2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / resource.c
blob5ee680422b6c656f3afdda95bc77b0dc6ca9d9d3
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "input.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "dominance.h"
34 #include "cfg.h"
35 #include "predict.h"
36 #include "basic-block.h"
37 #include "resource.h"
38 #include "except.h"
39 #include "insn-attr.h"
40 #include "params.h"
41 #include "df.h"
43 /* This structure is used to record liveness information at the targets or
44 fallthrough insns of branches. We will most likely need the information
45 at targets again, so save them in a hash table rather than recomputing them
46 each time. */
48 struct target_info
50 int uid; /* INSN_UID of target. */
51 struct target_info *next; /* Next info for same hash bucket. */
52 HARD_REG_SET live_regs; /* Registers live at target. */
53 int block; /* Basic block number containing target. */
54 int bb_tick; /* Generation count of basic block info. */
57 #define TARGET_HASH_PRIME 257
59 /* Indicates what resources are required at the beginning of the epilogue. */
60 static struct resources start_of_epilogue_needs;
62 /* Indicates what resources are required at function end. */
63 static struct resources end_of_function_needs;
65 /* Define the hash table itself. */
66 static struct target_info **target_hash_table = NULL;
68 /* For each basic block, we maintain a generation number of its basic
69 block info, which is updated each time we move an insn from the
70 target of a jump. This is the generation number indexed by block
71 number. */
73 static int *bb_ticks;
75 /* Marks registers possibly live at the current place being scanned by
76 mark_target_live_regs. Also used by update_live_status. */
78 static HARD_REG_SET current_live_regs;
80 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
81 Also only used by the next two functions. */
83 static HARD_REG_SET pending_dead_regs;
85 static void update_live_status (rtx, const_rtx, void *);
86 static int find_basic_block (rtx_insn *, int);
87 static rtx_insn *next_insn_no_annul (rtx_insn *);
88 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
89 rtx *, int, struct resources,
90 struct resources);
92 /* Utility function called from mark_target_live_regs via note_stores.
93 It deadens any CLOBBERed registers and livens any SET registers. */
95 static void
96 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
98 int first_regno, last_regno;
99 int i;
101 if (!REG_P (dest)
102 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
103 return;
105 if (GET_CODE (dest) == SUBREG)
107 first_regno = subreg_regno (dest);
108 last_regno = first_regno + subreg_nregs (dest);
111 else
113 first_regno = REGNO (dest);
114 last_regno = END_REGNO (dest);
117 if (GET_CODE (x) == CLOBBER)
118 for (i = first_regno; i < last_regno; i++)
119 CLEAR_HARD_REG_BIT (current_live_regs, i);
120 else
121 for (i = first_regno; i < last_regno; i++)
123 SET_HARD_REG_BIT (current_live_regs, i);
124 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
128 /* Find the number of the basic block with correct live register
129 information that starts closest to INSN. Return -1 if we couldn't
130 find such a basic block or the beginning is more than
131 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
132 an unlimited search.
134 The delay slot filling code destroys the control-flow graph so,
135 instead of finding the basic block containing INSN, we search
136 backwards toward a BARRIER where the live register information is
137 correct. */
139 static int
140 find_basic_block (rtx_insn *insn, int search_limit)
142 /* Scan backwards to the previous BARRIER. Then see if we can find a
143 label that starts a basic block. Return the basic block number. */
144 for (insn = prev_nonnote_insn (insn);
145 insn && !BARRIER_P (insn) && search_limit != 0;
146 insn = prev_nonnote_insn (insn), --search_limit)
149 /* The closest BARRIER is too far away. */
150 if (search_limit == 0)
151 return -1;
153 /* The start of the function. */
154 else if (insn == 0)
155 return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
157 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
158 anything other than a CODE_LABEL or note, we can't find this code. */
159 for (insn = next_nonnote_insn (insn);
160 insn && LABEL_P (insn);
161 insn = next_nonnote_insn (insn))
162 if (BLOCK_FOR_INSN (insn))
163 return BLOCK_FOR_INSN (insn)->index;
165 return -1;
168 /* Similar to next_insn, but ignores insns in the delay slots of
169 an annulled branch. */
171 static rtx_insn *
172 next_insn_no_annul (rtx_insn *insn)
174 if (insn)
176 /* If INSN is an annulled branch, skip any insns from the target
177 of the branch. */
178 if (JUMP_P (insn)
179 && INSN_ANNULLED_BRANCH_P (insn)
180 && NEXT_INSN (PREV_INSN (insn)) != insn)
182 rtx_insn *next = NEXT_INSN (insn);
184 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
185 && INSN_FROM_TARGET_P (next))
187 insn = next;
188 next = NEXT_INSN (insn);
192 insn = NEXT_INSN (insn);
193 if (insn && NONJUMP_INSN_P (insn)
194 && GET_CODE (PATTERN (insn)) == SEQUENCE)
195 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
198 return insn;
201 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
202 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
203 is TRUE, resources used by the called routine will be included for
204 CALL_INSNs. */
206 void
207 mark_referenced_resources (rtx x, struct resources *res,
208 bool include_delayed_effects)
210 enum rtx_code code = GET_CODE (x);
211 int i, j;
212 unsigned int r;
213 const char *format_ptr;
215 /* Handle leaf items for which we set resource flags. Also, special-case
216 CALL, SET and CLOBBER operators. */
217 switch (code)
219 case CONST:
220 CASE_CONST_ANY:
221 case PC:
222 case SYMBOL_REF:
223 case LABEL_REF:
224 return;
226 case SUBREG:
227 if (!REG_P (SUBREG_REG (x)))
228 mark_referenced_resources (SUBREG_REG (x), res, false);
229 else
231 unsigned int regno = subreg_regno (x);
232 unsigned int last_regno = regno + subreg_nregs (x);
234 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
235 for (r = regno; r < last_regno; r++)
236 SET_HARD_REG_BIT (res->regs, r);
238 return;
240 case REG:
241 gcc_assert (HARD_REGISTER_P (x));
242 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
243 return;
245 case MEM:
246 /* If this memory shouldn't change, it really isn't referencing
247 memory. */
248 if (! MEM_READONLY_P (x))
249 res->memory = 1;
250 res->volatil |= MEM_VOLATILE_P (x);
252 /* Mark registers used to access memory. */
253 mark_referenced_resources (XEXP (x, 0), res, false);
254 return;
256 case CC0:
257 res->cc = 1;
258 return;
260 case UNSPEC_VOLATILE:
261 case TRAP_IF:
262 case ASM_INPUT:
263 /* Traditional asm's are always volatile. */
264 res->volatil = 1;
265 break;
267 case ASM_OPERANDS:
268 res->volatil |= MEM_VOLATILE_P (x);
270 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
271 We can not just fall through here since then we would be confused
272 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
273 traditional asms unlike their normal usage. */
275 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
276 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
277 return;
279 case CALL:
280 /* The first operand will be a (MEM (xxx)) but doesn't really reference
281 memory. The second operand may be referenced, though. */
282 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
283 mark_referenced_resources (XEXP (x, 1), res, false);
284 return;
286 case SET:
287 /* Usually, the first operand of SET is set, not referenced. But
288 registers used to access memory are referenced. SET_DEST is
289 also referenced if it is a ZERO_EXTRACT. */
291 mark_referenced_resources (SET_SRC (x), res, false);
293 x = SET_DEST (x);
294 if (GET_CODE (x) == ZERO_EXTRACT
295 || GET_CODE (x) == STRICT_LOW_PART)
296 mark_referenced_resources (x, res, false);
297 else if (GET_CODE (x) == SUBREG)
298 x = SUBREG_REG (x);
299 if (MEM_P (x))
300 mark_referenced_resources (XEXP (x, 0), res, false);
301 return;
303 case CLOBBER:
304 return;
306 case CALL_INSN:
307 if (include_delayed_effects)
309 /* A CALL references memory, the frame pointer if it exists, the
310 stack pointer, any global registers and any registers given in
311 USE insns immediately in front of the CALL.
313 However, we may have moved some of the parameter loading insns
314 into the delay slot of this CALL. If so, the USE's for them
315 don't count and should be skipped. */
316 rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
317 rtx_sequence *sequence = 0;
318 int seq_size = 0;
319 int i;
321 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
322 if (NEXT_INSN (insn) != x)
324 sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
325 seq_size = sequence->len ();
326 gcc_assert (GET_CODE (sequence) == SEQUENCE);
329 res->memory = 1;
330 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
331 if (frame_pointer_needed)
333 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
334 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
335 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
338 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
339 if (global_regs[i])
340 SET_HARD_REG_BIT (res->regs, i);
342 /* Check for a REG_SETJMP. If it exists, then we must
343 assume that this call can need any register.
345 This is done to be more conservative about how we handle setjmp.
346 We assume that they both use and set all registers. Using all
347 registers ensures that a register will not be considered dead
348 just because it crosses a setjmp call. A register should be
349 considered dead only if the setjmp call returns nonzero. */
350 if (find_reg_note (x, REG_SETJMP, NULL))
351 SET_HARD_REG_SET (res->regs);
354 rtx link;
356 for (link = CALL_INSN_FUNCTION_USAGE (x);
357 link;
358 link = XEXP (link, 1))
359 if (GET_CODE (XEXP (link, 0)) == USE)
361 for (i = 1; i < seq_size; i++)
363 rtx slot_pat = PATTERN (sequence->element (i));
364 if (GET_CODE (slot_pat) == SET
365 && rtx_equal_p (SET_DEST (slot_pat),
366 XEXP (XEXP (link, 0), 0)))
367 break;
369 if (i >= seq_size)
370 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
371 res, false);
376 /* ... fall through to other INSN processing ... */
378 case INSN:
379 case JUMP_INSN:
381 if (GET_CODE (PATTERN (x)) == COND_EXEC)
382 /* In addition to the usual references, also consider all outputs
383 as referenced, to compensate for mark_set_resources treating
384 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
385 handling, execpt that we got a partial incidence instead of a partial
386 width. */
387 mark_set_resources (x, res, 0,
388 include_delayed_effects
389 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
391 if (! include_delayed_effects
392 && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
393 return;
395 /* No special processing, just speed up. */
396 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
397 return;
399 default:
400 break;
403 /* Process each sub-expression and flag what it needs. */
404 format_ptr = GET_RTX_FORMAT (code);
405 for (i = 0; i < GET_RTX_LENGTH (code); i++)
406 switch (*format_ptr++)
408 case 'e':
409 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
410 break;
412 case 'E':
413 for (j = 0; j < XVECLEN (x, i); j++)
414 mark_referenced_resources (XVECEXP (x, i, j), res,
415 include_delayed_effects);
416 break;
420 /* A subroutine of mark_target_live_regs. Search forward from TARGET
421 looking for registers that are set before they are used. These are dead.
422 Stop after passing a few conditional jumps, and/or a small
423 number of unconditional branches. */
425 static rtx_insn *
426 find_dead_or_set_registers (rtx_insn *target, struct resources *res,
427 rtx *jump_target, int jump_count,
428 struct resources set, struct resources needed)
430 HARD_REG_SET scratch;
431 rtx_insn *insn;
432 rtx_insn *next_insn;
433 rtx_insn *jump_insn = 0;
434 int i;
436 for (insn = target; insn; insn = next_insn)
438 rtx_insn *this_insn = insn;
440 next_insn = NEXT_INSN (insn);
442 /* If this instruction can throw an exception, then we don't
443 know where we might end up next. That means that we have to
444 assume that whatever we have already marked as live really is
445 live. */
446 if (can_throw_internal (insn))
447 break;
449 switch (GET_CODE (insn))
451 case CODE_LABEL:
452 /* After a label, any pending dead registers that weren't yet
453 used can be made dead. */
454 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
455 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
456 CLEAR_HARD_REG_SET (pending_dead_regs);
458 continue;
460 case BARRIER:
461 case NOTE:
462 continue;
464 case INSN:
465 if (GET_CODE (PATTERN (insn)) == USE)
467 /* If INSN is a USE made by update_block, we care about the
468 underlying insn. Any registers set by the underlying insn
469 are live since the insn is being done somewhere else. */
470 if (INSN_P (XEXP (PATTERN (insn), 0)))
471 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
472 MARK_SRC_DEST_CALL);
474 /* All other USE insns are to be ignored. */
475 continue;
477 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
478 continue;
479 else if (rtx_sequence *seq =
480 dyn_cast <rtx_sequence *> (PATTERN (insn)))
482 /* An unconditional jump can be used to fill the delay slot
483 of a call, so search for a JUMP_INSN in any position. */
484 for (i = 0; i < seq->len (); i++)
486 this_insn = seq->insn (i);
487 if (JUMP_P (this_insn))
488 break;
492 default:
493 break;
496 if (rtx_jump_insn *this_jump_insn =
497 dyn_cast <rtx_jump_insn *> (this_insn))
499 if (jump_count++ < 10)
501 if (any_uncondjump_p (this_jump_insn)
502 || ANY_RETURN_P (PATTERN (this_jump_insn)))
504 rtx lab_or_return = this_jump_insn->jump_label ();
505 if (ANY_RETURN_P (lab_or_return))
506 next_insn = NULL;
507 else
508 next_insn = as_a <rtx_insn *> (lab_or_return);
509 if (jump_insn == 0)
511 jump_insn = insn;
512 if (jump_target)
513 *jump_target = JUMP_LABEL (this_jump_insn);
516 else if (any_condjump_p (this_jump_insn))
518 struct resources target_set, target_res;
519 struct resources fallthrough_res;
521 /* We can handle conditional branches here by following
522 both paths, and then IOR the results of the two paths
523 together, which will give us registers that are dead
524 on both paths. Since this is expensive, we give it
525 a much higher cost than unconditional branches. The
526 cost was chosen so that we will follow at most 1
527 conditional branch. */
529 jump_count += 4;
530 if (jump_count >= 10)
531 break;
533 mark_referenced_resources (insn, &needed, true);
535 /* For an annulled branch, mark_set_resources ignores slots
536 filled by instructions from the target. This is correct
537 if the branch is not taken. Since we are following both
538 paths from the branch, we must also compute correct info
539 if the branch is taken. We do this by inverting all of
540 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
541 and then inverting the INSN_FROM_TARGET_P bits again. */
543 if (GET_CODE (PATTERN (insn)) == SEQUENCE
544 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
546 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
547 for (i = 1; i < seq->len (); i++)
548 INSN_FROM_TARGET_P (seq->element (i))
549 = ! INSN_FROM_TARGET_P (seq->element (i));
551 target_set = set;
552 mark_set_resources (insn, &target_set, 0,
553 MARK_SRC_DEST_CALL);
555 for (i = 1; i < seq->len (); i++)
556 INSN_FROM_TARGET_P (seq->element (i))
557 = ! INSN_FROM_TARGET_P (seq->element (i));
559 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
561 else
563 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
564 target_set = set;
567 target_res = *res;
568 COPY_HARD_REG_SET (scratch, target_set.regs);
569 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
570 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
572 fallthrough_res = *res;
573 COPY_HARD_REG_SET (scratch, set.regs);
574 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
575 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
577 if (!ANY_RETURN_P (this_jump_insn->jump_label ()))
578 find_dead_or_set_registers
579 (this_jump_insn->jump_target (),
580 &target_res, 0, jump_count, target_set, needed);
581 find_dead_or_set_registers (next_insn,
582 &fallthrough_res, 0, jump_count,
583 set, needed);
584 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
585 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
586 break;
588 else
589 break;
591 else
593 /* Don't try this optimization if we expired our jump count
594 above, since that would mean there may be an infinite loop
595 in the function being compiled. */
596 jump_insn = 0;
597 break;
601 mark_referenced_resources (insn, &needed, true);
602 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
604 COPY_HARD_REG_SET (scratch, set.regs);
605 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
606 AND_COMPL_HARD_REG_SET (res->regs, scratch);
609 return jump_insn;
612 /* Given X, a part of an insn, and a pointer to a `struct resource',
613 RES, indicate which resources are modified by the insn. If
614 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
615 set by the called routine.
617 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
618 objects are being referenced instead of set.
620 We never mark the insn as modifying the condition code unless it explicitly
621 SETs CC0 even though this is not totally correct. The reason for this is
622 that we require a SET of CC0 to immediately precede the reference to CC0.
623 So if some other insn sets CC0 as a side-effect, we know it cannot affect
624 our computation and thus may be placed in a delay slot. */
626 void
627 mark_set_resources (rtx x, struct resources *res, int in_dest,
628 enum mark_resource_type mark_type)
630 enum rtx_code code;
631 int i, j;
632 unsigned int r;
633 const char *format_ptr;
635 restart:
637 code = GET_CODE (x);
639 switch (code)
641 case NOTE:
642 case BARRIER:
643 case CODE_LABEL:
644 case USE:
645 CASE_CONST_ANY:
646 case LABEL_REF:
647 case SYMBOL_REF:
648 case CONST:
649 case PC:
650 /* These don't set any resources. */
651 return;
653 case CC0:
654 if (in_dest)
655 res->cc = 1;
656 return;
658 case CALL_INSN:
659 /* Called routine modifies the condition code, memory, any registers
660 that aren't saved across calls, global registers and anything
661 explicitly CLOBBERed immediately after the CALL_INSN. */
663 if (mark_type == MARK_SRC_DEST_CALL)
665 rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
666 rtx link;
667 HARD_REG_SET regs;
669 res->cc = res->memory = 1;
671 get_call_reg_set_usage (call_insn, &regs, regs_invalidated_by_call);
672 IOR_HARD_REG_SET (res->regs, regs);
674 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
675 link; link = XEXP (link, 1))
676 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
677 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
678 MARK_SRC_DEST);
680 /* Check for a REG_SETJMP. If it exists, then we must
681 assume that this call can clobber any register. */
682 if (find_reg_note (call_insn, REG_SETJMP, NULL))
683 SET_HARD_REG_SET (res->regs);
686 /* ... and also what its RTL says it modifies, if anything. */
688 case JUMP_INSN:
689 case INSN:
691 /* An insn consisting of just a CLOBBER (or USE) is just for flow
692 and doesn't actually do anything, so we ignore it. */
694 if (mark_type != MARK_SRC_DEST_CALL
695 && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
696 return;
698 x = PATTERN (x);
699 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
700 goto restart;
701 return;
703 case SET:
704 /* If the source of a SET is a CALL, this is actually done by
705 the called routine. So only include it if we are to include the
706 effects of the calling routine. */
708 mark_set_resources (SET_DEST (x), res,
709 (mark_type == MARK_SRC_DEST_CALL
710 || GET_CODE (SET_SRC (x)) != CALL),
711 mark_type);
713 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
714 return;
716 case CLOBBER:
717 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
718 return;
720 case SEQUENCE:
722 rtx_sequence *seq = as_a <rtx_sequence *> (x);
723 rtx control = seq->element (0);
724 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
726 mark_set_resources (control, res, 0, mark_type);
727 for (i = seq->len () - 1; i >= 0; --i)
729 rtx elt = seq->element (i);
730 if (!annul_p && INSN_FROM_TARGET_P (elt))
731 mark_set_resources (elt, res, 0, mark_type);
734 return;
736 case POST_INC:
737 case PRE_INC:
738 case POST_DEC:
739 case PRE_DEC:
740 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
741 return;
743 case PRE_MODIFY:
744 case POST_MODIFY:
745 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
746 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
747 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
748 return;
750 case SIGN_EXTRACT:
751 case ZERO_EXTRACT:
752 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
753 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
754 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
755 return;
757 case MEM:
758 if (in_dest)
760 res->memory = 1;
761 res->volatil |= MEM_VOLATILE_P (x);
764 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
765 return;
767 case SUBREG:
768 if (in_dest)
770 if (!REG_P (SUBREG_REG (x)))
771 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
772 else
774 unsigned int regno = subreg_regno (x);
775 unsigned int last_regno = regno + subreg_nregs (x);
777 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
778 for (r = regno; r < last_regno; r++)
779 SET_HARD_REG_BIT (res->regs, r);
782 return;
784 case REG:
785 if (in_dest)
787 gcc_assert (HARD_REGISTER_P (x));
788 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
790 return;
792 case UNSPEC_VOLATILE:
793 case ASM_INPUT:
794 /* Traditional asm's are always volatile. */
795 res->volatil = 1;
796 return;
798 case TRAP_IF:
799 res->volatil = 1;
800 break;
802 case ASM_OPERANDS:
803 res->volatil |= MEM_VOLATILE_P (x);
805 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
806 We can not just fall through here since then we would be confused
807 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
808 traditional asms unlike their normal usage. */
810 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
811 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
812 MARK_SRC_DEST);
813 return;
815 default:
816 break;
819 /* Process each sub-expression and flag what it needs. */
820 format_ptr = GET_RTX_FORMAT (code);
821 for (i = 0; i < GET_RTX_LENGTH (code); i++)
822 switch (*format_ptr++)
824 case 'e':
825 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
826 break;
828 case 'E':
829 for (j = 0; j < XVECLEN (x, i); j++)
830 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
831 break;
835 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
837 static bool
838 return_insn_p (const_rtx insn)
840 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
841 return true;
843 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
844 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
846 return false;
849 /* Set the resources that are live at TARGET.
851 If TARGET is zero, we refer to the end of the current function and can
852 return our precomputed value.
854 Otherwise, we try to find out what is live by consulting the basic block
855 information. This is tricky, because we must consider the actions of
856 reload and jump optimization, which occur after the basic block information
857 has been computed.
859 Accordingly, we proceed as follows::
861 We find the previous BARRIER and look at all immediately following labels
862 (with no intervening active insns) to see if any of them start a basic
863 block. If we hit the start of the function first, we use block 0.
865 Once we have found a basic block and a corresponding first insn, we can
866 accurately compute the live status (by starting at a label following a
867 BARRIER, we are immune to actions taken by reload and jump.) Then we
868 scan all insns between that point and our target. For each CLOBBER (or
869 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
870 registers are dead. For a SET, mark them as live.
872 We have to be careful when using REG_DEAD notes because they are not
873 updated by such things as find_equiv_reg. So keep track of registers
874 marked as dead that haven't been assigned to, and mark them dead at the
875 next CODE_LABEL since reload and jump won't propagate values across labels.
877 If we cannot find the start of a basic block (should be a very rare
878 case, if it can happen at all), mark everything as potentially live.
880 Next, scan forward from TARGET looking for things set or clobbered
881 before they are used. These are not live.
883 Because we can be called many times on the same target, save our results
884 in a hash table indexed by INSN_UID. This is only done if the function
885 init_resource_info () was invoked before we are called. */
887 void
888 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
890 int b = -1;
891 unsigned int i;
892 struct target_info *tinfo = NULL;
893 rtx_insn *insn;
894 rtx jump_target;
895 HARD_REG_SET scratch;
896 struct resources set, needed;
898 /* Handle end of function. */
899 if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
901 *res = end_of_function_needs;
902 return;
905 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
906 instruction. */
907 rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
909 /* Handle return insn. */
910 if (return_insn_p (target))
912 *res = end_of_function_needs;
913 mark_referenced_resources (target, res, false);
914 return;
917 /* We have to assume memory is needed, but the CC isn't. */
918 res->memory = 1;
919 res->volatil = 0;
920 res->cc = 0;
922 /* See if we have computed this value already. */
923 if (target_hash_table != NULL)
925 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
926 tinfo; tinfo = tinfo->next)
927 if (tinfo->uid == INSN_UID (target))
928 break;
930 /* Start by getting the basic block number. If we have saved
931 information, we can get it from there unless the insn at the
932 start of the basic block has been deleted. */
933 if (tinfo && tinfo->block != -1
934 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
935 b = tinfo->block;
938 if (b == -1)
939 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
941 if (target_hash_table != NULL)
943 if (tinfo)
945 /* If the information is up-to-date, use it. Otherwise, we will
946 update it below. */
947 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
949 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
950 return;
953 else
955 /* Allocate a place to put our results and chain it into the
956 hash table. */
957 tinfo = XNEW (struct target_info);
958 tinfo->uid = INSN_UID (target);
959 tinfo->block = b;
960 tinfo->next
961 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
962 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
966 CLEAR_HARD_REG_SET (pending_dead_regs);
968 /* If we found a basic block, get the live registers from it and update
969 them with anything set or killed between its start and the insn before
970 TARGET; this custom life analysis is really about registers so we need
971 to use the LR problem. Otherwise, we must assume everything is live. */
972 if (b != -1)
974 regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
975 rtx_insn *start_insn, *stop_insn;
977 /* Compute hard regs live at start of block. */
978 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
980 /* Get starting and ending insn, handling the case where each might
981 be a SEQUENCE. */
982 start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
983 insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
984 stop_insn = target;
986 if (NONJUMP_INSN_P (start_insn)
987 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
988 start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
990 if (NONJUMP_INSN_P (stop_insn)
991 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
992 stop_insn = next_insn (PREV_INSN (stop_insn));
994 for (insn = start_insn; insn != stop_insn;
995 insn = next_insn_no_annul (insn))
997 rtx link;
998 rtx_insn *real_insn = insn;
999 enum rtx_code code = GET_CODE (insn);
1001 if (DEBUG_INSN_P (insn))
1002 continue;
1004 /* If this insn is from the target of a branch, it isn't going to
1005 be used in the sequel. If it is used in both cases, this
1006 test will not be true. */
1007 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1008 && INSN_FROM_TARGET_P (insn))
1009 continue;
1011 /* If this insn is a USE made by update_block, we care about the
1012 underlying insn. */
1013 if (code == INSN
1014 && GET_CODE (PATTERN (insn)) == USE
1015 && INSN_P (XEXP (PATTERN (insn), 0)))
1016 real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
1018 if (CALL_P (real_insn))
1020 /* Values in call-clobbered registers survive a COND_EXEC CALL
1021 if that is not executed; this matters for resoure use because
1022 they may be used by a complementarily (or more strictly)
1023 predicated instruction, or if the CALL is NORETURN. */
1024 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1026 HARD_REG_SET regs_invalidated_by_this_call;
1027 get_call_reg_set_usage (real_insn,
1028 &regs_invalidated_by_this_call,
1029 regs_invalidated_by_call);
1030 /* CALL clobbers all call-used regs that aren't fixed except
1031 sp, ap, and fp. Do this before setting the result of the
1032 call live. */
1033 AND_COMPL_HARD_REG_SET (current_live_regs,
1034 regs_invalidated_by_this_call);
1037 /* A CALL_INSN sets any global register live, since it may
1038 have been modified by the call. */
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1040 if (global_regs[i])
1041 SET_HARD_REG_BIT (current_live_regs, i);
1044 /* Mark anything killed in an insn to be deadened at the next
1045 label. Ignore USE insns; the only REG_DEAD notes will be for
1046 parameters. But they might be early. A CALL_INSN will usually
1047 clobber registers used for parameters. It isn't worth bothering
1048 with the unlikely case when it won't. */
1049 if ((NONJUMP_INSN_P (real_insn)
1050 && GET_CODE (PATTERN (real_insn)) != USE
1051 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1052 || JUMP_P (real_insn)
1053 || CALL_P (real_insn))
1055 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1056 if (REG_NOTE_KIND (link) == REG_DEAD
1057 && REG_P (XEXP (link, 0))
1058 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1059 add_to_hard_reg_set (&pending_dead_regs,
1060 GET_MODE (XEXP (link, 0)),
1061 REGNO (XEXP (link, 0)));
1063 note_stores (PATTERN (real_insn), update_live_status, NULL);
1065 /* If any registers were unused after this insn, kill them.
1066 These notes will always be accurate. */
1067 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1068 if (REG_NOTE_KIND (link) == REG_UNUSED
1069 && REG_P (XEXP (link, 0))
1070 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1071 remove_from_hard_reg_set (&current_live_regs,
1072 GET_MODE (XEXP (link, 0)),
1073 REGNO (XEXP (link, 0)));
1076 else if (LABEL_P (real_insn))
1078 basic_block bb;
1080 /* A label clobbers the pending dead registers since neither
1081 reload nor jump will propagate a value across a label. */
1082 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1083 CLEAR_HARD_REG_SET (pending_dead_regs);
1085 /* We must conservatively assume that all registers that used
1086 to be live here still are. The fallthrough edge may have
1087 left a live register uninitialized. */
1088 bb = BLOCK_FOR_INSN (real_insn);
1089 if (bb)
1091 HARD_REG_SET extra_live;
1093 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1094 IOR_HARD_REG_SET (current_live_regs, extra_live);
1098 /* The beginning of the epilogue corresponds to the end of the
1099 RTL chain when there are no epilogue insns. Certain resources
1100 are implicitly required at that point. */
1101 else if (NOTE_P (real_insn)
1102 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1103 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1106 COPY_HARD_REG_SET (res->regs, current_live_regs);
1107 if (tinfo != NULL)
1109 tinfo->block = b;
1110 tinfo->bb_tick = bb_ticks[b];
1113 else
1114 /* We didn't find the start of a basic block. Assume everything
1115 in use. This should happen only extremely rarely. */
1116 SET_HARD_REG_SET (res->regs);
1118 CLEAR_RESOURCE (&set);
1119 CLEAR_RESOURCE (&needed);
1121 rtx_insn *jump_insn = find_dead_or_set_registers (target, res, &jump_target,
1122 0, set, needed);
1124 /* If we hit an unconditional branch, we have another way of finding out
1125 what is live: we can see what is live at the branch target and include
1126 anything used but not set before the branch. We add the live
1127 resources found using the test below to those found until now. */
1129 if (jump_insn)
1131 struct resources new_resources;
1132 rtx_insn *stop_insn = next_active_insn (jump_insn);
1134 if (!ANY_RETURN_P (jump_target))
1135 jump_target = next_active_insn (jump_target);
1136 mark_target_live_regs (insns, jump_target, &new_resources);
1137 CLEAR_RESOURCE (&set);
1138 CLEAR_RESOURCE (&needed);
1140 /* Include JUMP_INSN in the needed registers. */
1141 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1143 mark_referenced_resources (insn, &needed, true);
1145 COPY_HARD_REG_SET (scratch, needed.regs);
1146 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1147 IOR_HARD_REG_SET (new_resources.regs, scratch);
1149 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1152 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1155 if (tinfo != NULL)
1157 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1161 /* Initialize the resources required by mark_target_live_regs ().
1162 This should be invoked before the first call to mark_target_live_regs. */
1164 void
1165 init_resource_info (rtx_insn *epilogue_insn)
1167 int i;
1168 basic_block bb;
1170 /* Indicate what resources are required to be valid at the end of the current
1171 function. The condition code never is and memory always is.
1172 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1173 and there is an epilogue that restores the original stack pointer
1174 from the frame pointer. Registers used to return the function value
1175 are needed. Registers holding global variables are needed. */
1177 end_of_function_needs.cc = 0;
1178 end_of_function_needs.memory = 1;
1179 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1181 if (frame_pointer_needed)
1183 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1184 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1185 SET_HARD_REG_BIT (end_of_function_needs.regs,
1186 HARD_FRAME_POINTER_REGNUM);
1188 if (!(frame_pointer_needed
1189 && EXIT_IGNORE_STACK
1190 && epilogue_insn
1191 && !crtl->sp_is_unchanging))
1192 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1194 if (crtl->return_rtx != 0)
1195 mark_referenced_resources (crtl->return_rtx,
1196 &end_of_function_needs, true);
1198 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1199 if (global_regs[i] || EPILOGUE_USES (i))
1200 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1202 /* The registers required to be live at the end of the function are
1203 represented in the flow information as being dead just prior to
1204 reaching the end of the function. For example, the return of a value
1205 might be represented by a USE of the return register immediately
1206 followed by an unconditional jump to the return label where the
1207 return label is the end of the RTL chain. The end of the RTL chain
1208 is then taken to mean that the return register is live.
1210 This sequence is no longer maintained when epilogue instructions are
1211 added to the RTL chain. To reconstruct the original meaning, the
1212 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1213 point where these registers become live (start_of_epilogue_needs).
1214 If epilogue instructions are present, the registers set by those
1215 instructions won't have been processed by flow. Thus, those
1216 registers are additionally required at the end of the RTL chain
1217 (end_of_function_needs). */
1219 start_of_epilogue_needs = end_of_function_needs;
1221 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1223 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1224 MARK_SRC_DEST_CALL);
1225 if (return_insn_p (epilogue_insn))
1226 break;
1229 /* Allocate and initialize the tables used by mark_target_live_regs. */
1230 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1231 bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
1233 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1234 FOR_EACH_BB_FN (bb, cfun)
1235 if (LABEL_P (BB_HEAD (bb)))
1236 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1239 /* Free up the resources allocated to mark_target_live_regs (). This
1240 should be invoked after the last call to mark_target_live_regs (). */
1242 void
1243 free_resource_info (void)
1245 basic_block bb;
1247 if (target_hash_table != NULL)
1249 int i;
1251 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1253 struct target_info *ti = target_hash_table[i];
1255 while (ti)
1257 struct target_info *next = ti->next;
1258 free (ti);
1259 ti = next;
1263 free (target_hash_table);
1264 target_hash_table = NULL;
1267 if (bb_ticks != NULL)
1269 free (bb_ticks);
1270 bb_ticks = NULL;
1273 FOR_EACH_BB_FN (bb, cfun)
1274 if (LABEL_P (BB_HEAD (bb)))
1275 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1278 /* Clear any hashed information that we have stored for INSN. */
1280 void
1281 clear_hashed_info_for_insn (rtx_insn *insn)
1283 struct target_info *tinfo;
1285 if (target_hash_table != NULL)
1287 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1288 tinfo; tinfo = tinfo->next)
1289 if (tinfo->uid == INSN_UID (insn))
1290 break;
1292 if (tinfo)
1293 tinfo->block = -1;
1297 /* Increment the tick count for the basic block that contains INSN. */
1299 void
1300 incr_ticks_for_insn (rtx_insn *insn)
1302 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1304 if (b != -1)
1305 bb_ticks[b]++;
1308 /* Add TRIAL to the set of resources used at the end of the current
1309 function. */
1310 void
1311 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1313 mark_referenced_resources (trial, &end_of_function_needs,
1314 include_delayed_effects);