2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / sel-sched.c
blobf706fb71c087028e4173f039584a40bacfc6d1f3
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "input.h"
29 #include "function.h"
30 #include "predict.h"
31 #include "dominance.h"
32 #include "cfg.h"
33 #include "cfgbuild.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 #include "except.h"
39 #include "recog.h"
40 #include "params.h"
41 #include "target.h"
42 #include "output.h"
43 #include "sched-int.h"
44 #include "symtab.h"
45 #include "tree.h"
46 #include "langhooks.h"
47 #include "rtlhooks-def.h"
48 #include "emit-rtl.h"
49 #include "ira.h"
50 #include "rtl-iter.h"
52 #ifdef INSN_SCHEDULING
53 #include "sel-sched-ir.h"
54 #include "sel-sched-dump.h"
55 #include "sel-sched.h"
56 #include "dbgcnt.h"
58 /* Implementation of selective scheduling approach.
59 The below implementation follows the original approach with the following
60 changes:
62 o the scheduler works after register allocation (but can be also tuned
63 to work before RA);
64 o some instructions are not copied or register renamed;
65 o conditional jumps are not moved with code duplication;
66 o several jumps in one parallel group are not supported;
67 o when pipelining outer loops, code motion through inner loops
68 is not supported;
69 o control and data speculation are supported;
70 o some improvements for better compile time/performance were made.
72 Terminology
73 ===========
75 A vinsn, or virtual insn, is an insn with additional data characterizing
76 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
77 Vinsns also act as smart pointers to save memory by reusing them in
78 different expressions. A vinsn is described by vinsn_t type.
80 An expression is a vinsn with additional data characterizing its properties
81 at some point in the control flow graph. The data may be its usefulness,
82 priority, speculative status, whether it was renamed/subsituted, etc.
83 An expression is described by expr_t type.
85 Availability set (av_set) is a set of expressions at a given control flow
86 point. It is represented as av_set_t. The expressions in av sets are kept
87 sorted in the terms of expr_greater_p function. It allows to truncate
88 the set while leaving the best expressions.
90 A fence is a point through which code motion is prohibited. On each step,
91 we gather a parallel group of insns at a fence. It is possible to have
92 multiple fences. A fence is represented via fence_t.
94 A boundary is the border between the fence group and the rest of the code.
95 Currently, we never have more than one boundary per fence, as we finalize
96 the fence group when a jump is scheduled. A boundary is represented
97 via bnd_t.
99 High-level overview
100 ===================
102 The scheduler finds regions to schedule, schedules each one, and finalizes.
103 The regions are formed starting from innermost loops, so that when the inner
104 loop is pipelined, its prologue can be scheduled together with yet unprocessed
105 outer loop. The rest of acyclic regions are found using extend_rgns:
106 the blocks that are not yet allocated to any regions are traversed in top-down
107 order, and a block is added to a region to which all its predecessors belong;
108 otherwise, the block starts its own region.
110 The main scheduling loop (sel_sched_region_2) consists of just
111 scheduling on each fence and updating fences. For each fence,
112 we fill a parallel group of insns (fill_insns) until some insns can be added.
113 First, we compute available exprs (av-set) at the boundary of the current
114 group. Second, we choose the best expression from it. If the stall is
115 required to schedule any of the expressions, we advance the current cycle
116 appropriately. So, the final group does not exactly correspond to a VLIW
117 word. Third, we move the chosen expression to the boundary (move_op)
118 and update the intermediate av sets and liveness sets. We quit fill_insns
119 when either no insns left for scheduling or we have scheduled enough insns
120 so we feel like advancing a scheduling point.
122 Computing available expressions
123 ===============================
125 The computation (compute_av_set) is a bottom-up traversal. At each insn,
126 we're moving the union of its successors' sets through it via
127 moveup_expr_set. The dependent expressions are removed. Local
128 transformations (substitution, speculation) are applied to move more
129 exprs. Then the expr corresponding to the current insn is added.
130 The result is saved on each basic block header.
132 When traversing the CFG, we're moving down for no more than max_ws insns.
133 Also, we do not move down to ineligible successors (is_ineligible_successor),
134 which include moving along a back-edge, moving to already scheduled code,
135 and moving to another fence. The first two restrictions are lifted during
136 pipelining, which allows us to move insns along a back-edge. We always have
137 an acyclic region for scheduling because we forbid motion through fences.
139 Choosing the best expression
140 ============================
142 We sort the final availability set via sel_rank_for_schedule, then we remove
143 expressions which are not yet ready (tick_check_p) or which dest registers
144 cannot be used. For some of them, we choose another register via
145 find_best_reg. To do this, we run find_used_regs to calculate the set of
146 registers which cannot be used. The find_used_regs function performs
147 a traversal of code motion paths for an expr. We consider for renaming
148 only registers which are from the same regclass as the original one and
149 using which does not interfere with any live ranges. Finally, we convert
150 the resulting set to the ready list format and use max_issue and reorder*
151 hooks similarly to the Haifa scheduler.
153 Scheduling the best expression
154 ==============================
156 We run the move_op routine to perform the same type of code motion paths
157 traversal as in find_used_regs. (These are working via the same driver,
158 code_motion_path_driver.) When moving down the CFG, we look for original
159 instruction that gave birth to a chosen expression. We undo
160 the transformations performed on an expression via the history saved in it.
161 When found, we remove the instruction or leave a reg-reg copy/speculation
162 check if needed. On a way up, we insert bookkeeping copies at each join
163 point. If a copy is not needed, it will be removed later during this
164 traversal. We update the saved av sets and liveness sets on the way up, too.
166 Finalizing the schedule
167 =======================
169 When pipelining, we reschedule the blocks from which insns were pipelined
170 to get a tighter schedule. On Itanium, we also perform bundling via
171 the same routine from ia64.c.
173 Dependence analysis changes
174 ===========================
176 We augmented the sched-deps.c with hooks that get called when a particular
177 dependence is found in a particular part of an insn. Using these hooks, we
178 can do several actions such as: determine whether an insn can be moved through
179 another (has_dependence_p, moveup_expr); find out whether an insn can be
180 scheduled on the current cycle (tick_check_p); find out registers that
181 are set/used/clobbered by an insn and find out all the strange stuff that
182 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
183 init_global_and_expr_for_insn).
185 Initialization changes
186 ======================
188 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
189 reused in all of the schedulers. We have split up the initialization of data
190 of such parts into different functions prefixed with scheduler type and
191 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
192 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
193 The same splitting is done with current_sched_info structure:
194 dependence-related parts are in sched_deps_info, common part is in
195 common_sched_info, and haifa/sel/etc part is in current_sched_info.
197 Target contexts
198 ===============
200 As we now have multiple-point scheduling, this would not work with backends
201 which save some of the scheduler state to use it in the target hooks.
202 For this purpose, we introduce a concept of target contexts, which
203 encapsulate such information. The backend should implement simple routines
204 of allocating/freeing/setting such a context. The scheduler calls these
205 as target hooks and handles the target context as an opaque pointer (similar
206 to the DFA state type, state_t).
208 Various speedups
209 ================
211 As the correct data dependence graph is not supported during scheduling (which
212 is to be changed in mid-term), we cache as much of the dependence analysis
213 results as possible to avoid reanalyzing. This includes: bitmap caches on
214 each insn in stream of the region saying yes/no for a query with a pair of
215 UIDs; hashtables with the previously done transformations on each insn in
216 stream; a vector keeping a history of transformations on each expr.
218 Also, we try to minimize the dependence context used on each fence to check
219 whether the given expression is ready for scheduling by removing from it
220 insns that are definitely completed the execution. The results of
221 tick_check_p checks are also cached in a vector on each fence.
223 We keep a valid liveness set on each insn in a region to avoid the high
224 cost of recomputation on large basic blocks.
226 Finally, we try to minimize the number of needed updates to the availability
227 sets. The updates happen in two cases: when fill_insns terminates,
228 we advance all fences and increase the stage number to show that the region
229 has changed and the sets are to be recomputed; and when the next iteration
230 of a loop in fill_insns happens (but this one reuses the saved av sets
231 on bb headers.) Thus, we try to break the fill_insns loop only when
232 "significant" number of insns from the current scheduling window was
233 scheduled. This should be made a target param.
236 TODO: correctly support the data dependence graph at all stages and get rid
237 of all caches. This should speed up the scheduler.
238 TODO: implement moving cond jumps with bookkeeping copies on both targets.
239 TODO: tune the scheduler before RA so it does not create too much pseudos.
242 References:
243 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
244 selective scheduling and software pipelining.
245 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
247 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
248 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
249 for GCC. In Proceedings of GCC Developers' Summit 2006.
251 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
252 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
253 http://rogue.colorado.edu/EPIC7/.
257 /* True when pipelining is enabled. */
258 bool pipelining_p;
260 /* True if bookkeeping is enabled. */
261 bool bookkeeping_p;
263 /* Maximum number of insns that are eligible for renaming. */
264 int max_insns_to_rename;
267 /* Definitions of local types and macros. */
269 /* Represents possible outcomes of moving an expression through an insn. */
270 enum MOVEUP_EXPR_CODE
272 /* The expression is not changed. */
273 MOVEUP_EXPR_SAME,
275 /* Not changed, but requires a new destination register. */
276 MOVEUP_EXPR_AS_RHS,
278 /* Cannot be moved. */
279 MOVEUP_EXPR_NULL,
281 /* Changed (substituted or speculated). */
282 MOVEUP_EXPR_CHANGED
285 /* The container to be passed into rtx search & replace functions. */
286 struct rtx_search_arg
288 /* What we are searching for. */
289 rtx x;
291 /* The occurrence counter. */
292 int n;
295 typedef struct rtx_search_arg *rtx_search_arg_p;
297 /* This struct contains precomputed hard reg sets that are needed when
298 computing registers available for renaming. */
299 struct hard_regs_data
301 /* For every mode, this stores registers available for use with
302 that mode. */
303 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
305 /* True when regs_for_mode[mode] is initialized. */
306 bool regs_for_mode_ok[NUM_MACHINE_MODES];
308 /* For every register, it has regs that are ok to rename into it.
309 The register in question is always set. If not, this means
310 that the whole set is not computed yet. */
311 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
313 /* For every mode, this stores registers not available due to
314 call clobbering. */
315 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
317 /* All registers that are used or call used. */
318 HARD_REG_SET regs_ever_used;
320 #ifdef STACK_REGS
321 /* Stack registers. */
322 HARD_REG_SET stack_regs;
323 #endif
326 /* Holds the results of computation of available for renaming and
327 unavailable hard registers. */
328 struct reg_rename
330 /* These are unavailable due to calls crossing, globalness, etc. */
331 HARD_REG_SET unavailable_hard_regs;
333 /* These are *available* for renaming. */
334 HARD_REG_SET available_for_renaming;
336 /* Whether this code motion path crosses a call. */
337 bool crosses_call;
340 /* A global structure that contains the needed information about harg
341 regs. */
342 static struct hard_regs_data sel_hrd;
345 /* This structure holds local data used in code_motion_path_driver hooks on
346 the same or adjacent levels of recursion. Here we keep those parameters
347 that are not used in code_motion_path_driver routine itself, but only in
348 its hooks. Moreover, all parameters that can be modified in hooks are
349 in this structure, so all other parameters passed explicitly to hooks are
350 read-only. */
351 struct cmpd_local_params
353 /* Local params used in move_op_* functions. */
355 /* Edges for bookkeeping generation. */
356 edge e1, e2;
358 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
359 expr_t c_expr_merged, c_expr_local;
361 /* Local params used in fur_* functions. */
362 /* Copy of the ORIGINAL_INSN list, stores the original insns already
363 found before entering the current level of code_motion_path_driver. */
364 def_list_t old_original_insns;
366 /* Local params used in move_op_* functions. */
367 /* True when we have removed last insn in the block which was
368 also a boundary. Do not update anything or create bookkeeping copies. */
369 BOOL_BITFIELD removed_last_insn : 1;
372 /* Stores the static parameters for move_op_* calls. */
373 struct moveop_static_params
375 /* Destination register. */
376 rtx dest;
378 /* Current C_EXPR. */
379 expr_t c_expr;
381 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
382 they are to be removed. */
383 int uid;
385 #ifdef ENABLE_CHECKING
386 /* This is initialized to the insn on which the driver stopped its traversal. */
387 insn_t failed_insn;
388 #endif
390 /* True if we scheduled an insn with different register. */
391 bool was_renamed;
394 /* Stores the static parameters for fur_* calls. */
395 struct fur_static_params
397 /* Set of registers unavailable on the code motion path. */
398 regset used_regs;
400 /* Pointer to the list of original insns definitions. */
401 def_list_t *original_insns;
403 /* True if a code motion path contains a CALL insn. */
404 bool crosses_call;
407 typedef struct fur_static_params *fur_static_params_p;
408 typedef struct cmpd_local_params *cmpd_local_params_p;
409 typedef struct moveop_static_params *moveop_static_params_p;
411 /* Set of hooks and parameters that determine behaviour specific to
412 move_op or find_used_regs functions. */
413 struct code_motion_path_driver_info_def
415 /* Called on enter to the basic block. */
416 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
418 /* Called when original expr is found. */
419 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
421 /* Called while descending current basic block if current insn is not
422 the original EXPR we're searching for. */
423 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
425 /* Function to merge C_EXPRes from different successors. */
426 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
428 /* Function to finalize merge from different successors and possibly
429 deallocate temporary data structures used for merging. */
430 void (*after_merge_succs) (cmpd_local_params_p, void *);
432 /* Called on the backward stage of recursion to do moveup_expr.
433 Used only with move_op_*. */
434 void (*ascend) (insn_t, void *);
436 /* Called on the ascending pass, before returning from the current basic
437 block or from the whole traversal. */
438 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
440 /* When processing successors in move_op we need only descend into
441 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
442 int succ_flags;
444 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
445 const char *routine_name;
448 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
449 FUR_HOOKS. */
450 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
452 /* Set of hooks for performing move_op and find_used_regs routines with
453 code_motion_path_driver. */
454 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
456 /* True if/when we want to emulate Haifa scheduler in the common code.
457 This is used in sched_rgn_local_init and in various places in
458 sched-deps.c. */
459 int sched_emulate_haifa_p;
461 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
462 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
463 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
464 scheduling window. */
465 int global_level;
467 /* Current fences. */
468 flist_t fences;
470 /* True when separable insns should be scheduled as RHSes. */
471 static bool enable_schedule_as_rhs_p;
473 /* Used in verify_target_availability to assert that target reg is reported
474 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
475 we haven't scheduled anything on the previous fence.
476 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
477 have more conservative value than the one returned by the
478 find_used_regs, thus we shouldn't assert that these values are equal. */
479 static bool scheduled_something_on_previous_fence;
481 /* All newly emitted insns will have their uids greater than this value. */
482 static int first_emitted_uid;
484 /* Set of basic blocks that are forced to start new ebbs. This is a subset
485 of all the ebb heads. */
486 static bitmap_head _forced_ebb_heads;
487 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
489 /* Blocks that need to be rescheduled after pipelining. */
490 bitmap blocks_to_reschedule = NULL;
492 /* True when the first lv set should be ignored when updating liveness. */
493 static bool ignore_first = false;
495 /* Number of insns max_issue has initialized data structures for. */
496 static int max_issue_size = 0;
498 /* Whether we can issue more instructions. */
499 static int can_issue_more;
501 /* Maximum software lookahead window size, reduced when rescheduling after
502 pipelining. */
503 static int max_ws;
505 /* Number of insns scheduled in current region. */
506 static int num_insns_scheduled;
508 /* A vector of expressions is used to be able to sort them. */
509 static vec<expr_t> vec_av_set = vNULL;
511 /* A vector of vinsns is used to hold temporary lists of vinsns. */
512 typedef vec<vinsn_t> vinsn_vec_t;
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 static vec<insn_t> vec_temp_moveop_nops = vNULL;
529 /* These bitmaps record original instructions scheduled on the current
530 iteration and bookkeeping copies created by them. */
531 static bitmap current_originators = NULL;
532 static bitmap current_copies = NULL;
534 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
535 visit them afterwards. */
536 static bitmap code_motion_visited_blocks = NULL;
538 /* Variables to accumulate different statistics. */
540 /* The number of bookkeeping copies created. */
541 static int stat_bookkeeping_copies;
543 /* The number of insns that required bookkeeiping for their scheduling. */
544 static int stat_insns_needed_bookkeeping;
546 /* The number of insns that got renamed. */
547 static int stat_renamed_scheduled;
549 /* The number of substitutions made during scheduling. */
550 static int stat_substitutions_total;
553 /* Forward declarations of static functions. */
554 static bool rtx_ok_for_substitution_p (rtx, rtx);
555 static int sel_rank_for_schedule (const void *, const void *);
556 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
557 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
559 static rtx get_dest_from_orig_ops (av_set_t);
560 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
561 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
562 def_list_t *);
563 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
564 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
565 cmpd_local_params_p, void *);
566 static void sel_sched_region_1 (void);
567 static void sel_sched_region_2 (int);
568 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
570 static void debug_state (state_t);
573 /* Functions that work with fences. */
575 /* Advance one cycle on FENCE. */
576 static void
577 advance_one_cycle (fence_t fence)
579 unsigned i;
580 int cycle;
581 rtx_insn *insn;
583 advance_state (FENCE_STATE (fence));
584 cycle = ++FENCE_CYCLE (fence);
585 FENCE_ISSUED_INSNS (fence) = 0;
586 FENCE_STARTS_CYCLE_P (fence) = 1;
587 can_issue_more = issue_rate;
588 FENCE_ISSUE_MORE (fence) = can_issue_more;
590 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
592 if (INSN_READY_CYCLE (insn) < cycle)
594 remove_from_deps (FENCE_DC (fence), insn);
595 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
596 continue;
598 i++;
600 if (sched_verbose >= 2)
602 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
603 debug_state (FENCE_STATE (fence));
607 /* Returns true when SUCC in a fallthru bb of INSN, possibly
608 skipping empty basic blocks. */
609 static bool
610 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
612 basic_block bb = BLOCK_FOR_INSN (insn);
613 edge e;
615 if (bb == BLOCK_FOR_INSN (succ))
616 return true;
618 e = find_fallthru_edge_from (bb);
619 if (e)
620 bb = e->dest;
621 else
622 return false;
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
627 return bb == BLOCK_FOR_INSN (succ);
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
638 bool was_here_p = false;
639 insn_t insn = NULL;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
649 gcc_assert (!was_here_p);
650 was_here_p = true;
652 gcc_assert (was_here_p && insn != NULL_RTX);
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
661 insn_t succ;
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
678 return;
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
684 int seqno = INSN_SEQNO (succ);
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
710 /* Functions to support substitution. */
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
733 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
762 rtx_insn *new_insn;
763 rtx *where_replace;
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_reg (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
798 return true;
800 else
801 return false;
803 else
804 return false;
807 /* Return the number of places WHAT appears within WHERE.
808 Bail out when we found a reference occupying several hard registers. */
809 static int
810 count_occurrences_equiv (const_rtx what, const_rtx where)
812 int count = 0;
813 subrtx_iterator::array_type array;
814 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
816 const_rtx x = *iter;
817 if (REG_P (x) && REGNO (x) == REGNO (what))
819 /* Bail out if mode is different or more than one register is
820 used. */
821 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
822 return 0;
823 count += 1;
825 else if (GET_CODE (x) == SUBREG
826 && (!REG_P (SUBREG_REG (x))
827 || REGNO (SUBREG_REG (x)) == REGNO (what)))
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 return 0;
833 return count;
836 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
837 static bool
838 rtx_ok_for_substitution_p (rtx what, rtx where)
840 return (count_occurrences_equiv (what, where) > 0);
844 /* Functions to support register renaming. */
846 /* Substitute VI's set source with REGNO. Returns newly created pattern
847 that has REGNO as its source. */
848 static rtx_insn *
849 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
851 rtx lhs_rtx;
852 rtx pattern;
853 rtx_insn *insn_rtx;
855 lhs_rtx = copy_rtx (VINSN_LHS (vi));
857 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
858 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
860 return insn_rtx;
863 /* Returns whether INSN's src can be replaced with register number
864 NEW_SRC_REG. E.g. the following insn is valid for i386:
866 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
867 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
868 (reg:SI 0 ax [orig:770 c1 ] [770]))
869 (const_int 288 [0x120])) [0 str S1 A8])
870 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
871 (nil))
873 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
874 because of operand constraints:
876 (define_insn "*movqi_1"
877 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
878 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
881 So do constrain_operands here, before choosing NEW_SRC_REG as best
882 reg for rhs. */
884 static bool
885 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
887 vinsn_t vi = INSN_VINSN (insn);
888 machine_mode mode;
889 rtx dst_loc;
890 bool res;
892 gcc_assert (VINSN_SEPARABLE_P (vi));
894 get_dest_and_mode (insn, &dst_loc, &mode);
895 gcc_assert (mode == GET_MODE (new_src_reg));
897 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
898 return true;
900 /* See whether SET_SRC can be replaced with this register. */
901 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
902 res = verify_changes (0);
903 cancel_changes (0);
905 return res;
908 /* Returns whether INSN still be valid after replacing it's DEST with
909 register NEW_REG. */
910 static bool
911 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
913 vinsn_t vi = INSN_VINSN (insn);
914 bool res;
916 /* We should deal here only with separable insns. */
917 gcc_assert (VINSN_SEPARABLE_P (vi));
918 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
920 /* See whether SET_DEST can be replaced with this register. */
921 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
922 res = verify_changes (0);
923 cancel_changes (0);
925 return res;
928 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
929 static rtx_insn *
930 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
932 rtx rhs_rtx;
933 rtx pattern;
934 rtx_insn *insn_rtx;
936 rhs_rtx = copy_rtx (VINSN_RHS (vi));
938 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
939 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
941 return insn_rtx;
944 /* Substitute lhs in the given expression EXPR for the register with number
945 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
946 static void
947 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
949 rtx_insn *insn_rtx;
950 vinsn_t vinsn;
952 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
953 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
955 change_vinsn_in_expr (expr, vinsn);
956 EXPR_WAS_RENAMED (expr) = 1;
957 EXPR_TARGET_AVAILABLE (expr) = 1;
960 /* Returns whether VI writes either one of the USED_REGS registers or,
961 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
962 static bool
963 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
964 HARD_REG_SET unavailable_hard_regs)
966 unsigned regno;
967 reg_set_iterator rsi;
969 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
971 if (REGNO_REG_SET_P (used_regs, regno))
972 return true;
973 if (HARD_REGISTER_NUM_P (regno)
974 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
975 return true;
978 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
980 if (REGNO_REG_SET_P (used_regs, regno))
981 return true;
982 if (HARD_REGISTER_NUM_P (regno)
983 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
984 return true;
987 return false;
990 /* Returns register class of the output register in INSN.
991 Returns NO_REGS for call insns because some targets have constraints on
992 destination register of a call insn.
994 Code adopted from regrename.c::build_def_use. */
995 static enum reg_class
996 get_reg_class (rtx_insn *insn)
998 int i, n_ops;
1000 extract_constrain_insn (insn);
1001 preprocess_constraints (insn);
1002 n_ops = recog_data.n_operands;
1004 const operand_alternative *op_alt = which_op_alt ();
1005 if (asm_noperands (PATTERN (insn)) > 0)
1007 for (i = 0; i < n_ops; i++)
1008 if (recog_data.operand_type[i] == OP_OUT)
1010 rtx *loc = recog_data.operand_loc[i];
1011 rtx op = *loc;
1012 enum reg_class cl = alternative_class (op_alt, i);
1014 if (REG_P (op)
1015 && REGNO (op) == ORIGINAL_REGNO (op))
1016 continue;
1018 return cl;
1021 else if (!CALL_P (insn))
1023 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1025 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1026 enum reg_class cl = alternative_class (op_alt, opn);
1028 if (recog_data.operand_type[opn] == OP_OUT ||
1029 recog_data.operand_type[opn] == OP_INOUT)
1030 return cl;
1034 /* Insns like
1035 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1036 may result in returning NO_REGS, cause flags is written implicitly through
1037 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1038 return NO_REGS;
1041 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1042 static void
1043 init_hard_regno_rename (int regno)
1045 int cur_reg;
1047 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1049 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1051 /* We are not interested in renaming in other regs. */
1052 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1053 continue;
1055 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1056 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1060 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1061 data first. */
1062 static inline bool
1063 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1065 /* Check whether this is all calculated. */
1066 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1067 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1069 init_hard_regno_rename (from);
1071 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1074 /* Calculate set of registers that are capable of holding MODE. */
1075 static void
1076 init_regs_for_mode (machine_mode mode)
1078 int cur_reg;
1080 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1081 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1083 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1085 int nregs;
1086 int i;
1088 /* See whether it accepts all modes that occur in
1089 original insns. */
1090 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1091 continue;
1093 nregs = hard_regno_nregs[cur_reg][mode];
1095 for (i = nregs - 1; i >= 0; --i)
1096 if (fixed_regs[cur_reg + i]
1097 || global_regs[cur_reg + i]
1098 /* Can't use regs which aren't saved by
1099 the prologue. */
1100 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1101 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1102 it affects aliasing globally and invalidates all AV sets. */
1103 || get_reg_base_value (cur_reg + i)
1104 #ifdef LEAF_REGISTERS
1105 /* We can't use a non-leaf register if we're in a
1106 leaf function. */
1107 || (crtl->is_leaf
1108 && !LEAF_REGISTERS[cur_reg + i])
1109 #endif
1111 break;
1113 if (i >= 0)
1114 continue;
1116 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1117 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1118 cur_reg);
1120 /* If the CUR_REG passed all the checks above,
1121 then it's ok. */
1122 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1125 sel_hrd.regs_for_mode_ok[mode] = true;
1128 /* Init all register sets gathered in HRD. */
1129 static void
1130 init_hard_regs_data (void)
1132 int cur_reg = 0;
1133 int cur_mode = 0;
1135 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1136 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1137 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1138 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1140 /* Initialize registers that are valid based on mode when this is
1141 really needed. */
1142 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1143 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1145 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1146 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1147 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1149 #ifdef STACK_REGS
1150 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1152 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1153 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1154 #endif
1157 /* Mark hardware regs in REG_RENAME_P that are not suitable
1158 for renaming rhs in INSN due to hardware restrictions (register class,
1159 modes compatibility etc). This doesn't affect original insn's dest reg,
1160 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1161 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1162 Registers that are in used_regs are always marked in
1163 unavailable_hard_regs as well. */
1165 static void
1166 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1167 regset used_regs ATTRIBUTE_UNUSED)
1169 machine_mode mode;
1170 enum reg_class cl = NO_REGS;
1171 rtx orig_dest;
1172 unsigned cur_reg, regno;
1173 hard_reg_set_iterator hrsi;
1175 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1176 gcc_assert (reg_rename_p);
1178 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1180 /* We have decided not to rename 'mem = something;' insns, as 'something'
1181 is usually a register. */
1182 if (!REG_P (orig_dest))
1183 return;
1185 regno = REGNO (orig_dest);
1187 /* If before reload, don't try to work with pseudos. */
1188 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1189 return;
1191 if (reload_completed)
1192 cl = get_reg_class (def->orig_insn);
1194 /* Stop if the original register is one of the fixed_regs, global_regs or
1195 frame pointer, or we could not discover its class. */
1196 if (fixed_regs[regno]
1197 || global_regs[regno]
1198 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1199 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1200 #else
1201 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1202 #endif
1203 || (reload_completed && cl == NO_REGS))
1205 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1207 /* Give a chance for original register, if it isn't in used_regs. */
1208 if (!def->crosses_call)
1209 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1211 return;
1214 /* If something allocated on stack in this function, mark frame pointer
1215 register unavailable, considering also modes.
1216 FIXME: it is enough to do this once per all original defs. */
1217 if (frame_pointer_needed)
1219 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1220 Pmode, FRAME_POINTER_REGNUM);
1222 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1223 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1224 Pmode, HARD_FRAME_POINTER_REGNUM);
1227 #ifdef STACK_REGS
1228 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1229 is equivalent to as if all stack regs were in this set.
1230 I.e. no stack register can be renamed, and even if it's an original
1231 register here we make sure it won't be lifted over it's previous def
1232 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1233 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1234 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1235 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1236 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1237 sel_hrd.stack_regs);
1238 #endif
1240 /* If there's a call on this path, make regs from call_used_reg_set
1241 unavailable. */
1242 if (def->crosses_call)
1243 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1244 call_used_reg_set);
1246 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1247 but not register classes. */
1248 if (!reload_completed)
1249 return;
1251 /* Leave regs as 'available' only from the current
1252 register class. */
1253 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1254 reg_class_contents[cl]);
1256 mode = GET_MODE (orig_dest);
1258 /* Leave only registers available for this mode. */
1259 if (!sel_hrd.regs_for_mode_ok[mode])
1260 init_regs_for_mode (mode);
1261 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1262 sel_hrd.regs_for_mode[mode]);
1264 /* Exclude registers that are partially call clobbered. */
1265 if (def->crosses_call
1266 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1267 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1268 sel_hrd.regs_for_call_clobbered[mode]);
1270 /* Leave only those that are ok to rename. */
1271 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1272 0, cur_reg, hrsi)
1274 int nregs;
1275 int i;
1277 nregs = hard_regno_nregs[cur_reg][mode];
1278 gcc_assert (nregs > 0);
1280 for (i = nregs - 1; i >= 0; --i)
1281 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1282 break;
1284 if (i >= 0)
1285 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1286 cur_reg);
1289 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1290 reg_rename_p->unavailable_hard_regs);
1292 /* Regno is always ok from the renaming part of view, but it really
1293 could be in *unavailable_hard_regs already, so set it here instead
1294 of there. */
1295 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1298 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1299 best register more recently than REG2. */
1300 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1302 /* Indicates the number of times renaming happened before the current one. */
1303 static int reg_rename_this_tick;
1305 /* Choose the register among free, that is suitable for storing
1306 the rhs value.
1308 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1309 originally appears. There could be multiple original operations
1310 for single rhs since we moving it up and merging along different
1311 paths.
1313 Some code is adapted from regrename.c (regrename_optimize).
1314 If original register is available, function returns it.
1315 Otherwise it performs the checks, so the new register should
1316 comply with the following:
1317 - it should not violate any live ranges (such registers are in
1318 REG_RENAME_P->available_for_renaming set);
1319 - it should not be in the HARD_REGS_USED regset;
1320 - it should be in the class compatible with original uses;
1321 - it should not be clobbered through reference with different mode;
1322 - if we're in the leaf function, then the new register should
1323 not be in the LEAF_REGISTERS;
1324 - etc.
1326 If several registers meet the conditions, the register with smallest
1327 tick is returned to achieve more even register allocation.
1329 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1331 If no register satisfies the above conditions, NULL_RTX is returned. */
1332 static rtx
1333 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1334 struct reg_rename *reg_rename_p,
1335 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1337 int best_new_reg;
1338 unsigned cur_reg;
1339 machine_mode mode = VOIDmode;
1340 unsigned regno, i, n;
1341 hard_reg_set_iterator hrsi;
1342 def_list_iterator di;
1343 def_t def;
1345 /* If original register is available, return it. */
1346 *is_orig_reg_p_ptr = true;
1348 FOR_EACH_DEF (def, di, original_insns)
1350 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1352 gcc_assert (REG_P (orig_dest));
1354 /* Check that all original operations have the same mode.
1355 This is done for the next loop; if we'd return from this
1356 loop, we'd check only part of them, but in this case
1357 it doesn't matter. */
1358 if (mode == VOIDmode)
1359 mode = GET_MODE (orig_dest);
1360 gcc_assert (mode == GET_MODE (orig_dest));
1362 regno = REGNO (orig_dest);
1363 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1364 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1365 break;
1367 /* All hard registers are available. */
1368 if (i == n)
1370 gcc_assert (mode != VOIDmode);
1372 /* Hard registers should not be shared. */
1373 return gen_rtx_REG (mode, regno);
1377 *is_orig_reg_p_ptr = false;
1378 best_new_reg = -1;
1380 /* Among all available regs choose the register that was
1381 allocated earliest. */
1382 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1383 0, cur_reg, hrsi)
1384 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1386 /* Check that all hard regs for mode are available. */
1387 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1388 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1389 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1390 cur_reg + i))
1391 break;
1393 if (i < n)
1394 continue;
1396 /* All hard registers are available. */
1397 if (best_new_reg < 0
1398 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1400 best_new_reg = cur_reg;
1402 /* Return immediately when we know there's no better reg. */
1403 if (! reg_rename_tick[best_new_reg])
1404 break;
1408 if (best_new_reg >= 0)
1410 /* Use the check from the above loop. */
1411 gcc_assert (mode != VOIDmode);
1412 return gen_rtx_REG (mode, best_new_reg);
1415 return NULL_RTX;
1418 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1419 assumptions about available registers in the function. */
1420 static rtx
1421 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1422 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1424 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1425 original_insns, is_orig_reg_p_ptr);
1427 /* FIXME loop over hard_regno_nregs here. */
1428 gcc_assert (best_reg == NULL_RTX
1429 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1431 return best_reg;
1434 /* Choose the pseudo register for storing rhs value. As this is supposed
1435 to work before reload, we return either the original register or make
1436 the new one. The parameters are the same that in choose_nest_reg_1
1437 functions, except that USED_REGS may contain pseudos.
1438 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1440 TODO: take into account register pressure while doing this. Up to this
1441 moment, this function would never return NULL for pseudos, but we should
1442 not rely on this. */
1443 static rtx
1444 choose_best_pseudo_reg (regset used_regs,
1445 struct reg_rename *reg_rename_p,
1446 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1448 def_list_iterator i;
1449 def_t def;
1450 machine_mode mode = VOIDmode;
1451 bool bad_hard_regs = false;
1453 /* We should not use this after reload. */
1454 gcc_assert (!reload_completed);
1456 /* If original register is available, return it. */
1457 *is_orig_reg_p_ptr = true;
1459 FOR_EACH_DEF (def, i, original_insns)
1461 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1462 int orig_regno;
1464 gcc_assert (REG_P (dest));
1466 /* Check that all original operations have the same mode. */
1467 if (mode == VOIDmode)
1468 mode = GET_MODE (dest);
1469 else
1470 gcc_assert (mode == GET_MODE (dest));
1471 orig_regno = REGNO (dest);
1473 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1475 if (orig_regno < FIRST_PSEUDO_REGISTER)
1477 gcc_assert (df_regs_ever_live_p (orig_regno));
1479 /* For hard registers, we have to check hardware imposed
1480 limitations (frame/stack registers, calls crossed). */
1481 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1482 orig_regno))
1484 /* Don't let register cross a call if it doesn't already
1485 cross one. This condition is written in accordance with
1486 that in sched-deps.c sched_analyze_reg(). */
1487 if (!reg_rename_p->crosses_call
1488 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1489 return gen_rtx_REG (mode, orig_regno);
1492 bad_hard_regs = true;
1494 else
1495 return dest;
1499 *is_orig_reg_p_ptr = false;
1501 /* We had some original hard registers that couldn't be used.
1502 Those were likely special. Don't try to create a pseudo. */
1503 if (bad_hard_regs)
1504 return NULL_RTX;
1506 /* We haven't found a register from original operations. Get a new one.
1507 FIXME: control register pressure somehow. */
1509 rtx new_reg = gen_reg_rtx (mode);
1511 gcc_assert (mode != VOIDmode);
1513 max_regno = max_reg_num ();
1514 maybe_extend_reg_info_p ();
1515 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1517 return new_reg;
1521 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1522 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1523 static void
1524 verify_target_availability (expr_t expr, regset used_regs,
1525 struct reg_rename *reg_rename_p)
1527 unsigned n, i, regno;
1528 machine_mode mode;
1529 bool target_available, live_available, hard_available;
1531 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1532 return;
1534 regno = expr_dest_regno (expr);
1535 mode = GET_MODE (EXPR_LHS (expr));
1536 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1537 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1539 live_available = hard_available = true;
1540 for (i = 0; i < n; i++)
1542 if (bitmap_bit_p (used_regs, regno + i))
1543 live_available = false;
1544 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1545 hard_available = false;
1548 /* When target is not available, it may be due to hard register
1549 restrictions, e.g. crosses calls, so we check hard_available too. */
1550 if (target_available)
1551 gcc_assert (live_available);
1552 else
1553 /* Check only if we haven't scheduled something on the previous fence,
1554 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1555 and having more than one fence, we may end having targ_un in a block
1556 in which successors target register is actually available.
1558 The last condition handles the case when a dependence from a call insn
1559 was created in sched-deps.c for insns with destination registers that
1560 never crossed a call before, but do cross one after our code motion.
1562 FIXME: in the latter case, we just uselessly called find_used_regs,
1563 because we can't move this expression with any other register
1564 as well. */
1565 gcc_assert (scheduled_something_on_previous_fence || !live_available
1566 || !hard_available
1567 || (!reload_completed && reg_rename_p->crosses_call
1568 && REG_N_CALLS_CROSSED (regno) == 0));
1571 /* Collect unavailable registers due to liveness for EXPR from BNDS
1572 into USED_REGS. Save additional information about available
1573 registers and unavailable due to hardware restriction registers
1574 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1575 list. */
1576 static void
1577 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1578 struct reg_rename *reg_rename_p,
1579 def_list_t *original_insns)
1581 for (; bnds; bnds = BLIST_NEXT (bnds))
1583 bool res;
1584 av_set_t orig_ops = NULL;
1585 bnd_t bnd = BLIST_BND (bnds);
1587 /* If the chosen best expr doesn't belong to current boundary,
1588 skip it. */
1589 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1590 continue;
1592 /* Put in ORIG_OPS all exprs from this boundary that became
1593 RES on top. */
1594 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1596 /* Compute used regs and OR it into the USED_REGS. */
1597 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1598 reg_rename_p, original_insns);
1600 /* FIXME: the assert is true until we'd have several boundaries. */
1601 gcc_assert (res);
1602 av_set_clear (&orig_ops);
1606 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1607 If BEST_REG is valid, replace LHS of EXPR with it. */
1608 static bool
1609 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1611 /* Try whether we'll be able to generate the insn
1612 'dest := best_reg' at the place of the original operation. */
1613 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1615 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1617 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1619 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1620 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1621 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1622 return false;
1625 /* Make sure that EXPR has the right destination
1626 register. */
1627 if (expr_dest_regno (expr) != REGNO (best_reg))
1628 replace_dest_with_reg_in_expr (expr, best_reg);
1629 else
1630 EXPR_TARGET_AVAILABLE (expr) = 1;
1632 return true;
1635 /* Select and assign best register to EXPR searching from BNDS.
1636 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1637 Return FALSE if no register can be chosen, which could happen when:
1638 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1639 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1640 that are used on the moving path. */
1641 static bool
1642 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1644 static struct reg_rename reg_rename_data;
1646 regset used_regs;
1647 def_list_t original_insns = NULL;
1648 bool reg_ok;
1650 *is_orig_reg_p = false;
1652 /* Don't bother to do anything if this insn doesn't set any registers. */
1653 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1654 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1655 return true;
1657 used_regs = get_clear_regset_from_pool ();
1658 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1660 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1661 &original_insns);
1663 #ifdef ENABLE_CHECKING
1664 /* If after reload, make sure we're working with hard regs here. */
1665 if (reload_completed)
1667 reg_set_iterator rsi;
1668 unsigned i;
1670 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1671 gcc_unreachable ();
1673 #endif
1675 if (EXPR_SEPARABLE_P (expr))
1677 rtx best_reg = NULL_RTX;
1678 /* Check that we have computed availability of a target register
1679 correctly. */
1680 verify_target_availability (expr, used_regs, &reg_rename_data);
1682 /* Turn everything in hard regs after reload. */
1683 if (reload_completed)
1685 HARD_REG_SET hard_regs_used;
1686 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1688 /* Join hard registers unavailable due to register class
1689 restrictions and live range intersection. */
1690 IOR_HARD_REG_SET (hard_regs_used,
1691 reg_rename_data.unavailable_hard_regs);
1693 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1694 original_insns, is_orig_reg_p);
1696 else
1697 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1698 original_insns, is_orig_reg_p);
1700 if (!best_reg)
1701 reg_ok = false;
1702 else if (*is_orig_reg_p)
1704 /* In case of unification BEST_REG may be different from EXPR's LHS
1705 when EXPR's LHS is unavailable, and there is another LHS among
1706 ORIGINAL_INSNS. */
1707 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1709 else
1711 /* Forbid renaming of low-cost insns. */
1712 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1713 reg_ok = false;
1714 else
1715 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1718 else
1720 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1721 any of the HARD_REGS_USED set. */
1722 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1723 reg_rename_data.unavailable_hard_regs))
1725 reg_ok = false;
1726 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1728 else
1730 reg_ok = true;
1731 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1735 ilist_clear (&original_insns);
1736 return_regset_to_pool (used_regs);
1738 return reg_ok;
1742 /* Return true if dependence described by DS can be overcomed. */
1743 static bool
1744 can_speculate_dep_p (ds_t ds)
1746 if (spec_info == NULL)
1747 return false;
1749 /* Leave only speculative data. */
1750 ds &= SPECULATIVE;
1752 if (ds == 0)
1753 return false;
1756 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1757 that we can overcome. */
1758 ds_t spec_mask = spec_info->mask;
1760 if ((ds & spec_mask) != ds)
1761 return false;
1764 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1765 return false;
1767 return true;
1770 /* Get a speculation check instruction.
1771 C_EXPR is a speculative expression,
1772 CHECK_DS describes speculations that should be checked,
1773 ORIG_INSN is the original non-speculative insn in the stream. */
1774 static insn_t
1775 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1777 rtx check_pattern;
1778 rtx_insn *insn_rtx;
1779 insn_t insn;
1780 basic_block recovery_block;
1781 rtx_insn *label;
1783 /* Create a recovery block if target is going to emit branchy check, or if
1784 ORIG_INSN was speculative already. */
1785 if (targetm.sched.needs_block_p (check_ds)
1786 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1788 recovery_block = sel_create_recovery_block (orig_insn);
1789 label = BB_HEAD (recovery_block);
1791 else
1793 recovery_block = NULL;
1794 label = NULL;
1797 /* Get pattern of the check. */
1798 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1799 check_ds);
1801 gcc_assert (check_pattern != NULL);
1803 /* Emit check. */
1804 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1806 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1807 INSN_SEQNO (orig_insn), orig_insn);
1809 /* Make check to be non-speculative. */
1810 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1811 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1813 /* Decrease priority of check by difference of load/check instruction
1814 latencies. */
1815 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1816 - sel_vinsn_cost (INSN_VINSN (insn)));
1818 /* Emit copy of original insn (though with replaced target register,
1819 if needed) to the recovery block. */
1820 if (recovery_block != NULL)
1822 rtx twin_rtx;
1824 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1825 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1826 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1827 INSN_EXPR (orig_insn),
1828 INSN_SEQNO (insn),
1829 bb_note (recovery_block));
1832 /* If we've generated a data speculation check, make sure
1833 that all the bookkeeping instruction we'll create during
1834 this move_op () will allocate an ALAT entry so that the
1835 check won't fail.
1836 In case of control speculation we must convert C_EXPR to control
1837 speculative mode, because failing to do so will bring us an exception
1838 thrown by the non-control-speculative load. */
1839 check_ds = ds_get_max_dep_weak (check_ds);
1840 speculate_expr (c_expr, check_ds);
1842 return insn;
1845 /* True when INSN is a "regN = regN" copy. */
1846 static bool
1847 identical_copy_p (rtx_insn *insn)
1849 rtx lhs, rhs, pat;
1851 pat = PATTERN (insn);
1853 if (GET_CODE (pat) != SET)
1854 return false;
1856 lhs = SET_DEST (pat);
1857 if (!REG_P (lhs))
1858 return false;
1860 rhs = SET_SRC (pat);
1861 if (!REG_P (rhs))
1862 return false;
1864 return REGNO (lhs) == REGNO (rhs);
1867 /* Undo all transformations on *AV_PTR that were done when
1868 moving through INSN. */
1869 static void
1870 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1872 av_set_iterator av_iter;
1873 expr_t expr;
1874 av_set_t new_set = NULL;
1876 /* First, kill any EXPR that uses registers set by an insn. This is
1877 required for correctness. */
1878 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1879 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1880 && bitmap_intersect_p (INSN_REG_SETS (insn),
1881 VINSN_REG_USES (EXPR_VINSN (expr)))
1882 /* When an insn looks like 'r1 = r1', we could substitute through
1883 it, but the above condition will still hold. This happened with
1884 gcc.c-torture/execute/961125-1.c. */
1885 && !identical_copy_p (insn))
1887 if (sched_verbose >= 6)
1888 sel_print ("Expr %d removed due to use/set conflict\n",
1889 INSN_UID (EXPR_INSN_RTX (expr)));
1890 av_set_iter_remove (&av_iter);
1893 /* Undo transformations looking at the history vector. */
1894 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1896 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1897 insn, EXPR_VINSN (expr), true);
1899 if (index >= 0)
1901 expr_history_def *phist;
1903 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1905 switch (phist->type)
1907 case TRANS_SPECULATION:
1909 ds_t old_ds, new_ds;
1911 /* Compute the difference between old and new speculative
1912 statuses: that's what we need to check.
1913 Earlier we used to assert that the status will really
1914 change. This no longer works because only the probability
1915 bits in the status may have changed during compute_av_set,
1916 and in the case of merging different probabilities of the
1917 same speculative status along different paths we do not
1918 record this in the history vector. */
1919 old_ds = phist->spec_ds;
1920 new_ds = EXPR_SPEC_DONE_DS (expr);
1922 old_ds &= SPECULATIVE;
1923 new_ds &= SPECULATIVE;
1924 new_ds &= ~old_ds;
1926 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1927 break;
1929 case TRANS_SUBSTITUTION:
1931 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1932 vinsn_t new_vi;
1933 bool add = true;
1935 new_vi = phist->old_expr_vinsn;
1937 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1938 == EXPR_SEPARABLE_P (expr));
1939 copy_expr (tmp_expr, expr);
1941 if (vinsn_equal_p (phist->new_expr_vinsn,
1942 EXPR_VINSN (tmp_expr)))
1943 change_vinsn_in_expr (tmp_expr, new_vi);
1944 else
1945 /* This happens when we're unsubstituting on a bookkeeping
1946 copy, which was in turn substituted. The history is wrong
1947 in this case. Do it the hard way. */
1948 add = substitute_reg_in_expr (tmp_expr, insn, true);
1949 if (add)
1950 av_set_add (&new_set, tmp_expr);
1951 clear_expr (tmp_expr);
1952 break;
1954 default:
1955 gcc_unreachable ();
1961 av_set_union_and_clear (av_ptr, &new_set, NULL);
1965 /* Moveup_* helpers for code motion and computing av sets. */
1967 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1968 The difference from the below function is that only substitution is
1969 performed. */
1970 static enum MOVEUP_EXPR_CODE
1971 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1973 vinsn_t vi = EXPR_VINSN (expr);
1974 ds_t *has_dep_p;
1975 ds_t full_ds;
1977 /* Do this only inside insn group. */
1978 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1980 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1981 if (full_ds == 0)
1982 return MOVEUP_EXPR_SAME;
1984 /* Substitution is the possible choice in this case. */
1985 if (has_dep_p[DEPS_IN_RHS])
1987 /* Can't substitute UNIQUE VINSNs. */
1988 gcc_assert (!VINSN_UNIQUE_P (vi));
1990 if (can_substitute_through_p (through_insn,
1991 has_dep_p[DEPS_IN_RHS])
1992 && substitute_reg_in_expr (expr, through_insn, false))
1994 EXPR_WAS_SUBSTITUTED (expr) = true;
1995 return MOVEUP_EXPR_CHANGED;
1998 /* Don't care about this, as even true dependencies may be allowed
1999 in an insn group. */
2000 return MOVEUP_EXPR_SAME;
2003 /* This can catch output dependencies in COND_EXECs. */
2004 if (has_dep_p[DEPS_IN_INSN])
2005 return MOVEUP_EXPR_NULL;
2007 /* This is either an output or an anti dependence, which usually have
2008 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2009 will fix this. */
2010 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2011 return MOVEUP_EXPR_AS_RHS;
2014 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2015 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2016 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2017 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2018 && !sel_insn_is_speculation_check (through_insn))
2020 /* True when a conflict on a target register was found during moveup_expr. */
2021 static bool was_target_conflict = false;
2023 /* Return true when moving a debug INSN across THROUGH_INSN will
2024 create a bookkeeping block. We don't want to create such blocks,
2025 for they would cause codegen differences between compilations with
2026 and without debug info. */
2028 static bool
2029 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2030 insn_t through_insn)
2032 basic_block bbi, bbt;
2033 edge e1, e2;
2034 edge_iterator ei1, ei2;
2036 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2038 if (sched_verbose >= 9)
2039 sel_print ("no bookkeeping required: ");
2040 return FALSE;
2043 bbi = BLOCK_FOR_INSN (insn);
2045 if (EDGE_COUNT (bbi->preds) == 1)
2047 if (sched_verbose >= 9)
2048 sel_print ("only one pred edge: ");
2049 return TRUE;
2052 bbt = BLOCK_FOR_INSN (through_insn);
2054 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2056 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2058 if (find_block_for_bookkeeping (e1, e2, TRUE))
2060 if (sched_verbose >= 9)
2061 sel_print ("found existing block: ");
2062 return FALSE;
2067 if (sched_verbose >= 9)
2068 sel_print ("would create bookkeeping block: ");
2070 return TRUE;
2073 /* Return true when the conflict with newly created implicit clobbers
2074 between EXPR and THROUGH_INSN is found because of renaming. */
2075 static bool
2076 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2078 HARD_REG_SET temp;
2079 rtx_insn *insn;
2080 rtx reg, rhs, pat;
2081 hard_reg_set_iterator hrsi;
2082 unsigned regno;
2083 bool valid;
2085 /* Make a new pseudo register. */
2086 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2087 max_regno = max_reg_num ();
2088 maybe_extend_reg_info_p ();
2090 /* Validate a change and bail out early. */
2091 insn = EXPR_INSN_RTX (expr);
2092 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2093 valid = verify_changes (0);
2094 cancel_changes (0);
2095 if (!valid)
2097 if (sched_verbose >= 6)
2098 sel_print ("implicit clobbers failed validation, ");
2099 return true;
2102 /* Make a new insn with it. */
2103 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2104 pat = gen_rtx_SET (reg, rhs);
2105 start_sequence ();
2106 insn = emit_insn (pat);
2107 end_sequence ();
2109 /* Calculate implicit clobbers. */
2110 extract_insn (insn);
2111 preprocess_constraints (insn);
2112 ira_implicitly_set_insn_hard_regs (&temp);
2113 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2115 /* If any implicit clobber registers intersect with regular ones in
2116 through_insn, we have a dependency and thus bail out. */
2117 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2119 vinsn_t vi = INSN_VINSN (through_insn);
2120 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2122 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2123 return true;
2126 return false;
2129 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2130 performing necessary transformations. Record the type of transformation
2131 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2132 permit all dependencies except true ones, and try to remove those
2133 too via forward substitution. All cases when a non-eliminable
2134 non-zero cost dependency exists inside an insn group will be fixed
2135 in tick_check_p instead. */
2136 static enum MOVEUP_EXPR_CODE
2137 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2138 enum local_trans_type *ptrans_type)
2140 vinsn_t vi = EXPR_VINSN (expr);
2141 insn_t insn = VINSN_INSN_RTX (vi);
2142 bool was_changed = false;
2143 bool as_rhs = false;
2144 ds_t *has_dep_p;
2145 ds_t full_ds;
2147 /* ??? We use dependencies of non-debug insns on debug insns to
2148 indicate that the debug insns need to be reset if the non-debug
2149 insn is pulled ahead of it. It's hard to figure out how to
2150 introduce such a notion in sel-sched, but it already fails to
2151 support debug insns in other ways, so we just go ahead and
2152 let the deug insns go corrupt for now. */
2153 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2154 return MOVEUP_EXPR_SAME;
2156 /* When inside_insn_group, delegate to the helper. */
2157 if (inside_insn_group)
2158 return moveup_expr_inside_insn_group (expr, through_insn);
2160 /* Deal with unique insns and control dependencies. */
2161 if (VINSN_UNIQUE_P (vi))
2163 /* We can move jumps without side-effects or jumps that are
2164 mutually exclusive with instruction THROUGH_INSN (all in cases
2165 dependencies allow to do so and jump is not speculative). */
2166 if (control_flow_insn_p (insn))
2168 basic_block fallthru_bb;
2170 /* Do not move checks and do not move jumps through other
2171 jumps. */
2172 if (control_flow_insn_p (through_insn)
2173 || sel_insn_is_speculation_check (insn))
2174 return MOVEUP_EXPR_NULL;
2176 /* Don't move jumps through CFG joins. */
2177 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2178 return MOVEUP_EXPR_NULL;
2180 /* The jump should have a clear fallthru block, and
2181 this block should be in the current region. */
2182 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2183 || ! in_current_region_p (fallthru_bb))
2184 return MOVEUP_EXPR_NULL;
2186 /* And it should be mutually exclusive with through_insn. */
2187 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2188 && ! DEBUG_INSN_P (through_insn))
2189 return MOVEUP_EXPR_NULL;
2192 /* Don't move what we can't move. */
2193 if (EXPR_CANT_MOVE (expr)
2194 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2195 return MOVEUP_EXPR_NULL;
2197 /* Don't move SCHED_GROUP instruction through anything.
2198 If we don't force this, then it will be possible to start
2199 scheduling a sched_group before all its dependencies are
2200 resolved.
2201 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2202 as late as possible through rank_for_schedule. */
2203 if (SCHED_GROUP_P (insn))
2204 return MOVEUP_EXPR_NULL;
2206 else
2207 gcc_assert (!control_flow_insn_p (insn));
2209 /* Don't move debug insns if this would require bookkeeping. */
2210 if (DEBUG_INSN_P (insn)
2211 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2212 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2213 return MOVEUP_EXPR_NULL;
2215 /* Deal with data dependencies. */
2216 was_target_conflict = false;
2217 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2218 if (full_ds == 0)
2220 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2221 return MOVEUP_EXPR_SAME;
2223 else
2225 /* We can move UNIQUE insn up only as a whole and unchanged,
2226 so it shouldn't have any dependencies. */
2227 if (VINSN_UNIQUE_P (vi))
2228 return MOVEUP_EXPR_NULL;
2231 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2233 int res;
2235 res = speculate_expr (expr, full_ds);
2236 if (res >= 0)
2238 /* Speculation was successful. */
2239 full_ds = 0;
2240 was_changed = (res > 0);
2241 if (res == 2)
2242 was_target_conflict = true;
2243 if (ptrans_type)
2244 *ptrans_type = TRANS_SPECULATION;
2245 sel_clear_has_dependence ();
2249 if (has_dep_p[DEPS_IN_INSN])
2250 /* We have some dependency that cannot be discarded. */
2251 return MOVEUP_EXPR_NULL;
2253 if (has_dep_p[DEPS_IN_LHS])
2255 /* Only separable insns can be moved up with the new register.
2256 Anyways, we should mark that the original register is
2257 unavailable. */
2258 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2259 return MOVEUP_EXPR_NULL;
2261 /* When renaming a hard register to a pseudo before reload, extra
2262 dependencies can occur from the implicit clobbers of the insn.
2263 Filter out such cases here. */
2264 if (!reload_completed && REG_P (EXPR_LHS (expr))
2265 && HARD_REGISTER_P (EXPR_LHS (expr))
2266 && implicit_clobber_conflict_p (through_insn, expr))
2268 if (sched_verbose >= 6)
2269 sel_print ("implicit clobbers conflict detected, ");
2270 return MOVEUP_EXPR_NULL;
2272 EXPR_TARGET_AVAILABLE (expr) = false;
2273 was_target_conflict = true;
2274 as_rhs = true;
2277 /* At this point we have either separable insns, that will be lifted
2278 up only as RHSes, or non-separable insns with no dependency in lhs.
2279 If dependency is in RHS, then try to perform substitution and move up
2280 substituted RHS:
2282 Ex. 1: Ex.2
2283 y = x; y = x;
2284 z = y*2; y = y*2;
2286 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2287 moved above y=x assignment as z=x*2.
2289 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2290 side can be moved because of the output dependency. The operation was
2291 cropped to its rhs above. */
2292 if (has_dep_p[DEPS_IN_RHS])
2294 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2296 /* Can't substitute UNIQUE VINSNs. */
2297 gcc_assert (!VINSN_UNIQUE_P (vi));
2299 if (can_speculate_dep_p (*rhs_dsp))
2301 int res;
2303 res = speculate_expr (expr, *rhs_dsp);
2304 if (res >= 0)
2306 /* Speculation was successful. */
2307 *rhs_dsp = 0;
2308 was_changed = (res > 0);
2309 if (res == 2)
2310 was_target_conflict = true;
2311 if (ptrans_type)
2312 *ptrans_type = TRANS_SPECULATION;
2314 else
2315 return MOVEUP_EXPR_NULL;
2317 else if (can_substitute_through_p (through_insn,
2318 *rhs_dsp)
2319 && substitute_reg_in_expr (expr, through_insn, false))
2321 /* ??? We cannot perform substitution AND speculation on the same
2322 insn. */
2323 gcc_assert (!was_changed);
2324 was_changed = true;
2325 if (ptrans_type)
2326 *ptrans_type = TRANS_SUBSTITUTION;
2327 EXPR_WAS_SUBSTITUTED (expr) = true;
2329 else
2330 return MOVEUP_EXPR_NULL;
2333 /* Don't move trapping insns through jumps.
2334 This check should be at the end to give a chance to control speculation
2335 to perform its duties. */
2336 if (CANT_MOVE_TRAPPING (expr, through_insn))
2337 return MOVEUP_EXPR_NULL;
2339 return (was_changed
2340 ? MOVEUP_EXPR_CHANGED
2341 : (as_rhs
2342 ? MOVEUP_EXPR_AS_RHS
2343 : MOVEUP_EXPR_SAME));
2346 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2347 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2348 that can exist within a parallel group. Write to RES the resulting
2349 code for moveup_expr. */
2350 static bool
2351 try_bitmap_cache (expr_t expr, insn_t insn,
2352 bool inside_insn_group,
2353 enum MOVEUP_EXPR_CODE *res)
2355 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2357 /* First check whether we've analyzed this situation already. */
2358 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2360 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2362 if (sched_verbose >= 6)
2363 sel_print ("removed (cached)\n");
2364 *res = MOVEUP_EXPR_NULL;
2365 return true;
2367 else
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (cached)\n");
2371 *res = MOVEUP_EXPR_SAME;
2372 return true;
2375 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2377 if (inside_insn_group)
2379 if (sched_verbose >= 6)
2380 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2381 *res = MOVEUP_EXPR_SAME;
2382 return true;
2385 else
2386 EXPR_TARGET_AVAILABLE (expr) = false;
2388 /* This is the only case when propagation result can change over time,
2389 as we can dynamically switch off scheduling as RHS. In this case,
2390 just check the flag to reach the correct decision. */
2391 if (enable_schedule_as_rhs_p)
2393 if (sched_verbose >= 6)
2394 sel_print ("unchanged (as RHS, cached)\n");
2395 *res = MOVEUP_EXPR_AS_RHS;
2396 return true;
2398 else
2400 if (sched_verbose >= 6)
2401 sel_print ("removed (cached as RHS, but renaming"
2402 " is now disabled)\n");
2403 *res = MOVEUP_EXPR_NULL;
2404 return true;
2408 return false;
2411 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2412 if successful. Write to RES the resulting code for moveup_expr. */
2413 static bool
2414 try_transformation_cache (expr_t expr, insn_t insn,
2415 enum MOVEUP_EXPR_CODE *res)
2417 struct transformed_insns *pti
2418 = (struct transformed_insns *)
2419 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2420 &EXPR_VINSN (expr),
2421 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2422 if (pti)
2424 /* This EXPR was already moved through this insn and was
2425 changed as a result. Fetch the proper data from
2426 the hashtable. */
2427 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2428 INSN_UID (insn), pti->type,
2429 pti->vinsn_old, pti->vinsn_new,
2430 EXPR_SPEC_DONE_DS (expr));
2432 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2433 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2434 change_vinsn_in_expr (expr, pti->vinsn_new);
2435 if (pti->was_target_conflict)
2436 EXPR_TARGET_AVAILABLE (expr) = false;
2437 if (pti->type == TRANS_SPECULATION)
2439 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2440 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2443 if (sched_verbose >= 6)
2445 sel_print ("changed (cached): ");
2446 dump_expr (expr);
2447 sel_print ("\n");
2450 *res = MOVEUP_EXPR_CHANGED;
2451 return true;
2454 return false;
2457 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2458 static void
2459 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2460 enum MOVEUP_EXPR_CODE res)
2462 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2464 /* Do not cache result of propagating jumps through an insn group,
2465 as it is always true, which is not useful outside the group. */
2466 if (inside_insn_group)
2467 return;
2469 if (res == MOVEUP_EXPR_NULL)
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2472 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2474 else if (res == MOVEUP_EXPR_SAME)
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2479 else if (res == MOVEUP_EXPR_AS_RHS)
2481 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2484 else
2485 gcc_unreachable ();
2488 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2489 and transformation type TRANS_TYPE. */
2490 static void
2491 update_transformation_cache (expr_t expr, insn_t insn,
2492 bool inside_insn_group,
2493 enum local_trans_type trans_type,
2494 vinsn_t expr_old_vinsn)
2496 struct transformed_insns *pti;
2498 if (inside_insn_group)
2499 return;
2501 pti = XNEW (struct transformed_insns);
2502 pti->vinsn_old = expr_old_vinsn;
2503 pti->vinsn_new = EXPR_VINSN (expr);
2504 pti->type = trans_type;
2505 pti->was_target_conflict = was_target_conflict;
2506 pti->ds = EXPR_SPEC_DONE_DS (expr);
2507 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2508 vinsn_attach (pti->vinsn_old);
2509 vinsn_attach (pti->vinsn_new);
2510 *((struct transformed_insns **)
2511 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2512 pti, VINSN_HASH_RTX (expr_old_vinsn),
2513 INSERT)) = pti;
2516 /* Same as moveup_expr, but first looks up the result of
2517 transformation in caches. */
2518 static enum MOVEUP_EXPR_CODE
2519 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2521 enum MOVEUP_EXPR_CODE res;
2522 bool got_answer = false;
2524 if (sched_verbose >= 6)
2526 sel_print ("Moving ");
2527 dump_expr (expr);
2528 sel_print (" through %d: ", INSN_UID (insn));
2531 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2532 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2533 == EXPR_INSN_RTX (expr)))
2534 /* Don't use cached information for debug insns that are heads of
2535 basic blocks. */;
2536 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2537 /* When inside insn group, we do not want remove stores conflicting
2538 with previosly issued loads. */
2539 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2540 else if (try_transformation_cache (expr, insn, &res))
2541 got_answer = true;
2543 if (! got_answer)
2545 /* Invoke moveup_expr and record the results. */
2546 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2547 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2548 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2549 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2550 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2552 /* ??? Invent something better than this. We can't allow old_vinsn
2553 to go, we need it for the history vector. */
2554 vinsn_attach (expr_old_vinsn);
2556 res = moveup_expr (expr, insn, inside_insn_group,
2557 &trans_type);
2558 switch (res)
2560 case MOVEUP_EXPR_NULL:
2561 update_bitmap_cache (expr, insn, inside_insn_group, res);
2562 if (sched_verbose >= 6)
2563 sel_print ("removed\n");
2564 break;
2566 case MOVEUP_EXPR_SAME:
2567 update_bitmap_cache (expr, insn, inside_insn_group, res);
2568 if (sched_verbose >= 6)
2569 sel_print ("unchanged\n");
2570 break;
2572 case MOVEUP_EXPR_AS_RHS:
2573 gcc_assert (!unique_p || inside_insn_group);
2574 update_bitmap_cache (expr, insn, inside_insn_group, res);
2575 if (sched_verbose >= 6)
2576 sel_print ("unchanged (as RHS)\n");
2577 break;
2579 case MOVEUP_EXPR_CHANGED:
2580 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2581 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2582 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2583 INSN_UID (insn), trans_type,
2584 expr_old_vinsn, EXPR_VINSN (expr),
2585 expr_old_spec_ds);
2586 update_transformation_cache (expr, insn, inside_insn_group,
2587 trans_type, expr_old_vinsn);
2588 if (sched_verbose >= 6)
2590 sel_print ("changed: ");
2591 dump_expr (expr);
2592 sel_print ("\n");
2594 break;
2595 default:
2596 gcc_unreachable ();
2599 vinsn_detach (expr_old_vinsn);
2602 return res;
2605 /* Moves an av set AVP up through INSN, performing necessary
2606 transformations. */
2607 static void
2608 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2610 av_set_iterator i;
2611 expr_t expr;
2613 FOR_EACH_EXPR_1 (expr, i, avp)
2616 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2618 case MOVEUP_EXPR_SAME:
2619 case MOVEUP_EXPR_AS_RHS:
2620 break;
2622 case MOVEUP_EXPR_NULL:
2623 av_set_iter_remove (&i);
2624 break;
2626 case MOVEUP_EXPR_CHANGED:
2627 expr = merge_with_other_exprs (avp, &i, expr);
2628 break;
2630 default:
2631 gcc_unreachable ();
2636 /* Moves AVP set along PATH. */
2637 static void
2638 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2640 int last_cycle;
2642 if (sched_verbose >= 6)
2643 sel_print ("Moving expressions up in the insn group...\n");
2644 if (! path)
2645 return;
2646 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2647 while (path
2648 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2650 moveup_set_expr (avp, ILIST_INSN (path), true);
2651 path = ILIST_NEXT (path);
2655 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2656 static bool
2657 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2659 expr_def _tmp, *tmp = &_tmp;
2660 int last_cycle;
2661 bool res = true;
2663 copy_expr_onside (tmp, expr);
2664 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2665 while (path
2666 && res
2667 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2669 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2670 != MOVEUP_EXPR_NULL);
2671 path = ILIST_NEXT (path);
2674 if (res)
2676 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2677 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2679 if (tmp_vinsn != expr_vliw_vinsn)
2680 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2683 clear_expr (tmp);
2684 return res;
2688 /* Functions that compute av and lv sets. */
2690 /* Returns true if INSN is not a downward continuation of the given path P in
2691 the current stage. */
2692 static bool
2693 is_ineligible_successor (insn_t insn, ilist_t p)
2695 insn_t prev_insn;
2697 /* Check if insn is not deleted. */
2698 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2699 gcc_unreachable ();
2700 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2701 gcc_unreachable ();
2703 /* If it's the first insn visited, then the successor is ok. */
2704 if (!p)
2705 return false;
2707 prev_insn = ILIST_INSN (p);
2709 if (/* a backward edge. */
2710 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2711 /* is already visited. */
2712 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2713 && (ilist_is_in_p (p, insn)
2714 /* We can reach another fence here and still seqno of insn
2715 would be equal to seqno of prev_insn. This is possible
2716 when prev_insn is a previously created bookkeeping copy.
2717 In that case it'd get a seqno of insn. Thus, check here
2718 whether insn is in current fence too. */
2719 || IN_CURRENT_FENCE_P (insn)))
2720 /* Was already scheduled on this round. */
2721 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2722 && IN_CURRENT_FENCE_P (insn))
2723 /* An insn from another fence could also be
2724 scheduled earlier even if this insn is not in
2725 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2726 || (!pipelining_p
2727 && INSN_SCHED_TIMES (insn) > 0))
2728 return true;
2729 else
2730 return false;
2733 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2734 of handling multiple successors and properly merging its av_sets. P is
2735 the current path traversed. WS is the size of lookahead window.
2736 Return the av set computed. */
2737 static av_set_t
2738 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2740 struct succs_info *sinfo;
2741 av_set_t expr_in_all_succ_branches = NULL;
2742 int is;
2743 insn_t succ, zero_succ = NULL;
2744 av_set_t av1 = NULL;
2746 gcc_assert (sel_bb_end_p (insn));
2748 /* Find different kind of successors needed for correct computing of
2749 SPEC and TARGET_AVAILABLE attributes. */
2750 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2752 /* Debug output. */
2753 if (sched_verbose >= 6)
2755 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2756 dump_insn_vector (sinfo->succs_ok);
2757 sel_print ("\n");
2758 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2759 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2762 /* Add insn to the tail of current path. */
2763 ilist_add (&p, insn);
2765 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2767 av_set_t succ_set;
2769 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2770 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2772 av_set_split_usefulness (succ_set,
2773 sinfo->probs_ok[is],
2774 sinfo->all_prob);
2776 if (sinfo->all_succs_n > 1)
2778 /* Find EXPR'es that came from *all* successors and save them
2779 into expr_in_all_succ_branches. This set will be used later
2780 for calculating speculation attributes of EXPR'es. */
2781 if (is == 0)
2783 expr_in_all_succ_branches = av_set_copy (succ_set);
2785 /* Remember the first successor for later. */
2786 zero_succ = succ;
2788 else
2790 av_set_iterator i;
2791 expr_t expr;
2793 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2794 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2795 av_set_iter_remove (&i);
2799 /* Union the av_sets. Check liveness restrictions on target registers
2800 in special case of two successors. */
2801 if (sinfo->succs_ok_n == 2 && is == 1)
2803 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2804 basic_block bb1 = BLOCK_FOR_INSN (succ);
2806 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2807 av_set_union_and_live (&av1, &succ_set,
2808 BB_LV_SET (bb0),
2809 BB_LV_SET (bb1),
2810 insn);
2812 else
2813 av_set_union_and_clear (&av1, &succ_set, insn);
2816 /* Check liveness restrictions via hard way when there are more than
2817 two successors. */
2818 if (sinfo->succs_ok_n > 2)
2819 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2821 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2823 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2824 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2825 BB_LV_SET (succ_bb));
2828 /* Finally, check liveness restrictions on paths leaving the region. */
2829 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2830 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2831 mark_unavailable_targets
2832 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2834 if (sinfo->all_succs_n > 1)
2836 av_set_iterator i;
2837 expr_t expr;
2839 /* Increase the spec attribute of all EXPR'es that didn't come
2840 from all successors. */
2841 FOR_EACH_EXPR (expr, i, av1)
2842 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2843 EXPR_SPEC (expr)++;
2845 av_set_clear (&expr_in_all_succ_branches);
2847 /* Do not move conditional branches through other
2848 conditional branches. So, remove all conditional
2849 branches from av_set if current operator is a conditional
2850 branch. */
2851 av_set_substract_cond_branches (&av1);
2854 ilist_remove (&p);
2855 free_succs_info (sinfo);
2857 if (sched_verbose >= 6)
2859 sel_print ("av_succs (%d): ", INSN_UID (insn));
2860 dump_av_set (av1);
2861 sel_print ("\n");
2864 return av1;
2867 /* This function computes av_set for the FIRST_INSN by dragging valid
2868 av_set through all basic block insns either from the end of basic block
2869 (computed using compute_av_set_at_bb_end) or from the insn on which
2870 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2871 below the basic block and handling conditional branches.
2872 FIRST_INSN - the basic block head, P - path consisting of the insns
2873 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2874 and bb ends are added to the path), WS - current window size,
2875 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2876 static av_set_t
2877 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2878 bool need_copy_p)
2880 insn_t cur_insn;
2881 int end_ws = ws;
2882 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2883 insn_t after_bb_end = NEXT_INSN (bb_end);
2884 insn_t last_insn;
2885 av_set_t av = NULL;
2886 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2888 /* Return NULL if insn is not on the legitimate downward path. */
2889 if (is_ineligible_successor (first_insn, p))
2891 if (sched_verbose >= 6)
2892 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2894 return NULL;
2897 /* If insn already has valid av(insn) computed, just return it. */
2898 if (AV_SET_VALID_P (first_insn))
2900 av_set_t av_set;
2902 if (sel_bb_head_p (first_insn))
2903 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2904 else
2905 av_set = NULL;
2907 if (sched_verbose >= 6)
2909 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2910 dump_av_set (av_set);
2911 sel_print ("\n");
2914 return need_copy_p ? av_set_copy (av_set) : av_set;
2917 ilist_add (&p, first_insn);
2919 /* As the result after this loop have completed, in LAST_INSN we'll
2920 have the insn which has valid av_set to start backward computation
2921 from: it either will be NULL because on it the window size was exceeded
2922 or other valid av_set as returned by compute_av_set for the last insn
2923 of the basic block. */
2924 for (last_insn = first_insn; last_insn != after_bb_end;
2925 last_insn = NEXT_INSN (last_insn))
2927 /* We may encounter valid av_set not only on bb_head, but also on
2928 those insns on which previously MAX_WS was exceeded. */
2929 if (AV_SET_VALID_P (last_insn))
2931 if (sched_verbose >= 6)
2932 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2933 break;
2936 /* The special case: the last insn of the BB may be an
2937 ineligible_successor due to its SEQ_NO that was set on
2938 it as a bookkeeping. */
2939 if (last_insn != first_insn
2940 && is_ineligible_successor (last_insn, p))
2942 if (sched_verbose >= 6)
2943 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2944 break;
2947 if (DEBUG_INSN_P (last_insn))
2948 continue;
2950 if (end_ws > max_ws)
2952 /* We can reach max lookahead size at bb_header, so clean av_set
2953 first. */
2954 INSN_WS_LEVEL (last_insn) = global_level;
2956 if (sched_verbose >= 6)
2957 sel_print ("Insn %d is beyond the software lookahead window size\n",
2958 INSN_UID (last_insn));
2959 break;
2962 end_ws++;
2965 /* Get the valid av_set into AV above the LAST_INSN to start backward
2966 computation from. It either will be empty av_set or av_set computed from
2967 the successors on the last insn of the current bb. */
2968 if (last_insn != after_bb_end)
2970 av = NULL;
2972 /* This is needed only to obtain av_sets that are identical to
2973 those computed by the old compute_av_set version. */
2974 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2975 av_set_add (&av, INSN_EXPR (last_insn));
2977 else
2978 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2979 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2981 /* Compute av_set in AV starting from below the LAST_INSN up to
2982 location above the FIRST_INSN. */
2983 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2984 cur_insn = PREV_INSN (cur_insn))
2985 if (!INSN_NOP_P (cur_insn))
2987 expr_t expr;
2989 moveup_set_expr (&av, cur_insn, false);
2991 /* If the expression for CUR_INSN is already in the set,
2992 replace it by the new one. */
2993 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2994 if (expr != NULL)
2996 clear_expr (expr);
2997 copy_expr (expr, INSN_EXPR (cur_insn));
2999 else
3000 av_set_add (&av, INSN_EXPR (cur_insn));
3003 /* Clear stale bb_av_set. */
3004 if (sel_bb_head_p (first_insn))
3006 av_set_clear (&BB_AV_SET (cur_bb));
3007 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3008 BB_AV_LEVEL (cur_bb) = global_level;
3011 if (sched_verbose >= 6)
3013 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3014 dump_av_set (av);
3015 sel_print ("\n");
3018 ilist_remove (&p);
3019 return av;
3022 /* Compute av set before INSN.
3023 INSN - the current operation (actual rtx INSN)
3024 P - the current path, which is list of insns visited so far
3025 WS - software lookahead window size.
3026 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3027 if we want to save computed av_set in s_i_d, we should make a copy of it.
3029 In the resulting set we will have only expressions that don't have delay
3030 stalls and nonsubstitutable dependences. */
3031 static av_set_t
3032 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3034 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3037 /* Propagate a liveness set LV through INSN. */
3038 static void
3039 propagate_lv_set (regset lv, insn_t insn)
3041 gcc_assert (INSN_P (insn));
3043 if (INSN_NOP_P (insn))
3044 return;
3046 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3049 /* Return livness set at the end of BB. */
3050 static regset
3051 compute_live_after_bb (basic_block bb)
3053 edge e;
3054 edge_iterator ei;
3055 regset lv = get_clear_regset_from_pool ();
3057 gcc_assert (!ignore_first);
3059 FOR_EACH_EDGE (e, ei, bb->succs)
3060 if (sel_bb_empty_p (e->dest))
3062 if (! BB_LV_SET_VALID_P (e->dest))
3064 gcc_unreachable ();
3065 gcc_assert (BB_LV_SET (e->dest) == NULL);
3066 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3067 BB_LV_SET_VALID_P (e->dest) = true;
3069 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3071 else
3072 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3074 return lv;
3077 /* Compute the set of all live registers at the point before INSN and save
3078 it at INSN if INSN is bb header. */
3079 regset
3080 compute_live (insn_t insn)
3082 basic_block bb = BLOCK_FOR_INSN (insn);
3083 insn_t final, temp;
3084 regset lv;
3086 /* Return the valid set if we're already on it. */
3087 if (!ignore_first)
3089 regset src = NULL;
3091 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3092 src = BB_LV_SET (bb);
3093 else
3095 gcc_assert (in_current_region_p (bb));
3096 if (INSN_LIVE_VALID_P (insn))
3097 src = INSN_LIVE (insn);
3100 if (src)
3102 lv = get_regset_from_pool ();
3103 COPY_REG_SET (lv, src);
3105 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3107 COPY_REG_SET (BB_LV_SET (bb), lv);
3108 BB_LV_SET_VALID_P (bb) = true;
3111 return_regset_to_pool (lv);
3112 return lv;
3116 /* We've skipped the wrong lv_set. Don't skip the right one. */
3117 ignore_first = false;
3118 gcc_assert (in_current_region_p (bb));
3120 /* Find a valid LV set in this block or below, if needed.
3121 Start searching from the next insn: either ignore_first is true, or
3122 INSN doesn't have a correct live set. */
3123 temp = NEXT_INSN (insn);
3124 final = NEXT_INSN (BB_END (bb));
3125 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3126 temp = NEXT_INSN (temp);
3127 if (temp == final)
3129 lv = compute_live_after_bb (bb);
3130 temp = PREV_INSN (temp);
3132 else
3134 lv = get_regset_from_pool ();
3135 COPY_REG_SET (lv, INSN_LIVE (temp));
3138 /* Put correct lv sets on the insns which have bad sets. */
3139 final = PREV_INSN (insn);
3140 while (temp != final)
3142 propagate_lv_set (lv, temp);
3143 COPY_REG_SET (INSN_LIVE (temp), lv);
3144 INSN_LIVE_VALID_P (temp) = true;
3145 temp = PREV_INSN (temp);
3148 /* Also put it in a BB. */
3149 if (sel_bb_head_p (insn))
3151 basic_block bb = BLOCK_FOR_INSN (insn);
3153 COPY_REG_SET (BB_LV_SET (bb), lv);
3154 BB_LV_SET_VALID_P (bb) = true;
3157 /* We return LV to the pool, but will not clear it there. Thus we can
3158 legimatelly use LV till the next use of regset_pool_get (). */
3159 return_regset_to_pool (lv);
3160 return lv;
3163 /* Update liveness sets for INSN. */
3164 static inline void
3165 update_liveness_on_insn (rtx_insn *insn)
3167 ignore_first = true;
3168 compute_live (insn);
3171 /* Compute liveness below INSN and write it into REGS. */
3172 static inline void
3173 compute_live_below_insn (rtx_insn *insn, regset regs)
3175 rtx_insn *succ;
3176 succ_iterator si;
3178 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3179 IOR_REG_SET (regs, compute_live (succ));
3182 /* Update the data gathered in av and lv sets starting from INSN. */
3183 static void
3184 update_data_sets (rtx_insn *insn)
3186 update_liveness_on_insn (insn);
3187 if (sel_bb_head_p (insn))
3189 gcc_assert (AV_LEVEL (insn) != 0);
3190 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3191 compute_av_set (insn, NULL, 0, 0);
3196 /* Helper for move_op () and find_used_regs ().
3197 Return speculation type for which a check should be created on the place
3198 of INSN. EXPR is one of the original ops we are searching for. */
3199 static ds_t
3200 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3202 ds_t to_check_ds;
3203 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3205 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3207 if (targetm.sched.get_insn_checked_ds)
3208 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3210 if (spec_info != NULL
3211 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3212 already_checked_ds |= BEGIN_CONTROL;
3214 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3216 to_check_ds &= ~already_checked_ds;
3218 return to_check_ds;
3221 /* Find the set of registers that are unavailable for storing expres
3222 while moving ORIG_OPS up on the path starting from INSN due to
3223 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3225 All the original operations found during the traversal are saved in the
3226 ORIGINAL_INSNS list.
3228 REG_RENAME_P denotes the set of hardware registers that
3229 can not be used with renaming due to the register class restrictions,
3230 mode restrictions and other (the register we'll choose should be
3231 compatible class with the original uses, shouldn't be in call_used_regs,
3232 should be HARD_REGNO_RENAME_OK etc).
3234 Returns TRUE if we've found all original insns, FALSE otherwise.
3236 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3237 to traverse the code motion paths. This helper function finds registers
3238 that are not available for storing expres while moving ORIG_OPS up on the
3239 path starting from INSN. A register considered as used on the moving path,
3240 if one of the following conditions is not satisfied:
3242 (1) a register not set or read on any path from xi to an instance of
3243 the original operation,
3244 (2) not among the live registers of the point immediately following the
3245 first original operation on a given downward path, except for the
3246 original target register of the operation,
3247 (3) not live on the other path of any conditional branch that is passed
3248 by the operation, in case original operations are not present on
3249 both paths of the conditional branch.
3251 All the original operations found during the traversal are saved in the
3252 ORIGINAL_INSNS list.
3254 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3255 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3256 to unavailable hard regs at the point original operation is found. */
3258 static bool
3259 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3260 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3262 def_list_iterator i;
3263 def_t def;
3264 int res;
3265 bool needs_spec_check_p = false;
3266 expr_t expr;
3267 av_set_iterator expr_iter;
3268 struct fur_static_params sparams;
3269 struct cmpd_local_params lparams;
3271 /* We haven't visited any blocks yet. */
3272 bitmap_clear (code_motion_visited_blocks);
3274 /* Init parameters for code_motion_path_driver. */
3275 sparams.crosses_call = false;
3276 sparams.original_insns = original_insns;
3277 sparams.used_regs = used_regs;
3279 /* Set the appropriate hooks and data. */
3280 code_motion_path_driver_info = &fur_hooks;
3282 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3284 reg_rename_p->crosses_call |= sparams.crosses_call;
3286 gcc_assert (res == 1);
3287 gcc_assert (original_insns && *original_insns);
3289 /* ??? We calculate whether an expression needs a check when computing
3290 av sets. This information is not as precise as it could be due to
3291 merging this bit in merge_expr. We can do better in find_used_regs,
3292 but we want to avoid multiple traversals of the same code motion
3293 paths. */
3294 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3295 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3297 /* Mark hardware regs in REG_RENAME_P that are not suitable
3298 for renaming expr in INSN due to hardware restrictions (register class,
3299 modes compatibility etc). */
3300 FOR_EACH_DEF (def, i, *original_insns)
3302 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3304 if (VINSN_SEPARABLE_P (vinsn))
3305 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3307 /* Do not allow clobbering of ld.[sa] address in case some of the
3308 original operations need a check. */
3309 if (needs_spec_check_p)
3310 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3313 return true;
3317 /* Functions to choose the best insn from available ones. */
3319 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3320 static int
3321 sel_target_adjust_priority (expr_t expr)
3323 int priority = EXPR_PRIORITY (expr);
3324 int new_priority;
3326 if (targetm.sched.adjust_priority)
3327 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3328 else
3329 new_priority = priority;
3331 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3332 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3334 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3336 if (sched_verbose >= 4)
3337 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3338 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3339 EXPR_PRIORITY_ADJ (expr), new_priority);
3341 return new_priority;
3344 /* Rank two available exprs for schedule. Never return 0 here. */
3345 static int
3346 sel_rank_for_schedule (const void *x, const void *y)
3348 expr_t tmp = *(const expr_t *) y;
3349 expr_t tmp2 = *(const expr_t *) x;
3350 insn_t tmp_insn, tmp2_insn;
3351 vinsn_t tmp_vinsn, tmp2_vinsn;
3352 int val;
3354 tmp_vinsn = EXPR_VINSN (tmp);
3355 tmp2_vinsn = EXPR_VINSN (tmp2);
3356 tmp_insn = EXPR_INSN_RTX (tmp);
3357 tmp2_insn = EXPR_INSN_RTX (tmp2);
3359 /* Schedule debug insns as early as possible. */
3360 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3361 return -1;
3362 else if (DEBUG_INSN_P (tmp2_insn))
3363 return 1;
3365 /* Prefer SCHED_GROUP_P insns to any others. */
3366 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3368 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3369 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3371 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3372 cannot be cloned. */
3373 if (VINSN_UNIQUE_P (tmp2_vinsn))
3374 return 1;
3375 return -1;
3378 /* Discourage scheduling of speculative checks. */
3379 val = (sel_insn_is_speculation_check (tmp_insn)
3380 - sel_insn_is_speculation_check (tmp2_insn));
3381 if (val)
3382 return val;
3384 /* Prefer not scheduled insn over scheduled one. */
3385 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3387 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3388 if (val)
3389 return val;
3392 /* Prefer jump over non-jump instruction. */
3393 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3394 return -1;
3395 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3396 return 1;
3398 /* Prefer an expr with greater priority. */
3399 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3401 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3402 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3404 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3406 else
3407 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3408 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3409 if (val)
3410 return val;
3412 if (spec_info != NULL && spec_info->mask != 0)
3413 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3415 ds_t ds1, ds2;
3416 dw_t dw1, dw2;
3417 int dw;
3419 ds1 = EXPR_SPEC_DONE_DS (tmp);
3420 if (ds1)
3421 dw1 = ds_weak (ds1);
3422 else
3423 dw1 = NO_DEP_WEAK;
3425 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3426 if (ds2)
3427 dw2 = ds_weak (ds2);
3428 else
3429 dw2 = NO_DEP_WEAK;
3431 dw = dw2 - dw1;
3432 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3433 return dw;
3436 /* Prefer an old insn to a bookkeeping insn. */
3437 if (INSN_UID (tmp_insn) < first_emitted_uid
3438 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3439 return -1;
3440 if (INSN_UID (tmp_insn) >= first_emitted_uid
3441 && INSN_UID (tmp2_insn) < first_emitted_uid)
3442 return 1;
3444 /* Prefer an insn with smaller UID, as a last resort.
3445 We can't safely use INSN_LUID as it is defined only for those insns
3446 that are in the stream. */
3447 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3450 /* Filter out expressions from av set pointed to by AV_PTR
3451 that are pipelined too many times. */
3452 static void
3453 process_pipelined_exprs (av_set_t *av_ptr)
3455 expr_t expr;
3456 av_set_iterator si;
3458 /* Don't pipeline already pipelined code as that would increase
3459 number of unnecessary register moves. */
3460 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3462 if (EXPR_SCHED_TIMES (expr)
3463 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3464 av_set_iter_remove (&si);
3468 /* Filter speculative insns from AV_PTR if we don't want them. */
3469 static void
3470 process_spec_exprs (av_set_t *av_ptr)
3472 expr_t expr;
3473 av_set_iterator si;
3475 if (spec_info == NULL)
3476 return;
3478 /* Scan *AV_PTR to find out if we want to consider speculative
3479 instructions for scheduling. */
3480 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3482 ds_t ds;
3484 ds = EXPR_SPEC_DONE_DS (expr);
3486 /* The probability of a success is too low - don't speculate. */
3487 if ((ds & SPECULATIVE)
3488 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3489 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3490 || (pipelining_p && false
3491 && (ds & DATA_SPEC)
3492 && (ds & CONTROL_SPEC))))
3494 av_set_iter_remove (&si);
3495 continue;
3500 /* Search for any use-like insns in AV_PTR and decide on scheduling
3501 them. Return one when found, and NULL otherwise.
3502 Note that we check here whether a USE could be scheduled to avoid
3503 an infinite loop later. */
3504 static expr_t
3505 process_use_exprs (av_set_t *av_ptr)
3507 expr_t expr;
3508 av_set_iterator si;
3509 bool uses_present_p = false;
3510 bool try_uses_p = true;
3512 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3514 /* This will also initialize INSN_CODE for later use. */
3515 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3517 /* If we have a USE in *AV_PTR that was not scheduled yet,
3518 do so because it will do good only. */
3519 if (EXPR_SCHED_TIMES (expr) <= 0)
3521 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3522 return expr;
3524 av_set_iter_remove (&si);
3526 else
3528 gcc_assert (pipelining_p);
3530 uses_present_p = true;
3533 else
3534 try_uses_p = false;
3537 if (uses_present_p)
3539 /* If we don't want to schedule any USEs right now and we have some
3540 in *AV_PTR, remove them, else just return the first one found. */
3541 if (!try_uses_p)
3543 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3544 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3545 av_set_iter_remove (&si);
3547 else
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3553 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3554 return expr;
3556 av_set_iter_remove (&si);
3561 return NULL;
3564 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3565 EXPR's history of changes. */
3566 static bool
3567 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3569 vinsn_t vinsn, expr_vinsn;
3570 int n;
3571 unsigned i;
3573 /* Start with checking expr itself and then proceed with all the old forms
3574 of expr taken from its history vector. */
3575 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3576 expr_vinsn;
3577 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3578 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3579 : NULL))
3580 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3581 if (VINSN_SEPARABLE_P (vinsn))
3583 if (vinsn_equal_p (vinsn, expr_vinsn))
3584 return true;
3586 else
3588 /* For non-separable instructions, the blocking insn can have
3589 another pattern due to substitution, and we can't choose
3590 different register as in the above case. Check all registers
3591 being written instead. */
3592 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3593 VINSN_REG_SETS (expr_vinsn)))
3594 return true;
3597 return false;
3600 #ifdef ENABLE_CHECKING
3601 /* Return true if either of expressions from ORIG_OPS can be blocked
3602 by previously created bookkeeping code. STATIC_PARAMS points to static
3603 parameters of move_op. */
3604 static bool
3605 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3607 expr_t expr;
3608 av_set_iterator iter;
3609 moveop_static_params_p sparams;
3611 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3612 created while scheduling on another fence. */
3613 FOR_EACH_EXPR (expr, iter, orig_ops)
3614 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3615 return true;
3617 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3618 sparams = (moveop_static_params_p) static_params;
3620 /* Expressions can be also blocked by bookkeeping created during current
3621 move_op. */
3622 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3623 FOR_EACH_EXPR (expr, iter, orig_ops)
3624 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3625 return true;
3627 /* Expressions in ORIG_OPS may have wrong destination register due to
3628 renaming. Check with the right register instead. */
3629 if (sparams->dest && REG_P (sparams->dest))
3631 rtx reg = sparams->dest;
3632 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3634 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3635 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3636 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3637 return true;
3640 return false;
3642 #endif
3644 /* Clear VINSN_VEC and detach vinsns. */
3645 static void
3646 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3648 unsigned len = vinsn_vec->length ();
3649 if (len > 0)
3651 vinsn_t vinsn;
3652 int n;
3654 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3655 vinsn_detach (vinsn);
3656 vinsn_vec->block_remove (0, len);
3660 /* Add the vinsn of EXPR to the VINSN_VEC. */
3661 static void
3662 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3664 vinsn_attach (EXPR_VINSN (expr));
3665 vinsn_vec->safe_push (EXPR_VINSN (expr));
3668 /* Free the vector representing blocked expressions. */
3669 static void
3670 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3672 vinsn_vec.release ();
3675 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3677 void sel_add_to_insn_priority (rtx insn, int amount)
3679 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3681 if (sched_verbose >= 2)
3682 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3683 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3684 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3687 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3688 true if there is something to schedule. BNDS and FENCE are current
3689 boundaries and fence, respectively. If we need to stall for some cycles
3690 before an expr from AV would become available, write this number to
3691 *PNEED_STALL. */
3692 static bool
3693 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3694 int *pneed_stall)
3696 av_set_iterator si;
3697 expr_t expr;
3698 int sched_next_worked = 0, stalled, n;
3699 static int av_max_prio, est_ticks_till_branch;
3700 int min_need_stall = -1;
3701 deps_t dc = BND_DC (BLIST_BND (bnds));
3703 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3704 already scheduled. */
3705 if (av == NULL)
3706 return false;
3708 /* Empty vector from the previous stuff. */
3709 if (vec_av_set.length () > 0)
3710 vec_av_set.block_remove (0, vec_av_set.length ());
3712 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3713 for each insn. */
3714 gcc_assert (vec_av_set.is_empty ());
3715 FOR_EACH_EXPR (expr, si, av)
3717 vec_av_set.safe_push (expr);
3719 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3721 /* Adjust priority using target backend hook. */
3722 sel_target_adjust_priority (expr);
3725 /* Sort the vector. */
3726 vec_av_set.qsort (sel_rank_for_schedule);
3728 /* We record maximal priority of insns in av set for current instruction
3729 group. */
3730 if (FENCE_STARTS_CYCLE_P (fence))
3731 av_max_prio = est_ticks_till_branch = INT_MIN;
3733 /* Filter out inappropriate expressions. Loop's direction is reversed to
3734 visit "best" instructions first. We assume that vec::unordered_remove
3735 moves last element in place of one being deleted. */
3736 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3738 expr_t expr = vec_av_set[n];
3739 insn_t insn = EXPR_INSN_RTX (expr);
3740 signed char target_available;
3741 bool is_orig_reg_p = true;
3742 int need_cycles, new_prio;
3743 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3745 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3746 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3748 vec_av_set.unordered_remove (n);
3749 continue;
3752 /* Set number of sched_next insns (just in case there
3753 could be several). */
3754 if (FENCE_SCHED_NEXT (fence))
3755 sched_next_worked++;
3757 /* Check all liveness requirements and try renaming.
3758 FIXME: try to minimize calls to this. */
3759 target_available = EXPR_TARGET_AVAILABLE (expr);
3761 /* If insn was already scheduled on the current fence,
3762 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3763 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3764 && !fence_insn_p)
3765 target_available = -1;
3767 /* If the availability of the EXPR is invalidated by the insertion of
3768 bookkeeping earlier, make sure that we won't choose this expr for
3769 scheduling if it's not separable, and if it is separable, then
3770 we have to recompute the set of available registers for it. */
3771 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3773 vec_av_set.unordered_remove (n);
3774 if (sched_verbose >= 4)
3775 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3776 INSN_UID (insn));
3777 continue;
3780 if (target_available == true)
3782 /* Do nothing -- we can use an existing register. */
3783 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3785 else if (/* Non-separable instruction will never
3786 get another register. */
3787 (target_available == false
3788 && !EXPR_SEPARABLE_P (expr))
3789 /* Don't try to find a register for low-priority expression. */
3790 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3791 /* ??? FIXME: Don't try to rename data speculation. */
3792 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3793 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3795 vec_av_set.unordered_remove (n);
3796 if (sched_verbose >= 4)
3797 sel_print ("Expr %d has no suitable target register\n",
3798 INSN_UID (insn));
3800 /* A fence insn should not get here. */
3801 gcc_assert (!fence_insn_p);
3802 continue;
3805 /* At this point a fence insn should always be available. */
3806 gcc_assert (!fence_insn_p
3807 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3809 /* Filter expressions that need to be renamed or speculated when
3810 pipelining, because compensating register copies or speculation
3811 checks are likely to be placed near the beginning of the loop,
3812 causing a stall. */
3813 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3814 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3816 /* Estimation of number of cycles until loop branch for
3817 renaming/speculation to be successful. */
3818 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3820 if ((int) current_loop_nest->ninsns < 9)
3822 vec_av_set.unordered_remove (n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 INSN_UID (insn));
3826 continue;
3829 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3830 < need_n_ticks_till_branch * issue_rate / 2
3831 && est_ticks_till_branch < need_n_ticks_till_branch)
3833 vec_av_set.unordered_remove (n);
3834 if (sched_verbose >= 4)
3835 sel_print ("Pipelining expr %d will likely cause stall\n",
3836 INSN_UID (insn));
3837 continue;
3841 /* We want to schedule speculation checks as late as possible. Discard
3842 them from av set if there are instructions with higher priority. */
3843 if (sel_insn_is_speculation_check (insn)
3844 && EXPR_PRIORITY (expr) < av_max_prio)
3846 stalled++;
3847 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3848 vec_av_set.unordered_remove (n);
3849 if (sched_verbose >= 4)
3850 sel_print ("Delaying speculation check %d until its first use\n",
3851 INSN_UID (insn));
3852 continue;
3855 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3856 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3857 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3859 /* Don't allow any insns whose data is not yet ready.
3860 Check first whether we've already tried them and failed. */
3861 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3863 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3864 - FENCE_CYCLE (fence));
3865 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3866 est_ticks_till_branch = MAX (est_ticks_till_branch,
3867 EXPR_PRIORITY (expr) + need_cycles);
3869 if (need_cycles > 0)
3871 stalled++;
3872 min_need_stall = (min_need_stall < 0
3873 ? need_cycles
3874 : MIN (min_need_stall, need_cycles));
3875 vec_av_set.unordered_remove (n);
3877 if (sched_verbose >= 4)
3878 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3879 INSN_UID (insn),
3880 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3881 continue;
3885 /* Now resort to dependence analysis to find whether EXPR might be
3886 stalled due to dependencies from FENCE's context. */
3887 need_cycles = tick_check_p (expr, dc, fence);
3888 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3890 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3891 est_ticks_till_branch = MAX (est_ticks_till_branch,
3892 new_prio);
3894 if (need_cycles > 0)
3896 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3898 int new_size = INSN_UID (insn) * 3 / 2;
3900 FENCE_READY_TICKS (fence)
3901 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3902 new_size, FENCE_READY_TICKS_SIZE (fence),
3903 sizeof (int));
3905 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3906 = FENCE_CYCLE (fence) + need_cycles;
3908 stalled++;
3909 min_need_stall = (min_need_stall < 0
3910 ? need_cycles
3911 : MIN (min_need_stall, need_cycles));
3913 vec_av_set.unordered_remove (n);
3915 if (sched_verbose >= 4)
3916 sel_print ("Expr %d is not ready yet until cycle %d\n",
3917 INSN_UID (insn),
3918 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3919 continue;
3922 if (sched_verbose >= 4)
3923 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3924 min_need_stall = 0;
3927 /* Clear SCHED_NEXT. */
3928 if (FENCE_SCHED_NEXT (fence))
3930 gcc_assert (sched_next_worked == 1);
3931 FENCE_SCHED_NEXT (fence) = NULL;
3934 /* No need to stall if this variable was not initialized. */
3935 if (min_need_stall < 0)
3936 min_need_stall = 0;
3938 if (vec_av_set.is_empty ())
3940 /* We need to set *pneed_stall here, because later we skip this code
3941 when ready list is empty. */
3942 *pneed_stall = min_need_stall;
3943 return false;
3945 else
3946 gcc_assert (min_need_stall == 0);
3948 /* Sort the vector. */
3949 vec_av_set.qsort (sel_rank_for_schedule);
3951 if (sched_verbose >= 4)
3953 sel_print ("Total ready exprs: %d, stalled: %d\n",
3954 vec_av_set.length (), stalled);
3955 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3956 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3957 dump_expr (expr);
3958 sel_print ("\n");
3961 *pneed_stall = 0;
3962 return true;
3965 /* Convert a vectored and sorted av set to the ready list that
3966 the rest of the backend wants to see. */
3967 static void
3968 convert_vec_av_set_to_ready (void)
3970 int n;
3971 expr_t expr;
3973 /* Allocate and fill the ready list from the sorted vector. */
3974 ready.n_ready = vec_av_set.length ();
3975 ready.first = ready.n_ready - 1;
3977 gcc_assert (ready.n_ready > 0);
3979 if (ready.n_ready > max_issue_size)
3981 max_issue_size = ready.n_ready;
3982 sched_extend_ready_list (ready.n_ready);
3985 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3987 vinsn_t vi = EXPR_VINSN (expr);
3988 insn_t insn = VINSN_INSN_RTX (vi);
3990 ready_try[n] = 0;
3991 ready.vec[n] = insn;
3995 /* Initialize ready list from *AV_PTR for the max_issue () call.
3996 If any unrecognizable insn found in *AV_PTR, return it (and skip
3997 max_issue). BND and FENCE are current boundary and fence,
3998 respectively. If we need to stall for some cycles before an expr
3999 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4000 static expr_t
4001 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4002 int *pneed_stall)
4004 expr_t expr;
4006 /* We do not support multiple boundaries per fence. */
4007 gcc_assert (BLIST_NEXT (bnds) == NULL);
4009 /* Process expressions required special handling, i.e. pipelined,
4010 speculative and recog() < 0 expressions first. */
4011 process_pipelined_exprs (av_ptr);
4012 process_spec_exprs (av_ptr);
4014 /* A USE could be scheduled immediately. */
4015 expr = process_use_exprs (av_ptr);
4016 if (expr)
4018 *pneed_stall = 0;
4019 return expr;
4022 /* Turn the av set to a vector for sorting. */
4023 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4025 ready.n_ready = 0;
4026 return NULL;
4029 /* Build the final ready list. */
4030 convert_vec_av_set_to_ready ();
4031 return NULL;
4034 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4035 static bool
4036 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4038 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4039 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4040 : FENCE_CYCLE (fence) - 1;
4041 bool res = false;
4042 int sort_p = 0;
4044 if (!targetm.sched.dfa_new_cycle)
4045 return false;
4047 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4049 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4050 insn, last_scheduled_cycle,
4051 FENCE_CYCLE (fence), &sort_p))
4053 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4054 advance_one_cycle (fence);
4055 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4056 res = true;
4059 return res;
4062 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4063 we can issue. FENCE is the current fence. */
4064 static int
4065 invoke_reorder_hooks (fence_t fence)
4067 int issue_more;
4068 bool ran_hook = false;
4070 /* Call the reorder hook at the beginning of the cycle, and call
4071 the reorder2 hook in the middle of the cycle. */
4072 if (FENCE_ISSUED_INSNS (fence) == 0)
4074 if (targetm.sched.reorder
4075 && !SCHED_GROUP_P (ready_element (&ready, 0))
4076 && ready.n_ready > 1)
4078 /* Don't give reorder the most prioritized insn as it can break
4079 pipelining. */
4080 if (pipelining_p)
4081 --ready.n_ready;
4083 issue_more
4084 = targetm.sched.reorder (sched_dump, sched_verbose,
4085 ready_lastpos (&ready),
4086 &ready.n_ready, FENCE_CYCLE (fence));
4088 if (pipelining_p)
4089 ++ready.n_ready;
4091 ran_hook = true;
4093 else
4094 /* Initialize can_issue_more for variable_issue. */
4095 issue_more = issue_rate;
4097 else if (targetm.sched.reorder2
4098 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4100 if (ready.n_ready == 1)
4101 issue_more =
4102 targetm.sched.reorder2 (sched_dump, sched_verbose,
4103 ready_lastpos (&ready),
4104 &ready.n_ready, FENCE_CYCLE (fence));
4105 else
4107 if (pipelining_p)
4108 --ready.n_ready;
4110 issue_more =
4111 targetm.sched.reorder2 (sched_dump, sched_verbose,
4112 ready.n_ready
4113 ? ready_lastpos (&ready) : NULL,
4114 &ready.n_ready, FENCE_CYCLE (fence));
4116 if (pipelining_p)
4117 ++ready.n_ready;
4120 ran_hook = true;
4122 else
4123 issue_more = FENCE_ISSUE_MORE (fence);
4125 /* Ensure that ready list and vec_av_set are in line with each other,
4126 i.e. vec_av_set[i] == ready_element (&ready, i). */
4127 if (issue_more && ran_hook)
4129 int i, j, n;
4130 rtx_insn **arr = ready.vec;
4131 expr_t *vec = vec_av_set.address ();
4133 for (i = 0, n = ready.n_ready; i < n; i++)
4134 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4136 for (j = i; j < n; j++)
4137 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4138 break;
4139 gcc_assert (j < n);
4141 std::swap (vec[i], vec[j]);
4145 return issue_more;
4148 /* Return an EXPR corresponding to INDEX element of ready list, if
4149 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4150 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4151 ready.vec otherwise. */
4152 static inline expr_t
4153 find_expr_for_ready (int index, bool follow_ready_element)
4155 expr_t expr;
4156 int real_index;
4158 real_index = follow_ready_element ? ready.first - index : index;
4160 expr = vec_av_set[real_index];
4161 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4163 return expr;
4166 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4167 of such insns found. */
4168 static int
4169 invoke_dfa_lookahead_guard (void)
4171 int i, n;
4172 bool have_hook
4173 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4175 if (sched_verbose >= 2)
4176 sel_print ("ready after reorder: ");
4178 for (i = 0, n = 0; i < ready.n_ready; i++)
4180 expr_t expr;
4181 insn_t insn;
4182 int r;
4184 /* In this loop insn is Ith element of the ready list given by
4185 ready_element, not Ith element of ready.vec. */
4186 insn = ready_element (&ready, i);
4188 if (! have_hook || i == 0)
4189 r = 0;
4190 else
4191 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4193 gcc_assert (INSN_CODE (insn) >= 0);
4195 /* Only insns with ready_try = 0 can get here
4196 from fill_ready_list. */
4197 gcc_assert (ready_try [i] == 0);
4198 ready_try[i] = r;
4199 if (!r)
4200 n++;
4202 expr = find_expr_for_ready (i, true);
4204 if (sched_verbose >= 2)
4206 dump_vinsn (EXPR_VINSN (expr));
4207 sel_print (":%d; ", ready_try[i]);
4211 if (sched_verbose >= 2)
4212 sel_print ("\n");
4213 return n;
4216 /* Calculate the number of privileged insns and return it. */
4217 static int
4218 calculate_privileged_insns (void)
4220 expr_t cur_expr, min_spec_expr = NULL;
4221 int privileged_n = 0, i;
4223 for (i = 0; i < ready.n_ready; i++)
4225 if (ready_try[i])
4226 continue;
4228 if (! min_spec_expr)
4229 min_spec_expr = find_expr_for_ready (i, true);
4231 cur_expr = find_expr_for_ready (i, true);
4233 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4234 break;
4236 ++privileged_n;
4239 if (i == ready.n_ready)
4240 privileged_n = 0;
4242 if (sched_verbose >= 2)
4243 sel_print ("privileged_n: %d insns with SPEC %d\n",
4244 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4245 return privileged_n;
4248 /* Call the rest of the hooks after the choice was made. Return
4249 the number of insns that still can be issued given that the current
4250 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4251 and the insn chosen for scheduling, respectively. */
4252 static int
4253 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4255 gcc_assert (INSN_P (best_insn));
4257 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4258 sel_dfa_new_cycle (best_insn, fence);
4260 if (targetm.sched.variable_issue)
4262 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4263 issue_more =
4264 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4265 issue_more);
4266 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4268 else if (GET_CODE (PATTERN (best_insn)) != USE
4269 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4270 issue_more--;
4272 return issue_more;
4275 /* Estimate the cost of issuing INSN on DFA state STATE. */
4276 static int
4277 estimate_insn_cost (rtx_insn *insn, state_t state)
4279 static state_t temp = NULL;
4280 int cost;
4282 if (!temp)
4283 temp = xmalloc (dfa_state_size);
4285 memcpy (temp, state, dfa_state_size);
4286 cost = state_transition (temp, insn);
4288 if (cost < 0)
4289 return 0;
4290 else if (cost == 0)
4291 return 1;
4292 return cost;
4295 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4296 This function properly handles ASMs, USEs etc. */
4297 static int
4298 get_expr_cost (expr_t expr, fence_t fence)
4300 rtx_insn *insn = EXPR_INSN_RTX (expr);
4302 if (recog_memoized (insn) < 0)
4304 if (!FENCE_STARTS_CYCLE_P (fence)
4305 && INSN_ASM_P (insn))
4306 /* This is asm insn which is tryed to be issued on the
4307 cycle not first. Issue it on the next cycle. */
4308 return 1;
4309 else
4310 /* A USE insn, or something else we don't need to
4311 understand. We can't pass these directly to
4312 state_transition because it will trigger a
4313 fatal error for unrecognizable insns. */
4314 return 0;
4316 else
4317 return estimate_insn_cost (insn, FENCE_STATE (fence));
4320 /* Find the best insn for scheduling, either via max_issue or just take
4321 the most prioritized available. */
4322 static int
4323 choose_best_insn (fence_t fence, int privileged_n, int *index)
4325 int can_issue = 0;
4327 if (dfa_lookahead > 0)
4329 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4330 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4331 can_issue = max_issue (&ready, privileged_n,
4332 FENCE_STATE (fence), true, index);
4333 if (sched_verbose >= 2)
4334 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4335 can_issue, FENCE_ISSUED_INSNS (fence));
4337 else
4339 /* We can't use max_issue; just return the first available element. */
4340 int i;
4342 for (i = 0; i < ready.n_ready; i++)
4344 expr_t expr = find_expr_for_ready (i, true);
4346 if (get_expr_cost (expr, fence) < 1)
4348 can_issue = can_issue_more;
4349 *index = i;
4351 if (sched_verbose >= 2)
4352 sel_print ("using %dth insn from the ready list\n", i + 1);
4354 break;
4358 if (i == ready.n_ready)
4360 can_issue = 0;
4361 *index = -1;
4365 return can_issue;
4368 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4369 BNDS and FENCE are current boundaries and scheduling fence respectively.
4370 Return the expr found and NULL if nothing can be issued atm.
4371 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4372 static expr_t
4373 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4374 int *pneed_stall)
4376 expr_t best;
4378 /* Choose the best insn for scheduling via:
4379 1) sorting the ready list based on priority;
4380 2) calling the reorder hook;
4381 3) calling max_issue. */
4382 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4383 if (best == NULL && ready.n_ready > 0)
4385 int privileged_n, index;
4387 can_issue_more = invoke_reorder_hooks (fence);
4388 if (can_issue_more > 0)
4390 /* Try choosing the best insn until we find one that is could be
4391 scheduled due to liveness restrictions on its destination register.
4392 In the future, we'd like to choose once and then just probe insns
4393 in the order of their priority. */
4394 invoke_dfa_lookahead_guard ();
4395 privileged_n = calculate_privileged_insns ();
4396 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4397 if (can_issue_more)
4398 best = find_expr_for_ready (index, true);
4400 /* We had some available insns, so if we can't issue them,
4401 we have a stall. */
4402 if (can_issue_more == 0)
4404 best = NULL;
4405 *pneed_stall = 1;
4409 if (best != NULL)
4411 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4412 can_issue_more);
4413 if (targetm.sched.variable_issue
4414 && can_issue_more == 0)
4415 *pneed_stall = 1;
4418 if (sched_verbose >= 2)
4420 if (best != NULL)
4422 sel_print ("Best expression (vliw form): ");
4423 dump_expr (best);
4424 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4426 else
4427 sel_print ("No best expr found!\n");
4430 return best;
4434 /* Functions that implement the core of the scheduler. */
4437 /* Emit an instruction from EXPR with SEQNO and VINSN after
4438 PLACE_TO_INSERT. */
4439 static insn_t
4440 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4441 insn_t place_to_insert)
4443 /* This assert fails when we have identical instructions
4444 one of which dominates the other. In this case move_op ()
4445 finds the first instruction and doesn't search for second one.
4446 The solution would be to compute av_set after the first found
4447 insn and, if insn present in that set, continue searching.
4448 For now we workaround this issue in move_op. */
4449 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4451 if (EXPR_WAS_RENAMED (expr))
4453 unsigned regno = expr_dest_regno (expr);
4455 if (HARD_REGISTER_NUM_P (regno))
4457 df_set_regs_ever_live (regno, true);
4458 reg_rename_tick[regno] = ++reg_rename_this_tick;
4462 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4463 place_to_insert);
4466 /* Return TRUE if BB can hold bookkeeping code. */
4467 static bool
4468 block_valid_for_bookkeeping_p (basic_block bb)
4470 insn_t bb_end = BB_END (bb);
4472 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4473 return false;
4475 if (INSN_P (bb_end))
4477 if (INSN_SCHED_TIMES (bb_end) > 0)
4478 return false;
4480 else
4481 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4483 return true;
4486 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4487 into E2->dest, except from E1->src (there may be a sequence of empty basic
4488 blocks between E1->src and E2->dest). Return found block, or NULL if new
4489 one must be created. If LAX holds, don't assume there is a simple path
4490 from E1->src to E2->dest. */
4491 static basic_block
4492 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4494 basic_block candidate_block = NULL;
4495 edge e;
4497 /* Loop over edges from E1 to E2, inclusive. */
4498 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4499 EDGE_SUCC (e->dest, 0))
4501 if (EDGE_COUNT (e->dest->preds) == 2)
4503 if (candidate_block == NULL)
4504 candidate_block = (EDGE_PRED (e->dest, 0) == e
4505 ? EDGE_PRED (e->dest, 1)->src
4506 : EDGE_PRED (e->dest, 0)->src);
4507 else
4508 /* Found additional edge leading to path from e1 to e2
4509 from aside. */
4510 return NULL;
4512 else if (EDGE_COUNT (e->dest->preds) > 2)
4513 /* Several edges leading to path from e1 to e2 from aside. */
4514 return NULL;
4516 if (e == e2)
4517 return ((!lax || candidate_block)
4518 && block_valid_for_bookkeeping_p (candidate_block)
4519 ? candidate_block
4520 : NULL);
4522 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4523 return NULL;
4526 if (lax)
4527 return NULL;
4529 gcc_unreachable ();
4532 /* Create new basic block for bookkeeping code for path(s) incoming into
4533 E2->dest, except from E1->src. Return created block. */
4534 static basic_block
4535 create_block_for_bookkeeping (edge e1, edge e2)
4537 basic_block new_bb, bb = e2->dest;
4539 /* Check that we don't spoil the loop structure. */
4540 if (current_loop_nest)
4542 basic_block latch = current_loop_nest->latch;
4544 /* We do not split header. */
4545 gcc_assert (e2->dest != current_loop_nest->header);
4547 /* We do not redirect the only edge to the latch block. */
4548 gcc_assert (e1->dest != latch
4549 || !single_pred_p (latch)
4550 || e1 != single_pred_edge (latch));
4553 /* Split BB to insert BOOK_INSN there. */
4554 new_bb = sched_split_block (bb, NULL);
4556 /* Move note_list from the upper bb. */
4557 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4558 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4559 BB_NOTE_LIST (bb) = NULL;
4561 gcc_assert (e2->dest == bb);
4563 /* Skip block for bookkeeping copy when leaving E1->src. */
4564 if (e1->flags & EDGE_FALLTHRU)
4565 sel_redirect_edge_and_branch_force (e1, new_bb);
4566 else
4567 sel_redirect_edge_and_branch (e1, new_bb);
4569 gcc_assert (e1->dest == new_bb);
4570 gcc_assert (sel_bb_empty_p (bb));
4572 /* To keep basic block numbers in sync between debug and non-debug
4573 compilations, we have to rotate blocks here. Consider that we
4574 started from (a,b)->d, (c,d)->e, and d contained only debug
4575 insns. It would have been removed before if the debug insns
4576 weren't there, so we'd have split e rather than d. So what we do
4577 now is to swap the block numbers of new_bb and
4578 single_succ(new_bb) == e, so that the insns that were in e before
4579 get the new block number. */
4581 if (MAY_HAVE_DEBUG_INSNS)
4583 basic_block succ;
4584 insn_t insn = sel_bb_head (new_bb);
4585 insn_t last;
4587 if (DEBUG_INSN_P (insn)
4588 && single_succ_p (new_bb)
4589 && (succ = single_succ (new_bb))
4590 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4591 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4593 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4594 insn = NEXT_INSN (insn);
4596 if (insn == last)
4598 sel_global_bb_info_def gbi;
4599 sel_region_bb_info_def rbi;
4601 if (sched_verbose >= 2)
4602 sel_print ("Swapping block ids %i and %i\n",
4603 new_bb->index, succ->index);
4605 std::swap (new_bb->index, succ->index);
4607 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4608 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4610 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4611 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4612 sizeof (gbi));
4613 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4615 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4616 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4617 sizeof (rbi));
4618 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4620 std::swap (BLOCK_TO_BB (new_bb->index),
4621 BLOCK_TO_BB (succ->index));
4623 std::swap (CONTAINING_RGN (new_bb->index),
4624 CONTAINING_RGN (succ->index));
4626 for (int i = 0; i < current_nr_blocks; i++)
4627 if (BB_TO_BLOCK (i) == succ->index)
4628 BB_TO_BLOCK (i) = new_bb->index;
4629 else if (BB_TO_BLOCK (i) == new_bb->index)
4630 BB_TO_BLOCK (i) = succ->index;
4632 FOR_BB_INSNS (new_bb, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4636 FOR_BB_INSNS (succ, insn)
4637 if (INSN_P (insn))
4638 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4640 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4643 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4644 && LABEL_P (BB_HEAD (succ)));
4646 if (sched_verbose >= 4)
4647 sel_print ("Swapping code labels %i and %i\n",
4648 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4651 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4657 return bb;
4660 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4661 into E2->dest, except from E1->src. If the returned insn immediately
4662 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4663 static insn_t
4664 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4666 insn_t place_to_insert;
4667 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4668 create new basic block, but insert bookkeeping there. */
4669 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4671 if (book_block)
4673 place_to_insert = BB_END (book_block);
4675 /* Don't use a block containing only debug insns for
4676 bookkeeping, this causes scheduling differences between debug
4677 and non-debug compilations, for the block would have been
4678 removed already. */
4679 if (DEBUG_INSN_P (place_to_insert))
4681 rtx_insn *insn = sel_bb_head (book_block);
4683 while (insn != place_to_insert &&
4684 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4685 insn = NEXT_INSN (insn);
4687 if (insn == place_to_insert)
4688 book_block = NULL;
4692 if (!book_block)
4694 book_block = create_block_for_bookkeeping (e1, e2);
4695 place_to_insert = BB_END (book_block);
4696 if (sched_verbose >= 9)
4697 sel_print ("New block is %i, split from bookkeeping block %i\n",
4698 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4700 else
4702 if (sched_verbose >= 9)
4703 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4706 *fence_to_rewind = NULL;
4707 /* If basic block ends with a jump, insert bookkeeping code right before it.
4708 Notice if we are crossing a fence when taking PREV_INSN. */
4709 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4711 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4712 place_to_insert = PREV_INSN (place_to_insert);
4715 return place_to_insert;
4718 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4719 for JOIN_POINT. */
4720 static int
4721 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4723 int seqno;
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4727 rtx_insn *next = NEXT_INSN (place_to_insert);
4728 if (INSN_P (next)
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
4739 seqno = get_seqno_by_preds (place_to_insert);
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4753 gcc_assert (seqno > 0);
4754 return seqno;
4757 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759 static insn_t
4760 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4762 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4768 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 place_to_insert);
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4774 return new_insn;
4777 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781 static basic_block
4782 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
4787 fence_t fence_to_rewind;
4789 if (sched_verbose >= 4)
4790 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4791 e2->dest->index);
4793 join_point = sel_bb_head (e2->dest);
4794 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796 need_to_exchange_data_sets
4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4801 if (fence_to_rewind)
4802 FENCE_INSN (fence_to_rewind) = new_insn;
4804 /* When inserting bookkeeping insn in new block, av sets should be
4805 following: old basic block (that now holds bookkeeping) data sets are
4806 the same as was before generation of bookkeeping, and new basic block
4807 (that now hold all other insns of old basic block) data sets are
4808 invalid. So exchange data sets for these basic blocks as sel_split_block
4809 mistakenly exchanges them in this case. Cannot do it earlier because
4810 when single instruction is added to new basic block it should hold NULL
4811 lv_set. */
4812 if (need_to_exchange_data_sets)
4813 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4814 BLOCK_FOR_INSN (join_point));
4816 stat_bookkeeping_copies++;
4817 return BLOCK_FOR_INSN (new_insn);
4820 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4821 on FENCE, but we are unable to copy them. */
4822 static void
4823 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4825 expr_t expr;
4826 av_set_iterator i;
4828 /* An expression does not need bookkeeping if it is available on all paths
4829 from current block to original block and current block dominates
4830 original block. We check availability on all paths by examining
4831 EXPR_SPEC; this is not equivalent, because it may be positive even
4832 if expr is available on all paths (but if expr is not available on
4833 any path, EXPR_SPEC will be positive). */
4835 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4837 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4838 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4839 && (EXPR_SPEC (expr)
4840 || !EXPR_ORIG_BB_INDEX (expr)
4841 || !dominated_by_p (CDI_DOMINATORS,
4842 BASIC_BLOCK_FOR_FN (cfun,
4843 EXPR_ORIG_BB_INDEX (expr)),
4844 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4846 if (sched_verbose >= 4)
4847 sel_print ("Expr %d removed because it would need bookkeeping, which "
4848 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4849 av_set_iter_remove (&i);
4854 /* Moving conditional jump through some instructions.
4856 Consider example:
4858 ... <- current scheduling point
4859 NOTE BASIC BLOCK: <- bb header
4860 (p8) add r14=r14+0x9;;
4861 (p8) mov [r14]=r23
4862 (!p8) jump L1;;
4863 NOTE BASIC BLOCK:
4866 We can schedule jump one cycle earlier, than mov, because they cannot be
4867 executed together as their predicates are mutually exclusive.
4869 This is done in this way: first, new fallthrough basic block is created
4870 after jump (it is always can be done, because there already should be a
4871 fallthrough block, where control flow goes in case of predicate being true -
4872 in our example; otherwise there should be a dependence between those
4873 instructions and jump and we cannot schedule jump right now);
4874 next, all instructions between jump and current scheduling point are moved
4875 to this new block. And the result is this:
4877 NOTE BASIC BLOCK:
4878 (!p8) jump L1 <- current scheduling point
4879 NOTE BASIC BLOCK: <- bb header
4880 (p8) add r14=r14+0x9;;
4881 (p8) mov [r14]=r23
4882 NOTE BASIC BLOCK:
4885 static void
4886 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4888 edge ft_edge;
4889 basic_block block_from, block_next, block_new, block_bnd, bb;
4890 rtx_insn *next, *prev, *link, *head;
4892 block_from = BLOCK_FOR_INSN (insn);
4893 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4894 prev = BND_TO (bnd);
4896 #ifdef ENABLE_CHECKING
4897 /* Moving of jump should not cross any other jumps or beginnings of new
4898 basic blocks. The only exception is when we move a jump through
4899 mutually exclusive insns along fallthru edges. */
4900 if (block_from != block_bnd)
4902 bb = block_from;
4903 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4904 link = PREV_INSN (link))
4906 if (INSN_P (link))
4907 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4908 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4910 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4911 bb = BLOCK_FOR_INSN (link);
4915 #endif
4917 /* Jump is moved to the boundary. */
4918 next = PREV_INSN (insn);
4919 BND_TO (bnd) = insn;
4921 ft_edge = find_fallthru_edge_from (block_from);
4922 block_next = ft_edge->dest;
4923 /* There must be a fallthrough block (or where should go
4924 control flow in case of false jump predicate otherwise?). */
4925 gcc_assert (block_next);
4927 /* Create new empty basic block after source block. */
4928 block_new = sel_split_edge (ft_edge);
4929 gcc_assert (block_new->next_bb == block_next
4930 && block_from->next_bb == block_new);
4932 /* Move all instructions except INSN to BLOCK_NEW. */
4933 bb = block_bnd;
4934 head = BB_HEAD (block_new);
4935 while (bb != block_from->next_bb)
4937 rtx_insn *from, *to;
4938 from = bb == block_bnd ? prev : sel_bb_head (bb);
4939 to = bb == block_from ? next : sel_bb_end (bb);
4941 /* The jump being moved can be the first insn in the block.
4942 In this case we don't have to move anything in this block. */
4943 if (NEXT_INSN (to) != from)
4945 reorder_insns (from, to, head);
4947 for (link = to; link != head; link = PREV_INSN (link))
4948 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4949 head = to;
4952 /* Cleanup possibly empty blocks left. */
4953 block_next = bb->next_bb;
4954 if (bb != block_from)
4955 tidy_control_flow (bb, false);
4956 bb = block_next;
4959 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4960 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4962 gcc_assert (!sel_bb_empty_p (block_from)
4963 && !sel_bb_empty_p (block_new));
4965 /* Update data sets for BLOCK_NEW to represent that INSN and
4966 instructions from the other branch of INSN is no longer
4967 available at BLOCK_NEW. */
4968 BB_AV_LEVEL (block_new) = global_level;
4969 gcc_assert (BB_LV_SET (block_new) == NULL);
4970 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4971 update_data_sets (sel_bb_head (block_new));
4973 /* INSN is a new basic block header - so prepare its data
4974 structures and update availability and liveness sets. */
4975 update_data_sets (insn);
4977 if (sched_verbose >= 4)
4978 sel_print ("Moving jump %d\n", INSN_UID (insn));
4981 /* Remove nops generated during move_op for preventing removal of empty
4982 basic blocks. */
4983 static void
4984 remove_temp_moveop_nops (bool full_tidying)
4986 int i;
4987 insn_t insn;
4989 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4991 gcc_assert (INSN_NOP_P (insn));
4992 return_nop_to_pool (insn, full_tidying);
4995 /* Empty the vector. */
4996 if (vec_temp_moveop_nops.length () > 0)
4997 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5000 /* Records the maximal UID before moving up an instruction. Used for
5001 distinguishing between bookkeeping copies and original insns. */
5002 static int max_uid_before_move_op = 0;
5004 /* Remove from AV_VLIW_P all instructions but next when debug counter
5005 tells us so. Next instruction is fetched from BNDS. */
5006 static void
5007 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5009 if (! dbg_cnt (sel_sched_insn_cnt))
5010 /* Leave only the next insn in av_vliw. */
5012 av_set_iterator av_it;
5013 expr_t expr;
5014 bnd_t bnd = BLIST_BND (bnds);
5015 insn_t next = BND_TO (bnd);
5017 gcc_assert (BLIST_NEXT (bnds) == NULL);
5019 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5020 if (EXPR_INSN_RTX (expr) != next)
5021 av_set_iter_remove (&av_it);
5025 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5026 the computed set to *AV_VLIW_P. */
5027 static void
5028 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5030 if (sched_verbose >= 2)
5032 sel_print ("Boundaries: ");
5033 dump_blist (bnds);
5034 sel_print ("\n");
5037 for (; bnds; bnds = BLIST_NEXT (bnds))
5039 bnd_t bnd = BLIST_BND (bnds);
5040 av_set_t av1_copy;
5041 insn_t bnd_to = BND_TO (bnd);
5043 /* Rewind BND->TO to the basic block header in case some bookkeeping
5044 instructions were inserted before BND->TO and it needs to be
5045 adjusted. */
5046 if (sel_bb_head_p (bnd_to))
5047 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5048 else
5049 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5051 bnd_to = PREV_INSN (bnd_to);
5052 if (sel_bb_head_p (bnd_to))
5053 break;
5056 if (BND_TO (bnd) != bnd_to)
5058 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5059 FENCE_INSN (fence) = bnd_to;
5060 BND_TO (bnd) = bnd_to;
5063 av_set_clear (&BND_AV (bnd));
5064 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5066 av_set_clear (&BND_AV1 (bnd));
5067 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5069 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5071 av1_copy = av_set_copy (BND_AV1 (bnd));
5072 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5075 if (sched_verbose >= 2)
5077 sel_print ("Available exprs (vliw form): ");
5078 dump_av_set (*av_vliw_p);
5079 sel_print ("\n");
5083 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5084 expression. When FOR_MOVEOP is true, also replace the register of
5085 expressions found with the register from EXPR_VLIW. */
5086 static av_set_t
5087 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5089 av_set_t expr_seq = NULL;
5090 expr_t expr;
5091 av_set_iterator i;
5093 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5095 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5097 if (for_moveop)
5099 /* The sequential expression has the right form to pass
5100 to move_op except when renaming happened. Put the
5101 correct register in EXPR then. */
5102 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5104 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5106 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5107 stat_renamed_scheduled++;
5109 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5110 This is needed when renaming came up with original
5111 register. */
5112 else if (EXPR_TARGET_AVAILABLE (expr)
5113 != EXPR_TARGET_AVAILABLE (expr_vliw))
5115 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5116 EXPR_TARGET_AVAILABLE (expr) = 1;
5119 if (EXPR_WAS_SUBSTITUTED (expr))
5120 stat_substitutions_total++;
5123 av_set_add (&expr_seq, expr);
5125 /* With substitution inside insn group, it is possible
5126 that more than one expression in expr_seq will correspond
5127 to expr_vliw. In this case, choose one as the attempt to
5128 move both leads to miscompiles. */
5129 break;
5133 if (for_moveop && sched_verbose >= 2)
5135 sel_print ("Best expression(s) (sequential form): ");
5136 dump_av_set (expr_seq);
5137 sel_print ("\n");
5140 return expr_seq;
5144 /* Move nop to previous block. */
5145 static void ATTRIBUTE_UNUSED
5146 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5148 insn_t prev_insn, next_insn;
5150 gcc_assert (sel_bb_head_p (nop)
5151 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5152 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5153 prev_insn = sel_bb_end (prev_bb);
5154 next_insn = NEXT_INSN (nop);
5155 gcc_assert (prev_insn != NULL_RTX
5156 && PREV_INSN (note) == prev_insn);
5158 SET_NEXT_INSN (prev_insn) = nop;
5159 SET_PREV_INSN (nop) = prev_insn;
5161 SET_PREV_INSN (note) = nop;
5162 SET_NEXT_INSN (note) = next_insn;
5164 SET_NEXT_INSN (nop) = note;
5165 SET_PREV_INSN (next_insn) = note;
5167 BB_END (prev_bb) = nop;
5168 BLOCK_FOR_INSN (nop) = prev_bb;
5171 /* Prepare a place to insert the chosen expression on BND. */
5172 static insn_t
5173 prepare_place_to_insert (bnd_t bnd)
5175 insn_t place_to_insert;
5177 /* Init place_to_insert before calling move_op, as the later
5178 can possibly remove BND_TO (bnd). */
5179 if (/* If this is not the first insn scheduled. */
5180 BND_PTR (bnd))
5182 /* Add it after last scheduled. */
5183 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5184 if (DEBUG_INSN_P (place_to_insert))
5186 ilist_t l = BND_PTR (bnd);
5187 while ((l = ILIST_NEXT (l)) &&
5188 DEBUG_INSN_P (ILIST_INSN (l)))
5190 if (!l)
5191 place_to_insert = NULL;
5194 else
5195 place_to_insert = NULL;
5197 if (!place_to_insert)
5199 /* Add it before BND_TO. The difference is in the
5200 basic block, where INSN will be added. */
5201 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5202 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5203 == BLOCK_FOR_INSN (BND_TO (bnd)));
5206 return place_to_insert;
5209 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5210 Return the expression to emit in C_EXPR. */
5211 static bool
5212 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5213 av_set_t expr_seq, expr_t c_expr)
5215 bool b, should_move;
5216 unsigned book_uid;
5217 bitmap_iterator bi;
5218 int n_bookkeeping_copies_before_moveop;
5220 /* Make a move. This call will remove the original operation,
5221 insert all necessary bookkeeping instructions and update the
5222 data sets. After that all we have to do is add the operation
5223 at before BND_TO (BND). */
5224 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5225 max_uid_before_move_op = get_max_uid ();
5226 bitmap_clear (current_copies);
5227 bitmap_clear (current_originators);
5229 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5230 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5232 /* We should be able to find the expression we've chosen for
5233 scheduling. */
5234 gcc_assert (b);
5236 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5237 stat_insns_needed_bookkeeping++;
5239 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5241 unsigned uid;
5242 bitmap_iterator bi;
5244 /* We allocate these bitmaps lazily. */
5245 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5246 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5248 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5249 current_originators);
5251 /* Transitively add all originators' originators. */
5252 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5253 if (INSN_ORIGINATORS_BY_UID (uid))
5254 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5255 INSN_ORIGINATORS_BY_UID (uid));
5258 return should_move;
5262 /* Debug a DFA state as an array of bytes. */
5263 static void
5264 debug_state (state_t state)
5266 unsigned char *p;
5267 unsigned int i, size = dfa_state_size;
5269 sel_print ("state (%u):", size);
5270 for (i = 0, p = (unsigned char *) state; i < size; i++)
5271 sel_print (" %d", p[i]);
5272 sel_print ("\n");
5275 /* Advance state on FENCE with INSN. Return true if INSN is
5276 an ASM, and we should advance state once more. */
5277 static bool
5278 advance_state_on_fence (fence_t fence, insn_t insn)
5280 bool asm_p;
5282 if (recog_memoized (insn) >= 0)
5284 int res;
5285 state_t temp_state = alloca (dfa_state_size);
5287 gcc_assert (!INSN_ASM_P (insn));
5288 asm_p = false;
5290 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5291 res = state_transition (FENCE_STATE (fence), insn);
5292 gcc_assert (res < 0);
5294 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5296 FENCE_ISSUED_INSNS (fence)++;
5298 /* We should never issue more than issue_rate insns. */
5299 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5300 gcc_unreachable ();
5303 else
5305 /* This could be an ASM insn which we'd like to schedule
5306 on the next cycle. */
5307 asm_p = INSN_ASM_P (insn);
5308 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5309 advance_one_cycle (fence);
5312 if (sched_verbose >= 2)
5313 debug_state (FENCE_STATE (fence));
5314 if (!DEBUG_INSN_P (insn))
5315 FENCE_STARTS_CYCLE_P (fence) = 0;
5316 FENCE_ISSUE_MORE (fence) = can_issue_more;
5317 return asm_p;
5320 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5321 is nonzero if we need to stall after issuing INSN. */
5322 static void
5323 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5325 bool asm_p;
5327 /* First, reflect that something is scheduled on this fence. */
5328 asm_p = advance_state_on_fence (fence, insn);
5329 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5330 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5331 if (SCHED_GROUP_P (insn))
5333 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5334 SCHED_GROUP_P (insn) = 0;
5336 else
5337 FENCE_SCHED_NEXT (fence) = NULL;
5338 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5339 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5341 /* Set instruction scheduling info. This will be used in bundling,
5342 pipelining, tick computations etc. */
5343 ++INSN_SCHED_TIMES (insn);
5344 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5345 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5346 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5347 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5349 /* This does not account for adjust_cost hooks, just add the biggest
5350 constant the hook may add to the latency. TODO: make this
5351 a target dependent constant. */
5352 INSN_READY_CYCLE (insn)
5353 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5355 : maximal_insn_latency (insn) + 1);
5357 /* Change these fields last, as they're used above. */
5358 FENCE_AFTER_STALL_P (fence) = 0;
5359 if (asm_p || need_stall)
5360 advance_one_cycle (fence);
5362 /* Indicate that we've scheduled something on this fence. */
5363 FENCE_SCHEDULED_P (fence) = true;
5364 scheduled_something_on_previous_fence = true;
5366 /* Print debug information when insn's fields are updated. */
5367 if (sched_verbose >= 2)
5369 sel_print ("Scheduling insn: ");
5370 dump_insn_1 (insn, 1);
5371 sel_print ("\n");
5375 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5376 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5377 return it. */
5378 static blist_t *
5379 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5380 blist_t *bnds_tailp)
5382 succ_iterator si;
5383 insn_t succ;
5385 advance_deps_context (BND_DC (bnd), insn);
5386 FOR_EACH_SUCC_1 (succ, si, insn,
5387 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5389 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5391 ilist_add (&ptr, insn);
5393 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5394 && is_ineligible_successor (succ, ptr))
5396 ilist_clear (&ptr);
5397 continue;
5400 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5402 if (sched_verbose >= 9)
5403 sel_print ("Updating fence insn from %i to %i\n",
5404 INSN_UID (insn), INSN_UID (succ));
5405 FENCE_INSN (fence) = succ;
5407 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5408 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5411 blist_remove (bndsp);
5412 return bnds_tailp;
5415 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5416 static insn_t
5417 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5419 av_set_t expr_seq;
5420 expr_t c_expr = XALLOCA (expr_def);
5421 insn_t place_to_insert;
5422 insn_t insn;
5423 bool should_move;
5425 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5427 /* In case of scheduling a jump skipping some other instructions,
5428 prepare CFG. After this, jump is at the boundary and can be
5429 scheduled as usual insn by MOVE_OP. */
5430 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5432 insn = EXPR_INSN_RTX (expr_vliw);
5434 /* Speculative jumps are not handled. */
5435 if (insn != BND_TO (bnd)
5436 && !sel_insn_is_speculation_check (insn))
5437 move_cond_jump (insn, bnd);
5440 /* Find a place for C_EXPR to schedule. */
5441 place_to_insert = prepare_place_to_insert (bnd);
5442 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5443 clear_expr (c_expr);
5445 /* Add the instruction. The corner case to care about is when
5446 the expr_seq set has more than one expr, and we chose the one that
5447 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5448 we can't use it. Generate the new vinsn. */
5449 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5451 vinsn_t vinsn_new;
5453 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5454 change_vinsn_in_expr (expr_vliw, vinsn_new);
5455 should_move = false;
5457 if (should_move)
5458 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5459 else
5460 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5461 place_to_insert);
5463 /* Return the nops generated for preserving of data sets back
5464 into pool. */
5465 if (INSN_NOP_P (place_to_insert))
5466 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5467 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5469 av_set_clear (&expr_seq);
5471 /* Save the expression scheduled so to reset target availability if we'll
5472 meet it later on the same fence. */
5473 if (EXPR_WAS_RENAMED (expr_vliw))
5474 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5476 /* Check that the recent movement didn't destroyed loop
5477 structure. */
5478 gcc_assert (!pipelining_p
5479 || current_loop_nest == NULL
5480 || loop_latch_edge (current_loop_nest));
5481 return insn;
5484 /* Stall for N cycles on FENCE. */
5485 static void
5486 stall_for_cycles (fence_t fence, int n)
5488 int could_more;
5490 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5491 while (n--)
5492 advance_one_cycle (fence);
5493 if (could_more)
5494 FENCE_AFTER_STALL_P (fence) = 1;
5497 /* Gather a parallel group of insns at FENCE and assign their seqno
5498 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5499 list for later recalculation of seqnos. */
5500 static void
5501 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5503 blist_t bnds = NULL, *bnds_tailp;
5504 av_set_t av_vliw = NULL;
5505 insn_t insn = FENCE_INSN (fence);
5507 if (sched_verbose >= 2)
5508 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5509 INSN_UID (insn), FENCE_CYCLE (fence));
5511 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5512 bnds_tailp = &BLIST_NEXT (bnds);
5513 set_target_context (FENCE_TC (fence));
5514 can_issue_more = FENCE_ISSUE_MORE (fence);
5515 target_bb = INSN_BB (insn);
5517 /* Do while we can add any operation to the current group. */
5520 blist_t *bnds_tailp1, *bndsp;
5521 expr_t expr_vliw;
5522 int need_stall = false;
5523 int was_stall = 0, scheduled_insns = 0;
5524 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5525 int max_stall = pipelining_p ? 1 : 3;
5526 bool last_insn_was_debug = false;
5527 bool was_debug_bb_end_p = false;
5529 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5530 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5531 remove_insns_for_debug (bnds, &av_vliw);
5533 /* Return early if we have nothing to schedule. */
5534 if (av_vliw == NULL)
5535 break;
5537 /* Choose the best expression and, if needed, destination register
5538 for it. */
5541 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5542 if (! expr_vliw && need_stall)
5544 /* All expressions required a stall. Do not recompute av sets
5545 as we'll get the same answer (modulo the insns between
5546 the fence and its boundary, which will not be available for
5547 pipelining).
5548 If we are going to stall for too long, break to recompute av
5549 sets and bring more insns for pipelining. */
5550 was_stall++;
5551 if (need_stall <= 3)
5552 stall_for_cycles (fence, need_stall);
5553 else
5555 stall_for_cycles (fence, 1);
5556 break;
5560 while (! expr_vliw && need_stall);
5562 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5563 if (!expr_vliw)
5565 av_set_clear (&av_vliw);
5566 break;
5569 bndsp = &bnds;
5570 bnds_tailp1 = bnds_tailp;
5573 /* This code will be executed only once until we'd have several
5574 boundaries per fence. */
5576 bnd_t bnd = BLIST_BND (*bndsp);
5578 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5580 bndsp = &BLIST_NEXT (*bndsp);
5581 continue;
5584 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5585 last_insn_was_debug = DEBUG_INSN_P (insn);
5586 if (last_insn_was_debug)
5587 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5588 update_fence_and_insn (fence, insn, need_stall);
5589 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5591 /* Add insn to the list of scheduled on this cycle instructions. */
5592 ilist_add (*scheduled_insns_tailpp, insn);
5593 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5595 while (*bndsp != *bnds_tailp1);
5597 av_set_clear (&av_vliw);
5598 if (!last_insn_was_debug)
5599 scheduled_insns++;
5601 /* We currently support information about candidate blocks only for
5602 one 'target_bb' block. Hence we can't schedule after jump insn,
5603 as this will bring two boundaries and, hence, necessity to handle
5604 information for two or more blocks concurrently. */
5605 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5606 || (was_stall
5607 && (was_stall >= max_stall
5608 || scheduled_insns >= max_insns)))
5609 break;
5611 while (bnds);
5613 gcc_assert (!FENCE_BNDS (fence));
5615 /* Update boundaries of the FENCE. */
5616 while (bnds)
5618 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5620 if (ptr)
5622 insn = ILIST_INSN (ptr);
5624 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5625 ilist_add (&FENCE_BNDS (fence), insn);
5628 blist_remove (&bnds);
5631 /* Update target context on the fence. */
5632 reset_target_context (FENCE_TC (fence), false);
5635 /* All exprs in ORIG_OPS must have the same destination register or memory.
5636 Return that destination. */
5637 static rtx
5638 get_dest_from_orig_ops (av_set_t orig_ops)
5640 rtx dest = NULL_RTX;
5641 av_set_iterator av_it;
5642 expr_t expr;
5643 bool first_p = true;
5645 FOR_EACH_EXPR (expr, av_it, orig_ops)
5647 rtx x = EXPR_LHS (expr);
5649 if (first_p)
5651 first_p = false;
5652 dest = x;
5654 else
5655 gcc_assert (dest == x
5656 || (dest != NULL_RTX && x != NULL_RTX
5657 && rtx_equal_p (dest, x)));
5660 return dest;
5663 /* Update data sets for the bookkeeping block and record those expressions
5664 which become no longer available after inserting this bookkeeping. */
5665 static void
5666 update_and_record_unavailable_insns (basic_block book_block)
5668 av_set_iterator i;
5669 av_set_t old_av_set = NULL;
5670 expr_t cur_expr;
5671 rtx_insn *bb_end = sel_bb_end (book_block);
5673 /* First, get correct liveness in the bookkeeping block. The problem is
5674 the range between the bookeeping insn and the end of block. */
5675 update_liveness_on_insn (bb_end);
5676 if (control_flow_insn_p (bb_end))
5677 update_liveness_on_insn (PREV_INSN (bb_end));
5679 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5680 fence above, where we may choose to schedule an insn which is
5681 actually blocked from moving up with the bookkeeping we create here. */
5682 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5684 old_av_set = av_set_copy (BB_AV_SET (book_block));
5685 update_data_sets (sel_bb_head (book_block));
5687 /* Traverse all the expressions in the old av_set and check whether
5688 CUR_EXPR is in new AV_SET. */
5689 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5691 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5692 EXPR_VINSN (cur_expr));
5694 if (! new_expr
5695 /* In this case, we can just turn off the E_T_A bit, but we can't
5696 represent this information with the current vector. */
5697 || EXPR_TARGET_AVAILABLE (new_expr)
5698 != EXPR_TARGET_AVAILABLE (cur_expr))
5699 /* Unfortunately, the below code could be also fired up on
5700 separable insns, e.g. when moving insns through the new
5701 speculation check as in PR 53701. */
5702 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5705 av_set_clear (&old_av_set);
5709 /* The main effect of this function is that sparams->c_expr is merged
5710 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5711 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5712 lparams->c_expr_merged is copied back to sparams->c_expr after all
5713 successors has been traversed. lparams->c_expr_local is an expr allocated
5714 on stack in the caller function, and is used if there is more than one
5715 successor.
5717 SUCC is one of the SUCCS_NORMAL successors of INSN,
5718 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5719 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5720 static void
5721 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5722 insn_t succ ATTRIBUTE_UNUSED,
5723 int moveop_drv_call_res,
5724 cmpd_local_params_p lparams, void *static_params)
5726 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5728 /* Nothing to do, if original expr wasn't found below. */
5729 if (moveop_drv_call_res != 1)
5730 return;
5732 /* If this is a first successor. */
5733 if (!lparams->c_expr_merged)
5735 lparams->c_expr_merged = sparams->c_expr;
5736 sparams->c_expr = lparams->c_expr_local;
5738 else
5740 /* We must merge all found expressions to get reasonable
5741 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5742 do so then we can first find the expr with epsilon
5743 speculation success probability and only then with the
5744 good probability. As a result the insn will get epsilon
5745 probability and will never be scheduled because of
5746 weakness_cutoff in find_best_expr.
5748 We call merge_expr_data here instead of merge_expr
5749 because due to speculation C_EXPR and X may have the
5750 same insns with different speculation types. And as of
5751 now such insns are considered non-equal.
5753 However, EXPR_SCHED_TIMES is different -- we must get
5754 SCHED_TIMES from a real insn, not a bookkeeping copy.
5755 We force this here. Instead, we may consider merging
5756 SCHED_TIMES to the maximum instead of minimum in the
5757 below function. */
5758 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5760 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5761 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5762 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5764 clear_expr (sparams->c_expr);
5768 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5770 SUCC is one of the SUCCS_NORMAL successors of INSN,
5771 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5772 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5773 STATIC_PARAMS contain USED_REGS set. */
5774 static void
5775 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5776 int moveop_drv_call_res,
5777 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5778 void *static_params)
5780 regset succ_live;
5781 fur_static_params_p sparams = (fur_static_params_p) static_params;
5783 /* Here we compute live regsets only for branches that do not lie
5784 on the code motion paths. These branches correspond to value
5785 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5786 for such branches code_motion_path_driver is not called. */
5787 if (moveop_drv_call_res != 0)
5788 return;
5790 /* Mark all registers that do not meet the following condition:
5791 (3) not live on the other path of any conditional branch
5792 that is passed by the operation, in case original
5793 operations are not present on both paths of the
5794 conditional branch. */
5795 succ_live = compute_live (succ);
5796 IOR_REG_SET (sparams->used_regs, succ_live);
5799 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5800 into SP->CEXPR. */
5801 static void
5802 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5804 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5806 sp->c_expr = lp->c_expr_merged;
5809 /* Track bookkeeping copies created, insns scheduled, and blocks for
5810 rescheduling when INSN is found by move_op. */
5811 static void
5812 track_scheduled_insns_and_blocks (rtx_insn *insn)
5814 /* Even if this insn can be a copy that will be removed during current move_op,
5815 we still need to count it as an originator. */
5816 bitmap_set_bit (current_originators, INSN_UID (insn));
5818 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5820 /* Note that original block needs to be rescheduled, as we pulled an
5821 instruction out of it. */
5822 if (INSN_SCHED_TIMES (insn) > 0)
5823 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5824 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5825 num_insns_scheduled++;
5828 /* For instructions we must immediately remove insn from the
5829 stream, so subsequent update_data_sets () won't include this
5830 insn into av_set.
5831 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5832 if (INSN_UID (insn) > max_uid_before_move_op)
5833 stat_bookkeeping_copies--;
5836 /* Emit a register-register copy for INSN if needed. Return true if
5837 emitted one. PARAMS is the move_op static parameters. */
5838 static bool
5839 maybe_emit_renaming_copy (rtx_insn *insn,
5840 moveop_static_params_p params)
5842 bool insn_emitted = false;
5843 rtx cur_reg;
5845 /* Bail out early when expression can not be renamed at all. */
5846 if (!EXPR_SEPARABLE_P (params->c_expr))
5847 return false;
5849 cur_reg = expr_dest_reg (params->c_expr);
5850 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5852 /* If original operation has expr and the register chosen for
5853 that expr is not original operation's dest reg, substitute
5854 operation's right hand side with the register chosen. */
5855 if (REGNO (params->dest) != REGNO (cur_reg))
5857 insn_t reg_move_insn, reg_move_insn_rtx;
5859 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5860 params->dest);
5861 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5862 INSN_EXPR (insn),
5863 INSN_SEQNO (insn),
5864 insn);
5865 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5866 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5868 insn_emitted = true;
5869 params->was_renamed = true;
5872 return insn_emitted;
5875 /* Emit a speculative check for INSN speculated as EXPR if needed.
5876 Return true if we've emitted one. PARAMS is the move_op static
5877 parameters. */
5878 static bool
5879 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5880 moveop_static_params_p params)
5882 bool insn_emitted = false;
5883 insn_t x;
5884 ds_t check_ds;
5886 check_ds = get_spec_check_type_for_insn (insn, expr);
5887 if (check_ds != 0)
5889 /* A speculation check should be inserted. */
5890 x = create_speculation_check (params->c_expr, check_ds, insn);
5891 insn_emitted = true;
5893 else
5895 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5896 x = insn;
5899 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5900 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5901 return insn_emitted;
5904 /* Handle transformations that leave an insn in place of original
5905 insn such as renaming/speculation. Return true if one of such
5906 transformations actually happened, and we have emitted this insn. */
5907 static bool
5908 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5909 moveop_static_params_p params)
5911 bool insn_emitted = false;
5913 insn_emitted = maybe_emit_renaming_copy (insn, params);
5914 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5916 return insn_emitted;
5919 /* If INSN is the only insn in the basic block (not counting JUMP,
5920 which may be a jump to next insn, and DEBUG_INSNs), we want to
5921 leave a NOP there till the return to fill_insns. */
5923 static bool
5924 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5926 insn_t bb_head, bb_end, bb_next, in_next;
5927 basic_block bb = BLOCK_FOR_INSN (insn);
5929 bb_head = sel_bb_head (bb);
5930 bb_end = sel_bb_end (bb);
5932 if (bb_head == bb_end)
5933 return true;
5935 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5936 bb_head = NEXT_INSN (bb_head);
5938 if (bb_head == bb_end)
5939 return true;
5941 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5942 bb_end = PREV_INSN (bb_end);
5944 if (bb_head == bb_end)
5945 return true;
5947 bb_next = NEXT_INSN (bb_head);
5948 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5949 bb_next = NEXT_INSN (bb_next);
5951 if (bb_next == bb_end && JUMP_P (bb_end))
5952 return true;
5954 in_next = NEXT_INSN (insn);
5955 while (DEBUG_INSN_P (in_next))
5956 in_next = NEXT_INSN (in_next);
5958 if (IN_CURRENT_FENCE_P (in_next))
5959 return true;
5961 return false;
5964 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5965 is not removed but reused when INSN is re-emitted. */
5966 static void
5967 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5969 /* If there's only one insn in the BB, make sure that a nop is
5970 inserted into it, so the basic block won't disappear when we'll
5971 delete INSN below with sel_remove_insn. It should also survive
5972 till the return to fill_insns. */
5973 if (need_nop_to_preserve_insn_bb (insn))
5975 insn_t nop = get_nop_from_pool (insn);
5976 gcc_assert (INSN_NOP_P (nop));
5977 vec_temp_moveop_nops.safe_push (nop);
5980 sel_remove_insn (insn, only_disconnect, false);
5983 /* This function is called when original expr is found.
5984 INSN - current insn traversed, EXPR - the corresponding expr found.
5985 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5986 is static parameters of move_op. */
5987 static void
5988 move_op_orig_expr_found (insn_t insn, expr_t expr,
5989 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5990 void *static_params)
5992 bool only_disconnect;
5993 moveop_static_params_p params = (moveop_static_params_p) static_params;
5995 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5996 track_scheduled_insns_and_blocks (insn);
5997 handle_emitting_transformations (insn, expr, params);
5998 only_disconnect = params->uid == INSN_UID (insn);
6000 /* Mark that we've disconnected an insn. */
6001 if (only_disconnect)
6002 params->uid = -1;
6003 remove_insn_from_stream (insn, only_disconnect);
6006 /* The function is called when original expr is found.
6007 INSN - current insn traversed, EXPR - the corresponding expr found,
6008 crosses_call and original_insns in STATIC_PARAMS are updated. */
6009 static void
6010 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6011 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6012 void *static_params)
6014 fur_static_params_p params = (fur_static_params_p) static_params;
6015 regset tmp;
6017 if (CALL_P (insn))
6018 params->crosses_call = true;
6020 def_list_add (params->original_insns, insn, params->crosses_call);
6022 /* Mark the registers that do not meet the following condition:
6023 (2) not among the live registers of the point
6024 immediately following the first original operation on
6025 a given downward path, except for the original target
6026 register of the operation. */
6027 tmp = get_clear_regset_from_pool ();
6028 compute_live_below_insn (insn, tmp);
6029 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6030 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6031 IOR_REG_SET (params->used_regs, tmp);
6032 return_regset_to_pool (tmp);
6034 /* (*1) We need to add to USED_REGS registers that are read by
6035 INSN's lhs. This may lead to choosing wrong src register.
6036 E.g. (scheduling const expr enabled):
6038 429: ax=0x0 <- Can't use AX for this expr (0x0)
6039 433: dx=[bp-0x18]
6040 427: [ax+dx+0x1]=ax
6041 REG_DEAD: ax
6042 168: di=dx
6043 REG_DEAD: dx
6045 /* FIXME: see comment above and enable MEM_P
6046 in vinsn_separable_p. */
6047 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6048 || !MEM_P (INSN_LHS (insn)));
6051 /* This function is called on the ascending pass, before returning from
6052 current basic block. */
6053 static void
6054 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6055 void *static_params)
6057 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6058 basic_block book_block = NULL;
6060 /* When we have removed the boundary insn for scheduling, which also
6061 happened to be the end insn in its bb, we don't need to update sets. */
6062 if (!lparams->removed_last_insn
6063 && lparams->e1
6064 && sel_bb_head_p (insn))
6066 /* We should generate bookkeeping code only if we are not at the
6067 top level of the move_op. */
6068 if (sel_num_cfg_preds_gt_1 (insn))
6069 book_block = generate_bookkeeping_insn (sparams->c_expr,
6070 lparams->e1, lparams->e2);
6071 /* Update data sets for the current insn. */
6072 update_data_sets (insn);
6075 /* If bookkeeping code was inserted, we need to update av sets of basic
6076 block that received bookkeeping. After generation of bookkeeping insn,
6077 bookkeeping block does not contain valid av set because we are not following
6078 the original algorithm in every detail with regards to e.g. renaming
6079 simple reg-reg copies. Consider example:
6081 bookkeeping block scheduling fence
6083 \ join /
6084 ----------
6086 ----------
6089 r1 := r2 r1 := r3
6091 We try to schedule insn "r1 := r3" on the current
6092 scheduling fence. Also, note that av set of bookkeeping block
6093 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6094 been scheduled, the CFG is as follows:
6096 r1 := r3 r1 := r3
6097 bookkeeping block scheduling fence
6099 \ join /
6100 ----------
6102 ----------
6105 r1 := r2
6107 Here, insn "r1 := r3" was scheduled at the current scheduling point
6108 and bookkeeping code was generated at the bookeeping block. This
6109 way insn "r1 := r2" is no longer available as a whole instruction
6110 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6111 This situation is handled by calling update_data_sets.
6113 Since update_data_sets is called only on the bookkeeping block, and
6114 it also may have predecessors with av_sets, containing instructions that
6115 are no longer available, we save all such expressions that become
6116 unavailable during data sets update on the bookkeeping block in
6117 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6118 expressions for scheduling. This allows us to avoid recomputation of
6119 av_sets outside the code motion path. */
6121 if (book_block)
6122 update_and_record_unavailable_insns (book_block);
6124 /* If INSN was previously marked for deletion, it's time to do it. */
6125 if (lparams->removed_last_insn)
6126 insn = PREV_INSN (insn);
6128 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6129 kill a block with a single nop in which the insn should be emitted. */
6130 if (lparams->e1)
6131 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6134 /* This function is called on the ascending pass, before returning from the
6135 current basic block. */
6136 static void
6137 fur_at_first_insn (insn_t insn,
6138 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6139 void *static_params ATTRIBUTE_UNUSED)
6141 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6142 || AV_LEVEL (insn) == -1);
6145 /* Called on the backward stage of recursion to call moveup_expr for insn
6146 and sparams->c_expr. */
6147 static void
6148 move_op_ascend (insn_t insn, void *static_params)
6150 enum MOVEUP_EXPR_CODE res;
6151 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6153 if (! INSN_NOP_P (insn))
6155 res = moveup_expr_cached (sparams->c_expr, insn, false);
6156 gcc_assert (res != MOVEUP_EXPR_NULL);
6159 /* Update liveness for this insn as it was invalidated. */
6160 update_liveness_on_insn (insn);
6163 /* This function is called on enter to the basic block.
6164 Returns TRUE if this block already have been visited and
6165 code_motion_path_driver should return 1, FALSE otherwise. */
6166 static int
6167 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6168 void *static_params, bool visited_p)
6170 fur_static_params_p sparams = (fur_static_params_p) static_params;
6172 if (visited_p)
6174 /* If we have found something below this block, there should be at
6175 least one insn in ORIGINAL_INSNS. */
6176 gcc_assert (*sparams->original_insns);
6178 /* Adjust CROSSES_CALL, since we may have come to this block along
6179 different path. */
6180 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6181 |= sparams->crosses_call;
6183 else
6184 local_params->old_original_insns = *sparams->original_insns;
6186 return 1;
6189 /* Same as above but for move_op. */
6190 static int
6191 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6192 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6193 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6195 if (visited_p)
6196 return -1;
6197 return 1;
6200 /* This function is called while descending current basic block if current
6201 insn is not the original EXPR we're searching for.
6203 Return value: FALSE, if code_motion_path_driver should perform a local
6204 cleanup and return 0 itself;
6205 TRUE, if code_motion_path_driver should continue. */
6206 static bool
6207 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6208 void *static_params)
6210 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6212 #ifdef ENABLE_CHECKING
6213 sparams->failed_insn = insn;
6214 #endif
6216 /* If we're scheduling separate expr, in order to generate correct code
6217 we need to stop the search at bookkeeping code generated with the
6218 same destination register or memory. */
6219 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6220 return false;
6221 return true;
6224 /* This function is called while descending current basic block if current
6225 insn is not the original EXPR we're searching for.
6227 Return value: TRUE (code_motion_path_driver should continue). */
6228 static bool
6229 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6231 bool mutexed;
6232 expr_t r;
6233 av_set_iterator avi;
6234 fur_static_params_p sparams = (fur_static_params_p) static_params;
6236 if (CALL_P (insn))
6237 sparams->crosses_call = true;
6238 else if (DEBUG_INSN_P (insn))
6239 return true;
6241 /* If current insn we are looking at cannot be executed together
6242 with original insn, then we can skip it safely.
6244 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6245 INSN = (!p6) r14 = r14 + 1;
6247 Here we can schedule ORIG_OP with lhs = r14, though only
6248 looking at the set of used and set registers of INSN we must
6249 forbid it. So, add set/used in INSN registers to the
6250 untouchable set only if there is an insn in ORIG_OPS that can
6251 affect INSN. */
6252 mutexed = true;
6253 FOR_EACH_EXPR (r, avi, orig_ops)
6254 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6256 mutexed = false;
6257 break;
6260 /* Mark all registers that do not meet the following condition:
6261 (1) Not set or read on any path from xi to an instance of the
6262 original operation. */
6263 if (!mutexed)
6265 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6267 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6270 return true;
6273 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6274 struct code_motion_path_driver_info_def move_op_hooks = {
6275 move_op_on_enter,
6276 move_op_orig_expr_found,
6277 move_op_orig_expr_not_found,
6278 move_op_merge_succs,
6279 move_op_after_merge_succs,
6280 move_op_ascend,
6281 move_op_at_first_insn,
6282 SUCCS_NORMAL,
6283 "move_op"
6286 /* Hooks and data to perform find_used_regs operations
6287 with code_motion_path_driver. */
6288 struct code_motion_path_driver_info_def fur_hooks = {
6289 fur_on_enter,
6290 fur_orig_expr_found,
6291 fur_orig_expr_not_found,
6292 fur_merge_succs,
6293 NULL, /* fur_after_merge_succs */
6294 NULL, /* fur_ascend */
6295 fur_at_first_insn,
6296 SUCCS_ALL,
6297 "find_used_regs"
6300 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6301 code_motion_path_driver is called recursively. Original operation
6302 was found at least on one path that is starting with one of INSN's
6303 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6304 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6305 of either move_op or find_used_regs depending on the caller.
6307 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6308 know for sure at this point. */
6309 static int
6310 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6311 ilist_t path, void *static_params)
6313 int res = 0;
6314 succ_iterator succ_i;
6315 insn_t succ;
6316 basic_block bb;
6317 int old_index;
6318 unsigned old_succs;
6320 struct cmpd_local_params lparams;
6321 expr_def _x;
6323 lparams.c_expr_local = &_x;
6324 lparams.c_expr_merged = NULL;
6326 /* We need to process only NORMAL succs for move_op, and collect live
6327 registers from ALL branches (including those leading out of the
6328 region) for find_used_regs.
6330 In move_op, there can be a case when insn's bb number has changed
6331 due to created bookkeeping. This happens very rare, as we need to
6332 move expression from the beginning to the end of the same block.
6333 Rescan successors in this case. */
6335 rescan:
6336 bb = BLOCK_FOR_INSN (insn);
6337 old_index = bb->index;
6338 old_succs = EDGE_COUNT (bb->succs);
6340 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6342 int b;
6344 lparams.e1 = succ_i.e1;
6345 lparams.e2 = succ_i.e2;
6347 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6348 current region). */
6349 if (succ_i.current_flags == SUCCS_NORMAL)
6350 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6351 static_params);
6352 else
6353 b = 0;
6355 /* Merge c_expres found or unify live register sets from different
6356 successors. */
6357 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6358 static_params);
6359 if (b == 1)
6360 res = b;
6361 else if (b == -1 && res != 1)
6362 res = b;
6364 /* We have simplified the control flow below this point. In this case,
6365 the iterator becomes invalid. We need to try again.
6366 If we have removed the insn itself, it could be only an
6367 unconditional jump. Thus, do not rescan but break immediately --
6368 we have already visited the only successor block. */
6369 if (!BLOCK_FOR_INSN (insn))
6371 if (sched_verbose >= 6)
6372 sel_print ("Not doing rescan: already visited the only successor"
6373 " of block %d\n", old_index);
6374 break;
6376 if (BLOCK_FOR_INSN (insn)->index != old_index
6377 || EDGE_COUNT (bb->succs) != old_succs)
6379 if (sched_verbose >= 6)
6380 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6381 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6382 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6383 goto rescan;
6387 #ifdef ENABLE_CHECKING
6388 /* Here, RES==1 if original expr was found at least for one of the
6389 successors. After the loop, RES may happen to have zero value
6390 only if at some point the expr searched is present in av_set, but is
6391 not found below. In most cases, this situation is an error.
6392 The exception is when the original operation is blocked by
6393 bookkeeping generated for another fence or for another path in current
6394 move_op. */
6395 gcc_assert (res == 1
6396 || (res == 0
6397 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6398 static_params))
6399 || res == -1);
6400 #endif
6402 /* Merge data, clean up, etc. */
6403 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6404 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6406 return res;
6410 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6411 is the pointer to the av set with expressions we were looking for,
6412 PATH_P is the pointer to the traversed path. */
6413 static inline void
6414 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6416 ilist_remove (path_p);
6417 av_set_clear (orig_ops_p);
6420 /* The driver function that implements move_op or find_used_regs
6421 functionality dependent whether code_motion_path_driver_INFO is set to
6422 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6423 of code (CFG traversal etc) that are shared among both functions. INSN
6424 is the insn we're starting the search from, ORIG_OPS are the expressions
6425 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6426 parameters of the driver, and STATIC_PARAMS are static parameters of
6427 the caller.
6429 Returns whether original instructions were found. Note that top-level
6430 code_motion_path_driver always returns true. */
6431 static int
6432 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6433 cmpd_local_params_p local_params_in,
6434 void *static_params)
6436 expr_t expr = NULL;
6437 basic_block bb = BLOCK_FOR_INSN (insn);
6438 insn_t first_insn, bb_tail, before_first;
6439 bool removed_last_insn = false;
6441 if (sched_verbose >= 6)
6443 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6444 dump_insn (insn);
6445 sel_print (",");
6446 dump_av_set (orig_ops);
6447 sel_print (")\n");
6450 gcc_assert (orig_ops);
6452 /* If no original operations exist below this insn, return immediately. */
6453 if (is_ineligible_successor (insn, path))
6455 if (sched_verbose >= 6)
6456 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6457 return false;
6460 /* The block can have invalid av set, in which case it was created earlier
6461 during move_op. Return immediately. */
6462 if (sel_bb_head_p (insn))
6464 if (! AV_SET_VALID_P (insn))
6466 if (sched_verbose >= 6)
6467 sel_print ("Returned from block %d as it had invalid av set\n",
6468 bb->index);
6469 return false;
6472 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6474 /* We have already found an original operation on this branch, do not
6475 go any further and just return TRUE here. If we don't stop here,
6476 function can have exponential behaviour even on the small code
6477 with many different paths (e.g. with data speculation and
6478 recovery blocks). */
6479 if (sched_verbose >= 6)
6480 sel_print ("Block %d already visited in this traversal\n", bb->index);
6481 if (code_motion_path_driver_info->on_enter)
6482 return code_motion_path_driver_info->on_enter (insn,
6483 local_params_in,
6484 static_params,
6485 true);
6489 if (code_motion_path_driver_info->on_enter)
6490 code_motion_path_driver_info->on_enter (insn, local_params_in,
6491 static_params, false);
6492 orig_ops = av_set_copy (orig_ops);
6494 /* Filter the orig_ops set. */
6495 if (AV_SET_VALID_P (insn))
6496 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6498 /* If no more original ops, return immediately. */
6499 if (!orig_ops)
6501 if (sched_verbose >= 6)
6502 sel_print ("No intersection with av set of block %d\n", bb->index);
6503 return false;
6506 /* For non-speculative insns we have to leave only one form of the
6507 original operation, because if we don't, we may end up with
6508 different C_EXPRes and, consequently, with bookkeepings for different
6509 expression forms along the same code motion path. That may lead to
6510 generation of incorrect code. So for each code motion we stick to
6511 the single form of the instruction, except for speculative insns
6512 which we need to keep in different forms with all speculation
6513 types. */
6514 av_set_leave_one_nonspec (&orig_ops);
6516 /* It is not possible that all ORIG_OPS are filtered out. */
6517 gcc_assert (orig_ops);
6519 /* It is enough to place only heads and tails of visited basic blocks into
6520 the PATH. */
6521 ilist_add (&path, insn);
6522 first_insn = insn;
6523 bb_tail = sel_bb_end (bb);
6525 /* Descend the basic block in search of the original expr; this part
6526 corresponds to the part of the original move_op procedure executed
6527 before the recursive call. */
6528 for (;;)
6530 /* Look at the insn and decide if it could be an ancestor of currently
6531 scheduling operation. If it is so, then the insn "dest = op" could
6532 either be replaced with "dest = reg", because REG now holds the result
6533 of OP, or just removed, if we've scheduled the insn as a whole.
6535 If this insn doesn't contain currently scheduling OP, then proceed
6536 with searching and look at its successors. Operations we're searching
6537 for could have changed when moving up through this insn via
6538 substituting. In this case, perform unsubstitution on them first.
6540 When traversing the DAG below this insn is finished, insert
6541 bookkeeping code, if the insn is a joint point, and remove
6542 leftovers. */
6544 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6545 if (expr)
6547 insn_t last_insn = PREV_INSN (insn);
6549 /* We have found the original operation. */
6550 if (sched_verbose >= 6)
6551 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6553 code_motion_path_driver_info->orig_expr_found
6554 (insn, expr, local_params_in, static_params);
6556 /* Step back, so on the way back we'll start traversing from the
6557 previous insn (or we'll see that it's bb_note and skip that
6558 loop). */
6559 if (insn == first_insn)
6561 first_insn = NEXT_INSN (last_insn);
6562 removed_last_insn = sel_bb_end_p (last_insn);
6564 insn = last_insn;
6565 break;
6567 else
6569 /* We haven't found the original expr, continue descending the basic
6570 block. */
6571 if (code_motion_path_driver_info->orig_expr_not_found
6572 (insn, orig_ops, static_params))
6574 /* Av set ops could have been changed when moving through this
6575 insn. To find them below it, we have to un-substitute them. */
6576 undo_transformations (&orig_ops, insn);
6578 else
6580 /* Clean up and return, if the hook tells us to do so. It may
6581 happen if we've encountered the previously created
6582 bookkeeping. */
6583 code_motion_path_driver_cleanup (&orig_ops, &path);
6584 return -1;
6587 gcc_assert (orig_ops);
6590 /* Stop at insn if we got to the end of BB. */
6591 if (insn == bb_tail)
6592 break;
6594 insn = NEXT_INSN (insn);
6597 /* Here INSN either points to the insn before the original insn (may be
6598 bb_note, if original insn was a bb_head) or to the bb_end. */
6599 if (!expr)
6601 int res;
6602 rtx_insn *last_insn = PREV_INSN (insn);
6603 bool added_to_path;
6605 gcc_assert (insn == sel_bb_end (bb));
6607 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6608 it's already in PATH then). */
6609 if (insn != first_insn)
6611 ilist_add (&path, insn);
6612 added_to_path = true;
6614 else
6615 added_to_path = false;
6617 /* Process_successors should be able to find at least one
6618 successor for which code_motion_path_driver returns TRUE. */
6619 res = code_motion_process_successors (insn, orig_ops,
6620 path, static_params);
6622 /* Jump in the end of basic block could have been removed or replaced
6623 during code_motion_process_successors, so recompute insn as the
6624 last insn in bb. */
6625 if (NEXT_INSN (last_insn) != insn)
6627 insn = sel_bb_end (bb);
6628 first_insn = sel_bb_head (bb);
6631 /* Remove bb tail from path. */
6632 if (added_to_path)
6633 ilist_remove (&path);
6635 if (res != 1)
6637 /* This is the case when one of the original expr is no longer available
6638 due to bookkeeping created on this branch with the same register.
6639 In the original algorithm, which doesn't have update_data_sets call
6640 on a bookkeeping block, it would simply result in returning
6641 FALSE when we've encountered a previously generated bookkeeping
6642 insn in moveop_orig_expr_not_found. */
6643 code_motion_path_driver_cleanup (&orig_ops, &path);
6644 return res;
6648 /* Don't need it any more. */
6649 av_set_clear (&orig_ops);
6651 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6652 the beginning of the basic block. */
6653 before_first = PREV_INSN (first_insn);
6654 while (insn != before_first)
6656 if (code_motion_path_driver_info->ascend)
6657 code_motion_path_driver_info->ascend (insn, static_params);
6659 insn = PREV_INSN (insn);
6662 /* Now we're at the bb head. */
6663 insn = first_insn;
6664 ilist_remove (&path);
6665 local_params_in->removed_last_insn = removed_last_insn;
6666 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6668 /* This should be the very last operation as at bb head we could change
6669 the numbering by creating bookkeeping blocks. */
6670 if (removed_last_insn)
6671 insn = PREV_INSN (insn);
6673 /* If we have simplified the control flow and removed the first jump insn,
6674 there's no point in marking this block in the visited blocks bitmap. */
6675 if (BLOCK_FOR_INSN (insn))
6676 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6677 return true;
6680 /* Move up the operations from ORIG_OPS set traversing the dag starting
6681 from INSN. PATH represents the edges traversed so far.
6682 DEST is the register chosen for scheduling the current expr. Insert
6683 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6684 C_EXPR is how it looks like at the given cfg point.
6685 Set *SHOULD_MOVE to indicate whether we have only disconnected
6686 one of the insns found.
6688 Returns whether original instructions were found, which is asserted
6689 to be true in the caller. */
6690 static bool
6691 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6692 rtx dest, expr_t c_expr, bool *should_move)
6694 struct moveop_static_params sparams;
6695 struct cmpd_local_params lparams;
6696 int res;
6698 /* Init params for code_motion_path_driver. */
6699 sparams.dest = dest;
6700 sparams.c_expr = c_expr;
6701 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6702 #ifdef ENABLE_CHECKING
6703 sparams.failed_insn = NULL;
6704 #endif
6705 sparams.was_renamed = false;
6706 lparams.e1 = NULL;
6708 /* We haven't visited any blocks yet. */
6709 bitmap_clear (code_motion_visited_blocks);
6711 /* Set appropriate hooks and data. */
6712 code_motion_path_driver_info = &move_op_hooks;
6713 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6715 gcc_assert (res != -1);
6717 if (sparams.was_renamed)
6718 EXPR_WAS_RENAMED (expr_vliw) = true;
6720 *should_move = (sparams.uid == -1);
6722 return res;
6726 /* Functions that work with regions. */
6728 /* Current number of seqno used in init_seqno and init_seqno_1. */
6729 static int cur_seqno;
6731 /* A helper for init_seqno. Traverse the region starting from BB and
6732 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6733 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6734 static void
6735 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6737 int bbi = BLOCK_TO_BB (bb->index);
6738 insn_t insn;
6739 insn_t succ_insn;
6740 succ_iterator si;
6742 rtx_note *note = bb_note (bb);
6743 bitmap_set_bit (visited_bbs, bbi);
6744 if (blocks_to_reschedule)
6745 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6747 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6748 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6750 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6751 int succ_bbi = BLOCK_TO_BB (succ->index);
6753 gcc_assert (in_current_region_p (succ));
6755 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6757 gcc_assert (succ_bbi > bbi);
6759 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6761 else if (blocks_to_reschedule)
6762 bitmap_set_bit (forced_ebb_heads, succ->index);
6765 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6766 INSN_SEQNO (insn) = cur_seqno--;
6769 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6770 blocks on which we're rescheduling when pipelining, FROM is the block where
6771 traversing region begins (it may not be the head of the region when
6772 pipelining, but the head of the loop instead).
6774 Returns the maximal seqno found. */
6775 static int
6776 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6778 sbitmap visited_bbs;
6779 bitmap_iterator bi;
6780 unsigned bbi;
6782 visited_bbs = sbitmap_alloc (current_nr_blocks);
6784 if (blocks_to_reschedule)
6786 bitmap_ones (visited_bbs);
6787 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6789 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6790 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6793 else
6795 bitmap_clear (visited_bbs);
6796 from = EBB_FIRST_BB (0);
6799 cur_seqno = sched_max_luid - 1;
6800 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6802 /* cur_seqno may be positive if the number of instructions is less than
6803 sched_max_luid - 1 (when rescheduling or if some instructions have been
6804 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6805 gcc_assert (cur_seqno >= 0);
6807 sbitmap_free (visited_bbs);
6808 return sched_max_luid - 1;
6811 /* Initialize scheduling parameters for current region. */
6812 static void
6813 sel_setup_region_sched_flags (void)
6815 enable_schedule_as_rhs_p = 1;
6816 bookkeeping_p = 1;
6817 pipelining_p = (bookkeeping_p
6818 && (flag_sel_sched_pipelining != 0)
6819 && current_loop_nest != NULL
6820 && loop_has_exit_edges (current_loop_nest));
6821 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6822 max_ws = MAX_WS;
6825 /* Return true if all basic blocks of current region are empty. */
6826 static bool
6827 current_region_empty_p (void)
6829 int i;
6830 for (i = 0; i < current_nr_blocks; i++)
6831 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6832 return false;
6834 return true;
6837 /* Prepare and verify loop nest for pipelining. */
6838 static void
6839 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6841 current_loop_nest = get_loop_nest_for_rgn (rgn);
6843 if (!current_loop_nest)
6844 return;
6846 /* If this loop has any saved loop preheaders from nested loops,
6847 add these basic blocks to the current region. */
6848 sel_add_loop_preheaders (bbs);
6850 /* Check that we're starting with a valid information. */
6851 gcc_assert (loop_latch_edge (current_loop_nest));
6852 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6855 /* Compute instruction priorities for current region. */
6856 static void
6857 sel_compute_priorities (int rgn)
6859 sched_rgn_compute_dependencies (rgn);
6861 /* Compute insn priorities in haifa style. Then free haifa style
6862 dependencies that we've calculated for this. */
6863 compute_priorities ();
6865 if (sched_verbose >= 5)
6866 debug_rgn_dependencies (0);
6868 free_rgn_deps ();
6871 /* Init scheduling data for RGN. Returns true when this region should not
6872 be scheduled. */
6873 static bool
6874 sel_region_init (int rgn)
6876 int i;
6877 bb_vec_t bbs;
6879 rgn_setup_region (rgn);
6881 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6882 do region initialization here so the region can be bundled correctly,
6883 but we'll skip the scheduling in sel_sched_region (). */
6884 if (current_region_empty_p ())
6885 return true;
6887 bbs.create (current_nr_blocks);
6889 for (i = 0; i < current_nr_blocks; i++)
6890 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6892 sel_init_bbs (bbs);
6894 if (flag_sel_sched_pipelining)
6895 setup_current_loop_nest (rgn, &bbs);
6897 sel_setup_region_sched_flags ();
6899 /* Initialize luids and dependence analysis which both sel-sched and haifa
6900 need. */
6901 sched_init_luids (bbs);
6902 sched_deps_init (false);
6904 /* Initialize haifa data. */
6905 rgn_setup_sched_infos ();
6906 sel_set_sched_flags ();
6907 haifa_init_h_i_d (bbs);
6909 sel_compute_priorities (rgn);
6910 init_deps_global ();
6912 /* Main initialization. */
6913 sel_setup_sched_infos ();
6914 sel_init_global_and_expr (bbs);
6916 bbs.release ();
6918 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6920 /* Init correct liveness sets on each instruction of a single-block loop.
6921 This is the only situation when we can't update liveness when calling
6922 compute_live for the first insn of the loop. */
6923 if (current_loop_nest)
6925 int header =
6926 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6928 : 0);
6930 if (current_nr_blocks == header + 1)
6931 update_liveness_on_insn
6932 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6935 /* Set hooks so that no newly generated insn will go out unnoticed. */
6936 sel_register_cfg_hooks ();
6938 /* !!! We call target.sched.init () for the whole region, but we invoke
6939 targetm.sched.finish () for every ebb. */
6940 if (targetm.sched.init)
6941 /* None of the arguments are actually used in any target. */
6942 targetm.sched.init (sched_dump, sched_verbose, -1);
6944 first_emitted_uid = get_max_uid () + 1;
6945 preheader_removed = false;
6947 /* Reset register allocation ticks array. */
6948 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6949 reg_rename_this_tick = 0;
6951 bitmap_initialize (forced_ebb_heads, 0);
6952 bitmap_clear (forced_ebb_heads);
6954 setup_nop_vinsn ();
6955 current_copies = BITMAP_ALLOC (NULL);
6956 current_originators = BITMAP_ALLOC (NULL);
6957 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6959 return false;
6962 /* Simplify insns after the scheduling. */
6963 static void
6964 simplify_changed_insns (void)
6966 int i;
6968 for (i = 0; i < current_nr_blocks; i++)
6970 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6971 rtx_insn *insn;
6973 FOR_BB_INSNS (bb, insn)
6974 if (INSN_P (insn))
6976 expr_t expr = INSN_EXPR (insn);
6978 if (EXPR_WAS_SUBSTITUTED (expr))
6979 validate_simplify_insn (insn);
6984 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6985 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6986 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6987 static void
6988 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6990 rtx_insn *head, *tail;
6991 basic_block bb1 = bb;
6992 if (sched_verbose >= 2)
6993 sel_print ("Finishing schedule in bbs: ");
6997 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6999 if (sched_verbose >= 2)
7000 sel_print ("%d; ", bb1->index);
7002 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7004 if (sched_verbose >= 2)
7005 sel_print ("\n");
7007 get_ebb_head_tail (bb, bb1, &head, &tail);
7009 current_sched_info->head = head;
7010 current_sched_info->tail = tail;
7011 current_sched_info->prev_head = PREV_INSN (head);
7012 current_sched_info->next_tail = NEXT_INSN (tail);
7015 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7016 static void
7017 reset_sched_cycles_in_current_ebb (void)
7019 int last_clock = 0;
7020 int haifa_last_clock = -1;
7021 int haifa_clock = 0;
7022 int issued_insns = 0;
7023 insn_t insn;
7025 if (targetm.sched.init)
7027 /* None of the arguments are actually used in any target.
7028 NB: We should have md_reset () hook for cases like this. */
7029 targetm.sched.init (sched_dump, sched_verbose, -1);
7032 state_reset (curr_state);
7033 advance_state (curr_state);
7035 for (insn = current_sched_info->head;
7036 insn != current_sched_info->next_tail;
7037 insn = NEXT_INSN (insn))
7039 int cost, haifa_cost;
7040 int sort_p;
7041 bool asm_p, real_insn, after_stall, all_issued;
7042 int clock;
7044 if (!INSN_P (insn))
7045 continue;
7047 asm_p = false;
7048 real_insn = recog_memoized (insn) >= 0;
7049 clock = INSN_SCHED_CYCLE (insn);
7051 cost = clock - last_clock;
7053 /* Initialize HAIFA_COST. */
7054 if (! real_insn)
7056 asm_p = INSN_ASM_P (insn);
7058 if (asm_p)
7059 /* This is asm insn which *had* to be scheduled first
7060 on the cycle. */
7061 haifa_cost = 1;
7062 else
7063 /* This is a use/clobber insn. It should not change
7064 cost. */
7065 haifa_cost = 0;
7067 else
7068 haifa_cost = estimate_insn_cost (insn, curr_state);
7070 /* Stall for whatever cycles we've stalled before. */
7071 after_stall = 0;
7072 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7074 haifa_cost = cost;
7075 after_stall = 1;
7077 all_issued = issued_insns == issue_rate;
7078 if (haifa_cost == 0 && all_issued)
7079 haifa_cost = 1;
7080 if (haifa_cost > 0)
7082 int i = 0;
7084 while (haifa_cost--)
7086 advance_state (curr_state);
7087 issued_insns = 0;
7088 i++;
7090 if (sched_verbose >= 2)
7092 sel_print ("advance_state (state_transition)\n");
7093 debug_state (curr_state);
7096 /* The DFA may report that e.g. insn requires 2 cycles to be
7097 issued, but on the next cycle it says that insn is ready
7098 to go. Check this here. */
7099 if (!after_stall
7100 && real_insn
7101 && haifa_cost > 0
7102 && estimate_insn_cost (insn, curr_state) == 0)
7103 break;
7105 /* When the data dependency stall is longer than the DFA stall,
7106 and when we have issued exactly issue_rate insns and stalled,
7107 it could be that after this longer stall the insn will again
7108 become unavailable to the DFA restrictions. Looks strange
7109 but happens e.g. on x86-64. So recheck DFA on the last
7110 iteration. */
7111 if ((after_stall || all_issued)
7112 && real_insn
7113 && haifa_cost == 0)
7114 haifa_cost = estimate_insn_cost (insn, curr_state);
7117 haifa_clock += i;
7118 if (sched_verbose >= 2)
7119 sel_print ("haifa clock: %d\n", haifa_clock);
7121 else
7122 gcc_assert (haifa_cost == 0);
7124 if (sched_verbose >= 2)
7125 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7127 if (targetm.sched.dfa_new_cycle)
7128 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7129 haifa_last_clock, haifa_clock,
7130 &sort_p))
7132 advance_state (curr_state);
7133 issued_insns = 0;
7134 haifa_clock++;
7135 if (sched_verbose >= 2)
7137 sel_print ("advance_state (dfa_new_cycle)\n");
7138 debug_state (curr_state);
7139 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7143 if (real_insn)
7145 static state_t temp = NULL;
7147 if (!temp)
7148 temp = xmalloc (dfa_state_size);
7149 memcpy (temp, curr_state, dfa_state_size);
7151 cost = state_transition (curr_state, insn);
7152 if (memcmp (temp, curr_state, dfa_state_size))
7153 issued_insns++;
7155 if (sched_verbose >= 2)
7157 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7158 haifa_clock + 1);
7159 debug_state (curr_state);
7161 gcc_assert (cost < 0);
7164 if (targetm.sched.variable_issue)
7165 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7167 INSN_SCHED_CYCLE (insn) = haifa_clock;
7169 last_clock = clock;
7170 haifa_last_clock = haifa_clock;
7174 /* Put TImode markers on insns starting a new issue group. */
7175 static void
7176 put_TImodes (void)
7178 int last_clock = -1;
7179 insn_t insn;
7181 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7182 insn = NEXT_INSN (insn))
7184 int cost, clock;
7186 if (!INSN_P (insn))
7187 continue;
7189 clock = INSN_SCHED_CYCLE (insn);
7190 cost = (last_clock == -1) ? 1 : clock - last_clock;
7192 gcc_assert (cost >= 0);
7194 if (issue_rate > 1
7195 && GET_CODE (PATTERN (insn)) != USE
7196 && GET_CODE (PATTERN (insn)) != CLOBBER)
7198 if (reload_completed && cost > 0)
7199 PUT_MODE (insn, TImode);
7201 last_clock = clock;
7204 if (sched_verbose >= 2)
7205 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7209 /* Perform MD_FINISH on EBBs comprising current region. When
7210 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7211 to produce correct sched cycles on insns. */
7212 static void
7213 sel_region_target_finish (bool reset_sched_cycles_p)
7215 int i;
7216 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7218 for (i = 0; i < current_nr_blocks; i++)
7220 if (bitmap_bit_p (scheduled_blocks, i))
7221 continue;
7223 /* While pipelining outer loops, skip bundling for loop
7224 preheaders. Those will be rescheduled in the outer loop. */
7225 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7226 continue;
7228 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7230 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7231 continue;
7233 if (reset_sched_cycles_p)
7234 reset_sched_cycles_in_current_ebb ();
7236 if (targetm.sched.init)
7237 targetm.sched.init (sched_dump, sched_verbose, -1);
7239 put_TImodes ();
7241 if (targetm.sched.finish)
7243 targetm.sched.finish (sched_dump, sched_verbose);
7245 /* Extend luids so that insns generated by the target will
7246 get zero luid. */
7247 sched_extend_luids ();
7251 BITMAP_FREE (scheduled_blocks);
7254 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7255 is true, make an additional pass emulating scheduler to get correct insn
7256 cycles for md_finish calls. */
7257 static void
7258 sel_region_finish (bool reset_sched_cycles_p)
7260 simplify_changed_insns ();
7261 sched_finish_ready_list ();
7262 free_nop_pool ();
7264 /* Free the vectors. */
7265 vec_av_set.release ();
7266 BITMAP_FREE (current_copies);
7267 BITMAP_FREE (current_originators);
7268 BITMAP_FREE (code_motion_visited_blocks);
7269 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7270 vinsn_vec_free (vec_target_unavailable_vinsns);
7272 /* If LV_SET of the region head should be updated, do it now because
7273 there will be no other chance. */
7275 succ_iterator si;
7276 insn_t insn;
7278 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7279 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7281 basic_block bb = BLOCK_FOR_INSN (insn);
7283 if (!BB_LV_SET_VALID_P (bb))
7284 compute_live (insn);
7288 /* Emulate the Haifa scheduler for bundling. */
7289 if (reload_completed)
7290 sel_region_target_finish (reset_sched_cycles_p);
7292 sel_finish_global_and_expr ();
7294 bitmap_clear (forced_ebb_heads);
7296 free_nop_vinsn ();
7298 finish_deps_global ();
7299 sched_finish_luids ();
7300 h_d_i_d.release ();
7302 sel_finish_bbs ();
7303 BITMAP_FREE (blocks_to_reschedule);
7305 sel_unregister_cfg_hooks ();
7307 max_issue_size = 0;
7311 /* Functions that implement the scheduler driver. */
7313 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7314 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7315 of insns scheduled -- these would be postprocessed later. */
7316 static void
7317 schedule_on_fences (flist_t fences, int max_seqno,
7318 ilist_t **scheduled_insns_tailpp)
7320 flist_t old_fences = fences;
7322 if (sched_verbose >= 1)
7324 sel_print ("\nScheduling on fences: ");
7325 dump_flist (fences);
7326 sel_print ("\n");
7329 scheduled_something_on_previous_fence = false;
7330 for (; fences; fences = FLIST_NEXT (fences))
7332 fence_t fence = NULL;
7333 int seqno = 0;
7334 flist_t fences2;
7335 bool first_p = true;
7337 /* Choose the next fence group to schedule.
7338 The fact that insn can be scheduled only once
7339 on the cycle is guaranteed by two properties:
7340 1. seqnos of parallel groups decrease with each iteration.
7341 2. If is_ineligible_successor () sees the larger seqno, it
7342 checks if candidate insn is_in_current_fence_p (). */
7343 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7345 fence_t f = FLIST_FENCE (fences2);
7347 if (!FENCE_PROCESSED_P (f))
7349 int i = INSN_SEQNO (FENCE_INSN (f));
7351 if (first_p || i > seqno)
7353 seqno = i;
7354 fence = f;
7355 first_p = false;
7357 else
7358 /* ??? Seqnos of different groups should be different. */
7359 gcc_assert (1 || i != seqno);
7363 gcc_assert (fence);
7365 /* As FENCE is nonnull, SEQNO is initialized. */
7366 seqno -= max_seqno + 1;
7367 fill_insns (fence, seqno, scheduled_insns_tailpp);
7368 FENCE_PROCESSED_P (fence) = true;
7371 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7372 don't need to keep bookkeeping-invalidated and target-unavailable
7373 vinsns any more. */
7374 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7375 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7378 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7379 static void
7380 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7382 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7384 /* The first element is already processed. */
7385 while ((fences = FLIST_NEXT (fences)))
7387 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7389 if (*min_seqno > seqno)
7390 *min_seqno = seqno;
7391 else if (*max_seqno < seqno)
7392 *max_seqno = seqno;
7396 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7397 static flist_t
7398 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7400 flist_t old_fences = fences;
7401 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7402 int max_time = 0;
7404 flist_tail_init (new_fences);
7405 for (; fences; fences = FLIST_NEXT (fences))
7407 fence_t fence = FLIST_FENCE (fences);
7408 insn_t insn;
7410 if (!FENCE_BNDS (fence))
7412 /* This fence doesn't have any successors. */
7413 if (!FENCE_SCHEDULED_P (fence))
7415 /* Nothing was scheduled on this fence. */
7416 int seqno;
7418 insn = FENCE_INSN (fence);
7419 seqno = INSN_SEQNO (insn);
7420 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7422 if (sched_verbose >= 1)
7423 sel_print ("Fence %d[%d] has not changed\n",
7424 INSN_UID (insn),
7425 BLOCK_NUM (insn));
7426 move_fence_to_fences (fences, new_fences);
7429 else
7430 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7431 max_time = MAX (max_time, FENCE_CYCLE (fence));
7434 flist_clear (&old_fences);
7435 *ptime = max_time;
7436 return FLIST_TAIL_HEAD (new_fences);
7439 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7440 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7441 the highest seqno used in a region. Return the updated highest seqno. */
7442 static int
7443 update_seqnos_and_stage (int min_seqno, int max_seqno,
7444 int highest_seqno_in_use,
7445 ilist_t *pscheduled_insns)
7447 int new_hs;
7448 ilist_iterator ii;
7449 insn_t insn;
7451 /* Actually, new_hs is the seqno of the instruction, that was
7452 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7453 if (*pscheduled_insns)
7455 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7456 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7457 gcc_assert (new_hs > highest_seqno_in_use);
7459 else
7460 new_hs = highest_seqno_in_use;
7462 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7464 gcc_assert (INSN_SEQNO (insn) < 0);
7465 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7466 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7468 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7469 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7470 require > 1GB of memory e.g. on limit-fnargs.c. */
7471 if (! pipelining_p)
7472 free_data_for_scheduled_insn (insn);
7475 ilist_clear (pscheduled_insns);
7476 global_level++;
7478 return new_hs;
7481 /* The main driver for scheduling a region. This function is responsible
7482 for correct propagation of fences (i.e. scheduling points) and creating
7483 a group of parallel insns at each of them. It also supports
7484 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7485 of scheduling. */
7486 static void
7487 sel_sched_region_2 (int orig_max_seqno)
7489 int highest_seqno_in_use = orig_max_seqno;
7490 int max_time = 0;
7492 stat_bookkeeping_copies = 0;
7493 stat_insns_needed_bookkeeping = 0;
7494 stat_renamed_scheduled = 0;
7495 stat_substitutions_total = 0;
7496 num_insns_scheduled = 0;
7498 while (fences)
7500 int min_seqno, max_seqno;
7501 ilist_t scheduled_insns = NULL;
7502 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7504 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7505 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7506 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7507 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7508 highest_seqno_in_use,
7509 &scheduled_insns);
7512 if (sched_verbose >= 1)
7514 sel_print ("Total scheduling time: %d cycles\n", max_time);
7515 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7516 "bookkeeping, %d insns renamed, %d insns substituted\n",
7517 stat_bookkeeping_copies,
7518 stat_insns_needed_bookkeeping,
7519 stat_renamed_scheduled,
7520 stat_substitutions_total);
7524 /* Schedule a region. When pipelining, search for possibly never scheduled
7525 bookkeeping code and schedule it. Reschedule pipelined code without
7526 pipelining after. */
7527 static void
7528 sel_sched_region_1 (void)
7530 int orig_max_seqno;
7532 /* Remove empty blocks that might be in the region from the beginning. */
7533 purge_empty_blocks ();
7535 orig_max_seqno = init_seqno (NULL, NULL);
7536 gcc_assert (orig_max_seqno >= 1);
7538 /* When pipelining outer loops, create fences on the loop header,
7539 not preheader. */
7540 fences = NULL;
7541 if (current_loop_nest)
7542 init_fences (BB_END (EBB_FIRST_BB (0)));
7543 else
7544 init_fences (bb_note (EBB_FIRST_BB (0)));
7545 global_level = 1;
7547 sel_sched_region_2 (orig_max_seqno);
7549 gcc_assert (fences == NULL);
7551 if (pipelining_p)
7553 int i;
7554 basic_block bb;
7555 struct flist_tail_def _new_fences;
7556 flist_tail_t new_fences = &_new_fences;
7557 bool do_p = true;
7559 pipelining_p = false;
7560 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7561 bookkeeping_p = false;
7562 enable_schedule_as_rhs_p = false;
7564 /* Schedule newly created code, that has not been scheduled yet. */
7565 do_p = true;
7567 while (do_p)
7569 do_p = false;
7571 for (i = 0; i < current_nr_blocks; i++)
7573 basic_block bb = EBB_FIRST_BB (i);
7575 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7577 if (! bb_ends_ebb_p (bb))
7578 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7579 if (sel_bb_empty_p (bb))
7581 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7582 continue;
7584 clear_outdated_rtx_info (bb);
7585 if (sel_insn_is_speculation_check (BB_END (bb))
7586 && JUMP_P (BB_END (bb)))
7587 bitmap_set_bit (blocks_to_reschedule,
7588 BRANCH_EDGE (bb)->dest->index);
7590 else if (! sel_bb_empty_p (bb)
7591 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7592 bitmap_set_bit (blocks_to_reschedule, bb->index);
7595 for (i = 0; i < current_nr_blocks; i++)
7597 bb = EBB_FIRST_BB (i);
7599 /* While pipelining outer loops, skip bundling for loop
7600 preheaders. Those will be rescheduled in the outer
7601 loop. */
7602 if (sel_is_loop_preheader_p (bb))
7604 clear_outdated_rtx_info (bb);
7605 continue;
7608 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7610 flist_tail_init (new_fences);
7612 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7614 /* Mark BB as head of the new ebb. */
7615 bitmap_set_bit (forced_ebb_heads, bb->index);
7617 gcc_assert (fences == NULL);
7619 init_fences (bb_note (bb));
7621 sel_sched_region_2 (orig_max_seqno);
7623 do_p = true;
7624 break;
7631 /* Schedule the RGN region. */
7632 void
7633 sel_sched_region (int rgn)
7635 bool schedule_p;
7636 bool reset_sched_cycles_p;
7638 if (sel_region_init (rgn))
7639 return;
7641 if (sched_verbose >= 1)
7642 sel_print ("Scheduling region %d\n", rgn);
7644 schedule_p = (!sched_is_disabled_for_current_region_p ()
7645 && dbg_cnt (sel_sched_region_cnt));
7646 reset_sched_cycles_p = pipelining_p;
7647 if (schedule_p)
7648 sel_sched_region_1 ();
7649 else
7650 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7651 reset_sched_cycles_p = true;
7653 sel_region_finish (reset_sched_cycles_p);
7656 /* Perform global init for the scheduler. */
7657 static void
7658 sel_global_init (void)
7660 calculate_dominance_info (CDI_DOMINATORS);
7661 alloc_sched_pools ();
7663 /* Setup the infos for sched_init. */
7664 sel_setup_sched_infos ();
7665 setup_sched_dump ();
7667 sched_rgn_init (false);
7668 sched_init ();
7670 sched_init_bbs ();
7671 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7672 after_recovery = 0;
7673 can_issue_more = issue_rate;
7675 sched_extend_target ();
7676 sched_deps_init (true);
7677 setup_nop_and_exit_insns ();
7678 sel_extend_global_bb_info ();
7679 init_lv_sets ();
7680 init_hard_regs_data ();
7683 /* Free the global data of the scheduler. */
7684 static void
7685 sel_global_finish (void)
7687 free_bb_note_pool ();
7688 free_lv_sets ();
7689 sel_finish_global_bb_info ();
7691 free_regset_pool ();
7692 free_nop_and_exit_insns ();
7694 sched_rgn_finish ();
7695 sched_deps_finish ();
7696 sched_finish ();
7698 if (current_loops)
7699 sel_finish_pipelining ();
7701 free_sched_pools ();
7702 free_dominance_info (CDI_DOMINATORS);
7705 /* Return true when we need to skip selective scheduling. Used for debugging. */
7706 bool
7707 maybe_skip_selective_scheduling (void)
7709 return ! dbg_cnt (sel_sched_cnt);
7712 /* The entry point. */
7713 void
7714 run_selective_scheduling (void)
7716 int rgn;
7718 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7719 return;
7721 sel_global_init ();
7723 for (rgn = 0; rgn < nr_regions; rgn++)
7724 sel_sched_region (rgn);
7726 sel_global_finish ();
7729 #endif