2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / vtable-verify.c
blob5dc72a4796d1dfd54b850a28058d507b26f51f06
1 /* Copyright (C) 2013-2015 Free Software Foundation, Inc.
3 This file is part of GCC.
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
8 version.
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 for more details.
15 You should have received a copy of the GNU General Public License
16 along with GCC; see the file COPYING3. If not see
17 <http://www.gnu.org/licenses/>. */
19 /* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers
20 before using them for virtual method dispatches. */
22 /* This file is part of the vtable security feature implementation.
23 The vtable security feature is designed to detect when a virtual
24 call is about to be made through an invalid vtable pointer
25 (possibly due to data corruption or malicious attacks). The
26 compiler finds every virtual call, and inserts a verification call
27 before the virtual call. The verification call takes the actual
28 vtable pointer value in the object through which the virtual call
29 is being made, and compares the vtable pointer against a set of all
30 valid vtable pointers that the object could contain (this set is
31 based on the declared type of the object). If the pointer is in
32 the valid set, execution is allowed to continue; otherwise the
33 program is halted.
35 There are several pieces needed in order to make this work: 1. For
36 every virtual class in the program (i.e. a class that contains
37 virtual methods), we need to build the set of all possible valid
38 vtables that an object of that class could point to. This includes
39 vtables for any class(es) that inherit from the class under
40 consideration. 2. For every such data set we build up, we need a
41 way to find and reference the data set. This is complicated by the
42 fact that the real vtable addresses are not known until runtime,
43 when the program is loaded into memory, but we need to reference the
44 sets at compile time when we are inserting verification calls into
45 the program. 3. We need to find every virtual call in the program,
46 and insert the verification call (with the appropriate arguments)
47 before the virtual call. 4. We need some runtime library pieces:
48 the code to build up the data sets at runtime; the code to actually
49 perform the verification using the data sets; and some code to set
50 protections on the data sets, so they themselves do not become
51 hacker targets.
53 To find and reference the set of valid vtable pointers for any given
54 virtual class, we create a special global variable for each virtual
55 class. We refer to this as the "vtable map variable" for that
56 class. The vtable map variable has the type "void *", and is
57 initialized by the compiler to NULL. At runtime when the set of
58 valid vtable pointers for a virtual class, e.g. class Foo, is built,
59 the vtable map variable for class Foo is made to point to the set.
60 During compile time, when the compiler is inserting verification
61 calls into the program, it passes the vtable map variable for the
62 appropriate class to the verification call, so that at runtime the
63 verification call can find the appropriate data set.
65 The actual set of valid vtable pointers for a virtual class,
66 e.g. class Foo, cannot be built until runtime, when the vtables get
67 loaded into memory and their addresses are known. But the knowledge
68 about which vtables belong in which class' hierarchy is only known
69 at compile time. Therefore at compile time we collect class
70 hierarchy and vtable information about every virtual class, and we
71 generate calls to build up the data sets at runtime. To build the
72 data sets, we call one of the functions we add to the runtime
73 library, __VLTRegisterPair. __VLTRegisterPair takes two arguments,
74 a vtable map variable and the address of a vtable. If the vtable
75 map variable is currently NULL, it creates a new data set (hash
76 table), makes the vtable map variable point to the new data set, and
77 inserts the vtable address into the data set. If the vtable map
78 variable is not NULL, it just inserts the vtable address into the
79 data set. In order to make sure that our data sets are built before
80 any verification calls happen, we create a special constructor
81 initialization function for each compilation unit, give it a very
82 high initialization priority, and insert all of our calls to
83 __VLTRegisterPair into our special constructor initialization
84 function.
86 The vtable verification feature is controlled by the flag
87 '-fvtable-verify='. There are three flavors of this:
88 '-fvtable-verify=std', '-fvtable-verify=preinit', and
89 '-fvtable-verify=none'. If the option '-fvtable-verfy=preinit' is
90 used, then our constructor initialization function gets put into the
91 preinit array. This is necessary if there are data sets that need
92 to be built very early in execution. If the constructor
93 initialization function gets put into the preinit array, the we also
94 add calls to __VLTChangePermission at the beginning and end of the
95 function. The call at the beginning sets the permissions on the
96 data sets and vtable map variables to read/write, and the one at the
97 end makes them read-only. If the '-fvtable-verify=std' option is
98 used, the constructor initialization functions are executed at their
99 normal time, and the __VLTChangePermission calls are handled
100 differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc).
101 The option '-fvtable-verify=none' turns off vtable verification.
103 This file contains code for the tree pass that goes through all the
104 statements in each basic block, looking for virtual calls, and
105 inserting a call to __VLTVerifyVtablePointer (with appropriate
106 arguments) before each one. It also contains the hash table
107 functions for the data structures used for collecting the class
108 hierarchy data and building/maintaining the vtable map variable data
109 are defined in gcc/vtable-verify.h. These data structures are
110 shared with the code in the C++ front end that collects the class
111 hierarchy & vtable information and generates the vtable map
112 variables (see cp/vtable-class-hierarchy.c). This tree pass should
113 run just before the gimple is converted to RTL.
115 Some implementation details for this pass:
117 To find all of the virtual calls, we iterate through all the
118 gimple statements in each basic block, looking for any call
119 statement with the code "OBJ_TYPE_REF". Once we have found the
120 virtual call, we need to find the vtable pointer through which the
121 call is being made, and the type of the object containing the
122 pointer (to find the appropriate vtable map variable). We then use
123 these to build a call to __VLTVerifyVtablePointer, passing the
124 vtable map variable, and the vtable pointer. We insert the
125 verification call just after the gimple statement that gets the
126 vtable pointer out of the object, and we update the next
127 statement to depend on the result returned from
128 __VLTVerifyVtablePointer (the vtable pointer value), to ensure
129 subsequent compiler phases don't remove or reorder the call (it's no
130 good to have the verification occur after the virtual call, for
131 example). To find the vtable pointer being used (and the type of
132 the object) we search backwards through the def_stmts chain from the
133 virtual call (see verify_bb_vtables for more details). */
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "input.h"
139 #include "alias.h"
140 #include "symtab.h"
141 #include "options.h"
142 #include "tree.h"
143 #include "fold-const.h"
144 #include "predict.h"
145 #include "tm.h"
146 #include "hard-reg-set.h"
147 #include "input.h"
148 #include "function.h"
149 #include "dominance.h"
150 #include "cfg.h"
151 #include "basic-block.h"
152 #include "tree-ssa-alias.h"
153 #include "internal-fn.h"
154 #include "gimple-expr.h"
155 #include "is-a.h"
156 #include "gimple.h"
157 #include "gimple-iterator.h"
158 #include "gimple-ssa.h"
159 #include "tree-phinodes.h"
160 #include "ssa-iterators.h"
161 #include "stringpool.h"
162 #include "tree-ssanames.h"
163 #include "tree-pass.h"
164 #include "cfgloop.h"
166 #include "vtable-verify.h"
168 unsigned num_vtable_map_nodes = 0;
169 int total_num_virtual_calls = 0;
170 int total_num_verified_vcalls = 0;
172 extern GTY(()) tree verify_vtbl_ptr_fndecl;
173 tree verify_vtbl_ptr_fndecl = NULL_TREE;
175 /* Keep track of whether or not any virtual call were verified. */
176 static bool any_verification_calls_generated = false;
178 unsigned int vtable_verify_main (void);
181 /* The following few functions are for the vtbl pointer hash table
182 in the 'registered' field of the struct vtable_map_node. The hash
183 table keeps track of which vtable pointers have been used in
184 calls to __VLTRegisterPair with that particular vtable map variable. */
186 /* This function checks to see if a particular VTABLE_DECL and OFFSET are
187 already in the 'registered' hash table for NODE. */
189 bool
190 vtbl_map_node_registration_find (struct vtbl_map_node *node,
191 tree vtable_decl,
192 unsigned offset)
194 struct vtable_registration key;
195 struct vtable_registration **slot;
197 gcc_assert (node && node->registered);
199 key.vtable_decl = vtable_decl;
200 slot = node->registered->find_slot (&key, NO_INSERT);
202 if (slot && (*slot))
204 unsigned i;
205 for (i = 0; i < ((*slot)->offsets).length (); ++i)
206 if ((*slot)->offsets[i] == offset)
207 return true;
210 return false;
213 /* This function inserts VTABLE_DECL and OFFSET into the 'registered'
214 hash table for NODE. It returns a boolean indicating whether or not
215 it actually inserted anything. */
217 bool
218 vtbl_map_node_registration_insert (struct vtbl_map_node *node,
219 tree vtable_decl,
220 unsigned offset)
222 struct vtable_registration key;
223 struct vtable_registration **slot;
224 bool inserted_something = false;
226 if (!node || !node->registered)
227 return false;
229 key.vtable_decl = vtable_decl;
230 slot = node->registered->find_slot (&key, INSERT);
232 if (! *slot)
234 struct vtable_registration *node;
235 node = XNEW (struct vtable_registration);
236 node->vtable_decl = vtable_decl;
238 (node->offsets).create (10);
239 (node->offsets).safe_push (offset);
240 *slot = node;
241 inserted_something = true;
243 else
245 /* We found the vtable_decl slot; we need to see if it already
246 contains the offset. If not, we need to add the offset. */
247 unsigned i;
248 bool found = false;
249 for (i = 0; i < ((*slot)->offsets).length () && !found; ++i)
250 if ((*slot)->offsets[i] == offset)
251 found = true;
253 if (!found)
255 ((*slot)->offsets).safe_push (offset);
256 inserted_something = true;
259 return inserted_something;
262 /* Hashtable functions for vtable_registration hashtables. */
264 inline hashval_t
265 registration_hasher::hash (const vtable_registration *p)
267 const struct vtable_registration *n = (const struct vtable_registration *) p;
268 return (hashval_t) (DECL_UID (n->vtable_decl));
271 inline bool
272 registration_hasher::equal (const vtable_registration *p1,
273 const vtable_registration *p2)
275 const struct vtable_registration *n1 =
276 (const struct vtable_registration *) p1;
277 const struct vtable_registration *n2 =
278 (const struct vtable_registration *) p2;
279 return (DECL_UID (n1->vtable_decl) == DECL_UID (n2->vtable_decl));
282 /* End of hashtable functions for "registered" hashtables. */
286 /* Hashtable definition and functions for vtbl_map_hash. */
288 struct vtbl_map_hasher : typed_noop_remove <struct vtbl_map_node>
290 typedef struct vtbl_map_node *value_type;
291 typedef struct vtbl_map_node *compare_type;
292 static inline hashval_t hash (const vtbl_map_node *);
293 static inline bool equal (const vtbl_map_node *, const vtbl_map_node *);
296 /* Returns a hash code for P. */
298 inline hashval_t
299 vtbl_map_hasher::hash (const vtbl_map_node *p)
301 const struct vtbl_map_node n = *((const struct vtbl_map_node *) p);
302 return (hashval_t) IDENTIFIER_HASH_VALUE (n.class_name);
305 /* Returns nonzero if P1 and P2 are equal. */
307 inline bool
308 vtbl_map_hasher::equal (const vtbl_map_node *p1, const vtbl_map_node *p2)
310 const struct vtbl_map_node n1 = *((const struct vtbl_map_node *) p1);
311 const struct vtbl_map_node n2 = *((const struct vtbl_map_node *) p2);
312 return (IDENTIFIER_HASH_VALUE (n1.class_name) ==
313 IDENTIFIER_HASH_VALUE (n2.class_name));
316 /* Here are the two structures into which we insert vtable map nodes.
317 We use two data structures because of the vastly different ways we need
318 to find the nodes for various tasks (see comments in vtable-verify.h
319 for more details. */
321 typedef hash_table<vtbl_map_hasher> vtbl_map_table_type;
322 typedef vtbl_map_table_type::iterator vtbl_map_iterator_type;
324 /* Vtable map variable nodes stored in a hash table. */
325 static vtbl_map_table_type *vtbl_map_hash;
327 /* Vtable map variable nodes stored in a vector. */
328 vec<struct vtbl_map_node *> vtbl_map_nodes_vec;
330 /* Return vtbl_map node for CLASS_NAME without creating a new one. */
332 struct vtbl_map_node *
333 vtbl_map_get_node (tree class_type)
335 struct vtbl_map_node key;
336 struct vtbl_map_node **slot;
338 tree class_type_decl;
339 tree class_name;
340 unsigned int type_quals;
342 if (!vtbl_map_hash)
343 return NULL;
345 gcc_assert (TREE_CODE (class_type) == RECORD_TYPE);
348 /* Find the TYPE_DECL for the class. */
349 class_type_decl = TYPE_NAME (class_type);
351 /* Verify that there aren't any qualifiers on the type. */
352 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
353 gcc_assert (type_quals == TYPE_UNQUALIFIED);
355 /* Get the mangled name for the unqualified type. */
356 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
357 class_name = DECL_ASSEMBLER_NAME (class_type_decl);
359 key.class_name = class_name;
360 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, NO_INSERT);
361 if (!slot)
362 return NULL;
363 return *slot;
366 /* Return vtbl_map node assigned to BASE_CLASS_TYPE. Create new one
367 when needed. */
369 struct vtbl_map_node *
370 find_or_create_vtbl_map_node (tree base_class_type)
372 struct vtbl_map_node key;
373 struct vtbl_map_node *node;
374 struct vtbl_map_node **slot;
375 tree class_type_decl;
376 unsigned int type_quals;
378 if (!vtbl_map_hash)
379 vtbl_map_hash = new vtbl_map_table_type (10);
381 /* Find the TYPE_DECL for the class. */
382 class_type_decl = TYPE_NAME (base_class_type);
384 /* Verify that there aren't any type qualifiers on type. */
385 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
386 gcc_assert (type_quals == TYPE_UNQUALIFIED);
388 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
389 key.class_name = DECL_ASSEMBLER_NAME (class_type_decl);
390 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, INSERT);
392 if (*slot)
393 return *slot;
395 node = XNEW (struct vtbl_map_node);
396 node->vtbl_map_decl = NULL_TREE;
397 node->class_name = key.class_name;
398 node->uid = num_vtable_map_nodes++;
400 node->class_info = XNEW (struct vtv_graph_node);
401 node->class_info->class_type = base_class_type;
402 node->class_info->class_uid = node->uid;
403 node->class_info->num_processed_children = 0;
405 (node->class_info->parents).create (4);
406 (node->class_info->children).create (4);
408 node->registered = new register_table_type (16);
410 node->is_used = false;
412 vtbl_map_nodes_vec.safe_push (node);
413 gcc_assert (vtbl_map_nodes_vec[node->uid] == node);
415 *slot = node;
416 return node;
419 /* End of hashtable functions for vtable_map variables hash table. */
421 /* Given a gimple STMT, this function checks to see if the statement
422 is an assignment, the rhs of which is getting the vtable pointer
423 value out of an object. (i.e. it's the value we need to verify
424 because its the vtable pointer that will be used for a virtual
425 call). */
427 static bool
428 is_vtable_assignment_stmt (gimple stmt)
431 if (gimple_code (stmt) != GIMPLE_ASSIGN)
432 return false;
433 else
435 tree lhs = gimple_assign_lhs (stmt);
436 tree rhs = gimple_assign_rhs1 (stmt);
438 if (TREE_CODE (lhs) != SSA_NAME)
439 return false;
441 if (TREE_CODE (rhs) != COMPONENT_REF)
442 return false;
444 if (! (TREE_OPERAND (rhs, 1))
445 || (TREE_CODE (TREE_OPERAND (rhs, 1)) != FIELD_DECL))
446 return false;
448 if (! DECL_VIRTUAL_P (TREE_OPERAND (rhs, 1)))
449 return false;
452 return true;
455 /* This function attempts to recover the declared class of an object
456 that is used in making a virtual call. We try to get the type from
457 the type cast in the gimple assignment statement that extracts the
458 vtable pointer from the object (DEF_STMT). The gimple statement
459 usually looks something like this:
461 D.2201_4 = MEM[(struct Event *)this_1(D)]._vptr.Event */
463 static tree
464 extract_object_class_type (tree rhs)
466 tree result = NULL_TREE;
468 /* Try to find and extract the type cast from that stmt. */
469 if (TREE_CODE (rhs) == COMPONENT_REF)
471 tree op0 = TREE_OPERAND (rhs, 0);
472 tree op1 = TREE_OPERAND (rhs, 1);
474 if (TREE_CODE (op1) == FIELD_DECL
475 && DECL_VIRTUAL_P (op1))
477 if (TREE_CODE (op0) == COMPONENT_REF
478 && TREE_CODE (TREE_OPERAND (op0, 0)) == MEM_REF
479 && TREE_CODE (TREE_TYPE (TREE_OPERAND (op0, 0)))== RECORD_TYPE)
480 result = TREE_TYPE (TREE_OPERAND (op0, 0));
481 else
482 result = TREE_TYPE (op0);
484 else if (TREE_CODE (op0) == COMPONENT_REF)
486 result = extract_object_class_type (op0);
487 if (result == NULL_TREE
488 && TREE_CODE (op1) == COMPONENT_REF)
489 result = extract_object_class_type (op1);
493 return result;
496 /* This function traces forward through the def-use chain of an SSA
497 variable to see if it ever gets used in a virtual function call. It
498 returns a boolean indicating whether or not it found a virtual call in
499 the use chain. */
501 static bool
502 var_is_used_for_virtual_call_p (tree lhs, int *mem_ref_depth)
504 imm_use_iterator imm_iter;
505 bool found_vcall = false;
506 use_operand_p use_p;
508 if (TREE_CODE (lhs) != SSA_NAME)
509 return false;
511 if (*mem_ref_depth > 2)
512 return false;
514 /* Iterate through the immediate uses of the current variable. If
515 it's a virtual function call, we're done. Otherwise, if there's
516 an LHS for the use stmt, add the ssa var to the work list
517 (assuming it's not already in the list and is not a variable
518 we've already examined. */
520 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
522 gimple stmt2 = USE_STMT (use_p);
524 if (is_gimple_call (stmt2))
526 tree fncall = gimple_call_fn (stmt2);
527 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
528 found_vcall = true;
529 else
530 return false;
532 else if (gimple_code (stmt2) == GIMPLE_PHI)
534 found_vcall = var_is_used_for_virtual_call_p
535 (gimple_phi_result (stmt2),
536 mem_ref_depth);
538 else if (is_gimple_assign (stmt2))
540 tree rhs = gimple_assign_rhs1 (stmt2);
541 if (TREE_CODE (rhs) == ADDR_EXPR
542 || TREE_CODE (rhs) == MEM_REF)
543 *mem_ref_depth = *mem_ref_depth + 1;
545 if (TREE_CODE (rhs) == COMPONENT_REF)
547 while (TREE_CODE (TREE_OPERAND (rhs, 0)) == COMPONENT_REF)
548 rhs = TREE_OPERAND (rhs, 0);
550 if (TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
551 || TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)
552 *mem_ref_depth = *mem_ref_depth + 1;
555 if (*mem_ref_depth < 3)
556 found_vcall = var_is_used_for_virtual_call_p
557 (gimple_assign_lhs (stmt2),
558 mem_ref_depth);
561 else
562 break;
564 if (found_vcall)
565 return true;
568 return false;
571 /* Search through all the statements in a basic block (BB), searching
572 for virtual method calls. For each virtual method dispatch, find
573 the vptr value used, and the statically declared type of the
574 object; retrieve the vtable map variable for the type of the
575 object; generate a call to __VLTVerifyVtablePointer; and insert the
576 generated call into the basic block, after the point where the vptr
577 value is gotten out of the object and before the virtual method
578 dispatch. Make the virtual method dispatch depend on the return
579 value from the verification call, so that subsequent optimizations
580 cannot reorder the two calls. */
582 static void
583 verify_bb_vtables (basic_block bb)
585 gimple_seq stmts;
586 gimple stmt = NULL;
587 gimple_stmt_iterator gsi_vtbl_assign;
588 gimple_stmt_iterator gsi_virtual_call;
590 stmts = bb_seq (bb);
591 gsi_virtual_call = gsi_start (stmts);
592 for (; !gsi_end_p (gsi_virtual_call); gsi_next (&gsi_virtual_call))
594 stmt = gsi_stmt (gsi_virtual_call);
596 /* Count virtual calls. */
597 if (is_gimple_call (stmt))
599 tree fncall = gimple_call_fn (stmt);
600 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
601 total_num_virtual_calls++;
604 if (is_vtable_assignment_stmt (stmt))
606 tree lhs = gimple_assign_lhs (stmt);
607 tree vtbl_var_decl = NULL_TREE;
608 struct vtbl_map_node *vtable_map_node;
609 tree vtbl_decl = NULL_TREE;
610 gcall *call_stmt;
611 const char *vtable_name = "<unknown>";
612 tree tmp0;
613 bool found;
614 int mem_ref_depth = 0;
616 /* Make sure this vptr field access is for a virtual call. */
617 if (!var_is_used_for_virtual_call_p (lhs, &mem_ref_depth))
618 continue;
620 /* Now we have found the virtual method dispatch and
621 the preceding access of the _vptr.* field... Next
622 we need to find the statically declared type of
623 the object, so we can find and use the right
624 vtable map variable in the verification call. */
625 tree class_type = extract_object_class_type
626 (gimple_assign_rhs1 (stmt));
628 gsi_vtbl_assign = gsi_for_stmt (stmt);
630 if (class_type
631 && (TREE_CODE (class_type) == RECORD_TYPE)
632 && TYPE_BINFO (class_type))
634 /* Get the vtable VAR_DECL for the type. */
635 vtbl_var_decl = BINFO_VTABLE (TYPE_BINFO (class_type));
637 if (TREE_CODE (vtbl_var_decl) == POINTER_PLUS_EXPR)
638 vtbl_var_decl = TREE_OPERAND (TREE_OPERAND (vtbl_var_decl, 0),
641 gcc_assert (vtbl_var_decl);
643 vtbl_decl = vtbl_var_decl;
644 vtable_map_node = vtbl_map_get_node
645 (TYPE_MAIN_VARIANT (class_type));
647 gcc_assert (verify_vtbl_ptr_fndecl);
649 /* Given the vtable pointer for the base class of the
650 object, build the call to __VLTVerifyVtablePointer to
651 verify that the object's vtable pointer (contained in
652 lhs) is in the set of valid vtable pointers for the
653 base class. */
655 if (vtable_map_node && vtable_map_node->vtbl_map_decl)
657 vtable_map_node->is_used = true;
658 vtbl_var_decl = vtable_map_node->vtbl_map_decl;
660 if (TREE_CODE (vtbl_decl) == VAR_DECL)
661 vtable_name = IDENTIFIER_POINTER (DECL_NAME (vtbl_decl));
663 /* Call different routines if we are interested in
664 trace information to debug problems. */
665 if (flag_vtv_debug)
667 int len1 = IDENTIFIER_LENGTH
668 (DECL_NAME (vtbl_var_decl));
669 int len2 = strlen (vtable_name);
671 call_stmt = gimple_build_call
672 (verify_vtbl_ptr_fndecl, 4,
673 build1 (ADDR_EXPR,
674 TYPE_POINTER_TO
675 (TREE_TYPE (vtbl_var_decl)),
676 vtbl_var_decl),
677 lhs,
678 build_string_literal
679 (len1 + 1,
680 IDENTIFIER_POINTER
681 (DECL_NAME
682 (vtbl_var_decl))),
683 build_string_literal (len2 + 1,
684 vtable_name));
686 else
687 call_stmt = gimple_build_call
688 (verify_vtbl_ptr_fndecl, 2,
689 build1 (ADDR_EXPR,
690 TYPE_POINTER_TO
691 (TREE_TYPE (vtbl_var_decl)),
692 vtbl_var_decl),
693 lhs);
696 /* Create a new SSA_NAME var to hold the call's
697 return value, and make the call_stmt use the
698 variable for that purpose. */
699 tmp0 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "VTV");
700 gimple_call_set_lhs (call_stmt, tmp0);
701 update_stmt (call_stmt);
703 /* Replace all uses of lhs with tmp0. */
704 found = false;
705 imm_use_iterator iterator;
706 gimple use_stmt;
707 FOR_EACH_IMM_USE_STMT (use_stmt, iterator, lhs)
709 use_operand_p use_p;
710 if (use_stmt == call_stmt)
711 continue;
712 FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
713 SET_USE (use_p, tmp0);
714 update_stmt (use_stmt);
715 found = true;
718 gcc_assert (found);
720 /* Insert the new verification call just after the
721 statement that gets the vtable pointer out of the
722 object. */
723 gcc_assert (gsi_stmt (gsi_vtbl_assign) == stmt);
724 gsi_insert_after (&gsi_vtbl_assign, call_stmt,
725 GSI_NEW_STMT);
727 any_verification_calls_generated = true;
728 total_num_verified_vcalls++;
735 /* Definition of this optimization pass. */
737 namespace {
739 const pass_data pass_data_vtable_verify =
741 GIMPLE_PASS, /* type */
742 "vtable-verify", /* name */
743 OPTGROUP_NONE, /* optinfo_flags */
744 TV_VTABLE_VERIFICATION, /* tv_id */
745 ( PROP_cfg | PROP_ssa ), /* properties_required */
746 0, /* properties_provided */
747 0, /* properties_destroyed */
748 0, /* todo_flags_start */
749 TODO_update_ssa, /* todo_flags_finish */
752 class pass_vtable_verify : public gimple_opt_pass
754 public:
755 pass_vtable_verify (gcc::context *ctxt)
756 : gimple_opt_pass (pass_data_vtable_verify, ctxt)
759 /* opt_pass methods: */
760 virtual bool gate (function *) { return (flag_vtable_verify); }
761 virtual unsigned int execute (function *);
763 }; // class pass_vtable_verify
765 /* Loop through all the basic blocks in the current function, passing them to
766 verify_bb_vtables, which searches for virtual calls, and inserts
767 calls to __VLTVerifyVtablePointer. */
769 unsigned int
770 pass_vtable_verify::execute (function *fun)
772 unsigned int ret = 1;
773 basic_block bb;
775 FOR_ALL_BB_FN (bb, fun)
776 verify_bb_vtables (bb);
778 return ret;
781 } // anon namespace
783 gimple_opt_pass *
784 make_pass_vtable_verify (gcc::context *ctxt)
786 return new pass_vtable_verify (ctxt);
789 #include "gt-vtable-verify.h"