inverse distributive law to see if things simplify. */
5351 if (GET_CODE (op0) == AND)
5353 x = apply_distributive_law
5354 (gen_binary (AND, mode,
5355 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5356 gen_binary (IOR, mode, XEXP (op0, 1),
5357 copy_rtx (op1))));
5359 if (GET_CODE (x) != IOR)
5360 return x;
5363 if (GET_CODE (op1) == AND)
5365 x = apply_distributive_law
5366 (gen_binary (AND, mode,
5367 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5368 gen_binary (IOR, mode, XEXP (op1, 1),
5369 copy_rtx (op0))));
5371 if (GET_CODE (x) != IOR)
5372 return x;
5375 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5376 mode size to (rotate A CX). */
5378 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5379 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5380 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5381 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5382 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5383 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5384 == GET_MODE_BITSIZE (mode)))
5385 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5386 (GET_CODE (op0) == ASHIFT
5387 ? XEXP (op0, 1) : XEXP (op1, 1)));
5389 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5390 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5391 does not affect any of the bits in OP1, it can really be done
5392 as a PLUS and we can associate. We do this by seeing if OP1
5393 can be safely shifted left C bits. */
5394 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5395 && GET_CODE (XEXP (op0, 0)) == PLUS
5396 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5397 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5398 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5400 int count = INTVAL (XEXP (op0, 1));
5401 HOST_WIDE_INT mask = INTVAL (op1) << count;
5403 if (mask >> count == INTVAL (op1)
5404 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5406 SUBST (XEXP (XEXP (op0, 0), 1),
5407 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5408 return op0;
5411 break;
5413 case XOR:
5414 /* If we are XORing two things that have no bits in common,
5415 convert them into an IOR. This helps to detect rotation encoded
5416 using those methods and possibly other simplifications. */
5418 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5419 && (nonzero_bits (op0, mode)
5420 & nonzero_bits (op1, mode)) == 0)
5421 return (gen_binary (IOR, mode, op0, op1));
5423 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5424 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5425 (NOT y). */
5427 int num_negated = 0;
5429 if (GET_CODE (op0) == NOT)
5430 num_negated++, op0 = XEXP (op0, 0);
5431 if (GET_CODE (op1) == NOT)
5432 num_negated++, op1 = XEXP (op1, 0);
5434 if (num_negated == 2)
5436 SUBST (XEXP (x, 0), op0);
5437 SUBST (XEXP (x, 1), op1);
5439 else if (num_negated == 1)
5440 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
5443 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5444 correspond to a machine insn or result in further simplifications
5445 if B is a constant. */
5447 if (GET_CODE (op0) == AND
5448 && rtx_equal_p (XEXP (op0, 1), op1)
5449 && ! side_effects_p (op1))
5450 return gen_binary (AND, mode,
5451 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
5452 op1);
5454 else if (GET_CODE (op0) == AND
5455 && rtx_equal_p (XEXP (op0, 0), op1)
5456 && ! side_effects_p (op1))
5457 return gen_binary (AND, mode,
5458 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
5459 op1);
5461 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5462 comparison if STORE_FLAG_VALUE is 1. */
5463 if (STORE_FLAG_VALUE == 1
5464 && op1 == const1_rtx
5465 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5466 && reversible_comparison_p (op0))
5467 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5468 mode, XEXP (op0, 0), XEXP (op0, 1));
5470 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5471 is (lt foo (const_int 0)), so we can perform the above
5472 simplification if STORE_FLAG_VALUE is 1. */
5474 if (STORE_FLAG_VALUE == 1
5475 && op1 == const1_rtx
5476 && GET_CODE (op0) == LSHIFTRT
5477 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5478 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5479 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
5481 /* (xor (comparison foo bar) (const_int sign-bit))
5482 when STORE_FLAG_VALUE is the sign bit. */
5483 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5484 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5485 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5486 && op1 == const_true_rtx
5487 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5488 && reversible_comparison_p (op0))
5489 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
5490 mode, XEXP (op0, 0), XEXP (op0, 1));
5492 break;
5494 default:
5495 abort ();
5498 return x;
5501 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5502 operations" because they can be replaced with two more basic operations.
5503 ZERO_EXTEND is also considered "compound" because it can be replaced with
5504 an AND operation, which is simpler, though only one operation.
5506 The function expand_compound_operation is called with an rtx expression
5507 and will convert it to the appropriate shifts and AND operations,
5508 simplifying at each stage.
5510 The function make_compound_operation is called to convert an expression
5511 consisting of shifts and ANDs into the equivalent compound expression.
5512 It is the inverse of this function, loosely speaking. */
5514 static rtx
5515 expand_compound_operation (x)
5516 rtx x;
5518 unsigned HOST_WIDE_INT pos = 0, len;
5519 int unsignedp = 0;
5520 unsigned int modewidth;
5521 rtx tem;
5523 switch (GET_CODE (x))
5525 case ZERO_EXTEND:
5526 unsignedp = 1;
5527 case SIGN_EXTEND:
5528 /* We can't necessarily use a const_int for a multiword mode;
5529 it depends on implicitly extending the value.
5530 Since we don't know the right way to extend it,
5531 we can't tell whether the implicit way is right.
5533 Even for a mode that is no wider than a const_int,
5534 we can't win, because we need to sign extend one of its bits through
5535 the rest of it, and we don't know which bit. */
5536 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5537 return x;
5539 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5540 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5541 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5542 reloaded. If not for that, MEM's would very rarely be safe.
5544 Reject MODEs bigger than a word, because we might not be able
5545 to reference a two-register group starting with an arbitrary register
5546 (and currently gen_lowpart might crash for a SUBREG). */
5548 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5549 return x;
5551 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5552 /* If the inner object has VOIDmode (the only way this can happen
5553 is if it is a ASM_OPERANDS), we can't do anything since we don't
5554 know how much masking to do. */
5555 if (len == 0)
5556 return x;
5558 break;
5560 case ZERO_EXTRACT:
5561 unsignedp = 1;
5562 case SIGN_EXTRACT:
5563 /* If the operand is a CLOBBER, just return it. */
5564 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5565 return XEXP (x, 0);
5567 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5568 || GET_CODE (XEXP (x, 2)) != CONST_INT
5569 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5570 return x;
5572 len = INTVAL (XEXP (x, 1));
5573 pos = INTVAL (XEXP (x, 2));
5575 /* If this goes outside the object being extracted, replace the object
5576 with a (use (mem ...)) construct that only combine understands
5577 and is used only for this purpose. */
5578 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5579 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5581 if (BITS_BIG_ENDIAN)
5582 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5584 break;
5586 default:
5587 return x;
5589 /* Convert sign extension to zero extension, if we know that the high
5590 bit is not set, as this is easier to optimize. It will be converted
5591 back to cheaper alternative in make_extraction. */
5592 if (GET_CODE (x) == SIGN_EXTEND
5593 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5594 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5595 & ~ (((unsigned HOST_WIDE_INT)
5596 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5597 >> 1))
5598 == 0)))
5600 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5601 return expand_compound_operation (temp);
5604 /* We can optimize some special cases of ZERO_EXTEND. */
5605 if (GET_CODE (x) == ZERO_EXTEND)
5607 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5608 know that the last value didn't have any inappropriate bits
5609 set. */
5610 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5611 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5612 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5613 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5614 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5615 return XEXP (XEXP (x, 0), 0);
5617 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5618 if (GET_CODE (XEXP (x, 0)) == SUBREG
5619 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5620 && subreg_lowpart_p (XEXP (x, 0))
5621 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5622 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5623 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5624 return SUBREG_REG (XEXP (x, 0));
5626 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5627 is a comparison and STORE_FLAG_VALUE permits. This is like
5628 the first case, but it works even when GET_MODE (x) is larger
5629 than HOST_WIDE_INT. */
5630 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5631 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5632 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5633 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5634 <= HOST_BITS_PER_WIDE_INT)
5635 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5636 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5637 return XEXP (XEXP (x, 0), 0);
5639 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5640 if (GET_CODE (XEXP (x, 0)) == SUBREG
5641 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5642 && subreg_lowpart_p (XEXP (x, 0))
5643 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5644 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5645 <= HOST_BITS_PER_WIDE_INT)
5646 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5647 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5648 return SUBREG_REG (XEXP (x, 0));
5652 /* If we reach here, we want to return a pair of shifts. The inner
5653 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5654 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5655 logical depending on the value of UNSIGNEDP.
5657 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5658 converted into an AND of a shift.
5660 We must check for the case where the left shift would have a negative
5661 count. This can happen in a case like (x >> 31) & 255 on machines
5662 that can't shift by a constant. On those machines, we would first
5663 combine the shift with the AND to produce a variable-position
5664 extraction. Then the constant of 31 would be substituted in to produce
5665 a such a position. */
5667 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5668 if (modewidth + len >= pos)
5669 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5670 GET_MODE (x),
5671 simplify_shift_const (NULL_RTX, ASHIFT,
5672 GET_MODE (x),
5673 XEXP (x, 0),
5674 modewidth - pos - len),
5675 modewidth - len);
5677 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5678 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5679 simplify_shift_const (NULL_RTX, LSHIFTRT,
5680 GET_MODE (x),
5681 XEXP (x, 0), pos),
5682 ((HOST_WIDE_INT) 1 << len) - 1);
5683 else
5684 /* Any other cases we can't handle. */
5685 return x;
5688 /* If we couldn't do this for some reason, return the original
5689 expression. */
5690 if (GET_CODE (tem) == CLOBBER)
5691 return x;
5693 return tem;
5696 /* X is a SET which contains an assignment of one object into
5697 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5698 or certain SUBREGS). If possible, convert it into a series of
5699 logical operations.
5701 We half-heartedly support variable positions, but do not at all
5702 support variable lengths. */
5704 static rtx
5705 expand_field_assignment (x)
5706 rtx x;
5708 rtx inner;
5709 rtx pos; /* Always counts from low bit. */
5710 int len;
5711 rtx mask;
5712 enum machine_mode compute_mode;
5714 /* Loop until we find something we can't simplify. */
5715 while (1)
5717 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5718 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5720 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5721 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5722 pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
5724 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5725 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5727 inner = XEXP (SET_DEST (x), 0);
5728 len = INTVAL (XEXP (SET_DEST (x), 1));
5729 pos = XEXP (SET_DEST (x), 2);
5731 /* If the position is constant and spans the width of INNER,
5732 surround INNER with a USE to indicate this. */
5733 if (GET_CODE (pos) == CONST_INT
5734 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5735 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5737 if (BITS_BIG_ENDIAN)
5739 if (GET_CODE (pos) == CONST_INT)
5740 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5741 - INTVAL (pos));
5742 else if (GET_CODE (pos) == MINUS
5743 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5744 && (INTVAL (XEXP (pos, 1))
5745 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5746 /* If position is ADJUST - X, new position is X. */
5747 pos = XEXP (pos, 0);
5748 else
5749 pos = gen_binary (MINUS, GET_MODE (pos),
5750 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5751 - len),
5752 pos);
5756 /* A SUBREG between two modes that occupy the same numbers of words
5757 can be done by moving the SUBREG to the source. */
5758 else if (GET_CODE (SET_DEST (x)) == SUBREG
5759 /* We need SUBREGs to compute nonzero_bits properly. */
5760 && nonzero_sign_valid
5761 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5762 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5763 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5764 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5766 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5767 gen_lowpart_for_combine
5768 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5769 SET_SRC (x)));
5770 continue;
5772 else
5773 break;
5775 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5776 inner = SUBREG_REG (inner);
5778 compute_mode = GET_MODE (inner);
5780 /* Don't attempt bitwise arithmetic on non-integral modes. */
5781 if (! INTEGRAL_MODE_P (compute_mode))
5783 enum machine_mode imode;
5785 /* Something is probably seriously wrong if this matches. */
5786 if (! FLOAT_MODE_P (compute_mode))
5787 break;
5789 /* Try to find an integral mode to pun with. */
5790 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5791 if (imode == BLKmode)
5792 break;
5794 compute_mode = imode;
5795 inner = gen_lowpart_for_combine (imode, inner);
5798 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5799 if (len < HOST_BITS_PER_WIDE_INT)
5800 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5801 else
5802 break;
5804 /* Now compute the equivalent expression. Make a copy of INNER
5805 for the SET_DEST in case it is a MEM into which we will substitute;
5806 we don't want shared RTL in that case. */
5807 x = gen_rtx_SET
5808 (VOIDmode, copy_rtx (inner),
5809 gen_binary (IOR, compute_mode,
5810 gen_binary (AND, compute_mode,
5811 gen_unary (NOT, compute_mode,
5812 compute_mode,
5813 gen_binary (ASHIFT,
5814 compute_mode,
5815 mask, pos)),
5816 inner),
5817 gen_binary (ASHIFT, compute_mode,
5818 gen_binary (AND, compute_mode,
5819 gen_lowpart_for_combine
5820 (compute_mode, SET_SRC (x)),
5821 mask),
5822 pos)));
5825 return x;
5828 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5829 it is an RTX that represents a variable starting position; otherwise,
5830 POS is the (constant) starting bit position (counted from the LSB).
5832 INNER may be a USE. This will occur when we started with a bitfield
5833 that went outside the boundary of the object in memory, which is
5834 allowed on most machines. To isolate this case, we produce a USE
5835 whose mode is wide enough and surround the MEM with it. The only
5836 code that understands the USE is this routine. If it is not removed,
5837 it will cause the resulting insn not to match.
5839 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5840 signed reference.
5842 IN_DEST is non-zero if this is a reference in the destination of a
5843 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5844 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5845 be used.
5847 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5848 ZERO_EXTRACT should be built even for bits starting at bit 0.
5850 MODE is the desired mode of the result (if IN_DEST == 0).
5852 The result is an RTX for the extraction or NULL_RTX if the target
5853 can't handle it. */
5855 static rtx
5856 make_extraction (mode, inner, pos, pos_rtx, len,
5857 unsignedp, in_dest, in_compare)
5858 enum machine_mode mode;
5859 rtx inner;
5860 HOST_WIDE_INT pos;
5861 rtx pos_rtx;
5862 unsigned HOST_WIDE_INT len;
5863 int unsignedp;
5864 int in_dest, in_compare;
5866 /* This mode describes the size of the storage area
5867 to fetch the overall value from. Within that, we
5868 ignore the POS lowest bits, etc. */
5869 enum machine_mode is_mode = GET_MODE (inner);
5870 enum machine_mode inner_mode;
5871 enum machine_mode wanted_inner_mode = byte_mode;
5872 enum machine_mode wanted_inner_reg_mode = word_mode;
5873 enum machine_mode pos_mode = word_mode;
5874 enum machine_mode extraction_mode = word_mode;
5875 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5876 int spans_byte = 0;
5877 rtx new = 0;
5878 rtx orig_pos_rtx = pos_rtx;
5879 HOST_WIDE_INT orig_pos;
5881 /* Get some information about INNER and get the innermost object. */
5882 if (GET_CODE (inner) == USE)
5883 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5884 /* We don't need to adjust the position because we set up the USE
5885 to pretend that it was a full-word object. */
5886 spans_byte = 1, inner = XEXP (inner, 0);
5887 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5889 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5890 consider just the QI as the memory to extract from.
5891 The subreg adds or removes high bits; its mode is
5892 irrelevant to the meaning of this extraction,
5893 since POS and LEN count from the lsb. */
5894 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5895 is_mode = GET_MODE (SUBREG_REG (inner));
5896 inner = SUBREG_REG (inner);
5899 inner_mode = GET_MODE (inner);
5901 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5902 pos = INTVAL (pos_rtx), pos_rtx = 0;
5904 /* See if this can be done without an extraction. We never can if the
5905 width of the field is not the same as that of some integer mode. For
5906 registers, we can only avoid the extraction if the position is at the
5907 low-order bit and this is either not in the destination or we have the
5908 appropriate STRICT_LOW_PART operation available.
5910 For MEM, we can avoid an extract if the field starts on an appropriate
5911 boundary and we can change the mode of the memory reference. However,
5912 we cannot directly access the MEM if we have a USE and the underlying
5913 MEM is not TMODE. This combination means that MEM was being used in a
5914 context where bits outside its mode were being referenced; that is only
5915 valid in bit-field insns. */
5917 if (tmode != BLKmode
5918 && ! (spans_byte && inner_mode != tmode)
5919 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5920 && GET_CODE (inner) != MEM
5921 && (! in_dest
5922 || (GET_CODE (inner) == REG
5923 && (movstrict_optab->handlers[(int) tmode].insn_code
5924 != CODE_FOR_nothing))))
5925 || (GET_CODE (inner) == MEM && pos_rtx == 0
5926 && (pos
5927 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5928 : BITS_PER_UNIT)) == 0
5929 /* We can't do this if we are widening INNER_MODE (it
5930 may not be aligned, for one thing). */
5931 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5932 && (inner_mode == tmode
5933 || (! mode_dependent_address_p (XEXP (inner, 0))
5934 && ! MEM_VOLATILE_P (inner))))))
5936 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5937 field. If the original and current mode are the same, we need not
5938 adjust the offset. Otherwise, we do if bytes big endian.
5940 If INNER is not a MEM, get a piece consisting of just the field
5941 of interest (in this case POS % BITS_PER_WORD must be 0). */
5943 if (GET_CODE (inner) == MEM)
5945 int offset;
5946 /* POS counts from lsb, but make OFFSET count in memory order. */
5947 if (BYTES_BIG_ENDIAN)
5948 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5949 else
5950 offset = pos / BITS_PER_UNIT;
5952 new = gen_rtx_MEM (tmode, plus_constant (XEXP (inner, 0), offset));
5953 MEM_COPY_ATTRIBUTES (new, inner);
5955 else if (GET_CODE (inner) == REG)
5957 /* We can't call gen_lowpart_for_combine here since we always want
5958 a SUBREG and it would sometimes return a new hard register. */
5959 if (tmode != inner_mode)
5960 new = gen_rtx_SUBREG (tmode, inner,
5961 (WORDS_BIG_ENDIAN
5962 && (GET_MODE_SIZE (inner_mode)
5963 > UNITS_PER_WORD)
5964 ? (((GET_MODE_SIZE (inner_mode)
5965 - GET_MODE_SIZE (tmode))
5966 / UNITS_PER_WORD)
5967 - pos / BITS_PER_WORD)
5968 : pos / BITS_PER_WORD));
5969 else
5970 new = inner;
5972 else
5973 new = force_to_mode (inner, tmode,
5974 len >= HOST_BITS_PER_WIDE_INT
5975 ? GET_MODE_MASK (tmode)
5976 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5977 NULL_RTX, 0);
5979 /* If this extraction is going into the destination of a SET,
5980 make a STRICT_LOW_PART unless we made a MEM. */
5982 if (in_dest)
5983 return (GET_CODE (new) == MEM ? new
5984 : (GET_CODE (new) != SUBREG
5985 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5986 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5988 if (mode == tmode)
5989 return new;
5991 /* If we know that no extraneous bits are set, and that the high
5992 bit is not set, convert the extraction to the cheaper of
5993 sign and zero extension, that are equivalent in these cases. */
5994 if (flag_expensive_optimizations
5995 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5996 && ((nonzero_bits (new, tmode)
5997 & ~ (((unsigned HOST_WIDE_INT)
5998 GET_MODE_MASK (tmode))
5999 >> 1))
6000 == 0)))
6002 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6003 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6005 /* Prefer ZERO_EXTENSION, since it gives more information to
6006 backends. */
6007 if (rtx_cost (temp, SET) < rtx_cost (temp1, SET))
6008 return temp;
6009 return temp1;
6012 /* Otherwise, sign- or zero-extend unless we already are in the
6013 proper mode. */
6015 return (gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6016 mode, new));
6019 /* Unless this is a COMPARE or we have a funny memory reference,
6020 don't do anything with zero-extending field extracts starting at
6021 the low-order bit since they are simple AND operations. */
6022 if (pos_rtx == 0 && pos == 0 && ! in_dest
6023 && ! in_compare && ! spans_byte && unsignedp)
6024 return 0;
6026 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6027 we would be spanning bytes or if the position is not a constant and the
6028 length is not 1. In all other cases, we would only be going outside
6029 our object in cases when an original shift would have been
6030 undefined. */
6031 if (! spans_byte && GET_CODE (inner) == MEM
6032 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6033 || (pos_rtx != 0 && len != 1)))
6034 return 0;
6036 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6037 and the mode for the result. */
6038 #ifdef HAVE_insv
6039 if (in_dest)
6041 wanted_inner_reg_mode
6042 = insn_data[(int) CODE_FOR_insv].operand[0].mode;
6043 if (wanted_inner_reg_mode == VOIDmode)
6044 wanted_inner_reg_mode = word_mode;
6046 pos_mode = insn_data[(int) CODE_FOR_insv].operand[2].mode;
6047 if (pos_mode == VOIDmode)
6048 pos_mode = word_mode;
6050 extraction_mode = insn_data[(int) CODE_FOR_insv].operand[3].mode;
6051 if (extraction_mode == VOIDmode)
6052 extraction_mode = word_mode;
6054 #endif
6056 #ifdef HAVE_extzv
6057 if (! in_dest && unsignedp)
6059 wanted_inner_reg_mode
6060 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
6061 if (wanted_inner_reg_mode == VOIDmode)
6062 wanted_inner_reg_mode = word_mode;
6064 pos_mode = insn_data[(int) CODE_FOR_extzv].operand[3].mode;
6065 if (pos_mode == VOIDmode)
6066 pos_mode = word_mode;
6068 extraction_mode = insn_data[(int) CODE_FOR_extzv].operand[0].mode;
6069 if (extraction_mode == VOIDmode)
6070 extraction_mode = word_mode;
6072 #endif
6074 #ifdef HAVE_extv
6075 if (! in_dest && ! unsignedp)
6077 wanted_inner_reg_mode
6078 = insn_data[(int) CODE_FOR_extv].operand[1].mode;
6079 if (wanted_inner_reg_mode == VOIDmode)
6080 wanted_inner_reg_mode = word_mode;
6082 pos_mode = insn_data[(int) CODE_FOR_extv].operand[3].mode;
6083 if (pos_mode == VOIDmode)
6084 pos_mode = word_mode;
6086 extraction_mode = insn_data[(int) CODE_FOR_extv].operand[0].mode;
6087 if (extraction_mode == VOIDmode)
6088 extraction_mode = word_mode;
6090 #endif
6092 /* Never narrow an object, since that might not be safe. */
6094 if (mode != VOIDmode
6095 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6096 extraction_mode = mode;
6098 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6099 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6100 pos_mode = GET_MODE (pos_rtx);
6102 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6103 if we have to change the mode of memory and cannot, the desired mode is
6104 EXTRACTION_MODE. */
6105 if (GET_CODE (inner) != MEM)
6106 wanted_inner_mode = wanted_inner_reg_mode;
6107 else if (inner_mode != wanted_inner_mode
6108 && (mode_dependent_address_p (XEXP (inner, 0))
6109 || MEM_VOLATILE_P (inner)))
6110 wanted_inner_mode = extraction_mode;
6112 orig_pos = pos;
6114 if (BITS_BIG_ENDIAN)
6116 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6117 BITS_BIG_ENDIAN style. If position is constant, compute new
6118 position. Otherwise, build subtraction.
6119 Note that POS is relative to the mode of the original argument.
6120 If it's a MEM we need to recompute POS relative to that.
6121 However, if we're extracting from (or inserting into) a register,
6122 we want to recompute POS relative to wanted_inner_mode. */
6123 int width = (GET_CODE (inner) == MEM
6124 ? GET_MODE_BITSIZE (is_mode)
6125 : GET_MODE_BITSIZE (wanted_inner_mode));
6127 if (pos_rtx == 0)
6128 pos = width - len - pos;
6129 else
6130 pos_rtx
6131 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
6132 GEN_INT (width - len), pos_rtx);
6133 /* POS may be less than 0 now, but we check for that below.
6134 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6137 /* If INNER has a wider mode, make it smaller. If this is a constant
6138 extract, try to adjust the byte to point to the byte containing
6139 the value. */
6140 if (wanted_inner_mode != VOIDmode
6141 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6142 && ((GET_CODE (inner) == MEM
6143 && (inner_mode == wanted_inner_mode
6144 || (! mode_dependent_address_p (XEXP (inner, 0))
6145 && ! MEM_VOLATILE_P (inner))))))
6147 int offset = 0;
6149 /* The computations below will be correct if the machine is big
6150 endian in both bits and bytes or little endian in bits and bytes.
6151 If it is mixed, we must adjust. */
6153 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6154 adjust OFFSET to compensate. */
6155 if (BYTES_BIG_ENDIAN
6156 && ! spans_byte
6157 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6158 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6160 /* If this is a constant position, we can move to the desired byte. */
6161 if (pos_rtx == 0)
6163 offset += pos / BITS_PER_UNIT;
6164 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6167 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6168 && ! spans_byte
6169 && is_mode != wanted_inner_mode)
6170 offset = (GET_MODE_SIZE (is_mode)
6171 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6173 if (offset != 0 || inner_mode != wanted_inner_mode)
6175 rtx newmem = gen_rtx_MEM (wanted_inner_mode,
6176 plus_constant (XEXP (inner, 0), offset));
6178 MEM_COPY_ATTRIBUTES (newmem, inner);
6179 inner = newmem;
6183 /* If INNER is not memory, we can always get it into the proper mode. If we
6184 are changing its mode, POS must be a constant and smaller than the size
6185 of the new mode. */
6186 else if (GET_CODE (inner) != MEM)
6188 if (GET_MODE (inner) != wanted_inner_mode
6189 && (pos_rtx != 0
6190 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6191 return 0;
6193 inner = force_to_mode (inner, wanted_inner_mode,
6194 pos_rtx
6195 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6196 ? GET_MODE_MASK (wanted_inner_mode)
6197 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6198 << orig_pos),
6199 NULL_RTX, 0);
6202 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6203 have to zero extend. Otherwise, we can just use a SUBREG. */
6204 if (pos_rtx != 0
6205 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6207 rtx temp = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
6209 /* If we know that no extraneous bits are set, and that the high
6210 bit is not set, convert extraction to cheaper one - eighter
6211 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6212 cases. */
6213 if (flag_expensive_optimizations
6214 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6215 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6216 & ~ (((unsigned HOST_WIDE_INT)
6217 GET_MODE_MASK (GET_MODE (pos_rtx)))
6218 >> 1))
6219 == 0)))
6221 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6223 /* Preffer ZERO_EXTENSION, since it gives more information to
6224 backends. */
6225 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6226 temp = temp1;
6228 pos_rtx = temp;
6230 else if (pos_rtx != 0
6231 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6232 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6234 /* Make POS_RTX unless we already have it and it is correct. If we don't
6235 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6236 be a CONST_INT. */
6237 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6238 pos_rtx = orig_pos_rtx;
6240 else if (pos_rtx == 0)
6241 pos_rtx = GEN_INT (pos);
6243 /* Make the required operation. See if we can use existing rtx. */
6244 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6245 extraction_mode, inner, GEN_INT (len), pos_rtx);
6246 if (! in_dest)
6247 new = gen_lowpart_for_combine (mode, new);
6249 return new;
6252 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6253 with any other operations in X. Return X without that shift if so. */
6255 static rtx
6256 extract_left_shift (x, count)
6257 rtx x;
6258 int count;
6260 enum rtx_code code = GET_CODE (x);
6261 enum machine_mode mode = GET_MODE (x);
6262 rtx tem;
6264 switch (code)
6266 case ASHIFT:
6267 /* This is the shift itself. If it is wide enough, we will return
6268 either the value being shifted if the shift count is equal to
6269 COUNT or a shift for the difference. */
6270 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6271 && INTVAL (XEXP (x, 1)) >= count)
6272 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6273 INTVAL (XEXP (x, 1)) - count);
6274 break;
6276 case NEG: case NOT:
6277 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6278 return gen_unary (code, mode, mode, tem);
6280 break;
6282 case PLUS: case IOR: case XOR: case AND:
6283 /* If we can safely shift this constant and we find the inner shift,
6284 make a new operation. */
6285 if (GET_CODE (XEXP (x,1)) == CONST_INT
6286 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6287 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6288 return gen_binary (code, mode, tem,
6289 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6291 break;
6293 default:
6294 break;
6297 return 0;
6300 /* Look at the expression rooted at X. Look for expressions
6301 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6302 Form these expressions.
6304 Return the new rtx, usually just X.
6306 Also, for machines like the Vax that don't have logical shift insns,
6307 try to convert logical to arithmetic shift operations in cases where
6308 they are equivalent. This undoes the canonicalizations to logical
6309 shifts done elsewhere.
6311 We try, as much as possible, to re-use rtl expressions to save memory.
6313 IN_CODE says what kind of expression we are processing. Normally, it is
6314 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6315 being kludges), it is MEM. When processing the arguments of a comparison
6316 or a COMPARE against zero, it is COMPARE. */
6318 static rtx
6319 make_compound_operation (x, in_code)
6320 rtx x;
6321 enum rtx_code in_code;
6323 enum rtx_code code = GET_CODE (x);
6324 enum machine_mode mode = GET_MODE (x);
6325 int mode_width = GET_MODE_BITSIZE (mode);
6326 rtx rhs, lhs;
6327 enum rtx_code next_code;
6328 int i;
6329 rtx new = 0;
6330 rtx tem;
6331 const char *fmt;
6333 /* Select the code to be used in recursive calls. Once we are inside an
6334 address, we stay there. If we have a comparison, set to COMPARE,
6335 but once inside, go back to our default of SET. */
6337 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6338 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6339 && XEXP (x, 1) == const0_rtx) ? COMPARE
6340 : in_code == COMPARE ? SET : in_code);
6342 /* Process depending on the code of this operation. If NEW is set
6343 non-zero, it will be returned. */
6345 switch (code)
6347 case ASHIFT:
6348 /* Convert shifts by constants into multiplications if inside
6349 an address. */
6350 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6351 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6352 && INTVAL (XEXP (x, 1)) >= 0)
6354 new = make_compound_operation (XEXP (x, 0), next_code);
6355 new = gen_rtx_combine (MULT, mode, new,
6356 GEN_INT ((HOST_WIDE_INT) 1
6357 << INTVAL (XEXP (x, 1))));
6359 break;
6361 case AND:
6362 /* If the second operand is not a constant, we can't do anything
6363 with it. */
6364 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6365 break;
6367 /* If the constant is a power of two minus one and the first operand
6368 is a logical right shift, make an extraction. */
6369 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6370 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6372 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6373 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6374 0, in_code == COMPARE);
6377 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6378 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6379 && subreg_lowpart_p (XEXP (x, 0))
6380 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6381 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6383 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6384 next_code);
6385 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6386 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6387 0, in_code == COMPARE);
6389 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6390 else if ((GET_CODE (XEXP (x, 0)) == XOR
6391 || GET_CODE (XEXP (x, 0)) == IOR)
6392 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6393 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6394 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6396 /* Apply the distributive law, and then try to make extractions. */
6397 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
6398 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6399 XEXP (x, 1)),
6400 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6401 XEXP (x, 1)));
6402 new = make_compound_operation (new, in_code);
6405 /* If we are have (and (rotate X C) M) and C is larger than the number
6406 of bits in M, this is an extraction. */
6408 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6409 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6410 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6411 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6413 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6414 new = make_extraction (mode, new,
6415 (GET_MODE_BITSIZE (mode)
6416 - INTVAL (XEXP (XEXP (x, 0), 1))),
6417 NULL_RTX, i, 1, 0, in_code == COMPARE);
6420 /* On machines without logical shifts, if the operand of the AND is
6421 a logical shift and our mask turns off all the propagated sign
6422 bits, we can replace the logical shift with an arithmetic shift. */
6423 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6424 && (lshr_optab->handlers[(int) mode].insn_code
6425 == CODE_FOR_nothing)
6426 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
6427 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6428 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6429 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6430 && mode_width <= HOST_BITS_PER_WIDE_INT)
6432 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6434 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6435 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6436 SUBST (XEXP (x, 0),
6437 gen_rtx_combine (ASHIFTRT, mode,
6438 make_compound_operation (XEXP (XEXP (x, 0), 0),
6439 next_code),
6440 XEXP (XEXP (x, 0), 1)));
6443 /* If the constant is one less than a power of two, this might be
6444 representable by an extraction even if no shift is present.
6445 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6446 we are in a COMPARE. */
6447 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6448 new = make_extraction (mode,
6449 make_compound_operation (XEXP (x, 0),
6450 next_code),
6451 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6453 /* If we are in a comparison and this is an AND with a power of two,
6454 convert this into the appropriate bit extract. */
6455 else if (in_code == COMPARE
6456 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6457 new = make_extraction (mode,
6458 make_compound_operation (XEXP (x, 0),
6459 next_code),
6460 i, NULL_RTX, 1, 1, 0, 1);
6462 break;
6464 case LSHIFTRT:
6465 /* If the sign bit is known to be zero, replace this with an
6466 arithmetic shift. */
6467 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
6468 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
6469 && mode_width <= HOST_BITS_PER_WIDE_INT
6470 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6472 new = gen_rtx_combine (ASHIFTRT, mode,
6473 make_compound_operation (XEXP (x, 0),
6474 next_code),
6475 XEXP (x, 1));
6476 break;
6479 /* ... fall through ... */
6481 case ASHIFTRT:
6482 lhs = XEXP (x, 0);
6483 rhs = XEXP (x, 1);
6485 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6486 this is a SIGN_EXTRACT. */
6487 if (GET_CODE (rhs) == CONST_INT
6488 && GET_CODE (lhs) == ASHIFT
6489 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6490 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6492 new = make_compound_operation (XEXP (lhs, 0), next_code);
6493 new = make_extraction (mode, new,
6494 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6495 NULL_RTX, mode_width - INTVAL (rhs),
6496 code == LSHIFTRT, 0, in_code == COMPARE);
6499 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6500 If so, try to merge the shifts into a SIGN_EXTEND. We could
6501 also do this for some cases of SIGN_EXTRACT, but it doesn't
6502 seem worth the effort; the case checked for occurs on Alpha. */
6504 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6505 && ! (GET_CODE (lhs) == SUBREG
6506 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6507 && GET_CODE (rhs) == CONST_INT
6508 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6509 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6510 new = make_extraction (mode, make_compound_operation (new, next_code),
6511 0, NULL_RTX, mode_width - INTVAL (rhs),
6512 code == LSHIFTRT, 0, in_code == COMPARE);
6514 break;
6516 case SUBREG:
6517 /* Call ourselves recursively on the inner expression. If we are
6518 narrowing the object and it has a different RTL code from
6519 what it originally did, do this SUBREG as a force_to_mode. */
6521 tem = make_compound_operation (SUBREG_REG (x), in_code);
6522 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6523 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6524 && subreg_lowpart_p (x))
6526 rtx newer = force_to_mode (tem, mode,
6527 GET_MODE_MASK (mode), NULL_RTX, 0);
6529 /* If we have something other than a SUBREG, we might have
6530 done an expansion, so rerun outselves. */
6531 if (GET_CODE (newer) != SUBREG)
6532 newer = make_compound_operation (newer, in_code);
6534 return newer;
6537 /* If this is a paradoxical subreg, and the new code is a sign or
6538 zero extension, omit the subreg and widen the extension. If it
6539 is a regular subreg, we can still get rid of the subreg by not
6540 widening so much, or in fact removing the extension entirely. */
6541 if ((GET_CODE (tem) == SIGN_EXTEND
6542 || GET_CODE (tem) == ZERO_EXTEND)
6543 && subreg_lowpart_p (x))
6545 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6546 || (GET_MODE_SIZE (mode) >
6547 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6548 tem = gen_rtx_combine (GET_CODE (tem), mode, XEXP (tem, 0));
6549 else
6550 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6551 return tem;
6553 break;
6555 default:
6556 break;
6559 if (new)
6561 x = gen_lowpart_for_combine (mode, new);
6562 code = GET_CODE (x);
6565 /* Now recursively process each operand of this operation. */
6566 fmt = GET_RTX_FORMAT (code);
6567 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6568 if (fmt[i] == 'e')
6570 new = make_compound_operation (XEXP (x, i), next_code);
6571 SUBST (XEXP (x, i), new);
6574 return x;
6577 /* Given M see if it is a value that would select a field of bits
6578 within an item, but not the entire word. Return -1 if not.
6579 Otherwise, return the starting position of the field, where 0 is the
6580 low-order bit.
6582 *PLEN is set to the length of the field. */
6584 static int
6585 get_pos_from_mask (m, plen)
6586 unsigned HOST_WIDE_INT m;
6587 unsigned HOST_WIDE_INT *plen;
6589 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6590 int pos = exact_log2 (m & - m);
6591 int len;
6593 if (pos < 0)
6594 return -1;
6596 /* Now shift off the low-order zero bits and see if we have a power of
6597 two minus 1. */
6598 len = exact_log2 ((m >> pos) + 1);
6600 if (len <= 0)
6601 return -1;
6603 *plen = len;
6604 return pos;
6607 /* See if X can be simplified knowing that we will only refer to it in
6608 MODE and will only refer to those bits that are nonzero in MASK.
6609 If other bits are being computed or if masking operations are done
6610 that select a superset of the bits in MASK, they can sometimes be
6611 ignored.
6613 Return a possibly simplified expression, but always convert X to
6614 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6616 Also, if REG is non-zero and X is a register equal in value to REG,
6617 replace X with REG.
6619 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6620 are all off in X. This is used when X will be complemented, by either
6621 NOT, NEG, or XOR. */
6623 static rtx
6624 force_to_mode (x, mode, mask, reg, just_select)
6625 rtx x;
6626 enum machine_mode mode;
6627 unsigned HOST_WIDE_INT mask;
6628 rtx reg;
6629 int just_select;
6631 enum rtx_code code = GET_CODE (x);
6632 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6633 enum machine_mode op_mode;
6634 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6635 rtx op0, op1, temp;
6637 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6638 code below will do the wrong thing since the mode of such an
6639 expression is VOIDmode.
6641 Also do nothing if X is a CLOBBER; this can happen if X was
6642 the return value from a call to gen_lowpart_for_combine. */
6643 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6644 return x;
6646 /* We want to perform the operation is its present mode unless we know
6647 that the operation is valid in MODE, in which case we do the operation
6648 in MODE. */
6649 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6650 && code_to_optab[(int) code] != 0
6651 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
6652 != CODE_FOR_nothing))
6653 ? mode : GET_MODE (x));
6655 /* It is not valid to do a right-shift in a narrower mode
6656 than the one it came in with. */
6657 if ((code == LSHIFTRT || code == ASHIFTRT)
6658 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6659 op_mode = GET_MODE (x);
6661 /* Truncate MASK to fit OP_MODE. */
6662 if (op_mode)
6663 mask &= GET_MODE_MASK (op_mode);
6665 /* When we have an arithmetic operation, or a shift whose count we
6666 do not know, we need to assume that all bit the up to the highest-order
6667 bit in MASK will be needed. This is how we form such a mask. */
6668 if (op_mode)
6669 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6670 ? GET_MODE_MASK (op_mode)
6671 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6672 - 1));
6673 else
6674 fuller_mask = ~ (HOST_WIDE_INT) 0;
6676 /* Determine what bits of X are guaranteed to be (non)zero. */
6677 nonzero = nonzero_bits (x, mode);
6679 /* If none of the bits in X are needed, return a zero. */
6680 if (! just_select && (nonzero & mask) == 0)
6681 return const0_rtx;
6683 /* If X is a CONST_INT, return a new one. Do this here since the
6684 test below will fail. */
6685 if (GET_CODE (x) == CONST_INT)
6687 HOST_WIDE_INT cval = INTVAL (x) & mask;
6688 int width = GET_MODE_BITSIZE (mode);
6690 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6691 number, sign extend it. */
6692 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6693 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6694 cval |= (HOST_WIDE_INT) -1 << width;
6696 return GEN_INT (cval);
6699 /* If X is narrower than MODE and we want all the bits in X's mode, just
6700 get X in the proper mode. */
6701 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6702 && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
6703 return gen_lowpart_for_combine (mode, x);
6705 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6706 MASK are already known to be zero in X, we need not do anything. */
6707 if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
6708 return x;
6710 switch (code)
6712 case CLOBBER:
6713 /* If X is a (clobber (const_int)), return it since we know we are
6714 generating something that won't match. */
6715 return x;
6717 case USE:
6718 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6719 spanned the boundary of the MEM. If we are now masking so it is
6720 within that boundary, we don't need the USE any more. */
6721 if (! BITS_BIG_ENDIAN
6722 && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6723 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6724 break;
6726 case SIGN_EXTEND:
6727 case ZERO_EXTEND:
6728 case ZERO_EXTRACT:
6729 case SIGN_EXTRACT:
6730 x = expand_compound_operation (x);
6731 if (GET_CODE (x) != code)
6732 return force_to_mode (x, mode, mask, reg, next_select);
6733 break;
6735 case REG:
6736 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6737 || rtx_equal_p (reg, get_last_value (x))))
6738 x = reg;
6739 break;
6741 case SUBREG:
6742 if (subreg_lowpart_p (x)
6743 /* We can ignore the effect of this SUBREG if it narrows the mode or
6744 if the constant masks to zero all the bits the mode doesn't
6745 have. */
6746 && ((GET_MODE_SIZE (GET_MODE (x))
6747 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6748 || (0 == (mask
6749 & GET_MODE_MASK (GET_MODE (x))
6750 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6751 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6752 break;
6754 case AND:
6755 /* If this is an AND with a constant, convert it into an AND
6756 whose constant is the AND of that constant with MASK. If it
6757 remains an AND of MASK, delete it since it is redundant. */
6759 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6761 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6762 mask & INTVAL (XEXP (x, 1)));
6764 /* If X is still an AND, see if it is an AND with a mask that
6765 is just some low-order bits. If so, and it is MASK, we don't
6766 need it. */
6768 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6769 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == mask)
6770 x = XEXP (x, 0);
6772 /* If it remains an AND, try making another AND with the bits
6773 in the mode mask that aren't in MASK turned on. If the
6774 constant in the AND is wide enough, this might make a
6775 cheaper constant. */
6777 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6778 && GET_MODE_MASK (GET_MODE (x)) != mask
6779 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6781 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6782 | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
6783 int width = GET_MODE_BITSIZE (GET_MODE (x));
6784 rtx y;
6786 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6787 number, sign extend it. */
6788 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6789 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6790 cval |= (HOST_WIDE_INT) -1 << width;
6792 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6793 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6794 x = y;
6797 break;
6800 goto binop;
6802 case PLUS:
6803 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6804 low-order bits (as in an alignment operation) and FOO is already
6805 aligned to that boundary, mask C1 to that boundary as well.
6806 This may eliminate that PLUS and, later, the AND. */
6809 unsigned int width = GET_MODE_BITSIZE (mode);
6810 unsigned HOST_WIDE_INT smask = mask;
6812 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6813 number, sign extend it. */
6815 if (width < HOST_BITS_PER_WIDE_INT
6816 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6817 smask |= (HOST_WIDE_INT) -1 << width;
6819 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6820 && exact_log2 (- smask) >= 0)
6822 #ifdef STACK_BIAS
6823 if (STACK_BIAS
6824 && (XEXP (x, 0) == stack_pointer_rtx
6825 || XEXP (x, 0) == frame_pointer_rtx))
6827 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
6828 unsigned HOST_WIDE_INT sp_mask = GET_MODE_MASK (mode);
6830 sp_mask &= ~ (sp_alignment - 1);
6831 if ((sp_mask & ~ smask) == 0
6832 && ((INTVAL (XEXP (x, 1)) - STACK_BIAS) & ~ smask) != 0)
6833 return force_to_mode (plus_constant (XEXP (x, 0),
6834 ((INTVAL (XEXP (x, 1)) -
6835 STACK_BIAS) & smask)
6836 + STACK_BIAS),
6837 mode, smask, reg, next_select);
6839 #endif
6840 if ((nonzero_bits (XEXP (x, 0), mode) & ~ smask) == 0
6841 && (INTVAL (XEXP (x, 1)) & ~ smask) != 0)
6842 return force_to_mode (plus_constant (XEXP (x, 0),
6843 (INTVAL (XEXP (x, 1))
6844 & smask)),
6845 mode, smask, reg, next_select);
6849 /* ... fall through ... */
6851 case MULT:
6852 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6853 most significant bit in MASK since carries from those bits will
6854 affect the bits we are interested in. */
6855 mask = fuller_mask;
6856 goto binop;
6858 case MINUS:
6859 /* If X is (minus C Y) where C's least set bit is larger than any bit
6860 in the mask, then we may replace with (neg Y). */
6861 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6862 && (INTVAL (XEXP (x, 0)) & -INTVAL (XEXP (x, 0))) > mask)
6864 x = gen_unary (NEG, GET_MODE (x), GET_MODE (x), XEXP (x, 1));
6865 return force_to_mode (x, mode, mask, reg, next_select);
6868 /* Similarly, if C contains every bit in the mask, then we may
6869 replace with (not Y). */
6870 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6871 && (INTVAL (XEXP (x, 0)) | mask) == INTVAL (XEXP (x, 0)))
6873 x = gen_unary (NOT, GET_MODE (x), GET_MODE (x), XEXP (x, 1));
6874 return force_to_mode (x, mode, mask, reg, next_select);
6877 mask = fuller_mask;
6878 goto binop;
6880 case IOR:
6881 case XOR:
6882 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6883 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6884 operation which may be a bitfield extraction. Ensure that the
6885 constant we form is not wider than the mode of X. */
6887 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6888 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6889 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6890 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6891 && GET_CODE (XEXP (x, 1)) == CONST_INT
6892 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6893 + floor_log2 (INTVAL (XEXP (x, 1))))
6894 < GET_MODE_BITSIZE (GET_MODE (x)))
6895 && (INTVAL (XEXP (x, 1))
6896 & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6898 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6899 << INTVAL (XEXP (XEXP (x, 0), 1)));
6900 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6901 XEXP (XEXP (x, 0), 0), temp);
6902 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6903 XEXP (XEXP (x, 0), 1));
6904 return force_to_mode (x, mode, mask, reg, next_select);
6907 binop:
6908 /* For most binary operations, just propagate into the operation and
6909 change the mode if we have an operation of that mode. */
6911 op0 = gen_lowpart_for_combine (op_mode,
6912 force_to_mode (XEXP (x, 0), mode, mask,
6913 reg, next_select));
6914 op1 = gen_lowpart_for_combine (op_mode,
6915 force_to_mode (XEXP (x, 1), mode, mask,
6916 reg, next_select));
6918 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6919 MASK since OP1 might have been sign-extended but we never want
6920 to turn on extra bits, since combine might have previously relied
6921 on them being off. */
6922 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6923 && (INTVAL (op1) & mask) != 0)
6924 op1 = GEN_INT (INTVAL (op1) & mask);
6926 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6927 x = gen_binary (code, op_mode, op0, op1);
6928 break;
6930 case ASHIFT:
6931 /* For left shifts, do the same, but just for the first operand.
6932 However, we cannot do anything with shifts where we cannot
6933 guarantee that the counts are smaller than the size of the mode
6934 because such a count will have a different meaning in a
6935 wider mode. */
6937 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6938 && INTVAL (XEXP (x, 1)) >= 0
6939 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6940 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6941 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6942 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6943 break;
6945 /* If the shift count is a constant and we can do arithmetic in
6946 the mode of the shift, refine which bits we need. Otherwise, use the
6947 conservative form of the mask. */
6948 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6949 && INTVAL (XEXP (x, 1)) >= 0
6950 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6951 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6952 mask >>= INTVAL (XEXP (x, 1));
6953 else
6954 mask = fuller_mask;
6956 op0 = gen_lowpart_for_combine (op_mode,
6957 force_to_mode (XEXP (x, 0), op_mode,
6958 mask, reg, next_select));
6960 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6961 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6962 break;
6964 case LSHIFTRT:
6965 /* Here we can only do something if the shift count is a constant,
6966 this shift constant is valid for the host, and we can do arithmetic
6967 in OP_MODE. */
6969 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6970 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6971 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6973 rtx inner = XEXP (x, 0);
6974 unsigned HOST_WIDE_INT inner_mask;
6976 /* Select the mask of the bits we need for the shift operand. */
6977 inner_mask = mask << INTVAL (XEXP (x, 1));
6979 /* We can only change the mode of the shift if we can do arithmetic
6980 in the mode of the shift and INNER_MASK is no wider than the
6981 width of OP_MODE. */
6982 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6983 || (inner_mask & ~ GET_MODE_MASK (op_mode)) != 0)
6984 op_mode = GET_MODE (x);
6986 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6988 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6989 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6992 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6993 shift and AND produces only copies of the sign bit (C2 is one less
6994 than a power of two), we can do this with just a shift. */
6996 if (GET_CODE (x) == LSHIFTRT
6997 && GET_CODE (XEXP (x, 1)) == CONST_INT
6998 /* The shift puts one of the sign bit copies in the least significant
6999 bit. */
7000 && ((INTVAL (XEXP (x, 1))
7001 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7002 >= GET_MODE_BITSIZE (GET_MODE (x)))
7003 && exact_log2 (mask + 1) >= 0
7004 /* Number of bits left after the shift must be more than the mask
7005 needs. */
7006 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7007 <= GET_MODE_BITSIZE (GET_MODE (x)))
7008 /* Must be more sign bit copies than the mask needs. */
7009 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7010 >= exact_log2 (mask + 1)))
7011 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7012 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7013 - exact_log2 (mask + 1)));
7015 goto shiftrt;
7017 case ASHIFTRT:
7018 /* If we are just looking for the sign bit, we don't need this shift at
7019 all, even if it has a variable count. */
7020 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7021 && (mask == ((unsigned HOST_WIDE_INT) 1
7022 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7023 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7025 /* If this is a shift by a constant, get a mask that contains those bits
7026 that are not copies of the sign bit. We then have two cases: If
7027 MASK only includes those bits, this can be a logical shift, which may
7028 allow simplifications. If MASK is a single-bit field not within
7029 those bits, we are requesting a copy of the sign bit and hence can
7030 shift the sign bit to the appropriate location. */
7032 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7033 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7035 int i = -1;
7037 /* If the considered data is wider then HOST_WIDE_INT, we can't
7038 represent a mask for all its bits in a single scalar.
7039 But we only care about the lower bits, so calculate these. */
7041 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7043 nonzero = ~ (HOST_WIDE_INT) 0;
7045 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7046 is the number of bits a full-width mask would have set.
7047 We need only shift if these are fewer than nonzero can
7048 hold. If not, we must keep all bits set in nonzero. */
7050 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7051 < HOST_BITS_PER_WIDE_INT)
7052 nonzero >>= INTVAL (XEXP (x, 1))
7053 + HOST_BITS_PER_WIDE_INT
7054 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7056 else
7058 nonzero = GET_MODE_MASK (GET_MODE (x));
7059 nonzero >>= INTVAL (XEXP (x, 1));
7062 if ((mask & ~ nonzero) == 0
7063 || (i = exact_log2 (mask)) >= 0)
7065 x = simplify_shift_const
7066 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7067 i < 0 ? INTVAL (XEXP (x, 1))
7068 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7070 if (GET_CODE (x) != ASHIFTRT)
7071 return force_to_mode (x, mode, mask, reg, next_select);
7075 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
7076 even if the shift count isn't a constant. */
7077 if (mask == 1)
7078 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7080 shiftrt:
7082 /* If this is a zero- or sign-extension operation that just affects bits
7083 we don't care about, remove it. Be sure the call above returned
7084 something that is still a shift. */
7086 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7087 && GET_CODE (XEXP (x, 1)) == CONST_INT
7088 && INTVAL (XEXP (x, 1)) >= 0
7089 && (INTVAL (XEXP (x, 1))
7090 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7091 && GET_CODE (XEXP (x, 0)) == ASHIFT
7092 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7093 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7094 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7095 reg, next_select);
7097 break;
7099 case ROTATE:
7100 case ROTATERT:
7101 /* If the shift count is constant and we can do computations
7102 in the mode of X, compute where the bits we care about are.
7103 Otherwise, we can't do anything. Don't change the mode of
7104 the shift or propagate MODE into the shift, though. */
7105 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7106 && INTVAL (XEXP (x, 1)) >= 0)
7108 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7109 GET_MODE (x), GEN_INT (mask),
7110 XEXP (x, 1));
7111 if (temp && GET_CODE(temp) == CONST_INT)
7112 SUBST (XEXP (x, 0),
7113 force_to_mode (XEXP (x, 0), GET_MODE (x),
7114 INTVAL (temp), reg, next_select));
7116 break;
7118 case NEG:
7119 /* If we just want the low-order bit, the NEG isn't needed since it
7120 won't change the low-order bit. */
7121 if (mask == 1)
7122 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7124 /* We need any bits less significant than the most significant bit in
7125 MASK since carries from those bits will affect the bits we are
7126 interested in. */
7127 mask = fuller_mask;
7128 goto unop;
7130 case NOT:
7131 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7132 same as the XOR case above. Ensure that the constant we form is not
7133 wider than the mode of X. */
7135 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7136 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7137 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7138 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7139 < GET_MODE_BITSIZE (GET_MODE (x)))
7140 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7142 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7143 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7144 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7146 return force_to_mode (x, mode, mask, reg, next_select);
7149 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7150 use the full mask inside the NOT. */
7151 mask = fuller_mask;
7153 unop:
7154 op0 = gen_lowpart_for_combine (op_mode,
7155 force_to_mode (XEXP (x, 0), mode, mask,
7156 reg, next_select));
7157 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7158 x = gen_unary (code, op_mode, op_mode, op0);
7159 break;
7161 case NE:
7162 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7163 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7164 which is equal to STORE_FLAG_VALUE. */
7165 if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7166 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7167 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7168 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7170 break;
7172 case IF_THEN_ELSE:
7173 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7174 written in a narrower mode. We play it safe and do not do so. */
7176 SUBST (XEXP (x, 1),
7177 gen_lowpart_for_combine (GET_MODE (x),
7178 force_to_mode (XEXP (x, 1), mode,
7179 mask, reg, next_select)));
7180 SUBST (XEXP (x, 2),
7181 gen_lowpart_for_combine (GET_MODE (x),
7182 force_to_mode (XEXP (x, 2), mode,
7183 mask, reg,next_select)));
7184 break;
7186 default:
7187 break;
7190 /* Ensure we return a value of the proper mode. */
7191 return gen_lowpart_for_combine (mode, x);
7194 /* Return nonzero if X is an expression that has one of two values depending on
7195 whether some other value is zero or nonzero. In that case, we return the
7196 value that is being tested, *PTRUE is set to the value if the rtx being
7197 returned has a nonzero value, and *PFALSE is set to the other alternative.
7199 If we return zero, we set *PTRUE and *PFALSE to X. */
7201 static rtx
7202 if_then_else_cond (x, ptrue, pfalse)
7203 rtx x;
7204 rtx *ptrue, *pfalse;
7206 enum machine_mode mode = GET_MODE (x);
7207 enum rtx_code code = GET_CODE (x);
7208 unsigned int size = GET_MODE_BITSIZE (mode);
7209 rtx cond0, cond1, true0, true1, false0, false1;
7210 unsigned HOST_WIDE_INT nz;
7212 /* If we are comparing a value against zero, we are done. */
7213 if ((code == NE || code == EQ)
7214 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7216 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7217 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7218 return XEXP (x, 0);
7221 /* If this is a unary operation whose operand has one of two values, apply
7222 our opcode to compute those values. */
7223 else if (GET_RTX_CLASS (code) == '1'
7224 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7226 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
7227 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
7228 return cond0;
7231 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7232 make can't possibly match and would suppress other optimizations. */
7233 else if (code == COMPARE)
7236 /* If this is a binary operation, see if either side has only one of two
7237 values. If either one does or if both do and they are conditional on
7238 the same value, compute the new true and false values. */
7239 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7240 || GET_RTX_CLASS (code) == '<')
7242 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7243 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7245 if ((cond0 != 0 || cond1 != 0)
7246 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7248 /* If if_then_else_cond returned zero, then true/false are the
7249 same rtl. We must copy one of them to prevent invalid rtl
7250 sharing. */
7251 if (cond0 == 0)
7252 true0 = copy_rtx (true0);
7253 else if (cond1 == 0)
7254 true1 = copy_rtx (true1);
7256 *ptrue = gen_binary (code, mode, true0, true1);
7257 *pfalse = gen_binary (code, mode, false0, false1);
7258 return cond0 ? cond0 : cond1;
7261 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7262 operands is zero when the other is non-zero, and vice-versa,
7263 and STORE_FLAG_VALUE is 1 or -1. */
7265 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7266 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7267 || code == UMAX)
7268 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7270 rtx op0 = XEXP (XEXP (x, 0), 1);
7271 rtx op1 = XEXP (XEXP (x, 1), 1);
7273 cond0 = XEXP (XEXP (x, 0), 0);
7274 cond1 = XEXP (XEXP (x, 1), 0);
7276 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7277 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7278 && reversible_comparison_p (cond1)
7279 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
7280 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7281 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7282 || ((swap_condition (GET_CODE (cond0))
7283 == reverse_condition (GET_CODE (cond1)))
7284 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7285 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7286 && ! side_effects_p (x))
7288 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7289 *pfalse = gen_binary (MULT, mode,
7290 (code == MINUS
7291 ? gen_unary (NEG, mode, mode, op1) : op1),
7292 const_true_rtx);
7293 return cond0;
7297 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7298 is always zero. */
7299 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7300 && (code == MULT || code == AND || code == UMIN)
7301 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7303 cond0 = XEXP (XEXP (x, 0), 0);
7304 cond1 = XEXP (XEXP (x, 1), 0);
7306 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7307 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7308 && reversible_comparison_p (cond1)
7309 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
7310 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7311 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7312 || ((swap_condition (GET_CODE (cond0))
7313 == reverse_condition (GET_CODE (cond1)))
7314 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7315 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7316 && ! side_effects_p (x))
7318 *ptrue = *pfalse = const0_rtx;
7319 return cond0;
7324 else if (code == IF_THEN_ELSE)
7326 /* If we have IF_THEN_ELSE already, extract the condition and
7327 canonicalize it if it is NE or EQ. */
7328 cond0 = XEXP (x, 0);
7329 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7330 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7331 return XEXP (cond0, 0);
7332 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7334 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7335 return XEXP (cond0, 0);
7337 else
7338 return cond0;
7341 /* If X is a normal SUBREG with both inner and outer modes integral,
7342 we can narrow both the true and false values of the inner expression,
7343 if there is a condition. */
7344 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
7345 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
7346 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
7347 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7348 &true0, &false0)))
7350 if ((GET_CODE (SUBREG_REG (x)) == REG
7351 || GET_CODE (SUBREG_REG (x)) == MEM
7352 || CONSTANT_P (SUBREG_REG (x)))
7353 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
7354 && (WORDS_BIG_ENDIAN || SUBREG_WORD (x) != 0))
7356 true0 = operand_subword (true0, SUBREG_WORD (x), 0, mode);
7357 false0 = operand_subword (false0, SUBREG_WORD (x), 0, mode);
7359 *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
7360 *pfalse
7361 = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
7363 return cond0;
7366 /* If X is a constant, this isn't special and will cause confusions
7367 if we treat it as such. Likewise if it is equivalent to a constant. */
7368 else if (CONSTANT_P (x)
7369 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7372 /* If X is known to be either 0 or -1, those are the true and
7373 false values when testing X. */
7374 else if (num_sign_bit_copies (x, mode) == size)
7376 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7377 return x;
7380 /* Likewise for 0 or a single bit. */
7381 else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7383 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
7384 return x;
7387 /* Otherwise fail; show no condition with true and false values the same. */
7388 *ptrue = *pfalse = x;
7389 return 0;
7392 /* Return the value of expression X given the fact that condition COND
7393 is known to be true when applied to REG as its first operand and VAL
7394 as its second. X is known to not be shared and so can be modified in
7395 place.
7397 We only handle the simplest cases, and specifically those cases that
7398 arise with IF_THEN_ELSE expressions. */
7400 static rtx
7401 known_cond (x, cond, reg, val)
7402 rtx x;
7403 enum rtx_code cond;
7404 rtx reg, val;
7406 enum rtx_code code = GET_CODE (x);
7407 rtx temp;
7408 const char *fmt;
7409 int i, j;
7411 if (side_effects_p (x))
7412 return x;
7414 if (cond == EQ && rtx_equal_p (x, reg))
7415 return val;
7417 /* If X is (abs REG) and we know something about REG's relationship
7418 with zero, we may be able to simplify this. */
7420 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7421 switch (cond)
7423 case GE: case GT: case EQ:
7424 return XEXP (x, 0);
7425 case LT: case LE:
7426 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
7427 XEXP (x, 0));
7428 default:
7429 break;
7432 /* The only other cases we handle are MIN, MAX, and comparisons if the
7433 operands are the same as REG and VAL. */
7435 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7437 if (rtx_equal_p (XEXP (x, 0), val))
7438 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7440 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7442 if (GET_RTX_CLASS (code) == '<')
7444 if (comparison_dominates_p (cond, code))
7445 return const_true_rtx;
7447 code = reverse_condition (code);
7448 if (code != UNKNOWN
7449 && comparison_dominates_p (cond, code))
7450 return const0_rtx;
7451 else
7452 return x;
7454 else if (code == SMAX || code == SMIN
7455 || code == UMIN || code == UMAX)
7457 int unsignedp = (code == UMIN || code == UMAX);
7459 if (code == SMAX || code == UMAX)
7460 cond = reverse_condition (cond);
7462 switch (cond)
7464 case GE: case GT:
7465 return unsignedp ? x : XEXP (x, 1);
7466 case LE: case LT:
7467 return unsignedp ? x : XEXP (x, 0);
7468 case GEU: case GTU:
7469 return unsignedp ? XEXP (x, 1) : x;
7470 case LEU: case LTU:
7471 return unsignedp ? XEXP (x, 0) : x;
7472 default:
7473 break;
7479 fmt = GET_RTX_FORMAT (code);
7480 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7482 if (fmt[i] == 'e')
7483 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7484 else if (fmt[i] == 'E')
7485 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7486 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7487 cond, reg, val));
7490 return x;
7493 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7494 assignment as a field assignment. */
7496 static int
7497 rtx_equal_for_field_assignment_p (x, y)
7498 rtx x;
7499 rtx y;
7501 if (x == y || rtx_equal_p (x, y))
7502 return 1;
7504 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7505 return 0;
7507 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7508 Note that all SUBREGs of MEM are paradoxical; otherwise they
7509 would have been rewritten. */
7510 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7511 && GET_CODE (SUBREG_REG (y)) == MEM
7512 && rtx_equal_p (SUBREG_REG (y),
7513 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7514 return 1;
7516 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7517 && GET_CODE (SUBREG_REG (x)) == MEM
7518 && rtx_equal_p (SUBREG_REG (x),
7519 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7520 return 1;
7522 /* We used to see if get_last_value of X and Y were the same but that's
7523 not correct. In one direction, we'll cause the assignment to have
7524 the wrong destination and in the case, we'll import a register into this
7525 insn that might have already have been dead. So fail if none of the
7526 above cases are true. */
7527 return 0;
7530 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7531 Return that assignment if so.
7533 We only handle the most common cases. */
7535 static rtx
7536 make_field_assignment (x)
7537 rtx x;
7539 rtx dest = SET_DEST (x);
7540 rtx src = SET_SRC (x);
7541 rtx assign;
7542 rtx rhs, lhs;
7543 HOST_WIDE_INT c1;
7544 HOST_WIDE_INT pos;
7545 unsigned HOST_WIDE_INT len;
7546 rtx other;
7547 enum machine_mode mode;
7549 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7550 a clear of a one-bit field. We will have changed it to
7551 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7552 for a SUBREG. */
7554 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7555 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7556 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7557 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7559 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7560 1, 1, 1, 0);
7561 if (assign != 0)
7562 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7563 return x;
7566 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7567 && subreg_lowpart_p (XEXP (src, 0))
7568 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7569 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7570 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7571 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7572 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7574 assign = make_extraction (VOIDmode, dest, 0,
7575 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7576 1, 1, 1, 0);
7577 if (assign != 0)
7578 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7579 return x;
7582 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7583 one-bit field. */
7584 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7585 && XEXP (XEXP (src, 0), 0) == const1_rtx
7586 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7588 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7589 1, 1, 1, 0);
7590 if (assign != 0)
7591 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7592 return x;
7595 /* The other case we handle is assignments into a constant-position
7596 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7597 a mask that has all one bits except for a group of zero bits and
7598 OTHER is known to have zeros where C1 has ones, this is such an
7599 assignment. Compute the position and length from C1. Shift OTHER
7600 to the appropriate position, force it to the required mode, and
7601 make the extraction. Check for the AND in both operands. */
7603 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7604 return x;
7606 rhs = expand_compound_operation (XEXP (src, 0));
7607 lhs = expand_compound_operation (XEXP (src, 1));
7609 if (GET_CODE (rhs) == AND
7610 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7611 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7612 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7613 else if (GET_CODE (lhs) == AND
7614 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7615 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7616 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7617 else
7618 return x;
7620 pos = get_pos_from_mask ((~ c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7621 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7622 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7623 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7624 return x;
7626 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7627 if (assign == 0)
7628 return x;
7630 /* The mode to use for the source is the mode of the assignment, or of
7631 what is inside a possible STRICT_LOW_PART. */
7632 mode = (GET_CODE (assign) == STRICT_LOW_PART
7633 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7635 /* Shift OTHER right POS places and make it the source, restricting it
7636 to the proper length and mode. */
7638 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7639 GET_MODE (src), other, pos),
7640 mode,
7641 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7642 ? GET_MODE_MASK (mode)
7643 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7644 dest, 0);
7646 return gen_rtx_combine (SET, VOIDmode, assign, src);
7649 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7650 if so. */
7652 static rtx
7653 apply_distributive_law (x)
7654 rtx x;
7656 enum rtx_code code = GET_CODE (x);
7657 rtx lhs, rhs, other;
7658 rtx tem;
7659 enum rtx_code inner_code;
7661 /* Distributivity is not true for floating point.
7662 It can change the value. So don't do it.
7663 -- rms and moshier@world.std.com. */
7664 if (FLOAT_MODE_P (GET_MODE (x)))
7665 return x;
7667 /* The outer operation can only be one of the following: */
7668 if (code != IOR && code != AND && code != XOR
7669 && code != PLUS && code != MINUS)
7670 return x;
7672 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7674 /* If either operand is a primitive we can't do anything, so get out
7675 fast. */
7676 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7677 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7678 return x;
7680 lhs = expand_compound_operation (lhs);
7681 rhs = expand_compound_operation (rhs);
7682 inner_code = GET_CODE (lhs);
7683 if (inner_code != GET_CODE (rhs))
7684 return x;
7686 /* See if the inner and outer operations distribute. */
7687 switch (inner_code)
7689 case LSHIFTRT:
7690 case ASHIFTRT:
7691 case AND:
7692 case IOR:
7693 /* These all distribute except over PLUS. */
7694 if (code == PLUS || code == MINUS)
7695 return x;
7696 break;
7698 case MULT:
7699 if (code != PLUS && code != MINUS)
7700 return x;
7701 break;
7703 case ASHIFT:
7704 /* This is also a multiply, so it distributes over everything. */
7705 break;
7707 case SUBREG:
7708 /* Non-paradoxical SUBREGs distributes over all operations, provided
7709 the inner modes and word numbers are the same, this is an extraction
7710 of a low-order part, we don't convert an fp operation to int or
7711 vice versa, and we would not be converting a single-word
7712 operation into a multi-word operation. The latter test is not
7713 required, but it prevents generating unneeded multi-word operations.
7714 Some of the previous tests are redundant given the latter test, but
7715 are retained because they are required for correctness.
7717 We produce the result slightly differently in this case. */
7719 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7720 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
7721 || ! subreg_lowpart_p (lhs)
7722 || (GET_MODE_CLASS (GET_MODE (lhs))
7723 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7724 || (GET_MODE_SIZE (GET_MODE (lhs))
7725 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7726 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7727 return x;
7729 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7730 SUBREG_REG (lhs), SUBREG_REG (rhs));
7731 return gen_lowpart_for_combine (GET_MODE (x), tem);
7733 default:
7734 return x;
7737 /* Set LHS and RHS to the inner operands (A and B in the example
7738 above) and set OTHER to the common operand (C in the example).
7739 These is only one way to do this unless the inner operation is
7740 commutative. */
7741 if (GET_RTX_CLASS (inner_code) == 'c'
7742 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7743 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7744 else if (GET_RTX_CLASS (inner_code) == 'c'
7745 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7746 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7747 else if (GET_RTX_CLASS (inner_code) == 'c'
7748 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7749 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7750 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7751 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7752 else
7753 return x;
7755 /* Form the new inner operation, seeing if it simplifies first. */
7756 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7758 /* There is one exception to the general way of distributing:
7759 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7760 if (code == XOR && inner_code == IOR)
7762 inner_code = AND;
7763 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
7766 /* We may be able to continuing distributing the result, so call
7767 ourselves recursively on the inner operation before forming the
7768 outer operation, which we return. */
7769 return gen_binary (inner_code, GET_MODE (x),
7770 apply_distributive_law (tem), other);
7773 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7774 in MODE.
7776 Return an equivalent form, if different from X. Otherwise, return X. If
7777 X is zero, we are to always construct the equivalent form. */
7779 static rtx
7780 simplify_and_const_int (x, mode, varop, constop)
7781 rtx x;
7782 enum machine_mode mode;
7783 rtx varop;
7784 unsigned HOST_WIDE_INT constop;
7786 unsigned HOST_WIDE_INT nonzero;
7787 int i;
7789 /* Simplify VAROP knowing that we will be only looking at some of the
7790 bits in it. */
7791 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7793 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7794 CONST_INT, we are done. */
7795 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7796 return varop;
7798 /* See what bits may be nonzero in VAROP. Unlike the general case of
7799 a call to nonzero_bits, here we don't care about bits outside
7800 MODE. */
7802 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7803 nonzero = trunc_int_for_mode (nonzero, mode);
7805 /* Turn off all bits in the constant that are known to already be zero.
7806 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7807 which is tested below. */
7809 constop &= nonzero;
7811 /* If we don't have any bits left, return zero. */
7812 if (constop == 0)
7813 return const0_rtx;
7815 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7816 a power of two, we can replace this with a ASHIFT. */
7817 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7818 && (i = exact_log2 (constop)) >= 0)
7819 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7821 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7822 or XOR, then try to apply the distributive law. This may eliminate
7823 operations if either branch can be simplified because of the AND.
7824 It may also make some cases more complex, but those cases probably
7825 won't match a pattern either with or without this. */
7827 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7828 return
7829 gen_lowpart_for_combine
7830 (mode,
7831 apply_distributive_law
7832 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7833 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7834 XEXP (varop, 0), constop),
7835 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7836 XEXP (varop, 1), constop))));
7838 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7839 if we already had one (just check for the simplest cases). */
7840 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7841 && GET_MODE (XEXP (x, 0)) == mode
7842 && SUBREG_REG (XEXP (x, 0)) == varop)
7843 varop = XEXP (x, 0);
7844 else
7845 varop = gen_lowpart_for_combine (mode, varop);
7847 /* If we can't make the SUBREG, try to return what we were given. */
7848 if (GET_CODE (varop) == CLOBBER)
7849 return x ? x : varop;
7851 /* If we are only masking insignificant bits, return VAROP. */
7852 if (constop == nonzero)
7853 x = varop;
7855 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7856 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7857 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7859 else
7861 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7862 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7863 SUBST (XEXP (x, 1), GEN_INT (constop));
7865 SUBST (XEXP (x, 0), varop);
7868 return x;
7871 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7872 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7873 is less useful. We can't allow both, because that results in exponential
7874 run time recursion. There is a nullstone testcase that triggered
7875 this. This macro avoids accidental uses of num_sign_bit_copies. */
7876 #define num_sign_bit_copies()
7878 /* Given an expression, X, compute which bits in X can be non-zero.
7879 We don't care about bits outside of those defined in MODE.
7881 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7882 a shift, AND, or zero_extract, we can do better. */
7884 static unsigned HOST_WIDE_INT
7885 nonzero_bits (x, mode)
7886 rtx x;
7887 enum machine_mode mode;
7889 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7890 unsigned HOST_WIDE_INT inner_nz;
7891 enum rtx_code code;
7892 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7893 rtx tem;
7895 /* For floating-point values, assume all bits are needed. */
7896 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7897 return nonzero;
7899 /* If X is wider than MODE, use its mode instead. */
7900 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7902 mode = GET_MODE (x);
7903 nonzero = GET_MODE_MASK (mode);
7904 mode_width = GET_MODE_BITSIZE (mode);
7907 if (mode_width > HOST_BITS_PER_WIDE_INT)
7908 /* Our only callers in this case look for single bit values. So
7909 just return the mode mask. Those tests will then be false. */
7910 return nonzero;
7912 #ifndef WORD_REGISTER_OPERATIONS
7913 /* If MODE is wider than X, but both are a single word for both the host
7914 and target machines, we can compute this from which bits of the
7915 object might be nonzero in its own mode, taking into account the fact
7916 that on many CISC machines, accessing an object in a wider mode
7917 causes the high-order bits to become undefined. So they are
7918 not known to be zero. */
7920 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7921 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7922 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7923 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7925 nonzero &= nonzero_bits (x, GET_MODE (x));
7926 nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
7927 return nonzero;
7929 #endif
7931 code = GET_CODE (x);
7932 switch (code)
7934 case REG:
7935 #ifdef POINTERS_EXTEND_UNSIGNED
7936 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7937 all the bits above ptr_mode are known to be zero. */
7938 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7939 && REGNO_POINTER_FLAG (REGNO (x)))
7940 nonzero &= GET_MODE_MASK (ptr_mode);
7941 #endif
7943 #ifdef STACK_BOUNDARY
7944 /* If this is the stack pointer, we may know something about its
7945 alignment. If PUSH_ROUNDING is defined, it is possible for the
7946 stack to be momentarily aligned only to that amount, so we pick
7947 the least alignment. */
7949 /* We can't check for arg_pointer_rtx here, because it is not
7950 guaranteed to have as much alignment as the stack pointer.
7951 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7952 alignment but the argument pointer has only 64 bit alignment. */
7954 if ((x == frame_pointer_rtx
7955 || x == stack_pointer_rtx
7956 || x == hard_frame_pointer_rtx
7957 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7958 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7959 #ifdef STACK_BIAS
7960 && !STACK_BIAS
7961 #endif
7964 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7966 #ifdef PUSH_ROUNDING
7967 if (REGNO (x) == STACK_POINTER_REGNUM && PUSH_ARGS)
7968 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7969 #endif
7971 /* We must return here, otherwise we may get a worse result from
7972 one of the choices below. There is nothing useful below as
7973 far as the stack pointer is concerned. */
7974 return nonzero &= ~ (sp_alignment - 1);
7976 #endif
7978 /* If X is a register whose nonzero bits value is current, use it.
7979 Otherwise, if X is a register whose value we can find, use that
7980 value. Otherwise, use the previously-computed global nonzero bits
7981 for this register. */
7983 if (reg_last_set_value[REGNO (x)] != 0
7984 && reg_last_set_mode[REGNO (x)] == mode
7985 && (reg_last_set_label[REGNO (x)] == label_tick
7986 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
7987 && REG_N_SETS (REGNO (x)) == 1
7988 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
7989 REGNO (x))))
7990 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7991 return reg_last_set_nonzero_bits[REGNO (x)];
7993 tem = get_last_value (x);
7995 if (tem)
7997 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7998 /* If X is narrower than MODE and TEM is a non-negative
7999 constant that would appear negative in the mode of X,
8000 sign-extend it for use in reg_nonzero_bits because some
8001 machines (maybe most) will actually do the sign-extension
8002 and this is the conservative approach.
8004 ??? For 2.5, try to tighten up the MD files in this regard
8005 instead of this kludge. */
8007 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8008 && GET_CODE (tem) == CONST_INT
8009 && INTVAL (tem) > 0
8010 && 0 != (INTVAL (tem)
8011 & ((HOST_WIDE_INT) 1
8012 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8013 tem = GEN_INT (INTVAL (tem)
8014 | ((HOST_WIDE_INT) (-1)
8015 << GET_MODE_BITSIZE (GET_MODE (x))));
8016 #endif
8017 return nonzero_bits (tem, mode);
8019 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8020 return reg_nonzero_bits[REGNO (x)] & nonzero;
8021 else
8022 return nonzero;
8024 case CONST_INT:
8025 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8026 /* If X is negative in MODE, sign-extend the value. */
8027 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8028 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8029 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8030 #endif
8032 return INTVAL (x);
8034 case MEM:
8035 #ifdef LOAD_EXTEND_OP
8036 /* In many, if not most, RISC machines, reading a byte from memory
8037 zeros the rest of the register. Noticing that fact saves a lot
8038 of extra zero-extends. */
8039 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8040 nonzero &= GET_MODE_MASK (GET_MODE (x));
8041 #endif
8042 break;
8044 case EQ: case NE:
8045 case GT: case GTU:
8046 case LT: case LTU:
8047 case GE: case GEU:
8048 case LE: case LEU:
8050 /* If this produces an integer result, we know which bits are set.
8051 Code here used to clear bits outside the mode of X, but that is
8052 now done above. */
8054 if (GET_MODE_CLASS (mode) == MODE_INT
8055 && mode_width <= HOST_BITS_PER_WIDE_INT)
8056 nonzero = STORE_FLAG_VALUE;
8057 break;
8059 case NEG:
8060 #if 0
8061 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8062 and num_sign_bit_copies. */
8063 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8064 == GET_MODE_BITSIZE (GET_MODE (x)))
8065 nonzero = 1;
8066 #endif
8068 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8069 nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
8070 break;
8072 case ABS:
8073 #if 0
8074 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8075 and num_sign_bit_copies. */
8076 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8077 == GET_MODE_BITSIZE (GET_MODE (x)))
8078 nonzero = 1;
8079 #endif
8080 break;
8082 case TRUNCATE:
8083 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8084 break;
8086 case ZERO_EXTEND:
8087 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8088 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8089 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8090 break;
8092 case SIGN_EXTEND:
8093 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8094 Otherwise, show all the bits in the outer mode but not the inner
8095 may be non-zero. */
8096 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8097 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8099 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8100 if (inner_nz
8101 & (((HOST_WIDE_INT) 1
8102 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8103 inner_nz |= (GET_MODE_MASK (mode)
8104 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8107 nonzero &= inner_nz;
8108 break;
8110 case AND:
8111 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8112 & nonzero_bits (XEXP (x, 1), mode));
8113 break;
8115 case XOR: case IOR:
8116 case UMIN: case UMAX: case SMIN: case SMAX:
8117 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8118 | nonzero_bits (XEXP (x, 1), mode));
8119 break;
8121 case PLUS: case MINUS:
8122 case MULT:
8123 case DIV: case UDIV:
8124 case MOD: case UMOD:
8125 /* We can apply the rules of arithmetic to compute the number of
8126 high- and low-order zero bits of these operations. We start by
8127 computing the width (position of the highest-order non-zero bit)
8128 and the number of low-order zero bits for each value. */
8130 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8131 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8132 int width0 = floor_log2 (nz0) + 1;
8133 int width1 = floor_log2 (nz1) + 1;
8134 int low0 = floor_log2 (nz0 & -nz0);
8135 int low1 = floor_log2 (nz1 & -nz1);
8136 HOST_WIDE_INT op0_maybe_minusp
8137 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8138 HOST_WIDE_INT op1_maybe_minusp
8139 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8140 unsigned int result_width = mode_width;
8141 int result_low = 0;
8143 switch (code)
8145 case PLUS:
8146 #ifdef STACK_BIAS
8147 if (STACK_BIAS
8148 && (XEXP (x, 0) == stack_pointer_rtx
8149 || XEXP (x, 0) == frame_pointer_rtx)
8150 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8152 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
8154 nz0 = (GET_MODE_MASK (mode) & ~ (sp_alignment - 1));
8155 nz1 = INTVAL (XEXP (x, 1)) - STACK_BIAS;
8156 width0 = floor_log2 (nz0) + 1;
8157 width1 = floor_log2 (nz1) + 1;
8158 low0 = floor_log2 (nz0 & -nz0);
8159 low1 = floor_log2 (nz1 & -nz1);
8161 #endif
8162 result_width = MAX (width0, width1) + 1;
8163 result_low = MIN (low0, low1);
8164 break;
8165 case MINUS:
8166 result_low = MIN (low0, low1);
8167 break;
8168 case MULT:
8169 result_width = width0 + width1;
8170 result_low = low0 + low1;
8171 break;
8172 case DIV:
8173 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8174 result_width = width0;
8175 break;
8176 case UDIV:
8177 result_width = width0;
8178 break;
8179 case MOD:
8180 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8181 result_width = MIN (width0, width1);
8182 result_low = MIN (low0, low1);
8183 break;
8184 case UMOD:
8185 result_width = MIN (width0, width1);
8186 result_low = MIN (low0, low1);
8187 break;
8188 default:
8189 abort ();
8192 if (result_width < mode_width)
8193 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8195 if (result_low > 0)
8196 nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
8198 break;
8200 case ZERO_EXTRACT:
8201 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8202 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8203 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8204 break;
8206 case SUBREG:
8207 /* If this is a SUBREG formed for a promoted variable that has
8208 been zero-extended, we know that at least the high-order bits
8209 are zero, though others might be too. */
8211 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
8212 nonzero = (GET_MODE_MASK (GET_MODE (x))
8213 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8215 /* If the inner mode is a single word for both the host and target
8216 machines, we can compute this from which bits of the inner
8217 object might be nonzero. */
8218 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8219 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8220 <= HOST_BITS_PER_WIDE_INT))
8222 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8224 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8225 /* If this is a typical RISC machine, we only have to worry
8226 about the way loads are extended. */
8227 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8228 ? (((nonzero
8229 & (((unsigned HOST_WIDE_INT) 1
8230 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8231 != 0))
8232 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8233 #endif
8235 /* On many CISC machines, accessing an object in a wider mode
8236 causes the high-order bits to become undefined. So they are
8237 not known to be zero. */
8238 if (GET_MODE_SIZE (GET_MODE (x))
8239 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8240 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8241 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8244 break;
8246 case ASHIFTRT:
8247 case LSHIFTRT:
8248 case ASHIFT:
8249 case ROTATE:
8250 /* The nonzero bits are in two classes: any bits within MODE
8251 that aren't in GET_MODE (x) are always significant. The rest of the
8252 nonzero bits are those that are significant in the operand of
8253 the shift when shifted the appropriate number of bits. This
8254 shows that high-order bits are cleared by the right shift and
8255 low-order bits by left shifts. */
8256 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8257 && INTVAL (XEXP (x, 1)) >= 0
8258 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8260 enum machine_mode inner_mode = GET_MODE (x);
8261 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8262 int count = INTVAL (XEXP (x, 1));
8263 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8264 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8265 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8266 unsigned HOST_WIDE_INT outer = 0;
8268 if (mode_width > width)
8269 outer = (op_nonzero & nonzero & ~ mode_mask);
8271 if (code == LSHIFTRT)
8272 inner >>= count;
8273 else if (code == ASHIFTRT)
8275 inner >>= count;
8277 /* If the sign bit may have been nonzero before the shift, we
8278 need to mark all the places it could have been copied to
8279 by the shift as possibly nonzero. */
8280 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8281 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8283 else if (code == ASHIFT)
8284 inner <<= count;
8285 else
8286 inner = ((inner << (count % width)
8287 | (inner >> (width - (count % width)))) & mode_mask);
8289 nonzero &= (outer | inner);
8291 break;
8293 case FFS:
8294 /* This is at most the number of bits in the mode. */
8295 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8296 break;
8298 case IF_THEN_ELSE:
8299 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8300 | nonzero_bits (XEXP (x, 2), mode));
8301 break;
8303 default:
8304 break;
8307 return nonzero;
8310 /* See the macro definition above. */
8311 #undef num_sign_bit_copies
8313 /* Return the number of bits at the high-order end of X that are known to
8314 be equal to the sign bit. X will be used in mode MODE; if MODE is
8315 VOIDmode, X will be used in its own mode. The returned value will always
8316 be between 1 and the number of bits in MODE. */
8318 static unsigned int
8319 num_sign_bit_copies (x, mode)
8320 rtx x;
8321 enum machine_mode mode;
8323 enum rtx_code code = GET_CODE (x);
8324 unsigned int bitwidth;
8325 int num0, num1, result;
8326 unsigned HOST_WIDE_INT nonzero;
8327 rtx tem;
8329 /* If we weren't given a mode, use the mode of X. If the mode is still
8330 VOIDmode, we don't know anything. Likewise if one of the modes is
8331 floating-point. */
8333 if (mode == VOIDmode)
8334 mode = GET_MODE (x);
8336 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8337 return 1;
8339 bitwidth = GET_MODE_BITSIZE (mode);
8341 /* For a smaller object, just ignore the high bits. */
8342 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8344 num0 = num_sign_bit_copies (x, GET_MODE (x));
8345 return MAX (1,
8346 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8349 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8351 #ifndef WORD_REGISTER_OPERATIONS
8352 /* If this machine does not do all register operations on the entire
8353 register and MODE is wider than the mode of X, we can say nothing
8354 at all about the high-order bits. */
8355 return 1;
8356 #else
8357 /* Likewise on machines that do, if the mode of the object is smaller
8358 than a word and loads of that size don't sign extend, we can say
8359 nothing about the high order bits. */
8360 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8361 #ifdef LOAD_EXTEND_OP
8362 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8363 #endif
8365 return 1;
8366 #endif
8369 switch (code)
8371 case REG:
8373 #ifdef POINTERS_EXTEND_UNSIGNED
8374 /* If pointers extend signed and this is a pointer in Pmode, say that
8375 all the bits above ptr_mode are known to be sign bit copies. */
8376 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8377 && REGNO_POINTER_FLAG (REGNO (x)))
8378 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8379 #endif
8381 if (reg_last_set_value[REGNO (x)] != 0
8382 && reg_last_set_mode[REGNO (x)] == mode
8383 && (reg_last_set_label[REGNO (x)] == label_tick
8384 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8385 && REG_N_SETS (REGNO (x)) == 1
8386 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8387 REGNO (x))))
8388 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8389 return reg_last_set_sign_bit_copies[REGNO (x)];
8391 tem = get_last_value (x);
8392 if (tem != 0)
8393 return num_sign_bit_copies (tem, mode);
8395 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
8396 return reg_sign_bit_copies[REGNO (x)];
8397 break;
8399 case MEM:
8400 #ifdef LOAD_EXTEND_OP
8401 /* Some RISC machines sign-extend all loads of smaller than a word. */
8402 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8403 return MAX (1, ((int) bitwidth
8404 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8405 #endif
8406 break;
8408 case CONST_INT:
8409 /* If the constant is negative, take its 1's complement and remask.
8410 Then see how many zero bits we have. */
8411 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8412 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8413 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8414 nonzero = (~ nonzero) & GET_MODE_MASK (mode);
8416 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8418 case SUBREG:
8419 /* If this is a SUBREG for a promoted object that is sign-extended
8420 and we are looking at it in a wider mode, we know that at least the
8421 high-order bits are known to be sign bit copies. */
8423 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8425 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8426 return MAX ((int) bitwidth
8427 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8428 num0);
8431 /* For a smaller object, just ignore the high bits. */
8432 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8434 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8435 return MAX (1, (num0
8436 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8437 - bitwidth)));
8440 #ifdef WORD_REGISTER_OPERATIONS
8441 #ifdef LOAD_EXTEND_OP
8442 /* For paradoxical SUBREGs on machines where all register operations
8443 affect the entire register, just look inside. Note that we are
8444 passing MODE to the recursive call, so the number of sign bit copies
8445 will remain relative to that mode, not the inner mode. */
8447 /* This works only if loads sign extend. Otherwise, if we get a
8448 reload for the inner part, it may be loaded from the stack, and
8449 then we lose all sign bit copies that existed before the store
8450 to the stack. */
8452 if ((GET_MODE_SIZE (GET_MODE (x))
8453 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8454 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8455 return num_sign_bit_copies (SUBREG_REG (x), mode);
8456 #endif
8457 #endif
8458 break;
8460 case SIGN_EXTRACT:
8461 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8462 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8463 break;
8465 case SIGN_EXTEND:
8466 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8467 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8469 case TRUNCATE:
8470 /* For a smaller object, just ignore the high bits. */
8471 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8472 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8473 - bitwidth)));
8475 case NOT:
8476 return num_sign_bit_copies (XEXP (x, 0), mode);
8478 case ROTATE: case ROTATERT:
8479 /* If we are rotating left by a number of bits less than the number
8480 of sign bit copies, we can just subtract that amount from the
8481 number. */
8482 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8483 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
8485 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8486 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8487 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8489 break;
8491 case NEG:
8492 /* In general, this subtracts one sign bit copy. But if the value
8493 is known to be positive, the number of sign bit copies is the
8494 same as that of the input. Finally, if the input has just one bit
8495 that might be nonzero, all the bits are copies of the sign bit. */
8496 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8497 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8498 return num0 > 1 ? num0 - 1 : 1;
8500 nonzero = nonzero_bits (XEXP (x, 0), mode);
8501 if (nonzero == 1)
8502 return bitwidth;
8504 if (num0 > 1
8505 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8506 num0--;
8508 return num0;
8510 case IOR: case AND: case XOR:
8511 case SMIN: case SMAX: case UMIN: case UMAX:
8512 /* Logical operations will preserve the number of sign-bit copies.
8513 MIN and MAX operations always return one of the operands. */
8514 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8515 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8516 return MIN (num0, num1);
8518 case PLUS: case MINUS:
8519 /* For addition and subtraction, we can have a 1-bit carry. However,
8520 if we are subtracting 1 from a positive number, there will not
8521 be such a carry. Furthermore, if the positive number is known to
8522 be 0 or 1, we know the result is either -1 or 0. */
8524 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8525 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8527 nonzero = nonzero_bits (XEXP (x, 0), mode);
8528 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8529 return (nonzero == 1 || nonzero == 0 ? bitwidth
8530 : bitwidth - floor_log2 (nonzero) - 1);
8533 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8534 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8535 return MAX (1, MIN (num0, num1) - 1);
8537 case MULT:
8538 /* The number of bits of the product is the sum of the number of
8539 bits of both terms. However, unless one of the terms if known
8540 to be positive, we must allow for an additional bit since negating
8541 a negative number can remove one sign bit copy. */
8543 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8544 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8546 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8547 if (result > 0
8548 && (bitwidth > HOST_BITS_PER_WIDE_INT
8549 || (((nonzero_bits (XEXP (x, 0), mode)
8550 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8551 && ((nonzero_bits (XEXP (x, 1), mode)
8552 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8553 result--;
8555 return MAX (1, result);
8557 case UDIV:
8558 /* The result must be <= the first operand. If the first operand
8559 has the high bit set, we know nothing about the number of sign
8560 bit copies. */
8561 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8562 return 1;
8563 else if ((nonzero_bits (XEXP (x, 0), mode)
8564 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8565 return 1;
8566 else
8567 return num_sign_bit_copies (XEXP (x, 0), mode);
8569 case UMOD:
8570 /* The result must be <= the scond operand. */
8571 return num_sign_bit_copies (XEXP (x, 1), mode);
8573 case DIV:
8574 /* Similar to unsigned division, except that we have to worry about
8575 the case where the divisor is negative, in which case we have
8576 to add 1. */
8577 result = num_sign_bit_copies (XEXP (x, 0), mode);
8578 if (result > 1
8579 && (bitwidth > HOST_BITS_PER_WIDE_INT
8580 || (nonzero_bits (XEXP (x, 1), mode)
8581 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8582 result--;
8584 return result;
8586 case MOD:
8587 result = num_sign_bit_copies (XEXP (x, 1), mode);
8588 if (result > 1
8589 && (bitwidth > HOST_BITS_PER_WIDE_INT
8590 || (nonzero_bits (XEXP (x, 1), mode)
8591 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8592 result--;
8594 return result;
8596 case ASHIFTRT:
8597 /* Shifts by a constant add to the number of bits equal to the
8598 sign bit. */
8599 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8600 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8601 && INTVAL (XEXP (x, 1)) > 0)
8602 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
8604 return num0;
8606 case ASHIFT:
8607 /* Left shifts destroy copies. */
8608 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8609 || INTVAL (XEXP (x, 1)) < 0
8610 || INTVAL (XEXP (x, 1)) >= bitwidth)
8611 return 1;
8613 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8614 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8616 case IF_THEN_ELSE:
8617 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8618 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8619 return MIN (num0, num1);
8621 case EQ: case NE: case GE: case GT: case LE: case LT:
8622 case GEU: case GTU: case LEU: case LTU:
8623 if (STORE_FLAG_VALUE == -1)
8624 return bitwidth;
8625 break;
8627 default:
8628 break;
8631 /* If we haven't been able to figure it out by one of the above rules,
8632 see if some of the high-order bits are known to be zero. If so,
8633 count those bits and return one less than that amount. If we can't
8634 safely compute the mask for this mode, always return BITWIDTH. */
8636 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8637 return 1;
8639 nonzero = nonzero_bits (x, mode);
8640 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8641 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8644 /* Return the number of "extended" bits there are in X, when interpreted
8645 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8646 unsigned quantities, this is the number of high-order zero bits.
8647 For signed quantities, this is the number of copies of the sign bit
8648 minus 1. In both case, this function returns the number of "spare"
8649 bits. For example, if two quantities for which this function returns
8650 at least 1 are added, the addition is known not to overflow.
8652 This function will always return 0 unless called during combine, which
8653 implies that it must be called from a define_split. */
8655 unsigned int
8656 extended_count (x, mode, unsignedp)
8657 rtx x;
8658 enum machine_mode mode;
8659 int unsignedp;
8661 if (nonzero_sign_valid == 0)
8662 return 0;
8664 return (unsignedp
8665 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8666 ? (GET_MODE_BITSIZE (mode) - 1
8667 - floor_log2 (nonzero_bits (x, mode)))
8668 : 0)
8669 : num_sign_bit_copies (x, mode) - 1);
8672 /* This function is called from `simplify_shift_const' to merge two
8673 outer operations. Specifically, we have already found that we need
8674 to perform operation *POP0 with constant *PCONST0 at the outermost
8675 position. We would now like to also perform OP1 with constant CONST1
8676 (with *POP0 being done last).
8678 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8679 the resulting operation. *PCOMP_P is set to 1 if we would need to
8680 complement the innermost operand, otherwise it is unchanged.
8682 MODE is the mode in which the operation will be done. No bits outside
8683 the width of this mode matter. It is assumed that the width of this mode
8684 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8686 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8687 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8688 result is simply *PCONST0.
8690 If the resulting operation cannot be expressed as one operation, we
8691 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8693 static int
8694 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8695 enum rtx_code *pop0;
8696 HOST_WIDE_INT *pconst0;
8697 enum rtx_code op1;
8698 HOST_WIDE_INT const1;
8699 enum machine_mode mode;
8700 int *pcomp_p;
8702 enum rtx_code op0 = *pop0;
8703 HOST_WIDE_INT const0 = *pconst0;
8705 const0 &= GET_MODE_MASK (mode);
8706 const1 &= GET_MODE_MASK (mode);
8708 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8709 if (op0 == AND)
8710 const1 &= const0;
8712 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8713 if OP0 is SET. */
8715 if (op1 == NIL || op0 == SET)
8716 return 1;
8718 else if (op0 == NIL)
8719 op0 = op1, const0 = const1;
8721 else if (op0 == op1)
8723 switch (op0)
8725 case AND:
8726 const0 &= const1;
8727 break;
8728 case IOR:
8729 const0 |= const1;
8730 break;
8731 case XOR:
8732 const0 ^= const1;
8733 break;
8734 case PLUS:
8735 const0 += const1;
8736 break;
8737 case NEG:
8738 op0 = NIL;
8739 break;
8740 default:
8741 break;
8745 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8746 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8747 return 0;
8749 /* If the two constants aren't the same, we can't do anything. The
8750 remaining six cases can all be done. */
8751 else if (const0 != const1)
8752 return 0;
8754 else
8755 switch (op0)
8757 case IOR:
8758 if (op1 == AND)
8759 /* (a & b) | b == b */
8760 op0 = SET;
8761 else /* op1 == XOR */
8762 /* (a ^ b) | b == a | b */
8764 break;
8766 case XOR:
8767 if (op1 == AND)
8768 /* (a & b) ^ b == (~a) & b */
8769 op0 = AND, *pcomp_p = 1;
8770 else /* op1 == IOR */
8771 /* (a | b) ^ b == a & ~b */
8772 op0 = AND, *pconst0 = ~ const0;
8773 break;
8775 case AND:
8776 if (op1 == IOR)
8777 /* (a | b) & b == b */
8778 op0 = SET;
8779 else /* op1 == XOR */
8780 /* (a ^ b) & b) == (~a) & b */
8781 *pcomp_p = 1;
8782 break;
8783 default:
8784 break;
8787 /* Check for NO-OP cases. */
8788 const0 &= GET_MODE_MASK (mode);
8789 if (const0 == 0
8790 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8791 op0 = NIL;
8792 else if (const0 == 0 && op0 == AND)
8793 op0 = SET;
8794 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8795 && op0 == AND)
8796 op0 = NIL;
8798 /* ??? Slightly redundant with the above mask, but not entirely.
8799 Moving this above means we'd have to sign-extend the mode mask
8800 for the final test. */
8801 const0 = trunc_int_for_mode (const0, mode);
8803 *pop0 = op0;
8804 *pconst0 = const0;
8806 return 1;
8809 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8810 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8811 that we started with.
8813 The shift is normally computed in the widest mode we find in VAROP, as
8814 long as it isn't a different number of words than RESULT_MODE. Exceptions
8815 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8817 static rtx
8818 simplify_shift_const (x, code, result_mode, varop, input_count)
8819 rtx x;
8820 enum rtx_code code;
8821 enum machine_mode result_mode;
8822 rtx varop;
8823 int input_count;
8825 enum rtx_code orig_code = code;
8826 int orig_count = input_count;
8827 unsigned int count;
8828 int signed_count;
8829 enum machine_mode mode = result_mode;
8830 enum machine_mode shift_mode, tmode;
8831 unsigned int mode_words
8832 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8833 /* We form (outer_op (code varop count) (outer_const)). */
8834 enum rtx_code outer_op = NIL;
8835 HOST_WIDE_INT outer_const = 0;
8836 rtx const_rtx;
8837 int complement_p = 0;
8838 rtx new;
8840 /* If we were given an invalid count, don't do anything except exactly
8841 what was requested. */
8843 if (input_count < 0 || input_count > (int) GET_MODE_BITSIZE (mode))
8845 if (x)
8846 return x;
8848 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (input_count));
8851 count = input_count;
8853 /* Unless one of the branches of the `if' in this loop does a `continue',
8854 we will `break' the loop after the `if'. */
8856 while (count != 0)
8858 /* If we have an operand of (clobber (const_int 0)), just return that
8859 value. */
8860 if (GET_CODE (varop) == CLOBBER)
8861 return varop;
8863 /* If we discovered we had to complement VAROP, leave. Making a NOT
8864 here would cause an infinite loop. */
8865 if (complement_p)
8866 break;
8868 /* Convert ROTATERT to ROTATE. */
8869 if (code == ROTATERT)
8870 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8872 /* We need to determine what mode we will do the shift in. If the
8873 shift is a right shift or a ROTATE, we must always do it in the mode
8874 it was originally done in. Otherwise, we can do it in MODE, the
8875 widest mode encountered. */
8876 shift_mode
8877 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8878 ? result_mode : mode);
8880 /* Handle cases where the count is greater than the size of the mode
8881 minus 1. For ASHIFT, use the size minus one as the count (this can
8882 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8883 take the count modulo the size. For other shifts, the result is
8884 zero.
8886 Since these shifts are being produced by the compiler by combining
8887 multiple operations, each of which are defined, we know what the
8888 result is supposed to be. */
8890 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8892 if (code == ASHIFTRT)
8893 count = GET_MODE_BITSIZE (shift_mode) - 1;
8894 else if (code == ROTATE || code == ROTATERT)
8895 count %= GET_MODE_BITSIZE (shift_mode);
8896 else
8898 /* We can't simply return zero because there may be an
8899 outer op. */
8900 varop = const0_rtx;
8901 count = 0;
8902 break;
8906 /* An arithmetic right shift of a quantity known to be -1 or 0
8907 is a no-op. */
8908 if (code == ASHIFTRT
8909 && (num_sign_bit_copies (varop, shift_mode)
8910 == GET_MODE_BITSIZE (shift_mode)))
8912 count = 0;
8913 break;
8916 /* If we are doing an arithmetic right shift and discarding all but
8917 the sign bit copies, this is equivalent to doing a shift by the
8918 bitsize minus one. Convert it into that shift because it will often
8919 allow other simplifications. */
8921 if (code == ASHIFTRT
8922 && (count + num_sign_bit_copies (varop, shift_mode)
8923 >= GET_MODE_BITSIZE (shift_mode)))
8924 count = GET_MODE_BITSIZE (shift_mode) - 1;
8926 /* We simplify the tests below and elsewhere by converting
8927 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8928 `make_compound_operation' will convert it to a ASHIFTRT for
8929 those machines (such as Vax) that don't have a LSHIFTRT. */
8930 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8931 && code == ASHIFTRT
8932 && ((nonzero_bits (varop, shift_mode)
8933 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8934 == 0))
8935 code = LSHIFTRT;
8937 switch (GET_CODE (varop))
8939 case SIGN_EXTEND:
8940 case ZERO_EXTEND:
8941 case SIGN_EXTRACT:
8942 case ZERO_EXTRACT:
8943 new = expand_compound_operation (varop);
8944 if (new != varop)
8946 varop = new;
8947 continue;
8949 break;
8951 case MEM:
8952 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8953 minus the width of a smaller mode, we can do this with a
8954 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8955 if ((code == ASHIFTRT || code == LSHIFTRT)
8956 && ! mode_dependent_address_p (XEXP (varop, 0))
8957 && ! MEM_VOLATILE_P (varop)
8958 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8959 MODE_INT, 1)) != BLKmode)
8961 if (BYTES_BIG_ENDIAN)
8962 new = gen_rtx_MEM (tmode, XEXP (varop, 0));
8963 else
8964 new = gen_rtx_MEM (tmode,
8965 plus_constant (XEXP (varop, 0),
8966 count / BITS_PER_UNIT));
8968 MEM_COPY_ATTRIBUTES (new, varop);
8969 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8970 : ZERO_EXTEND, mode, new);
8971 count = 0;
8972 continue;
8974 break;
8976 case USE:
8977 /* Similar to the case above, except that we can only do this if
8978 the resulting mode is the same as that of the underlying
8979 MEM and adjust the address depending on the *bits* endianness
8980 because of the way that bit-field extract insns are defined. */
8981 if ((code == ASHIFTRT || code == LSHIFTRT)
8982 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8983 MODE_INT, 1)) != BLKmode
8984 && tmode == GET_MODE (XEXP (varop, 0)))
8986 if (BITS_BIG_ENDIAN)
8987 new = XEXP (varop, 0);
8988 else
8990 new = copy_rtx (XEXP (varop, 0));
8991 SUBST (XEXP (new, 0),
8992 plus_constant (XEXP (new, 0),
8993 count / BITS_PER_UNIT));
8996 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8997 : ZERO_EXTEND, mode, new);
8998 count = 0;
8999 continue;
9001 break;
9003 case SUBREG:
9004 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9005 the same number of words as what we've seen so far. Then store
9006 the widest mode in MODE. */
9007 if (subreg_lowpart_p (varop)
9008 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9009 > GET_MODE_SIZE (GET_MODE (varop)))
9010 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9011 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9012 == mode_words))
9014 varop = SUBREG_REG (varop);
9015 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9016 mode = GET_MODE (varop);
9017 continue;
9019 break;
9021 case MULT:
9022 /* Some machines use MULT instead of ASHIFT because MULT
9023 is cheaper. But it is still better on those machines to
9024 merge two shifts into one. */
9025 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9026 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9028 varop
9029 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9030 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9031 continue;
9033 break;
9035 case UDIV:
9036 /* Similar, for when divides are cheaper. */
9037 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9038 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9040 varop
9041 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9042 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9043 continue;
9045 break;
9047 case ASHIFTRT:
9048 /* If we are extracting just the sign bit of an arithmetic right
9049 shift, that shift is not needed. */
9050 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
9052 varop = XEXP (varop, 0);
9053 continue;
9056 /* ... fall through ... */
9058 case LSHIFTRT:
9059 case ASHIFT:
9060 case ROTATE:
9061 /* Here we have two nested shifts. The result is usually the
9062 AND of a new shift with a mask. We compute the result below. */
9063 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9064 && INTVAL (XEXP (varop, 1)) >= 0
9065 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9066 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9067 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9069 enum rtx_code first_code = GET_CODE (varop);
9070 unsigned int first_count = INTVAL (XEXP (varop, 1));
9071 unsigned HOST_WIDE_INT mask;
9072 rtx mask_rtx;
9074 /* We have one common special case. We can't do any merging if
9075 the inner code is an ASHIFTRT of a smaller mode. However, if
9076 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9077 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9078 we can convert it to
9079 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9080 This simplifies certain SIGN_EXTEND operations. */
9081 if (code == ASHIFT && first_code == ASHIFTRT
9082 && (GET_MODE_BITSIZE (result_mode)
9083 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9085 /* C3 has the low-order C1 bits zero. */
9087 mask = (GET_MODE_MASK (mode)
9088 & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
9090 varop = simplify_and_const_int (NULL_RTX, result_mode,
9091 XEXP (varop, 0), mask);
9092 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9093 varop, count);
9094 count = first_count;
9095 code = ASHIFTRT;
9096 continue;
9099 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9100 than C1 high-order bits equal to the sign bit, we can convert
9101 this to either an ASHIFT or a ASHIFTRT depending on the
9102 two counts.
9104 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9106 if (code == ASHIFTRT && first_code == ASHIFT
9107 && GET_MODE (varop) == shift_mode
9108 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9109 > first_count))
9111 varop = XEXP (varop, 0);
9113 signed_count = count - first_count;
9114 if (signed_count < 0)
9115 count = - signed_count, code = ASHIFT;
9116 else
9117 count = signed_count;
9119 continue;
9122 /* There are some cases we can't do. If CODE is ASHIFTRT,
9123 we can only do this if FIRST_CODE is also ASHIFTRT.
9125 We can't do the case when CODE is ROTATE and FIRST_CODE is
9126 ASHIFTRT.
9128 If the mode of this shift is not the mode of the outer shift,
9129 we can't do this if either shift is a right shift or ROTATE.
9131 Finally, we can't do any of these if the mode is too wide
9132 unless the codes are the same.
9134 Handle the case where the shift codes are the same
9135 first. */
9137 if (code == first_code)
9139 if (GET_MODE (varop) != result_mode
9140 && (code == ASHIFTRT || code == LSHIFTRT
9141 || code == ROTATE))
9142 break;
9144 count += first_count;
9145 varop = XEXP (varop, 0);
9146 continue;
9149 if (code == ASHIFTRT
9150 || (code == ROTATE && first_code == ASHIFTRT)
9151 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9152 || (GET_MODE (varop) != result_mode
9153 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9154 || first_code == ROTATE
9155 || code == ROTATE)))
9156 break;
9158 /* To compute the mask to apply after the shift, shift the
9159 nonzero bits of the inner shift the same way the
9160 outer shift will. */
9162 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9164 mask_rtx
9165 = simplify_binary_operation (code, result_mode, mask_rtx,
9166 GEN_INT (count));
9168 /* Give up if we can't compute an outer operation to use. */
9169 if (mask_rtx == 0
9170 || GET_CODE (mask_rtx) != CONST_INT
9171 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9172 INTVAL (mask_rtx),
9173 result_mode, &complement_p))
9174 break;
9176 /* If the shifts are in the same direction, we add the
9177 counts. Otherwise, we subtract them. */
9178 signed_count = count;
9179 if ((code == ASHIFTRT || code == LSHIFTRT)
9180 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9181 signed_count += first_count;
9182 else
9183 signed_count -= first_count;
9185 /* If COUNT is positive, the new shift is usually CODE,
9186 except for the two exceptions below, in which case it is
9187 FIRST_CODE. If the count is negative, FIRST_CODE should
9188 always be used */
9189 if (signed_count > 0
9190 && ((first_code == ROTATE && code == ASHIFT)
9191 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9192 code = first_code, count = signed_count;
9193 else if (signed_count < 0)
9194 code = first_code, count = - signed_count;
9195 else
9196 count = signed_count;
9198 varop = XEXP (varop, 0);
9199 continue;
9202 /* If we have (A << B << C) for any shift, we can convert this to
9203 (A << C << B). This wins if A is a constant. Only try this if
9204 B is not a constant. */
9206 else if (GET_CODE (varop) == code
9207 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9208 && 0 != (new
9209 = simplify_binary_operation (code, mode,
9210 XEXP (varop, 0),
9211 GEN_INT (count))))
9213 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
9214 count = 0;
9215 continue;
9217 break;
9219 case NOT:
9220 /* Make this fit the case below. */
9221 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
9222 GEN_INT (GET_MODE_MASK (mode)));
9223 continue;
9225 case IOR:
9226 case AND:
9227 case XOR:
9228 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9229 with C the size of VAROP - 1 and the shift is logical if
9230 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9231 we have an (le X 0) operation. If we have an arithmetic shift
9232 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9233 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9235 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9236 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9237 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9238 && (code == LSHIFTRT || code == ASHIFTRT)
9239 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9240 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9242 count = 0;
9243 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
9244 const0_rtx);
9246 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9247 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
9249 continue;
9252 /* If we have (shift (logical)), move the logical to the outside
9253 to allow it to possibly combine with another logical and the
9254 shift to combine with another shift. This also canonicalizes to
9255 what a ZERO_EXTRACT looks like. Also, some machines have
9256 (and (shift)) insns. */
9258 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9259 && (new = simplify_binary_operation (code, result_mode,
9260 XEXP (varop, 1),
9261 GEN_INT (count))) != 0
9262 && GET_CODE(new) == CONST_INT
9263 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9264 INTVAL (new), result_mode, &complement_p))
9266 varop = XEXP (varop, 0);
9267 continue;
9270 /* If we can't do that, try to simplify the shift in each arm of the
9271 logical expression, make a new logical expression, and apply
9272 the inverse distributive law. */
9274 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9275 XEXP (varop, 0), count);
9276 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9277 XEXP (varop, 1), count);
9279 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9280 varop = apply_distributive_law (varop);
9282 count = 0;
9284 break;
9286 case EQ:
9287 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9288 says that the sign bit can be tested, FOO has mode MODE, C is
9289 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9290 that may be nonzero. */
9291 if (code == LSHIFTRT
9292 && XEXP (varop, 1) == const0_rtx
9293 && GET_MODE (XEXP (varop, 0)) == result_mode
9294 && count == GET_MODE_BITSIZE (result_mode) - 1
9295 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9296 && ((STORE_FLAG_VALUE
9297 & ((HOST_WIDE_INT) 1
9298 < (GET_MODE_BITSIZE (result_mode) - 1))))
9299 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9300 && merge_outer_ops (&outer_op, &outer_const, XOR,
9301 (HOST_WIDE_INT) 1, result_mode,
9302 &complement_p))
9304 varop = XEXP (varop, 0);
9305 count = 0;
9306 continue;
9308 break;
9310 case NEG:
9311 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9312 than the number of bits in the mode is equivalent to A. */
9313 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9314 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9316 varop = XEXP (varop, 0);
9317 count = 0;
9318 continue;
9321 /* NEG commutes with ASHIFT since it is multiplication. Move the
9322 NEG outside to allow shifts to combine. */
9323 if (code == ASHIFT
9324 && merge_outer_ops (&outer_op, &outer_const, NEG,
9325 (HOST_WIDE_INT) 0, result_mode,
9326 &complement_p))
9328 varop = XEXP (varop, 0);
9329 continue;
9331 break;
9333 case PLUS:
9334 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9335 is one less than the number of bits in the mode is
9336 equivalent to (xor A 1). */
9337 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9338 && XEXP (varop, 1) == constm1_rtx
9339 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9340 && merge_outer_ops (&outer_op, &outer_const, XOR,
9341 (HOST_WIDE_INT) 1, result_mode,
9342 &complement_p))
9344 count = 0;
9345 varop = XEXP (varop, 0);
9346 continue;
9349 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9350 that might be nonzero in BAR are those being shifted out and those
9351 bits are known zero in FOO, we can replace the PLUS with FOO.
9352 Similarly in the other operand order. This code occurs when
9353 we are computing the size of a variable-size array. */
9355 if ((code == ASHIFTRT || code == LSHIFTRT)
9356 && count < HOST_BITS_PER_WIDE_INT
9357 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9358 && (nonzero_bits (XEXP (varop, 1), result_mode)
9359 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9361 varop = XEXP (varop, 0);
9362 continue;
9364 else if ((code == ASHIFTRT || code == LSHIFTRT)
9365 && count < HOST_BITS_PER_WIDE_INT
9366 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9367 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9368 >> count)
9369 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9370 & nonzero_bits (XEXP (varop, 1),
9371 result_mode)))
9373 varop = XEXP (varop, 1);
9374 continue;
9377 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9378 if (code == ASHIFT
9379 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9380 && (new = simplify_binary_operation (ASHIFT, result_mode,
9381 XEXP (varop, 1),
9382 GEN_INT (count))) != 0
9383 && GET_CODE (new) == CONST_INT
9384 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9385 INTVAL (new), result_mode, &complement_p))
9387 varop = XEXP (varop, 0);
9388 continue;
9390 break;
9392 case MINUS:
9393 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9394 with C the size of VAROP - 1 and the shift is logical if
9395 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9396 we have a (gt X 0) operation. If the shift is arithmetic with
9397 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9398 we have a (neg (gt X 0)) operation. */
9400 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9401 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9402 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9403 && (code == LSHIFTRT || code == ASHIFTRT)
9404 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9405 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9406 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9408 count = 0;
9409 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
9410 const0_rtx);
9412 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9413 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
9415 continue;
9417 break;
9419 case TRUNCATE:
9420 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9421 if the truncate does not affect the value. */
9422 if (code == LSHIFTRT
9423 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9424 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9425 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9426 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9427 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9429 rtx varop_inner = XEXP (varop, 0);
9431 varop_inner
9432 = gen_rtx_combine (LSHIFTRT, GET_MODE (varop_inner),
9433 XEXP (varop_inner, 0),
9434 GEN_INT (count
9435 + INTVAL (XEXP (varop_inner, 1))));
9436 varop = gen_rtx_combine (TRUNCATE, GET_MODE (varop),
9437 varop_inner);
9438 count = 0;
9439 continue;
9441 break;
9443 default:
9444 break;
9447 break;
9450 /* We need to determine what mode to do the shift in. If the shift is
9451 a right shift or ROTATE, we must always do it in the mode it was
9452 originally done in. Otherwise, we can do it in MODE, the widest mode
9453 encountered. The code we care about is that of the shift that will
9454 actually be done, not the shift that was originally requested. */
9455 shift_mode
9456 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9457 ? result_mode : mode);
9459 /* We have now finished analyzing the shift. The result should be
9460 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9461 OUTER_OP is non-NIL, it is an operation that needs to be applied
9462 to the result of the shift. OUTER_CONST is the relevant constant,
9463 but we must turn off all bits turned off in the shift.
9465 If we were passed a value for X, see if we can use any pieces of
9466 it. If not, make new rtx. */
9468 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9469 && GET_CODE (XEXP (x, 1)) == CONST_INT
9470 && INTVAL (XEXP (x, 1)) == count)
9471 const_rtx = XEXP (x, 1);
9472 else
9473 const_rtx = GEN_INT (count);
9475 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9476 && GET_MODE (XEXP (x, 0)) == shift_mode
9477 && SUBREG_REG (XEXP (x, 0)) == varop)
9478 varop = XEXP (x, 0);
9479 else if (GET_MODE (varop) != shift_mode)
9480 varop = gen_lowpart_for_combine (shift_mode, varop);
9482 /* If we can't make the SUBREG, try to return what we were given. */
9483 if (GET_CODE (varop) == CLOBBER)
9484 return x ? x : varop;
9486 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9487 if (new != 0)
9488 x = new;
9489 else
9491 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
9492 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
9494 SUBST (XEXP (x, 0), varop);
9495 SUBST (XEXP (x, 1), const_rtx);
9498 /* If we have an outer operation and we just made a shift, it is
9499 possible that we could have simplified the shift were it not
9500 for the outer operation. So try to do the simplification
9501 recursively. */
9503 if (outer_op != NIL && GET_CODE (x) == code
9504 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9505 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9506 INTVAL (XEXP (x, 1)));
9508 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9509 turn off all the bits that the shift would have turned off. */
9510 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9511 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9512 GET_MODE_MASK (result_mode) >> orig_count);
9514 /* Do the remainder of the processing in RESULT_MODE. */
9515 x = gen_lowpart_for_combine (result_mode, x);
9517 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9518 operation. */
9519 if (complement_p)
9520 x = gen_unary (NOT, result_mode, result_mode, x);
9522 if (outer_op != NIL)
9524 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9525 outer_const = trunc_int_for_mode (outer_const, result_mode);
9527 if (outer_op == AND)
9528 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9529 else if (outer_op == SET)
9530 /* This means that we have determined that the result is
9531 equivalent to a constant. This should be rare. */
9532 x = GEN_INT (outer_const);
9533 else if (GET_RTX_CLASS (outer_op) == '1')
9534 x = gen_unary (outer_op, result_mode, result_mode, x);
9535 else
9536 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9539 return x;
9542 /* Like recog, but we receive the address of a pointer to a new pattern.
9543 We try to match the rtx that the pointer points to.
9544 If that fails, we may try to modify or replace the pattern,
9545 storing the replacement into the same pointer object.
9547 Modifications include deletion or addition of CLOBBERs.
9549 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9550 the CLOBBERs are placed.
9552 The value is the final insn code from the pattern ultimately matched,
9553 or -1. */
9555 static int
9556 recog_for_combine (pnewpat, insn, pnotes)
9557 rtx *pnewpat;
9558 rtx insn;
9559 rtx *pnotes;
9561 register rtx pat = *pnewpat;
9562 int insn_code_number;
9563 int num_clobbers_to_add = 0;
9564 int i;
9565 rtx notes = 0;
9567 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9568 we use to indicate that something didn't match. If we find such a
9569 thing, force rejection. */
9570 if (GET_CODE (pat) == PARALLEL)
9571 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9572 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9573 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9574 return -1;
9576 /* Is the result of combination a valid instruction? */
9577 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9579 /* If it isn't, there is the possibility that we previously had an insn
9580 that clobbered some register as a side effect, but the combined
9581 insn doesn't need to do that. So try once more without the clobbers
9582 unless this represents an ASM insn. */
9584 if (insn_code_number < 0 && ! check_asm_operands (pat)
9585 && GET_CODE (pat) == PARALLEL)
9587 int pos;
9589 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9590 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9592 if (i != pos)
9593 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9594 pos++;
9597 SUBST_INT (XVECLEN (pat, 0), pos);
9599 if (pos == 1)
9600 pat = XVECEXP (pat, 0, 0);
9602 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9605 /* If we had any clobbers to add, make a new pattern than contains
9606 them. Then check to make sure that all of them are dead. */
9607 if (num_clobbers_to_add)
9609 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9610 gen_rtvec (GET_CODE (pat) == PARALLEL
9611 ? (XVECLEN (pat, 0)
9612 + num_clobbers_to_add)
9613 : num_clobbers_to_add + 1));
9615 if (GET_CODE (pat) == PARALLEL)
9616 for (i = 0; i < XVECLEN (pat, 0); i++)
9617 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9618 else
9619 XVECEXP (newpat, 0, 0) = pat;
9621 add_clobbers (newpat, insn_code_number);
9623 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9624 i < XVECLEN (newpat, 0); i++)
9626 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9627 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9628 return -1;
9629 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9630 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9632 pat = newpat;
9635 *pnewpat = pat;
9636 *pnotes = notes;
9638 return insn_code_number;
9641 /* Like gen_lowpart but for use by combine. In combine it is not possible
9642 to create any new pseudoregs. However, it is safe to create
9643 invalid memory addresses, because combine will try to recognize
9644 them and all they will do is make the combine attempt fail.
9646 If for some reason this cannot do its job, an rtx
9647 (clobber (const_int 0)) is returned.
9648 An insn containing that will not be recognized. */
9650 #undef gen_lowpart
9652 static rtx
9653 gen_lowpart_for_combine (mode, x)
9654 enum machine_mode mode;
9655 register rtx x;
9657 rtx result;
9659 if (GET_MODE (x) == mode)
9660 return x;
9662 /* We can only support MODE being wider than a word if X is a
9663 constant integer or has a mode the same size. */
9665 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9666 && ! ((GET_MODE (x) == VOIDmode
9667 && (GET_CODE (x) == CONST_INT
9668 || GET_CODE (x) == CONST_DOUBLE))
9669 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9670 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9672 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9673 won't know what to do. So we will strip off the SUBREG here and
9674 process normally. */
9675 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9677 x = SUBREG_REG (x);
9678 if (GET_MODE (x) == mode)
9679 return x;
9682 result = gen_lowpart_common (mode, x);
9683 #ifdef CLASS_CANNOT_CHANGE_MODE
9684 if (result != 0
9685 && GET_CODE (result) == SUBREG
9686 && GET_CODE (SUBREG_REG (result)) == REG
9687 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9688 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9689 GET_MODE (SUBREG_REG (result))))
9690 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9691 #endif
9693 if (result)
9694 return result;
9696 if (GET_CODE (x) == MEM)
9698 register int offset = 0;
9699 rtx new;
9701 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9702 address. */
9703 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9704 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9706 /* If we want to refer to something bigger than the original memref,
9707 generate a perverse subreg instead. That will force a reload
9708 of the original memref X. */
9709 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9710 return gen_rtx_SUBREG (mode, x, 0);
9712 if (WORDS_BIG_ENDIAN)
9713 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9714 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9716 if (BYTES_BIG_ENDIAN)
9718 /* Adjust the address so that the address-after-the-data is
9719 unchanged. */
9720 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9721 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9723 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
9724 MEM_COPY_ATTRIBUTES (new, x);
9725 return new;
9728 /* If X is a comparison operator, rewrite it in a new mode. This
9729 probably won't match, but may allow further simplifications. */
9730 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9731 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9733 /* If we couldn't simplify X any other way, just enclose it in a
9734 SUBREG. Normally, this SUBREG won't match, but some patterns may
9735 include an explicit SUBREG or we may simplify it further in combine. */
9736 else
9738 int word = 0;
9740 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
9741 word = ((GET_MODE_SIZE (GET_MODE (x))
9742 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
9743 / UNITS_PER_WORD);
9744 return gen_rtx_SUBREG (mode, x, word);
9748 /* Make an rtx expression. This is a subset of gen_rtx and only supports
9749 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9751 If the identical expression was previously in the insn (in the undobuf),
9752 it will be returned. Only if it is not found will a new expression
9753 be made. */
9755 /*VARARGS2*/
9756 static rtx
9757 gen_rtx_combine VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
9759 #ifndef ANSI_PROTOTYPES
9760 enum rtx_code code;
9761 enum machine_mode mode;
9762 #endif
9763 va_list p;
9764 int n_args;
9765 rtx args[3];
9766 int j;
9767 const char *fmt;
9768 rtx rt;
9769 struct undo *undo;
9771 VA_START (p, mode);
9773 #ifndef ANSI_PROTOTYPES
9774 code = va_arg (p, enum rtx_code);
9775 mode = va_arg (p, enum machine_mode);
9776 #endif
9778 n_args = GET_RTX_LENGTH (code);
9779 fmt = GET_RTX_FORMAT (code);
9781 if (n_args == 0 || n_args > 3)
9782 abort ();
9784 /* Get each arg and verify that it is supposed to be an expression. */
9785 for (j = 0; j < n_args; j++)
9787 if (*fmt++ != 'e')
9788 abort ();
9790 args[j] = va_arg (p, rtx);
9793 va_end (p);
9795 /* See if this is in undobuf. Be sure we don't use objects that came
9796 from another insn; this could produce circular rtl structures. */
9798 for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
9799 if (!undo->is_int
9800 && GET_CODE (undo->old_contents.r) == code
9801 && GET_MODE (undo->old_contents.r) == mode)
9803 for (j = 0; j < n_args; j++)
9804 if (XEXP (undo->old_contents.r, j) != args[j])
9805 break;
9807 if (j == n_args)
9808 return undo->old_contents.r;
9811 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
9812 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
9813 rt = rtx_alloc (code);
9814 PUT_MODE (rt, mode);
9815 XEXP (rt, 0) = args[0];
9816 if (n_args > 1)
9818 XEXP (rt, 1) = args[1];
9819 if (n_args > 2)
9820 XEXP (rt, 2) = args[2];
9822 return rt;
9825 /* These routines make binary and unary operations by first seeing if they
9826 fold; if not, a new expression is allocated. */
9828 static rtx
9829 gen_binary (code, mode, op0, op1)
9830 enum rtx_code code;
9831 enum machine_mode mode;
9832 rtx op0, op1;
9834 rtx result;
9835 rtx tem;
9837 if (GET_RTX_CLASS (code) == 'c'
9838 && (GET_CODE (op0) == CONST_INT
9839 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
9840 tem = op0, op0 = op1, op1 = tem;
9842 if (GET_RTX_CLASS (code) == '<')
9844 enum machine_mode op_mode = GET_MODE (op0);
9846 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9847 just (REL_OP X Y). */
9848 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9850 op1 = XEXP (op0, 1);
9851 op0 = XEXP (op0, 0);
9852 op_mode = GET_MODE (op0);
9855 if (op_mode == VOIDmode)
9856 op_mode = GET_MODE (op1);
9857 result = simplify_relational_operation (code, op_mode, op0, op1);
9859 else
9860 result = simplify_binary_operation (code, mode, op0, op1);
9862 if (result)
9863 return result;
9865 /* Put complex operands first and constants second. */
9866 if (GET_RTX_CLASS (code) == 'c'
9867 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9868 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
9869 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
9870 || (GET_CODE (op0) == SUBREG
9871 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
9872 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
9873 return gen_rtx_combine (code, mode, op1, op0);
9875 /* If we are turning off bits already known off in OP0, we need not do
9876 an AND. */
9877 else if (code == AND && GET_CODE (op1) == CONST_INT
9878 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9879 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
9880 return op0;
9882 return gen_rtx_combine (code, mode, op0, op1);
9885 static rtx
9886 gen_unary (code, mode, op0_mode, op0)
9887 enum rtx_code code;
9888 enum machine_mode mode, op0_mode;
9889 rtx op0;
9891 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
9893 if (result)
9894 return result;
9896 return gen_rtx_combine (code, mode, op0);
9899 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9900 comparison code that will be tested.
9902 The result is a possibly different comparison code to use. *POP0 and
9903 *POP1 may be updated.
9905 It is possible that we might detect that a comparison is either always
9906 true or always false. However, we do not perform general constant
9907 folding in combine, so this knowledge isn't useful. Such tautologies
9908 should have been detected earlier. Hence we ignore all such cases. */
9910 static enum rtx_code
9911 simplify_comparison (code, pop0, pop1)
9912 enum rtx_code code;
9913 rtx *pop0;
9914 rtx *pop1;
9916 rtx op0 = *pop0;
9917 rtx op1 = *pop1;
9918 rtx tem, tem1;
9919 int i;
9920 enum machine_mode mode, tmode;
9922 /* Try a few ways of applying the same transformation to both operands. */
9923 while (1)
9925 #ifndef WORD_REGISTER_OPERATIONS
9926 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9927 so check specially. */
9928 if (code != GTU && code != GEU && code != LTU && code != LEU
9929 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9930 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9931 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9932 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9933 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9934 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9935 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9936 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9937 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9938 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9939 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9940 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9941 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9942 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9943 && (INTVAL (XEXP (op0, 1))
9944 == (GET_MODE_BITSIZE (GET_MODE (op0))
9945 - (GET_MODE_BITSIZE
9946 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9948 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9949 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9951 #endif
9953 /* If both operands are the same constant shift, see if we can ignore the
9954 shift. We can if the shift is a rotate or if the bits shifted out of
9955 this shift are known to be zero for both inputs and if the type of
9956 comparison is compatible with the shift. */
9957 if (GET_CODE (op0) == GET_CODE (op1)
9958 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9959 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9960 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9961 && (code != GT && code != LT && code != GE && code != LE))
9962 || (GET_CODE (op0) == ASHIFTRT
9963 && (code != GTU && code != LTU
9964 && code != GEU && code != GEU)))
9965 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9966 && INTVAL (XEXP (op0, 1)) >= 0
9967 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9968 && XEXP (op0, 1) == XEXP (op1, 1))
9970 enum machine_mode mode = GET_MODE (op0);
9971 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9972 int shift_count = INTVAL (XEXP (op0, 1));
9974 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9975 mask &= (mask >> shift_count) << shift_count;
9976 else if (GET_CODE (op0) == ASHIFT)
9977 mask = (mask & (mask << shift_count)) >> shift_count;
9979 if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
9980 && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
9981 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9982 else
9983 break;
9986 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9987 SUBREGs are of the same mode, and, in both cases, the AND would
9988 be redundant if the comparison was done in the narrower mode,
9989 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9990 and the operand's possibly nonzero bits are 0xffffff01; in that case
9991 if we only care about QImode, we don't need the AND). This case
9992 occurs if the output mode of an scc insn is not SImode and
9993 STORE_FLAG_VALUE == 1 (e.g., the 386).
9995 Similarly, check for a case where the AND's are ZERO_EXTEND
9996 operations from some narrower mode even though a SUBREG is not
9997 present. */
9999 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10000 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10001 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10003 rtx inner_op0 = XEXP (op0, 0);
10004 rtx inner_op1 = XEXP (op1, 0);
10005 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10006 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10007 int changed = 0;
10009 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10010 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10011 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10012 && (GET_MODE (SUBREG_REG (inner_op0))
10013 == GET_MODE (SUBREG_REG (inner_op1)))
10014 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10015 <= HOST_BITS_PER_WIDE_INT)
10016 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10017 GET_MODE (SUBREG_REG (inner_op0)))))
10018 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10019 GET_MODE (SUBREG_REG (inner_op1))))))
10021 op0 = SUBREG_REG (inner_op0);
10022 op1 = SUBREG_REG (inner_op1);
10024 /* The resulting comparison is always unsigned since we masked
10025 off the original sign bit. */
10026 code = unsigned_condition (code);
10028 changed = 1;
10031 else if (c0 == c1)
10032 for (tmode = GET_CLASS_NARROWEST_MODE
10033 (GET_MODE_CLASS (GET_MODE (op0)));
10034 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10035 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10037 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10038 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10039 code = unsigned_condition (code);
10040 changed = 1;
10041 break;
10044 if (! changed)
10045 break;
10048 /* If both operands are NOT, we can strip off the outer operation
10049 and adjust the comparison code for swapped operands; similarly for
10050 NEG, except that this must be an equality comparison. */
10051 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10052 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10053 && (code == EQ || code == NE)))
10054 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10056 else
10057 break;
10060 /* If the first operand is a constant, swap the operands and adjust the
10061 comparison code appropriately, but don't do this if the second operand
10062 is already a constant integer. */
10063 if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
10065 tem = op0, op0 = op1, op1 = tem;
10066 code = swap_condition (code);
10069 /* We now enter a loop during which we will try to simplify the comparison.
10070 For the most part, we only are concerned with comparisons with zero,
10071 but some things may really be comparisons with zero but not start
10072 out looking that way. */
10074 while (GET_CODE (op1) == CONST_INT)
10076 enum machine_mode mode = GET_MODE (op0);
10077 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10078 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10079 int equality_comparison_p;
10080 int sign_bit_comparison_p;
10081 int unsigned_comparison_p;
10082 HOST_WIDE_INT const_op;
10084 /* We only want to handle integral modes. This catches VOIDmode,
10085 CCmode, and the floating-point modes. An exception is that we
10086 can handle VOIDmode if OP0 is a COMPARE or a comparison
10087 operation. */
10089 if (GET_MODE_CLASS (mode) != MODE_INT
10090 && ! (mode == VOIDmode
10091 && (GET_CODE (op0) == COMPARE
10092 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10093 break;
10095 /* Get the constant we are comparing against and turn off all bits
10096 not on in our mode. */
10097 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10099 /* If we are comparing against a constant power of two and the value
10100 being compared can only have that single bit nonzero (e.g., it was
10101 `and'ed with that bit), we can replace this with a comparison
10102 with zero. */
10103 if (const_op
10104 && (code == EQ || code == NE || code == GE || code == GEU
10105 || code == LT || code == LTU)
10106 && mode_width <= HOST_BITS_PER_WIDE_INT
10107 && exact_log2 (const_op) >= 0
10108 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10110 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10111 op1 = const0_rtx, const_op = 0;
10114 /* Similarly, if we are comparing a value known to be either -1 or
10115 0 with -1, change it to the opposite comparison against zero. */
10117 if (const_op == -1
10118 && (code == EQ || code == NE || code == GT || code == LE
10119 || code == GEU || code == LTU)
10120 && num_sign_bit_copies (op0, mode) == mode_width)
10122 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10123 op1 = const0_rtx, const_op = 0;
10126 /* Do some canonicalizations based on the comparison code. We prefer
10127 comparisons against zero and then prefer equality comparisons.
10128 If we can reduce the size of a constant, we will do that too. */
10130 switch (code)
10132 case LT:
10133 /* < C is equivalent to <= (C - 1) */
10134 if (const_op > 0)
10136 const_op -= 1;
10137 op1 = GEN_INT (const_op);
10138 code = LE;
10139 /* ... fall through to LE case below. */
10141 else
10142 break;
10144 case LE:
10145 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10146 if (const_op < 0)
10148 const_op += 1;
10149 op1 = GEN_INT (const_op);
10150 code = LT;
10153 /* If we are doing a <= 0 comparison on a value known to have
10154 a zero sign bit, we can replace this with == 0. */
10155 else if (const_op == 0
10156 && mode_width <= HOST_BITS_PER_WIDE_INT
10157 && (nonzero_bits (op0, mode)
10158 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10159 code = EQ;
10160 break;
10162 case GE:
10163 /* >= C is equivalent to > (C - 1). */
10164 if (const_op > 0)
10166 const_op -= 1;
10167 op1 = GEN_INT (const_op);
10168 code = GT;
10169 /* ... fall through to GT below. */
10171 else
10172 break;
10174 case GT:
10175 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
10176 if (const_op < 0)
10178 const_op += 1;
10179 op1 = GEN_INT (const_op);
10180 code = GE;
10183 /* If we are doing a > 0 comparison on a value known to have
10184 a zero sign bit, we can replace this with != 0. */
10185 else if (const_op == 0
10186 && mode_width <= HOST_BITS_PER_WIDE_INT
10187 && (nonzero_bits (op0, mode)
10188 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10189 code = NE;
10190 break;
10192 case LTU:
10193 /* < C is equivalent to <= (C - 1). */
10194 if (const_op > 0)
10196 const_op -= 1;
10197 op1 = GEN_INT (const_op);
10198 code = LEU;
10199 /* ... fall through ... */
10202 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10203 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10204 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10206 const_op = 0, op1 = const0_rtx;
10207 code = GE;
10208 break;
10210 else
10211 break;
10213 case LEU:
10214 /* unsigned <= 0 is equivalent to == 0 */
10215 if (const_op == 0)
10216 code = EQ;
10218 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10219 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10220 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10222 const_op = 0, op1 = const0_rtx;
10223 code = GE;
10225 break;
10227 case GEU:
10228 /* >= C is equivalent to < (C - 1). */
10229 if (const_op > 1)
10231 const_op -= 1;
10232 op1 = GEN_INT (const_op);
10233 code = GTU;
10234 /* ... fall through ... */
10237 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10238 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10239 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10241 const_op = 0, op1 = const0_rtx;
10242 code = LT;
10243 break;
10245 else
10246 break;
10248 case GTU:
10249 /* unsigned > 0 is equivalent to != 0 */
10250 if (const_op == 0)
10251 code = NE;
10253 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10254 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10255 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10257 const_op = 0, op1 = const0_rtx;
10258 code = LT;
10260 break;
10262 default:
10263 break;
10266 /* Compute some predicates to simplify code below. */
10268 equality_comparison_p = (code == EQ || code == NE);
10269 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10270 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10271 || code == GEU);
10273 /* If this is a sign bit comparison and we can do arithmetic in
10274 MODE, say that we will only be needing the sign bit of OP0. */
10275 if (sign_bit_comparison_p
10276 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10277 op0 = force_to_mode (op0, mode,
10278 ((HOST_WIDE_INT) 1
10279 << (GET_MODE_BITSIZE (mode) - 1)),
10280 NULL_RTX, 0);
10282 /* Now try cases based on the opcode of OP0. If none of the cases
10283 does a "continue", we exit this loop immediately after the
10284 switch. */
10286 switch (GET_CODE (op0))
10288 case ZERO_EXTRACT:
10289 /* If we are extracting a single bit from a variable position in
10290 a constant that has only a single bit set and are comparing it
10291 with zero, we can convert this into an equality comparison
10292 between the position and the location of the single bit. */
10294 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10295 && XEXP (op0, 1) == const1_rtx
10296 && equality_comparison_p && const_op == 0
10297 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10299 if (BITS_BIG_ENDIAN)
10301 #ifdef HAVE_extzv
10302 mode = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
10303 if (mode == VOIDmode)
10304 mode = word_mode;
10305 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10306 #else
10307 i = BITS_PER_WORD - 1 - i;
10308 #endif
10311 op0 = XEXP (op0, 2);
10312 op1 = GEN_INT (i);
10313 const_op = i;
10315 /* Result is nonzero iff shift count is equal to I. */
10316 code = reverse_condition (code);
10317 continue;
10320 /* ... fall through ... */
10322 case SIGN_EXTRACT:
10323 tem = expand_compound_operation (op0);
10324 if (tem != op0)
10326 op0 = tem;
10327 continue;
10329 break;
10331 case NOT:
10332 /* If testing for equality, we can take the NOT of the constant. */
10333 if (equality_comparison_p
10334 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10336 op0 = XEXP (op0, 0);
10337 op1 = tem;
10338 continue;
10341 /* If just looking at the sign bit, reverse the sense of the
10342 comparison. */
10343 if (sign_bit_comparison_p)
10345 op0 = XEXP (op0, 0);
10346 code = (code == GE ? LT : GE);
10347 continue;
10349 break;
10351 case NEG:
10352 /* If testing for equality, we can take the NEG of the constant. */
10353 if (equality_comparison_p
10354 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10356 op0 = XEXP (op0, 0);
10357 op1 = tem;
10358 continue;
10361 /* The remaining cases only apply to comparisons with zero. */
10362 if (const_op != 0)
10363 break;
10365 /* When X is ABS or is known positive,
10366 (neg X) is < 0 if and only if X != 0. */
10368 if (sign_bit_comparison_p
10369 && (GET_CODE (XEXP (op0, 0)) == ABS
10370 || (mode_width <= HOST_BITS_PER_WIDE_INT
10371 && (nonzero_bits (XEXP (op0, 0), mode)
10372 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10374 op0 = XEXP (op0, 0);
10375 code = (code == LT ? NE : EQ);
10376 continue;
10379 /* If we have NEG of something whose two high-order bits are the
10380 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10381 if (num_sign_bit_copies (op0, mode) >= 2)
10383 op0 = XEXP (op0, 0);
10384 code = swap_condition (code);
10385 continue;
10387 break;
10389 case ROTATE:
10390 /* If we are testing equality and our count is a constant, we
10391 can perform the inverse operation on our RHS. */
10392 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10393 && (tem = simplify_binary_operation (ROTATERT, mode,
10394 op1, XEXP (op0, 1))) != 0)
10396 op0 = XEXP (op0, 0);
10397 op1 = tem;
10398 continue;
10401 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10402 a particular bit. Convert it to an AND of a constant of that
10403 bit. This will be converted into a ZERO_EXTRACT. */
10404 if (const_op == 0 && sign_bit_comparison_p
10405 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10406 && mode_width <= HOST_BITS_PER_WIDE_INT)
10408 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10409 ((HOST_WIDE_INT) 1
10410 << (mode_width - 1
10411 - INTVAL (XEXP (op0, 1)))));
10412 code = (code == LT ? NE : EQ);
10413 continue;
10416 /* ... fall through ... */
10418 case ABS:
10419 /* ABS is ignorable inside an equality comparison with zero. */
10420 if (const_op == 0 && equality_comparison_p)
10422 op0 = XEXP (op0, 0);
10423 continue;
10425 break;
10428 case SIGN_EXTEND:
10429 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10430 to (compare FOO CONST) if CONST fits in FOO's mode and we
10431 are either testing inequality or have an unsigned comparison
10432 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10433 if (! unsigned_comparison_p
10434 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10435 <= HOST_BITS_PER_WIDE_INT)
10436 && ((unsigned HOST_WIDE_INT) const_op
10437 < (((unsigned HOST_WIDE_INT) 1
10438 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10440 op0 = XEXP (op0, 0);
10441 continue;
10443 break;
10445 case SUBREG:
10446 /* Check for the case where we are comparing A - C1 with C2,
10447 both constants are smaller than 1/2 the maximum positive
10448 value in MODE, and the comparison is equality or unsigned.
10449 In that case, if A is either zero-extended to MODE or has
10450 sufficient sign bits so that the high-order bit in MODE
10451 is a copy of the sign in the inner mode, we can prove that it is
10452 safe to do the operation in the wider mode. This simplifies
10453 many range checks. */
10455 if (mode_width <= HOST_BITS_PER_WIDE_INT
10456 && subreg_lowpart_p (op0)
10457 && GET_CODE (SUBREG_REG (op0)) == PLUS
10458 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10459 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10460 && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
10461 < (HOST_WIDE_INT)(GET_MODE_MASK (mode) / 2))
10462 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10463 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10464 GET_MODE (SUBREG_REG (op0)))
10465 & ~ GET_MODE_MASK (mode))
10466 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10467 GET_MODE (SUBREG_REG (op0)))
10468 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10469 - GET_MODE_BITSIZE (mode)))))
10471 op0 = SUBREG_REG (op0);
10472 continue;
10475 /* If the inner mode is narrower and we are extracting the low part,
10476 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10477 if (subreg_lowpart_p (op0)
10478 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10479 /* Fall through */ ;
10480 else
10481 break;
10483 /* ... fall through ... */
10485 case ZERO_EXTEND:
10486 if ((unsigned_comparison_p || equality_comparison_p)
10487 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10488 <= HOST_BITS_PER_WIDE_INT)
10489 && ((unsigned HOST_WIDE_INT) const_op
10490 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10492 op0 = XEXP (op0, 0);
10493 continue;
10495 break;
10497 case PLUS:
10498 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10499 this for equality comparisons due to pathological cases involving
10500 overflows. */
10501 if (equality_comparison_p
10502 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10503 op1, XEXP (op0, 1))))
10505 op0 = XEXP (op0, 0);
10506 op1 = tem;
10507 continue;
10510 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10511 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10512 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10514 op0 = XEXP (XEXP (op0, 0), 0);
10515 code = (code == LT ? EQ : NE);
10516 continue;
10518 break;
10520 case MINUS:
10521 /* We used to optimize signed comparisons against zero, but that
10522 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10523 arrive here as equality comparisons, or (GEU, LTU) are
10524 optimized away. No need to special-case them. */
10526 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10527 (eq B (minus A C)), whichever simplifies. We can only do
10528 this for equality comparisons due to pathological cases involving
10529 overflows. */
10530 if (equality_comparison_p
10531 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10532 XEXP (op0, 1), op1)))
10534 op0 = XEXP (op0, 0);
10535 op1 = tem;
10536 continue;
10539 if (equality_comparison_p
10540 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10541 XEXP (op0, 0), op1)))
10543 op0 = XEXP (op0, 1);
10544 op1 = tem;
10545 continue;
10548 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10549 of bits in X minus 1, is one iff X > 0. */
10550 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10551 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10552 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10553 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10555 op0 = XEXP (op0, 1);
10556 code = (code == GE ? LE : GT);
10557 continue;
10559 break;
10561 case XOR:
10562 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10563 if C is zero or B is a constant. */
10564 if (equality_comparison_p
10565 && 0 != (tem = simplify_binary_operation (XOR, mode,
10566 XEXP (op0, 1), op1)))
10568 op0 = XEXP (op0, 0);
10569 op1 = tem;
10570 continue;
10572 break;
10574 case EQ: case NE:
10575 case LT: case LTU: case LE: case LEU:
10576 case GT: case GTU: case GE: case GEU:
10577 /* We can't do anything if OP0 is a condition code value, rather
10578 than an actual data value. */
10579 if (const_op != 0
10580 #ifdef HAVE_cc0
10581 || XEXP (op0, 0) == cc0_rtx
10582 #endif
10583 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10584 break;
10586 /* Get the two operands being compared. */
10587 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10588 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10589 else
10590 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10592 /* Check for the cases where we simply want the result of the
10593 earlier test or the opposite of that result. */
10594 if (code == NE
10595 || (code == EQ && reversible_comparison_p (op0))
10596 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10597 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10598 && (STORE_FLAG_VALUE
10599 & (((HOST_WIDE_INT) 1
10600 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10601 && (code == LT
10602 || (code == GE && reversible_comparison_p (op0)))))
10604 code = (code == LT || code == NE
10605 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
10606 op0 = tem, op1 = tem1;
10607 continue;
10609 break;
10611 case IOR:
10612 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10613 iff X <= 0. */
10614 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10615 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10616 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10618 op0 = XEXP (op0, 1);
10619 code = (code == GE ? GT : LE);
10620 continue;
10622 break;
10624 case AND:
10625 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10626 will be converted to a ZERO_EXTRACT later. */
10627 if (const_op == 0 && equality_comparison_p
10628 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10629 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10631 op0 = simplify_and_const_int
10632 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
10633 XEXP (op0, 1),
10634 XEXP (XEXP (op0, 0), 1)),
10635 (HOST_WIDE_INT) 1);
10636 continue;
10639 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10640 zero and X is a comparison and C1 and C2 describe only bits set
10641 in STORE_FLAG_VALUE, we can compare with X. */
10642 if (const_op == 0 && equality_comparison_p
10643 && mode_width <= HOST_BITS_PER_WIDE_INT
10644 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10645 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10646 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10647 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10648 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10650 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10651 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10652 if ((~ STORE_FLAG_VALUE & mask) == 0
10653 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10654 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10655 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10657 op0 = XEXP (XEXP (op0, 0), 0);
10658 continue;
10662 /* If we are doing an equality comparison of an AND of a bit equal
10663 to the sign bit, replace this with a LT or GE comparison of
10664 the underlying value. */
10665 if (equality_comparison_p
10666 && const_op == 0
10667 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10668 && mode_width <= HOST_BITS_PER_WIDE_INT
10669 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10670 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10672 op0 = XEXP (op0, 0);
10673 code = (code == EQ ? GE : LT);
10674 continue;
10677 /* If this AND operation is really a ZERO_EXTEND from a narrower
10678 mode, the constant fits within that mode, and this is either an
10679 equality or unsigned comparison, try to do this comparison in
10680 the narrower mode. */
10681 if ((equality_comparison_p || unsigned_comparison_p)
10682 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10683 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10684 & GET_MODE_MASK (mode))
10685 + 1)) >= 0
10686 && const_op >> i == 0
10687 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10689 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10690 continue;
10693 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10694 in both M1 and M2 and the SUBREG is either paradoxical or
10695 represents the low part, permute the SUBREG and the AND and
10696 try again. */
10697 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10698 && (0
10699 #ifdef WORD_REGISTER_OPERATIONS
10700 || ((mode_width
10701 > (GET_MODE_BITSIZE
10702 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10703 && mode_width <= BITS_PER_WORD)
10704 #endif
10705 || ((mode_width
10706 <= (GET_MODE_BITSIZE
10707 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10708 && subreg_lowpart_p (XEXP (op0, 0))))
10709 #ifndef WORD_REGISTER_OPERATIONS
10710 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10711 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10712 As originally written the upper bits have a defined value
10713 due to the AND operation. However, if we commute the AND
10714 inside the SUBREG then they no longer have defined values
10715 and the meaning of the code has been changed. */
10716 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10717 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10718 #endif
10719 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10720 && mode_width <= HOST_BITS_PER_WIDE_INT
10721 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10722 <= HOST_BITS_PER_WIDE_INT)
10723 && (INTVAL (XEXP (op0, 1)) & ~ mask) == 0
10724 && 0 == (~ GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10725 & INTVAL (XEXP (op0, 1)))
10726 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10727 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10728 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10732 = gen_lowpart_for_combine
10733 (mode,
10734 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10735 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10736 continue;
10739 break;
10741 case ASHIFT:
10742 /* If we have (compare (ashift FOO N) (const_int C)) and
10743 the high order N bits of FOO (N+1 if an inequality comparison)
10744 are known to be zero, we can do this by comparing FOO with C
10745 shifted right N bits so long as the low-order N bits of C are
10746 zero. */
10747 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10748 && INTVAL (XEXP (op0, 1)) >= 0
10749 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10750 < HOST_BITS_PER_WIDE_INT)
10751 && ((const_op
10752 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10753 && mode_width <= HOST_BITS_PER_WIDE_INT
10754 && (nonzero_bits (XEXP (op0, 0), mode)
10755 & ~ (mask >> (INTVAL (XEXP (op0, 1))
10756 + ! equality_comparison_p))) == 0)
10758 /* We must perform a logical shift, not an arithmetic one,
10759 as we want the top N bits of C to be zero. */
10760 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10762 temp >>= INTVAL (XEXP (op0, 1));
10763 op1 = GEN_INT (trunc_int_for_mode (temp, mode));
10764 op0 = XEXP (op0, 0);
10765 continue;
10768 /* If we are doing a sign bit comparison, it means we are testing
10769 a particular bit. Convert it to the appropriate AND. */
10770 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10771 && mode_width <= HOST_BITS_PER_WIDE_INT)
10773 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10774 ((HOST_WIDE_INT) 1
10775 << (mode_width - 1
10776 - INTVAL (XEXP (op0, 1)))));
10777 code = (code == LT ? NE : EQ);
10778 continue;
10781 /* If this an equality comparison with zero and we are shifting
10782 the low bit to the sign bit, we can convert this to an AND of the
10783 low-order bit. */
10784 if (const_op == 0 && equality_comparison_p
10785 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10786 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10788 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10789 (HOST_WIDE_INT) 1);
10790 continue;
10792 break;
10794 case ASHIFTRT:
10795 /* If this is an equality comparison with zero, we can do this
10796 as a logical shift, which might be much simpler. */
10797 if (equality_comparison_p && const_op == 0
10798 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10800 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10801 XEXP (op0, 0),
10802 INTVAL (XEXP (op0, 1)));
10803 continue;
10806 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10807 do the comparison in a narrower mode. */
10808 if (! unsigned_comparison_p
10809 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10810 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10811 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10812 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10813 MODE_INT, 1)) != BLKmode
10814 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10815 || ((unsigned HOST_WIDE_INT) - const_op
10816 <= GET_MODE_MASK (tmode))))
10818 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10819 continue;
10822 /* Likewise if OP0 is a PLUS of a sign extension with a
10823 constant, which is usually represented with the PLUS
10824 between the shifts. */
10825 if (! unsigned_comparison_p
10826 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10827 && GET_CODE (XEXP (op0, 0)) == PLUS
10828 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10829 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10830 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10831 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10832 MODE_INT, 1)) != BLKmode
10833 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
10834 || ((unsigned HOST_WIDE_INT) - const_op
10835 <= GET_MODE_MASK (tmode))))
10837 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10838 rtx add_const = XEXP (XEXP (op0, 0), 1);
10839 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10840 XEXP (op0, 1));
10842 op0 = gen_binary (PLUS, tmode,
10843 gen_lowpart_for_combine (tmode, inner),
10844 new_const);
10845 continue;
10848 /* ... fall through ... */
10849 case LSHIFTRT:
10850 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10851 the low order N bits of FOO are known to be zero, we can do this
10852 by comparing FOO with C shifted left N bits so long as no
10853 overflow occurs. */
10854 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10855 && INTVAL (XEXP (op0, 1)) >= 0
10856 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10857 && mode_width <= HOST_BITS_PER_WIDE_INT
10858 && (nonzero_bits (XEXP (op0, 0), mode)
10859 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10860 && (const_op == 0
10861 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
10862 < mode_width)))
10864 const_op <<= INTVAL (XEXP (op0, 1));
10865 op1 = GEN_INT (const_op);
10866 op0 = XEXP (op0, 0);
10867 continue;
10870 /* If we are using this shift to extract just the sign bit, we
10871 can replace this with an LT or GE comparison. */
10872 if (const_op == 0
10873 && (equality_comparison_p || sign_bit_comparison_p)
10874 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10875 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10877 op0 = XEXP (op0, 0);
10878 code = (code == NE || code == GT ? LT : GE);
10879 continue;
10881 break;
10883 default:
10884 break;
10887 break;
10890 /* Now make any compound operations involved in this comparison. Then,
10891 check for an outmost SUBREG on OP0 that is not doing anything or is
10892 paradoxical. The latter case can only occur when it is known that the
10893 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10894 We can never remove a SUBREG for a non-equality comparison because the
10895 sign bit is in a different place in the underlying object. */
10897 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10898 op1 = make_compound_operation (op1, SET);
10900 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10901 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10902 && (code == NE || code == EQ)
10903 && ((GET_MODE_SIZE (GET_MODE (op0))
10904 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
10906 op0 = SUBREG_REG (op0);
10907 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
10910 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10911 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10912 && (code == NE || code == EQ)
10913 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10914 <= HOST_BITS_PER_WIDE_INT)
10915 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10916 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
10917 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10918 op1),
10919 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10920 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
10921 op0 = SUBREG_REG (op0), op1 = tem;
10923 /* We now do the opposite procedure: Some machines don't have compare
10924 insns in all modes. If OP0's mode is an integer mode smaller than a
10925 word and we can't do a compare in that mode, see if there is a larger
10926 mode for which we can do the compare. There are a number of cases in
10927 which we can use the wider mode. */
10929 mode = GET_MODE (op0);
10930 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10931 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10932 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10933 for (tmode = GET_MODE_WIDER_MODE (mode);
10934 (tmode != VOIDmode
10935 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10936 tmode = GET_MODE_WIDER_MODE (tmode))
10937 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10939 /* If the only nonzero bits in OP0 and OP1 are those in the
10940 narrower mode and this is an equality or unsigned comparison,
10941 we can use the wider mode. Similarly for sign-extended
10942 values, in which case it is true for all comparisons. */
10943 if (((code == EQ || code == NE
10944 || code == GEU || code == GTU || code == LEU || code == LTU)
10945 && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
10946 && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
10947 || ((num_sign_bit_copies (op0, tmode)
10948 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10949 && (num_sign_bit_copies (op1, tmode)
10950 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10952 /* If OP0 is an AND and we don't have an AND in MODE either,
10953 make a new AND in the proper mode. */
10954 if (GET_CODE (op0) == AND
10955 && (add_optab->handlers[(int) mode].insn_code
10956 == CODE_FOR_nothing))
10957 op0 = gen_binary (AND, tmode,
10958 gen_lowpart_for_combine (tmode,
10959 XEXP (op0, 0)),
10960 gen_lowpart_for_combine (tmode,
10961 XEXP (op0, 1)));
10963 op0 = gen_lowpart_for_combine (tmode, op0);
10964 op1 = gen_lowpart_for_combine (tmode, op1);
10965 break;
10968 /* If this is a test for negative, we can make an explicit
10969 test of the sign bit. */
10971 if (op1 == const0_rtx && (code == LT || code == GE)
10972 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10974 op0 = gen_binary (AND, tmode,
10975 gen_lowpart_for_combine (tmode, op0),
10976 GEN_INT ((HOST_WIDE_INT) 1
10977 << (GET_MODE_BITSIZE (mode) - 1)));
10978 code = (code == LT) ? NE : EQ;
10979 break;
10983 #ifdef CANONICALIZE_COMPARISON
10984 /* If this machine only supports a subset of valid comparisons, see if we
10985 can convert an unsupported one into a supported one. */
10986 CANONICALIZE_COMPARISON (code, op0, op1);
10987 #endif
10989 *pop0 = op0;
10990 *pop1 = op1;
10992 return code;
10995 /* Return 1 if we know that X, a comparison operation, is not operating
10996 on a floating-point value or is EQ or NE, meaning that we can safely
10997 reverse it. */
10999 static int
11000 reversible_comparison_p (x)
11001 rtx x;
11003 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
11004 || flag_fast_math
11005 || GET_CODE (x) == NE || GET_CODE (x) == EQ
11006 || GET_CODE (x) == UNORDERED || GET_CODE (x) == ORDERED)
11007 return 1;
11009 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
11011 case MODE_INT:
11012 case MODE_PARTIAL_INT:
11013 case MODE_COMPLEX_INT:
11014 return 1;
11016 case MODE_CC:
11017 /* If the mode of the condition codes tells us that this is safe,
11018 we need look no further. */
11019 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
11020 return 1;
11022 /* Otherwise try and find where the condition codes were last set and
11023 use that. */
11024 x = get_last_value (XEXP (x, 0));
11025 return (x && GET_CODE (x) == COMPARE
11026 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
11028 default:
11029 return 0;
11033 /* Utility function for following routine. Called when X is part of a value
11034 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11035 for each register mentioned. Similar to mention_regs in cse.c */
11037 static void
11038 update_table_tick (x)
11039 rtx x;
11041 register enum rtx_code code = GET_CODE (x);
11042 register const char *fmt = GET_RTX_FORMAT (code);
11043 register int i;
11045 if (code == REG)
11047 unsigned int regno = REGNO (x);
11048 unsigned int endregno
11049 = regno + (regno < FIRST_PSEUDO_REGISTER
11050 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11051 unsigned int r;
11053 for (r = regno; r < endregno; r++)
11054 reg_last_set_table_tick[r] = label_tick;
11056 return;
11059 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11060 /* Note that we can't have an "E" in values stored; see
11061 get_last_value_validate. */
11062 if (fmt[i] == 'e')
11063 update_table_tick (XEXP (x, i));
11066 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11067 are saying that the register is clobbered and we no longer know its
11068 value. If INSN is zero, don't update reg_last_set; this is only permitted
11069 with VALUE also zero and is used to invalidate the register. */
11071 static void
11072 record_value_for_reg (reg, insn, value)
11073 rtx reg;
11074 rtx insn;
11075 rtx value;
11077 unsigned int regno = REGNO (reg);
11078 unsigned int endregno
11079 = regno + (regno < FIRST_PSEUDO_REGISTER
11080 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11081 unsigned int i;
11083 /* If VALUE contains REG and we have a previous value for REG, substitute
11084 the previous value. */
11085 if (value && insn && reg_overlap_mentioned_p (reg, value))
11087 rtx tem;
11089 /* Set things up so get_last_value is allowed to see anything set up to
11090 our insn. */
11091 subst_low_cuid = INSN_CUID (insn);
11092 tem = get_last_value (reg);
11094 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11095 it isn't going to be useful and will take a lot of time to process,
11096 so just use the CLOBBER. */
11098 if (tem)
11100 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11101 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11102 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11103 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11104 tem = XEXP (tem, 0);
11106 value = replace_rtx (copy_rtx (value), reg, tem);
11110 /* For each register modified, show we don't know its value, that
11111 we don't know about its bitwise content, that its value has been
11112 updated, and that we don't know the location of the death of the
11113 register. */
11114 for (i = regno; i < endregno; i++)
11116 if (insn)
11117 reg_last_set[i] = insn;
11119 reg_last_set_value[i] = 0;
11120 reg_last_set_mode[i] = 0;
11121 reg_last_set_nonzero_bits[i] = 0;
11122 reg_last_set_sign_bit_copies[i] = 0;
11123 reg_last_death[i] = 0;
11126 /* Mark registers that are being referenced in this value. */
11127 if (value)
11128 update_table_tick (value);
11130 /* Now update the status of each register being set.
11131 If someone is using this register in this block, set this register
11132 to invalid since we will get confused between the two lives in this
11133 basic block. This makes using this register always invalid. In cse, we
11134 scan the table to invalidate all entries using this register, but this
11135 is too much work for us. */
11137 for (i = regno; i < endregno; i++)
11139 reg_last_set_label[i] = label_tick;
11140 if (value && reg_last_set_table_tick[i] == label_tick)
11141 reg_last_set_invalid[i] = 1;
11142 else
11143 reg_last_set_invalid[i] = 0;
11146 /* The value being assigned might refer to X (like in "x++;"). In that
11147 case, we must replace it with (clobber (const_int 0)) to prevent
11148 infinite loops. */
11149 if (value && ! get_last_value_validate (&value, insn,
11150 reg_last_set_label[regno], 0))
11152 value = copy_rtx (value);
11153 if (! get_last_value_validate (&value, insn,
11154 reg_last_set_label[regno], 1))
11155 value = 0;
11158 /* For the main register being modified, update the value, the mode, the
11159 nonzero bits, and the number of sign bit copies. */
11161 reg_last_set_value[regno] = value;
11163 if (value)
11165 subst_low_cuid = INSN_CUID (insn);
11166 reg_last_set_mode[regno] = GET_MODE (reg);
11167 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
11168 reg_last_set_sign_bit_copies[regno]
11169 = num_sign_bit_copies (value, GET_MODE (reg));
11173 /* Called via note_stores from record_dead_and_set_regs to handle one
11174 SET or CLOBBER in an insn. DATA is the instruction in which the
11175 set is occurring. */
11177 static void
11178 record_dead_and_set_regs_1 (dest, setter, data)
11179 rtx dest, setter;
11180 void *data;
11182 rtx record_dead_insn = (rtx) data;
11184 if (GET_CODE (dest) == SUBREG)
11185 dest = SUBREG_REG (dest);
11187 if (GET_CODE (dest) == REG)
11189 /* If we are setting the whole register, we know its value. Otherwise
11190 show that we don't know the value. We can handle SUBREG in
11191 some cases. */
11192 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11193 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11194 else if (GET_CODE (setter) == SET
11195 && GET_CODE (SET_DEST (setter)) == SUBREG
11196 && SUBREG_REG (SET_DEST (setter)) == dest
11197 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11198 && subreg_lowpart_p (SET_DEST (setter)))
11199 record_value_for_reg (dest, record_dead_insn,
11200 gen_lowpart_for_combine (GET_MODE (dest),
11201 SET_SRC (setter)));
11202 else
11203 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11205 else if (GET_CODE (dest) == MEM
11206 /* Ignore pushes, they clobber nothing. */
11207 && ! push_operand (dest, GET_MODE (dest)))
11208 mem_last_set = INSN_CUID (record_dead_insn);
11211 /* Update the records of when each REG was most recently set or killed
11212 for the things done by INSN. This is the last thing done in processing
11213 INSN in the combiner loop.
11215 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11216 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11217 and also the similar information mem_last_set (which insn most recently
11218 modified memory) and last_call_cuid (which insn was the most recent
11219 subroutine call). */
11221 static void
11222 record_dead_and_set_regs (insn)
11223 rtx insn;
11225 register rtx link;
11226 unsigned int i;
11228 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11230 if (REG_NOTE_KIND (link) == REG_DEAD
11231 && GET_CODE (XEXP (link, 0)) == REG)
11233 unsigned int regno = REGNO (XEXP (link, 0));
11234 unsigned int endregno
11235 = regno + (regno < FIRST_PSEUDO_REGISTER
11236 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11237 : 1);
11239 for (i = regno; i < endregno; i++)
11240 reg_last_death[i] = insn;
11242 else if (REG_NOTE_KIND (link) == REG_INC)
11243 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11246 if (GET_CODE (insn) == CALL_INSN)
11248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11249 if (call_used_regs[i])
11251 reg_last_set_value[i] = 0;
11252 reg_last_set_mode[i] = 0;
11253 reg_last_set_nonzero_bits[i] = 0;
11254 reg_last_set_sign_bit_copies[i] = 0;
11255 reg_last_death[i] = 0;
11258 last_call_cuid = mem_last_set = INSN_CUID (insn);
11261 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11264 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11265 register present in the SUBREG, so for each such SUBREG go back and
11266 adjust nonzero and sign bit information of the registers that are
11267 known to have some zero/sign bits set.
11269 This is needed because when combine blows the SUBREGs away, the
11270 information on zero/sign bits is lost and further combines can be
11271 missed because of that. */
11273 static void
11274 record_promoted_value (insn, subreg)
11275 rtx insn;
11276 rtx subreg;
11278 rtx links, set;
11279 unsigned int regno = REGNO (SUBREG_REG (subreg));
11280 enum machine_mode mode = GET_MODE (subreg);
11282 if (GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT)
11283 return;
11285 for (links = LOG_LINKS (insn); links; )
11287 insn = XEXP (links, 0);
11288 set = single_set (insn);
11290 if (! set || GET_CODE (SET_DEST (set)) != REG
11291 || REGNO (SET_DEST (set)) != regno
11292 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11294 links = XEXP (links, 1);
11295 continue;
11298 if (reg_last_set [regno] == insn)
11300 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
11301 reg_last_set_nonzero_bits [regno] &= GET_MODE_MASK (mode);
11304 if (GET_CODE (SET_SRC (set)) == REG)
11306 regno = REGNO (SET_SRC (set));
11307 links = LOG_LINKS (insn);
11309 else
11310 break;
11314 /* Scan X for promoted SUBREGs. For each one found,
11315 note what it implies to the registers used in it. */
11317 static void
11318 check_promoted_subreg (insn, x)
11319 rtx insn;
11320 rtx x;
11322 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11323 && GET_CODE (SUBREG_REG (x)) == REG)
11324 record_promoted_value (insn, x);
11325 else
11327 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11328 int i, j;
11330 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11331 switch (format [i])
11333 case 'e':
11334 check_promoted_subreg (insn, XEXP (x, i));
11335 break;
11336 case 'V':
11337 case 'E':
11338 if (XVEC (x, i) != 0)
11339 for (j = 0; j < XVECLEN (x, i); j++)
11340 check_promoted_subreg (insn, XVECEXP (x, i, j));
11341 break;
11346 /* Utility routine for the following function. Verify that all the registers
11347 mentioned in *LOC are valid when *LOC was part of a value set when
11348 label_tick == TICK. Return 0 if some are not.
11350 If REPLACE is non-zero, replace the invalid reference with
11351 (clobber (const_int 0)) and return 1. This replacement is useful because
11352 we often can get useful information about the form of a value (e.g., if
11353 it was produced by a shift that always produces -1 or 0) even though
11354 we don't know exactly what registers it was produced from. */
11356 static int
11357 get_last_value_validate (loc, insn, tick, replace)
11358 rtx *loc;
11359 rtx insn;
11360 int tick;
11361 int replace;
11363 rtx x = *loc;
11364 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11365 int len = GET_RTX_LENGTH (GET_CODE (x));
11366 int i;
11368 if (GET_CODE (x) == REG)
11370 unsigned int regno = REGNO (x);
11371 unsigned int endregno
11372 = regno + (regno < FIRST_PSEUDO_REGISTER
11373 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11374 unsigned int j;
11376 for (j = regno; j < endregno; j++)
11377 if (reg_last_set_invalid[j]
11378 /* If this is a pseudo-register that was only set once and not
11379 live at the beginning of the function, it is always valid. */
11380 || (! (regno >= FIRST_PSEUDO_REGISTER
11381 && REG_N_SETS (regno) == 1
11382 && (! REGNO_REG_SET_P
11383 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11384 && reg_last_set_label[j] > tick))
11386 if (replace)
11387 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11388 return replace;
11391 return 1;
11393 /* If this is a memory reference, make sure that there were
11394 no stores after it that might have clobbered the value. We don't
11395 have alias info, so we assume any store invalidates it. */
11396 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11397 && INSN_CUID (insn) <= mem_last_set)
11399 if (replace)
11400 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11401 return replace;
11404 for (i = 0; i < len; i++)
11405 if ((fmt[i] == 'e'
11406 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11407 /* Don't bother with these. They shouldn't occur anyway. */
11408 || fmt[i] == 'E')
11409 return 0;
11411 /* If we haven't found a reason for it to be invalid, it is valid. */
11412 return 1;
11415 /* Get the last value assigned to X, if known. Some registers
11416 in the value may be replaced with (clobber (const_int 0)) if their value
11417 is known longer known reliably. */
11419 static rtx
11420 get_last_value (x)
11421 rtx x;
11423 unsigned int regno;
11424 rtx value;
11426 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11427 then convert it to the desired mode. If this is a paradoxical SUBREG,
11428 we cannot predict what values the "extra" bits might have. */
11429 if (GET_CODE (x) == SUBREG
11430 && subreg_lowpart_p (x)
11431 && (GET_MODE_SIZE (GET_MODE (x))
11432 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11433 && (value = get_last_value (SUBREG_REG (x))) != 0)
11434 return gen_lowpart_for_combine (GET_MODE (x), value);
11436 if (GET_CODE (x) != REG)
11437 return 0;
11439 regno = REGNO (x);
11440 value = reg_last_set_value[regno];
11442 /* If we don't have a value, or if it isn't for this basic block and
11443 it's either a hard register, set more than once, or it's a live
11444 at the beginning of the function, return 0.
11446 Because if it's not live at the beginnning of the function then the reg
11447 is always set before being used (is never used without being set).
11448 And, if it's set only once, and it's always set before use, then all
11449 uses must have the same last value, even if it's not from this basic
11450 block. */
11452 if (value == 0
11453 || (reg_last_set_label[regno] != label_tick
11454 && (regno < FIRST_PSEUDO_REGISTER
11455 || REG_N_SETS (regno) != 1
11456 || (REGNO_REG_SET_P
11457 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11458 return 0;
11460 /* If the value was set in a later insn than the ones we are processing,
11461 we can't use it even if the register was only set once. */
11462 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11463 return 0;
11465 /* If the value has all its registers valid, return it. */
11466 if (get_last_value_validate (&value, reg_last_set[regno],
11467 reg_last_set_label[regno], 0))
11468 return value;
11470 /* Otherwise, make a copy and replace any invalid register with
11471 (clobber (const_int 0)). If that fails for some reason, return 0. */
11473 value = copy_rtx (value);
11474 if (get_last_value_validate (&value, reg_last_set[regno],
11475 reg_last_set_label[regno], 1))
11476 return value;
11478 return 0;
11481 /* Return nonzero if expression X refers to a REG or to memory
11482 that is set in an instruction more recent than FROM_CUID. */
11484 static int
11485 use_crosses_set_p (x, from_cuid)
11486 register rtx x;
11487 int from_cuid;
11489 register const char *fmt;
11490 register int i;
11491 register enum rtx_code code = GET_CODE (x);
11493 if (code == REG)
11495 unsigned int regno = REGNO (x);
11496 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11497 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11499 #ifdef PUSH_ROUNDING
11500 /* Don't allow uses of the stack pointer to be moved,
11501 because we don't know whether the move crosses a push insn. */
11502 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11503 return 1;
11504 #endif
11505 for (; regno < endreg; regno++)
11506 if (reg_last_set[regno]
11507 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11508 return 1;
11509 return 0;
11512 if (code == MEM && mem_last_set > from_cuid)
11513 return 1;
11515 fmt = GET_RTX_FORMAT (code);
11517 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11519 if (fmt[i] == 'E')
11521 register int j;
11522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11523 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11524 return 1;
11526 else if (fmt[i] == 'e'
11527 && use_crosses_set_p (XEXP (x, i), from_cuid))
11528 return 1;
11530 return 0;
11533 /* Define three variables used for communication between the following
11534 routines. */
11536 static unsigned int reg_dead_regno, reg_dead_endregno;
11537 static int reg_dead_flag;
11539 /* Function called via note_stores from reg_dead_at_p.
11541 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11542 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11544 static void
11545 reg_dead_at_p_1 (dest, x, data)
11546 rtx dest;
11547 rtx x;
11548 void *data ATTRIBUTE_UNUSED;
11550 unsigned int regno, endregno;
11552 if (GET_CODE (dest) != REG)
11553 return;
11555 regno = REGNO (dest);
11556 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11557 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11559 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11560 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11563 /* Return non-zero if REG is known to be dead at INSN.
11565 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11566 referencing REG, it is dead. If we hit a SET referencing REG, it is
11567 live. Otherwise, see if it is live or dead at the start of the basic
11568 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11569 must be assumed to be always live. */
11571 static int
11572 reg_dead_at_p (reg, insn)
11573 rtx reg;
11574 rtx insn;
11576 int block;
11577 unsigned int i;
11579 /* Set variables for reg_dead_at_p_1. */
11580 reg_dead_regno = REGNO (reg);
11581 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11582 ? HARD_REGNO_NREGS (reg_dead_regno,
11583 GET_MODE (reg))
11584 : 1);
11586 reg_dead_flag = 0;
11588 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11589 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11591 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11592 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11593 return 0;
11596 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11597 beginning of function. */
11598 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11599 insn = prev_nonnote_insn (insn))
11601 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11602 if (reg_dead_flag)
11603 return reg_dead_flag == 1 ? 1 : 0;
11605 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11606 return 1;
11609 /* Get the basic block number that we were in. */
11610 if (insn == 0)
11611 block = 0;
11612 else
11614 for (block = 0; block < n_basic_blocks; block++)
11615 if (insn == BLOCK_HEAD (block))
11616 break;
11618 if (block == n_basic_blocks)
11619 return 0;
11622 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11623 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11624 return 0;
11626 return 1;
11629 /* Note hard registers in X that are used. This code is similar to
11630 that in flow.c, but much simpler since we don't care about pseudos. */
11632 static void
11633 mark_used_regs_combine (x)
11634 rtx x;
11636 RTX_CODE code = GET_CODE (x);
11637 unsigned int regno;
11638 int i;
11640 switch (code)
11642 case LABEL_REF:
11643 case SYMBOL_REF:
11644 case CONST_INT:
11645 case CONST:
11646 case CONST_DOUBLE:
11647 case PC:
11648 case ADDR_VEC:
11649 case ADDR_DIFF_VEC:
11650 case ASM_INPUT:
11651 #ifdef HAVE_cc0
11652 /* CC0 must die in the insn after it is set, so we don't need to take
11653 special note of it here. */
11654 case CC0:
11655 #endif
11656 return;
11658 case CLOBBER:
11659 /* If we are clobbering a MEM, mark any hard registers inside the
11660 address as used. */
11661 if (GET_CODE (XEXP (x, 0)) == MEM)
11662 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11663 return;
11665 case REG:
11666 regno = REGNO (x);
11667 /* A hard reg in a wide mode may really be multiple registers.
11668 If so, mark all of them just like the first. */
11669 if (regno < FIRST_PSEUDO_REGISTER)
11671 unsigned int endregno, r;
11673 /* None of this applies to the stack, frame or arg pointers */
11674 if (regno == STACK_POINTER_REGNUM
11675 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11676 || regno == HARD_FRAME_POINTER_REGNUM
11677 #endif
11678 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11679 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11680 #endif
11681 || regno == FRAME_POINTER_REGNUM)
11682 return;
11684 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11685 for (r = regno; r < endregno; r++)
11686 SET_HARD_REG_BIT (newpat_used_regs, r);
11688 return;
11690 case SET:
11692 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11693 the address. */
11694 register rtx testreg = SET_DEST (x);
11696 while (GET_CODE (testreg) == SUBREG
11697 || GET_CODE (testreg) == ZERO_EXTRACT
11698 || GET_CODE (testreg) == SIGN_EXTRACT
11699 || GET_CODE (testreg) == STRICT_LOW_PART)
11700 testreg = XEXP (testreg, 0);
11702 if (GET_CODE (testreg) == MEM)
11703 mark_used_regs_combine (XEXP (testreg, 0));
11705 mark_used_regs_combine (SET_SRC (x));
11707 return;
11709 default:
11710 break;
11713 /* Recursively scan the operands of this expression. */
11716 register const char *fmt = GET_RTX_FORMAT (code);
11718 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11720 if (fmt[i] == 'e')
11721 mark_used_regs_combine (XEXP (x, i));
11722 else if (fmt[i] == 'E')
11724 register int j;
11726 for (j = 0; j < XVECLEN (x, i); j++)
11727 mark_used_regs_combine (XVECEXP (x, i, j));
11734 /* Remove register number REGNO from the dead registers list of INSN.
11736 Return the note used to record the death, if there was one. */
11739 remove_death (regno, insn)
11740 unsigned int regno;
11741 rtx insn;
11743 register rtx note = find_regno_note (insn, REG_DEAD, regno);
11745 if (note)
11747 REG_N_DEATHS (regno)--;
11748 remove_note (insn, note);
11751 return note;
11754 /* For each register (hardware or pseudo) used within expression X, if its
11755 death is in an instruction with cuid between FROM_CUID (inclusive) and
11756 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11757 list headed by PNOTES.
11759 That said, don't move registers killed by maybe_kill_insn.
11761 This is done when X is being merged by combination into TO_INSN. These
11762 notes will then be distributed as needed. */
11764 static void
11765 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11766 rtx x;
11767 rtx maybe_kill_insn;
11768 int from_cuid;
11769 rtx to_insn;
11770 rtx *pnotes;
11772 register const char *fmt;
11773 register int len, i;
11774 register enum rtx_code code = GET_CODE (x);
11776 if (code == REG)
11778 unsigned int regno = REGNO (x);
11779 register rtx where_dead = reg_last_death[regno];
11780 register rtx before_dead, after_dead;
11782 /* Don't move the register if it gets killed in between from and to */
11783 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11784 && ! reg_referenced_p (x, maybe_kill_insn))
11785 return;
11787 /* WHERE_DEAD could be a USE insn made by combine, so first we
11788 make sure that we have insns with valid INSN_CUID values. */
11789 before_dead = where_dead;
11790 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11791 before_dead = PREV_INSN (before_dead);
11793 after_dead = where_dead;
11794 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11795 after_dead = NEXT_INSN (after_dead);
11797 if (before_dead && after_dead
11798 && INSN_CUID (before_dead) >= from_cuid
11799 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11800 || (where_dead != after_dead
11801 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11803 rtx note = remove_death (regno, where_dead);
11805 /* It is possible for the call above to return 0. This can occur
11806 when reg_last_death points to I2 or I1 that we combined with.
11807 In that case make a new note.
11809 We must also check for the case where X is a hard register
11810 and NOTE is a death note for a range of hard registers
11811 including X. In that case, we must put REG_DEAD notes for
11812 the remaining registers in place of NOTE. */
11814 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11815 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11816 > GET_MODE_SIZE (GET_MODE (x))))
11818 unsigned int deadregno = REGNO (XEXP (note, 0));
11819 unsigned int deadend
11820 = (deadregno + HARD_REGNO_NREGS (deadregno,
11821 GET_MODE (XEXP (note, 0))));
11822 unsigned int ourend
11823 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11824 unsigned int i;
11826 for (i = deadregno; i < deadend; i++)
11827 if (i < regno || i >= ourend)
11828 REG_NOTES (where_dead)
11829 = gen_rtx_EXPR_LIST (REG_DEAD,
11830 gen_rtx_REG (reg_raw_mode[i], i),
11831 REG_NOTES (where_dead));
11834 /* If we didn't find any note, or if we found a REG_DEAD note that
11835 covers only part of the given reg, and we have a multi-reg hard
11836 register, then to be safe we must check for REG_DEAD notes
11837 for each register other than the first. They could have
11838 their own REG_DEAD notes lying around. */
11839 else if ((note == 0
11840 || (note != 0
11841 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11842 < GET_MODE_SIZE (GET_MODE (x)))))
11843 && regno < FIRST_PSEUDO_REGISTER
11844 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11846 unsigned int ourend
11847 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11848 unsigned int i, offset;
11849 rtx oldnotes = 0;
11851 if (note)
11852 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11853 else
11854 offset = 1;
11856 for (i = regno + offset; i < ourend; i++)
11857 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11858 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11861 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11863 XEXP (note, 1) = *pnotes;
11864 *pnotes = note;
11866 else
11867 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11869 REG_N_DEATHS (regno)++;
11872 return;
11875 else if (GET_CODE (x) == SET)
11877 rtx dest = SET_DEST (x);
11879 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11881 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11882 that accesses one word of a multi-word item, some
11883 piece of everything register in the expression is used by
11884 this insn, so remove any old death. */
11886 if (GET_CODE (dest) == ZERO_EXTRACT
11887 || GET_CODE (dest) == STRICT_LOW_PART
11888 || (GET_CODE (dest) == SUBREG
11889 && (((GET_MODE_SIZE (GET_MODE (dest))
11890 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11891 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11892 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11894 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11895 return;
11898 /* If this is some other SUBREG, we know it replaces the entire
11899 value, so use that as the destination. */
11900 if (GET_CODE (dest) == SUBREG)
11901 dest = SUBREG_REG (dest);
11903 /* If this is a MEM, adjust deaths of anything used in the address.
11904 For a REG (the only other possibility), the entire value is
11905 being replaced so the old value is not used in this insn. */
11907 if (GET_CODE (dest) == MEM)
11908 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11909 to_insn, pnotes);
11910 return;
11913 else if (GET_CODE (x) == CLOBBER)
11914 return;
11916 len = GET_RTX_LENGTH (code);
11917 fmt = GET_RTX_FORMAT (code);
11919 for (i = 0; i < len; i++)
11921 if (fmt[i] == 'E')
11923 register int j;
11924 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11925 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11926 to_insn, pnotes);
11928 else if (fmt[i] == 'e')
11929 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11933 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11934 pattern of an insn. X must be a REG. */
11936 static int
11937 reg_bitfield_target_p (x, body)
11938 rtx x;
11939 rtx body;
11941 int i;
11943 if (GET_CODE (body) == SET)
11945 rtx dest = SET_DEST (body);
11946 rtx target;
11947 unsigned int regno, tregno, endregno, endtregno;
11949 if (GET_CODE (dest) == ZERO_EXTRACT)
11950 target = XEXP (dest, 0);
11951 else if (GET_CODE (dest) == STRICT_LOW_PART)
11952 target = SUBREG_REG (XEXP (dest, 0));
11953 else
11954 return 0;
11956 if (GET_CODE (target) == SUBREG)
11957 target = SUBREG_REG (target);
11959 if (GET_CODE (target) != REG)
11960 return 0;
11962 tregno = REGNO (target), regno = REGNO (x);
11963 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11964 return target == x;
11966 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
11967 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11969 return endregno > tregno && regno < endtregno;
11972 else if (GET_CODE (body) == PARALLEL)
11973 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11974 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11975 return 1;
11977 return 0;
11980 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11981 as appropriate. I3 and I2 are the insns resulting from the combination
11982 insns including FROM (I2 may be zero).
11984 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11985 not need REG_DEAD notes because they are being substituted for. This
11986 saves searching in the most common cases.
11988 Each note in the list is either ignored or placed on some insns, depending
11989 on the type of note. */
11991 static void
11992 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
11993 rtx notes;
11994 rtx from_insn;
11995 rtx i3, i2;
11996 rtx elim_i2, elim_i1;
11998 rtx note, next_note;
11999 rtx tem;
12001 for (note = notes; note; note = next_note)
12003 rtx place = 0, place2 = 0;
12005 /* If this NOTE references a pseudo register, ensure it references
12006 the latest copy of that register. */
12007 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12008 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12009 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12011 next_note = XEXP (note, 1);
12012 switch (REG_NOTE_KIND (note))
12014 case REG_BR_PROB:
12015 case REG_EXEC_COUNT:
12016 /* Doesn't matter much where we put this, as long as it's somewhere.
12017 It is preferable to keep these notes on branches, which is most
12018 likely to be i3. */
12019 place = i3;
12020 break;
12022 case REG_EH_REGION:
12023 case REG_EH_RETHROW:
12024 /* These notes must remain with the call. It should not be
12025 possible for both I2 and I3 to be a call. */
12026 if (GET_CODE (i3) == CALL_INSN)
12027 place = i3;
12028 else if (i2 && GET_CODE (i2) == CALL_INSN)
12029 place = i2;
12030 else
12031 abort ();
12032 break;
12034 case REG_UNUSED:
12035 /* Any clobbers for i3 may still exist, and so we must process
12036 REG_UNUSED notes from that insn.
12038 Any clobbers from i2 or i1 can only exist if they were added by
12039 recog_for_combine. In that case, recog_for_combine created the
12040 necessary REG_UNUSED notes. Trying to keep any original
12041 REG_UNUSED notes from these insns can cause incorrect output
12042 if it is for the same register as the original i3 dest.
12043 In that case, we will notice that the register is set in i3,
12044 and then add a REG_UNUSED note for the destination of i3, which
12045 is wrong. However, it is possible to have REG_UNUSED notes from
12046 i2 or i1 for register which were both used and clobbered, so
12047 we keep notes from i2 or i1 if they will turn into REG_DEAD
12048 notes. */
12050 /* If this register is set or clobbered in I3, put the note there
12051 unless there is one already. */
12052 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12054 if (from_insn != i3)
12055 break;
12057 if (! (GET_CODE (XEXP (note, 0)) == REG
12058 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12059 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12060 place = i3;
12062 /* Otherwise, if this register is used by I3, then this register
12063 now dies here, so we must put a REG_DEAD note here unless there
12064 is one already. */
12065 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12066 && ! (GET_CODE (XEXP (note, 0)) == REG
12067 ? find_regno_note (i3, REG_DEAD,
12068 REGNO (XEXP (note, 0)))
12069 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12071 PUT_REG_NOTE_KIND (note, REG_DEAD);
12072 place = i3;
12074 break;
12076 case REG_EQUAL:
12077 case REG_EQUIV:
12078 case REG_NONNEG:
12079 case REG_NOALIAS:
12080 /* These notes say something about results of an insn. We can
12081 only support them if they used to be on I3 in which case they
12082 remain on I3. Otherwise they are ignored.
12084 If the note refers to an expression that is not a constant, we
12085 must also ignore the note since we cannot tell whether the
12086 equivalence is still true. It might be possible to do
12087 slightly better than this (we only have a problem if I2DEST
12088 or I1DEST is present in the expression), but it doesn't
12089 seem worth the trouble. */
12091 if (from_insn == i3
12092 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12093 place = i3;
12094 break;
12096 case REG_INC:
12097 case REG_NO_CONFLICT:
12098 /* These notes say something about how a register is used. They must
12099 be present on any use of the register in I2 or I3. */
12100 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12101 place = i3;
12103 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12105 if (place)
12106 place2 = i2;
12107 else
12108 place = i2;
12110 break;
12112 case REG_LABEL:
12113 /* This can show up in several ways -- either directly in the
12114 pattern, or hidden off in the constant pool with (or without?)
12115 a REG_EQUAL note. */
12116 /* ??? Ignore the without-reg_equal-note problem for now. */
12117 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12118 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12119 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12120 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12121 place = i3;
12123 if (i2
12124 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12125 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12126 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12127 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12129 if (place)
12130 place2 = i2;
12131 else
12132 place = i2;
12134 break;
12136 case REG_WAS_0:
12137 /* It is too much trouble to try to see if this note is still
12138 correct in all situations. It is better to simply delete it. */
12139 break;
12141 case REG_RETVAL:
12142 /* If the insn previously containing this note still exists,
12143 put it back where it was. Otherwise move it to the previous
12144 insn. Adjust the corresponding REG_LIBCALL note. */
12145 if (GET_CODE (from_insn) != NOTE)
12146 place = from_insn;
12147 else
12149 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12150 place = prev_real_insn (from_insn);
12151 if (tem && place)
12152 XEXP (tem, 0) = place;
12154 break;
12156 case REG_LIBCALL:
12157 /* This is handled similarly to REG_RETVAL. */
12158 if (GET_CODE (from_insn) != NOTE)
12159 place = from_insn;
12160 else
12162 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12163 place = next_real_insn (from_insn);
12164 if (tem && place)
12165 XEXP (tem, 0) = place;
12167 break;
12169 case REG_DEAD:
12170 /* If the register is used as an input in I3, it dies there.
12171 Similarly for I2, if it is non-zero and adjacent to I3.
12173 If the register is not used as an input in either I3 or I2
12174 and it is not one of the registers we were supposed to eliminate,
12175 there are two possibilities. We might have a non-adjacent I2
12176 or we might have somehow eliminated an additional register
12177 from a computation. For example, we might have had A & B where
12178 we discover that B will always be zero. In this case we will
12179 eliminate the reference to A.
12181 In both cases, we must search to see if we can find a previous
12182 use of A and put the death note there. */
12184 if (from_insn
12185 && GET_CODE (from_insn) == CALL_INSN
12186 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12187 place = from_insn;
12188 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12189 place = i3;
12190 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12191 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12192 place = i2;
12194 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
12195 break;
12197 if (place == 0)
12199 basic_block bb = BASIC_BLOCK (this_basic_block);
12201 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12203 if (GET_RTX_CLASS (GET_CODE (tem)) != 'i')
12205 if (tem == bb->head)
12206 break;
12207 continue;
12210 /* If the register is being set at TEM, see if that is all
12211 TEM is doing. If so, delete TEM. Otherwise, make this
12212 into a REG_UNUSED note instead. */
12213 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12215 rtx set = single_set (tem);
12216 rtx inner_dest = 0;
12217 #ifdef HAVE_cc0
12218 rtx cc0_setter = NULL_RTX;
12219 #endif
12221 if (set != 0)
12222 for (inner_dest = SET_DEST (set);
12223 GET_CODE (inner_dest) == STRICT_LOW_PART
12224 || GET_CODE (inner_dest) == SUBREG
12225 || GET_CODE (inner_dest) == ZERO_EXTRACT;
12226 inner_dest = XEXP (inner_dest, 0))
12229 /* Verify that it was the set, and not a clobber that
12230 modified the register.
12232 CC0 targets must be careful to maintain setter/user
12233 pairs. If we cannot delete the setter due to side
12234 effects, mark the user with an UNUSED note instead
12235 of deleting it. */
12237 if (set != 0 && ! side_effects_p (SET_SRC (set))
12238 && rtx_equal_p (XEXP (note, 0), inner_dest)
12239 #ifdef HAVE_cc0
12240 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12241 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12242 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12243 #endif
12246 /* Move the notes and links of TEM elsewhere.
12247 This might delete other dead insns recursively.
12248 First set the pattern to something that won't use
12249 any register. */
12251 PATTERN (tem) = pc_rtx;
12253 distribute_notes (REG_NOTES (tem), tem, tem,
12254 NULL_RTX, NULL_RTX, NULL_RTX);
12255 distribute_links (LOG_LINKS (tem));
12257 PUT_CODE (tem, NOTE);
12258 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12259 NOTE_SOURCE_FILE (tem) = 0;
12261 #ifdef HAVE_cc0
12262 /* Delete the setter too. */
12263 if (cc0_setter)
12265 PATTERN (cc0_setter) = pc_rtx;
12267 distribute_notes (REG_NOTES (cc0_setter),
12268 cc0_setter, cc0_setter,
12269 NULL_RTX, NULL_RTX, NULL_RTX);
12270 distribute_links (LOG_LINKS (cc0_setter));
12272 PUT_CODE (cc0_setter, NOTE);
12273 NOTE_LINE_NUMBER (cc0_setter)
12274 = NOTE_INSN_DELETED;
12275 NOTE_SOURCE_FILE (cc0_setter) = 0;
12277 #endif
12279 /* If the register is both set and used here, put the
12280 REG_DEAD note here, but place a REG_UNUSED note
12281 here too unless there already is one. */
12282 else if (reg_referenced_p (XEXP (note, 0),
12283 PATTERN (tem)))
12285 place = tem;
12287 if (! find_regno_note (tem, REG_UNUSED,
12288 REGNO (XEXP (note, 0))))
12289 REG_NOTES (tem)
12290 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12291 REG_NOTES (tem));
12293 else
12295 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12297 /* If there isn't already a REG_UNUSED note, put one
12298 here. */
12299 if (! find_regno_note (tem, REG_UNUSED,
12300 REGNO (XEXP (note, 0))))
12301 place = tem;
12302 break;
12305 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12306 || (GET_CODE (tem) == CALL_INSN
12307 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12309 place = tem;
12311 /* If we are doing a 3->2 combination, and we have a
12312 register which formerly died in i3 and was not used
12313 by i2, which now no longer dies in i3 and is used in
12314 i2 but does not die in i2, and place is between i2
12315 and i3, then we may need to move a link from place to
12316 i2. */
12317 if (i2 && INSN_UID (place) <= max_uid_cuid
12318 && INSN_CUID (place) > INSN_CUID (i2)
12319 && from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
12320 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12322 rtx links = LOG_LINKS (place);
12323 LOG_LINKS (place) = 0;
12324 distribute_links (links);
12326 break;
12329 if (tem == bb->head)
12330 break;
12333 /* We haven't found an insn for the death note and it
12334 is still a REG_DEAD note, but we have hit the beginning
12335 of the block. If the existing life info says the reg
12336 was dead, there's nothing left to do. Otherwise, we'll
12337 need to do a global life update after combine. */
12338 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12339 && REGNO_REG_SET_P (bb->global_live_at_start,
12340 REGNO (XEXP (note, 0))))
12342 SET_BIT (refresh_blocks, this_basic_block);
12343 need_refresh = 1;
12347 /* If the register is set or already dead at PLACE, we needn't do
12348 anything with this note if it is still a REG_DEAD note.
12349 We can here if it is set at all, not if is it totally replace,
12350 which is what `dead_or_set_p' checks, so also check for it being
12351 set partially. */
12353 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12355 unsigned int regno = REGNO (XEXP (note, 0));
12357 if (dead_or_set_p (place, XEXP (note, 0))
12358 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12360 /* Unless the register previously died in PLACE, clear
12361 reg_last_death. [I no longer understand why this is
12362 being done.] */
12363 if (reg_last_death[regno] != place)
12364 reg_last_death[regno] = 0;
12365 place = 0;
12367 else
12368 reg_last_death[regno] = place;
12370 /* If this is a death note for a hard reg that is occupying
12371 multiple registers, ensure that we are still using all
12372 parts of the object. If we find a piece of the object
12373 that is unused, we must add a USE for that piece before
12374 PLACE and put the appropriate REG_DEAD note on it.
12376 An alternative would be to put a REG_UNUSED for the pieces
12377 on the insn that set the register, but that can't be done if
12378 it is not in the same block. It is simpler, though less
12379 efficient, to add the USE insns. */
12381 if (place && regno < FIRST_PSEUDO_REGISTER
12382 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12384 unsigned int endregno
12385 = regno + HARD_REGNO_NREGS (regno,
12386 GET_MODE (XEXP (note, 0)));
12387 int all_used = 1;
12388 unsigned int i;
12390 for (i = regno; i < endregno; i++)
12391 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12392 && ! find_regno_fusage (place, USE, i))
12394 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12395 rtx p;
12397 /* See if we already placed a USE note for this
12398 register in front of PLACE. */
12399 for (p = place;
12400 GET_CODE (PREV_INSN (p)) == INSN
12401 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
12402 p = PREV_INSN (p))
12403 if (rtx_equal_p (piece,
12404 XEXP (PATTERN (PREV_INSN (p)), 0)))
12406 p = 0;
12407 break;
12410 if (p)
12412 rtx use_insn
12413 = emit_insn_before (gen_rtx_USE (VOIDmode,
12414 piece),
12416 REG_NOTES (use_insn)
12417 = gen_rtx_EXPR_LIST (REG_DEAD, piece,
12418 REG_NOTES (use_insn));
12421 all_used = 0;
12424 /* Check for the case where the register dying partially
12425 overlaps the register set by this insn. */
12426 if (all_used)
12427 for (i = regno; i < endregno; i++)
12428 if (dead_or_set_regno_p (place, i))
12430 all_used = 0;
12431 break;
12434 if (! all_used)
12436 /* Put only REG_DEAD notes for pieces that are
12437 still used and that are not already dead or set. */
12439 for (i = regno; i < endregno; i++)
12441 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12443 if ((reg_referenced_p (piece, PATTERN (place))
12444 || (GET_CODE (place) == CALL_INSN
12445 && find_reg_fusage (place, USE, piece)))
12446 && ! dead_or_set_p (place, piece)
12447 && ! reg_bitfield_target_p (piece,
12448 PATTERN (place)))
12449 REG_NOTES (place)
12450 = gen_rtx_EXPR_LIST (REG_DEAD, piece,
12451 REG_NOTES (place));
12454 place = 0;
12458 break;
12460 default:
12461 /* Any other notes should not be present at this point in the
12462 compilation. */
12463 abort ();
12466 if (place)
12468 XEXP (note, 1) = REG_NOTES (place);
12469 REG_NOTES (place) = note;
12471 else if ((REG_NOTE_KIND (note) == REG_DEAD
12472 || REG_NOTE_KIND (note) == REG_UNUSED)
12473 && GET_CODE (XEXP (note, 0)) == REG)
12474 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12476 if (place2)
12478 if ((REG_NOTE_KIND (note) == REG_DEAD
12479 || REG_NOTE_KIND (note) == REG_UNUSED)
12480 && GET_CODE (XEXP (note, 0)) == REG)
12481 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12483 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12484 REG_NOTE_KIND (note),
12485 XEXP (note, 0),
12486 REG_NOTES (place2));
12491 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12492 I3, I2, and I1 to new locations. This is also called in one case to
12493 add a link pointing at I3 when I3's destination is changed. */
12495 static void
12496 distribute_links (links)
12497 rtx links;
12499 rtx link, next_link;
12501 for (link = links; link; link = next_link)
12503 rtx place = 0;
12504 rtx insn;
12505 rtx set, reg;
12507 next_link = XEXP (link, 1);
12509 /* If the insn that this link points to is a NOTE or isn't a single
12510 set, ignore it. In the latter case, it isn't clear what we
12511 can do other than ignore the link, since we can't tell which
12512 register it was for. Such links wouldn't be used by combine
12513 anyway.
12515 It is not possible for the destination of the target of the link to
12516 have been changed by combine. The only potential of this is if we
12517 replace I3, I2, and I1 by I3 and I2. But in that case the
12518 destination of I2 also remains unchanged. */
12520 if (GET_CODE (XEXP (link, 0)) == NOTE
12521 || (set = single_set (XEXP (link, 0))) == 0)
12522 continue;
12524 reg = SET_DEST (set);
12525 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12526 || GET_CODE (reg) == SIGN_EXTRACT
12527 || GET_CODE (reg) == STRICT_LOW_PART)
12528 reg = XEXP (reg, 0);
12530 /* A LOG_LINK is defined as being placed on the first insn that uses
12531 a register and points to the insn that sets the register. Start
12532 searching at the next insn after the target of the link and stop
12533 when we reach a set of the register or the end of the basic block.
12535 Note that this correctly handles the link that used to point from
12536 I3 to I2. Also note that not much searching is typically done here
12537 since most links don't point very far away. */
12539 for (insn = NEXT_INSN (XEXP (link, 0));
12540 (insn && (this_basic_block == n_basic_blocks - 1
12541 || BLOCK_HEAD (this_basic_block + 1) != insn));
12542 insn = NEXT_INSN (insn))
12543 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
12544 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12546 if (reg_referenced_p (reg, PATTERN (insn)))
12547 place = insn;
12548 break;
12550 else if (GET_CODE (insn) == CALL_INSN
12551 && find_reg_fusage (insn, USE, reg))
12553 place = insn;
12554 break;
12557 /* If we found a place to put the link, place it there unless there
12558 is already a link to the same insn as LINK at that point. */
12560 if (place)
12562 rtx link2;
12564 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12565 if (XEXP (link2, 0) == XEXP (link, 0))
12566 break;
12568 if (link2 == 0)
12570 XEXP (link, 1) = LOG_LINKS (place);
12571 LOG_LINKS (place) = link;
12573 /* Set added_links_insn to the earliest insn we added a
12574 link to. */
12575 if (added_links_insn == 0
12576 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12577 added_links_insn = place;
12583 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12585 static int
12586 insn_cuid (insn)
12587 rtx insn;
12589 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12590 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12591 insn = NEXT_INSN (insn);
12593 if (INSN_UID (insn) > max_uid_cuid)
12594 abort ();
12596 return INSN_CUID (insn);
12599 void
12600 dump_combine_stats (file)
12601 FILE *file;
12603 fnotice
12604 (file,
12605 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12606 combine_attempts, combine_merges, combine_extras, combine_successes);
12609 void
12610 dump_combine_total_stats (file)
12611 FILE *file;
12613 fnotice
12614 (file,
12615 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12616 total_attempts, total_merges, total_extras, total_successes);