2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vrp.c
blobb517363ec975db63ae86f2da2ff89942e4f2cea7
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "flags.h"
26 #include "input.h"
27 #include "alias.h"
28 #include "symtab.h"
29 #include "tree.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "calls.h"
33 #include "predict.h"
34 #include "hard-reg-set.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-fold.h"
43 #include "tree-eh.h"
44 #include "gimple-expr.h"
45 #include "is-a.h"
46 #include "gimple.h"
47 #include "gimple-iterator.h"
48 #include "gimple-walk.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "tree-ssa-loop-manip.h"
56 #include "tree-ssa-loop-niter.h"
57 #include "tree-ssa-loop.h"
58 #include "tree-into-ssa.h"
59 #include "tree-ssa.h"
60 #include "tree-pass.h"
61 #include "tree-dump.h"
62 #include "gimple-pretty-print.h"
63 #include "diagnostic-core.h"
64 #include "intl.h"
65 #include "cfgloop.h"
66 #include "tree-scalar-evolution.h"
67 #include "tree-ssa-propagate.h"
68 #include "tree-chrec.h"
69 #include "tree-ssa-threadupdate.h"
70 #include "rtl.h"
71 #include "insn-config.h"
72 #include "expmed.h"
73 #include "dojump.h"
74 #include "explow.h"
75 #include "emit-rtl.h"
76 #include "varasm.h"
77 #include "stmt.h"
78 #include "expr.h"
79 #include "insn-codes.h"
80 #include "optabs.h"
81 #include "tree-ssa-scopedtables.h"
82 #include "tree-ssa-threadedge.h"
86 /* Range of values that can be associated with an SSA_NAME after VRP
87 has executed. */
88 struct value_range_d
90 /* Lattice value represented by this range. */
91 enum value_range_type type;
93 /* Minimum and maximum values represented by this range. These
94 values should be interpreted as follows:
96 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
97 be NULL.
99 - If TYPE == VR_RANGE then MIN holds the minimum value and
100 MAX holds the maximum value of the range [MIN, MAX].
102 - If TYPE == ANTI_RANGE the variable is known to NOT
103 take any values in the range [MIN, MAX]. */
104 tree min;
105 tree max;
107 /* Set of SSA names whose value ranges are equivalent to this one.
108 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
109 bitmap equiv;
112 typedef struct value_range_d value_range_t;
114 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
116 /* Set of SSA names found live during the RPO traversal of the function
117 for still active basic-blocks. */
118 static sbitmap *live;
120 /* Return true if the SSA name NAME is live on the edge E. */
122 static bool
123 live_on_edge (edge e, tree name)
125 return (live[e->dest->index]
126 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
129 /* Local functions. */
130 static int compare_values (tree val1, tree val2);
131 static int compare_values_warnv (tree val1, tree val2, bool *);
132 static void vrp_meet (value_range_t *, value_range_t *);
133 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
134 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
135 tree, tree, bool, bool *,
136 bool *);
138 /* Location information for ASSERT_EXPRs. Each instance of this
139 structure describes an ASSERT_EXPR for an SSA name. Since a single
140 SSA name may have more than one assertion associated with it, these
141 locations are kept in a linked list attached to the corresponding
142 SSA name. */
143 struct assert_locus_d
145 /* Basic block where the assertion would be inserted. */
146 basic_block bb;
148 /* Some assertions need to be inserted on an edge (e.g., assertions
149 generated by COND_EXPRs). In those cases, BB will be NULL. */
150 edge e;
152 /* Pointer to the statement that generated this assertion. */
153 gimple_stmt_iterator si;
155 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
156 enum tree_code comp_code;
158 /* Value being compared against. */
159 tree val;
161 /* Expression to compare. */
162 tree expr;
164 /* Next node in the linked list. */
165 struct assert_locus_d *next;
168 typedef struct assert_locus_d *assert_locus_t;
170 /* If bit I is present, it means that SSA name N_i has a list of
171 assertions that should be inserted in the IL. */
172 static bitmap need_assert_for;
174 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
175 holds a list of ASSERT_LOCUS_T nodes that describe where
176 ASSERT_EXPRs for SSA name N_I should be inserted. */
177 static assert_locus_t *asserts_for;
179 /* Value range array. After propagation, VR_VALUE[I] holds the range
180 of values that SSA name N_I may take. */
181 static unsigned num_vr_values;
182 static value_range_t **vr_value;
183 static bool values_propagated;
185 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
186 number of executable edges we saw the last time we visited the
187 node. */
188 static int *vr_phi_edge_counts;
190 typedef struct {
191 gswitch *stmt;
192 tree vec;
193 } switch_update;
195 static vec<edge> to_remove_edges;
196 static vec<switch_update> to_update_switch_stmts;
199 /* Return the maximum value for TYPE. */
201 static inline tree
202 vrp_val_max (const_tree type)
204 if (!INTEGRAL_TYPE_P (type))
205 return NULL_TREE;
207 return TYPE_MAX_VALUE (type);
210 /* Return the minimum value for TYPE. */
212 static inline tree
213 vrp_val_min (const_tree type)
215 if (!INTEGRAL_TYPE_P (type))
216 return NULL_TREE;
218 return TYPE_MIN_VALUE (type);
221 /* Return whether VAL is equal to the maximum value of its type. This
222 will be true for a positive overflow infinity. We can't do a
223 simple equality comparison with TYPE_MAX_VALUE because C typedefs
224 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
225 to the integer constant with the same value in the type. */
227 static inline bool
228 vrp_val_is_max (const_tree val)
230 tree type_max = vrp_val_max (TREE_TYPE (val));
231 return (val == type_max
232 || (type_max != NULL_TREE
233 && operand_equal_p (val, type_max, 0)));
236 /* Return whether VAL is equal to the minimum value of its type. This
237 will be true for a negative overflow infinity. */
239 static inline bool
240 vrp_val_is_min (const_tree val)
242 tree type_min = vrp_val_min (TREE_TYPE (val));
243 return (val == type_min
244 || (type_min != NULL_TREE
245 && operand_equal_p (val, type_min, 0)));
249 /* Return whether TYPE should use an overflow infinity distinct from
250 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
251 represent a signed overflow during VRP computations. An infinity
252 is distinct from a half-range, which will go from some number to
253 TYPE_{MIN,MAX}_VALUE. */
255 static inline bool
256 needs_overflow_infinity (const_tree type)
258 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
261 /* Return whether TYPE can support our overflow infinity
262 representation: we use the TREE_OVERFLOW flag, which only exists
263 for constants. If TYPE doesn't support this, we don't optimize
264 cases which would require signed overflow--we drop them to
265 VARYING. */
267 static inline bool
268 supports_overflow_infinity (const_tree type)
270 tree min = vrp_val_min (type), max = vrp_val_max (type);
271 #ifdef ENABLE_CHECKING
272 gcc_assert (needs_overflow_infinity (type));
273 #endif
274 return (min != NULL_TREE
275 && CONSTANT_CLASS_P (min)
276 && max != NULL_TREE
277 && CONSTANT_CLASS_P (max));
280 /* VAL is the maximum or minimum value of a type. Return a
281 corresponding overflow infinity. */
283 static inline tree
284 make_overflow_infinity (tree val)
286 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
287 val = copy_node (val);
288 TREE_OVERFLOW (val) = 1;
289 return val;
292 /* Return a negative overflow infinity for TYPE. */
294 static inline tree
295 negative_overflow_infinity (tree type)
297 gcc_checking_assert (supports_overflow_infinity (type));
298 return make_overflow_infinity (vrp_val_min (type));
301 /* Return a positive overflow infinity for TYPE. */
303 static inline tree
304 positive_overflow_infinity (tree type)
306 gcc_checking_assert (supports_overflow_infinity (type));
307 return make_overflow_infinity (vrp_val_max (type));
310 /* Return whether VAL is a negative overflow infinity. */
312 static inline bool
313 is_negative_overflow_infinity (const_tree val)
315 return (TREE_OVERFLOW_P (val)
316 && needs_overflow_infinity (TREE_TYPE (val))
317 && vrp_val_is_min (val));
320 /* Return whether VAL is a positive overflow infinity. */
322 static inline bool
323 is_positive_overflow_infinity (const_tree val)
325 return (TREE_OVERFLOW_P (val)
326 && needs_overflow_infinity (TREE_TYPE (val))
327 && vrp_val_is_max (val));
330 /* Return whether VAL is a positive or negative overflow infinity. */
332 static inline bool
333 is_overflow_infinity (const_tree val)
335 return (TREE_OVERFLOW_P (val)
336 && needs_overflow_infinity (TREE_TYPE (val))
337 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
340 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
342 static inline bool
343 stmt_overflow_infinity (gimple stmt)
345 if (is_gimple_assign (stmt)
346 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
347 GIMPLE_SINGLE_RHS)
348 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
349 return false;
352 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
353 the same value with TREE_OVERFLOW clear. This can be used to avoid
354 confusing a regular value with an overflow value. */
356 static inline tree
357 avoid_overflow_infinity (tree val)
359 if (!is_overflow_infinity (val))
360 return val;
362 if (vrp_val_is_max (val))
363 return vrp_val_max (TREE_TYPE (val));
364 else
366 gcc_checking_assert (vrp_val_is_min (val));
367 return vrp_val_min (TREE_TYPE (val));
372 /* Return true if ARG is marked with the nonnull attribute in the
373 current function signature. */
375 static bool
376 nonnull_arg_p (const_tree arg)
378 tree t, attrs, fntype;
379 unsigned HOST_WIDE_INT arg_num;
381 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
383 /* The static chain decl is always non null. */
384 if (arg == cfun->static_chain_decl)
385 return true;
387 /* THIS argument of method is always non-NULL. */
388 if (TREE_CODE (TREE_TYPE (current_function_decl)) == METHOD_TYPE
389 && arg == DECL_ARGUMENTS (current_function_decl)
390 && flag_delete_null_pointer_checks)
391 return true;
393 /* Values passed by reference are always non-NULL. */
394 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
395 && flag_delete_null_pointer_checks)
396 return true;
398 fntype = TREE_TYPE (current_function_decl);
399 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
401 attrs = lookup_attribute ("nonnull", attrs);
403 /* If "nonnull" wasn't specified, we know nothing about the argument. */
404 if (attrs == NULL_TREE)
405 return false;
407 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
408 if (TREE_VALUE (attrs) == NULL_TREE)
409 return true;
411 /* Get the position number for ARG in the function signature. */
412 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
414 t = DECL_CHAIN (t), arg_num++)
416 if (t == arg)
417 break;
420 gcc_assert (t == arg);
422 /* Now see if ARG_NUM is mentioned in the nonnull list. */
423 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
425 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
426 return true;
430 return false;
434 /* Set value range VR to VR_UNDEFINED. */
436 static inline void
437 set_value_range_to_undefined (value_range_t *vr)
439 vr->type = VR_UNDEFINED;
440 vr->min = vr->max = NULL_TREE;
441 if (vr->equiv)
442 bitmap_clear (vr->equiv);
446 /* Set value range VR to VR_VARYING. */
448 static inline void
449 set_value_range_to_varying (value_range_t *vr)
451 vr->type = VR_VARYING;
452 vr->min = vr->max = NULL_TREE;
453 if (vr->equiv)
454 bitmap_clear (vr->equiv);
458 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
460 static void
461 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
462 tree max, bitmap equiv)
464 #if defined ENABLE_CHECKING
465 /* Check the validity of the range. */
466 if (t == VR_RANGE || t == VR_ANTI_RANGE)
468 int cmp;
470 gcc_assert (min && max);
472 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
473 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
475 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
476 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
478 cmp = compare_values (min, max);
479 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
481 if (needs_overflow_infinity (TREE_TYPE (min)))
482 gcc_assert (!is_overflow_infinity (min)
483 || !is_overflow_infinity (max));
486 if (t == VR_UNDEFINED || t == VR_VARYING)
487 gcc_assert (min == NULL_TREE && max == NULL_TREE);
489 if (t == VR_UNDEFINED || t == VR_VARYING)
490 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
491 #endif
493 vr->type = t;
494 vr->min = min;
495 vr->max = max;
497 /* Since updating the equivalence set involves deep copying the
498 bitmaps, only do it if absolutely necessary. */
499 if (vr->equiv == NULL
500 && equiv != NULL)
501 vr->equiv = BITMAP_ALLOC (NULL);
503 if (equiv != vr->equiv)
505 if (equiv && !bitmap_empty_p (equiv))
506 bitmap_copy (vr->equiv, equiv);
507 else
508 bitmap_clear (vr->equiv);
513 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
514 This means adjusting T, MIN and MAX representing the case of a
515 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
516 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
517 In corner cases where MAX+1 or MIN-1 wraps this will fall back
518 to varying.
519 This routine exists to ease canonicalization in the case where we
520 extract ranges from var + CST op limit. */
522 static void
523 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
524 tree min, tree max, bitmap equiv)
526 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
527 if (t == VR_UNDEFINED)
529 set_value_range_to_undefined (vr);
530 return;
532 else if (t == VR_VARYING)
534 set_value_range_to_varying (vr);
535 return;
538 /* Nothing to canonicalize for symbolic ranges. */
539 if (TREE_CODE (min) != INTEGER_CST
540 || TREE_CODE (max) != INTEGER_CST)
542 set_value_range (vr, t, min, max, equiv);
543 return;
546 /* Wrong order for min and max, to swap them and the VR type we need
547 to adjust them. */
548 if (tree_int_cst_lt (max, min))
550 tree one, tmp;
552 /* For one bit precision if max < min, then the swapped
553 range covers all values, so for VR_RANGE it is varying and
554 for VR_ANTI_RANGE empty range, so drop to varying as well. */
555 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
557 set_value_range_to_varying (vr);
558 return;
561 one = build_int_cst (TREE_TYPE (min), 1);
562 tmp = int_const_binop (PLUS_EXPR, max, one);
563 max = int_const_binop (MINUS_EXPR, min, one);
564 min = tmp;
566 /* There's one corner case, if we had [C+1, C] before we now have
567 that again. But this represents an empty value range, so drop
568 to varying in this case. */
569 if (tree_int_cst_lt (max, min))
571 set_value_range_to_varying (vr);
572 return;
575 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
578 /* Anti-ranges that can be represented as ranges should be so. */
579 if (t == VR_ANTI_RANGE)
581 bool is_min = vrp_val_is_min (min);
582 bool is_max = vrp_val_is_max (max);
584 if (is_min && is_max)
586 /* We cannot deal with empty ranges, drop to varying.
587 ??? This could be VR_UNDEFINED instead. */
588 set_value_range_to_varying (vr);
589 return;
591 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
592 && (is_min || is_max))
594 /* Non-empty boolean ranges can always be represented
595 as a singleton range. */
596 if (is_min)
597 min = max = vrp_val_max (TREE_TYPE (min));
598 else
599 min = max = vrp_val_min (TREE_TYPE (min));
600 t = VR_RANGE;
602 else if (is_min
603 /* As a special exception preserve non-null ranges. */
604 && !(TYPE_UNSIGNED (TREE_TYPE (min))
605 && integer_zerop (max)))
607 tree one = build_int_cst (TREE_TYPE (max), 1);
608 min = int_const_binop (PLUS_EXPR, max, one);
609 max = vrp_val_max (TREE_TYPE (max));
610 t = VR_RANGE;
612 else if (is_max)
614 tree one = build_int_cst (TREE_TYPE (min), 1);
615 max = int_const_binop (MINUS_EXPR, min, one);
616 min = vrp_val_min (TREE_TYPE (min));
617 t = VR_RANGE;
621 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
622 if (needs_overflow_infinity (TREE_TYPE (min))
623 && is_overflow_infinity (min)
624 && is_overflow_infinity (max))
626 set_value_range_to_varying (vr);
627 return;
630 set_value_range (vr, t, min, max, equiv);
633 /* Copy value range FROM into value range TO. */
635 static inline void
636 copy_value_range (value_range_t *to, value_range_t *from)
638 set_value_range (to, from->type, from->min, from->max, from->equiv);
641 /* Set value range VR to a single value. This function is only called
642 with values we get from statements, and exists to clear the
643 TREE_OVERFLOW flag so that we don't think we have an overflow
644 infinity when we shouldn't. */
646 static inline void
647 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
649 gcc_assert (is_gimple_min_invariant (val));
650 if (TREE_OVERFLOW_P (val))
651 val = drop_tree_overflow (val);
652 set_value_range (vr, VR_RANGE, val, val, equiv);
655 /* Set value range VR to a non-negative range of type TYPE.
656 OVERFLOW_INFINITY indicates whether to use an overflow infinity
657 rather than TYPE_MAX_VALUE; this should be true if we determine
658 that the range is nonnegative based on the assumption that signed
659 overflow does not occur. */
661 static inline void
662 set_value_range_to_nonnegative (value_range_t *vr, tree type,
663 bool overflow_infinity)
665 tree zero;
667 if (overflow_infinity && !supports_overflow_infinity (type))
669 set_value_range_to_varying (vr);
670 return;
673 zero = build_int_cst (type, 0);
674 set_value_range (vr, VR_RANGE, zero,
675 (overflow_infinity
676 ? positive_overflow_infinity (type)
677 : TYPE_MAX_VALUE (type)),
678 vr->equiv);
681 /* Set value range VR to a non-NULL range of type TYPE. */
683 static inline void
684 set_value_range_to_nonnull (value_range_t *vr, tree type)
686 tree zero = build_int_cst (type, 0);
687 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
691 /* Set value range VR to a NULL range of type TYPE. */
693 static inline void
694 set_value_range_to_null (value_range_t *vr, tree type)
696 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
700 /* Set value range VR to a range of a truthvalue of type TYPE. */
702 static inline void
703 set_value_range_to_truthvalue (value_range_t *vr, tree type)
705 if (TYPE_PRECISION (type) == 1)
706 set_value_range_to_varying (vr);
707 else
708 set_value_range (vr, VR_RANGE,
709 build_int_cst (type, 0), build_int_cst (type, 1),
710 vr->equiv);
714 /* If abs (min) < abs (max), set VR to [-max, max], if
715 abs (min) >= abs (max), set VR to [-min, min]. */
717 static void
718 abs_extent_range (value_range_t *vr, tree min, tree max)
720 int cmp;
722 gcc_assert (TREE_CODE (min) == INTEGER_CST);
723 gcc_assert (TREE_CODE (max) == INTEGER_CST);
724 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
725 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
726 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
727 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
728 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
730 set_value_range_to_varying (vr);
731 return;
733 cmp = compare_values (min, max);
734 if (cmp == -1)
735 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
736 else if (cmp == 0 || cmp == 1)
738 max = min;
739 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
741 else
743 set_value_range_to_varying (vr);
744 return;
746 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
750 /* Return value range information for VAR.
752 If we have no values ranges recorded (ie, VRP is not running), then
753 return NULL. Otherwise create an empty range if none existed for VAR. */
755 static value_range_t *
756 get_value_range (const_tree var)
758 static const struct value_range_d vr_const_varying
759 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
760 value_range_t *vr;
761 tree sym;
762 unsigned ver = SSA_NAME_VERSION (var);
764 /* If we have no recorded ranges, then return NULL. */
765 if (! vr_value)
766 return NULL;
768 /* If we query the range for a new SSA name return an unmodifiable VARYING.
769 We should get here at most from the substitute-and-fold stage which
770 will never try to change values. */
771 if (ver >= num_vr_values)
772 return CONST_CAST (value_range_t *, &vr_const_varying);
774 vr = vr_value[ver];
775 if (vr)
776 return vr;
778 /* After propagation finished do not allocate new value-ranges. */
779 if (values_propagated)
780 return CONST_CAST (value_range_t *, &vr_const_varying);
782 /* Create a default value range. */
783 vr_value[ver] = vr = XCNEW (value_range_t);
785 /* Defer allocating the equivalence set. */
786 vr->equiv = NULL;
788 /* If VAR is a default definition of a parameter, the variable can
789 take any value in VAR's type. */
790 if (SSA_NAME_IS_DEFAULT_DEF (var))
792 sym = SSA_NAME_VAR (var);
793 if (TREE_CODE (sym) == PARM_DECL)
795 /* Try to use the "nonnull" attribute to create ~[0, 0]
796 anti-ranges for pointers. Note that this is only valid with
797 default definitions of PARM_DECLs. */
798 if (POINTER_TYPE_P (TREE_TYPE (sym))
799 && nonnull_arg_p (sym))
800 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
801 else
802 set_value_range_to_varying (vr);
804 else if (TREE_CODE (sym) == RESULT_DECL
805 && DECL_BY_REFERENCE (sym))
806 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
809 return vr;
812 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
814 static inline bool
815 vrp_operand_equal_p (const_tree val1, const_tree val2)
817 if (val1 == val2)
818 return true;
819 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
820 return false;
821 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
824 /* Return true, if the bitmaps B1 and B2 are equal. */
826 static inline bool
827 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
829 return (b1 == b2
830 || ((!b1 || bitmap_empty_p (b1))
831 && (!b2 || bitmap_empty_p (b2)))
832 || (b1 && b2
833 && bitmap_equal_p (b1, b2)));
836 /* Update the value range and equivalence set for variable VAR to
837 NEW_VR. Return true if NEW_VR is different from VAR's previous
838 value.
840 NOTE: This function assumes that NEW_VR is a temporary value range
841 object created for the sole purpose of updating VAR's range. The
842 storage used by the equivalence set from NEW_VR will be freed by
843 this function. Do not call update_value_range when NEW_VR
844 is the range object associated with another SSA name. */
846 static inline bool
847 update_value_range (const_tree var, value_range_t *new_vr)
849 value_range_t *old_vr;
850 bool is_new;
852 /* If there is a value-range on the SSA name from earlier analysis
853 factor that in. */
854 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
856 wide_int min, max;
857 value_range_type rtype = get_range_info (var, &min, &max);
858 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
860 value_range_d nr;
861 nr.type = rtype;
862 nr.min = wide_int_to_tree (TREE_TYPE (var), min);
863 nr.max = wide_int_to_tree (TREE_TYPE (var), max);
864 nr.equiv = NULL;
865 vrp_intersect_ranges (new_vr, &nr);
869 /* Update the value range, if necessary. */
870 old_vr = get_value_range (var);
871 is_new = old_vr->type != new_vr->type
872 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
873 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
874 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
876 if (is_new)
878 /* Do not allow transitions up the lattice. The following
879 is slightly more awkward than just new_vr->type < old_vr->type
880 because VR_RANGE and VR_ANTI_RANGE need to be considered
881 the same. We may not have is_new when transitioning to
882 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
883 called. */
884 if (new_vr->type == VR_UNDEFINED)
886 BITMAP_FREE (new_vr->equiv);
887 set_value_range_to_varying (old_vr);
888 set_value_range_to_varying (new_vr);
889 return true;
891 else
892 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
893 new_vr->equiv);
896 BITMAP_FREE (new_vr->equiv);
898 return is_new;
902 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
903 point where equivalence processing can be turned on/off. */
905 static void
906 add_equivalence (bitmap *equiv, const_tree var)
908 unsigned ver = SSA_NAME_VERSION (var);
909 value_range_t *vr = vr_value[ver];
911 if (*equiv == NULL)
912 *equiv = BITMAP_ALLOC (NULL);
913 bitmap_set_bit (*equiv, ver);
914 if (vr && vr->equiv)
915 bitmap_ior_into (*equiv, vr->equiv);
919 /* Return true if VR is ~[0, 0]. */
921 static inline bool
922 range_is_nonnull (value_range_t *vr)
924 return vr->type == VR_ANTI_RANGE
925 && integer_zerop (vr->min)
926 && integer_zerop (vr->max);
930 /* Return true if VR is [0, 0]. */
932 static inline bool
933 range_is_null (value_range_t *vr)
935 return vr->type == VR_RANGE
936 && integer_zerop (vr->min)
937 && integer_zerop (vr->max);
940 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
941 a singleton. */
943 static inline bool
944 range_int_cst_p (value_range_t *vr)
946 return (vr->type == VR_RANGE
947 && TREE_CODE (vr->max) == INTEGER_CST
948 && TREE_CODE (vr->min) == INTEGER_CST);
951 /* Return true if VR is a INTEGER_CST singleton. */
953 static inline bool
954 range_int_cst_singleton_p (value_range_t *vr)
956 return (range_int_cst_p (vr)
957 && !is_overflow_infinity (vr->min)
958 && !is_overflow_infinity (vr->max)
959 && tree_int_cst_equal (vr->min, vr->max));
962 /* Return true if value range VR involves at least one symbol. */
964 static inline bool
965 symbolic_range_p (value_range_t *vr)
967 return (!is_gimple_min_invariant (vr->min)
968 || !is_gimple_min_invariant (vr->max));
971 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
972 otherwise. We only handle additive operations and set NEG to true if the
973 symbol is negated and INV to the invariant part, if any. */
975 static tree
976 get_single_symbol (tree t, bool *neg, tree *inv)
978 bool neg_;
979 tree inv_;
981 if (TREE_CODE (t) == PLUS_EXPR
982 || TREE_CODE (t) == POINTER_PLUS_EXPR
983 || TREE_CODE (t) == MINUS_EXPR)
985 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
987 neg_ = (TREE_CODE (t) == MINUS_EXPR);
988 inv_ = TREE_OPERAND (t, 0);
989 t = TREE_OPERAND (t, 1);
991 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
993 neg_ = false;
994 inv_ = TREE_OPERAND (t, 1);
995 t = TREE_OPERAND (t, 0);
997 else
998 return NULL_TREE;
1000 else
1002 neg_ = false;
1003 inv_ = NULL_TREE;
1006 if (TREE_CODE (t) == NEGATE_EXPR)
1008 t = TREE_OPERAND (t, 0);
1009 neg_ = !neg_;
1012 if (TREE_CODE (t) != SSA_NAME)
1013 return NULL_TREE;
1015 *neg = neg_;
1016 *inv = inv_;
1017 return t;
1020 /* The reverse operation: build a symbolic expression with TYPE
1021 from symbol SYM, negated according to NEG, and invariant INV. */
1023 static tree
1024 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
1026 const bool pointer_p = POINTER_TYPE_P (type);
1027 tree t = sym;
1029 if (neg)
1030 t = build1 (NEGATE_EXPR, type, t);
1032 if (integer_zerop (inv))
1033 return t;
1035 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
1038 /* Return true if value range VR involves exactly one symbol SYM. */
1040 static bool
1041 symbolic_range_based_on_p (value_range_t *vr, const_tree sym)
1043 bool neg, min_has_symbol, max_has_symbol;
1044 tree inv;
1046 if (is_gimple_min_invariant (vr->min))
1047 min_has_symbol = false;
1048 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
1049 min_has_symbol = true;
1050 else
1051 return false;
1053 if (is_gimple_min_invariant (vr->max))
1054 max_has_symbol = false;
1055 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
1056 max_has_symbol = true;
1057 else
1058 return false;
1060 return (min_has_symbol || max_has_symbol);
1063 /* Return true if value range VR uses an overflow infinity. */
1065 static inline bool
1066 overflow_infinity_range_p (value_range_t *vr)
1068 return (vr->type == VR_RANGE
1069 && (is_overflow_infinity (vr->min)
1070 || is_overflow_infinity (vr->max)));
1073 /* Return false if we can not make a valid comparison based on VR;
1074 this will be the case if it uses an overflow infinity and overflow
1075 is not undefined (i.e., -fno-strict-overflow is in effect).
1076 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1077 uses an overflow infinity. */
1079 static bool
1080 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
1082 gcc_assert (vr->type == VR_RANGE);
1083 if (is_overflow_infinity (vr->min))
1085 *strict_overflow_p = true;
1086 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1087 return false;
1089 if (is_overflow_infinity (vr->max))
1091 *strict_overflow_p = true;
1092 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1093 return false;
1095 return true;
1099 /* Return true if the result of assignment STMT is know to be non-negative.
1100 If the return value is based on the assumption that signed overflow is
1101 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1102 *STRICT_OVERFLOW_P.*/
1104 static bool
1105 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1107 enum tree_code code = gimple_assign_rhs_code (stmt);
1108 switch (get_gimple_rhs_class (code))
1110 case GIMPLE_UNARY_RHS:
1111 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1112 gimple_expr_type (stmt),
1113 gimple_assign_rhs1 (stmt),
1114 strict_overflow_p);
1115 case GIMPLE_BINARY_RHS:
1116 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1117 gimple_expr_type (stmt),
1118 gimple_assign_rhs1 (stmt),
1119 gimple_assign_rhs2 (stmt),
1120 strict_overflow_p);
1121 case GIMPLE_TERNARY_RHS:
1122 return false;
1123 case GIMPLE_SINGLE_RHS:
1124 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
1125 strict_overflow_p);
1126 case GIMPLE_INVALID_RHS:
1127 gcc_unreachable ();
1128 default:
1129 gcc_unreachable ();
1133 /* Return true if return value of call STMT is know to be non-negative.
1134 If the return value is based on the assumption that signed overflow is
1135 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1136 *STRICT_OVERFLOW_P.*/
1138 static bool
1139 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1141 tree arg0 = gimple_call_num_args (stmt) > 0 ?
1142 gimple_call_arg (stmt, 0) : NULL_TREE;
1143 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1144 gimple_call_arg (stmt, 1) : NULL_TREE;
1146 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1147 gimple_call_fndecl (stmt),
1148 arg0,
1149 arg1,
1150 strict_overflow_p);
1153 /* Return true if STMT is know to to compute a non-negative value.
1154 If the return value is based on the assumption that signed overflow is
1155 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1156 *STRICT_OVERFLOW_P.*/
1158 static bool
1159 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1161 switch (gimple_code (stmt))
1163 case GIMPLE_ASSIGN:
1164 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1165 case GIMPLE_CALL:
1166 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1167 default:
1168 gcc_unreachable ();
1172 /* Return true if the result of assignment STMT is know to be non-zero.
1173 If the return value is based on the assumption that signed overflow is
1174 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1175 *STRICT_OVERFLOW_P.*/
1177 static bool
1178 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1180 enum tree_code code = gimple_assign_rhs_code (stmt);
1181 switch (get_gimple_rhs_class (code))
1183 case GIMPLE_UNARY_RHS:
1184 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1185 gimple_expr_type (stmt),
1186 gimple_assign_rhs1 (stmt),
1187 strict_overflow_p);
1188 case GIMPLE_BINARY_RHS:
1189 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1190 gimple_expr_type (stmt),
1191 gimple_assign_rhs1 (stmt),
1192 gimple_assign_rhs2 (stmt),
1193 strict_overflow_p);
1194 case GIMPLE_TERNARY_RHS:
1195 return false;
1196 case GIMPLE_SINGLE_RHS:
1197 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1198 strict_overflow_p);
1199 case GIMPLE_INVALID_RHS:
1200 gcc_unreachable ();
1201 default:
1202 gcc_unreachable ();
1206 /* Return true if STMT is known to compute a non-zero value.
1207 If the return value is based on the assumption that signed overflow is
1208 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1209 *STRICT_OVERFLOW_P.*/
1211 static bool
1212 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1214 switch (gimple_code (stmt))
1216 case GIMPLE_ASSIGN:
1217 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1218 case GIMPLE_CALL:
1220 tree fndecl = gimple_call_fndecl (stmt);
1221 if (!fndecl) return false;
1222 if (flag_delete_null_pointer_checks && !flag_check_new
1223 && DECL_IS_OPERATOR_NEW (fndecl)
1224 && !TREE_NOTHROW (fndecl))
1225 return true;
1226 /* References are always non-NULL. */
1227 if (flag_delete_null_pointer_checks
1228 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1229 return true;
1230 if (flag_delete_null_pointer_checks &&
1231 lookup_attribute ("returns_nonnull",
1232 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1233 return true;
1234 return gimple_alloca_call_p (stmt);
1236 default:
1237 gcc_unreachable ();
1241 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1242 obtained so far. */
1244 static bool
1245 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1247 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1248 return true;
1250 /* If we have an expression of the form &X->a, then the expression
1251 is nonnull if X is nonnull. */
1252 if (is_gimple_assign (stmt)
1253 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1255 tree expr = gimple_assign_rhs1 (stmt);
1256 tree base = get_base_address (TREE_OPERAND (expr, 0));
1258 if (base != NULL_TREE
1259 && TREE_CODE (base) == MEM_REF
1260 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1262 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1263 if (range_is_nonnull (vr))
1264 return true;
1268 return false;
1271 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1272 a gimple invariant, or SSA_NAME +- CST. */
1274 static bool
1275 valid_value_p (tree expr)
1277 if (TREE_CODE (expr) == SSA_NAME)
1278 return true;
1280 if (TREE_CODE (expr) == PLUS_EXPR
1281 || TREE_CODE (expr) == MINUS_EXPR)
1282 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1283 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1285 return is_gimple_min_invariant (expr);
1288 /* Return
1289 1 if VAL < VAL2
1290 0 if !(VAL < VAL2)
1291 -2 if those are incomparable. */
1292 static inline int
1293 operand_less_p (tree val, tree val2)
1295 /* LT is folded faster than GE and others. Inline the common case. */
1296 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1297 return tree_int_cst_lt (val, val2);
1298 else
1300 tree tcmp;
1302 fold_defer_overflow_warnings ();
1304 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1306 fold_undefer_and_ignore_overflow_warnings ();
1308 if (!tcmp
1309 || TREE_CODE (tcmp) != INTEGER_CST)
1310 return -2;
1312 if (!integer_zerop (tcmp))
1313 return 1;
1316 /* val >= val2, not considering overflow infinity. */
1317 if (is_negative_overflow_infinity (val))
1318 return is_negative_overflow_infinity (val2) ? 0 : 1;
1319 else if (is_positive_overflow_infinity (val2))
1320 return is_positive_overflow_infinity (val) ? 0 : 1;
1322 return 0;
1325 /* Compare two values VAL1 and VAL2. Return
1327 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1328 -1 if VAL1 < VAL2,
1329 0 if VAL1 == VAL2,
1330 +1 if VAL1 > VAL2, and
1331 +2 if VAL1 != VAL2
1333 This is similar to tree_int_cst_compare but supports pointer values
1334 and values that cannot be compared at compile time.
1336 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1337 true if the return value is only valid if we assume that signed
1338 overflow is undefined. */
1340 static int
1341 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1343 if (val1 == val2)
1344 return 0;
1346 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1347 both integers. */
1348 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1349 == POINTER_TYPE_P (TREE_TYPE (val2)));
1351 /* Convert the two values into the same type. This is needed because
1352 sizetype causes sign extension even for unsigned types. */
1353 val2 = fold_convert (TREE_TYPE (val1), val2);
1354 STRIP_USELESS_TYPE_CONVERSION (val2);
1356 if ((TREE_CODE (val1) == SSA_NAME
1357 || (TREE_CODE (val1) == NEGATE_EXPR
1358 && TREE_CODE (TREE_OPERAND (val1, 0)) == SSA_NAME)
1359 || TREE_CODE (val1) == PLUS_EXPR
1360 || TREE_CODE (val1) == MINUS_EXPR)
1361 && (TREE_CODE (val2) == SSA_NAME
1362 || (TREE_CODE (val2) == NEGATE_EXPR
1363 && TREE_CODE (TREE_OPERAND (val2, 0)) == SSA_NAME)
1364 || TREE_CODE (val2) == PLUS_EXPR
1365 || TREE_CODE (val2) == MINUS_EXPR))
1367 tree n1, c1, n2, c2;
1368 enum tree_code code1, code2;
1370 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1371 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1372 same name, return -2. */
1373 if (TREE_CODE (val1) == SSA_NAME || TREE_CODE (val1) == NEGATE_EXPR)
1375 code1 = SSA_NAME;
1376 n1 = val1;
1377 c1 = NULL_TREE;
1379 else
1381 code1 = TREE_CODE (val1);
1382 n1 = TREE_OPERAND (val1, 0);
1383 c1 = TREE_OPERAND (val1, 1);
1384 if (tree_int_cst_sgn (c1) == -1)
1386 if (is_negative_overflow_infinity (c1))
1387 return -2;
1388 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1389 if (!c1)
1390 return -2;
1391 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1395 if (TREE_CODE (val2) == SSA_NAME || TREE_CODE (val2) == NEGATE_EXPR)
1397 code2 = SSA_NAME;
1398 n2 = val2;
1399 c2 = NULL_TREE;
1401 else
1403 code2 = TREE_CODE (val2);
1404 n2 = TREE_OPERAND (val2, 0);
1405 c2 = TREE_OPERAND (val2, 1);
1406 if (tree_int_cst_sgn (c2) == -1)
1408 if (is_negative_overflow_infinity (c2))
1409 return -2;
1410 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1411 if (!c2)
1412 return -2;
1413 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1417 /* Both values must use the same name. */
1418 if (TREE_CODE (n1) == NEGATE_EXPR && TREE_CODE (n2) == NEGATE_EXPR)
1420 n1 = TREE_OPERAND (n1, 0);
1421 n2 = TREE_OPERAND (n2, 0);
1423 if (n1 != n2)
1424 return -2;
1426 if (code1 == SSA_NAME && code2 == SSA_NAME)
1427 /* NAME == NAME */
1428 return 0;
1430 /* If overflow is defined we cannot simplify more. */
1431 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1432 return -2;
1434 if (strict_overflow_p != NULL
1435 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1436 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1437 *strict_overflow_p = true;
1439 if (code1 == SSA_NAME)
1441 if (code2 == PLUS_EXPR)
1442 /* NAME < NAME + CST */
1443 return -1;
1444 else if (code2 == MINUS_EXPR)
1445 /* NAME > NAME - CST */
1446 return 1;
1448 else if (code1 == PLUS_EXPR)
1450 if (code2 == SSA_NAME)
1451 /* NAME + CST > NAME */
1452 return 1;
1453 else if (code2 == PLUS_EXPR)
1454 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1455 return compare_values_warnv (c1, c2, strict_overflow_p);
1456 else if (code2 == MINUS_EXPR)
1457 /* NAME + CST1 > NAME - CST2 */
1458 return 1;
1460 else if (code1 == MINUS_EXPR)
1462 if (code2 == SSA_NAME)
1463 /* NAME - CST < NAME */
1464 return -1;
1465 else if (code2 == PLUS_EXPR)
1466 /* NAME - CST1 < NAME + CST2 */
1467 return -1;
1468 else if (code2 == MINUS_EXPR)
1469 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1470 C1 and C2 are swapped in the call to compare_values. */
1471 return compare_values_warnv (c2, c1, strict_overflow_p);
1474 gcc_unreachable ();
1477 /* We cannot compare non-constants. */
1478 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1479 return -2;
1481 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1483 /* We cannot compare overflowed values, except for overflow
1484 infinities. */
1485 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1487 if (strict_overflow_p != NULL)
1488 *strict_overflow_p = true;
1489 if (is_negative_overflow_infinity (val1))
1490 return is_negative_overflow_infinity (val2) ? 0 : -1;
1491 else if (is_negative_overflow_infinity (val2))
1492 return 1;
1493 else if (is_positive_overflow_infinity (val1))
1494 return is_positive_overflow_infinity (val2) ? 0 : 1;
1495 else if (is_positive_overflow_infinity (val2))
1496 return -1;
1497 return -2;
1500 return tree_int_cst_compare (val1, val2);
1502 else
1504 tree t;
1506 /* First see if VAL1 and VAL2 are not the same. */
1507 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1508 return 0;
1510 /* If VAL1 is a lower address than VAL2, return -1. */
1511 if (operand_less_p (val1, val2) == 1)
1512 return -1;
1514 /* If VAL1 is a higher address than VAL2, return +1. */
1515 if (operand_less_p (val2, val1) == 1)
1516 return 1;
1518 /* If VAL1 is different than VAL2, return +2.
1519 For integer constants we either have already returned -1 or 1
1520 or they are equivalent. We still might succeed in proving
1521 something about non-trivial operands. */
1522 if (TREE_CODE (val1) != INTEGER_CST
1523 || TREE_CODE (val2) != INTEGER_CST)
1525 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1526 if (t && integer_onep (t))
1527 return 2;
1530 return -2;
1534 /* Compare values like compare_values_warnv, but treat comparisons of
1535 nonconstants which rely on undefined overflow as incomparable. */
1537 static int
1538 compare_values (tree val1, tree val2)
1540 bool sop;
1541 int ret;
1543 sop = false;
1544 ret = compare_values_warnv (val1, val2, &sop);
1545 if (sop
1546 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1547 ret = -2;
1548 return ret;
1552 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1553 0 if VAL is not inside [MIN, MAX],
1554 -2 if we cannot tell either way.
1556 Benchmark compile/20001226-1.c compilation time after changing this
1557 function. */
1559 static inline int
1560 value_inside_range (tree val, tree min, tree max)
1562 int cmp1, cmp2;
1564 cmp1 = operand_less_p (val, min);
1565 if (cmp1 == -2)
1566 return -2;
1567 if (cmp1 == 1)
1568 return 0;
1570 cmp2 = operand_less_p (max, val);
1571 if (cmp2 == -2)
1572 return -2;
1574 return !cmp2;
1578 /* Return true if value ranges VR0 and VR1 have a non-empty
1579 intersection.
1581 Benchmark compile/20001226-1.c compilation time after changing this
1582 function.
1585 static inline bool
1586 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1588 /* The value ranges do not intersect if the maximum of the first range is
1589 less than the minimum of the second range or vice versa.
1590 When those relations are unknown, we can't do any better. */
1591 if (operand_less_p (vr0->max, vr1->min) != 0)
1592 return false;
1593 if (operand_less_p (vr1->max, vr0->min) != 0)
1594 return false;
1595 return true;
1599 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1600 include the value zero, -2 if we cannot tell. */
1602 static inline int
1603 range_includes_zero_p (tree min, tree max)
1605 tree zero = build_int_cst (TREE_TYPE (min), 0);
1606 return value_inside_range (zero, min, max);
1609 /* Return true if *VR is know to only contain nonnegative values. */
1611 static inline bool
1612 value_range_nonnegative_p (value_range_t *vr)
1614 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1615 which would return a useful value should be encoded as a
1616 VR_RANGE. */
1617 if (vr->type == VR_RANGE)
1619 int result = compare_values (vr->min, integer_zero_node);
1620 return (result == 0 || result == 1);
1623 return false;
1626 /* If *VR has a value rante that is a single constant value return that,
1627 otherwise return NULL_TREE. */
1629 static tree
1630 value_range_constant_singleton (value_range_t *vr)
1632 if (vr->type == VR_RANGE
1633 && operand_equal_p (vr->min, vr->max, 0)
1634 && is_gimple_min_invariant (vr->min))
1635 return vr->min;
1637 return NULL_TREE;
1640 /* If OP has a value range with a single constant value return that,
1641 otherwise return NULL_TREE. This returns OP itself if OP is a
1642 constant. */
1644 static tree
1645 op_with_constant_singleton_value_range (tree op)
1647 if (is_gimple_min_invariant (op))
1648 return op;
1650 if (TREE_CODE (op) != SSA_NAME)
1651 return NULL_TREE;
1653 return value_range_constant_singleton (get_value_range (op));
1656 /* Return true if op is in a boolean [0, 1] value-range. */
1658 static bool
1659 op_with_boolean_value_range_p (tree op)
1661 value_range_t *vr;
1663 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1664 return true;
1666 if (integer_zerop (op)
1667 || integer_onep (op))
1668 return true;
1670 if (TREE_CODE (op) != SSA_NAME)
1671 return false;
1673 vr = get_value_range (op);
1674 return (vr->type == VR_RANGE
1675 && integer_zerop (vr->min)
1676 && integer_onep (vr->max));
1679 /* Extract value range information from an ASSERT_EXPR EXPR and store
1680 it in *VR_P. */
1682 static void
1683 extract_range_from_assert (value_range_t *vr_p, tree expr)
1685 tree var, cond, limit, min, max, type;
1686 value_range_t *limit_vr;
1687 enum tree_code cond_code;
1689 var = ASSERT_EXPR_VAR (expr);
1690 cond = ASSERT_EXPR_COND (expr);
1692 gcc_assert (COMPARISON_CLASS_P (cond));
1694 /* Find VAR in the ASSERT_EXPR conditional. */
1695 if (var == TREE_OPERAND (cond, 0)
1696 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1697 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1699 /* If the predicate is of the form VAR COMP LIMIT, then we just
1700 take LIMIT from the RHS and use the same comparison code. */
1701 cond_code = TREE_CODE (cond);
1702 limit = TREE_OPERAND (cond, 1);
1703 cond = TREE_OPERAND (cond, 0);
1705 else
1707 /* If the predicate is of the form LIMIT COMP VAR, then we need
1708 to flip around the comparison code to create the proper range
1709 for VAR. */
1710 cond_code = swap_tree_comparison (TREE_CODE (cond));
1711 limit = TREE_OPERAND (cond, 0);
1712 cond = TREE_OPERAND (cond, 1);
1715 limit = avoid_overflow_infinity (limit);
1717 type = TREE_TYPE (var);
1718 gcc_assert (limit != var);
1720 /* For pointer arithmetic, we only keep track of pointer equality
1721 and inequality. */
1722 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1724 set_value_range_to_varying (vr_p);
1725 return;
1728 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1729 try to use LIMIT's range to avoid creating symbolic ranges
1730 unnecessarily. */
1731 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1733 /* LIMIT's range is only interesting if it has any useful information. */
1734 if (limit_vr
1735 && (limit_vr->type == VR_UNDEFINED
1736 || limit_vr->type == VR_VARYING
1737 || symbolic_range_p (limit_vr)))
1738 limit_vr = NULL;
1740 /* Initially, the new range has the same set of equivalences of
1741 VAR's range. This will be revised before returning the final
1742 value. Since assertions may be chained via mutually exclusive
1743 predicates, we will need to trim the set of equivalences before
1744 we are done. */
1745 gcc_assert (vr_p->equiv == NULL);
1746 add_equivalence (&vr_p->equiv, var);
1748 /* Extract a new range based on the asserted comparison for VAR and
1749 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1750 will only use it for equality comparisons (EQ_EXPR). For any
1751 other kind of assertion, we cannot derive a range from LIMIT's
1752 anti-range that can be used to describe the new range. For
1753 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1754 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1755 no single range for x_2 that could describe LE_EXPR, so we might
1756 as well build the range [b_4, +INF] for it.
1757 One special case we handle is extracting a range from a
1758 range test encoded as (unsigned)var + CST <= limit. */
1759 if (TREE_CODE (cond) == NOP_EXPR
1760 || TREE_CODE (cond) == PLUS_EXPR)
1762 if (TREE_CODE (cond) == PLUS_EXPR)
1764 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1765 TREE_OPERAND (cond, 1));
1766 max = int_const_binop (PLUS_EXPR, limit, min);
1767 cond = TREE_OPERAND (cond, 0);
1769 else
1771 min = build_int_cst (TREE_TYPE (var), 0);
1772 max = limit;
1775 /* Make sure to not set TREE_OVERFLOW on the final type
1776 conversion. We are willingly interpreting large positive
1777 unsigned values as negative signed values here. */
1778 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1779 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1781 /* We can transform a max, min range to an anti-range or
1782 vice-versa. Use set_and_canonicalize_value_range which does
1783 this for us. */
1784 if (cond_code == LE_EXPR)
1785 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1786 min, max, vr_p->equiv);
1787 else if (cond_code == GT_EXPR)
1788 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1789 min, max, vr_p->equiv);
1790 else
1791 gcc_unreachable ();
1793 else if (cond_code == EQ_EXPR)
1795 enum value_range_type range_type;
1797 if (limit_vr)
1799 range_type = limit_vr->type;
1800 min = limit_vr->min;
1801 max = limit_vr->max;
1803 else
1805 range_type = VR_RANGE;
1806 min = limit;
1807 max = limit;
1810 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1812 /* When asserting the equality VAR == LIMIT and LIMIT is another
1813 SSA name, the new range will also inherit the equivalence set
1814 from LIMIT. */
1815 if (TREE_CODE (limit) == SSA_NAME)
1816 add_equivalence (&vr_p->equiv, limit);
1818 else if (cond_code == NE_EXPR)
1820 /* As described above, when LIMIT's range is an anti-range and
1821 this assertion is an inequality (NE_EXPR), then we cannot
1822 derive anything from the anti-range. For instance, if
1823 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1824 not imply that VAR's range is [0, 0]. So, in the case of
1825 anti-ranges, we just assert the inequality using LIMIT and
1826 not its anti-range.
1828 If LIMIT_VR is a range, we can only use it to build a new
1829 anti-range if LIMIT_VR is a single-valued range. For
1830 instance, if LIMIT_VR is [0, 1], the predicate
1831 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1832 Rather, it means that for value 0 VAR should be ~[0, 0]
1833 and for value 1, VAR should be ~[1, 1]. We cannot
1834 represent these ranges.
1836 The only situation in which we can build a valid
1837 anti-range is when LIMIT_VR is a single-valued range
1838 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1839 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1840 if (limit_vr
1841 && limit_vr->type == VR_RANGE
1842 && compare_values (limit_vr->min, limit_vr->max) == 0)
1844 min = limit_vr->min;
1845 max = limit_vr->max;
1847 else
1849 /* In any other case, we cannot use LIMIT's range to build a
1850 valid anti-range. */
1851 min = max = limit;
1854 /* If MIN and MAX cover the whole range for their type, then
1855 just use the original LIMIT. */
1856 if (INTEGRAL_TYPE_P (type)
1857 && vrp_val_is_min (min)
1858 && vrp_val_is_max (max))
1859 min = max = limit;
1861 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1862 min, max, vr_p->equiv);
1864 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1866 min = TYPE_MIN_VALUE (type);
1868 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1869 max = limit;
1870 else
1872 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1873 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1874 LT_EXPR. */
1875 max = limit_vr->max;
1878 /* If the maximum value forces us to be out of bounds, simply punt.
1879 It would be pointless to try and do anything more since this
1880 all should be optimized away above us. */
1881 if ((cond_code == LT_EXPR
1882 && compare_values (max, min) == 0)
1883 || is_overflow_infinity (max))
1884 set_value_range_to_varying (vr_p);
1885 else
1887 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1888 if (cond_code == LT_EXPR)
1890 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1891 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1892 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1893 build_int_cst (TREE_TYPE (max), -1));
1894 else
1895 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1896 build_int_cst (TREE_TYPE (max), 1));
1897 if (EXPR_P (max))
1898 TREE_NO_WARNING (max) = 1;
1901 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1904 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1906 max = TYPE_MAX_VALUE (type);
1908 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1909 min = limit;
1910 else
1912 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1913 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1914 GT_EXPR. */
1915 min = limit_vr->min;
1918 /* If the minimum value forces us to be out of bounds, simply punt.
1919 It would be pointless to try and do anything more since this
1920 all should be optimized away above us. */
1921 if ((cond_code == GT_EXPR
1922 && compare_values (min, max) == 0)
1923 || is_overflow_infinity (min))
1924 set_value_range_to_varying (vr_p);
1925 else
1927 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1928 if (cond_code == GT_EXPR)
1930 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1931 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1932 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1933 build_int_cst (TREE_TYPE (min), -1));
1934 else
1935 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1936 build_int_cst (TREE_TYPE (min), 1));
1937 if (EXPR_P (min))
1938 TREE_NO_WARNING (min) = 1;
1941 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1944 else
1945 gcc_unreachable ();
1947 /* Finally intersect the new range with what we already know about var. */
1948 vrp_intersect_ranges (vr_p, get_value_range (var));
1952 /* Extract range information from SSA name VAR and store it in VR. If
1953 VAR has an interesting range, use it. Otherwise, create the
1954 range [VAR, VAR] and return it. This is useful in situations where
1955 we may have conditionals testing values of VARYING names. For
1956 instance,
1958 x_3 = y_5;
1959 if (x_3 > y_5)
1962 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1963 always false. */
1965 static void
1966 extract_range_from_ssa_name (value_range_t *vr, tree var)
1968 value_range_t *var_vr = get_value_range (var);
1970 if (var_vr->type != VR_VARYING)
1971 copy_value_range (vr, var_vr);
1972 else
1973 set_value_range (vr, VR_RANGE, var, var, NULL);
1975 add_equivalence (&vr->equiv, var);
1979 /* Wrapper around int_const_binop. If the operation overflows and we
1980 are not using wrapping arithmetic, then adjust the result to be
1981 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1982 NULL_TREE if we need to use an overflow infinity representation but
1983 the type does not support it. */
1985 static tree
1986 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1988 tree res;
1990 res = int_const_binop (code, val1, val2);
1992 /* If we are using unsigned arithmetic, operate symbolically
1993 on -INF and +INF as int_const_binop only handles signed overflow. */
1994 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1996 int checkz = compare_values (res, val1);
1997 bool overflow = false;
1999 /* Ensure that res = val1 [+*] val2 >= val1
2000 or that res = val1 - val2 <= val1. */
2001 if ((code == PLUS_EXPR
2002 && !(checkz == 1 || checkz == 0))
2003 || (code == MINUS_EXPR
2004 && !(checkz == 0 || checkz == -1)))
2006 overflow = true;
2008 /* Checking for multiplication overflow is done by dividing the
2009 output of the multiplication by the first input of the
2010 multiplication. If the result of that division operation is
2011 not equal to the second input of the multiplication, then the
2012 multiplication overflowed. */
2013 else if (code == MULT_EXPR && !integer_zerop (val1))
2015 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2016 res,
2017 val1);
2018 int check = compare_values (tmp, val2);
2020 if (check != 0)
2021 overflow = true;
2024 if (overflow)
2026 res = copy_node (res);
2027 TREE_OVERFLOW (res) = 1;
2031 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2032 /* If the singed operation wraps then int_const_binop has done
2033 everything we want. */
2035 /* Signed division of -1/0 overflows and by the time it gets here
2036 returns NULL_TREE. */
2037 else if (!res)
2038 return NULL_TREE;
2039 else if ((TREE_OVERFLOW (res)
2040 && !TREE_OVERFLOW (val1)
2041 && !TREE_OVERFLOW (val2))
2042 || is_overflow_infinity (val1)
2043 || is_overflow_infinity (val2))
2045 /* If the operation overflowed but neither VAL1 nor VAL2 are
2046 overflown, return -INF or +INF depending on the operation
2047 and the combination of signs of the operands. */
2048 int sgn1 = tree_int_cst_sgn (val1);
2049 int sgn2 = tree_int_cst_sgn (val2);
2051 if (needs_overflow_infinity (TREE_TYPE (res))
2052 && !supports_overflow_infinity (TREE_TYPE (res)))
2053 return NULL_TREE;
2055 /* We have to punt on adding infinities of different signs,
2056 since we can't tell what the sign of the result should be.
2057 Likewise for subtracting infinities of the same sign. */
2058 if (((code == PLUS_EXPR && sgn1 != sgn2)
2059 || (code == MINUS_EXPR && sgn1 == sgn2))
2060 && is_overflow_infinity (val1)
2061 && is_overflow_infinity (val2))
2062 return NULL_TREE;
2064 /* Don't try to handle division or shifting of infinities. */
2065 if ((code == TRUNC_DIV_EXPR
2066 || code == FLOOR_DIV_EXPR
2067 || code == CEIL_DIV_EXPR
2068 || code == EXACT_DIV_EXPR
2069 || code == ROUND_DIV_EXPR
2070 || code == RSHIFT_EXPR)
2071 && (is_overflow_infinity (val1)
2072 || is_overflow_infinity (val2)))
2073 return NULL_TREE;
2075 /* Notice that we only need to handle the restricted set of
2076 operations handled by extract_range_from_binary_expr.
2077 Among them, only multiplication, addition and subtraction
2078 can yield overflow without overflown operands because we
2079 are working with integral types only... except in the
2080 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2081 for division too. */
2083 /* For multiplication, the sign of the overflow is given
2084 by the comparison of the signs of the operands. */
2085 if ((code == MULT_EXPR && sgn1 == sgn2)
2086 /* For addition, the operands must be of the same sign
2087 to yield an overflow. Its sign is therefore that
2088 of one of the operands, for example the first. For
2089 infinite operands X + -INF is negative, not positive. */
2090 || (code == PLUS_EXPR
2091 && (sgn1 >= 0
2092 ? !is_negative_overflow_infinity (val2)
2093 : is_positive_overflow_infinity (val2)))
2094 /* For subtraction, non-infinite operands must be of
2095 different signs to yield an overflow. Its sign is
2096 therefore that of the first operand or the opposite of
2097 that of the second operand. A first operand of 0 counts
2098 as positive here, for the corner case 0 - (-INF), which
2099 overflows, but must yield +INF. For infinite operands 0
2100 - INF is negative, not positive. */
2101 || (code == MINUS_EXPR
2102 && (sgn1 >= 0
2103 ? !is_positive_overflow_infinity (val2)
2104 : is_negative_overflow_infinity (val2)))
2105 /* We only get in here with positive shift count, so the
2106 overflow direction is the same as the sign of val1.
2107 Actually rshift does not overflow at all, but we only
2108 handle the case of shifting overflowed -INF and +INF. */
2109 || (code == RSHIFT_EXPR
2110 && sgn1 >= 0)
2111 /* For division, the only case is -INF / -1 = +INF. */
2112 || code == TRUNC_DIV_EXPR
2113 || code == FLOOR_DIV_EXPR
2114 || code == CEIL_DIV_EXPR
2115 || code == EXACT_DIV_EXPR
2116 || code == ROUND_DIV_EXPR)
2117 return (needs_overflow_infinity (TREE_TYPE (res))
2118 ? positive_overflow_infinity (TREE_TYPE (res))
2119 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2120 else
2121 return (needs_overflow_infinity (TREE_TYPE (res))
2122 ? negative_overflow_infinity (TREE_TYPE (res))
2123 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2126 return res;
2130 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
2131 bitmask if some bit is unset, it means for all numbers in the range
2132 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2133 bitmask if some bit is set, it means for all numbers in the range
2134 the bit is 1, otherwise it might be 0 or 1. */
2136 static bool
2137 zero_nonzero_bits_from_vr (const tree expr_type,
2138 value_range_t *vr,
2139 wide_int *may_be_nonzero,
2140 wide_int *must_be_nonzero)
2142 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
2143 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
2144 if (!range_int_cst_p (vr)
2145 || is_overflow_infinity (vr->min)
2146 || is_overflow_infinity (vr->max))
2147 return false;
2149 if (range_int_cst_singleton_p (vr))
2151 *may_be_nonzero = vr->min;
2152 *must_be_nonzero = *may_be_nonzero;
2154 else if (tree_int_cst_sgn (vr->min) >= 0
2155 || tree_int_cst_sgn (vr->max) < 0)
2157 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
2158 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
2159 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
2160 if (xor_mask != 0)
2162 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
2163 may_be_nonzero->get_precision ());
2164 *may_be_nonzero = *may_be_nonzero | mask;
2165 *must_be_nonzero = must_be_nonzero->and_not (mask);
2169 return true;
2172 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2173 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2174 false otherwise. If *AR can be represented with a single range
2175 *VR1 will be VR_UNDEFINED. */
2177 static bool
2178 ranges_from_anti_range (value_range_t *ar,
2179 value_range_t *vr0, value_range_t *vr1)
2181 tree type = TREE_TYPE (ar->min);
2183 vr0->type = VR_UNDEFINED;
2184 vr1->type = VR_UNDEFINED;
2186 if (ar->type != VR_ANTI_RANGE
2187 || TREE_CODE (ar->min) != INTEGER_CST
2188 || TREE_CODE (ar->max) != INTEGER_CST
2189 || !vrp_val_min (type)
2190 || !vrp_val_max (type))
2191 return false;
2193 if (!vrp_val_is_min (ar->min))
2195 vr0->type = VR_RANGE;
2196 vr0->min = vrp_val_min (type);
2197 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2199 if (!vrp_val_is_max (ar->max))
2201 vr1->type = VR_RANGE;
2202 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2203 vr1->max = vrp_val_max (type);
2205 if (vr0->type == VR_UNDEFINED)
2207 *vr0 = *vr1;
2208 vr1->type = VR_UNDEFINED;
2211 return vr0->type != VR_UNDEFINED;
2214 /* Helper to extract a value-range *VR for a multiplicative operation
2215 *VR0 CODE *VR1. */
2217 static void
2218 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2219 enum tree_code code,
2220 value_range_t *vr0, value_range_t *vr1)
2222 enum value_range_type type;
2223 tree val[4];
2224 size_t i;
2225 tree min, max;
2226 bool sop;
2227 int cmp;
2229 /* Multiplications, divisions and shifts are a bit tricky to handle,
2230 depending on the mix of signs we have in the two ranges, we
2231 need to operate on different values to get the minimum and
2232 maximum values for the new range. One approach is to figure
2233 out all the variations of range combinations and do the
2234 operations.
2236 However, this involves several calls to compare_values and it
2237 is pretty convoluted. It's simpler to do the 4 operations
2238 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2239 MAX1) and then figure the smallest and largest values to form
2240 the new range. */
2241 gcc_assert (code == MULT_EXPR
2242 || code == TRUNC_DIV_EXPR
2243 || code == FLOOR_DIV_EXPR
2244 || code == CEIL_DIV_EXPR
2245 || code == EXACT_DIV_EXPR
2246 || code == ROUND_DIV_EXPR
2247 || code == RSHIFT_EXPR
2248 || code == LSHIFT_EXPR);
2249 gcc_assert ((vr0->type == VR_RANGE
2250 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2251 && vr0->type == vr1->type);
2253 type = vr0->type;
2255 /* Compute the 4 cross operations. */
2256 sop = false;
2257 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2258 if (val[0] == NULL_TREE)
2259 sop = true;
2261 if (vr1->max == vr1->min)
2262 val[1] = NULL_TREE;
2263 else
2265 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2266 if (val[1] == NULL_TREE)
2267 sop = true;
2270 if (vr0->max == vr0->min)
2271 val[2] = NULL_TREE;
2272 else
2274 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2275 if (val[2] == NULL_TREE)
2276 sop = true;
2279 if (vr0->min == vr0->max || vr1->min == vr1->max)
2280 val[3] = NULL_TREE;
2281 else
2283 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2284 if (val[3] == NULL_TREE)
2285 sop = true;
2288 if (sop)
2290 set_value_range_to_varying (vr);
2291 return;
2294 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2295 of VAL[i]. */
2296 min = val[0];
2297 max = val[0];
2298 for (i = 1; i < 4; i++)
2300 if (!is_gimple_min_invariant (min)
2301 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2302 || !is_gimple_min_invariant (max)
2303 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2304 break;
2306 if (val[i])
2308 if (!is_gimple_min_invariant (val[i])
2309 || (TREE_OVERFLOW (val[i])
2310 && !is_overflow_infinity (val[i])))
2312 /* If we found an overflowed value, set MIN and MAX
2313 to it so that we set the resulting range to
2314 VARYING. */
2315 min = max = val[i];
2316 break;
2319 if (compare_values (val[i], min) == -1)
2320 min = val[i];
2322 if (compare_values (val[i], max) == 1)
2323 max = val[i];
2327 /* If either MIN or MAX overflowed, then set the resulting range to
2328 VARYING. But we do accept an overflow infinity
2329 representation. */
2330 if (min == NULL_TREE
2331 || !is_gimple_min_invariant (min)
2332 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2333 || max == NULL_TREE
2334 || !is_gimple_min_invariant (max)
2335 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2337 set_value_range_to_varying (vr);
2338 return;
2341 /* We punt if:
2342 1) [-INF, +INF]
2343 2) [-INF, +-INF(OVF)]
2344 3) [+-INF(OVF), +INF]
2345 4) [+-INF(OVF), +-INF(OVF)]
2346 We learn nothing when we have INF and INF(OVF) on both sides.
2347 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2348 overflow. */
2349 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2350 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2352 set_value_range_to_varying (vr);
2353 return;
2356 cmp = compare_values (min, max);
2357 if (cmp == -2 || cmp == 1)
2359 /* If the new range has its limits swapped around (MIN > MAX),
2360 then the operation caused one of them to wrap around, mark
2361 the new range VARYING. */
2362 set_value_range_to_varying (vr);
2364 else
2365 set_value_range (vr, type, min, max, NULL);
2368 /* Extract range information from a binary operation CODE based on
2369 the ranges of each of its operands *VR0 and *VR1 with resulting
2370 type EXPR_TYPE. The resulting range is stored in *VR. */
2372 static void
2373 extract_range_from_binary_expr_1 (value_range_t *vr,
2374 enum tree_code code, tree expr_type,
2375 value_range_t *vr0_, value_range_t *vr1_)
2377 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2378 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2379 enum value_range_type type;
2380 tree min = NULL_TREE, max = NULL_TREE;
2381 int cmp;
2383 if (!INTEGRAL_TYPE_P (expr_type)
2384 && !POINTER_TYPE_P (expr_type))
2386 set_value_range_to_varying (vr);
2387 return;
2390 /* Not all binary expressions can be applied to ranges in a
2391 meaningful way. Handle only arithmetic operations. */
2392 if (code != PLUS_EXPR
2393 && code != MINUS_EXPR
2394 && code != POINTER_PLUS_EXPR
2395 && code != MULT_EXPR
2396 && code != TRUNC_DIV_EXPR
2397 && code != FLOOR_DIV_EXPR
2398 && code != CEIL_DIV_EXPR
2399 && code != EXACT_DIV_EXPR
2400 && code != ROUND_DIV_EXPR
2401 && code != TRUNC_MOD_EXPR
2402 && code != RSHIFT_EXPR
2403 && code != LSHIFT_EXPR
2404 && code != MIN_EXPR
2405 && code != MAX_EXPR
2406 && code != BIT_AND_EXPR
2407 && code != BIT_IOR_EXPR
2408 && code != BIT_XOR_EXPR)
2410 set_value_range_to_varying (vr);
2411 return;
2414 /* If both ranges are UNDEFINED, so is the result. */
2415 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2417 set_value_range_to_undefined (vr);
2418 return;
2420 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2421 code. At some point we may want to special-case operations that
2422 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2423 operand. */
2424 else if (vr0.type == VR_UNDEFINED)
2425 set_value_range_to_varying (&vr0);
2426 else if (vr1.type == VR_UNDEFINED)
2427 set_value_range_to_varying (&vr1);
2429 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2430 and express ~[] op X as ([]' op X) U ([]'' op X). */
2431 if (vr0.type == VR_ANTI_RANGE
2432 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2434 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2435 if (vrtem1.type != VR_UNDEFINED)
2437 value_range_t vrres = VR_INITIALIZER;
2438 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2439 &vrtem1, vr1_);
2440 vrp_meet (vr, &vrres);
2442 return;
2444 /* Likewise for X op ~[]. */
2445 if (vr1.type == VR_ANTI_RANGE
2446 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2448 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2449 if (vrtem1.type != VR_UNDEFINED)
2451 value_range_t vrres = VR_INITIALIZER;
2452 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2453 vr0_, &vrtem1);
2454 vrp_meet (vr, &vrres);
2456 return;
2459 /* The type of the resulting value range defaults to VR0.TYPE. */
2460 type = vr0.type;
2462 /* Refuse to operate on VARYING ranges, ranges of different kinds
2463 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2464 because we may be able to derive a useful range even if one of
2465 the operands is VR_VARYING or symbolic range. Similarly for
2466 divisions, MIN/MAX and PLUS/MINUS.
2468 TODO, we may be able to derive anti-ranges in some cases. */
2469 if (code != BIT_AND_EXPR
2470 && code != BIT_IOR_EXPR
2471 && code != TRUNC_DIV_EXPR
2472 && code != FLOOR_DIV_EXPR
2473 && code != CEIL_DIV_EXPR
2474 && code != EXACT_DIV_EXPR
2475 && code != ROUND_DIV_EXPR
2476 && code != TRUNC_MOD_EXPR
2477 && code != MIN_EXPR
2478 && code != MAX_EXPR
2479 && code != PLUS_EXPR
2480 && code != MINUS_EXPR
2481 && code != RSHIFT_EXPR
2482 && (vr0.type == VR_VARYING
2483 || vr1.type == VR_VARYING
2484 || vr0.type != vr1.type
2485 || symbolic_range_p (&vr0)
2486 || symbolic_range_p (&vr1)))
2488 set_value_range_to_varying (vr);
2489 return;
2492 /* Now evaluate the expression to determine the new range. */
2493 if (POINTER_TYPE_P (expr_type))
2495 if (code == MIN_EXPR || code == MAX_EXPR)
2497 /* For MIN/MAX expressions with pointers, we only care about
2498 nullness, if both are non null, then the result is nonnull.
2499 If both are null, then the result is null. Otherwise they
2500 are varying. */
2501 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2502 set_value_range_to_nonnull (vr, expr_type);
2503 else if (range_is_null (&vr0) && range_is_null (&vr1))
2504 set_value_range_to_null (vr, expr_type);
2505 else
2506 set_value_range_to_varying (vr);
2508 else if (code == POINTER_PLUS_EXPR)
2510 /* For pointer types, we are really only interested in asserting
2511 whether the expression evaluates to non-NULL. */
2512 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2513 set_value_range_to_nonnull (vr, expr_type);
2514 else if (range_is_null (&vr0) && range_is_null (&vr1))
2515 set_value_range_to_null (vr, expr_type);
2516 else
2517 set_value_range_to_varying (vr);
2519 else if (code == BIT_AND_EXPR)
2521 /* For pointer types, we are really only interested in asserting
2522 whether the expression evaluates to non-NULL. */
2523 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2524 set_value_range_to_nonnull (vr, expr_type);
2525 else if (range_is_null (&vr0) || range_is_null (&vr1))
2526 set_value_range_to_null (vr, expr_type);
2527 else
2528 set_value_range_to_varying (vr);
2530 else
2531 set_value_range_to_varying (vr);
2533 return;
2536 /* For integer ranges, apply the operation to each end of the
2537 range and see what we end up with. */
2538 if (code == PLUS_EXPR || code == MINUS_EXPR)
2540 const bool minus_p = (code == MINUS_EXPR);
2541 tree min_op0 = vr0.min;
2542 tree min_op1 = minus_p ? vr1.max : vr1.min;
2543 tree max_op0 = vr0.max;
2544 tree max_op1 = minus_p ? vr1.min : vr1.max;
2545 tree sym_min_op0 = NULL_TREE;
2546 tree sym_min_op1 = NULL_TREE;
2547 tree sym_max_op0 = NULL_TREE;
2548 tree sym_max_op1 = NULL_TREE;
2549 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2551 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2552 single-symbolic ranges, try to compute the precise resulting range,
2553 but only if we know that this resulting range will also be constant
2554 or single-symbolic. */
2555 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2556 && (TREE_CODE (min_op0) == INTEGER_CST
2557 || (sym_min_op0
2558 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2559 && (TREE_CODE (min_op1) == INTEGER_CST
2560 || (sym_min_op1
2561 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2562 && (!(sym_min_op0 && sym_min_op1)
2563 || (sym_min_op0 == sym_min_op1
2564 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2565 && (TREE_CODE (max_op0) == INTEGER_CST
2566 || (sym_max_op0
2567 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2568 && (TREE_CODE (max_op1) == INTEGER_CST
2569 || (sym_max_op1
2570 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2571 && (!(sym_max_op0 && sym_max_op1)
2572 || (sym_max_op0 == sym_max_op1
2573 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2575 const signop sgn = TYPE_SIGN (expr_type);
2576 const unsigned int prec = TYPE_PRECISION (expr_type);
2577 wide_int type_min, type_max, wmin, wmax;
2578 int min_ovf = 0;
2579 int max_ovf = 0;
2581 /* Get the lower and upper bounds of the type. */
2582 if (TYPE_OVERFLOW_WRAPS (expr_type))
2584 type_min = wi::min_value (prec, sgn);
2585 type_max = wi::max_value (prec, sgn);
2587 else
2589 type_min = vrp_val_min (expr_type);
2590 type_max = vrp_val_max (expr_type);
2593 /* Combine the lower bounds, if any. */
2594 if (min_op0 && min_op1)
2596 if (minus_p)
2598 wmin = wi::sub (min_op0, min_op1);
2600 /* Check for overflow. */
2601 if (wi::cmp (0, min_op1, sgn)
2602 != wi::cmp (wmin, min_op0, sgn))
2603 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2605 else
2607 wmin = wi::add (min_op0, min_op1);
2609 /* Check for overflow. */
2610 if (wi::cmp (min_op1, 0, sgn)
2611 != wi::cmp (wmin, min_op0, sgn))
2612 min_ovf = wi::cmp (min_op0, wmin, sgn);
2615 else if (min_op0)
2616 wmin = min_op0;
2617 else if (min_op1)
2618 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2619 else
2620 wmin = wi::shwi (0, prec);
2622 /* Combine the upper bounds, if any. */
2623 if (max_op0 && max_op1)
2625 if (minus_p)
2627 wmax = wi::sub (max_op0, max_op1);
2629 /* Check for overflow. */
2630 if (wi::cmp (0, max_op1, sgn)
2631 != wi::cmp (wmax, max_op0, sgn))
2632 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2634 else
2636 wmax = wi::add (max_op0, max_op1);
2638 if (wi::cmp (max_op1, 0, sgn)
2639 != wi::cmp (wmax, max_op0, sgn))
2640 max_ovf = wi::cmp (max_op0, wmax, sgn);
2643 else if (max_op0)
2644 wmax = max_op0;
2645 else if (max_op1)
2646 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2647 else
2648 wmax = wi::shwi (0, prec);
2650 /* Check for type overflow. */
2651 if (min_ovf == 0)
2653 if (wi::cmp (wmin, type_min, sgn) == -1)
2654 min_ovf = -1;
2655 else if (wi::cmp (wmin, type_max, sgn) == 1)
2656 min_ovf = 1;
2658 if (max_ovf == 0)
2660 if (wi::cmp (wmax, type_min, sgn) == -1)
2661 max_ovf = -1;
2662 else if (wi::cmp (wmax, type_max, sgn) == 1)
2663 max_ovf = 1;
2666 /* If we have overflow for the constant part and the resulting
2667 range will be symbolic, drop to VR_VARYING. */
2668 if ((min_ovf && sym_min_op0 != sym_min_op1)
2669 || (max_ovf && sym_max_op0 != sym_max_op1))
2671 set_value_range_to_varying (vr);
2672 return;
2675 if (TYPE_OVERFLOW_WRAPS (expr_type))
2677 /* If overflow wraps, truncate the values and adjust the
2678 range kind and bounds appropriately. */
2679 wide_int tmin = wide_int::from (wmin, prec, sgn);
2680 wide_int tmax = wide_int::from (wmax, prec, sgn);
2681 if (min_ovf == max_ovf)
2683 /* No overflow or both overflow or underflow. The
2684 range kind stays VR_RANGE. */
2685 min = wide_int_to_tree (expr_type, tmin);
2686 max = wide_int_to_tree (expr_type, tmax);
2688 else if (min_ovf == -1 && max_ovf == 1)
2690 /* Underflow and overflow, drop to VR_VARYING. */
2691 set_value_range_to_varying (vr);
2692 return;
2694 else
2696 /* Min underflow or max overflow. The range kind
2697 changes to VR_ANTI_RANGE. */
2698 bool covers = false;
2699 wide_int tem = tmin;
2700 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2701 || (max_ovf == 1 && min_ovf == 0));
2702 type = VR_ANTI_RANGE;
2703 tmin = tmax + 1;
2704 if (wi::cmp (tmin, tmax, sgn) < 0)
2705 covers = true;
2706 tmax = tem - 1;
2707 if (wi::cmp (tmax, tem, sgn) > 0)
2708 covers = true;
2709 /* If the anti-range would cover nothing, drop to varying.
2710 Likewise if the anti-range bounds are outside of the
2711 types values. */
2712 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2714 set_value_range_to_varying (vr);
2715 return;
2717 min = wide_int_to_tree (expr_type, tmin);
2718 max = wide_int_to_tree (expr_type, tmax);
2721 else
2723 /* If overflow does not wrap, saturate to the types min/max
2724 value. */
2725 if (min_ovf == -1)
2727 if (needs_overflow_infinity (expr_type)
2728 && supports_overflow_infinity (expr_type))
2729 min = negative_overflow_infinity (expr_type);
2730 else
2731 min = wide_int_to_tree (expr_type, type_min);
2733 else if (min_ovf == 1)
2735 if (needs_overflow_infinity (expr_type)
2736 && supports_overflow_infinity (expr_type))
2737 min = positive_overflow_infinity (expr_type);
2738 else
2739 min = wide_int_to_tree (expr_type, type_max);
2741 else
2742 min = wide_int_to_tree (expr_type, wmin);
2744 if (max_ovf == -1)
2746 if (needs_overflow_infinity (expr_type)
2747 && supports_overflow_infinity (expr_type))
2748 max = negative_overflow_infinity (expr_type);
2749 else
2750 max = wide_int_to_tree (expr_type, type_min);
2752 else if (max_ovf == 1)
2754 if (needs_overflow_infinity (expr_type)
2755 && supports_overflow_infinity (expr_type))
2756 max = positive_overflow_infinity (expr_type);
2757 else
2758 max = wide_int_to_tree (expr_type, type_max);
2760 else
2761 max = wide_int_to_tree (expr_type, wmax);
2764 if (needs_overflow_infinity (expr_type)
2765 && supports_overflow_infinity (expr_type))
2767 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2768 || (min_op1
2769 && (minus_p
2770 ? is_positive_overflow_infinity (min_op1)
2771 : is_negative_overflow_infinity (min_op1))))
2772 min = negative_overflow_infinity (expr_type);
2773 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2774 || (max_op1
2775 && (minus_p
2776 ? is_negative_overflow_infinity (max_op1)
2777 : is_positive_overflow_infinity (max_op1))))
2778 max = positive_overflow_infinity (expr_type);
2781 /* If the result lower bound is constant, we're done;
2782 otherwise, build the symbolic lower bound. */
2783 if (sym_min_op0 == sym_min_op1)
2785 else if (sym_min_op0)
2786 min = build_symbolic_expr (expr_type, sym_min_op0,
2787 neg_min_op0, min);
2788 else if (sym_min_op1)
2789 min = build_symbolic_expr (expr_type, sym_min_op1,
2790 neg_min_op1 ^ minus_p, min);
2792 /* Likewise for the upper bound. */
2793 if (sym_max_op0 == sym_max_op1)
2795 else if (sym_max_op0)
2796 max = build_symbolic_expr (expr_type, sym_max_op0,
2797 neg_max_op0, max);
2798 else if (sym_max_op1)
2799 max = build_symbolic_expr (expr_type, sym_max_op1,
2800 neg_max_op1 ^ minus_p, max);
2802 else
2804 /* For other cases, for example if we have a PLUS_EXPR with two
2805 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2806 to compute a precise range for such a case.
2807 ??? General even mixed range kind operations can be expressed
2808 by for example transforming ~[3, 5] + [1, 2] to range-only
2809 operations and a union primitive:
2810 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2811 [-INF+1, 4] U [6, +INF(OVF)]
2812 though usually the union is not exactly representable with
2813 a single range or anti-range as the above is
2814 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2815 but one could use a scheme similar to equivalences for this. */
2816 set_value_range_to_varying (vr);
2817 return;
2820 else if (code == MIN_EXPR
2821 || code == MAX_EXPR)
2823 if (vr0.type == VR_RANGE
2824 && !symbolic_range_p (&vr0))
2826 type = VR_RANGE;
2827 if (vr1.type == VR_RANGE
2828 && !symbolic_range_p (&vr1))
2830 /* For operations that make the resulting range directly
2831 proportional to the original ranges, apply the operation to
2832 the same end of each range. */
2833 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2834 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2836 else if (code == MIN_EXPR)
2838 min = vrp_val_min (expr_type);
2839 max = vr0.max;
2841 else if (code == MAX_EXPR)
2843 min = vr0.min;
2844 max = vrp_val_max (expr_type);
2847 else if (vr1.type == VR_RANGE
2848 && !symbolic_range_p (&vr1))
2850 type = VR_RANGE;
2851 if (code == MIN_EXPR)
2853 min = vrp_val_min (expr_type);
2854 max = vr1.max;
2856 else if (code == MAX_EXPR)
2858 min = vr1.min;
2859 max = vrp_val_max (expr_type);
2862 else
2864 set_value_range_to_varying (vr);
2865 return;
2868 else if (code == MULT_EXPR)
2870 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2871 drop to varying. This test requires 2*prec bits if both
2872 operands are signed and 2*prec + 2 bits if either is not. */
2874 signop sign = TYPE_SIGN (expr_type);
2875 unsigned int prec = TYPE_PRECISION (expr_type);
2877 if (range_int_cst_p (&vr0)
2878 && range_int_cst_p (&vr1)
2879 && TYPE_OVERFLOW_WRAPS (expr_type))
2881 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2882 typedef generic_wide_int
2883 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2884 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2885 vrp_int size = sizem1 + 1;
2887 /* Extend the values using the sign of the result to PREC2.
2888 From here on out, everthing is just signed math no matter
2889 what the input types were. */
2890 vrp_int min0 = vrp_int_cst (vr0.min);
2891 vrp_int max0 = vrp_int_cst (vr0.max);
2892 vrp_int min1 = vrp_int_cst (vr1.min);
2893 vrp_int max1 = vrp_int_cst (vr1.max);
2894 /* Canonicalize the intervals. */
2895 if (sign == UNSIGNED)
2897 if (wi::ltu_p (size, min0 + max0))
2899 min0 -= size;
2900 max0 -= size;
2903 if (wi::ltu_p (size, min1 + max1))
2905 min1 -= size;
2906 max1 -= size;
2910 vrp_int prod0 = min0 * min1;
2911 vrp_int prod1 = min0 * max1;
2912 vrp_int prod2 = max0 * min1;
2913 vrp_int prod3 = max0 * max1;
2915 /* Sort the 4 products so that min is in prod0 and max is in
2916 prod3. */
2917 /* min0min1 > max0max1 */
2918 if (wi::gts_p (prod0, prod3))
2920 vrp_int tmp = prod3;
2921 prod3 = prod0;
2922 prod0 = tmp;
2925 /* min0max1 > max0min1 */
2926 if (wi::gts_p (prod1, prod2))
2928 vrp_int tmp = prod2;
2929 prod2 = prod1;
2930 prod1 = tmp;
2933 if (wi::gts_p (prod0, prod1))
2935 vrp_int tmp = prod1;
2936 prod1 = prod0;
2937 prod0 = tmp;
2940 if (wi::gts_p (prod2, prod3))
2942 vrp_int tmp = prod3;
2943 prod3 = prod2;
2944 prod2 = tmp;
2947 /* diff = max - min. */
2948 prod2 = prod3 - prod0;
2949 if (wi::geu_p (prod2, sizem1))
2951 /* the range covers all values. */
2952 set_value_range_to_varying (vr);
2953 return;
2956 /* The following should handle the wrapping and selecting
2957 VR_ANTI_RANGE for us. */
2958 min = wide_int_to_tree (expr_type, prod0);
2959 max = wide_int_to_tree (expr_type, prod3);
2960 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2961 return;
2964 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2965 drop to VR_VARYING. It would take more effort to compute a
2966 precise range for such a case. For example, if we have
2967 op0 == 65536 and op1 == 65536 with their ranges both being
2968 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2969 we cannot claim that the product is in ~[0,0]. Note that we
2970 are guaranteed to have vr0.type == vr1.type at this
2971 point. */
2972 if (vr0.type == VR_ANTI_RANGE
2973 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2975 set_value_range_to_varying (vr);
2976 return;
2979 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2980 return;
2982 else if (code == RSHIFT_EXPR
2983 || code == LSHIFT_EXPR)
2985 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2986 then drop to VR_VARYING. Outside of this range we get undefined
2987 behavior from the shift operation. We cannot even trust
2988 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2989 shifts, and the operation at the tree level may be widened. */
2990 if (range_int_cst_p (&vr1)
2991 && compare_tree_int (vr1.min, 0) >= 0
2992 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2994 if (code == RSHIFT_EXPR)
2996 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2997 useful ranges just from the shift count. E.g.
2998 x >> 63 for signed 64-bit x is always [-1, 0]. */
2999 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
3001 vr0.type = type = VR_RANGE;
3002 vr0.min = vrp_val_min (expr_type);
3003 vr0.max = vrp_val_max (expr_type);
3005 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3006 return;
3008 /* We can map lshifts by constants to MULT_EXPR handling. */
3009 else if (code == LSHIFT_EXPR
3010 && range_int_cst_singleton_p (&vr1))
3012 bool saved_flag_wrapv;
3013 value_range_t vr1p = VR_INITIALIZER;
3014 vr1p.type = VR_RANGE;
3015 vr1p.min = (wide_int_to_tree
3016 (expr_type,
3017 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
3018 TYPE_PRECISION (expr_type))));
3019 vr1p.max = vr1p.min;
3020 /* We have to use a wrapping multiply though as signed overflow
3021 on lshifts is implementation defined in C89. */
3022 saved_flag_wrapv = flag_wrapv;
3023 flag_wrapv = 1;
3024 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
3025 &vr0, &vr1p);
3026 flag_wrapv = saved_flag_wrapv;
3027 return;
3029 else if (code == LSHIFT_EXPR
3030 && range_int_cst_p (&vr0))
3032 int prec = TYPE_PRECISION (expr_type);
3033 int overflow_pos = prec;
3034 int bound_shift;
3035 wide_int low_bound, high_bound;
3036 bool uns = TYPE_UNSIGNED (expr_type);
3037 bool in_bounds = false;
3039 if (!uns)
3040 overflow_pos -= 1;
3042 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
3043 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
3044 overflow. However, for that to happen, vr1.max needs to be
3045 zero, which means vr1 is a singleton range of zero, which
3046 means it should be handled by the previous LSHIFT_EXPR
3047 if-clause. */
3048 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
3049 wide_int complement = ~(bound - 1);
3051 if (uns)
3053 low_bound = bound;
3054 high_bound = complement;
3055 if (wi::ltu_p (vr0.max, low_bound))
3057 /* [5, 6] << [1, 2] == [10, 24]. */
3058 /* We're shifting out only zeroes, the value increases
3059 monotonically. */
3060 in_bounds = true;
3062 else if (wi::ltu_p (high_bound, vr0.min))
3064 /* [0xffffff00, 0xffffffff] << [1, 2]
3065 == [0xfffffc00, 0xfffffffe]. */
3066 /* We're shifting out only ones, the value decreases
3067 monotonically. */
3068 in_bounds = true;
3071 else
3073 /* [-1, 1] << [1, 2] == [-4, 4]. */
3074 low_bound = complement;
3075 high_bound = bound;
3076 if (wi::lts_p (vr0.max, high_bound)
3077 && wi::lts_p (low_bound, vr0.min))
3079 /* For non-negative numbers, we're shifting out only
3080 zeroes, the value increases monotonically.
3081 For negative numbers, we're shifting out only ones, the
3082 value decreases monotomically. */
3083 in_bounds = true;
3087 if (in_bounds)
3089 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3090 return;
3094 set_value_range_to_varying (vr);
3095 return;
3097 else if (code == TRUNC_DIV_EXPR
3098 || code == FLOOR_DIV_EXPR
3099 || code == CEIL_DIV_EXPR
3100 || code == EXACT_DIV_EXPR
3101 || code == ROUND_DIV_EXPR)
3103 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
3105 /* For division, if op1 has VR_RANGE but op0 does not, something
3106 can be deduced just from that range. Say [min, max] / [4, max]
3107 gives [min / 4, max / 4] range. */
3108 if (vr1.type == VR_RANGE
3109 && !symbolic_range_p (&vr1)
3110 && range_includes_zero_p (vr1.min, vr1.max) == 0)
3112 vr0.type = type = VR_RANGE;
3113 vr0.min = vrp_val_min (expr_type);
3114 vr0.max = vrp_val_max (expr_type);
3116 else
3118 set_value_range_to_varying (vr);
3119 return;
3123 /* For divisions, if flag_non_call_exceptions is true, we must
3124 not eliminate a division by zero. */
3125 if (cfun->can_throw_non_call_exceptions
3126 && (vr1.type != VR_RANGE
3127 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3129 set_value_range_to_varying (vr);
3130 return;
3133 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3134 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3135 include 0. */
3136 if (vr0.type == VR_RANGE
3137 && (vr1.type != VR_RANGE
3138 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3140 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
3141 int cmp;
3143 min = NULL_TREE;
3144 max = NULL_TREE;
3145 if (TYPE_UNSIGNED (expr_type)
3146 || value_range_nonnegative_p (&vr1))
3148 /* For unsigned division or when divisor is known
3149 to be non-negative, the range has to cover
3150 all numbers from 0 to max for positive max
3151 and all numbers from min to 0 for negative min. */
3152 cmp = compare_values (vr0.max, zero);
3153 if (cmp == -1)
3154 max = zero;
3155 else if (cmp == 0 || cmp == 1)
3156 max = vr0.max;
3157 else
3158 type = VR_VARYING;
3159 cmp = compare_values (vr0.min, zero);
3160 if (cmp == 1)
3161 min = zero;
3162 else if (cmp == 0 || cmp == -1)
3163 min = vr0.min;
3164 else
3165 type = VR_VARYING;
3167 else
3169 /* Otherwise the range is -max .. max or min .. -min
3170 depending on which bound is bigger in absolute value,
3171 as the division can change the sign. */
3172 abs_extent_range (vr, vr0.min, vr0.max);
3173 return;
3175 if (type == VR_VARYING)
3177 set_value_range_to_varying (vr);
3178 return;
3181 else
3183 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3184 return;
3187 else if (code == TRUNC_MOD_EXPR)
3189 if (range_is_null (&vr1))
3191 set_value_range_to_undefined (vr);
3192 return;
3194 /* ABS (A % B) < ABS (B) and either
3195 0 <= A % B <= A or A <= A % B <= 0. */
3196 type = VR_RANGE;
3197 signop sgn = TYPE_SIGN (expr_type);
3198 unsigned int prec = TYPE_PRECISION (expr_type);
3199 wide_int wmin, wmax, tmp;
3200 wide_int zero = wi::zero (prec);
3201 wide_int one = wi::one (prec);
3202 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3204 wmax = wi::sub (vr1.max, one);
3205 if (sgn == SIGNED)
3207 tmp = wi::sub (wi::minus_one (prec), vr1.min);
3208 wmax = wi::smax (wmax, tmp);
3211 else
3213 wmax = wi::max_value (prec, sgn);
3214 /* X % INT_MIN may be INT_MAX. */
3215 if (sgn == UNSIGNED)
3216 wmax = wmax - one;
3219 if (sgn == UNSIGNED)
3220 wmin = zero;
3221 else
3223 wmin = -wmax;
3224 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3226 tmp = vr0.min;
3227 if (wi::gts_p (tmp, zero))
3228 tmp = zero;
3229 wmin = wi::smax (wmin, tmp);
3233 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3235 tmp = vr0.max;
3236 if (sgn == SIGNED && wi::neg_p (tmp))
3237 tmp = zero;
3238 wmax = wi::min (wmax, tmp, sgn);
3241 min = wide_int_to_tree (expr_type, wmin);
3242 max = wide_int_to_tree (expr_type, wmax);
3244 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3246 bool int_cst_range0, int_cst_range1;
3247 wide_int may_be_nonzero0, may_be_nonzero1;
3248 wide_int must_be_nonzero0, must_be_nonzero1;
3250 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3251 &may_be_nonzero0,
3252 &must_be_nonzero0);
3253 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3254 &may_be_nonzero1,
3255 &must_be_nonzero1);
3257 type = VR_RANGE;
3258 if (code == BIT_AND_EXPR)
3260 min = wide_int_to_tree (expr_type,
3261 must_be_nonzero0 & must_be_nonzero1);
3262 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3263 /* If both input ranges contain only negative values we can
3264 truncate the result range maximum to the minimum of the
3265 input range maxima. */
3266 if (int_cst_range0 && int_cst_range1
3267 && tree_int_cst_sgn (vr0.max) < 0
3268 && tree_int_cst_sgn (vr1.max) < 0)
3270 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3271 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3273 /* If either input range contains only non-negative values
3274 we can truncate the result range maximum to the respective
3275 maximum of the input range. */
3276 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3277 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3278 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3279 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3280 max = wide_int_to_tree (expr_type, wmax);
3282 else if (code == BIT_IOR_EXPR)
3284 max = wide_int_to_tree (expr_type,
3285 may_be_nonzero0 | may_be_nonzero1);
3286 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3287 /* If the input ranges contain only positive values we can
3288 truncate the minimum of the result range to the maximum
3289 of the input range minima. */
3290 if (int_cst_range0 && int_cst_range1
3291 && tree_int_cst_sgn (vr0.min) >= 0
3292 && tree_int_cst_sgn (vr1.min) >= 0)
3294 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3295 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3297 /* If either input range contains only negative values
3298 we can truncate the minimum of the result range to the
3299 respective minimum range. */
3300 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3301 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3302 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3303 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3304 min = wide_int_to_tree (expr_type, wmin);
3306 else if (code == BIT_XOR_EXPR)
3308 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3309 | ~(may_be_nonzero0 | may_be_nonzero1));
3310 wide_int result_one_bits
3311 = (must_be_nonzero0.and_not (may_be_nonzero1)
3312 | must_be_nonzero1.and_not (may_be_nonzero0));
3313 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3314 min = wide_int_to_tree (expr_type, result_one_bits);
3315 /* If the range has all positive or all negative values the
3316 result is better than VARYING. */
3317 if (tree_int_cst_sgn (min) < 0
3318 || tree_int_cst_sgn (max) >= 0)
3320 else
3321 max = min = NULL_TREE;
3324 else
3325 gcc_unreachable ();
3327 /* If either MIN or MAX overflowed, then set the resulting range to
3328 VARYING. But we do accept an overflow infinity representation. */
3329 if (min == NULL_TREE
3330 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3331 || max == NULL_TREE
3332 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3334 set_value_range_to_varying (vr);
3335 return;
3338 /* We punt if:
3339 1) [-INF, +INF]
3340 2) [-INF, +-INF(OVF)]
3341 3) [+-INF(OVF), +INF]
3342 4) [+-INF(OVF), +-INF(OVF)]
3343 We learn nothing when we have INF and INF(OVF) on both sides.
3344 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3345 overflow. */
3346 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3347 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3349 set_value_range_to_varying (vr);
3350 return;
3353 cmp = compare_values (min, max);
3354 if (cmp == -2 || cmp == 1)
3356 /* If the new range has its limits swapped around (MIN > MAX),
3357 then the operation caused one of them to wrap around, mark
3358 the new range VARYING. */
3359 set_value_range_to_varying (vr);
3361 else
3362 set_value_range (vr, type, min, max, NULL);
3365 /* Extract range information from a binary expression OP0 CODE OP1 based on
3366 the ranges of each of its operands with resulting type EXPR_TYPE.
3367 The resulting range is stored in *VR. */
3369 static void
3370 extract_range_from_binary_expr (value_range_t *vr,
3371 enum tree_code code,
3372 tree expr_type, tree op0, tree op1)
3374 value_range_t vr0 = VR_INITIALIZER;
3375 value_range_t vr1 = VR_INITIALIZER;
3377 /* Get value ranges for each operand. For constant operands, create
3378 a new value range with the operand to simplify processing. */
3379 if (TREE_CODE (op0) == SSA_NAME)
3380 vr0 = *(get_value_range (op0));
3381 else if (is_gimple_min_invariant (op0))
3382 set_value_range_to_value (&vr0, op0, NULL);
3383 else
3384 set_value_range_to_varying (&vr0);
3386 if (TREE_CODE (op1) == SSA_NAME)
3387 vr1 = *(get_value_range (op1));
3388 else if (is_gimple_min_invariant (op1))
3389 set_value_range_to_value (&vr1, op1, NULL);
3390 else
3391 set_value_range_to_varying (&vr1);
3393 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3395 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3396 and based on the other operand, for example if it was deduced from a
3397 symbolic comparison. When a bound of the range of the first operand
3398 is invariant, we set the corresponding bound of the new range to INF
3399 in order to avoid recursing on the range of the second operand. */
3400 if (vr->type == VR_VARYING
3401 && (code == PLUS_EXPR || code == MINUS_EXPR)
3402 && TREE_CODE (op1) == SSA_NAME
3403 && vr0.type == VR_RANGE
3404 && symbolic_range_based_on_p (&vr0, op1))
3406 const bool minus_p = (code == MINUS_EXPR);
3407 value_range_t n_vr1 = VR_INITIALIZER;
3409 /* Try with VR0 and [-INF, OP1]. */
3410 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3411 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3413 /* Try with VR0 and [OP1, +INF]. */
3414 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3415 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3417 /* Try with VR0 and [OP1, OP1]. */
3418 else
3419 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3421 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3424 if (vr->type == VR_VARYING
3425 && (code == PLUS_EXPR || code == MINUS_EXPR)
3426 && TREE_CODE (op0) == SSA_NAME
3427 && vr1.type == VR_RANGE
3428 && symbolic_range_based_on_p (&vr1, op0))
3430 const bool minus_p = (code == MINUS_EXPR);
3431 value_range_t n_vr0 = VR_INITIALIZER;
3433 /* Try with [-INF, OP0] and VR1. */
3434 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3435 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3437 /* Try with [OP0, +INF] and VR1. */
3438 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3439 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3441 /* Try with [OP0, OP0] and VR1. */
3442 else
3443 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3445 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3449 /* Extract range information from a unary operation CODE based on
3450 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3451 The The resulting range is stored in *VR. */
3453 static void
3454 extract_range_from_unary_expr_1 (value_range_t *vr,
3455 enum tree_code code, tree type,
3456 value_range_t *vr0_, tree op0_type)
3458 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3460 /* VRP only operates on integral and pointer types. */
3461 if (!(INTEGRAL_TYPE_P (op0_type)
3462 || POINTER_TYPE_P (op0_type))
3463 || !(INTEGRAL_TYPE_P (type)
3464 || POINTER_TYPE_P (type)))
3466 set_value_range_to_varying (vr);
3467 return;
3470 /* If VR0 is UNDEFINED, so is the result. */
3471 if (vr0.type == VR_UNDEFINED)
3473 set_value_range_to_undefined (vr);
3474 return;
3477 /* Handle operations that we express in terms of others. */
3478 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3480 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3481 copy_value_range (vr, &vr0);
3482 return;
3484 else if (code == NEGATE_EXPR)
3486 /* -X is simply 0 - X, so re-use existing code that also handles
3487 anti-ranges fine. */
3488 value_range_t zero = VR_INITIALIZER;
3489 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3490 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3491 return;
3493 else if (code == BIT_NOT_EXPR)
3495 /* ~X is simply -1 - X, so re-use existing code that also handles
3496 anti-ranges fine. */
3497 value_range_t minusone = VR_INITIALIZER;
3498 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3499 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3500 type, &minusone, &vr0);
3501 return;
3504 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3505 and express op ~[] as (op []') U (op []''). */
3506 if (vr0.type == VR_ANTI_RANGE
3507 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3509 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3510 if (vrtem1.type != VR_UNDEFINED)
3512 value_range_t vrres = VR_INITIALIZER;
3513 extract_range_from_unary_expr_1 (&vrres, code, type,
3514 &vrtem1, op0_type);
3515 vrp_meet (vr, &vrres);
3517 return;
3520 if (CONVERT_EXPR_CODE_P (code))
3522 tree inner_type = op0_type;
3523 tree outer_type = type;
3525 /* If the expression evaluates to a pointer, we are only interested in
3526 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3527 if (POINTER_TYPE_P (type))
3529 if (range_is_nonnull (&vr0))
3530 set_value_range_to_nonnull (vr, type);
3531 else if (range_is_null (&vr0))
3532 set_value_range_to_null (vr, type);
3533 else
3534 set_value_range_to_varying (vr);
3535 return;
3538 /* If VR0 is varying and we increase the type precision, assume
3539 a full range for the following transformation. */
3540 if (vr0.type == VR_VARYING
3541 && INTEGRAL_TYPE_P (inner_type)
3542 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3544 vr0.type = VR_RANGE;
3545 vr0.min = TYPE_MIN_VALUE (inner_type);
3546 vr0.max = TYPE_MAX_VALUE (inner_type);
3549 /* If VR0 is a constant range or anti-range and the conversion is
3550 not truncating we can convert the min and max values and
3551 canonicalize the resulting range. Otherwise we can do the
3552 conversion if the size of the range is less than what the
3553 precision of the target type can represent and the range is
3554 not an anti-range. */
3555 if ((vr0.type == VR_RANGE
3556 || vr0.type == VR_ANTI_RANGE)
3557 && TREE_CODE (vr0.min) == INTEGER_CST
3558 && TREE_CODE (vr0.max) == INTEGER_CST
3559 && (!is_overflow_infinity (vr0.min)
3560 || (vr0.type == VR_RANGE
3561 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3562 && needs_overflow_infinity (outer_type)
3563 && supports_overflow_infinity (outer_type)))
3564 && (!is_overflow_infinity (vr0.max)
3565 || (vr0.type == VR_RANGE
3566 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3567 && needs_overflow_infinity (outer_type)
3568 && supports_overflow_infinity (outer_type)))
3569 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3570 || (vr0.type == VR_RANGE
3571 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3572 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3573 size_int (TYPE_PRECISION (outer_type)))))))
3575 tree new_min, new_max;
3576 if (is_overflow_infinity (vr0.min))
3577 new_min = negative_overflow_infinity (outer_type);
3578 else
3579 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3580 0, false);
3581 if (is_overflow_infinity (vr0.max))
3582 new_max = positive_overflow_infinity (outer_type);
3583 else
3584 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3585 0, false);
3586 set_and_canonicalize_value_range (vr, vr0.type,
3587 new_min, new_max, NULL);
3588 return;
3591 set_value_range_to_varying (vr);
3592 return;
3594 else if (code == ABS_EXPR)
3596 tree min, max;
3597 int cmp;
3599 /* Pass through vr0 in the easy cases. */
3600 if (TYPE_UNSIGNED (type)
3601 || value_range_nonnegative_p (&vr0))
3603 copy_value_range (vr, &vr0);
3604 return;
3607 /* For the remaining varying or symbolic ranges we can't do anything
3608 useful. */
3609 if (vr0.type == VR_VARYING
3610 || symbolic_range_p (&vr0))
3612 set_value_range_to_varying (vr);
3613 return;
3616 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3617 useful range. */
3618 if (!TYPE_OVERFLOW_UNDEFINED (type)
3619 && ((vr0.type == VR_RANGE
3620 && vrp_val_is_min (vr0.min))
3621 || (vr0.type == VR_ANTI_RANGE
3622 && !vrp_val_is_min (vr0.min))))
3624 set_value_range_to_varying (vr);
3625 return;
3628 /* ABS_EXPR may flip the range around, if the original range
3629 included negative values. */
3630 if (is_overflow_infinity (vr0.min))
3631 min = positive_overflow_infinity (type);
3632 else if (!vrp_val_is_min (vr0.min))
3633 min = fold_unary_to_constant (code, type, vr0.min);
3634 else if (!needs_overflow_infinity (type))
3635 min = TYPE_MAX_VALUE (type);
3636 else if (supports_overflow_infinity (type))
3637 min = positive_overflow_infinity (type);
3638 else
3640 set_value_range_to_varying (vr);
3641 return;
3644 if (is_overflow_infinity (vr0.max))
3645 max = positive_overflow_infinity (type);
3646 else if (!vrp_val_is_min (vr0.max))
3647 max = fold_unary_to_constant (code, type, vr0.max);
3648 else if (!needs_overflow_infinity (type))
3649 max = TYPE_MAX_VALUE (type);
3650 else if (supports_overflow_infinity (type)
3651 /* We shouldn't generate [+INF, +INF] as set_value_range
3652 doesn't like this and ICEs. */
3653 && !is_positive_overflow_infinity (min))
3654 max = positive_overflow_infinity (type);
3655 else
3657 set_value_range_to_varying (vr);
3658 return;
3661 cmp = compare_values (min, max);
3663 /* If a VR_ANTI_RANGEs contains zero, then we have
3664 ~[-INF, min(MIN, MAX)]. */
3665 if (vr0.type == VR_ANTI_RANGE)
3667 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3669 /* Take the lower of the two values. */
3670 if (cmp != 1)
3671 max = min;
3673 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3674 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3675 flag_wrapv is set and the original anti-range doesn't include
3676 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3677 if (TYPE_OVERFLOW_WRAPS (type))
3679 tree type_min_value = TYPE_MIN_VALUE (type);
3681 min = (vr0.min != type_min_value
3682 ? int_const_binop (PLUS_EXPR, type_min_value,
3683 build_int_cst (TREE_TYPE (type_min_value), 1))
3684 : type_min_value);
3686 else
3688 if (overflow_infinity_range_p (&vr0))
3689 min = negative_overflow_infinity (type);
3690 else
3691 min = TYPE_MIN_VALUE (type);
3694 else
3696 /* All else has failed, so create the range [0, INF], even for
3697 flag_wrapv since TYPE_MIN_VALUE is in the original
3698 anti-range. */
3699 vr0.type = VR_RANGE;
3700 min = build_int_cst (type, 0);
3701 if (needs_overflow_infinity (type))
3703 if (supports_overflow_infinity (type))
3704 max = positive_overflow_infinity (type);
3705 else
3707 set_value_range_to_varying (vr);
3708 return;
3711 else
3712 max = TYPE_MAX_VALUE (type);
3716 /* If the range contains zero then we know that the minimum value in the
3717 range will be zero. */
3718 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3720 if (cmp == 1)
3721 max = min;
3722 min = build_int_cst (type, 0);
3724 else
3726 /* If the range was reversed, swap MIN and MAX. */
3727 if (cmp == 1)
3729 tree t = min;
3730 min = max;
3731 max = t;
3735 cmp = compare_values (min, max);
3736 if (cmp == -2 || cmp == 1)
3738 /* If the new range has its limits swapped around (MIN > MAX),
3739 then the operation caused one of them to wrap around, mark
3740 the new range VARYING. */
3741 set_value_range_to_varying (vr);
3743 else
3744 set_value_range (vr, vr0.type, min, max, NULL);
3745 return;
3748 /* For unhandled operations fall back to varying. */
3749 set_value_range_to_varying (vr);
3750 return;
3754 /* Extract range information from a unary expression CODE OP0 based on
3755 the range of its operand with resulting type TYPE.
3756 The resulting range is stored in *VR. */
3758 static void
3759 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3760 tree type, tree op0)
3762 value_range_t vr0 = VR_INITIALIZER;
3764 /* Get value ranges for the operand. For constant operands, create
3765 a new value range with the operand to simplify processing. */
3766 if (TREE_CODE (op0) == SSA_NAME)
3767 vr0 = *(get_value_range (op0));
3768 else if (is_gimple_min_invariant (op0))
3769 set_value_range_to_value (&vr0, op0, NULL);
3770 else
3771 set_value_range_to_varying (&vr0);
3773 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3777 /* Extract range information from a conditional expression STMT based on
3778 the ranges of each of its operands and the expression code. */
3780 static void
3781 extract_range_from_cond_expr (value_range_t *vr, gassign *stmt)
3783 tree op0, op1;
3784 value_range_t vr0 = VR_INITIALIZER;
3785 value_range_t vr1 = VR_INITIALIZER;
3787 /* Get value ranges for each operand. For constant operands, create
3788 a new value range with the operand to simplify processing. */
3789 op0 = gimple_assign_rhs2 (stmt);
3790 if (TREE_CODE (op0) == SSA_NAME)
3791 vr0 = *(get_value_range (op0));
3792 else if (is_gimple_min_invariant (op0))
3793 set_value_range_to_value (&vr0, op0, NULL);
3794 else
3795 set_value_range_to_varying (&vr0);
3797 op1 = gimple_assign_rhs3 (stmt);
3798 if (TREE_CODE (op1) == SSA_NAME)
3799 vr1 = *(get_value_range (op1));
3800 else if (is_gimple_min_invariant (op1))
3801 set_value_range_to_value (&vr1, op1, NULL);
3802 else
3803 set_value_range_to_varying (&vr1);
3805 /* The resulting value range is the union of the operand ranges */
3806 copy_value_range (vr, &vr0);
3807 vrp_meet (vr, &vr1);
3811 /* Extract range information from a comparison expression EXPR based
3812 on the range of its operand and the expression code. */
3814 static void
3815 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3816 tree type, tree op0, tree op1)
3818 bool sop = false;
3819 tree val;
3821 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3822 NULL);
3824 /* A disadvantage of using a special infinity as an overflow
3825 representation is that we lose the ability to record overflow
3826 when we don't have an infinity. So we have to ignore a result
3827 which relies on overflow. */
3829 if (val && !is_overflow_infinity (val) && !sop)
3831 /* Since this expression was found on the RHS of an assignment,
3832 its type may be different from _Bool. Convert VAL to EXPR's
3833 type. */
3834 val = fold_convert (type, val);
3835 if (is_gimple_min_invariant (val))
3836 set_value_range_to_value (vr, val, vr->equiv);
3837 else
3838 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3840 else
3841 /* The result of a comparison is always true or false. */
3842 set_value_range_to_truthvalue (vr, type);
3845 /* Helper function for simplify_internal_call_using_ranges and
3846 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3847 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3848 always overflow. Set *OVF to true if it is known to always
3849 overflow. */
3851 static bool
3852 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3853 tree op0, tree op1, bool *ovf)
3855 value_range_t vr0 = VR_INITIALIZER;
3856 value_range_t vr1 = VR_INITIALIZER;
3857 if (TREE_CODE (op0) == SSA_NAME)
3858 vr0 = *get_value_range (op0);
3859 else if (TREE_CODE (op0) == INTEGER_CST)
3860 set_value_range_to_value (&vr0, op0, NULL);
3861 else
3862 set_value_range_to_varying (&vr0);
3864 if (TREE_CODE (op1) == SSA_NAME)
3865 vr1 = *get_value_range (op1);
3866 else if (TREE_CODE (op1) == INTEGER_CST)
3867 set_value_range_to_value (&vr1, op1, NULL);
3868 else
3869 set_value_range_to_varying (&vr1);
3871 if (!range_int_cst_p (&vr0)
3872 || TREE_OVERFLOW (vr0.min)
3873 || TREE_OVERFLOW (vr0.max))
3875 vr0.min = vrp_val_min (TREE_TYPE (op0));
3876 vr0.max = vrp_val_max (TREE_TYPE (op0));
3878 if (!range_int_cst_p (&vr1)
3879 || TREE_OVERFLOW (vr1.min)
3880 || TREE_OVERFLOW (vr1.max))
3882 vr1.min = vrp_val_min (TREE_TYPE (op1));
3883 vr1.max = vrp_val_max (TREE_TYPE (op1));
3885 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3886 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3887 if (arith_overflowed_p (subcode, type, vr0.max,
3888 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3889 return false;
3890 if (subcode == MULT_EXPR)
3892 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3893 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3894 return false;
3896 if (*ovf)
3898 /* So far we found that there is an overflow on the boundaries.
3899 That doesn't prove that there is an overflow even for all values
3900 in between the boundaries. For that compute widest_int range
3901 of the result and see if it doesn't overlap the range of
3902 type. */
3903 widest_int wmin, wmax;
3904 widest_int w[4];
3905 int i;
3906 w[0] = wi::to_widest (vr0.min);
3907 w[1] = wi::to_widest (vr0.max);
3908 w[2] = wi::to_widest (vr1.min);
3909 w[3] = wi::to_widest (vr1.max);
3910 for (i = 0; i < 4; i++)
3912 widest_int wt;
3913 switch (subcode)
3915 case PLUS_EXPR:
3916 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3917 break;
3918 case MINUS_EXPR:
3919 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3920 break;
3921 case MULT_EXPR:
3922 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3923 break;
3924 default:
3925 gcc_unreachable ();
3927 if (i == 0)
3929 wmin = wt;
3930 wmax = wt;
3932 else
3934 wmin = wi::smin (wmin, wt);
3935 wmax = wi::smax (wmax, wt);
3938 /* The result of op0 CODE op1 is known to be in range
3939 [wmin, wmax]. */
3940 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3941 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3942 /* If all values in [wmin, wmax] are smaller than
3943 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3944 the arithmetic operation will always overflow. */
3945 if (wi::lts_p (wmax, wtmin) || wi::gts_p (wmin, wtmax))
3946 return true;
3947 return false;
3949 return true;
3952 /* Try to derive a nonnegative or nonzero range out of STMT relying
3953 primarily on generic routines in fold in conjunction with range data.
3954 Store the result in *VR */
3956 static void
3957 extract_range_basic (value_range_t *vr, gimple stmt)
3959 bool sop = false;
3960 tree type = gimple_expr_type (stmt);
3962 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3964 tree fndecl = gimple_call_fndecl (stmt), arg;
3965 int mini, maxi, zerov = 0, prec;
3967 switch (DECL_FUNCTION_CODE (fndecl))
3969 case BUILT_IN_CONSTANT_P:
3970 /* If the call is __builtin_constant_p and the argument is a
3971 function parameter resolve it to false. This avoids bogus
3972 array bound warnings.
3973 ??? We could do this as early as inlining is finished. */
3974 arg = gimple_call_arg (stmt, 0);
3975 if (TREE_CODE (arg) == SSA_NAME
3976 && SSA_NAME_IS_DEFAULT_DEF (arg)
3977 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3979 set_value_range_to_null (vr, type);
3980 return;
3982 break;
3983 /* Both __builtin_ffs* and __builtin_popcount return
3984 [0, prec]. */
3985 CASE_INT_FN (BUILT_IN_FFS):
3986 CASE_INT_FN (BUILT_IN_POPCOUNT):
3987 arg = gimple_call_arg (stmt, 0);
3988 prec = TYPE_PRECISION (TREE_TYPE (arg));
3989 mini = 0;
3990 maxi = prec;
3991 if (TREE_CODE (arg) == SSA_NAME)
3993 value_range_t *vr0 = get_value_range (arg);
3994 /* If arg is non-zero, then ffs or popcount
3995 are non-zero. */
3996 if (((vr0->type == VR_RANGE
3997 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3998 || (vr0->type == VR_ANTI_RANGE
3999 && range_includes_zero_p (vr0->min, vr0->max) == 1))
4000 && !is_overflow_infinity (vr0->min)
4001 && !is_overflow_infinity (vr0->max))
4002 mini = 1;
4003 /* If some high bits are known to be zero,
4004 we can decrease the maximum. */
4005 if (vr0->type == VR_RANGE
4006 && TREE_CODE (vr0->max) == INTEGER_CST
4007 && !operand_less_p (vr0->min,
4008 build_zero_cst (TREE_TYPE (vr0->min)))
4009 && !is_overflow_infinity (vr0->max))
4010 maxi = tree_floor_log2 (vr0->max) + 1;
4012 goto bitop_builtin;
4013 /* __builtin_parity* returns [0, 1]. */
4014 CASE_INT_FN (BUILT_IN_PARITY):
4015 mini = 0;
4016 maxi = 1;
4017 goto bitop_builtin;
4018 /* __builtin_c[lt]z* return [0, prec-1], except for
4019 when the argument is 0, but that is undefined behavior.
4020 On many targets where the CLZ RTL or optab value is defined
4021 for 0 the value is prec, so include that in the range
4022 by default. */
4023 CASE_INT_FN (BUILT_IN_CLZ):
4024 arg = gimple_call_arg (stmt, 0);
4025 prec = TYPE_PRECISION (TREE_TYPE (arg));
4026 mini = 0;
4027 maxi = prec;
4028 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
4029 != CODE_FOR_nothing
4030 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
4031 zerov)
4032 /* Handle only the single common value. */
4033 && zerov != prec)
4034 /* Magic value to give up, unless vr0 proves
4035 arg is non-zero. */
4036 mini = -2;
4037 if (TREE_CODE (arg) == SSA_NAME)
4039 value_range_t *vr0 = get_value_range (arg);
4040 /* From clz of VR_RANGE minimum we can compute
4041 result maximum. */
4042 if (vr0->type == VR_RANGE
4043 && TREE_CODE (vr0->min) == INTEGER_CST
4044 && !is_overflow_infinity (vr0->min))
4046 maxi = prec - 1 - tree_floor_log2 (vr0->min);
4047 if (maxi != prec)
4048 mini = 0;
4050 else if (vr0->type == VR_ANTI_RANGE
4051 && integer_zerop (vr0->min)
4052 && !is_overflow_infinity (vr0->min))
4054 maxi = prec - 1;
4055 mini = 0;
4057 if (mini == -2)
4058 break;
4059 /* From clz of VR_RANGE maximum we can compute
4060 result minimum. */
4061 if (vr0->type == VR_RANGE
4062 && TREE_CODE (vr0->max) == INTEGER_CST
4063 && !is_overflow_infinity (vr0->max))
4065 mini = prec - 1 - tree_floor_log2 (vr0->max);
4066 if (mini == prec)
4067 break;
4070 if (mini == -2)
4071 break;
4072 goto bitop_builtin;
4073 /* __builtin_ctz* return [0, prec-1], except for
4074 when the argument is 0, but that is undefined behavior.
4075 If there is a ctz optab for this mode and
4076 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4077 otherwise just assume 0 won't be seen. */
4078 CASE_INT_FN (BUILT_IN_CTZ):
4079 arg = gimple_call_arg (stmt, 0);
4080 prec = TYPE_PRECISION (TREE_TYPE (arg));
4081 mini = 0;
4082 maxi = prec - 1;
4083 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
4084 != CODE_FOR_nothing
4085 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
4086 zerov))
4088 /* Handle only the two common values. */
4089 if (zerov == -1)
4090 mini = -1;
4091 else if (zerov == prec)
4092 maxi = prec;
4093 else
4094 /* Magic value to give up, unless vr0 proves
4095 arg is non-zero. */
4096 mini = -2;
4098 if (TREE_CODE (arg) == SSA_NAME)
4100 value_range_t *vr0 = get_value_range (arg);
4101 /* If arg is non-zero, then use [0, prec - 1]. */
4102 if (((vr0->type == VR_RANGE
4103 && integer_nonzerop (vr0->min))
4104 || (vr0->type == VR_ANTI_RANGE
4105 && integer_zerop (vr0->min)))
4106 && !is_overflow_infinity (vr0->min))
4108 mini = 0;
4109 maxi = prec - 1;
4111 /* If some high bits are known to be zero,
4112 we can decrease the result maximum. */
4113 if (vr0->type == VR_RANGE
4114 && TREE_CODE (vr0->max) == INTEGER_CST
4115 && !is_overflow_infinity (vr0->max))
4117 maxi = tree_floor_log2 (vr0->max);
4118 /* For vr0 [0, 0] give up. */
4119 if (maxi == -1)
4120 break;
4123 if (mini == -2)
4124 break;
4125 goto bitop_builtin;
4126 /* __builtin_clrsb* returns [0, prec-1]. */
4127 CASE_INT_FN (BUILT_IN_CLRSB):
4128 arg = gimple_call_arg (stmt, 0);
4129 prec = TYPE_PRECISION (TREE_TYPE (arg));
4130 mini = 0;
4131 maxi = prec - 1;
4132 goto bitop_builtin;
4133 bitop_builtin:
4134 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
4135 build_int_cst (type, maxi), NULL);
4136 return;
4137 default:
4138 break;
4141 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
4143 enum tree_code subcode = ERROR_MARK;
4144 switch (gimple_call_internal_fn (stmt))
4146 case IFN_UBSAN_CHECK_ADD:
4147 subcode = PLUS_EXPR;
4148 break;
4149 case IFN_UBSAN_CHECK_SUB:
4150 subcode = MINUS_EXPR;
4151 break;
4152 case IFN_UBSAN_CHECK_MUL:
4153 subcode = MULT_EXPR;
4154 break;
4155 default:
4156 break;
4158 if (subcode != ERROR_MARK)
4160 bool saved_flag_wrapv = flag_wrapv;
4161 /* Pretend the arithmetics is wrapping. If there is
4162 any overflow, we'll complain, but will actually do
4163 wrapping operation. */
4164 flag_wrapv = 1;
4165 extract_range_from_binary_expr (vr, subcode, type,
4166 gimple_call_arg (stmt, 0),
4167 gimple_call_arg (stmt, 1));
4168 flag_wrapv = saved_flag_wrapv;
4170 /* If for both arguments vrp_valueize returned non-NULL,
4171 this should have been already folded and if not, it
4172 wasn't folded because of overflow. Avoid removing the
4173 UBSAN_CHECK_* calls in that case. */
4174 if (vr->type == VR_RANGE
4175 && (vr->min == vr->max
4176 || operand_equal_p (vr->min, vr->max, 0)))
4177 set_value_range_to_varying (vr);
4178 return;
4181 /* Handle extraction of the two results (result of arithmetics and
4182 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4183 internal function. */
4184 else if (is_gimple_assign (stmt)
4185 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4186 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4187 && INTEGRAL_TYPE_P (type))
4189 enum tree_code code = gimple_assign_rhs_code (stmt);
4190 tree op = gimple_assign_rhs1 (stmt);
4191 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4193 gimple g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4194 if (is_gimple_call (g) && gimple_call_internal_p (g))
4196 enum tree_code subcode = ERROR_MARK;
4197 switch (gimple_call_internal_fn (g))
4199 case IFN_ADD_OVERFLOW:
4200 subcode = PLUS_EXPR;
4201 break;
4202 case IFN_SUB_OVERFLOW:
4203 subcode = MINUS_EXPR;
4204 break;
4205 case IFN_MUL_OVERFLOW:
4206 subcode = MULT_EXPR;
4207 break;
4208 default:
4209 break;
4211 if (subcode != ERROR_MARK)
4213 tree op0 = gimple_call_arg (g, 0);
4214 tree op1 = gimple_call_arg (g, 1);
4215 if (code == IMAGPART_EXPR)
4217 bool ovf = false;
4218 if (check_for_binary_op_overflow (subcode, type,
4219 op0, op1, &ovf))
4220 set_value_range_to_value (vr,
4221 build_int_cst (type, ovf),
4222 NULL);
4223 else
4224 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4225 build_int_cst (type, 1), NULL);
4227 else if (types_compatible_p (type, TREE_TYPE (op0))
4228 && types_compatible_p (type, TREE_TYPE (op1)))
4230 bool saved_flag_wrapv = flag_wrapv;
4231 /* Pretend the arithmetics is wrapping. If there is
4232 any overflow, IMAGPART_EXPR will be set. */
4233 flag_wrapv = 1;
4234 extract_range_from_binary_expr (vr, subcode, type,
4235 op0, op1);
4236 flag_wrapv = saved_flag_wrapv;
4238 else
4240 value_range_t vr0 = VR_INITIALIZER;
4241 value_range_t vr1 = VR_INITIALIZER;
4242 bool saved_flag_wrapv = flag_wrapv;
4243 /* Pretend the arithmetics is wrapping. If there is
4244 any overflow, IMAGPART_EXPR will be set. */
4245 flag_wrapv = 1;
4246 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4247 type, op0);
4248 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4249 type, op1);
4250 extract_range_from_binary_expr_1 (vr, subcode, type,
4251 &vr0, &vr1);
4252 flag_wrapv = saved_flag_wrapv;
4254 return;
4259 if (INTEGRAL_TYPE_P (type)
4260 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4261 set_value_range_to_nonnegative (vr, type,
4262 sop || stmt_overflow_infinity (stmt));
4263 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4264 && !sop)
4265 set_value_range_to_nonnull (vr, type);
4266 else
4267 set_value_range_to_varying (vr);
4271 /* Try to compute a useful range out of assignment STMT and store it
4272 in *VR. */
4274 static void
4275 extract_range_from_assignment (value_range_t *vr, gassign *stmt)
4277 enum tree_code code = gimple_assign_rhs_code (stmt);
4279 if (code == ASSERT_EXPR)
4280 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4281 else if (code == SSA_NAME)
4282 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4283 else if (TREE_CODE_CLASS (code) == tcc_binary)
4284 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4285 gimple_expr_type (stmt),
4286 gimple_assign_rhs1 (stmt),
4287 gimple_assign_rhs2 (stmt));
4288 else if (TREE_CODE_CLASS (code) == tcc_unary)
4289 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4290 gimple_expr_type (stmt),
4291 gimple_assign_rhs1 (stmt));
4292 else if (code == COND_EXPR)
4293 extract_range_from_cond_expr (vr, stmt);
4294 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4295 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4296 gimple_expr_type (stmt),
4297 gimple_assign_rhs1 (stmt),
4298 gimple_assign_rhs2 (stmt));
4299 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4300 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4301 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4302 else
4303 set_value_range_to_varying (vr);
4305 if (vr->type == VR_VARYING)
4306 extract_range_basic (vr, stmt);
4309 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4310 would be profitable to adjust VR using scalar evolution information
4311 for VAR. If so, update VR with the new limits. */
4313 static void
4314 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
4315 gimple stmt, tree var)
4317 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4318 enum ev_direction dir;
4320 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4321 better opportunities than a regular range, but I'm not sure. */
4322 if (vr->type == VR_ANTI_RANGE)
4323 return;
4325 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4327 /* Like in PR19590, scev can return a constant function. */
4328 if (is_gimple_min_invariant (chrec))
4330 set_value_range_to_value (vr, chrec, vr->equiv);
4331 return;
4334 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4335 return;
4337 init = initial_condition_in_loop_num (chrec, loop->num);
4338 tem = op_with_constant_singleton_value_range (init);
4339 if (tem)
4340 init = tem;
4341 step = evolution_part_in_loop_num (chrec, loop->num);
4342 tem = op_with_constant_singleton_value_range (step);
4343 if (tem)
4344 step = tem;
4346 /* If STEP is symbolic, we can't know whether INIT will be the
4347 minimum or maximum value in the range. Also, unless INIT is
4348 a simple expression, compare_values and possibly other functions
4349 in tree-vrp won't be able to handle it. */
4350 if (step == NULL_TREE
4351 || !is_gimple_min_invariant (step)
4352 || !valid_value_p (init))
4353 return;
4355 dir = scev_direction (chrec);
4356 if (/* Do not adjust ranges if we do not know whether the iv increases
4357 or decreases, ... */
4358 dir == EV_DIR_UNKNOWN
4359 /* ... or if it may wrap. */
4360 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4361 true))
4362 return;
4364 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4365 negative_overflow_infinity and positive_overflow_infinity,
4366 because we have concluded that the loop probably does not
4367 wrap. */
4369 type = TREE_TYPE (var);
4370 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4371 tmin = lower_bound_in_type (type, type);
4372 else
4373 tmin = TYPE_MIN_VALUE (type);
4374 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4375 tmax = upper_bound_in_type (type, type);
4376 else
4377 tmax = TYPE_MAX_VALUE (type);
4379 /* Try to use estimated number of iterations for the loop to constrain the
4380 final value in the evolution. */
4381 if (TREE_CODE (step) == INTEGER_CST
4382 && is_gimple_val (init)
4383 && (TREE_CODE (init) != SSA_NAME
4384 || get_value_range (init)->type == VR_RANGE))
4386 widest_int nit;
4388 /* We are only entering here for loop header PHI nodes, so using
4389 the number of latch executions is the correct thing to use. */
4390 if (max_loop_iterations (loop, &nit))
4392 value_range_t maxvr = VR_INITIALIZER;
4393 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4394 bool overflow;
4396 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4397 &overflow);
4398 /* If the multiplication overflowed we can't do a meaningful
4399 adjustment. Likewise if the result doesn't fit in the type
4400 of the induction variable. For a signed type we have to
4401 check whether the result has the expected signedness which
4402 is that of the step as number of iterations is unsigned. */
4403 if (!overflow
4404 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4405 && (sgn == UNSIGNED
4406 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4408 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4409 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4410 TREE_TYPE (init), init, tem);
4411 /* Likewise if the addition did. */
4412 if (maxvr.type == VR_RANGE)
4414 tmin = maxvr.min;
4415 tmax = maxvr.max;
4421 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4423 min = tmin;
4424 max = tmax;
4426 /* For VARYING or UNDEFINED ranges, just about anything we get
4427 from scalar evolutions should be better. */
4429 if (dir == EV_DIR_DECREASES)
4430 max = init;
4431 else
4432 min = init;
4434 else if (vr->type == VR_RANGE)
4436 min = vr->min;
4437 max = vr->max;
4439 if (dir == EV_DIR_DECREASES)
4441 /* INIT is the maximum value. If INIT is lower than VR->MAX
4442 but no smaller than VR->MIN, set VR->MAX to INIT. */
4443 if (compare_values (init, max) == -1)
4444 max = init;
4446 /* According to the loop information, the variable does not
4447 overflow. If we think it does, probably because of an
4448 overflow due to arithmetic on a different INF value,
4449 reset now. */
4450 if (is_negative_overflow_infinity (min)
4451 || compare_values (min, tmin) == -1)
4452 min = tmin;
4455 else
4457 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4458 if (compare_values (init, min) == 1)
4459 min = init;
4461 if (is_positive_overflow_infinity (max)
4462 || compare_values (tmax, max) == -1)
4463 max = tmax;
4466 else
4467 return;
4469 /* If we just created an invalid range with the minimum
4470 greater than the maximum, we fail conservatively.
4471 This should happen only in unreachable
4472 parts of code, or for invalid programs. */
4473 if (compare_values (min, max) == 1
4474 || (is_negative_overflow_infinity (min)
4475 && is_positive_overflow_infinity (max)))
4476 return;
4478 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4482 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4484 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4485 all the values in the ranges.
4487 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4489 - Return NULL_TREE if it is not always possible to determine the
4490 value of the comparison.
4492 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4493 overflow infinity was used in the test. */
4496 static tree
4497 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4498 bool *strict_overflow_p)
4500 /* VARYING or UNDEFINED ranges cannot be compared. */
4501 if (vr0->type == VR_VARYING
4502 || vr0->type == VR_UNDEFINED
4503 || vr1->type == VR_VARYING
4504 || vr1->type == VR_UNDEFINED)
4505 return NULL_TREE;
4507 /* Anti-ranges need to be handled separately. */
4508 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4510 /* If both are anti-ranges, then we cannot compute any
4511 comparison. */
4512 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4513 return NULL_TREE;
4515 /* These comparisons are never statically computable. */
4516 if (comp == GT_EXPR
4517 || comp == GE_EXPR
4518 || comp == LT_EXPR
4519 || comp == LE_EXPR)
4520 return NULL_TREE;
4522 /* Equality can be computed only between a range and an
4523 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4524 if (vr0->type == VR_RANGE)
4526 /* To simplify processing, make VR0 the anti-range. */
4527 value_range_t *tmp = vr0;
4528 vr0 = vr1;
4529 vr1 = tmp;
4532 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4534 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4535 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4536 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4538 return NULL_TREE;
4541 if (!usable_range_p (vr0, strict_overflow_p)
4542 || !usable_range_p (vr1, strict_overflow_p))
4543 return NULL_TREE;
4545 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4546 operands around and change the comparison code. */
4547 if (comp == GT_EXPR || comp == GE_EXPR)
4549 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4550 std::swap (vr0, vr1);
4553 if (comp == EQ_EXPR)
4555 /* Equality may only be computed if both ranges represent
4556 exactly one value. */
4557 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4558 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4560 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4561 strict_overflow_p);
4562 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4563 strict_overflow_p);
4564 if (cmp_min == 0 && cmp_max == 0)
4565 return boolean_true_node;
4566 else if (cmp_min != -2 && cmp_max != -2)
4567 return boolean_false_node;
4569 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4570 else if (compare_values_warnv (vr0->min, vr1->max,
4571 strict_overflow_p) == 1
4572 || compare_values_warnv (vr1->min, vr0->max,
4573 strict_overflow_p) == 1)
4574 return boolean_false_node;
4576 return NULL_TREE;
4578 else if (comp == NE_EXPR)
4580 int cmp1, cmp2;
4582 /* If VR0 is completely to the left or completely to the right
4583 of VR1, they are always different. Notice that we need to
4584 make sure that both comparisons yield similar results to
4585 avoid comparing values that cannot be compared at
4586 compile-time. */
4587 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4588 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4589 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4590 return boolean_true_node;
4592 /* If VR0 and VR1 represent a single value and are identical,
4593 return false. */
4594 else if (compare_values_warnv (vr0->min, vr0->max,
4595 strict_overflow_p) == 0
4596 && compare_values_warnv (vr1->min, vr1->max,
4597 strict_overflow_p) == 0
4598 && compare_values_warnv (vr0->min, vr1->min,
4599 strict_overflow_p) == 0
4600 && compare_values_warnv (vr0->max, vr1->max,
4601 strict_overflow_p) == 0)
4602 return boolean_false_node;
4604 /* Otherwise, they may or may not be different. */
4605 else
4606 return NULL_TREE;
4608 else if (comp == LT_EXPR || comp == LE_EXPR)
4610 int tst;
4612 /* If VR0 is to the left of VR1, return true. */
4613 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4614 if ((comp == LT_EXPR && tst == -1)
4615 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4617 if (overflow_infinity_range_p (vr0)
4618 || overflow_infinity_range_p (vr1))
4619 *strict_overflow_p = true;
4620 return boolean_true_node;
4623 /* If VR0 is to the right of VR1, return false. */
4624 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4625 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4626 || (comp == LE_EXPR && tst == 1))
4628 if (overflow_infinity_range_p (vr0)
4629 || overflow_infinity_range_p (vr1))
4630 *strict_overflow_p = true;
4631 return boolean_false_node;
4634 /* Otherwise, we don't know. */
4635 return NULL_TREE;
4638 gcc_unreachable ();
4642 /* Given a value range VR, a value VAL and a comparison code COMP, return
4643 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4644 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4645 always returns false. Return NULL_TREE if it is not always
4646 possible to determine the value of the comparison. Also set
4647 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4648 infinity was used in the test. */
4650 static tree
4651 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4652 bool *strict_overflow_p)
4654 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4655 return NULL_TREE;
4657 /* Anti-ranges need to be handled separately. */
4658 if (vr->type == VR_ANTI_RANGE)
4660 /* For anti-ranges, the only predicates that we can compute at
4661 compile time are equality and inequality. */
4662 if (comp == GT_EXPR
4663 || comp == GE_EXPR
4664 || comp == LT_EXPR
4665 || comp == LE_EXPR)
4666 return NULL_TREE;
4668 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4669 if (value_inside_range (val, vr->min, vr->max) == 1)
4670 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4672 return NULL_TREE;
4675 if (!usable_range_p (vr, strict_overflow_p))
4676 return NULL_TREE;
4678 if (comp == EQ_EXPR)
4680 /* EQ_EXPR may only be computed if VR represents exactly
4681 one value. */
4682 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4684 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4685 if (cmp == 0)
4686 return boolean_true_node;
4687 else if (cmp == -1 || cmp == 1 || cmp == 2)
4688 return boolean_false_node;
4690 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4691 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4692 return boolean_false_node;
4694 return NULL_TREE;
4696 else if (comp == NE_EXPR)
4698 /* If VAL is not inside VR, then they are always different. */
4699 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4700 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4701 return boolean_true_node;
4703 /* If VR represents exactly one value equal to VAL, then return
4704 false. */
4705 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4706 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4707 return boolean_false_node;
4709 /* Otherwise, they may or may not be different. */
4710 return NULL_TREE;
4712 else if (comp == LT_EXPR || comp == LE_EXPR)
4714 int tst;
4716 /* If VR is to the left of VAL, return true. */
4717 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4718 if ((comp == LT_EXPR && tst == -1)
4719 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4721 if (overflow_infinity_range_p (vr))
4722 *strict_overflow_p = true;
4723 return boolean_true_node;
4726 /* If VR is to the right of VAL, return false. */
4727 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4728 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4729 || (comp == LE_EXPR && tst == 1))
4731 if (overflow_infinity_range_p (vr))
4732 *strict_overflow_p = true;
4733 return boolean_false_node;
4736 /* Otherwise, we don't know. */
4737 return NULL_TREE;
4739 else if (comp == GT_EXPR || comp == GE_EXPR)
4741 int tst;
4743 /* If VR is to the right of VAL, return true. */
4744 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4745 if ((comp == GT_EXPR && tst == 1)
4746 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4748 if (overflow_infinity_range_p (vr))
4749 *strict_overflow_p = true;
4750 return boolean_true_node;
4753 /* If VR is to the left of VAL, return false. */
4754 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4755 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4756 || (comp == GE_EXPR && tst == -1))
4758 if (overflow_infinity_range_p (vr))
4759 *strict_overflow_p = true;
4760 return boolean_false_node;
4763 /* Otherwise, we don't know. */
4764 return NULL_TREE;
4767 gcc_unreachable ();
4771 /* Debugging dumps. */
4773 void dump_value_range (FILE *, value_range_t *);
4774 void debug_value_range (value_range_t *);
4775 void dump_all_value_ranges (FILE *);
4776 void debug_all_value_ranges (void);
4777 void dump_vr_equiv (FILE *, bitmap);
4778 void debug_vr_equiv (bitmap);
4781 /* Dump value range VR to FILE. */
4783 void
4784 dump_value_range (FILE *file, value_range_t *vr)
4786 if (vr == NULL)
4787 fprintf (file, "[]");
4788 else if (vr->type == VR_UNDEFINED)
4789 fprintf (file, "UNDEFINED");
4790 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4792 tree type = TREE_TYPE (vr->min);
4794 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4796 if (is_negative_overflow_infinity (vr->min))
4797 fprintf (file, "-INF(OVF)");
4798 else if (INTEGRAL_TYPE_P (type)
4799 && !TYPE_UNSIGNED (type)
4800 && vrp_val_is_min (vr->min))
4801 fprintf (file, "-INF");
4802 else
4803 print_generic_expr (file, vr->min, 0);
4805 fprintf (file, ", ");
4807 if (is_positive_overflow_infinity (vr->max))
4808 fprintf (file, "+INF(OVF)");
4809 else if (INTEGRAL_TYPE_P (type)
4810 && vrp_val_is_max (vr->max))
4811 fprintf (file, "+INF");
4812 else
4813 print_generic_expr (file, vr->max, 0);
4815 fprintf (file, "]");
4817 if (vr->equiv)
4819 bitmap_iterator bi;
4820 unsigned i, c = 0;
4822 fprintf (file, " EQUIVALENCES: { ");
4824 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4826 print_generic_expr (file, ssa_name (i), 0);
4827 fprintf (file, " ");
4828 c++;
4831 fprintf (file, "} (%u elements)", c);
4834 else if (vr->type == VR_VARYING)
4835 fprintf (file, "VARYING");
4836 else
4837 fprintf (file, "INVALID RANGE");
4841 /* Dump value range VR to stderr. */
4843 DEBUG_FUNCTION void
4844 debug_value_range (value_range_t *vr)
4846 dump_value_range (stderr, vr);
4847 fprintf (stderr, "\n");
4851 /* Dump value ranges of all SSA_NAMEs to FILE. */
4853 void
4854 dump_all_value_ranges (FILE *file)
4856 size_t i;
4858 for (i = 0; i < num_vr_values; i++)
4860 if (vr_value[i])
4862 print_generic_expr (file, ssa_name (i), 0);
4863 fprintf (file, ": ");
4864 dump_value_range (file, vr_value[i]);
4865 fprintf (file, "\n");
4869 fprintf (file, "\n");
4873 /* Dump all value ranges to stderr. */
4875 DEBUG_FUNCTION void
4876 debug_all_value_ranges (void)
4878 dump_all_value_ranges (stderr);
4882 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4883 create a new SSA name N and return the assertion assignment
4884 'N = ASSERT_EXPR <V, V OP W>'. */
4886 static gimple
4887 build_assert_expr_for (tree cond, tree v)
4889 tree a;
4890 gassign *assertion;
4892 gcc_assert (TREE_CODE (v) == SSA_NAME
4893 && COMPARISON_CLASS_P (cond));
4895 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4896 assertion = gimple_build_assign (NULL_TREE, a);
4898 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4899 operand of the ASSERT_EXPR. Create it so the new name and the old one
4900 are registered in the replacement table so that we can fix the SSA web
4901 after adding all the ASSERT_EXPRs. */
4902 create_new_def_for (v, assertion, NULL);
4904 return assertion;
4908 /* Return false if EXPR is a predicate expression involving floating
4909 point values. */
4911 static inline bool
4912 fp_predicate (gimple stmt)
4914 GIMPLE_CHECK (stmt, GIMPLE_COND);
4916 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4919 /* If the range of values taken by OP can be inferred after STMT executes,
4920 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4921 describes the inferred range. Return true if a range could be
4922 inferred. */
4924 static bool
4925 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4927 *val_p = NULL_TREE;
4928 *comp_code_p = ERROR_MARK;
4930 /* Do not attempt to infer anything in names that flow through
4931 abnormal edges. */
4932 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4933 return false;
4935 /* Similarly, don't infer anything from statements that may throw
4936 exceptions. ??? Relax this requirement? */
4937 if (stmt_could_throw_p (stmt))
4938 return false;
4940 /* If STMT is the last statement of a basic block with no normal
4941 successors, there is no point inferring anything about any of its
4942 operands. We would not be able to find a proper insertion point
4943 for the assertion, anyway. */
4944 if (stmt_ends_bb_p (stmt))
4946 edge_iterator ei;
4947 edge e;
4949 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4950 if (!(e->flags & EDGE_ABNORMAL))
4951 break;
4952 if (e == NULL)
4953 return false;
4956 if (infer_nonnull_range (stmt, op, true, true))
4958 *val_p = build_int_cst (TREE_TYPE (op), 0);
4959 *comp_code_p = NE_EXPR;
4960 return true;
4963 return false;
4967 void dump_asserts_for (FILE *, tree);
4968 void debug_asserts_for (tree);
4969 void dump_all_asserts (FILE *);
4970 void debug_all_asserts (void);
4972 /* Dump all the registered assertions for NAME to FILE. */
4974 void
4975 dump_asserts_for (FILE *file, tree name)
4977 assert_locus_t loc;
4979 fprintf (file, "Assertions to be inserted for ");
4980 print_generic_expr (file, name, 0);
4981 fprintf (file, "\n");
4983 loc = asserts_for[SSA_NAME_VERSION (name)];
4984 while (loc)
4986 fprintf (file, "\t");
4987 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4988 fprintf (file, "\n\tBB #%d", loc->bb->index);
4989 if (loc->e)
4991 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4992 loc->e->dest->index);
4993 dump_edge_info (file, loc->e, dump_flags, 0);
4995 fprintf (file, "\n\tPREDICATE: ");
4996 print_generic_expr (file, name, 0);
4997 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4998 print_generic_expr (file, loc->val, 0);
4999 fprintf (file, "\n\n");
5000 loc = loc->next;
5003 fprintf (file, "\n");
5007 /* Dump all the registered assertions for NAME to stderr. */
5009 DEBUG_FUNCTION void
5010 debug_asserts_for (tree name)
5012 dump_asserts_for (stderr, name);
5016 /* Dump all the registered assertions for all the names to FILE. */
5018 void
5019 dump_all_asserts (FILE *file)
5021 unsigned i;
5022 bitmap_iterator bi;
5024 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
5025 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5026 dump_asserts_for (file, ssa_name (i));
5027 fprintf (file, "\n");
5031 /* Dump all the registered assertions for all the names to stderr. */
5033 DEBUG_FUNCTION void
5034 debug_all_asserts (void)
5036 dump_all_asserts (stderr);
5040 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
5041 'EXPR COMP_CODE VAL' at a location that dominates block BB or
5042 E->DEST, then register this location as a possible insertion point
5043 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5045 BB, E and SI provide the exact insertion point for the new
5046 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
5047 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5048 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5049 must not be NULL. */
5051 static void
5052 register_new_assert_for (tree name, tree expr,
5053 enum tree_code comp_code,
5054 tree val,
5055 basic_block bb,
5056 edge e,
5057 gimple_stmt_iterator si)
5059 assert_locus_t n, loc, last_loc;
5060 basic_block dest_bb;
5062 gcc_checking_assert (bb == NULL || e == NULL);
5064 if (e == NULL)
5065 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
5066 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
5068 /* Never build an assert comparing against an integer constant with
5069 TREE_OVERFLOW set. This confuses our undefined overflow warning
5070 machinery. */
5071 if (TREE_OVERFLOW_P (val))
5072 val = drop_tree_overflow (val);
5074 /* The new assertion A will be inserted at BB or E. We need to
5075 determine if the new location is dominated by a previously
5076 registered location for A. If we are doing an edge insertion,
5077 assume that A will be inserted at E->DEST. Note that this is not
5078 necessarily true.
5080 If E is a critical edge, it will be split. But even if E is
5081 split, the new block will dominate the same set of blocks that
5082 E->DEST dominates.
5084 The reverse, however, is not true, blocks dominated by E->DEST
5085 will not be dominated by the new block created to split E. So,
5086 if the insertion location is on a critical edge, we will not use
5087 the new location to move another assertion previously registered
5088 at a block dominated by E->DEST. */
5089 dest_bb = (bb) ? bb : e->dest;
5091 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5092 VAL at a block dominating DEST_BB, then we don't need to insert a new
5093 one. Similarly, if the same assertion already exists at a block
5094 dominated by DEST_BB and the new location is not on a critical
5095 edge, then update the existing location for the assertion (i.e.,
5096 move the assertion up in the dominance tree).
5098 Note, this is implemented as a simple linked list because there
5099 should not be more than a handful of assertions registered per
5100 name. If this becomes a performance problem, a table hashed by
5101 COMP_CODE and VAL could be implemented. */
5102 loc = asserts_for[SSA_NAME_VERSION (name)];
5103 last_loc = loc;
5104 while (loc)
5106 if (loc->comp_code == comp_code
5107 && (loc->val == val
5108 || operand_equal_p (loc->val, val, 0))
5109 && (loc->expr == expr
5110 || operand_equal_p (loc->expr, expr, 0)))
5112 /* If E is not a critical edge and DEST_BB
5113 dominates the existing location for the assertion, move
5114 the assertion up in the dominance tree by updating its
5115 location information. */
5116 if ((e == NULL || !EDGE_CRITICAL_P (e))
5117 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
5119 loc->bb = dest_bb;
5120 loc->e = e;
5121 loc->si = si;
5122 return;
5126 /* Update the last node of the list and move to the next one. */
5127 last_loc = loc;
5128 loc = loc->next;
5131 /* If we didn't find an assertion already registered for
5132 NAME COMP_CODE VAL, add a new one at the end of the list of
5133 assertions associated with NAME. */
5134 n = XNEW (struct assert_locus_d);
5135 n->bb = dest_bb;
5136 n->e = e;
5137 n->si = si;
5138 n->comp_code = comp_code;
5139 n->val = val;
5140 n->expr = expr;
5141 n->next = NULL;
5143 if (last_loc)
5144 last_loc->next = n;
5145 else
5146 asserts_for[SSA_NAME_VERSION (name)] = n;
5148 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5151 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5152 Extract a suitable test code and value and store them into *CODE_P and
5153 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5155 If no extraction was possible, return FALSE, otherwise return TRUE.
5157 If INVERT is true, then we invert the result stored into *CODE_P. */
5159 static bool
5160 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5161 tree cond_op0, tree cond_op1,
5162 bool invert, enum tree_code *code_p,
5163 tree *val_p)
5165 enum tree_code comp_code;
5166 tree val;
5168 /* Otherwise, we have a comparison of the form NAME COMP VAL
5169 or VAL COMP NAME. */
5170 if (name == cond_op1)
5172 /* If the predicate is of the form VAL COMP NAME, flip
5173 COMP around because we need to register NAME as the
5174 first operand in the predicate. */
5175 comp_code = swap_tree_comparison (cond_code);
5176 val = cond_op0;
5178 else
5180 /* The comparison is of the form NAME COMP VAL, so the
5181 comparison code remains unchanged. */
5182 comp_code = cond_code;
5183 val = cond_op1;
5186 /* Invert the comparison code as necessary. */
5187 if (invert)
5188 comp_code = invert_tree_comparison (comp_code, 0);
5190 /* VRP does not handle float types. */
5191 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
5192 return false;
5194 /* Do not register always-false predicates.
5195 FIXME: this works around a limitation in fold() when dealing with
5196 enumerations. Given 'enum { N1, N2 } x;', fold will not
5197 fold 'if (x > N2)' to 'if (0)'. */
5198 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5199 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5201 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5202 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5204 if (comp_code == GT_EXPR
5205 && (!max
5206 || compare_values (val, max) == 0))
5207 return false;
5209 if (comp_code == LT_EXPR
5210 && (!min
5211 || compare_values (val, min) == 0))
5212 return false;
5214 *code_p = comp_code;
5215 *val_p = val;
5216 return true;
5219 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5220 (otherwise return VAL). VAL and MASK must be zero-extended for
5221 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5222 (to transform signed values into unsigned) and at the end xor
5223 SGNBIT back. */
5225 static wide_int
5226 masked_increment (const wide_int &val_in, const wide_int &mask,
5227 const wide_int &sgnbit, unsigned int prec)
5229 wide_int bit = wi::one (prec), res;
5230 unsigned int i;
5232 wide_int val = val_in ^ sgnbit;
5233 for (i = 0; i < prec; i++, bit += bit)
5235 res = mask;
5236 if ((res & bit) == 0)
5237 continue;
5238 res = bit - 1;
5239 res = (val + bit).and_not (res);
5240 res &= mask;
5241 if (wi::gtu_p (res, val))
5242 return res ^ sgnbit;
5244 return val ^ sgnbit;
5247 /* Try to register an edge assertion for SSA name NAME on edge E for
5248 the condition COND contributing to the conditional jump pointed to by BSI.
5249 Invert the condition COND if INVERT is true. */
5251 static void
5252 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5253 enum tree_code cond_code,
5254 tree cond_op0, tree cond_op1, bool invert)
5256 tree val;
5257 enum tree_code comp_code;
5259 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5260 cond_op0,
5261 cond_op1,
5262 invert, &comp_code, &val))
5263 return;
5265 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5266 reachable from E. */
5267 if (live_on_edge (e, name)
5268 && !has_single_use (name))
5269 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5271 /* In the case of NAME <= CST and NAME being defined as
5272 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5273 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5274 This catches range and anti-range tests. */
5275 if ((comp_code == LE_EXPR
5276 || comp_code == GT_EXPR)
5277 && TREE_CODE (val) == INTEGER_CST
5278 && TYPE_UNSIGNED (TREE_TYPE (val)))
5280 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5281 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5283 /* Extract CST2 from the (optional) addition. */
5284 if (is_gimple_assign (def_stmt)
5285 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5287 name2 = gimple_assign_rhs1 (def_stmt);
5288 cst2 = gimple_assign_rhs2 (def_stmt);
5289 if (TREE_CODE (name2) == SSA_NAME
5290 && TREE_CODE (cst2) == INTEGER_CST)
5291 def_stmt = SSA_NAME_DEF_STMT (name2);
5294 /* Extract NAME2 from the (optional) sign-changing cast. */
5295 if (gimple_assign_cast_p (def_stmt))
5297 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5298 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5299 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5300 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5301 name3 = gimple_assign_rhs1 (def_stmt);
5304 /* If name3 is used later, create an ASSERT_EXPR for it. */
5305 if (name3 != NULL_TREE
5306 && TREE_CODE (name3) == SSA_NAME
5307 && (cst2 == NULL_TREE
5308 || TREE_CODE (cst2) == INTEGER_CST)
5309 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5310 && live_on_edge (e, name3)
5311 && !has_single_use (name3))
5313 tree tmp;
5315 /* Build an expression for the range test. */
5316 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5317 if (cst2 != NULL_TREE)
5318 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5320 if (dump_file)
5322 fprintf (dump_file, "Adding assert for ");
5323 print_generic_expr (dump_file, name3, 0);
5324 fprintf (dump_file, " from ");
5325 print_generic_expr (dump_file, tmp, 0);
5326 fprintf (dump_file, "\n");
5329 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5332 /* If name2 is used later, create an ASSERT_EXPR for it. */
5333 if (name2 != NULL_TREE
5334 && TREE_CODE (name2) == SSA_NAME
5335 && TREE_CODE (cst2) == INTEGER_CST
5336 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5337 && live_on_edge (e, name2)
5338 && !has_single_use (name2))
5340 tree tmp;
5342 /* Build an expression for the range test. */
5343 tmp = name2;
5344 if (TREE_TYPE (name) != TREE_TYPE (name2))
5345 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5346 if (cst2 != NULL_TREE)
5347 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5349 if (dump_file)
5351 fprintf (dump_file, "Adding assert for ");
5352 print_generic_expr (dump_file, name2, 0);
5353 fprintf (dump_file, " from ");
5354 print_generic_expr (dump_file, tmp, 0);
5355 fprintf (dump_file, "\n");
5358 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5362 /* In the case of post-in/decrement tests like if (i++) ... and uses
5363 of the in/decremented value on the edge the extra name we want to
5364 assert for is not on the def chain of the name compared. Instead
5365 it is in the set of use stmts. */
5366 if ((comp_code == NE_EXPR
5367 || comp_code == EQ_EXPR)
5368 && TREE_CODE (val) == INTEGER_CST)
5370 imm_use_iterator ui;
5371 gimple use_stmt;
5372 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5374 /* Cut off to use-stmts that are in the predecessor. */
5375 if (gimple_bb (use_stmt) != e->src)
5376 continue;
5378 if (!is_gimple_assign (use_stmt))
5379 continue;
5381 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5382 if (code != PLUS_EXPR
5383 && code != MINUS_EXPR)
5384 continue;
5386 tree cst = gimple_assign_rhs2 (use_stmt);
5387 if (TREE_CODE (cst) != INTEGER_CST)
5388 continue;
5390 tree name2 = gimple_assign_lhs (use_stmt);
5391 if (live_on_edge (e, name2))
5393 cst = int_const_binop (code, val, cst);
5394 register_new_assert_for (name2, name2, comp_code, cst,
5395 NULL, e, bsi);
5400 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5401 && TREE_CODE (val) == INTEGER_CST)
5403 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5404 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5405 tree val2 = NULL_TREE;
5406 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5407 wide_int mask = wi::zero (prec);
5408 unsigned int nprec = prec;
5409 enum tree_code rhs_code = ERROR_MARK;
5411 if (is_gimple_assign (def_stmt))
5412 rhs_code = gimple_assign_rhs_code (def_stmt);
5414 /* Add asserts for NAME cmp CST and NAME being defined
5415 as NAME = (int) NAME2. */
5416 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5417 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5418 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5419 && gimple_assign_cast_p (def_stmt))
5421 name2 = gimple_assign_rhs1 (def_stmt);
5422 if (CONVERT_EXPR_CODE_P (rhs_code)
5423 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5424 && TYPE_UNSIGNED (TREE_TYPE (name2))
5425 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5426 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5427 || !tree_int_cst_equal (val,
5428 TYPE_MIN_VALUE (TREE_TYPE (val))))
5429 && live_on_edge (e, name2)
5430 && !has_single_use (name2))
5432 tree tmp, cst;
5433 enum tree_code new_comp_code = comp_code;
5435 cst = fold_convert (TREE_TYPE (name2),
5436 TYPE_MIN_VALUE (TREE_TYPE (val)));
5437 /* Build an expression for the range test. */
5438 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5439 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5440 fold_convert (TREE_TYPE (name2), val));
5441 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5443 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5444 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5445 build_int_cst (TREE_TYPE (name2), 1));
5448 if (dump_file)
5450 fprintf (dump_file, "Adding assert for ");
5451 print_generic_expr (dump_file, name2, 0);
5452 fprintf (dump_file, " from ");
5453 print_generic_expr (dump_file, tmp, 0);
5454 fprintf (dump_file, "\n");
5457 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5458 e, bsi);
5462 /* Add asserts for NAME cmp CST and NAME being defined as
5463 NAME = NAME2 >> CST2.
5465 Extract CST2 from the right shift. */
5466 if (rhs_code == RSHIFT_EXPR)
5468 name2 = gimple_assign_rhs1 (def_stmt);
5469 cst2 = gimple_assign_rhs2 (def_stmt);
5470 if (TREE_CODE (name2) == SSA_NAME
5471 && tree_fits_uhwi_p (cst2)
5472 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5473 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5474 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5475 && live_on_edge (e, name2)
5476 && !has_single_use (name2))
5478 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5479 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5482 if (val2 != NULL_TREE
5483 && TREE_CODE (val2) == INTEGER_CST
5484 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5485 TREE_TYPE (val),
5486 val2, cst2), val))
5488 enum tree_code new_comp_code = comp_code;
5489 tree tmp, new_val;
5491 tmp = name2;
5492 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5494 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5496 tree type = build_nonstandard_integer_type (prec, 1);
5497 tmp = build1 (NOP_EXPR, type, name2);
5498 val2 = fold_convert (type, val2);
5500 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5501 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5502 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5504 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5506 wide_int minval
5507 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5508 new_val = val2;
5509 if (minval == new_val)
5510 new_val = NULL_TREE;
5512 else
5514 wide_int maxval
5515 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5516 mask |= val2;
5517 if (mask == maxval)
5518 new_val = NULL_TREE;
5519 else
5520 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5523 if (new_val)
5525 if (dump_file)
5527 fprintf (dump_file, "Adding assert for ");
5528 print_generic_expr (dump_file, name2, 0);
5529 fprintf (dump_file, " from ");
5530 print_generic_expr (dump_file, tmp, 0);
5531 fprintf (dump_file, "\n");
5534 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5535 NULL, e, bsi);
5539 /* Add asserts for NAME cmp CST and NAME being defined as
5540 NAME = NAME2 & CST2.
5542 Extract CST2 from the and.
5544 Also handle
5545 NAME = (unsigned) NAME2;
5546 casts where NAME's type is unsigned and has smaller precision
5547 than NAME2's type as if it was NAME = NAME2 & MASK. */
5548 names[0] = NULL_TREE;
5549 names[1] = NULL_TREE;
5550 cst2 = NULL_TREE;
5551 if (rhs_code == BIT_AND_EXPR
5552 || (CONVERT_EXPR_CODE_P (rhs_code)
5553 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5554 && TYPE_UNSIGNED (TREE_TYPE (val))
5555 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5556 > prec))
5558 name2 = gimple_assign_rhs1 (def_stmt);
5559 if (rhs_code == BIT_AND_EXPR)
5560 cst2 = gimple_assign_rhs2 (def_stmt);
5561 else
5563 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5564 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5566 if (TREE_CODE (name2) == SSA_NAME
5567 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5568 && TREE_CODE (cst2) == INTEGER_CST
5569 && !integer_zerop (cst2)
5570 && (nprec > 1
5571 || TYPE_UNSIGNED (TREE_TYPE (val))))
5573 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5574 if (gimple_assign_cast_p (def_stmt2))
5576 names[1] = gimple_assign_rhs1 (def_stmt2);
5577 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5578 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5579 || (TYPE_PRECISION (TREE_TYPE (name2))
5580 != TYPE_PRECISION (TREE_TYPE (names[1])))
5581 || !live_on_edge (e, names[1])
5582 || has_single_use (names[1]))
5583 names[1] = NULL_TREE;
5585 if (live_on_edge (e, name2)
5586 && !has_single_use (name2))
5587 names[0] = name2;
5590 if (names[0] || names[1])
5592 wide_int minv, maxv, valv, cst2v;
5593 wide_int tem, sgnbit;
5594 bool valid_p = false, valn, cst2n;
5595 enum tree_code ccode = comp_code;
5597 valv = wide_int::from (val, nprec, UNSIGNED);
5598 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5599 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5600 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5601 /* If CST2 doesn't have most significant bit set,
5602 but VAL is negative, we have comparison like
5603 if ((x & 0x123) > -4) (always true). Just give up. */
5604 if (!cst2n && valn)
5605 ccode = ERROR_MARK;
5606 if (cst2n)
5607 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5608 else
5609 sgnbit = wi::zero (nprec);
5610 minv = valv & cst2v;
5611 switch (ccode)
5613 case EQ_EXPR:
5614 /* Minimum unsigned value for equality is VAL & CST2
5615 (should be equal to VAL, otherwise we probably should
5616 have folded the comparison into false) and
5617 maximum unsigned value is VAL | ~CST2. */
5618 maxv = valv | ~cst2v;
5619 valid_p = true;
5620 break;
5622 case NE_EXPR:
5623 tem = valv | ~cst2v;
5624 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5625 if (valv == 0)
5627 cst2n = false;
5628 sgnbit = wi::zero (nprec);
5629 goto gt_expr;
5631 /* If (VAL | ~CST2) is all ones, handle it as
5632 (X & CST2) < VAL. */
5633 if (tem == -1)
5635 cst2n = false;
5636 valn = false;
5637 sgnbit = wi::zero (nprec);
5638 goto lt_expr;
5640 if (!cst2n && wi::neg_p (cst2v))
5641 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5642 if (sgnbit != 0)
5644 if (valv == sgnbit)
5646 cst2n = true;
5647 valn = true;
5648 goto gt_expr;
5650 if (tem == wi::mask (nprec - 1, false, nprec))
5652 cst2n = true;
5653 goto lt_expr;
5655 if (!cst2n)
5656 sgnbit = wi::zero (nprec);
5658 break;
5660 case GE_EXPR:
5661 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5662 is VAL and maximum unsigned value is ~0. For signed
5663 comparison, if CST2 doesn't have most significant bit
5664 set, handle it similarly. If CST2 has MSB set,
5665 the minimum is the same, and maximum is ~0U/2. */
5666 if (minv != valv)
5668 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5669 VAL. */
5670 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5671 if (minv == valv)
5672 break;
5674 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5675 valid_p = true;
5676 break;
5678 case GT_EXPR:
5679 gt_expr:
5680 /* Find out smallest MINV where MINV > VAL
5681 && (MINV & CST2) == MINV, if any. If VAL is signed and
5682 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5683 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5684 if (minv == valv)
5685 break;
5686 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5687 valid_p = true;
5688 break;
5690 case LE_EXPR:
5691 /* Minimum unsigned value for <= is 0 and maximum
5692 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5693 Otherwise, find smallest VAL2 where VAL2 > VAL
5694 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5695 as maximum.
5696 For signed comparison, if CST2 doesn't have most
5697 significant bit set, handle it similarly. If CST2 has
5698 MSB set, the maximum is the same and minimum is INT_MIN. */
5699 if (minv == valv)
5700 maxv = valv;
5701 else
5703 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5704 if (maxv == valv)
5705 break;
5706 maxv -= 1;
5708 maxv |= ~cst2v;
5709 minv = sgnbit;
5710 valid_p = true;
5711 break;
5713 case LT_EXPR:
5714 lt_expr:
5715 /* Minimum unsigned value for < is 0 and maximum
5716 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5717 Otherwise, find smallest VAL2 where VAL2 > VAL
5718 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5719 as maximum.
5720 For signed comparison, if CST2 doesn't have most
5721 significant bit set, handle it similarly. If CST2 has
5722 MSB set, the maximum is the same and minimum is INT_MIN. */
5723 if (minv == valv)
5725 if (valv == sgnbit)
5726 break;
5727 maxv = valv;
5729 else
5731 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5732 if (maxv == valv)
5733 break;
5735 maxv -= 1;
5736 maxv |= ~cst2v;
5737 minv = sgnbit;
5738 valid_p = true;
5739 break;
5741 default:
5742 break;
5744 if (valid_p
5745 && (maxv - minv) != -1)
5747 tree tmp, new_val, type;
5748 int i;
5750 for (i = 0; i < 2; i++)
5751 if (names[i])
5753 wide_int maxv2 = maxv;
5754 tmp = names[i];
5755 type = TREE_TYPE (names[i]);
5756 if (!TYPE_UNSIGNED (type))
5758 type = build_nonstandard_integer_type (nprec, 1);
5759 tmp = build1 (NOP_EXPR, type, names[i]);
5761 if (minv != 0)
5763 tmp = build2 (PLUS_EXPR, type, tmp,
5764 wide_int_to_tree (type, -minv));
5765 maxv2 = maxv - minv;
5767 new_val = wide_int_to_tree (type, maxv2);
5769 if (dump_file)
5771 fprintf (dump_file, "Adding assert for ");
5772 print_generic_expr (dump_file, names[i], 0);
5773 fprintf (dump_file, " from ");
5774 print_generic_expr (dump_file, tmp, 0);
5775 fprintf (dump_file, "\n");
5778 register_new_assert_for (names[i], tmp, LE_EXPR,
5779 new_val, NULL, e, bsi);
5786 /* OP is an operand of a truth value expression which is known to have
5787 a particular value. Register any asserts for OP and for any
5788 operands in OP's defining statement.
5790 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5791 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5793 static void
5794 register_edge_assert_for_1 (tree op, enum tree_code code,
5795 edge e, gimple_stmt_iterator bsi)
5797 gimple op_def;
5798 tree val;
5799 enum tree_code rhs_code;
5801 /* We only care about SSA_NAMEs. */
5802 if (TREE_CODE (op) != SSA_NAME)
5803 return;
5805 /* We know that OP will have a zero or nonzero value. If OP is used
5806 more than once go ahead and register an assert for OP. */
5807 if (live_on_edge (e, op)
5808 && !has_single_use (op))
5810 val = build_int_cst (TREE_TYPE (op), 0);
5811 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5814 /* Now look at how OP is set. If it's set from a comparison,
5815 a truth operation or some bit operations, then we may be able
5816 to register information about the operands of that assignment. */
5817 op_def = SSA_NAME_DEF_STMT (op);
5818 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5819 return;
5821 rhs_code = gimple_assign_rhs_code (op_def);
5823 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5825 bool invert = (code == EQ_EXPR ? true : false);
5826 tree op0 = gimple_assign_rhs1 (op_def);
5827 tree op1 = gimple_assign_rhs2 (op_def);
5829 if (TREE_CODE (op0) == SSA_NAME)
5830 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5831 if (TREE_CODE (op1) == SSA_NAME)
5832 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5834 else if ((code == NE_EXPR
5835 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5836 || (code == EQ_EXPR
5837 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5839 /* Recurse on each operand. */
5840 tree op0 = gimple_assign_rhs1 (op_def);
5841 tree op1 = gimple_assign_rhs2 (op_def);
5842 if (TREE_CODE (op0) == SSA_NAME
5843 && has_single_use (op0))
5844 register_edge_assert_for_1 (op0, code, e, bsi);
5845 if (TREE_CODE (op1) == SSA_NAME
5846 && has_single_use (op1))
5847 register_edge_assert_for_1 (op1, code, e, bsi);
5849 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5850 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5852 /* Recurse, flipping CODE. */
5853 code = invert_tree_comparison (code, false);
5854 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5856 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5858 /* Recurse through the copy. */
5859 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5861 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5863 /* Recurse through the type conversion, unless it is a narrowing
5864 conversion or conversion from non-integral type. */
5865 tree rhs = gimple_assign_rhs1 (op_def);
5866 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5867 && (TYPE_PRECISION (TREE_TYPE (rhs))
5868 <= TYPE_PRECISION (TREE_TYPE (op))))
5869 register_edge_assert_for_1 (rhs, code, e, bsi);
5873 /* Try to register an edge assertion for SSA name NAME on edge E for
5874 the condition COND contributing to the conditional jump pointed to by
5875 SI. */
5877 static void
5878 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5879 enum tree_code cond_code, tree cond_op0,
5880 tree cond_op1)
5882 tree val;
5883 enum tree_code comp_code;
5884 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5886 /* Do not attempt to infer anything in names that flow through
5887 abnormal edges. */
5888 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5889 return;
5891 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5892 cond_op0, cond_op1,
5893 is_else_edge,
5894 &comp_code, &val))
5895 return;
5897 /* Register ASSERT_EXPRs for name. */
5898 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5899 cond_op1, is_else_edge);
5902 /* If COND is effectively an equality test of an SSA_NAME against
5903 the value zero or one, then we may be able to assert values
5904 for SSA_NAMEs which flow into COND. */
5906 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5907 statement of NAME we can assert both operands of the BIT_AND_EXPR
5908 have nonzero value. */
5909 if (((comp_code == EQ_EXPR && integer_onep (val))
5910 || (comp_code == NE_EXPR && integer_zerop (val))))
5912 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5914 if (is_gimple_assign (def_stmt)
5915 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5917 tree op0 = gimple_assign_rhs1 (def_stmt);
5918 tree op1 = gimple_assign_rhs2 (def_stmt);
5919 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5920 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5924 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5925 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5926 have zero value. */
5927 if (((comp_code == EQ_EXPR && integer_zerop (val))
5928 || (comp_code == NE_EXPR && integer_onep (val))))
5930 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5932 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5933 necessarily zero value, or if type-precision is one. */
5934 if (is_gimple_assign (def_stmt)
5935 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5936 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5937 || comp_code == EQ_EXPR)))
5939 tree op0 = gimple_assign_rhs1 (def_stmt);
5940 tree op1 = gimple_assign_rhs2 (def_stmt);
5941 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5942 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5948 /* Determine whether the outgoing edges of BB should receive an
5949 ASSERT_EXPR for each of the operands of BB's LAST statement.
5950 The last statement of BB must be a COND_EXPR.
5952 If any of the sub-graphs rooted at BB have an interesting use of
5953 the predicate operands, an assert location node is added to the
5954 list of assertions for the corresponding operands. */
5956 static void
5957 find_conditional_asserts (basic_block bb, gcond *last)
5959 gimple_stmt_iterator bsi;
5960 tree op;
5961 edge_iterator ei;
5962 edge e;
5963 ssa_op_iter iter;
5965 bsi = gsi_for_stmt (last);
5967 /* Look for uses of the operands in each of the sub-graphs
5968 rooted at BB. We need to check each of the outgoing edges
5969 separately, so that we know what kind of ASSERT_EXPR to
5970 insert. */
5971 FOR_EACH_EDGE (e, ei, bb->succs)
5973 if (e->dest == bb)
5974 continue;
5976 /* Register the necessary assertions for each operand in the
5977 conditional predicate. */
5978 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5979 register_edge_assert_for (op, e, bsi,
5980 gimple_cond_code (last),
5981 gimple_cond_lhs (last),
5982 gimple_cond_rhs (last));
5986 struct case_info
5988 tree expr;
5989 basic_block bb;
5992 /* Compare two case labels sorting first by the destination bb index
5993 and then by the case value. */
5995 static int
5996 compare_case_labels (const void *p1, const void *p2)
5998 const struct case_info *ci1 = (const struct case_info *) p1;
5999 const struct case_info *ci2 = (const struct case_info *) p2;
6000 int idx1 = ci1->bb->index;
6001 int idx2 = ci2->bb->index;
6003 if (idx1 < idx2)
6004 return -1;
6005 else if (idx1 == idx2)
6007 /* Make sure the default label is first in a group. */
6008 if (!CASE_LOW (ci1->expr))
6009 return -1;
6010 else if (!CASE_LOW (ci2->expr))
6011 return 1;
6012 else
6013 return tree_int_cst_compare (CASE_LOW (ci1->expr),
6014 CASE_LOW (ci2->expr));
6016 else
6017 return 1;
6020 /* Determine whether the outgoing edges of BB should receive an
6021 ASSERT_EXPR for each of the operands of BB's LAST statement.
6022 The last statement of BB must be a SWITCH_EXPR.
6024 If any of the sub-graphs rooted at BB have an interesting use of
6025 the predicate operands, an assert location node is added to the
6026 list of assertions for the corresponding operands. */
6028 static void
6029 find_switch_asserts (basic_block bb, gswitch *last)
6031 gimple_stmt_iterator bsi;
6032 tree op;
6033 edge e;
6034 struct case_info *ci;
6035 size_t n = gimple_switch_num_labels (last);
6036 #if GCC_VERSION >= 4000
6037 unsigned int idx;
6038 #else
6039 /* Work around GCC 3.4 bug (PR 37086). */
6040 volatile unsigned int idx;
6041 #endif
6043 bsi = gsi_for_stmt (last);
6044 op = gimple_switch_index (last);
6045 if (TREE_CODE (op) != SSA_NAME)
6046 return;
6048 /* Build a vector of case labels sorted by destination label. */
6049 ci = XNEWVEC (struct case_info, n);
6050 for (idx = 0; idx < n; ++idx)
6052 ci[idx].expr = gimple_switch_label (last, idx);
6053 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
6055 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
6057 for (idx = 0; idx < n; ++idx)
6059 tree min, max;
6060 tree cl = ci[idx].expr;
6061 basic_block cbb = ci[idx].bb;
6063 min = CASE_LOW (cl);
6064 max = CASE_HIGH (cl);
6066 /* If there are multiple case labels with the same destination
6067 we need to combine them to a single value range for the edge. */
6068 if (idx + 1 < n && cbb == ci[idx + 1].bb)
6070 /* Skip labels until the last of the group. */
6071 do {
6072 ++idx;
6073 } while (idx < n && cbb == ci[idx].bb);
6074 --idx;
6076 /* Pick up the maximum of the case label range. */
6077 if (CASE_HIGH (ci[idx].expr))
6078 max = CASE_HIGH (ci[idx].expr);
6079 else
6080 max = CASE_LOW (ci[idx].expr);
6083 /* Nothing to do if the range includes the default label until we
6084 can register anti-ranges. */
6085 if (min == NULL_TREE)
6086 continue;
6088 /* Find the edge to register the assert expr on. */
6089 e = find_edge (bb, cbb);
6091 /* Register the necessary assertions for the operand in the
6092 SWITCH_EXPR. */
6093 register_edge_assert_for (op, e, bsi,
6094 max ? GE_EXPR : EQ_EXPR,
6095 op, fold_convert (TREE_TYPE (op), min));
6096 if (max)
6097 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
6098 fold_convert (TREE_TYPE (op), max));
6101 XDELETEVEC (ci);
6105 /* Traverse all the statements in block BB looking for statements that
6106 may generate useful assertions for the SSA names in their operand.
6107 If a statement produces a useful assertion A for name N_i, then the
6108 list of assertions already generated for N_i is scanned to
6109 determine if A is actually needed.
6111 If N_i already had the assertion A at a location dominating the
6112 current location, then nothing needs to be done. Otherwise, the
6113 new location for A is recorded instead.
6115 1- For every statement S in BB, all the variables used by S are
6116 added to bitmap FOUND_IN_SUBGRAPH.
6118 2- If statement S uses an operand N in a way that exposes a known
6119 value range for N, then if N was not already generated by an
6120 ASSERT_EXPR, create a new assert location for N. For instance,
6121 if N is a pointer and the statement dereferences it, we can
6122 assume that N is not NULL.
6124 3- COND_EXPRs are a special case of #2. We can derive range
6125 information from the predicate but need to insert different
6126 ASSERT_EXPRs for each of the sub-graphs rooted at the
6127 conditional block. If the last statement of BB is a conditional
6128 expression of the form 'X op Y', then
6130 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6132 b) If the conditional is the only entry point to the sub-graph
6133 corresponding to the THEN_CLAUSE, recurse into it. On
6134 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6135 an ASSERT_EXPR is added for the corresponding variable.
6137 c) Repeat step (b) on the ELSE_CLAUSE.
6139 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6141 For instance,
6143 if (a == 9)
6144 b = a;
6145 else
6146 b = c + 1;
6148 In this case, an assertion on the THEN clause is useful to
6149 determine that 'a' is always 9 on that edge. However, an assertion
6150 on the ELSE clause would be unnecessary.
6152 4- If BB does not end in a conditional expression, then we recurse
6153 into BB's dominator children.
6155 At the end of the recursive traversal, every SSA name will have a
6156 list of locations where ASSERT_EXPRs should be added. When a new
6157 location for name N is found, it is registered by calling
6158 register_new_assert_for. That function keeps track of all the
6159 registered assertions to prevent adding unnecessary assertions.
6160 For instance, if a pointer P_4 is dereferenced more than once in a
6161 dominator tree, only the location dominating all the dereference of
6162 P_4 will receive an ASSERT_EXPR. */
6164 static void
6165 find_assert_locations_1 (basic_block bb, sbitmap live)
6167 gimple last;
6169 last = last_stmt (bb);
6171 /* If BB's last statement is a conditional statement involving integer
6172 operands, determine if we need to add ASSERT_EXPRs. */
6173 if (last
6174 && gimple_code (last) == GIMPLE_COND
6175 && !fp_predicate (last)
6176 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6177 find_conditional_asserts (bb, as_a <gcond *> (last));
6179 /* If BB's last statement is a switch statement involving integer
6180 operands, determine if we need to add ASSERT_EXPRs. */
6181 if (last
6182 && gimple_code (last) == GIMPLE_SWITCH
6183 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6184 find_switch_asserts (bb, as_a <gswitch *> (last));
6186 /* Traverse all the statements in BB marking used names and looking
6187 for statements that may infer assertions for their used operands. */
6188 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6189 gsi_prev (&si))
6191 gimple stmt;
6192 tree op;
6193 ssa_op_iter i;
6195 stmt = gsi_stmt (si);
6197 if (is_gimple_debug (stmt))
6198 continue;
6200 /* See if we can derive an assertion for any of STMT's operands. */
6201 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6203 tree value;
6204 enum tree_code comp_code;
6206 /* If op is not live beyond this stmt, do not bother to insert
6207 asserts for it. */
6208 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6209 continue;
6211 /* If OP is used in such a way that we can infer a value
6212 range for it, and we don't find a previous assertion for
6213 it, create a new assertion location node for OP. */
6214 if (infer_value_range (stmt, op, &comp_code, &value))
6216 /* If we are able to infer a nonzero value range for OP,
6217 then walk backwards through the use-def chain to see if OP
6218 was set via a typecast.
6220 If so, then we can also infer a nonzero value range
6221 for the operand of the NOP_EXPR. */
6222 if (comp_code == NE_EXPR && integer_zerop (value))
6224 tree t = op;
6225 gimple def_stmt = SSA_NAME_DEF_STMT (t);
6227 while (is_gimple_assign (def_stmt)
6228 && CONVERT_EXPR_CODE_P
6229 (gimple_assign_rhs_code (def_stmt))
6230 && TREE_CODE
6231 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6232 && POINTER_TYPE_P
6233 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6235 t = gimple_assign_rhs1 (def_stmt);
6236 def_stmt = SSA_NAME_DEF_STMT (t);
6238 /* Note we want to register the assert for the
6239 operand of the NOP_EXPR after SI, not after the
6240 conversion. */
6241 if (! has_single_use (t))
6242 register_new_assert_for (t, t, comp_code, value,
6243 bb, NULL, si);
6247 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6251 /* Update live. */
6252 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6253 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6254 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6255 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6258 /* Traverse all PHI nodes in BB, updating live. */
6259 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6260 gsi_next (&si))
6262 use_operand_p arg_p;
6263 ssa_op_iter i;
6264 gphi *phi = si.phi ();
6265 tree res = gimple_phi_result (phi);
6267 if (virtual_operand_p (res))
6268 continue;
6270 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6272 tree arg = USE_FROM_PTR (arg_p);
6273 if (TREE_CODE (arg) == SSA_NAME)
6274 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6277 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6281 /* Do an RPO walk over the function computing SSA name liveness
6282 on-the-fly and deciding on assert expressions to insert. */
6284 static void
6285 find_assert_locations (void)
6287 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6288 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6289 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6290 int rpo_cnt, i;
6292 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6293 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6294 for (i = 0; i < rpo_cnt; ++i)
6295 bb_rpo[rpo[i]] = i;
6297 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6298 the order we compute liveness and insert asserts we otherwise
6299 fail to insert asserts into the loop latch. */
6300 loop_p loop;
6301 FOR_EACH_LOOP (loop, 0)
6303 i = loop->latch->index;
6304 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6305 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6306 !gsi_end_p (gsi); gsi_next (&gsi))
6308 gphi *phi = gsi.phi ();
6309 if (virtual_operand_p (gimple_phi_result (phi)))
6310 continue;
6311 tree arg = gimple_phi_arg_def (phi, j);
6312 if (TREE_CODE (arg) == SSA_NAME)
6314 if (live[i] == NULL)
6316 live[i] = sbitmap_alloc (num_ssa_names);
6317 bitmap_clear (live[i]);
6319 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6324 for (i = rpo_cnt - 1; i >= 0; --i)
6326 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6327 edge e;
6328 edge_iterator ei;
6330 if (!live[rpo[i]])
6332 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6333 bitmap_clear (live[rpo[i]]);
6336 /* Process BB and update the live information with uses in
6337 this block. */
6338 find_assert_locations_1 (bb, live[rpo[i]]);
6340 /* Merge liveness into the predecessor blocks and free it. */
6341 if (!bitmap_empty_p (live[rpo[i]]))
6343 int pred_rpo = i;
6344 FOR_EACH_EDGE (e, ei, bb->preds)
6346 int pred = e->src->index;
6347 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6348 continue;
6350 if (!live[pred])
6352 live[pred] = sbitmap_alloc (num_ssa_names);
6353 bitmap_clear (live[pred]);
6355 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6357 if (bb_rpo[pred] < pred_rpo)
6358 pred_rpo = bb_rpo[pred];
6361 /* Record the RPO number of the last visited block that needs
6362 live information from this block. */
6363 last_rpo[rpo[i]] = pred_rpo;
6365 else
6367 sbitmap_free (live[rpo[i]]);
6368 live[rpo[i]] = NULL;
6371 /* We can free all successors live bitmaps if all their
6372 predecessors have been visited already. */
6373 FOR_EACH_EDGE (e, ei, bb->succs)
6374 if (last_rpo[e->dest->index] == i
6375 && live[e->dest->index])
6377 sbitmap_free (live[e->dest->index]);
6378 live[e->dest->index] = NULL;
6382 XDELETEVEC (rpo);
6383 XDELETEVEC (bb_rpo);
6384 XDELETEVEC (last_rpo);
6385 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6386 if (live[i])
6387 sbitmap_free (live[i]);
6388 XDELETEVEC (live);
6391 /* Create an ASSERT_EXPR for NAME and insert it in the location
6392 indicated by LOC. Return true if we made any edge insertions. */
6394 static bool
6395 process_assert_insertions_for (tree name, assert_locus_t loc)
6397 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6398 gimple stmt;
6399 tree cond;
6400 gimple assert_stmt;
6401 edge_iterator ei;
6402 edge e;
6404 /* If we have X <=> X do not insert an assert expr for that. */
6405 if (loc->expr == loc->val)
6406 return false;
6408 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6409 assert_stmt = build_assert_expr_for (cond, name);
6410 if (loc->e)
6412 /* We have been asked to insert the assertion on an edge. This
6413 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6414 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6415 || (gimple_code (gsi_stmt (loc->si))
6416 == GIMPLE_SWITCH));
6418 gsi_insert_on_edge (loc->e, assert_stmt);
6419 return true;
6422 /* Otherwise, we can insert right after LOC->SI iff the
6423 statement must not be the last statement in the block. */
6424 stmt = gsi_stmt (loc->si);
6425 if (!stmt_ends_bb_p (stmt))
6427 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6428 return false;
6431 /* If STMT must be the last statement in BB, we can only insert new
6432 assertions on the non-abnormal edge out of BB. Note that since
6433 STMT is not control flow, there may only be one non-abnormal edge
6434 out of BB. */
6435 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6436 if (!(e->flags & EDGE_ABNORMAL))
6438 gsi_insert_on_edge (e, assert_stmt);
6439 return true;
6442 gcc_unreachable ();
6446 /* Process all the insertions registered for every name N_i registered
6447 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6448 found in ASSERTS_FOR[i]. */
6450 static void
6451 process_assert_insertions (void)
6453 unsigned i;
6454 bitmap_iterator bi;
6455 bool update_edges_p = false;
6456 int num_asserts = 0;
6458 if (dump_file && (dump_flags & TDF_DETAILS))
6459 dump_all_asserts (dump_file);
6461 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6463 assert_locus_t loc = asserts_for[i];
6464 gcc_assert (loc);
6466 while (loc)
6468 assert_locus_t next = loc->next;
6469 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6470 free (loc);
6471 loc = next;
6472 num_asserts++;
6476 if (update_edges_p)
6477 gsi_commit_edge_inserts ();
6479 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6480 num_asserts);
6484 /* Traverse the flowgraph looking for conditional jumps to insert range
6485 expressions. These range expressions are meant to provide information
6486 to optimizations that need to reason in terms of value ranges. They
6487 will not be expanded into RTL. For instance, given:
6489 x = ...
6490 y = ...
6491 if (x < y)
6492 y = x - 2;
6493 else
6494 x = y + 3;
6496 this pass will transform the code into:
6498 x = ...
6499 y = ...
6500 if (x < y)
6502 x = ASSERT_EXPR <x, x < y>
6503 y = x - 2
6505 else
6507 y = ASSERT_EXPR <y, x >= y>
6508 x = y + 3
6511 The idea is that once copy and constant propagation have run, other
6512 optimizations will be able to determine what ranges of values can 'x'
6513 take in different paths of the code, simply by checking the reaching
6514 definition of 'x'. */
6516 static void
6517 insert_range_assertions (void)
6519 need_assert_for = BITMAP_ALLOC (NULL);
6520 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6522 calculate_dominance_info (CDI_DOMINATORS);
6524 find_assert_locations ();
6525 if (!bitmap_empty_p (need_assert_for))
6527 process_assert_insertions ();
6528 update_ssa (TODO_update_ssa_no_phi);
6531 if (dump_file && (dump_flags & TDF_DETAILS))
6533 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6534 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6537 free (asserts_for);
6538 BITMAP_FREE (need_assert_for);
6541 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6542 and "struct" hacks. If VRP can determine that the
6543 array subscript is a constant, check if it is outside valid
6544 range. If the array subscript is a RANGE, warn if it is
6545 non-overlapping with valid range.
6546 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6548 static void
6549 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6551 value_range_t* vr = NULL;
6552 tree low_sub, up_sub;
6553 tree low_bound, up_bound, up_bound_p1;
6554 tree base;
6556 if (TREE_NO_WARNING (ref))
6557 return;
6559 low_sub = up_sub = TREE_OPERAND (ref, 1);
6560 up_bound = array_ref_up_bound (ref);
6562 /* Can not check flexible arrays. */
6563 if (!up_bound
6564 || TREE_CODE (up_bound) != INTEGER_CST)
6565 return;
6567 /* Accesses to trailing arrays via pointers may access storage
6568 beyond the types array bounds. */
6569 base = get_base_address (ref);
6570 if ((warn_array_bounds < 2)
6571 && base && TREE_CODE (base) == MEM_REF)
6573 tree cref, next = NULL_TREE;
6575 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6576 return;
6578 cref = TREE_OPERAND (ref, 0);
6579 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6580 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6581 next && TREE_CODE (next) != FIELD_DECL;
6582 next = DECL_CHAIN (next))
6585 /* If this is the last field in a struct type or a field in a
6586 union type do not warn. */
6587 if (!next)
6588 return;
6591 low_bound = array_ref_low_bound (ref);
6592 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6593 build_int_cst (TREE_TYPE (up_bound), 1));
6595 /* Empty array. */
6596 if (tree_int_cst_equal (low_bound, up_bound_p1))
6598 warning_at (location, OPT_Warray_bounds,
6599 "array subscript is above array bounds");
6600 TREE_NO_WARNING (ref) = 1;
6603 if (TREE_CODE (low_sub) == SSA_NAME)
6605 vr = get_value_range (low_sub);
6606 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6608 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6609 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6613 if (vr && vr->type == VR_ANTI_RANGE)
6615 if (TREE_CODE (up_sub) == INTEGER_CST
6616 && (ignore_off_by_one
6617 ? tree_int_cst_lt (up_bound, up_sub)
6618 : tree_int_cst_le (up_bound, up_sub))
6619 && TREE_CODE (low_sub) == INTEGER_CST
6620 && tree_int_cst_le (low_sub, low_bound))
6622 warning_at (location, OPT_Warray_bounds,
6623 "array subscript is outside array bounds");
6624 TREE_NO_WARNING (ref) = 1;
6627 else if (TREE_CODE (up_sub) == INTEGER_CST
6628 && (ignore_off_by_one
6629 ? !tree_int_cst_le (up_sub, up_bound_p1)
6630 : !tree_int_cst_le (up_sub, up_bound)))
6632 if (dump_file && (dump_flags & TDF_DETAILS))
6634 fprintf (dump_file, "Array bound warning for ");
6635 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6636 fprintf (dump_file, "\n");
6638 warning_at (location, OPT_Warray_bounds,
6639 "array subscript is above array bounds");
6640 TREE_NO_WARNING (ref) = 1;
6642 else if (TREE_CODE (low_sub) == INTEGER_CST
6643 && tree_int_cst_lt (low_sub, low_bound))
6645 if (dump_file && (dump_flags & TDF_DETAILS))
6647 fprintf (dump_file, "Array bound warning for ");
6648 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6649 fprintf (dump_file, "\n");
6651 warning_at (location, OPT_Warray_bounds,
6652 "array subscript is below array bounds");
6653 TREE_NO_WARNING (ref) = 1;
6657 /* Searches if the expr T, located at LOCATION computes
6658 address of an ARRAY_REF, and call check_array_ref on it. */
6660 static void
6661 search_for_addr_array (tree t, location_t location)
6663 /* Check each ARRAY_REFs in the reference chain. */
6666 if (TREE_CODE (t) == ARRAY_REF)
6667 check_array_ref (location, t, true /*ignore_off_by_one*/);
6669 t = TREE_OPERAND (t, 0);
6671 while (handled_component_p (t));
6673 if (TREE_CODE (t) == MEM_REF
6674 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6675 && !TREE_NO_WARNING (t))
6677 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6678 tree low_bound, up_bound, el_sz;
6679 offset_int idx;
6680 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6681 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6682 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6683 return;
6685 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6686 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6687 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6688 if (!low_bound
6689 || TREE_CODE (low_bound) != INTEGER_CST
6690 || !up_bound
6691 || TREE_CODE (up_bound) != INTEGER_CST
6692 || !el_sz
6693 || TREE_CODE (el_sz) != INTEGER_CST)
6694 return;
6696 idx = mem_ref_offset (t);
6697 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6698 if (wi::lts_p (idx, 0))
6700 if (dump_file && (dump_flags & TDF_DETAILS))
6702 fprintf (dump_file, "Array bound warning for ");
6703 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6704 fprintf (dump_file, "\n");
6706 warning_at (location, OPT_Warray_bounds,
6707 "array subscript is below array bounds");
6708 TREE_NO_WARNING (t) = 1;
6710 else if (wi::gts_p (idx, (wi::to_offset (up_bound)
6711 - wi::to_offset (low_bound) + 1)))
6713 if (dump_file && (dump_flags & TDF_DETAILS))
6715 fprintf (dump_file, "Array bound warning for ");
6716 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6717 fprintf (dump_file, "\n");
6719 warning_at (location, OPT_Warray_bounds,
6720 "array subscript is above array bounds");
6721 TREE_NO_WARNING (t) = 1;
6726 /* walk_tree() callback that checks if *TP is
6727 an ARRAY_REF inside an ADDR_EXPR (in which an array
6728 subscript one outside the valid range is allowed). Call
6729 check_array_ref for each ARRAY_REF found. The location is
6730 passed in DATA. */
6732 static tree
6733 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6735 tree t = *tp;
6736 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6737 location_t location;
6739 if (EXPR_HAS_LOCATION (t))
6740 location = EXPR_LOCATION (t);
6741 else
6743 location_t *locp = (location_t *) wi->info;
6744 location = *locp;
6747 *walk_subtree = TRUE;
6749 if (TREE_CODE (t) == ARRAY_REF)
6750 check_array_ref (location, t, false /*ignore_off_by_one*/);
6752 else if (TREE_CODE (t) == ADDR_EXPR)
6754 search_for_addr_array (t, location);
6755 *walk_subtree = FALSE;
6758 return NULL_TREE;
6761 /* Walk over all statements of all reachable BBs and call check_array_bounds
6762 on them. */
6764 static void
6765 check_all_array_refs (void)
6767 basic_block bb;
6768 gimple_stmt_iterator si;
6770 FOR_EACH_BB_FN (bb, cfun)
6772 edge_iterator ei;
6773 edge e;
6774 bool executable = false;
6776 /* Skip blocks that were found to be unreachable. */
6777 FOR_EACH_EDGE (e, ei, bb->preds)
6778 executable |= !!(e->flags & EDGE_EXECUTABLE);
6779 if (!executable)
6780 continue;
6782 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6784 gimple stmt = gsi_stmt (si);
6785 struct walk_stmt_info wi;
6786 if (!gimple_has_location (stmt)
6787 || is_gimple_debug (stmt))
6788 continue;
6790 memset (&wi, 0, sizeof (wi));
6791 wi.info = CONST_CAST (void *, (const void *)
6792 gimple_location_ptr (stmt));
6794 walk_gimple_op (gsi_stmt (si),
6795 check_array_bounds,
6796 &wi);
6801 /* Return true if all imm uses of VAR are either in STMT, or
6802 feed (optionally through a chain of single imm uses) GIMPLE_COND
6803 in basic block COND_BB. */
6805 static bool
6806 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6808 use_operand_p use_p, use2_p;
6809 imm_use_iterator iter;
6811 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6812 if (USE_STMT (use_p) != stmt)
6814 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6815 if (is_gimple_debug (use_stmt))
6816 continue;
6817 while (is_gimple_assign (use_stmt)
6818 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6819 && single_imm_use (gimple_assign_lhs (use_stmt),
6820 &use2_p, &use_stmt2))
6821 use_stmt = use_stmt2;
6822 if (gimple_code (use_stmt) != GIMPLE_COND
6823 || gimple_bb (use_stmt) != cond_bb)
6824 return false;
6826 return true;
6829 /* Handle
6830 _4 = x_3 & 31;
6831 if (_4 != 0)
6832 goto <bb 6>;
6833 else
6834 goto <bb 7>;
6835 <bb 6>:
6836 __builtin_unreachable ();
6837 <bb 7>:
6838 x_5 = ASSERT_EXPR <x_3, ...>;
6839 If x_3 has no other immediate uses (checked by caller),
6840 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6841 from the non-zero bitmask. */
6843 static void
6844 maybe_set_nonzero_bits (basic_block bb, tree var)
6846 edge e = single_pred_edge (bb);
6847 basic_block cond_bb = e->src;
6848 gimple stmt = last_stmt (cond_bb);
6849 tree cst;
6851 if (stmt == NULL
6852 || gimple_code (stmt) != GIMPLE_COND
6853 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6854 ? EQ_EXPR : NE_EXPR)
6855 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6856 || !integer_zerop (gimple_cond_rhs (stmt)))
6857 return;
6859 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6860 if (!is_gimple_assign (stmt)
6861 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6862 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6863 return;
6864 if (gimple_assign_rhs1 (stmt) != var)
6866 gimple stmt2;
6868 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6869 return;
6870 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6871 if (!gimple_assign_cast_p (stmt2)
6872 || gimple_assign_rhs1 (stmt2) != var
6873 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6874 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6875 != TYPE_PRECISION (TREE_TYPE (var))))
6876 return;
6878 cst = gimple_assign_rhs2 (stmt);
6879 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6882 /* Convert range assertion expressions into the implied copies and
6883 copy propagate away the copies. Doing the trivial copy propagation
6884 here avoids the need to run the full copy propagation pass after
6885 VRP.
6887 FIXME, this will eventually lead to copy propagation removing the
6888 names that had useful range information attached to them. For
6889 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6890 then N_i will have the range [3, +INF].
6892 However, by converting the assertion into the implied copy
6893 operation N_i = N_j, we will then copy-propagate N_j into the uses
6894 of N_i and lose the range information. We may want to hold on to
6895 ASSERT_EXPRs a little while longer as the ranges could be used in
6896 things like jump threading.
6898 The problem with keeping ASSERT_EXPRs around is that passes after
6899 VRP need to handle them appropriately.
6901 Another approach would be to make the range information a first
6902 class property of the SSA_NAME so that it can be queried from
6903 any pass. This is made somewhat more complex by the need for
6904 multiple ranges to be associated with one SSA_NAME. */
6906 static void
6907 remove_range_assertions (void)
6909 basic_block bb;
6910 gimple_stmt_iterator si;
6911 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6912 a basic block preceeded by GIMPLE_COND branching to it and
6913 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6914 int is_unreachable;
6916 /* Note that the BSI iterator bump happens at the bottom of the
6917 loop and no bump is necessary if we're removing the statement
6918 referenced by the current BSI. */
6919 FOR_EACH_BB_FN (bb, cfun)
6920 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6922 gimple stmt = gsi_stmt (si);
6923 gimple use_stmt;
6925 if (is_gimple_assign (stmt)
6926 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6928 tree lhs = gimple_assign_lhs (stmt);
6929 tree rhs = gimple_assign_rhs1 (stmt);
6930 tree var;
6931 tree cond = fold (ASSERT_EXPR_COND (rhs));
6932 use_operand_p use_p;
6933 imm_use_iterator iter;
6935 gcc_assert (cond != boolean_false_node);
6937 var = ASSERT_EXPR_VAR (rhs);
6938 gcc_assert (TREE_CODE (var) == SSA_NAME);
6940 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6941 && SSA_NAME_RANGE_INFO (lhs))
6943 if (is_unreachable == -1)
6945 is_unreachable = 0;
6946 if (single_pred_p (bb)
6947 && assert_unreachable_fallthru_edge_p
6948 (single_pred_edge (bb)))
6949 is_unreachable = 1;
6951 /* Handle
6952 if (x_7 >= 10 && x_7 < 20)
6953 __builtin_unreachable ();
6954 x_8 = ASSERT_EXPR <x_7, ...>;
6955 if the only uses of x_7 are in the ASSERT_EXPR and
6956 in the condition. In that case, we can copy the
6957 range info from x_8 computed in this pass also
6958 for x_7. */
6959 if (is_unreachable
6960 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6961 single_pred (bb)))
6963 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6964 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6965 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6966 maybe_set_nonzero_bits (bb, var);
6970 /* Propagate the RHS into every use of the LHS. */
6971 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6972 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6973 SET_USE (use_p, var);
6975 /* And finally, remove the copy, it is not needed. */
6976 gsi_remove (&si, true);
6977 release_defs (stmt);
6979 else
6981 if (!is_gimple_debug (gsi_stmt (si)))
6982 is_unreachable = 0;
6983 gsi_next (&si);
6989 /* Return true if STMT is interesting for VRP. */
6991 static bool
6992 stmt_interesting_for_vrp (gimple stmt)
6994 if (gimple_code (stmt) == GIMPLE_PHI)
6996 tree res = gimple_phi_result (stmt);
6997 return (!virtual_operand_p (res)
6998 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6999 || POINTER_TYPE_P (TREE_TYPE (res))));
7001 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7003 tree lhs = gimple_get_lhs (stmt);
7005 /* In general, assignments with virtual operands are not useful
7006 for deriving ranges, with the obvious exception of calls to
7007 builtin functions. */
7008 if (lhs && TREE_CODE (lhs) == SSA_NAME
7009 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7010 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7011 && (is_gimple_call (stmt)
7012 || !gimple_vuse (stmt)))
7013 return true;
7014 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7015 switch (gimple_call_internal_fn (stmt))
7017 case IFN_ADD_OVERFLOW:
7018 case IFN_SUB_OVERFLOW:
7019 case IFN_MUL_OVERFLOW:
7020 /* These internal calls return _Complex integer type,
7021 but are interesting to VRP nevertheless. */
7022 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7023 return true;
7024 break;
7025 default:
7026 break;
7029 else if (gimple_code (stmt) == GIMPLE_COND
7030 || gimple_code (stmt) == GIMPLE_SWITCH)
7031 return true;
7033 return false;
7037 /* Initialize local data structures for VRP. */
7039 static void
7040 vrp_initialize (void)
7042 basic_block bb;
7044 values_propagated = false;
7045 num_vr_values = num_ssa_names;
7046 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
7047 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7049 FOR_EACH_BB_FN (bb, cfun)
7051 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7052 gsi_next (&si))
7054 gphi *phi = si.phi ();
7055 if (!stmt_interesting_for_vrp (phi))
7057 tree lhs = PHI_RESULT (phi);
7058 set_value_range_to_varying (get_value_range (lhs));
7059 prop_set_simulate_again (phi, false);
7061 else
7062 prop_set_simulate_again (phi, true);
7065 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7066 gsi_next (&si))
7068 gimple stmt = gsi_stmt (si);
7070 /* If the statement is a control insn, then we do not
7071 want to avoid simulating the statement once. Failure
7072 to do so means that those edges will never get added. */
7073 if (stmt_ends_bb_p (stmt))
7074 prop_set_simulate_again (stmt, true);
7075 else if (!stmt_interesting_for_vrp (stmt))
7077 ssa_op_iter i;
7078 tree def;
7079 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
7080 set_value_range_to_varying (get_value_range (def));
7081 prop_set_simulate_again (stmt, false);
7083 else
7084 prop_set_simulate_again (stmt, true);
7089 /* Return the singleton value-range for NAME or NAME. */
7091 static inline tree
7092 vrp_valueize (tree name)
7094 if (TREE_CODE (name) == SSA_NAME)
7096 value_range_t *vr = get_value_range (name);
7097 if (vr->type == VR_RANGE
7098 && (vr->min == vr->max
7099 || operand_equal_p (vr->min, vr->max, 0)))
7100 return vr->min;
7102 return name;
7105 /* Return the singleton value-range for NAME if that is a constant
7106 but signal to not follow SSA edges. */
7108 static inline tree
7109 vrp_valueize_1 (tree name)
7111 if (TREE_CODE (name) == SSA_NAME)
7113 /* If the definition may be simulated again we cannot follow
7114 this SSA edge as the SSA propagator does not necessarily
7115 re-visit the use. */
7116 gimple def_stmt = SSA_NAME_DEF_STMT (name);
7117 if (!gimple_nop_p (def_stmt)
7118 && prop_simulate_again_p (def_stmt))
7119 return NULL_TREE;
7120 value_range_t *vr = get_value_range (name);
7121 if (range_int_cst_singleton_p (vr))
7122 return vr->min;
7124 return name;
7127 /* Visit assignment STMT. If it produces an interesting range, record
7128 the SSA name in *OUTPUT_P. */
7130 static enum ssa_prop_result
7131 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
7133 tree def, lhs;
7134 ssa_op_iter iter;
7135 enum gimple_code code = gimple_code (stmt);
7136 lhs = gimple_get_lhs (stmt);
7138 /* We only keep track of ranges in integral and pointer types. */
7139 if (TREE_CODE (lhs) == SSA_NAME
7140 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7141 /* It is valid to have NULL MIN/MAX values on a type. See
7142 build_range_type. */
7143 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7144 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7145 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7147 value_range_t new_vr = VR_INITIALIZER;
7149 /* Try folding the statement to a constant first. */
7150 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7151 vrp_valueize_1);
7152 if (tem && is_gimple_min_invariant (tem))
7153 set_value_range_to_value (&new_vr, tem, NULL);
7154 /* Then dispatch to value-range extracting functions. */
7155 else if (code == GIMPLE_CALL)
7156 extract_range_basic (&new_vr, stmt);
7157 else
7158 extract_range_from_assignment (&new_vr, as_a <gassign *> (stmt));
7160 if (update_value_range (lhs, &new_vr))
7162 *output_p = lhs;
7164 if (dump_file && (dump_flags & TDF_DETAILS))
7166 fprintf (dump_file, "Found new range for ");
7167 print_generic_expr (dump_file, lhs, 0);
7168 fprintf (dump_file, ": ");
7169 dump_value_range (dump_file, &new_vr);
7170 fprintf (dump_file, "\n");
7173 if (new_vr.type == VR_VARYING)
7174 return SSA_PROP_VARYING;
7176 return SSA_PROP_INTERESTING;
7179 return SSA_PROP_NOT_INTERESTING;
7181 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7182 switch (gimple_call_internal_fn (stmt))
7184 case IFN_ADD_OVERFLOW:
7185 case IFN_SUB_OVERFLOW:
7186 case IFN_MUL_OVERFLOW:
7187 /* These internal calls return _Complex integer type,
7188 which VRP does not track, but the immediate uses
7189 thereof might be interesting. */
7190 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7192 imm_use_iterator iter;
7193 use_operand_p use_p;
7194 enum ssa_prop_result res = SSA_PROP_VARYING;
7196 set_value_range_to_varying (get_value_range (lhs));
7198 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
7200 gimple use_stmt = USE_STMT (use_p);
7201 if (!is_gimple_assign (use_stmt))
7202 continue;
7203 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
7204 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
7205 continue;
7206 tree rhs1 = gimple_assign_rhs1 (use_stmt);
7207 tree use_lhs = gimple_assign_lhs (use_stmt);
7208 if (TREE_CODE (rhs1) != rhs_code
7209 || TREE_OPERAND (rhs1, 0) != lhs
7210 || TREE_CODE (use_lhs) != SSA_NAME
7211 || !stmt_interesting_for_vrp (use_stmt)
7212 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
7213 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
7214 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
7215 continue;
7217 /* If there is a change in the value range for any of the
7218 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7219 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7220 or IMAGPART_EXPR immediate uses, but none of them have
7221 a change in their value ranges, return
7222 SSA_PROP_NOT_INTERESTING. If there are no
7223 {REAL,IMAG}PART_EXPR uses at all,
7224 return SSA_PROP_VARYING. */
7225 value_range_t new_vr = VR_INITIALIZER;
7226 extract_range_basic (&new_vr, use_stmt);
7227 value_range_t *old_vr = get_value_range (use_lhs);
7228 if (old_vr->type != new_vr.type
7229 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
7230 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
7231 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
7232 res = SSA_PROP_INTERESTING;
7233 else
7234 res = SSA_PROP_NOT_INTERESTING;
7235 BITMAP_FREE (new_vr.equiv);
7236 if (res == SSA_PROP_INTERESTING)
7238 *output_p = lhs;
7239 return res;
7243 return res;
7245 break;
7246 default:
7247 break;
7250 /* Every other statement produces no useful ranges. */
7251 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7252 set_value_range_to_varying (get_value_range (def));
7254 return SSA_PROP_VARYING;
7257 /* Helper that gets the value range of the SSA_NAME with version I
7258 or a symbolic range containing the SSA_NAME only if the value range
7259 is varying or undefined. */
7261 static inline value_range_t
7262 get_vr_for_comparison (int i)
7264 value_range_t vr = *get_value_range (ssa_name (i));
7266 /* If name N_i does not have a valid range, use N_i as its own
7267 range. This allows us to compare against names that may
7268 have N_i in their ranges. */
7269 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7271 vr.type = VR_RANGE;
7272 vr.min = ssa_name (i);
7273 vr.max = ssa_name (i);
7276 return vr;
7279 /* Compare all the value ranges for names equivalent to VAR with VAL
7280 using comparison code COMP. Return the same value returned by
7281 compare_range_with_value, including the setting of
7282 *STRICT_OVERFLOW_P. */
7284 static tree
7285 compare_name_with_value (enum tree_code comp, tree var, tree val,
7286 bool *strict_overflow_p)
7288 bitmap_iterator bi;
7289 unsigned i;
7290 bitmap e;
7291 tree retval, t;
7292 int used_strict_overflow;
7293 bool sop;
7294 value_range_t equiv_vr;
7296 /* Get the set of equivalences for VAR. */
7297 e = get_value_range (var)->equiv;
7299 /* Start at -1. Set it to 0 if we do a comparison without relying
7300 on overflow, or 1 if all comparisons rely on overflow. */
7301 used_strict_overflow = -1;
7303 /* Compare vars' value range with val. */
7304 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7305 sop = false;
7306 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7307 if (retval)
7308 used_strict_overflow = sop ? 1 : 0;
7310 /* If the equiv set is empty we have done all work we need to do. */
7311 if (e == NULL)
7313 if (retval
7314 && used_strict_overflow > 0)
7315 *strict_overflow_p = true;
7316 return retval;
7319 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7321 equiv_vr = get_vr_for_comparison (i);
7322 sop = false;
7323 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7324 if (t)
7326 /* If we get different answers from different members
7327 of the equivalence set this check must be in a dead
7328 code region. Folding it to a trap representation
7329 would be correct here. For now just return don't-know. */
7330 if (retval != NULL
7331 && t != retval)
7333 retval = NULL_TREE;
7334 break;
7336 retval = t;
7338 if (!sop)
7339 used_strict_overflow = 0;
7340 else if (used_strict_overflow < 0)
7341 used_strict_overflow = 1;
7345 if (retval
7346 && used_strict_overflow > 0)
7347 *strict_overflow_p = true;
7349 return retval;
7353 /* Given a comparison code COMP and names N1 and N2, compare all the
7354 ranges equivalent to N1 against all the ranges equivalent to N2
7355 to determine the value of N1 COMP N2. Return the same value
7356 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7357 whether we relied on an overflow infinity in the comparison. */
7360 static tree
7361 compare_names (enum tree_code comp, tree n1, tree n2,
7362 bool *strict_overflow_p)
7364 tree t, retval;
7365 bitmap e1, e2;
7366 bitmap_iterator bi1, bi2;
7367 unsigned i1, i2;
7368 int used_strict_overflow;
7369 static bitmap_obstack *s_obstack = NULL;
7370 static bitmap s_e1 = NULL, s_e2 = NULL;
7372 /* Compare the ranges of every name equivalent to N1 against the
7373 ranges of every name equivalent to N2. */
7374 e1 = get_value_range (n1)->equiv;
7375 e2 = get_value_range (n2)->equiv;
7377 /* Use the fake bitmaps if e1 or e2 are not available. */
7378 if (s_obstack == NULL)
7380 s_obstack = XNEW (bitmap_obstack);
7381 bitmap_obstack_initialize (s_obstack);
7382 s_e1 = BITMAP_ALLOC (s_obstack);
7383 s_e2 = BITMAP_ALLOC (s_obstack);
7385 if (e1 == NULL)
7386 e1 = s_e1;
7387 if (e2 == NULL)
7388 e2 = s_e2;
7390 /* Add N1 and N2 to their own set of equivalences to avoid
7391 duplicating the body of the loop just to check N1 and N2
7392 ranges. */
7393 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7394 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7396 /* If the equivalence sets have a common intersection, then the two
7397 names can be compared without checking their ranges. */
7398 if (bitmap_intersect_p (e1, e2))
7400 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7401 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7403 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7404 ? boolean_true_node
7405 : boolean_false_node;
7408 /* Start at -1. Set it to 0 if we do a comparison without relying
7409 on overflow, or 1 if all comparisons rely on overflow. */
7410 used_strict_overflow = -1;
7412 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7413 N2 to their own set of equivalences to avoid duplicating the body
7414 of the loop just to check N1 and N2 ranges. */
7415 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7417 value_range_t vr1 = get_vr_for_comparison (i1);
7419 t = retval = NULL_TREE;
7420 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7422 bool sop = false;
7424 value_range_t vr2 = get_vr_for_comparison (i2);
7426 t = compare_ranges (comp, &vr1, &vr2, &sop);
7427 if (t)
7429 /* If we get different answers from different members
7430 of the equivalence set this check must be in a dead
7431 code region. Folding it to a trap representation
7432 would be correct here. For now just return don't-know. */
7433 if (retval != NULL
7434 && t != retval)
7436 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7437 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7438 return NULL_TREE;
7440 retval = t;
7442 if (!sop)
7443 used_strict_overflow = 0;
7444 else if (used_strict_overflow < 0)
7445 used_strict_overflow = 1;
7449 if (retval)
7451 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7452 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7453 if (used_strict_overflow > 0)
7454 *strict_overflow_p = true;
7455 return retval;
7459 /* None of the equivalent ranges are useful in computing this
7460 comparison. */
7461 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7462 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7463 return NULL_TREE;
7466 /* Helper function for vrp_evaluate_conditional_warnv. */
7468 static tree
7469 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7470 tree op0, tree op1,
7471 bool * strict_overflow_p)
7473 value_range_t *vr0, *vr1;
7475 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7476 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7478 tree res = NULL_TREE;
7479 if (vr0 && vr1)
7480 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7481 if (!res && vr0)
7482 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7483 if (!res && vr1)
7484 res = (compare_range_with_value
7485 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7486 return res;
7489 /* Helper function for vrp_evaluate_conditional_warnv. */
7491 static tree
7492 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7493 tree op1, bool use_equiv_p,
7494 bool *strict_overflow_p, bool *only_ranges)
7496 tree ret;
7497 if (only_ranges)
7498 *only_ranges = true;
7500 /* We only deal with integral and pointer types. */
7501 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7502 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7503 return NULL_TREE;
7505 if (use_equiv_p)
7507 if (only_ranges
7508 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7509 (code, op0, op1, strict_overflow_p)))
7510 return ret;
7511 *only_ranges = false;
7512 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7513 return compare_names (code, op0, op1, strict_overflow_p);
7514 else if (TREE_CODE (op0) == SSA_NAME)
7515 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7516 else if (TREE_CODE (op1) == SSA_NAME)
7517 return (compare_name_with_value
7518 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7520 else
7521 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7522 strict_overflow_p);
7523 return NULL_TREE;
7526 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7527 information. Return NULL if the conditional can not be evaluated.
7528 The ranges of all the names equivalent with the operands in COND
7529 will be used when trying to compute the value. If the result is
7530 based on undefined signed overflow, issue a warning if
7531 appropriate. */
7533 static tree
7534 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7536 bool sop;
7537 tree ret;
7538 bool only_ranges;
7540 /* Some passes and foldings leak constants with overflow flag set
7541 into the IL. Avoid doing wrong things with these and bail out. */
7542 if ((TREE_CODE (op0) == INTEGER_CST
7543 && TREE_OVERFLOW (op0))
7544 || (TREE_CODE (op1) == INTEGER_CST
7545 && TREE_OVERFLOW (op1)))
7546 return NULL_TREE;
7548 sop = false;
7549 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7550 &only_ranges);
7552 if (ret && sop)
7554 enum warn_strict_overflow_code wc;
7555 const char* warnmsg;
7557 if (is_gimple_min_invariant (ret))
7559 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7560 warnmsg = G_("assuming signed overflow does not occur when "
7561 "simplifying conditional to constant");
7563 else
7565 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7566 warnmsg = G_("assuming signed overflow does not occur when "
7567 "simplifying conditional");
7570 if (issue_strict_overflow_warning (wc))
7572 location_t location;
7574 if (!gimple_has_location (stmt))
7575 location = input_location;
7576 else
7577 location = gimple_location (stmt);
7578 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7582 if (warn_type_limits
7583 && ret && only_ranges
7584 && TREE_CODE_CLASS (code) == tcc_comparison
7585 && TREE_CODE (op0) == SSA_NAME)
7587 /* If the comparison is being folded and the operand on the LHS
7588 is being compared against a constant value that is outside of
7589 the natural range of OP0's type, then the predicate will
7590 always fold regardless of the value of OP0. If -Wtype-limits
7591 was specified, emit a warning. */
7592 tree type = TREE_TYPE (op0);
7593 value_range_t *vr0 = get_value_range (op0);
7595 if (vr0->type == VR_RANGE
7596 && INTEGRAL_TYPE_P (type)
7597 && vrp_val_is_min (vr0->min)
7598 && vrp_val_is_max (vr0->max)
7599 && is_gimple_min_invariant (op1))
7601 location_t location;
7603 if (!gimple_has_location (stmt))
7604 location = input_location;
7605 else
7606 location = gimple_location (stmt);
7608 warning_at (location, OPT_Wtype_limits,
7609 integer_zerop (ret)
7610 ? G_("comparison always false "
7611 "due to limited range of data type")
7612 : G_("comparison always true "
7613 "due to limited range of data type"));
7617 return ret;
7621 /* Visit conditional statement STMT. If we can determine which edge
7622 will be taken out of STMT's basic block, record it in
7623 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7624 SSA_PROP_VARYING. */
7626 static enum ssa_prop_result
7627 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7629 tree val;
7630 bool sop;
7632 *taken_edge_p = NULL;
7634 if (dump_file && (dump_flags & TDF_DETAILS))
7636 tree use;
7637 ssa_op_iter i;
7639 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7640 print_gimple_stmt (dump_file, stmt, 0, 0);
7641 fprintf (dump_file, "\nWith known ranges\n");
7643 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7645 fprintf (dump_file, "\t");
7646 print_generic_expr (dump_file, use, 0);
7647 fprintf (dump_file, ": ");
7648 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7651 fprintf (dump_file, "\n");
7654 /* Compute the value of the predicate COND by checking the known
7655 ranges of each of its operands.
7657 Note that we cannot evaluate all the equivalent ranges here
7658 because those ranges may not yet be final and with the current
7659 propagation strategy, we cannot determine when the value ranges
7660 of the names in the equivalence set have changed.
7662 For instance, given the following code fragment
7664 i_5 = PHI <8, i_13>
7666 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7667 if (i_14 == 1)
7670 Assume that on the first visit to i_14, i_5 has the temporary
7671 range [8, 8] because the second argument to the PHI function is
7672 not yet executable. We derive the range ~[0, 0] for i_14 and the
7673 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7674 the first time, since i_14 is equivalent to the range [8, 8], we
7675 determine that the predicate is always false.
7677 On the next round of propagation, i_13 is determined to be
7678 VARYING, which causes i_5 to drop down to VARYING. So, another
7679 visit to i_14 is scheduled. In this second visit, we compute the
7680 exact same range and equivalence set for i_14, namely ~[0, 0] and
7681 { i_5 }. But we did not have the previous range for i_5
7682 registered, so vrp_visit_assignment thinks that the range for
7683 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7684 is not visited again, which stops propagation from visiting
7685 statements in the THEN clause of that if().
7687 To properly fix this we would need to keep the previous range
7688 value for the names in the equivalence set. This way we would've
7689 discovered that from one visit to the other i_5 changed from
7690 range [8, 8] to VR_VARYING.
7692 However, fixing this apparent limitation may not be worth the
7693 additional checking. Testing on several code bases (GCC, DLV,
7694 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7695 4 more predicates folded in SPEC. */
7696 sop = false;
7698 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7699 gimple_cond_lhs (stmt),
7700 gimple_cond_rhs (stmt),
7701 false, &sop, NULL);
7702 if (val)
7704 if (!sop)
7705 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7706 else
7708 if (dump_file && (dump_flags & TDF_DETAILS))
7709 fprintf (dump_file,
7710 "\nIgnoring predicate evaluation because "
7711 "it assumes that signed overflow is undefined");
7712 val = NULL_TREE;
7716 if (dump_file && (dump_flags & TDF_DETAILS))
7718 fprintf (dump_file, "\nPredicate evaluates to: ");
7719 if (val == NULL_TREE)
7720 fprintf (dump_file, "DON'T KNOW\n");
7721 else
7722 print_generic_stmt (dump_file, val, 0);
7725 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7728 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7729 that includes the value VAL. The search is restricted to the range
7730 [START_IDX, n - 1] where n is the size of VEC.
7732 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7733 returned.
7735 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7736 it is placed in IDX and false is returned.
7738 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7739 returned. */
7741 static bool
7742 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7744 size_t n = gimple_switch_num_labels (stmt);
7745 size_t low, high;
7747 /* Find case label for minimum of the value range or the next one.
7748 At each iteration we are searching in [low, high - 1]. */
7750 for (low = start_idx, high = n; high != low; )
7752 tree t;
7753 int cmp;
7754 /* Note that i != high, so we never ask for n. */
7755 size_t i = (high + low) / 2;
7756 t = gimple_switch_label (stmt, i);
7758 /* Cache the result of comparing CASE_LOW and val. */
7759 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7761 if (cmp == 0)
7763 /* Ranges cannot be empty. */
7764 *idx = i;
7765 return true;
7767 else if (cmp > 0)
7768 high = i;
7769 else
7771 low = i + 1;
7772 if (CASE_HIGH (t) != NULL
7773 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7775 *idx = i;
7776 return true;
7781 *idx = high;
7782 return false;
7785 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7786 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7787 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7788 then MAX_IDX < MIN_IDX.
7789 Returns true if the default label is not needed. */
7791 static bool
7792 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7793 size_t *max_idx)
7795 size_t i, j;
7796 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7797 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7799 if (i == j
7800 && min_take_default
7801 && max_take_default)
7803 /* Only the default case label reached.
7804 Return an empty range. */
7805 *min_idx = 1;
7806 *max_idx = 0;
7807 return false;
7809 else
7811 bool take_default = min_take_default || max_take_default;
7812 tree low, high;
7813 size_t k;
7815 if (max_take_default)
7816 j--;
7818 /* If the case label range is continuous, we do not need
7819 the default case label. Verify that. */
7820 high = CASE_LOW (gimple_switch_label (stmt, i));
7821 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7822 high = CASE_HIGH (gimple_switch_label (stmt, i));
7823 for (k = i + 1; k <= j; ++k)
7825 low = CASE_LOW (gimple_switch_label (stmt, k));
7826 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7828 take_default = true;
7829 break;
7831 high = low;
7832 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7833 high = CASE_HIGH (gimple_switch_label (stmt, k));
7836 *min_idx = i;
7837 *max_idx = j;
7838 return !take_default;
7842 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7843 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7844 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7845 Returns true if the default label is not needed. */
7847 static bool
7848 find_case_label_ranges (gswitch *stmt, value_range_t *vr, size_t *min_idx1,
7849 size_t *max_idx1, size_t *min_idx2,
7850 size_t *max_idx2)
7852 size_t i, j, k, l;
7853 unsigned int n = gimple_switch_num_labels (stmt);
7854 bool take_default;
7855 tree case_low, case_high;
7856 tree min = vr->min, max = vr->max;
7858 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7860 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7862 /* Set second range to emtpy. */
7863 *min_idx2 = 1;
7864 *max_idx2 = 0;
7866 if (vr->type == VR_RANGE)
7868 *min_idx1 = i;
7869 *max_idx1 = j;
7870 return !take_default;
7873 /* Set first range to all case labels. */
7874 *min_idx1 = 1;
7875 *max_idx1 = n - 1;
7877 if (i > j)
7878 return false;
7880 /* Make sure all the values of case labels [i , j] are contained in
7881 range [MIN, MAX]. */
7882 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7883 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7884 if (tree_int_cst_compare (case_low, min) < 0)
7885 i += 1;
7886 if (case_high != NULL_TREE
7887 && tree_int_cst_compare (max, case_high) < 0)
7888 j -= 1;
7890 if (i > j)
7891 return false;
7893 /* If the range spans case labels [i, j], the corresponding anti-range spans
7894 the labels [1, i - 1] and [j + 1, n - 1]. */
7895 k = j + 1;
7896 l = n - 1;
7897 if (k > l)
7899 k = 1;
7900 l = 0;
7903 j = i - 1;
7904 i = 1;
7905 if (i > j)
7907 i = k;
7908 j = l;
7909 k = 1;
7910 l = 0;
7913 *min_idx1 = i;
7914 *max_idx1 = j;
7915 *min_idx2 = k;
7916 *max_idx2 = l;
7917 return false;
7920 /* Visit switch statement STMT. If we can determine which edge
7921 will be taken out of STMT's basic block, record it in
7922 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7923 SSA_PROP_VARYING. */
7925 static enum ssa_prop_result
7926 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7928 tree op, val;
7929 value_range_t *vr;
7930 size_t i = 0, j = 0, k, l;
7931 bool take_default;
7933 *taken_edge_p = NULL;
7934 op = gimple_switch_index (stmt);
7935 if (TREE_CODE (op) != SSA_NAME)
7936 return SSA_PROP_VARYING;
7938 vr = get_value_range (op);
7939 if (dump_file && (dump_flags & TDF_DETAILS))
7941 fprintf (dump_file, "\nVisiting switch expression with operand ");
7942 print_generic_expr (dump_file, op, 0);
7943 fprintf (dump_file, " with known range ");
7944 dump_value_range (dump_file, vr);
7945 fprintf (dump_file, "\n");
7948 if ((vr->type != VR_RANGE
7949 && vr->type != VR_ANTI_RANGE)
7950 || symbolic_range_p (vr))
7951 return SSA_PROP_VARYING;
7953 /* Find the single edge that is taken from the switch expression. */
7954 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7956 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7957 label */
7958 if (j < i)
7960 gcc_assert (take_default);
7961 val = gimple_switch_default_label (stmt);
7963 else
7965 /* Check if labels with index i to j and maybe the default label
7966 are all reaching the same label. */
7968 val = gimple_switch_label (stmt, i);
7969 if (take_default
7970 && CASE_LABEL (gimple_switch_default_label (stmt))
7971 != CASE_LABEL (val))
7973 if (dump_file && (dump_flags & TDF_DETAILS))
7974 fprintf (dump_file, " not a single destination for this "
7975 "range\n");
7976 return SSA_PROP_VARYING;
7978 for (++i; i <= j; ++i)
7980 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7982 if (dump_file && (dump_flags & TDF_DETAILS))
7983 fprintf (dump_file, " not a single destination for this "
7984 "range\n");
7985 return SSA_PROP_VARYING;
7988 for (; k <= l; ++k)
7990 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7992 if (dump_file && (dump_flags & TDF_DETAILS))
7993 fprintf (dump_file, " not a single destination for this "
7994 "range\n");
7995 return SSA_PROP_VARYING;
8000 *taken_edge_p = find_edge (gimple_bb (stmt),
8001 label_to_block (CASE_LABEL (val)));
8003 if (dump_file && (dump_flags & TDF_DETAILS))
8005 fprintf (dump_file, " will take edge to ");
8006 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
8009 return SSA_PROP_INTERESTING;
8013 /* Evaluate statement STMT. If the statement produces a useful range,
8014 return SSA_PROP_INTERESTING and record the SSA name with the
8015 interesting range into *OUTPUT_P.
8017 If STMT is a conditional branch and we can determine its truth
8018 value, the taken edge is recorded in *TAKEN_EDGE_P.
8020 If STMT produces a varying value, return SSA_PROP_VARYING. */
8022 static enum ssa_prop_result
8023 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
8025 tree def;
8026 ssa_op_iter iter;
8028 if (dump_file && (dump_flags & TDF_DETAILS))
8030 fprintf (dump_file, "\nVisiting statement:\n");
8031 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8034 if (!stmt_interesting_for_vrp (stmt))
8035 gcc_assert (stmt_ends_bb_p (stmt));
8036 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8037 return vrp_visit_assignment_or_call (stmt, output_p);
8038 else if (gimple_code (stmt) == GIMPLE_COND)
8039 return vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8040 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8041 return vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8043 /* All other statements produce nothing of interest for VRP, so mark
8044 their outputs varying and prevent further simulation. */
8045 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
8046 set_value_range_to_varying (get_value_range (def));
8048 return SSA_PROP_VARYING;
8051 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8052 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8053 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8054 possible such range. The resulting range is not canonicalized. */
8056 static void
8057 union_ranges (enum value_range_type *vr0type,
8058 tree *vr0min, tree *vr0max,
8059 enum value_range_type vr1type,
8060 tree vr1min, tree vr1max)
8062 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8063 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8065 /* [] is vr0, () is vr1 in the following classification comments. */
8066 if (mineq && maxeq)
8068 /* [( )] */
8069 if (*vr0type == vr1type)
8070 /* Nothing to do for equal ranges. */
8072 else if ((*vr0type == VR_RANGE
8073 && vr1type == VR_ANTI_RANGE)
8074 || (*vr0type == VR_ANTI_RANGE
8075 && vr1type == VR_RANGE))
8077 /* For anti-range with range union the result is varying. */
8078 goto give_up;
8080 else
8081 gcc_unreachable ();
8083 else if (operand_less_p (*vr0max, vr1min) == 1
8084 || operand_less_p (vr1max, *vr0min) == 1)
8086 /* [ ] ( ) or ( ) [ ]
8087 If the ranges have an empty intersection, result of the union
8088 operation is the anti-range or if both are anti-ranges
8089 it covers all. */
8090 if (*vr0type == VR_ANTI_RANGE
8091 && vr1type == VR_ANTI_RANGE)
8092 goto give_up;
8093 else if (*vr0type == VR_ANTI_RANGE
8094 && vr1type == VR_RANGE)
8096 else if (*vr0type == VR_RANGE
8097 && vr1type == VR_ANTI_RANGE)
8099 *vr0type = vr1type;
8100 *vr0min = vr1min;
8101 *vr0max = vr1max;
8103 else if (*vr0type == VR_RANGE
8104 && vr1type == VR_RANGE)
8106 /* The result is the convex hull of both ranges. */
8107 if (operand_less_p (*vr0max, vr1min) == 1)
8109 /* If the result can be an anti-range, create one. */
8110 if (TREE_CODE (*vr0max) == INTEGER_CST
8111 && TREE_CODE (vr1min) == INTEGER_CST
8112 && vrp_val_is_min (*vr0min)
8113 && vrp_val_is_max (vr1max))
8115 tree min = int_const_binop (PLUS_EXPR,
8116 *vr0max,
8117 build_int_cst (TREE_TYPE (*vr0max), 1));
8118 tree max = int_const_binop (MINUS_EXPR,
8119 vr1min,
8120 build_int_cst (TREE_TYPE (vr1min), 1));
8121 if (!operand_less_p (max, min))
8123 *vr0type = VR_ANTI_RANGE;
8124 *vr0min = min;
8125 *vr0max = max;
8127 else
8128 *vr0max = vr1max;
8130 else
8131 *vr0max = vr1max;
8133 else
8135 /* If the result can be an anti-range, create one. */
8136 if (TREE_CODE (vr1max) == INTEGER_CST
8137 && TREE_CODE (*vr0min) == INTEGER_CST
8138 && vrp_val_is_min (vr1min)
8139 && vrp_val_is_max (*vr0max))
8141 tree min = int_const_binop (PLUS_EXPR,
8142 vr1max,
8143 build_int_cst (TREE_TYPE (vr1max), 1));
8144 tree max = int_const_binop (MINUS_EXPR,
8145 *vr0min,
8146 build_int_cst (TREE_TYPE (*vr0min), 1));
8147 if (!operand_less_p (max, min))
8149 *vr0type = VR_ANTI_RANGE;
8150 *vr0min = min;
8151 *vr0max = max;
8153 else
8154 *vr0min = vr1min;
8156 else
8157 *vr0min = vr1min;
8160 else
8161 gcc_unreachable ();
8163 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8164 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8166 /* [ ( ) ] or [( ) ] or [ ( )] */
8167 if (*vr0type == VR_RANGE
8168 && vr1type == VR_RANGE)
8170 else if (*vr0type == VR_ANTI_RANGE
8171 && vr1type == VR_ANTI_RANGE)
8173 *vr0type = vr1type;
8174 *vr0min = vr1min;
8175 *vr0max = vr1max;
8177 else if (*vr0type == VR_ANTI_RANGE
8178 && vr1type == VR_RANGE)
8180 /* Arbitrarily choose the right or left gap. */
8181 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8182 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8183 build_int_cst (TREE_TYPE (vr1min), 1));
8184 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8185 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8186 build_int_cst (TREE_TYPE (vr1max), 1));
8187 else
8188 goto give_up;
8190 else if (*vr0type == VR_RANGE
8191 && vr1type == VR_ANTI_RANGE)
8192 /* The result covers everything. */
8193 goto give_up;
8194 else
8195 gcc_unreachable ();
8197 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8198 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8200 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8201 if (*vr0type == VR_RANGE
8202 && vr1type == VR_RANGE)
8204 *vr0type = vr1type;
8205 *vr0min = vr1min;
8206 *vr0max = vr1max;
8208 else if (*vr0type == VR_ANTI_RANGE
8209 && vr1type == VR_ANTI_RANGE)
8211 else if (*vr0type == VR_RANGE
8212 && vr1type == VR_ANTI_RANGE)
8214 *vr0type = VR_ANTI_RANGE;
8215 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8217 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8218 build_int_cst (TREE_TYPE (*vr0min), 1));
8219 *vr0min = vr1min;
8221 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8223 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8224 build_int_cst (TREE_TYPE (*vr0max), 1));
8225 *vr0max = vr1max;
8227 else
8228 goto give_up;
8230 else if (*vr0type == VR_ANTI_RANGE
8231 && vr1type == VR_RANGE)
8232 /* The result covers everything. */
8233 goto give_up;
8234 else
8235 gcc_unreachable ();
8237 else if ((operand_less_p (vr1min, *vr0max) == 1
8238 || operand_equal_p (vr1min, *vr0max, 0))
8239 && operand_less_p (*vr0min, vr1min) == 1
8240 && operand_less_p (*vr0max, vr1max) == 1)
8242 /* [ ( ] ) or [ ]( ) */
8243 if (*vr0type == VR_RANGE
8244 && vr1type == VR_RANGE)
8245 *vr0max = vr1max;
8246 else if (*vr0type == VR_ANTI_RANGE
8247 && vr1type == VR_ANTI_RANGE)
8248 *vr0min = vr1min;
8249 else if (*vr0type == VR_ANTI_RANGE
8250 && vr1type == VR_RANGE)
8252 if (TREE_CODE (vr1min) == INTEGER_CST)
8253 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8254 build_int_cst (TREE_TYPE (vr1min), 1));
8255 else
8256 goto give_up;
8258 else if (*vr0type == VR_RANGE
8259 && vr1type == VR_ANTI_RANGE)
8261 if (TREE_CODE (*vr0max) == INTEGER_CST)
8263 *vr0type = vr1type;
8264 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8265 build_int_cst (TREE_TYPE (*vr0max), 1));
8266 *vr0max = vr1max;
8268 else
8269 goto give_up;
8271 else
8272 gcc_unreachable ();
8274 else if ((operand_less_p (*vr0min, vr1max) == 1
8275 || operand_equal_p (*vr0min, vr1max, 0))
8276 && operand_less_p (vr1min, *vr0min) == 1
8277 && operand_less_p (vr1max, *vr0max) == 1)
8279 /* ( [ ) ] or ( )[ ] */
8280 if (*vr0type == VR_RANGE
8281 && vr1type == VR_RANGE)
8282 *vr0min = vr1min;
8283 else if (*vr0type == VR_ANTI_RANGE
8284 && vr1type == VR_ANTI_RANGE)
8285 *vr0max = vr1max;
8286 else if (*vr0type == VR_ANTI_RANGE
8287 && vr1type == VR_RANGE)
8289 if (TREE_CODE (vr1max) == INTEGER_CST)
8290 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8291 build_int_cst (TREE_TYPE (vr1max), 1));
8292 else
8293 goto give_up;
8295 else if (*vr0type == VR_RANGE
8296 && vr1type == VR_ANTI_RANGE)
8298 if (TREE_CODE (*vr0min) == INTEGER_CST)
8300 *vr0type = vr1type;
8301 *vr0min = vr1min;
8302 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8303 build_int_cst (TREE_TYPE (*vr0min), 1));
8305 else
8306 goto give_up;
8308 else
8309 gcc_unreachable ();
8311 else
8312 goto give_up;
8314 return;
8316 give_up:
8317 *vr0type = VR_VARYING;
8318 *vr0min = NULL_TREE;
8319 *vr0max = NULL_TREE;
8322 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8323 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8324 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8325 possible such range. The resulting range is not canonicalized. */
8327 static void
8328 intersect_ranges (enum value_range_type *vr0type,
8329 tree *vr0min, tree *vr0max,
8330 enum value_range_type vr1type,
8331 tree vr1min, tree vr1max)
8333 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8334 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8336 /* [] is vr0, () is vr1 in the following classification comments. */
8337 if (mineq && maxeq)
8339 /* [( )] */
8340 if (*vr0type == vr1type)
8341 /* Nothing to do for equal ranges. */
8343 else if ((*vr0type == VR_RANGE
8344 && vr1type == VR_ANTI_RANGE)
8345 || (*vr0type == VR_ANTI_RANGE
8346 && vr1type == VR_RANGE))
8348 /* For anti-range with range intersection the result is empty. */
8349 *vr0type = VR_UNDEFINED;
8350 *vr0min = NULL_TREE;
8351 *vr0max = NULL_TREE;
8353 else
8354 gcc_unreachable ();
8356 else if (operand_less_p (*vr0max, vr1min) == 1
8357 || operand_less_p (vr1max, *vr0min) == 1)
8359 /* [ ] ( ) or ( ) [ ]
8360 If the ranges have an empty intersection, the result of the
8361 intersect operation is the range for intersecting an
8362 anti-range with a range or empty when intersecting two ranges. */
8363 if (*vr0type == VR_RANGE
8364 && vr1type == VR_ANTI_RANGE)
8366 else if (*vr0type == VR_ANTI_RANGE
8367 && vr1type == VR_RANGE)
8369 *vr0type = vr1type;
8370 *vr0min = vr1min;
8371 *vr0max = vr1max;
8373 else if (*vr0type == VR_RANGE
8374 && vr1type == VR_RANGE)
8376 *vr0type = VR_UNDEFINED;
8377 *vr0min = NULL_TREE;
8378 *vr0max = NULL_TREE;
8380 else if (*vr0type == VR_ANTI_RANGE
8381 && vr1type == VR_ANTI_RANGE)
8383 /* If the anti-ranges are adjacent to each other merge them. */
8384 if (TREE_CODE (*vr0max) == INTEGER_CST
8385 && TREE_CODE (vr1min) == INTEGER_CST
8386 && operand_less_p (*vr0max, vr1min) == 1
8387 && integer_onep (int_const_binop (MINUS_EXPR,
8388 vr1min, *vr0max)))
8389 *vr0max = vr1max;
8390 else if (TREE_CODE (vr1max) == INTEGER_CST
8391 && TREE_CODE (*vr0min) == INTEGER_CST
8392 && operand_less_p (vr1max, *vr0min) == 1
8393 && integer_onep (int_const_binop (MINUS_EXPR,
8394 *vr0min, vr1max)))
8395 *vr0min = vr1min;
8396 /* Else arbitrarily take VR0. */
8399 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8400 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8402 /* [ ( ) ] or [( ) ] or [ ( )] */
8403 if (*vr0type == VR_RANGE
8404 && vr1type == VR_RANGE)
8406 /* If both are ranges the result is the inner one. */
8407 *vr0type = vr1type;
8408 *vr0min = vr1min;
8409 *vr0max = vr1max;
8411 else if (*vr0type == VR_RANGE
8412 && vr1type == VR_ANTI_RANGE)
8414 /* Choose the right gap if the left one is empty. */
8415 if (mineq)
8417 if (TREE_CODE (vr1max) == INTEGER_CST)
8418 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8419 build_int_cst (TREE_TYPE (vr1max), 1));
8420 else
8421 *vr0min = vr1max;
8423 /* Choose the left gap if the right one is empty. */
8424 else if (maxeq)
8426 if (TREE_CODE (vr1min) == INTEGER_CST)
8427 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8428 build_int_cst (TREE_TYPE (vr1min), 1));
8429 else
8430 *vr0max = vr1min;
8432 /* Choose the anti-range if the range is effectively varying. */
8433 else if (vrp_val_is_min (*vr0min)
8434 && vrp_val_is_max (*vr0max))
8436 *vr0type = vr1type;
8437 *vr0min = vr1min;
8438 *vr0max = vr1max;
8440 /* Else choose the range. */
8442 else if (*vr0type == VR_ANTI_RANGE
8443 && vr1type == VR_ANTI_RANGE)
8444 /* If both are anti-ranges the result is the outer one. */
8446 else if (*vr0type == VR_ANTI_RANGE
8447 && vr1type == VR_RANGE)
8449 /* The intersection is empty. */
8450 *vr0type = VR_UNDEFINED;
8451 *vr0min = NULL_TREE;
8452 *vr0max = NULL_TREE;
8454 else
8455 gcc_unreachable ();
8457 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8458 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8460 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8461 if (*vr0type == VR_RANGE
8462 && vr1type == VR_RANGE)
8463 /* Choose the inner range. */
8465 else if (*vr0type == VR_ANTI_RANGE
8466 && vr1type == VR_RANGE)
8468 /* Choose the right gap if the left is empty. */
8469 if (mineq)
8471 *vr0type = VR_RANGE;
8472 if (TREE_CODE (*vr0max) == INTEGER_CST)
8473 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8474 build_int_cst (TREE_TYPE (*vr0max), 1));
8475 else
8476 *vr0min = *vr0max;
8477 *vr0max = vr1max;
8479 /* Choose the left gap if the right is empty. */
8480 else if (maxeq)
8482 *vr0type = VR_RANGE;
8483 if (TREE_CODE (*vr0min) == INTEGER_CST)
8484 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8485 build_int_cst (TREE_TYPE (*vr0min), 1));
8486 else
8487 *vr0max = *vr0min;
8488 *vr0min = vr1min;
8490 /* Choose the anti-range if the range is effectively varying. */
8491 else if (vrp_val_is_min (vr1min)
8492 && vrp_val_is_max (vr1max))
8494 /* Else choose the range. */
8495 else
8497 *vr0type = vr1type;
8498 *vr0min = vr1min;
8499 *vr0max = vr1max;
8502 else if (*vr0type == VR_ANTI_RANGE
8503 && vr1type == VR_ANTI_RANGE)
8505 /* If both are anti-ranges the result is the outer one. */
8506 *vr0type = vr1type;
8507 *vr0min = vr1min;
8508 *vr0max = vr1max;
8510 else if (vr1type == VR_ANTI_RANGE
8511 && *vr0type == VR_RANGE)
8513 /* The intersection is empty. */
8514 *vr0type = VR_UNDEFINED;
8515 *vr0min = NULL_TREE;
8516 *vr0max = NULL_TREE;
8518 else
8519 gcc_unreachable ();
8521 else if ((operand_less_p (vr1min, *vr0max) == 1
8522 || operand_equal_p (vr1min, *vr0max, 0))
8523 && operand_less_p (*vr0min, vr1min) == 1)
8525 /* [ ( ] ) or [ ]( ) */
8526 if (*vr0type == VR_ANTI_RANGE
8527 && vr1type == VR_ANTI_RANGE)
8528 *vr0max = vr1max;
8529 else if (*vr0type == VR_RANGE
8530 && vr1type == VR_RANGE)
8531 *vr0min = vr1min;
8532 else if (*vr0type == VR_RANGE
8533 && vr1type == VR_ANTI_RANGE)
8535 if (TREE_CODE (vr1min) == INTEGER_CST)
8536 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8537 build_int_cst (TREE_TYPE (vr1min), 1));
8538 else
8539 *vr0max = vr1min;
8541 else if (*vr0type == VR_ANTI_RANGE
8542 && vr1type == VR_RANGE)
8544 *vr0type = VR_RANGE;
8545 if (TREE_CODE (*vr0max) == INTEGER_CST)
8546 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8547 build_int_cst (TREE_TYPE (*vr0max), 1));
8548 else
8549 *vr0min = *vr0max;
8550 *vr0max = vr1max;
8552 else
8553 gcc_unreachable ();
8555 else if ((operand_less_p (*vr0min, vr1max) == 1
8556 || operand_equal_p (*vr0min, vr1max, 0))
8557 && operand_less_p (vr1min, *vr0min) == 1)
8559 /* ( [ ) ] or ( )[ ] */
8560 if (*vr0type == VR_ANTI_RANGE
8561 && vr1type == VR_ANTI_RANGE)
8562 *vr0min = vr1min;
8563 else if (*vr0type == VR_RANGE
8564 && vr1type == VR_RANGE)
8565 *vr0max = vr1max;
8566 else if (*vr0type == VR_RANGE
8567 && vr1type == VR_ANTI_RANGE)
8569 if (TREE_CODE (vr1max) == INTEGER_CST)
8570 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8571 build_int_cst (TREE_TYPE (vr1max), 1));
8572 else
8573 *vr0min = vr1max;
8575 else if (*vr0type == VR_ANTI_RANGE
8576 && vr1type == VR_RANGE)
8578 *vr0type = VR_RANGE;
8579 if (TREE_CODE (*vr0min) == INTEGER_CST)
8580 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8581 build_int_cst (TREE_TYPE (*vr0min), 1));
8582 else
8583 *vr0max = *vr0min;
8584 *vr0min = vr1min;
8586 else
8587 gcc_unreachable ();
8590 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8591 result for the intersection. That's always a conservative
8592 correct estimate. */
8594 return;
8598 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8599 in *VR0. This may not be the smallest possible such range. */
8601 static void
8602 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8604 value_range_t saved;
8606 /* If either range is VR_VARYING the other one wins. */
8607 if (vr1->type == VR_VARYING)
8608 return;
8609 if (vr0->type == VR_VARYING)
8611 copy_value_range (vr0, vr1);
8612 return;
8615 /* When either range is VR_UNDEFINED the resulting range is
8616 VR_UNDEFINED, too. */
8617 if (vr0->type == VR_UNDEFINED)
8618 return;
8619 if (vr1->type == VR_UNDEFINED)
8621 set_value_range_to_undefined (vr0);
8622 return;
8625 /* Save the original vr0 so we can return it as conservative intersection
8626 result when our worker turns things to varying. */
8627 saved = *vr0;
8628 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8629 vr1->type, vr1->min, vr1->max);
8630 /* Make sure to canonicalize the result though as the inversion of a
8631 VR_RANGE can still be a VR_RANGE. */
8632 set_and_canonicalize_value_range (vr0, vr0->type,
8633 vr0->min, vr0->max, vr0->equiv);
8634 /* If that failed, use the saved original VR0. */
8635 if (vr0->type == VR_VARYING)
8637 *vr0 = saved;
8638 return;
8640 /* If the result is VR_UNDEFINED there is no need to mess with
8641 the equivalencies. */
8642 if (vr0->type == VR_UNDEFINED)
8643 return;
8645 /* The resulting set of equivalences for range intersection is the union of
8646 the two sets. */
8647 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8648 bitmap_ior_into (vr0->equiv, vr1->equiv);
8649 else if (vr1->equiv && !vr0->equiv)
8650 bitmap_copy (vr0->equiv, vr1->equiv);
8653 static void
8654 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8656 if (dump_file && (dump_flags & TDF_DETAILS))
8658 fprintf (dump_file, "Intersecting\n ");
8659 dump_value_range (dump_file, vr0);
8660 fprintf (dump_file, "\nand\n ");
8661 dump_value_range (dump_file, vr1);
8662 fprintf (dump_file, "\n");
8664 vrp_intersect_ranges_1 (vr0, vr1);
8665 if (dump_file && (dump_flags & TDF_DETAILS))
8667 fprintf (dump_file, "to\n ");
8668 dump_value_range (dump_file, vr0);
8669 fprintf (dump_file, "\n");
8673 /* Meet operation for value ranges. Given two value ranges VR0 and
8674 VR1, store in VR0 a range that contains both VR0 and VR1. This
8675 may not be the smallest possible such range. */
8677 static void
8678 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8680 value_range_t saved;
8682 if (vr0->type == VR_UNDEFINED)
8684 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8685 return;
8688 if (vr1->type == VR_UNDEFINED)
8690 /* VR0 already has the resulting range. */
8691 return;
8694 if (vr0->type == VR_VARYING)
8696 /* Nothing to do. VR0 already has the resulting range. */
8697 return;
8700 if (vr1->type == VR_VARYING)
8702 set_value_range_to_varying (vr0);
8703 return;
8706 saved = *vr0;
8707 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8708 vr1->type, vr1->min, vr1->max);
8709 if (vr0->type == VR_VARYING)
8711 /* Failed to find an efficient meet. Before giving up and setting
8712 the result to VARYING, see if we can at least derive a useful
8713 anti-range. FIXME, all this nonsense about distinguishing
8714 anti-ranges from ranges is necessary because of the odd
8715 semantics of range_includes_zero_p and friends. */
8716 if (((saved.type == VR_RANGE
8717 && range_includes_zero_p (saved.min, saved.max) == 0)
8718 || (saved.type == VR_ANTI_RANGE
8719 && range_includes_zero_p (saved.min, saved.max) == 1))
8720 && ((vr1->type == VR_RANGE
8721 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8722 || (vr1->type == VR_ANTI_RANGE
8723 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8725 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8727 /* Since this meet operation did not result from the meeting of
8728 two equivalent names, VR0 cannot have any equivalences. */
8729 if (vr0->equiv)
8730 bitmap_clear (vr0->equiv);
8731 return;
8734 set_value_range_to_varying (vr0);
8735 return;
8737 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8738 vr0->equiv);
8739 if (vr0->type == VR_VARYING)
8740 return;
8742 /* The resulting set of equivalences is always the intersection of
8743 the two sets. */
8744 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8745 bitmap_and_into (vr0->equiv, vr1->equiv);
8746 else if (vr0->equiv && !vr1->equiv)
8747 bitmap_clear (vr0->equiv);
8750 static void
8751 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8753 if (dump_file && (dump_flags & TDF_DETAILS))
8755 fprintf (dump_file, "Meeting\n ");
8756 dump_value_range (dump_file, vr0);
8757 fprintf (dump_file, "\nand\n ");
8758 dump_value_range (dump_file, vr1);
8759 fprintf (dump_file, "\n");
8761 vrp_meet_1 (vr0, vr1);
8762 if (dump_file && (dump_flags & TDF_DETAILS))
8764 fprintf (dump_file, "to\n ");
8765 dump_value_range (dump_file, vr0);
8766 fprintf (dump_file, "\n");
8771 /* Visit all arguments for PHI node PHI that flow through executable
8772 edges. If a valid value range can be derived from all the incoming
8773 value ranges, set a new range for the LHS of PHI. */
8775 static enum ssa_prop_result
8776 vrp_visit_phi_node (gphi *phi)
8778 size_t i;
8779 tree lhs = PHI_RESULT (phi);
8780 value_range_t *lhs_vr = get_value_range (lhs);
8781 value_range_t vr_result = VR_INITIALIZER;
8782 bool first = true;
8783 int edges, old_edges;
8784 struct loop *l;
8786 if (dump_file && (dump_flags & TDF_DETAILS))
8788 fprintf (dump_file, "\nVisiting PHI node: ");
8789 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8792 edges = 0;
8793 for (i = 0; i < gimple_phi_num_args (phi); i++)
8795 edge e = gimple_phi_arg_edge (phi, i);
8797 if (dump_file && (dump_flags & TDF_DETAILS))
8799 fprintf (dump_file,
8800 " Argument #%d (%d -> %d %sexecutable)\n",
8801 (int) i, e->src->index, e->dest->index,
8802 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8805 if (e->flags & EDGE_EXECUTABLE)
8807 tree arg = PHI_ARG_DEF (phi, i);
8808 value_range_t vr_arg;
8810 ++edges;
8812 if (TREE_CODE (arg) == SSA_NAME)
8814 vr_arg = *(get_value_range (arg));
8815 /* Do not allow equivalences or symbolic ranges to leak in from
8816 backedges. That creates invalid equivalencies.
8817 See PR53465 and PR54767. */
8818 if (e->flags & EDGE_DFS_BACK)
8820 if (vr_arg.type == VR_RANGE
8821 || vr_arg.type == VR_ANTI_RANGE)
8823 vr_arg.equiv = NULL;
8824 if (symbolic_range_p (&vr_arg))
8826 vr_arg.type = VR_VARYING;
8827 vr_arg.min = NULL_TREE;
8828 vr_arg.max = NULL_TREE;
8832 else
8834 /* If the non-backedge arguments range is VR_VARYING then
8835 we can still try recording a simple equivalence. */
8836 if (vr_arg.type == VR_VARYING)
8838 vr_arg.type = VR_RANGE;
8839 vr_arg.min = arg;
8840 vr_arg.max = arg;
8841 vr_arg.equiv = NULL;
8845 else
8847 if (TREE_OVERFLOW_P (arg))
8848 arg = drop_tree_overflow (arg);
8850 vr_arg.type = VR_RANGE;
8851 vr_arg.min = arg;
8852 vr_arg.max = arg;
8853 vr_arg.equiv = NULL;
8856 if (dump_file && (dump_flags & TDF_DETAILS))
8858 fprintf (dump_file, "\t");
8859 print_generic_expr (dump_file, arg, dump_flags);
8860 fprintf (dump_file, ": ");
8861 dump_value_range (dump_file, &vr_arg);
8862 fprintf (dump_file, "\n");
8865 if (first)
8866 copy_value_range (&vr_result, &vr_arg);
8867 else
8868 vrp_meet (&vr_result, &vr_arg);
8869 first = false;
8871 if (vr_result.type == VR_VARYING)
8872 break;
8876 if (vr_result.type == VR_VARYING)
8877 goto varying;
8878 else if (vr_result.type == VR_UNDEFINED)
8879 goto update_range;
8881 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8882 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8884 /* To prevent infinite iterations in the algorithm, derive ranges
8885 when the new value is slightly bigger or smaller than the
8886 previous one. We don't do this if we have seen a new executable
8887 edge; this helps us avoid an overflow infinity for conditionals
8888 which are not in a loop. If the old value-range was VR_UNDEFINED
8889 use the updated range and iterate one more time. */
8890 if (edges > 0
8891 && gimple_phi_num_args (phi) > 1
8892 && edges == old_edges
8893 && lhs_vr->type != VR_UNDEFINED)
8895 /* Compare old and new ranges, fall back to varying if the
8896 values are not comparable. */
8897 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8898 if (cmp_min == -2)
8899 goto varying;
8900 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8901 if (cmp_max == -2)
8902 goto varying;
8904 /* For non VR_RANGE or for pointers fall back to varying if
8905 the range changed. */
8906 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8907 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8908 && (cmp_min != 0 || cmp_max != 0))
8909 goto varying;
8911 /* If the new minimum is larger than than the previous one
8912 retain the old value. If the new minimum value is smaller
8913 than the previous one and not -INF go all the way to -INF + 1.
8914 In the first case, to avoid infinite bouncing between different
8915 minimums, and in the other case to avoid iterating millions of
8916 times to reach -INF. Going to -INF + 1 also lets the following
8917 iteration compute whether there will be any overflow, at the
8918 expense of one additional iteration. */
8919 if (cmp_min < 0)
8920 vr_result.min = lhs_vr->min;
8921 else if (cmp_min > 0
8922 && !vrp_val_is_min (vr_result.min))
8923 vr_result.min
8924 = int_const_binop (PLUS_EXPR,
8925 vrp_val_min (TREE_TYPE (vr_result.min)),
8926 build_int_cst (TREE_TYPE (vr_result.min), 1));
8928 /* Similarly for the maximum value. */
8929 if (cmp_max > 0)
8930 vr_result.max = lhs_vr->max;
8931 else if (cmp_max < 0
8932 && !vrp_val_is_max (vr_result.max))
8933 vr_result.max
8934 = int_const_binop (MINUS_EXPR,
8935 vrp_val_max (TREE_TYPE (vr_result.min)),
8936 build_int_cst (TREE_TYPE (vr_result.min), 1));
8938 /* If we dropped either bound to +-INF then if this is a loop
8939 PHI node SCEV may known more about its value-range. */
8940 if ((cmp_min > 0 || cmp_min < 0
8941 || cmp_max < 0 || cmp_max > 0)
8942 && (l = loop_containing_stmt (phi))
8943 && l->header == gimple_bb (phi))
8944 adjust_range_with_scev (&vr_result, l, phi, lhs);
8946 /* If we will end up with a (-INF, +INF) range, set it to
8947 VARYING. Same if the previous max value was invalid for
8948 the type and we end up with vr_result.min > vr_result.max. */
8949 if ((vrp_val_is_max (vr_result.max)
8950 && vrp_val_is_min (vr_result.min))
8951 || compare_values (vr_result.min,
8952 vr_result.max) > 0)
8953 goto varying;
8956 /* If the new range is different than the previous value, keep
8957 iterating. */
8958 update_range:
8959 if (update_value_range (lhs, &vr_result))
8961 if (dump_file && (dump_flags & TDF_DETAILS))
8963 fprintf (dump_file, "Found new range for ");
8964 print_generic_expr (dump_file, lhs, 0);
8965 fprintf (dump_file, ": ");
8966 dump_value_range (dump_file, &vr_result);
8967 fprintf (dump_file, "\n");
8970 if (vr_result.type == VR_VARYING)
8971 return SSA_PROP_VARYING;
8973 return SSA_PROP_INTERESTING;
8976 /* Nothing changed, don't add outgoing edges. */
8977 return SSA_PROP_NOT_INTERESTING;
8979 /* No match found. Set the LHS to VARYING. */
8980 varying:
8981 set_value_range_to_varying (lhs_vr);
8982 return SSA_PROP_VARYING;
8985 /* Simplify boolean operations if the source is known
8986 to be already a boolean. */
8987 static bool
8988 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8990 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8991 tree lhs, op0, op1;
8992 bool need_conversion;
8994 /* We handle only !=/== case here. */
8995 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8997 op0 = gimple_assign_rhs1 (stmt);
8998 if (!op_with_boolean_value_range_p (op0))
8999 return false;
9001 op1 = gimple_assign_rhs2 (stmt);
9002 if (!op_with_boolean_value_range_p (op1))
9003 return false;
9005 /* Reduce number of cases to handle to NE_EXPR. As there is no
9006 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9007 if (rhs_code == EQ_EXPR)
9009 if (TREE_CODE (op1) == INTEGER_CST)
9010 op1 = int_const_binop (BIT_XOR_EXPR, op1,
9011 build_int_cst (TREE_TYPE (op1), 1));
9012 else
9013 return false;
9016 lhs = gimple_assign_lhs (stmt);
9017 need_conversion
9018 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9020 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9021 if (need_conversion
9022 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9023 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9024 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9025 return false;
9027 /* For A != 0 we can substitute A itself. */
9028 if (integer_zerop (op1))
9029 gimple_assign_set_rhs_with_ops (gsi,
9030 need_conversion
9031 ? NOP_EXPR : TREE_CODE (op0), op0);
9032 /* For A != B we substitute A ^ B. Either with conversion. */
9033 else if (need_conversion)
9035 tree tem = make_ssa_name (TREE_TYPE (op0));
9036 gassign *newop
9037 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9038 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9039 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9041 /* Or without. */
9042 else
9043 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9044 update_stmt (gsi_stmt (*gsi));
9046 return true;
9049 /* Simplify a division or modulo operator to a right shift or
9050 bitwise and if the first operand is unsigned or is greater
9051 than zero and the second operand is an exact power of two.
9052 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9053 into just op0 if op0's range is known to be a subset of
9054 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9055 modulo. */
9057 static bool
9058 simplify_div_or_mod_using_ranges (gimple stmt)
9060 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9061 tree val = NULL;
9062 tree op0 = gimple_assign_rhs1 (stmt);
9063 tree op1 = gimple_assign_rhs2 (stmt);
9064 value_range_t *vr = get_value_range (op0);
9066 if (rhs_code == TRUNC_MOD_EXPR
9067 && TREE_CODE (op1) == INTEGER_CST
9068 && tree_int_cst_sgn (op1) == 1
9069 && range_int_cst_p (vr)
9070 && tree_int_cst_lt (vr->max, op1))
9072 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9073 || tree_int_cst_sgn (vr->min) >= 0
9074 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
9075 vr->min))
9077 /* If op0 already has the range op0 % op1 has,
9078 then TRUNC_MOD_EXPR won't change anything. */
9079 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
9080 gimple_assign_set_rhs_from_tree (&gsi, op0);
9081 update_stmt (stmt);
9082 return true;
9086 if (!integer_pow2p (op1))
9087 return false;
9089 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9091 val = integer_one_node;
9093 else
9095 bool sop = false;
9097 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9099 if (val
9100 && sop
9101 && integer_onep (val)
9102 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9104 location_t location;
9106 if (!gimple_has_location (stmt))
9107 location = input_location;
9108 else
9109 location = gimple_location (stmt);
9110 warning_at (location, OPT_Wstrict_overflow,
9111 "assuming signed overflow does not occur when "
9112 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9116 if (val && integer_onep (val))
9118 tree t;
9120 if (rhs_code == TRUNC_DIV_EXPR)
9122 t = build_int_cst (integer_type_node, tree_log2 (op1));
9123 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9124 gimple_assign_set_rhs1 (stmt, op0);
9125 gimple_assign_set_rhs2 (stmt, t);
9127 else
9129 t = build_int_cst (TREE_TYPE (op1), 1);
9130 t = int_const_binop (MINUS_EXPR, op1, t);
9131 t = fold_convert (TREE_TYPE (op0), t);
9133 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9134 gimple_assign_set_rhs1 (stmt, op0);
9135 gimple_assign_set_rhs2 (stmt, t);
9138 update_stmt (stmt);
9139 return true;
9142 return false;
9145 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9146 ABS_EXPR. If the operand is <= 0, then simplify the
9147 ABS_EXPR into a NEGATE_EXPR. */
9149 static bool
9150 simplify_abs_using_ranges (gimple stmt)
9152 tree val = NULL;
9153 tree op = gimple_assign_rhs1 (stmt);
9154 tree type = TREE_TYPE (op);
9155 value_range_t *vr = get_value_range (op);
9157 if (TYPE_UNSIGNED (type))
9159 val = integer_zero_node;
9161 else if (vr)
9163 bool sop = false;
9165 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9166 if (!val)
9168 sop = false;
9169 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
9170 &sop);
9172 if (val)
9174 if (integer_zerop (val))
9175 val = integer_one_node;
9176 else if (integer_onep (val))
9177 val = integer_zero_node;
9181 if (val
9182 && (integer_onep (val) || integer_zerop (val)))
9184 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9186 location_t location;
9188 if (!gimple_has_location (stmt))
9189 location = input_location;
9190 else
9191 location = gimple_location (stmt);
9192 warning_at (location, OPT_Wstrict_overflow,
9193 "assuming signed overflow does not occur when "
9194 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9197 gimple_assign_set_rhs1 (stmt, op);
9198 if (integer_onep (val))
9199 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9200 else
9201 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9202 update_stmt (stmt);
9203 return true;
9207 return false;
9210 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9211 If all the bits that are being cleared by & are already
9212 known to be zero from VR, or all the bits that are being
9213 set by | are already known to be one from VR, the bit
9214 operation is redundant. */
9216 static bool
9217 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9219 tree op0 = gimple_assign_rhs1 (stmt);
9220 tree op1 = gimple_assign_rhs2 (stmt);
9221 tree op = NULL_TREE;
9222 value_range_t vr0 = VR_INITIALIZER;
9223 value_range_t vr1 = VR_INITIALIZER;
9224 wide_int may_be_nonzero0, may_be_nonzero1;
9225 wide_int must_be_nonzero0, must_be_nonzero1;
9226 wide_int mask;
9228 if (TREE_CODE (op0) == SSA_NAME)
9229 vr0 = *(get_value_range (op0));
9230 else if (is_gimple_min_invariant (op0))
9231 set_value_range_to_value (&vr0, op0, NULL);
9232 else
9233 return false;
9235 if (TREE_CODE (op1) == SSA_NAME)
9236 vr1 = *(get_value_range (op1));
9237 else if (is_gimple_min_invariant (op1))
9238 set_value_range_to_value (&vr1, op1, NULL);
9239 else
9240 return false;
9242 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9243 &must_be_nonzero0))
9244 return false;
9245 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9246 &must_be_nonzero1))
9247 return false;
9249 switch (gimple_assign_rhs_code (stmt))
9251 case BIT_AND_EXPR:
9252 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9253 if (mask == 0)
9255 op = op0;
9256 break;
9258 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9259 if (mask == 0)
9261 op = op1;
9262 break;
9264 break;
9265 case BIT_IOR_EXPR:
9266 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9267 if (mask == 0)
9269 op = op1;
9270 break;
9272 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9273 if (mask == 0)
9275 op = op0;
9276 break;
9278 break;
9279 default:
9280 gcc_unreachable ();
9283 if (op == NULL_TREE)
9284 return false;
9286 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9287 update_stmt (gsi_stmt (*gsi));
9288 return true;
9291 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9292 a known value range VR.
9294 If there is one and only one value which will satisfy the
9295 conditional, then return that value. Else return NULL.
9297 If signed overflow must be undefined for the value to satisfy
9298 the conditional, then set *STRICT_OVERFLOW_P to true. */
9300 static tree
9301 test_for_singularity (enum tree_code cond_code, tree op0,
9302 tree op1, value_range_t *vr,
9303 bool *strict_overflow_p)
9305 tree min = NULL;
9306 tree max = NULL;
9308 /* Extract minimum/maximum values which satisfy the
9309 the conditional as it was written. */
9310 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9312 /* This should not be negative infinity; there is no overflow
9313 here. */
9314 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9316 max = op1;
9317 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9319 tree one = build_int_cst (TREE_TYPE (op0), 1);
9320 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9321 if (EXPR_P (max))
9322 TREE_NO_WARNING (max) = 1;
9325 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9327 /* This should not be positive infinity; there is no overflow
9328 here. */
9329 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9331 min = op1;
9332 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9334 tree one = build_int_cst (TREE_TYPE (op0), 1);
9335 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9336 if (EXPR_P (min))
9337 TREE_NO_WARNING (min) = 1;
9341 /* Now refine the minimum and maximum values using any
9342 value range information we have for op0. */
9343 if (min && max)
9345 if (compare_values (vr->min, min) == 1)
9346 min = vr->min;
9347 if (compare_values (vr->max, max) == -1)
9348 max = vr->max;
9350 /* If the new min/max values have converged to a single value,
9351 then there is only one value which can satisfy the condition,
9352 return that value. */
9353 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9355 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9356 && is_overflow_infinity (vr->max))
9357 *strict_overflow_p = true;
9358 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9359 && is_overflow_infinity (vr->min))
9360 *strict_overflow_p = true;
9362 return min;
9365 return NULL;
9368 /* Return whether the value range *VR fits in an integer type specified
9369 by PRECISION and UNSIGNED_P. */
9371 static bool
9372 range_fits_type_p (value_range_t *vr, unsigned dest_precision, signop dest_sgn)
9374 tree src_type;
9375 unsigned src_precision;
9376 widest_int tem;
9377 signop src_sgn;
9379 /* We can only handle integral and pointer types. */
9380 src_type = TREE_TYPE (vr->min);
9381 if (!INTEGRAL_TYPE_P (src_type)
9382 && !POINTER_TYPE_P (src_type))
9383 return false;
9385 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9386 and so is an identity transform. */
9387 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9388 src_sgn = TYPE_SIGN (src_type);
9389 if ((src_precision < dest_precision
9390 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9391 || (src_precision == dest_precision && src_sgn == dest_sgn))
9392 return true;
9394 /* Now we can only handle ranges with constant bounds. */
9395 if (vr->type != VR_RANGE
9396 || TREE_CODE (vr->min) != INTEGER_CST
9397 || TREE_CODE (vr->max) != INTEGER_CST)
9398 return false;
9400 /* For sign changes, the MSB of the wide_int has to be clear.
9401 An unsigned value with its MSB set cannot be represented by
9402 a signed wide_int, while a negative value cannot be represented
9403 by an unsigned wide_int. */
9404 if (src_sgn != dest_sgn
9405 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9406 return false;
9408 /* Then we can perform the conversion on both ends and compare
9409 the result for equality. */
9410 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9411 if (tem != wi::to_widest (vr->min))
9412 return false;
9413 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9414 if (tem != wi::to_widest (vr->max))
9415 return false;
9417 return true;
9420 /* Simplify a conditional using a relational operator to an equality
9421 test if the range information indicates only one value can satisfy
9422 the original conditional. */
9424 static bool
9425 simplify_cond_using_ranges (gcond *stmt)
9427 tree op0 = gimple_cond_lhs (stmt);
9428 tree op1 = gimple_cond_rhs (stmt);
9429 enum tree_code cond_code = gimple_cond_code (stmt);
9431 if (cond_code != NE_EXPR
9432 && cond_code != EQ_EXPR
9433 && TREE_CODE (op0) == SSA_NAME
9434 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9435 && is_gimple_min_invariant (op1))
9437 value_range_t *vr = get_value_range (op0);
9439 /* If we have range information for OP0, then we might be
9440 able to simplify this conditional. */
9441 if (vr->type == VR_RANGE)
9443 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9444 bool sop = false;
9445 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9447 if (new_tree
9448 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9450 if (dump_file)
9452 fprintf (dump_file, "Simplified relational ");
9453 print_gimple_stmt (dump_file, stmt, 0, 0);
9454 fprintf (dump_file, " into ");
9457 gimple_cond_set_code (stmt, EQ_EXPR);
9458 gimple_cond_set_lhs (stmt, op0);
9459 gimple_cond_set_rhs (stmt, new_tree);
9461 update_stmt (stmt);
9463 if (dump_file)
9465 print_gimple_stmt (dump_file, stmt, 0, 0);
9466 fprintf (dump_file, "\n");
9469 if (sop && issue_strict_overflow_warning (wc))
9471 location_t location = input_location;
9472 if (gimple_has_location (stmt))
9473 location = gimple_location (stmt);
9475 warning_at (location, OPT_Wstrict_overflow,
9476 "assuming signed overflow does not occur when "
9477 "simplifying conditional");
9480 return true;
9483 /* Try again after inverting the condition. We only deal
9484 with integral types here, so no need to worry about
9485 issues with inverting FP comparisons. */
9486 sop = false;
9487 new_tree = test_for_singularity
9488 (invert_tree_comparison (cond_code, false),
9489 op0, op1, vr, &sop);
9491 if (new_tree
9492 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9494 if (dump_file)
9496 fprintf (dump_file, "Simplified relational ");
9497 print_gimple_stmt (dump_file, stmt, 0, 0);
9498 fprintf (dump_file, " into ");
9501 gimple_cond_set_code (stmt, NE_EXPR);
9502 gimple_cond_set_lhs (stmt, op0);
9503 gimple_cond_set_rhs (stmt, new_tree);
9505 update_stmt (stmt);
9507 if (dump_file)
9509 print_gimple_stmt (dump_file, stmt, 0, 0);
9510 fprintf (dump_file, "\n");
9513 if (sop && issue_strict_overflow_warning (wc))
9515 location_t location = input_location;
9516 if (gimple_has_location (stmt))
9517 location = gimple_location (stmt);
9519 warning_at (location, OPT_Wstrict_overflow,
9520 "assuming signed overflow does not occur when "
9521 "simplifying conditional");
9524 return true;
9529 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9530 see if OP0 was set by a type conversion where the source of
9531 the conversion is another SSA_NAME with a range that fits
9532 into the range of OP0's type.
9534 If so, the conversion is redundant as the earlier SSA_NAME can be
9535 used for the comparison directly if we just massage the constant in the
9536 comparison. */
9537 if (TREE_CODE (op0) == SSA_NAME
9538 && TREE_CODE (op1) == INTEGER_CST)
9540 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
9541 tree innerop;
9543 if (!is_gimple_assign (def_stmt)
9544 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9545 return false;
9547 innerop = gimple_assign_rhs1 (def_stmt);
9549 if (TREE_CODE (innerop) == SSA_NAME
9550 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
9552 value_range_t *vr = get_value_range (innerop);
9554 if (range_int_cst_p (vr)
9555 && range_fits_type_p (vr,
9556 TYPE_PRECISION (TREE_TYPE (op0)),
9557 TYPE_SIGN (TREE_TYPE (op0)))
9558 && int_fits_type_p (op1, TREE_TYPE (innerop))
9559 /* The range must not have overflowed, or if it did overflow
9560 we must not be wrapping/trapping overflow and optimizing
9561 with strict overflow semantics. */
9562 && ((!is_negative_overflow_infinity (vr->min)
9563 && !is_positive_overflow_infinity (vr->max))
9564 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9566 /* If the range overflowed and the user has asked for warnings
9567 when strict overflow semantics were used to optimize code,
9568 issue an appropriate warning. */
9569 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9570 && (is_negative_overflow_infinity (vr->min)
9571 || is_positive_overflow_infinity (vr->max))
9572 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9574 location_t location;
9576 if (!gimple_has_location (stmt))
9577 location = input_location;
9578 else
9579 location = gimple_location (stmt);
9580 warning_at (location, OPT_Wstrict_overflow,
9581 "assuming signed overflow does not occur when "
9582 "simplifying conditional");
9585 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9586 gimple_cond_set_lhs (stmt, innerop);
9587 gimple_cond_set_rhs (stmt, newconst);
9588 return true;
9593 return false;
9596 /* Simplify a switch statement using the value range of the switch
9597 argument. */
9599 static bool
9600 simplify_switch_using_ranges (gswitch *stmt)
9602 tree op = gimple_switch_index (stmt);
9603 value_range_t *vr;
9604 bool take_default;
9605 edge e;
9606 edge_iterator ei;
9607 size_t i = 0, j = 0, n, n2;
9608 tree vec2;
9609 switch_update su;
9610 size_t k = 1, l = 0;
9612 if (TREE_CODE (op) == SSA_NAME)
9614 vr = get_value_range (op);
9616 /* We can only handle integer ranges. */
9617 if ((vr->type != VR_RANGE
9618 && vr->type != VR_ANTI_RANGE)
9619 || symbolic_range_p (vr))
9620 return false;
9622 /* Find case label for min/max of the value range. */
9623 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9625 else if (TREE_CODE (op) == INTEGER_CST)
9627 take_default = !find_case_label_index (stmt, 1, op, &i);
9628 if (take_default)
9630 i = 1;
9631 j = 0;
9633 else
9635 j = i;
9638 else
9639 return false;
9641 n = gimple_switch_num_labels (stmt);
9643 /* Bail out if this is just all edges taken. */
9644 if (i == 1
9645 && j == n - 1
9646 && take_default)
9647 return false;
9649 /* Build a new vector of taken case labels. */
9650 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9651 n2 = 0;
9653 /* Add the default edge, if necessary. */
9654 if (take_default)
9655 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9657 for (; i <= j; ++i, ++n2)
9658 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9660 for (; k <= l; ++k, ++n2)
9661 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9663 /* Mark needed edges. */
9664 for (i = 0; i < n2; ++i)
9666 e = find_edge (gimple_bb (stmt),
9667 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9668 e->aux = (void *)-1;
9671 /* Queue not needed edges for later removal. */
9672 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9674 if (e->aux == (void *)-1)
9676 e->aux = NULL;
9677 continue;
9680 if (dump_file && (dump_flags & TDF_DETAILS))
9682 fprintf (dump_file, "removing unreachable case label\n");
9684 to_remove_edges.safe_push (e);
9685 e->flags &= ~EDGE_EXECUTABLE;
9688 /* And queue an update for the stmt. */
9689 su.stmt = stmt;
9690 su.vec = vec2;
9691 to_update_switch_stmts.safe_push (su);
9692 return false;
9695 /* Simplify an integral conversion from an SSA name in STMT. */
9697 static bool
9698 simplify_conversion_using_ranges (gimple stmt)
9700 tree innerop, middleop, finaltype;
9701 gimple def_stmt;
9702 value_range_t *innervr;
9703 signop inner_sgn, middle_sgn, final_sgn;
9704 unsigned inner_prec, middle_prec, final_prec;
9705 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9707 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9708 if (!INTEGRAL_TYPE_P (finaltype))
9709 return false;
9710 middleop = gimple_assign_rhs1 (stmt);
9711 def_stmt = SSA_NAME_DEF_STMT (middleop);
9712 if (!is_gimple_assign (def_stmt)
9713 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9714 return false;
9715 innerop = gimple_assign_rhs1 (def_stmt);
9716 if (TREE_CODE (innerop) != SSA_NAME
9717 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9718 return false;
9720 /* Get the value-range of the inner operand. */
9721 innervr = get_value_range (innerop);
9722 if (innervr->type != VR_RANGE
9723 || TREE_CODE (innervr->min) != INTEGER_CST
9724 || TREE_CODE (innervr->max) != INTEGER_CST)
9725 return false;
9727 /* Simulate the conversion chain to check if the result is equal if
9728 the middle conversion is removed. */
9729 innermin = wi::to_widest (innervr->min);
9730 innermax = wi::to_widest (innervr->max);
9732 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9733 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9734 final_prec = TYPE_PRECISION (finaltype);
9736 /* If the first conversion is not injective, the second must not
9737 be widening. */
9738 if (wi::gtu_p (innermax - innermin,
9739 wi::mask <widest_int> (middle_prec, false))
9740 && middle_prec < final_prec)
9741 return false;
9742 /* We also want a medium value so that we can track the effect that
9743 narrowing conversions with sign change have. */
9744 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9745 if (inner_sgn == UNSIGNED)
9746 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9747 else
9748 innermed = 0;
9749 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9750 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9751 innermed = innermin;
9753 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9754 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9755 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9756 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9758 /* Require that the final conversion applied to both the original
9759 and the intermediate range produces the same result. */
9760 final_sgn = TYPE_SIGN (finaltype);
9761 if (wi::ext (middlemin, final_prec, final_sgn)
9762 != wi::ext (innermin, final_prec, final_sgn)
9763 || wi::ext (middlemed, final_prec, final_sgn)
9764 != wi::ext (innermed, final_prec, final_sgn)
9765 || wi::ext (middlemax, final_prec, final_sgn)
9766 != wi::ext (innermax, final_prec, final_sgn))
9767 return false;
9769 gimple_assign_set_rhs1 (stmt, innerop);
9770 update_stmt (stmt);
9771 return true;
9774 /* Simplify a conversion from integral SSA name to float in STMT. */
9776 static bool
9777 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9779 tree rhs1 = gimple_assign_rhs1 (stmt);
9780 value_range_t *vr = get_value_range (rhs1);
9781 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9782 machine_mode mode;
9783 tree tem;
9784 gassign *conv;
9786 /* We can only handle constant ranges. */
9787 if (vr->type != VR_RANGE
9788 || TREE_CODE (vr->min) != INTEGER_CST
9789 || TREE_CODE (vr->max) != INTEGER_CST)
9790 return false;
9792 /* First check if we can use a signed type in place of an unsigned. */
9793 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9794 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9795 != CODE_FOR_nothing)
9796 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
9797 mode = TYPE_MODE (TREE_TYPE (rhs1));
9798 /* If we can do the conversion in the current input mode do nothing. */
9799 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9800 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9801 return false;
9802 /* Otherwise search for a mode we can use, starting from the narrowest
9803 integer mode available. */
9804 else
9806 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9809 /* If we cannot do a signed conversion to float from mode
9810 or if the value-range does not fit in the signed type
9811 try with a wider mode. */
9812 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9813 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
9814 break;
9816 mode = GET_MODE_WIDER_MODE (mode);
9817 /* But do not widen the input. Instead leave that to the
9818 optabs expansion code. */
9819 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9820 return false;
9822 while (mode != VOIDmode);
9823 if (mode == VOIDmode)
9824 return false;
9827 /* It works, insert a truncation or sign-change before the
9828 float conversion. */
9829 tem = make_ssa_name (build_nonstandard_integer_type
9830 (GET_MODE_PRECISION (mode), 0));
9831 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
9832 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9833 gimple_assign_set_rhs1 (stmt, tem);
9834 update_stmt (stmt);
9836 return true;
9839 /* Simplify an internal fn call using ranges if possible. */
9841 static bool
9842 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9844 enum tree_code subcode;
9845 bool is_ubsan = false;
9846 bool ovf = false;
9847 switch (gimple_call_internal_fn (stmt))
9849 case IFN_UBSAN_CHECK_ADD:
9850 subcode = PLUS_EXPR;
9851 is_ubsan = true;
9852 break;
9853 case IFN_UBSAN_CHECK_SUB:
9854 subcode = MINUS_EXPR;
9855 is_ubsan = true;
9856 break;
9857 case IFN_UBSAN_CHECK_MUL:
9858 subcode = MULT_EXPR;
9859 is_ubsan = true;
9860 break;
9861 case IFN_ADD_OVERFLOW:
9862 subcode = PLUS_EXPR;
9863 break;
9864 case IFN_SUB_OVERFLOW:
9865 subcode = MINUS_EXPR;
9866 break;
9867 case IFN_MUL_OVERFLOW:
9868 subcode = MULT_EXPR;
9869 break;
9870 default:
9871 return false;
9874 tree op0 = gimple_call_arg (stmt, 0);
9875 tree op1 = gimple_call_arg (stmt, 1);
9876 tree type;
9877 if (is_ubsan)
9878 type = TREE_TYPE (op0);
9879 else if (gimple_call_lhs (stmt) == NULL_TREE)
9880 return false;
9881 else
9882 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
9883 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
9884 || (is_ubsan && ovf))
9885 return false;
9887 gimple g;
9888 location_t loc = gimple_location (stmt);
9889 if (is_ubsan)
9890 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
9891 else
9893 int prec = TYPE_PRECISION (type);
9894 tree utype = type;
9895 if (ovf
9896 || !useless_type_conversion_p (type, TREE_TYPE (op0))
9897 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
9898 utype = build_nonstandard_integer_type (prec, 1);
9899 if (TREE_CODE (op0) == INTEGER_CST)
9900 op0 = fold_convert (utype, op0);
9901 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
9903 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
9904 gimple_set_location (g, loc);
9905 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9906 op0 = gimple_assign_lhs (g);
9908 if (TREE_CODE (op1) == INTEGER_CST)
9909 op1 = fold_convert (utype, op1);
9910 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
9912 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
9913 gimple_set_location (g, loc);
9914 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9915 op1 = gimple_assign_lhs (g);
9917 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
9918 gimple_set_location (g, loc);
9919 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9920 if (utype != type)
9922 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
9923 gimple_assign_lhs (g));
9924 gimple_set_location (g, loc);
9925 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9927 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
9928 gimple_assign_lhs (g),
9929 build_int_cst (type, ovf));
9931 gimple_set_location (g, loc);
9932 gsi_replace (gsi, g, false);
9933 return true;
9936 /* Simplify STMT using ranges if possible. */
9938 static bool
9939 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9941 gimple stmt = gsi_stmt (*gsi);
9942 if (is_gimple_assign (stmt))
9944 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9945 tree rhs1 = gimple_assign_rhs1 (stmt);
9947 switch (rhs_code)
9949 case EQ_EXPR:
9950 case NE_EXPR:
9951 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9952 if the RHS is zero or one, and the LHS are known to be boolean
9953 values. */
9954 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9955 return simplify_truth_ops_using_ranges (gsi, stmt);
9956 break;
9958 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9959 and BIT_AND_EXPR respectively if the first operand is greater
9960 than zero and the second operand is an exact power of two.
9961 Also optimize TRUNC_MOD_EXPR away if the second operand is
9962 constant and the first operand already has the right value
9963 range. */
9964 case TRUNC_DIV_EXPR:
9965 case TRUNC_MOD_EXPR:
9966 if (TREE_CODE (rhs1) == SSA_NAME
9967 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9968 return simplify_div_or_mod_using_ranges (stmt);
9969 break;
9971 /* Transform ABS (X) into X or -X as appropriate. */
9972 case ABS_EXPR:
9973 if (TREE_CODE (rhs1) == SSA_NAME
9974 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9975 return simplify_abs_using_ranges (stmt);
9976 break;
9978 case BIT_AND_EXPR:
9979 case BIT_IOR_EXPR:
9980 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9981 if all the bits being cleared are already cleared or
9982 all the bits being set are already set. */
9983 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9984 return simplify_bit_ops_using_ranges (gsi, stmt);
9985 break;
9987 CASE_CONVERT:
9988 if (TREE_CODE (rhs1) == SSA_NAME
9989 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9990 return simplify_conversion_using_ranges (stmt);
9991 break;
9993 case FLOAT_EXPR:
9994 if (TREE_CODE (rhs1) == SSA_NAME
9995 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9996 return simplify_float_conversion_using_ranges (gsi, stmt);
9997 break;
9999 default:
10000 break;
10003 else if (gimple_code (stmt) == GIMPLE_COND)
10004 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
10005 else if (gimple_code (stmt) == GIMPLE_SWITCH)
10006 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10007 else if (is_gimple_call (stmt)
10008 && gimple_call_internal_p (stmt))
10009 return simplify_internal_call_using_ranges (gsi, stmt);
10011 return false;
10014 /* If the statement pointed by SI has a predicate whose value can be
10015 computed using the value range information computed by VRP, compute
10016 its value and return true. Otherwise, return false. */
10018 static bool
10019 fold_predicate_in (gimple_stmt_iterator *si)
10021 bool assignment_p = false;
10022 tree val;
10023 gimple stmt = gsi_stmt (*si);
10025 if (is_gimple_assign (stmt)
10026 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10028 assignment_p = true;
10029 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10030 gimple_assign_rhs1 (stmt),
10031 gimple_assign_rhs2 (stmt),
10032 stmt);
10034 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10035 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10036 gimple_cond_lhs (cond_stmt),
10037 gimple_cond_rhs (cond_stmt),
10038 stmt);
10039 else
10040 return false;
10042 if (val)
10044 if (assignment_p)
10045 val = fold_convert (gimple_expr_type (stmt), val);
10047 if (dump_file)
10049 fprintf (dump_file, "Folding predicate ");
10050 print_gimple_expr (dump_file, stmt, 0, 0);
10051 fprintf (dump_file, " to ");
10052 print_generic_expr (dump_file, val, 0);
10053 fprintf (dump_file, "\n");
10056 if (is_gimple_assign (stmt))
10057 gimple_assign_set_rhs_from_tree (si, val);
10058 else
10060 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10061 gcond *cond_stmt = as_a <gcond *> (stmt);
10062 if (integer_zerop (val))
10063 gimple_cond_make_false (cond_stmt);
10064 else if (integer_onep (val))
10065 gimple_cond_make_true (cond_stmt);
10066 else
10067 gcc_unreachable ();
10070 return true;
10073 return false;
10076 /* Callback for substitute_and_fold folding the stmt at *SI. */
10078 static bool
10079 vrp_fold_stmt (gimple_stmt_iterator *si)
10081 if (fold_predicate_in (si))
10082 return true;
10084 return simplify_stmt_using_ranges (si);
10087 /* Unwindable const/copy equivalences. */
10088 const_and_copies *equiv_stack;
10090 /* A trivial wrapper so that we can present the generic jump threading
10091 code with a simple API for simplifying statements. STMT is the
10092 statement we want to simplify, WITHIN_STMT provides the location
10093 for any overflow warnings. */
10095 static tree
10096 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
10098 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10099 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10100 gimple_cond_lhs (cond_stmt),
10101 gimple_cond_rhs (cond_stmt),
10102 within_stmt);
10104 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10106 value_range_t new_vr = VR_INITIALIZER;
10107 tree lhs = gimple_assign_lhs (assign_stmt);
10109 if (TREE_CODE (lhs) == SSA_NAME
10110 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10111 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10113 extract_range_from_assignment (&new_vr, assign_stmt);
10114 if (range_int_cst_singleton_p (&new_vr))
10115 return new_vr.min;
10119 return NULL_TREE;
10122 /* Blocks which have more than one predecessor and more than
10123 one successor present jump threading opportunities, i.e.,
10124 when the block is reached from a specific predecessor, we
10125 may be able to determine which of the outgoing edges will
10126 be traversed. When this optimization applies, we are able
10127 to avoid conditionals at runtime and we may expose secondary
10128 optimization opportunities.
10130 This routine is effectively a driver for the generic jump
10131 threading code. It basically just presents the generic code
10132 with edges that may be suitable for jump threading.
10134 Unlike DOM, we do not iterate VRP if jump threading was successful.
10135 While iterating may expose new opportunities for VRP, it is expected
10136 those opportunities would be very limited and the compile time cost
10137 to expose those opportunities would be significant.
10139 As jump threading opportunities are discovered, they are registered
10140 for later realization. */
10142 static void
10143 identify_jump_threads (void)
10145 basic_block bb;
10146 gcond *dummy;
10147 int i;
10148 edge e;
10150 /* Ugh. When substituting values earlier in this pass we can
10151 wipe the dominance information. So rebuild the dominator
10152 information as we need it within the jump threading code. */
10153 calculate_dominance_info (CDI_DOMINATORS);
10155 /* We do not allow VRP information to be used for jump threading
10156 across a back edge in the CFG. Otherwise it becomes too
10157 difficult to avoid eliminating loop exit tests. Of course
10158 EDGE_DFS_BACK is not accurate at this time so we have to
10159 recompute it. */
10160 mark_dfs_back_edges ();
10162 /* Do not thread across edges we are about to remove. Just marking
10163 them as EDGE_DFS_BACK will do. */
10164 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10165 e->flags |= EDGE_DFS_BACK;
10167 /* Allocate our unwinder stack to unwind any temporary equivalences
10168 that might be recorded. */
10169 equiv_stack = new const_and_copies (dump_file, dump_flags);
10171 /* To avoid lots of silly node creation, we create a single
10172 conditional and just modify it in-place when attempting to
10173 thread jumps. */
10174 dummy = gimple_build_cond (EQ_EXPR,
10175 integer_zero_node, integer_zero_node,
10176 NULL, NULL);
10178 /* Walk through all the blocks finding those which present a
10179 potential jump threading opportunity. We could set this up
10180 as a dominator walker and record data during the walk, but
10181 I doubt it's worth the effort for the classes of jump
10182 threading opportunities we are trying to identify at this
10183 point in compilation. */
10184 FOR_EACH_BB_FN (bb, cfun)
10186 gimple last;
10188 /* If the generic jump threading code does not find this block
10189 interesting, then there is nothing to do. */
10190 if (! potentially_threadable_block (bb))
10191 continue;
10193 last = last_stmt (bb);
10195 /* We're basically looking for a switch or any kind of conditional with
10196 integral or pointer type arguments. Note the type of the second
10197 argument will be the same as the first argument, so no need to
10198 check it explicitly.
10200 We also handle the case where there are no statements in the
10201 block. This come up with forwarder blocks that are not
10202 optimized away because they lead to a loop header. But we do
10203 want to thread through them as we can sometimes thread to the
10204 loop exit which is obviously profitable. */
10205 if (!last
10206 || gimple_code (last) == GIMPLE_SWITCH
10207 || (gimple_code (last) == GIMPLE_COND
10208 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
10209 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
10210 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
10211 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
10212 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
10214 edge_iterator ei;
10216 /* We've got a block with multiple predecessors and multiple
10217 successors which also ends in a suitable conditional or
10218 switch statement. For each predecessor, see if we can thread
10219 it to a specific successor. */
10220 FOR_EACH_EDGE (e, ei, bb->preds)
10222 /* Do not thread across back edges or abnormal edges
10223 in the CFG. */
10224 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
10225 continue;
10227 thread_across_edge (dummy, e, true, equiv_stack,
10228 simplify_stmt_for_jump_threading);
10233 /* We do not actually update the CFG or SSA graphs at this point as
10234 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10235 handle ASSERT_EXPRs gracefully. */
10238 /* We identified all the jump threading opportunities earlier, but could
10239 not transform the CFG at that time. This routine transforms the
10240 CFG and arranges for the dominator tree to be rebuilt if necessary.
10242 Note the SSA graph update will occur during the normal TODO
10243 processing by the pass manager. */
10244 static void
10245 finalize_jump_threads (void)
10247 thread_through_all_blocks (false);
10248 delete equiv_stack;
10252 /* Traverse all the blocks folding conditionals with known ranges. */
10254 static void
10255 vrp_finalize (void)
10257 size_t i;
10259 values_propagated = true;
10261 if (dump_file)
10263 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10264 dump_all_value_ranges (dump_file);
10265 fprintf (dump_file, "\n");
10268 substitute_and_fold (op_with_constant_singleton_value_range,
10269 vrp_fold_stmt, false);
10271 if (warn_array_bounds && first_pass_instance)
10272 check_all_array_refs ();
10274 /* We must identify jump threading opportunities before we release
10275 the datastructures built by VRP. */
10276 identify_jump_threads ();
10278 /* Set value range to non pointer SSA_NAMEs. */
10279 for (i = 0; i < num_vr_values; i++)
10280 if (vr_value[i])
10282 tree name = ssa_name (i);
10284 if (!name
10285 || POINTER_TYPE_P (TREE_TYPE (name))
10286 || (vr_value[i]->type == VR_VARYING)
10287 || (vr_value[i]->type == VR_UNDEFINED))
10288 continue;
10290 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
10291 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
10292 && (vr_value[i]->type == VR_RANGE
10293 || vr_value[i]->type == VR_ANTI_RANGE))
10294 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10295 vr_value[i]->max);
10298 /* Free allocated memory. */
10299 for (i = 0; i < num_vr_values; i++)
10300 if (vr_value[i])
10302 BITMAP_FREE (vr_value[i]->equiv);
10303 free (vr_value[i]);
10306 free (vr_value);
10307 free (vr_phi_edge_counts);
10309 /* So that we can distinguish between VRP data being available
10310 and not available. */
10311 vr_value = NULL;
10312 vr_phi_edge_counts = NULL;
10316 /* Main entry point to VRP (Value Range Propagation). This pass is
10317 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10318 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10319 Programming Language Design and Implementation, pp. 67-78, 1995.
10320 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10322 This is essentially an SSA-CCP pass modified to deal with ranges
10323 instead of constants.
10325 While propagating ranges, we may find that two or more SSA name
10326 have equivalent, though distinct ranges. For instance,
10328 1 x_9 = p_3->a;
10329 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10330 3 if (p_4 == q_2)
10331 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10332 5 endif
10333 6 if (q_2)
10335 In the code above, pointer p_5 has range [q_2, q_2], but from the
10336 code we can also determine that p_5 cannot be NULL and, if q_2 had
10337 a non-varying range, p_5's range should also be compatible with it.
10339 These equivalences are created by two expressions: ASSERT_EXPR and
10340 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10341 result of another assertion, then we can use the fact that p_5 and
10342 p_4 are equivalent when evaluating p_5's range.
10344 Together with value ranges, we also propagate these equivalences
10345 between names so that we can take advantage of information from
10346 multiple ranges when doing final replacement. Note that this
10347 equivalency relation is transitive but not symmetric.
10349 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10350 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10351 in contexts where that assertion does not hold (e.g., in line 6).
10353 TODO, the main difference between this pass and Patterson's is that
10354 we do not propagate edge probabilities. We only compute whether
10355 edges can be taken or not. That is, instead of having a spectrum
10356 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10357 DON'T KNOW. In the future, it may be worthwhile to propagate
10358 probabilities to aid branch prediction. */
10360 static unsigned int
10361 execute_vrp (void)
10363 int i;
10364 edge e;
10365 switch_update *su;
10367 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
10368 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
10369 scev_initialize ();
10371 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10372 Inserting assertions may split edges which will invalidate
10373 EDGE_DFS_BACK. */
10374 insert_range_assertions ();
10376 to_remove_edges.create (10);
10377 to_update_switch_stmts.create (5);
10378 threadedge_initialize_values ();
10380 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10381 mark_dfs_back_edges ();
10383 vrp_initialize ();
10384 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
10385 vrp_finalize ();
10387 free_numbers_of_iterations_estimates ();
10389 /* ASSERT_EXPRs must be removed before finalizing jump threads
10390 as finalizing jump threads calls the CFG cleanup code which
10391 does not properly handle ASSERT_EXPRs. */
10392 remove_range_assertions ();
10394 /* If we exposed any new variables, go ahead and put them into
10395 SSA form now, before we handle jump threading. This simplifies
10396 interactions between rewriting of _DECL nodes into SSA form
10397 and rewriting SSA_NAME nodes into SSA form after block
10398 duplication and CFG manipulation. */
10399 update_ssa (TODO_update_ssa);
10401 finalize_jump_threads ();
10403 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10404 CFG in a broken state and requires a cfg_cleanup run. */
10405 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10406 remove_edge (e);
10407 /* Update SWITCH_EXPR case label vector. */
10408 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
10410 size_t j;
10411 size_t n = TREE_VEC_LENGTH (su->vec);
10412 tree label;
10413 gimple_switch_set_num_labels (su->stmt, n);
10414 for (j = 0; j < n; j++)
10415 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
10416 /* As we may have replaced the default label with a regular one
10417 make sure to make it a real default label again. This ensures
10418 optimal expansion. */
10419 label = gimple_switch_label (su->stmt, 0);
10420 CASE_LOW (label) = NULL_TREE;
10421 CASE_HIGH (label) = NULL_TREE;
10424 if (to_remove_edges.length () > 0)
10426 free_dominance_info (CDI_DOMINATORS);
10427 loops_state_set (LOOPS_NEED_FIXUP);
10430 to_remove_edges.release ();
10431 to_update_switch_stmts.release ();
10432 threadedge_finalize_values ();
10434 scev_finalize ();
10435 loop_optimizer_finalize ();
10436 return 0;
10439 namespace {
10441 const pass_data pass_data_vrp =
10443 GIMPLE_PASS, /* type */
10444 "vrp", /* name */
10445 OPTGROUP_NONE, /* optinfo_flags */
10446 TV_TREE_VRP, /* tv_id */
10447 PROP_ssa, /* properties_required */
10448 0, /* properties_provided */
10449 0, /* properties_destroyed */
10450 0, /* todo_flags_start */
10451 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
10454 class pass_vrp : public gimple_opt_pass
10456 public:
10457 pass_vrp (gcc::context *ctxt)
10458 : gimple_opt_pass (pass_data_vrp, ctxt)
10461 /* opt_pass methods: */
10462 opt_pass * clone () { return new pass_vrp (m_ctxt); }
10463 virtual bool gate (function *) { return flag_tree_vrp != 0; }
10464 virtual unsigned int execute (function *) { return execute_vrp (); }
10466 }; // class pass_vrp
10468 } // anon namespace
10470 gimple_opt_pass *
10471 make_pass_vrp (gcc::context *ctxt)
10473 return new pass_vrp (ctxt);