2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / reload1.c
blob1e29a49561a7124a757f487e007fb8c9d1e51eb5
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "hard-reg-set.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "obstack.h"
29 #include "insn-config.h"
30 #include "flags.h"
31 #include "input.h"
32 #include "function.h"
33 #include "symtab.h"
34 #include "rtl.h"
35 #include "alias.h"
36 #include "tree.h"
37 #include "expmed.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "calls.h"
41 #include "emit-rtl.h"
42 #include "varasm.h"
43 #include "stmt.h"
44 #include "expr.h"
45 #include "insn-codes.h"
46 #include "optabs.h"
47 #include "regs.h"
48 #include "addresses.h"
49 #include "predict.h"
50 #include "dominance.h"
51 #include "cfg.h"
52 #include "cfgrtl.h"
53 #include "cfgbuild.h"
54 #include "basic-block.h"
55 #include "df.h"
56 #include "reload.h"
57 #include "recog.h"
58 #include "except.h"
59 #include "ira.h"
60 #include "target.h"
61 #include "dumpfile.h"
62 #include "rtl-iter.h"
64 /* This file contains the reload pass of the compiler, which is
65 run after register allocation has been done. It checks that
66 each insn is valid (operands required to be in registers really
67 are in registers of the proper class) and fixes up invalid ones
68 by copying values temporarily into registers for the insns
69 that need them.
71 The results of register allocation are described by the vector
72 reg_renumber; the insns still contain pseudo regs, but reg_renumber
73 can be used to find which hard reg, if any, a pseudo reg is in.
75 The technique we always use is to free up a few hard regs that are
76 called ``reload regs'', and for each place where a pseudo reg
77 must be in a hard reg, copy it temporarily into one of the reload regs.
79 Reload regs are allocated locally for every instruction that needs
80 reloads. When there are pseudos which are allocated to a register that
81 has been chosen as a reload reg, such pseudos must be ``spilled''.
82 This means that they go to other hard regs, or to stack slots if no other
83 available hard regs can be found. Spilling can invalidate more
84 insns, requiring additional need for reloads, so we must keep checking
85 until the process stabilizes.
87 For machines with different classes of registers, we must keep track
88 of the register class needed for each reload, and make sure that
89 we allocate enough reload registers of each class.
91 The file reload.c contains the code that checks one insn for
92 validity and reports the reloads that it needs. This file
93 is in charge of scanning the entire rtl code, accumulating the
94 reload needs, spilling, assigning reload registers to use for
95 fixing up each insn, and generating the new insns to copy values
96 into the reload registers. */
98 struct target_reload default_target_reload;
99 #if SWITCHABLE_TARGET
100 struct target_reload *this_target_reload = &default_target_reload;
101 #endif
103 #define spill_indirect_levels \
104 (this_target_reload->x_spill_indirect_levels)
106 /* During reload_as_needed, element N contains a REG rtx for the hard reg
107 into which reg N has been reloaded (perhaps for a previous insn). */
108 static rtx *reg_last_reload_reg;
110 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
111 for an output reload that stores into reg N. */
112 static regset_head reg_has_output_reload;
114 /* Indicates which hard regs are reload-registers for an output reload
115 in the current insn. */
116 static HARD_REG_SET reg_is_output_reload;
118 /* Widest width in which each pseudo reg is referred to (via subreg). */
119 static unsigned int *reg_max_ref_width;
121 /* Vector to remember old contents of reg_renumber before spilling. */
122 static short *reg_old_renumber;
124 /* During reload_as_needed, element N contains the last pseudo regno reloaded
125 into hard register N. If that pseudo reg occupied more than one register,
126 reg_reloaded_contents points to that pseudo for each spill register in
127 use; all of these must remain set for an inheritance to occur. */
128 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
130 /* During reload_as_needed, element N contains the insn for which
131 hard register N was last used. Its contents are significant only
132 when reg_reloaded_valid is set for this register. */
133 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
135 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
136 static HARD_REG_SET reg_reloaded_valid;
137 /* Indicate if the register was dead at the end of the reload.
138 This is only valid if reg_reloaded_contents is set and valid. */
139 static HARD_REG_SET reg_reloaded_dead;
141 /* Indicate whether the register's current value is one that is not
142 safe to retain across a call, even for registers that are normally
143 call-saved. This is only meaningful for members of reg_reloaded_valid. */
144 static HARD_REG_SET reg_reloaded_call_part_clobbered;
146 /* Number of spill-regs so far; number of valid elements of spill_regs. */
147 static int n_spills;
149 /* In parallel with spill_regs, contains REG rtx's for those regs.
150 Holds the last rtx used for any given reg, or 0 if it has never
151 been used for spilling yet. This rtx is reused, provided it has
152 the proper mode. */
153 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155 /* In parallel with spill_regs, contains nonzero for a spill reg
156 that was stored after the last time it was used.
157 The precise value is the insn generated to do the store. */
158 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
160 /* This is the register that was stored with spill_reg_store. This is a
161 copy of reload_out / reload_out_reg when the value was stored; if
162 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
163 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165 /* This table is the inverse mapping of spill_regs:
166 indexed by hard reg number,
167 it contains the position of that reg in spill_regs,
168 or -1 for something that is not in spill_regs.
170 ?!? This is no longer accurate. */
171 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173 /* This reg set indicates registers that can't be used as spill registers for
174 the currently processed insn. These are the hard registers which are live
175 during the insn, but not allocated to pseudos, as well as fixed
176 registers. */
177 static HARD_REG_SET bad_spill_regs;
179 /* These are the hard registers that can't be used as spill register for any
180 insn. This includes registers used for user variables and registers that
181 we can't eliminate. A register that appears in this set also can't be used
182 to retry register allocation. */
183 static HARD_REG_SET bad_spill_regs_global;
185 /* Describes order of use of registers for reloading
186 of spilled pseudo-registers. `n_spills' is the number of
187 elements that are actually valid; new ones are added at the end.
189 Both spill_regs and spill_reg_order are used on two occasions:
190 once during find_reload_regs, where they keep track of the spill registers
191 for a single insn, but also during reload_as_needed where they show all
192 the registers ever used by reload. For the latter case, the information
193 is calculated during finish_spills. */
194 static short spill_regs[FIRST_PSEUDO_REGISTER];
196 /* This vector of reg sets indicates, for each pseudo, which hard registers
197 may not be used for retrying global allocation because the register was
198 formerly spilled from one of them. If we allowed reallocating a pseudo to
199 a register that it was already allocated to, reload might not
200 terminate. */
201 static HARD_REG_SET *pseudo_previous_regs;
203 /* This vector of reg sets indicates, for each pseudo, which hard
204 registers may not be used for retrying global allocation because they
205 are used as spill registers during one of the insns in which the
206 pseudo is live. */
207 static HARD_REG_SET *pseudo_forbidden_regs;
209 /* All hard regs that have been used as spill registers for any insn are
210 marked in this set. */
211 static HARD_REG_SET used_spill_regs;
213 /* Index of last register assigned as a spill register. We allocate in
214 a round-robin fashion. */
215 static int last_spill_reg;
217 /* Record the stack slot for each spilled hard register. */
218 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
220 /* Width allocated so far for that stack slot. */
221 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
223 /* Record which pseudos needed to be spilled. */
224 static regset_head spilled_pseudos;
226 /* Record which pseudos changed their allocation in finish_spills. */
227 static regset_head changed_allocation_pseudos;
229 /* Used for communication between order_regs_for_reload and count_pseudo.
230 Used to avoid counting one pseudo twice. */
231 static regset_head pseudos_counted;
233 /* First uid used by insns created by reload in this function.
234 Used in find_equiv_reg. */
235 int reload_first_uid;
237 /* Flag set by local-alloc or global-alloc if anything is live in
238 a call-clobbered reg across calls. */
239 int caller_save_needed;
241 /* Set to 1 while reload_as_needed is operating.
242 Required by some machines to handle any generated moves differently. */
243 int reload_in_progress = 0;
245 /* This obstack is used for allocation of rtl during register elimination.
246 The allocated storage can be freed once find_reloads has processed the
247 insn. */
248 static struct obstack reload_obstack;
250 /* Points to the beginning of the reload_obstack. All insn_chain structures
251 are allocated first. */
252 static char *reload_startobj;
254 /* The point after all insn_chain structures. Used to quickly deallocate
255 memory allocated in copy_reloads during calculate_needs_all_insns. */
256 static char *reload_firstobj;
258 /* This points before all local rtl generated by register elimination.
259 Used to quickly free all memory after processing one insn. */
260 static char *reload_insn_firstobj;
262 /* List of insn_chain instructions, one for every insn that reload needs to
263 examine. */
264 struct insn_chain *reload_insn_chain;
266 /* TRUE if we potentially left dead insns in the insn stream and want to
267 run DCE immediately after reload, FALSE otherwise. */
268 static bool need_dce;
270 /* List of all insns needing reloads. */
271 static struct insn_chain *insns_need_reload;
273 /* This structure is used to record information about register eliminations.
274 Each array entry describes one possible way of eliminating a register
275 in favor of another. If there is more than one way of eliminating a
276 particular register, the most preferred should be specified first. */
278 struct elim_table
280 int from; /* Register number to be eliminated. */
281 int to; /* Register number used as replacement. */
282 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
283 int can_eliminate; /* Nonzero if this elimination can be done. */
284 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
285 target hook in previous scan over insns
286 made by reload. */
287 HOST_WIDE_INT offset; /* Current offset between the two regs. */
288 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
289 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
290 rtx from_rtx; /* REG rtx for the register to be eliminated.
291 We cannot simply compare the number since
292 we might then spuriously replace a hard
293 register corresponding to a pseudo
294 assigned to the reg to be eliminated. */
295 rtx to_rtx; /* REG rtx for the replacement. */
298 static struct elim_table *reg_eliminate = 0;
300 /* This is an intermediate structure to initialize the table. It has
301 exactly the members provided by ELIMINABLE_REGS. */
302 static const struct elim_table_1
304 const int from;
305 const int to;
306 } reg_eliminate_1[] =
308 /* If a set of eliminable registers was specified, define the table from it.
309 Otherwise, default to the normal case of the frame pointer being
310 replaced by the stack pointer. */
312 #ifdef ELIMINABLE_REGS
313 ELIMINABLE_REGS;
314 #else
315 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
316 #endif
318 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
320 /* Record the number of pending eliminations that have an offset not equal
321 to their initial offset. If nonzero, we use a new copy of each
322 replacement result in any insns encountered. */
323 int num_not_at_initial_offset;
325 /* Count the number of registers that we may be able to eliminate. */
326 static int num_eliminable;
327 /* And the number of registers that are equivalent to a constant that
328 can be eliminated to frame_pointer / arg_pointer + constant. */
329 static int num_eliminable_invariants;
331 /* For each label, we record the offset of each elimination. If we reach
332 a label by more than one path and an offset differs, we cannot do the
333 elimination. This information is indexed by the difference of the
334 number of the label and the first label number. We can't offset the
335 pointer itself as this can cause problems on machines with segmented
336 memory. The first table is an array of flags that records whether we
337 have yet encountered a label and the second table is an array of arrays,
338 one entry in the latter array for each elimination. */
340 static int first_label_num;
341 static char *offsets_known_at;
342 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
344 vec<reg_equivs_t, va_gc> *reg_equivs;
346 /* Stack of addresses where an rtx has been changed. We can undo the
347 changes by popping items off the stack and restoring the original
348 value at each location.
350 We use this simplistic undo capability rather than copy_rtx as copy_rtx
351 will not make a deep copy of a normally sharable rtx, such as
352 (const (plus (symbol_ref) (const_int))). If such an expression appears
353 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
354 rtx expression would be changed. See PR 42431. */
356 typedef rtx *rtx_p;
357 static vec<rtx_p> substitute_stack;
359 /* Number of labels in the current function. */
361 static int num_labels;
363 static void replace_pseudos_in (rtx *, machine_mode, rtx);
364 static void maybe_fix_stack_asms (void);
365 static void copy_reloads (struct insn_chain *);
366 static void calculate_needs_all_insns (int);
367 static int find_reg (struct insn_chain *, int);
368 static void find_reload_regs (struct insn_chain *);
369 static void select_reload_regs (void);
370 static void delete_caller_save_insns (void);
372 static void spill_failure (rtx_insn *, enum reg_class);
373 static void count_spilled_pseudo (int, int, int);
374 static void delete_dead_insn (rtx_insn *);
375 static void alter_reg (int, int, bool);
376 static void set_label_offsets (rtx, rtx_insn *, int);
377 static void check_eliminable_occurrences (rtx);
378 static void elimination_effects (rtx, machine_mode);
379 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
380 static int eliminate_regs_in_insn (rtx_insn *, int);
381 static void update_eliminable_offsets (void);
382 static void mark_not_eliminable (rtx, const_rtx, void *);
383 static void set_initial_elim_offsets (void);
384 static bool verify_initial_elim_offsets (void);
385 static void set_initial_label_offsets (void);
386 static void set_offsets_for_label (rtx_insn *);
387 static void init_eliminable_invariants (rtx_insn *, bool);
388 static void init_elim_table (void);
389 static void free_reg_equiv (void);
390 static void update_eliminables (HARD_REG_SET *);
391 static bool update_eliminables_and_spill (void);
392 static void elimination_costs_in_insn (rtx_insn *);
393 static void spill_hard_reg (unsigned int, int);
394 static int finish_spills (int);
395 static void scan_paradoxical_subregs (rtx);
396 static void count_pseudo (int);
397 static void order_regs_for_reload (struct insn_chain *);
398 static void reload_as_needed (int);
399 static void forget_old_reloads_1 (rtx, const_rtx, void *);
400 static void forget_marked_reloads (regset);
401 static int reload_reg_class_lower (const void *, const void *);
402 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
403 machine_mode);
404 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
405 machine_mode);
406 static int reload_reg_free_p (unsigned int, int, enum reload_type);
407 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
408 rtx, rtx, int, int);
409 static int free_for_value_p (int, machine_mode, int, enum reload_type,
410 rtx, rtx, int, int);
411 static int allocate_reload_reg (struct insn_chain *, int, int);
412 static int conflicts_with_override (rtx);
413 static void failed_reload (rtx_insn *, int);
414 static int set_reload_reg (int, int);
415 static void choose_reload_regs_init (struct insn_chain *, rtx *);
416 static void choose_reload_regs (struct insn_chain *);
417 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
418 rtx, int);
419 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
420 int);
421 static void do_input_reload (struct insn_chain *, struct reload *, int);
422 static void do_output_reload (struct insn_chain *, struct reload *, int);
423 static void emit_reload_insns (struct insn_chain *);
424 static void delete_output_reload (rtx_insn *, int, int, rtx);
425 static void delete_address_reloads (rtx_insn *, rtx_insn *);
426 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
427 static void inc_for_reload (rtx, rtx, rtx, int);
428 #ifdef AUTO_INC_DEC
429 static void add_auto_inc_notes (rtx_insn *, rtx);
430 #endif
431 static void substitute (rtx *, const_rtx, rtx);
432 static bool gen_reload_chain_without_interm_reg_p (int, int);
433 static int reloads_conflict (int, int);
434 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
435 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
437 /* Initialize the reload pass. This is called at the beginning of compilation
438 and may be called again if the target is reinitialized. */
440 void
441 init_reload (void)
443 int i;
445 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
446 Set spill_indirect_levels to the number of levels such addressing is
447 permitted, zero if it is not permitted at all. */
449 rtx tem
450 = gen_rtx_MEM (Pmode,
451 gen_rtx_PLUS (Pmode,
452 gen_rtx_REG (Pmode,
453 LAST_VIRTUAL_REGISTER + 1),
454 gen_int_mode (4, Pmode)));
455 spill_indirect_levels = 0;
457 while (memory_address_p (QImode, tem))
459 spill_indirect_levels++;
460 tem = gen_rtx_MEM (Pmode, tem);
463 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
465 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
466 indirect_symref_ok = memory_address_p (QImode, tem);
468 /* See if reg+reg is a valid (and offsettable) address. */
470 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
472 tem = gen_rtx_PLUS (Pmode,
473 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
474 gen_rtx_REG (Pmode, i));
476 /* This way, we make sure that reg+reg is an offsettable address. */
477 tem = plus_constant (Pmode, tem, 4);
479 if (memory_address_p (QImode, tem))
481 double_reg_address_ok = 1;
482 break;
486 /* Initialize obstack for our rtl allocation. */
487 if (reload_startobj == NULL)
489 gcc_obstack_init (&reload_obstack);
490 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
493 INIT_REG_SET (&spilled_pseudos);
494 INIT_REG_SET (&changed_allocation_pseudos);
495 INIT_REG_SET (&pseudos_counted);
498 /* List of insn chains that are currently unused. */
499 static struct insn_chain *unused_insn_chains = 0;
501 /* Allocate an empty insn_chain structure. */
502 struct insn_chain *
503 new_insn_chain (void)
505 struct insn_chain *c;
507 if (unused_insn_chains == 0)
509 c = XOBNEW (&reload_obstack, struct insn_chain);
510 INIT_REG_SET (&c->live_throughout);
511 INIT_REG_SET (&c->dead_or_set);
513 else
515 c = unused_insn_chains;
516 unused_insn_chains = c->next;
518 c->is_caller_save_insn = 0;
519 c->need_operand_change = 0;
520 c->need_reload = 0;
521 c->need_elim = 0;
522 return c;
525 /* Small utility function to set all regs in hard reg set TO which are
526 allocated to pseudos in regset FROM. */
528 void
529 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
531 unsigned int regno;
532 reg_set_iterator rsi;
534 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
536 int r = reg_renumber[regno];
538 if (r < 0)
540 /* reload_combine uses the information from DF_LIVE_IN,
541 which might still contain registers that have not
542 actually been allocated since they have an
543 equivalence. */
544 gcc_assert (ira_conflicts_p || reload_completed);
546 else
547 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
551 /* Replace all pseudos found in LOC with their corresponding
552 equivalences. */
554 static void
555 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
557 rtx x = *loc;
558 enum rtx_code code;
559 const char *fmt;
560 int i, j;
562 if (! x)
563 return;
565 code = GET_CODE (x);
566 if (code == REG)
568 unsigned int regno = REGNO (x);
570 if (regno < FIRST_PSEUDO_REGISTER)
571 return;
573 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
574 if (x != *loc)
576 *loc = x;
577 replace_pseudos_in (loc, mem_mode, usage);
578 return;
581 if (reg_equiv_constant (regno))
582 *loc = reg_equiv_constant (regno);
583 else if (reg_equiv_invariant (regno))
584 *loc = reg_equiv_invariant (regno);
585 else if (reg_equiv_mem (regno))
586 *loc = reg_equiv_mem (regno);
587 else if (reg_equiv_address (regno))
588 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
589 else
591 gcc_assert (!REG_P (regno_reg_rtx[regno])
592 || REGNO (regno_reg_rtx[regno]) != regno);
593 *loc = regno_reg_rtx[regno];
596 return;
598 else if (code == MEM)
600 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
601 return;
604 /* Process each of our operands recursively. */
605 fmt = GET_RTX_FORMAT (code);
606 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
607 if (*fmt == 'e')
608 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
609 else if (*fmt == 'E')
610 for (j = 0; j < XVECLEN (x, i); j++)
611 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
614 /* Determine if the current function has an exception receiver block
615 that reaches the exit block via non-exceptional edges */
617 static bool
618 has_nonexceptional_receiver (void)
620 edge e;
621 edge_iterator ei;
622 basic_block *tos, *worklist, bb;
624 /* If we're not optimizing, then just err on the safe side. */
625 if (!optimize)
626 return true;
628 /* First determine which blocks can reach exit via normal paths. */
629 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
631 FOR_EACH_BB_FN (bb, cfun)
632 bb->flags &= ~BB_REACHABLE;
634 /* Place the exit block on our worklist. */
635 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
636 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
638 /* Iterate: find everything reachable from what we've already seen. */
639 while (tos != worklist)
641 bb = *--tos;
643 FOR_EACH_EDGE (e, ei, bb->preds)
644 if (!(e->flags & EDGE_ABNORMAL))
646 basic_block src = e->src;
648 if (!(src->flags & BB_REACHABLE))
650 src->flags |= BB_REACHABLE;
651 *tos++ = src;
655 free (worklist);
657 /* Now see if there's a reachable block with an exceptional incoming
658 edge. */
659 FOR_EACH_BB_FN (bb, cfun)
660 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
661 return true;
663 /* No exceptional block reached exit unexceptionally. */
664 return false;
667 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
668 zero elements) to MAX_REG_NUM elements.
670 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
671 void
672 grow_reg_equivs (void)
674 int old_size = vec_safe_length (reg_equivs);
675 int max_regno = max_reg_num ();
676 int i;
677 reg_equivs_t ze;
679 memset (&ze, 0, sizeof (reg_equivs_t));
680 vec_safe_reserve (reg_equivs, max_regno);
681 for (i = old_size; i < max_regno; i++)
682 reg_equivs->quick_insert (i, ze);
686 /* Global variables used by reload and its subroutines. */
688 /* The current basic block while in calculate_elim_costs_all_insns. */
689 static basic_block elim_bb;
691 /* Set during calculate_needs if an insn needs register elimination. */
692 static int something_needs_elimination;
693 /* Set during calculate_needs if an insn needs an operand changed. */
694 static int something_needs_operands_changed;
695 /* Set by alter_regs if we spilled a register to the stack. */
696 static bool something_was_spilled;
698 /* Nonzero means we couldn't get enough spill regs. */
699 static int failure;
701 /* Temporary array of pseudo-register number. */
702 static int *temp_pseudo_reg_arr;
704 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
705 If that insn didn't set the register (i.e., it copied the register to
706 memory), just delete that insn instead of the equivalencing insn plus
707 anything now dead. If we call delete_dead_insn on that insn, we may
708 delete the insn that actually sets the register if the register dies
709 there and that is incorrect. */
710 static void
711 remove_init_insns ()
713 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
715 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
717 rtx list;
718 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
720 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
722 /* If we already deleted the insn or if it may trap, we can't
723 delete it. The latter case shouldn't happen, but can
724 if an insn has a variable address, gets a REG_EH_REGION
725 note added to it, and then gets converted into a load
726 from a constant address. */
727 if (NOTE_P (equiv_insn)
728 || can_throw_internal (equiv_insn))
730 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
731 delete_dead_insn (equiv_insn);
732 else
733 SET_INSN_DELETED (equiv_insn);
739 /* Return true if remove_init_insns will delete INSN. */
740 static bool
741 will_delete_init_insn_p (rtx_insn *insn)
743 rtx set = single_set (insn);
744 if (!set || !REG_P (SET_DEST (set)))
745 return false;
746 unsigned regno = REGNO (SET_DEST (set));
748 if (can_throw_internal (insn))
749 return false;
751 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
752 return false;
754 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
756 rtx equiv_insn = XEXP (list, 0);
757 if (equiv_insn == insn)
758 return true;
760 return false;
763 /* Main entry point for the reload pass.
765 FIRST is the first insn of the function being compiled.
767 GLOBAL nonzero means we were called from global_alloc
768 and should attempt to reallocate any pseudoregs that we
769 displace from hard regs we will use for reloads.
770 If GLOBAL is zero, we do not have enough information to do that,
771 so any pseudo reg that is spilled must go to the stack.
773 Return value is TRUE if reload likely left dead insns in the
774 stream and a DCE pass should be run to elimiante them. Else the
775 return value is FALSE. */
777 bool
778 reload (rtx_insn *first, int global)
780 int i, n;
781 rtx_insn *insn;
782 struct elim_table *ep;
783 basic_block bb;
784 bool inserted;
786 /* Make sure even insns with volatile mem refs are recognizable. */
787 init_recog ();
789 failure = 0;
791 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
793 /* Make sure that the last insn in the chain
794 is not something that needs reloading. */
795 emit_note (NOTE_INSN_DELETED);
797 /* Enable find_equiv_reg to distinguish insns made by reload. */
798 reload_first_uid = get_max_uid ();
800 #ifdef SECONDARY_MEMORY_NEEDED
801 /* Initialize the secondary memory table. */
802 clear_secondary_mem ();
803 #endif
805 /* We don't have a stack slot for any spill reg yet. */
806 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
807 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
809 /* Initialize the save area information for caller-save, in case some
810 are needed. */
811 init_save_areas ();
813 /* Compute which hard registers are now in use
814 as homes for pseudo registers.
815 This is done here rather than (eg) in global_alloc
816 because this point is reached even if not optimizing. */
817 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
818 mark_home_live (i);
820 /* A function that has a nonlocal label that can reach the exit
821 block via non-exceptional paths must save all call-saved
822 registers. */
823 if (cfun->has_nonlocal_label
824 && has_nonexceptional_receiver ())
825 crtl->saves_all_registers = 1;
827 if (crtl->saves_all_registers)
828 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
829 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
830 df_set_regs_ever_live (i, true);
832 /* Find all the pseudo registers that didn't get hard regs
833 but do have known equivalent constants or memory slots.
834 These include parameters (known equivalent to parameter slots)
835 and cse'd or loop-moved constant memory addresses.
837 Record constant equivalents in reg_equiv_constant
838 so they will be substituted by find_reloads.
839 Record memory equivalents in reg_mem_equiv so they can
840 be substituted eventually by altering the REG-rtx's. */
842 grow_reg_equivs ();
843 reg_old_renumber = XCNEWVEC (short, max_regno);
844 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
845 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
846 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
848 CLEAR_HARD_REG_SET (bad_spill_regs_global);
850 init_eliminable_invariants (first, true);
851 init_elim_table ();
853 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
854 stack slots to the pseudos that lack hard regs or equivalents.
855 Do not touch virtual registers. */
857 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
858 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
859 temp_pseudo_reg_arr[n++] = i;
861 if (ira_conflicts_p)
862 /* Ask IRA to order pseudo-registers for better stack slot
863 sharing. */
864 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
866 for (i = 0; i < n; i++)
867 alter_reg (temp_pseudo_reg_arr[i], -1, false);
869 /* If we have some registers we think can be eliminated, scan all insns to
870 see if there is an insn that sets one of these registers to something
871 other than itself plus a constant. If so, the register cannot be
872 eliminated. Doing this scan here eliminates an extra pass through the
873 main reload loop in the most common case where register elimination
874 cannot be done. */
875 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
876 if (INSN_P (insn))
877 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
879 maybe_fix_stack_asms ();
881 insns_need_reload = 0;
882 something_needs_elimination = 0;
884 /* Initialize to -1, which means take the first spill register. */
885 last_spill_reg = -1;
887 /* Spill any hard regs that we know we can't eliminate. */
888 CLEAR_HARD_REG_SET (used_spill_regs);
889 /* There can be multiple ways to eliminate a register;
890 they should be listed adjacently.
891 Elimination for any register fails only if all possible ways fail. */
892 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
894 int from = ep->from;
895 int can_eliminate = 0;
898 can_eliminate |= ep->can_eliminate;
899 ep++;
901 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
902 if (! can_eliminate)
903 spill_hard_reg (from, 1);
906 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
907 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
909 finish_spills (global);
911 /* From now on, we may need to generate moves differently. We may also
912 allow modifications of insns which cause them to not be recognized.
913 Any such modifications will be cleaned up during reload itself. */
914 reload_in_progress = 1;
916 /* This loop scans the entire function each go-round
917 and repeats until one repetition spills no additional hard regs. */
918 for (;;)
920 int something_changed;
921 int did_spill;
922 HOST_WIDE_INT starting_frame_size;
924 starting_frame_size = get_frame_size ();
925 something_was_spilled = false;
927 set_initial_elim_offsets ();
928 set_initial_label_offsets ();
930 /* For each pseudo register that has an equivalent location defined,
931 try to eliminate any eliminable registers (such as the frame pointer)
932 assuming initial offsets for the replacement register, which
933 is the normal case.
935 If the resulting location is directly addressable, substitute
936 the MEM we just got directly for the old REG.
938 If it is not addressable but is a constant or the sum of a hard reg
939 and constant, it is probably not addressable because the constant is
940 out of range, in that case record the address; we will generate
941 hairy code to compute the address in a register each time it is
942 needed. Similarly if it is a hard register, but one that is not
943 valid as an address register.
945 If the location is not addressable, but does not have one of the
946 above forms, assign a stack slot. We have to do this to avoid the
947 potential of producing lots of reloads if, e.g., a location involves
948 a pseudo that didn't get a hard register and has an equivalent memory
949 location that also involves a pseudo that didn't get a hard register.
951 Perhaps at some point we will improve reload_when_needed handling
952 so this problem goes away. But that's very hairy. */
954 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
955 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
957 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
958 NULL_RTX);
960 if (strict_memory_address_addr_space_p
961 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
962 MEM_ADDR_SPACE (x)))
963 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
964 else if (CONSTANT_P (XEXP (x, 0))
965 || (REG_P (XEXP (x, 0))
966 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
967 || (GET_CODE (XEXP (x, 0)) == PLUS
968 && REG_P (XEXP (XEXP (x, 0), 0))
969 && (REGNO (XEXP (XEXP (x, 0), 0))
970 < FIRST_PSEUDO_REGISTER)
971 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
972 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
973 else
975 /* Make a new stack slot. Then indicate that something
976 changed so we go back and recompute offsets for
977 eliminable registers because the allocation of memory
978 below might change some offset. reg_equiv_{mem,address}
979 will be set up for this pseudo on the next pass around
980 the loop. */
981 reg_equiv_memory_loc (i) = 0;
982 reg_equiv_init (i) = 0;
983 alter_reg (i, -1, true);
987 if (caller_save_needed)
988 setup_save_areas ();
990 if (starting_frame_size && crtl->stack_alignment_needed)
992 /* If we have a stack frame, we must align it now. The
993 stack size may be a part of the offset computation for
994 register elimination. So if this changes the stack size,
995 then repeat the elimination bookkeeping. We don't
996 realign when there is no stack, as that will cause a
997 stack frame when none is needed should
998 STARTING_FRAME_OFFSET not be already aligned to
999 STACK_BOUNDARY. */
1000 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1002 /* If we allocated another stack slot, redo elimination bookkeeping. */
1003 if (something_was_spilled || starting_frame_size != get_frame_size ())
1005 update_eliminables_and_spill ();
1006 continue;
1009 if (caller_save_needed)
1011 save_call_clobbered_regs ();
1012 /* That might have allocated new insn_chain structures. */
1013 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1016 calculate_needs_all_insns (global);
1018 if (! ira_conflicts_p)
1019 /* Don't do it for IRA. We need this info because we don't
1020 change live_throughout and dead_or_set for chains when IRA
1021 is used. */
1022 CLEAR_REG_SET (&spilled_pseudos);
1024 did_spill = 0;
1026 something_changed = 0;
1028 /* If we allocated any new memory locations, make another pass
1029 since it might have changed elimination offsets. */
1030 if (something_was_spilled || starting_frame_size != get_frame_size ())
1031 something_changed = 1;
1033 /* Even if the frame size remained the same, we might still have
1034 changed elimination offsets, e.g. if find_reloads called
1035 force_const_mem requiring the back end to allocate a constant
1036 pool base register that needs to be saved on the stack. */
1037 else if (!verify_initial_elim_offsets ())
1038 something_changed = 1;
1040 if (update_eliminables_and_spill ())
1042 did_spill = 1;
1043 something_changed = 1;
1046 select_reload_regs ();
1047 if (failure)
1048 goto failed;
1050 if (insns_need_reload != 0 || did_spill)
1051 something_changed |= finish_spills (global);
1053 if (! something_changed)
1054 break;
1056 if (caller_save_needed)
1057 delete_caller_save_insns ();
1059 obstack_free (&reload_obstack, reload_firstobj);
1062 /* If global-alloc was run, notify it of any register eliminations we have
1063 done. */
1064 if (global)
1065 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1066 if (ep->can_eliminate)
1067 mark_elimination (ep->from, ep->to);
1069 remove_init_insns ();
1071 /* Use the reload registers where necessary
1072 by generating move instructions to move the must-be-register
1073 values into or out of the reload registers. */
1075 if (insns_need_reload != 0 || something_needs_elimination
1076 || something_needs_operands_changed)
1078 HOST_WIDE_INT old_frame_size = get_frame_size ();
1080 reload_as_needed (global);
1082 gcc_assert (old_frame_size == get_frame_size ());
1084 gcc_assert (verify_initial_elim_offsets ());
1087 /* If we were able to eliminate the frame pointer, show that it is no
1088 longer live at the start of any basic block. If it ls live by
1089 virtue of being in a pseudo, that pseudo will be marked live
1090 and hence the frame pointer will be known to be live via that
1091 pseudo. */
1093 if (! frame_pointer_needed)
1094 FOR_EACH_BB_FN (bb, cfun)
1095 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1097 /* Come here (with failure set nonzero) if we can't get enough spill
1098 regs. */
1099 failed:
1101 CLEAR_REG_SET (&changed_allocation_pseudos);
1102 CLEAR_REG_SET (&spilled_pseudos);
1103 reload_in_progress = 0;
1105 /* Now eliminate all pseudo regs by modifying them into
1106 their equivalent memory references.
1107 The REG-rtx's for the pseudos are modified in place,
1108 so all insns that used to refer to them now refer to memory.
1110 For a reg that has a reg_equiv_address, all those insns
1111 were changed by reloading so that no insns refer to it any longer;
1112 but the DECL_RTL of a variable decl may refer to it,
1113 and if so this causes the debugging info to mention the variable. */
1115 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1117 rtx addr = 0;
1119 if (reg_equiv_mem (i))
1120 addr = XEXP (reg_equiv_mem (i), 0);
1122 if (reg_equiv_address (i))
1123 addr = reg_equiv_address (i);
1125 if (addr)
1127 if (reg_renumber[i] < 0)
1129 rtx reg = regno_reg_rtx[i];
1131 REG_USERVAR_P (reg) = 0;
1132 PUT_CODE (reg, MEM);
1133 XEXP (reg, 0) = addr;
1134 if (reg_equiv_memory_loc (i))
1135 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1136 else
1137 MEM_ATTRS (reg) = 0;
1138 MEM_NOTRAP_P (reg) = 1;
1140 else if (reg_equiv_mem (i))
1141 XEXP (reg_equiv_mem (i), 0) = addr;
1144 /* We don't want complex addressing modes in debug insns
1145 if simpler ones will do, so delegitimize equivalences
1146 in debug insns. */
1147 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1149 rtx reg = regno_reg_rtx[i];
1150 rtx equiv = 0;
1151 df_ref use, next;
1153 if (reg_equiv_constant (i))
1154 equiv = reg_equiv_constant (i);
1155 else if (reg_equiv_invariant (i))
1156 equiv = reg_equiv_invariant (i);
1157 else if (reg && MEM_P (reg))
1158 equiv = targetm.delegitimize_address (reg);
1159 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1160 equiv = reg;
1162 if (equiv == reg)
1163 continue;
1165 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1167 insn = DF_REF_INSN (use);
1169 /* Make sure the next ref is for a different instruction,
1170 so that we're not affected by the rescan. */
1171 next = DF_REF_NEXT_REG (use);
1172 while (next && DF_REF_INSN (next) == insn)
1173 next = DF_REF_NEXT_REG (next);
1175 if (DEBUG_INSN_P (insn))
1177 if (!equiv)
1179 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1180 df_insn_rescan_debug_internal (insn);
1182 else
1183 INSN_VAR_LOCATION_LOC (insn)
1184 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1185 reg, equiv);
1191 /* We must set reload_completed now since the cleanup_subreg_operands call
1192 below will re-recognize each insn and reload may have generated insns
1193 which are only valid during and after reload. */
1194 reload_completed = 1;
1196 /* Make a pass over all the insns and delete all USEs which we inserted
1197 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1198 notes. Delete all CLOBBER insns, except those that refer to the return
1199 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1200 from misarranging variable-array code, and simplify (subreg (reg))
1201 operands. Strip and regenerate REG_INC notes that may have been moved
1202 around. */
1204 for (insn = first; insn; insn = NEXT_INSN (insn))
1205 if (INSN_P (insn))
1207 rtx *pnote;
1209 if (CALL_P (insn))
1210 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1211 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1213 if ((GET_CODE (PATTERN (insn)) == USE
1214 /* We mark with QImode USEs introduced by reload itself. */
1215 && (GET_MODE (insn) == QImode
1216 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1217 || (GET_CODE (PATTERN (insn)) == CLOBBER
1218 && (!MEM_P (XEXP (PATTERN (insn), 0))
1219 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1220 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1221 && XEXP (XEXP (PATTERN (insn), 0), 0)
1222 != stack_pointer_rtx))
1223 && (!REG_P (XEXP (PATTERN (insn), 0))
1224 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1226 delete_insn (insn);
1227 continue;
1230 /* Some CLOBBERs may survive until here and still reference unassigned
1231 pseudos with const equivalent, which may in turn cause ICE in later
1232 passes if the reference remains in place. */
1233 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1234 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1235 VOIDmode, PATTERN (insn));
1237 /* Discard obvious no-ops, even without -O. This optimization
1238 is fast and doesn't interfere with debugging. */
1239 if (NONJUMP_INSN_P (insn)
1240 && GET_CODE (PATTERN (insn)) == SET
1241 && REG_P (SET_SRC (PATTERN (insn)))
1242 && REG_P (SET_DEST (PATTERN (insn)))
1243 && (REGNO (SET_SRC (PATTERN (insn)))
1244 == REGNO (SET_DEST (PATTERN (insn)))))
1246 delete_insn (insn);
1247 continue;
1250 pnote = &REG_NOTES (insn);
1251 while (*pnote != 0)
1253 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1254 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1255 || REG_NOTE_KIND (*pnote) == REG_INC)
1256 *pnote = XEXP (*pnote, 1);
1257 else
1258 pnote = &XEXP (*pnote, 1);
1261 #ifdef AUTO_INC_DEC
1262 add_auto_inc_notes (insn, PATTERN (insn));
1263 #endif
1265 /* Simplify (subreg (reg)) if it appears as an operand. */
1266 cleanup_subreg_operands (insn);
1268 /* Clean up invalid ASMs so that they don't confuse later passes.
1269 See PR 21299. */
1270 if (asm_noperands (PATTERN (insn)) >= 0)
1272 extract_insn (insn);
1273 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1275 error_for_asm (insn,
1276 "%<asm%> operand has impossible constraints");
1277 delete_insn (insn);
1278 continue;
1283 /* If we are doing generic stack checking, give a warning if this
1284 function's frame size is larger than we expect. */
1285 if (flag_stack_check == GENERIC_STACK_CHECK)
1287 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1288 static int verbose_warned = 0;
1290 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1291 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1292 size += UNITS_PER_WORD;
1294 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1296 warning (0, "frame size too large for reliable stack checking");
1297 if (! verbose_warned)
1299 warning (0, "try reducing the number of local variables");
1300 verbose_warned = 1;
1305 free (temp_pseudo_reg_arr);
1307 /* Indicate that we no longer have known memory locations or constants. */
1308 free_reg_equiv ();
1310 free (reg_max_ref_width);
1311 free (reg_old_renumber);
1312 free (pseudo_previous_regs);
1313 free (pseudo_forbidden_regs);
1315 CLEAR_HARD_REG_SET (used_spill_regs);
1316 for (i = 0; i < n_spills; i++)
1317 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1319 /* Free all the insn_chain structures at once. */
1320 obstack_free (&reload_obstack, reload_startobj);
1321 unused_insn_chains = 0;
1323 inserted = fixup_abnormal_edges ();
1325 /* We've possibly turned single trapping insn into multiple ones. */
1326 if (cfun->can_throw_non_call_exceptions)
1328 sbitmap blocks;
1329 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1330 bitmap_ones (blocks);
1331 find_many_sub_basic_blocks (blocks);
1332 sbitmap_free (blocks);
1335 if (inserted)
1336 commit_edge_insertions ();
1338 /* Replacing pseudos with their memory equivalents might have
1339 created shared rtx. Subsequent passes would get confused
1340 by this, so unshare everything here. */
1341 unshare_all_rtl_again (first);
1343 #ifdef STACK_BOUNDARY
1344 /* init_emit has set the alignment of the hard frame pointer
1345 to STACK_BOUNDARY. It is very likely no longer valid if
1346 the hard frame pointer was used for register allocation. */
1347 if (!frame_pointer_needed)
1348 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1349 #endif
1351 substitute_stack.release ();
1353 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1355 reload_completed = !failure;
1357 return need_dce;
1360 /* Yet another special case. Unfortunately, reg-stack forces people to
1361 write incorrect clobbers in asm statements. These clobbers must not
1362 cause the register to appear in bad_spill_regs, otherwise we'll call
1363 fatal_insn later. We clear the corresponding regnos in the live
1364 register sets to avoid this.
1365 The whole thing is rather sick, I'm afraid. */
1367 static void
1368 maybe_fix_stack_asms (void)
1370 #ifdef STACK_REGS
1371 const char *constraints[MAX_RECOG_OPERANDS];
1372 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1373 struct insn_chain *chain;
1375 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1377 int i, noperands;
1378 HARD_REG_SET clobbered, allowed;
1379 rtx pat;
1381 if (! INSN_P (chain->insn)
1382 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1383 continue;
1384 pat = PATTERN (chain->insn);
1385 if (GET_CODE (pat) != PARALLEL)
1386 continue;
1388 CLEAR_HARD_REG_SET (clobbered);
1389 CLEAR_HARD_REG_SET (allowed);
1391 /* First, make a mask of all stack regs that are clobbered. */
1392 for (i = 0; i < XVECLEN (pat, 0); i++)
1394 rtx t = XVECEXP (pat, 0, i);
1395 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1396 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1399 /* Get the operand values and constraints out of the insn. */
1400 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1401 constraints, operand_mode, NULL);
1403 /* For every operand, see what registers are allowed. */
1404 for (i = 0; i < noperands; i++)
1406 const char *p = constraints[i];
1407 /* For every alternative, we compute the class of registers allowed
1408 for reloading in CLS, and merge its contents into the reg set
1409 ALLOWED. */
1410 int cls = (int) NO_REGS;
1412 for (;;)
1414 char c = *p;
1416 if (c == '\0' || c == ',' || c == '#')
1418 /* End of one alternative - mark the regs in the current
1419 class, and reset the class. */
1420 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1421 cls = NO_REGS;
1422 p++;
1423 if (c == '#')
1424 do {
1425 c = *p++;
1426 } while (c != '\0' && c != ',');
1427 if (c == '\0')
1428 break;
1429 continue;
1432 switch (c)
1434 case 'g':
1435 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1436 break;
1438 default:
1439 enum constraint_num cn = lookup_constraint (p);
1440 if (insn_extra_address_constraint (cn))
1441 cls = (int) reg_class_subunion[cls]
1442 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1443 ADDRESS, SCRATCH)];
1444 else
1445 cls = (int) reg_class_subunion[cls]
1446 [reg_class_for_constraint (cn)];
1447 break;
1449 p += CONSTRAINT_LEN (c, p);
1452 /* Those of the registers which are clobbered, but allowed by the
1453 constraints, must be usable as reload registers. So clear them
1454 out of the life information. */
1455 AND_HARD_REG_SET (allowed, clobbered);
1456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1457 if (TEST_HARD_REG_BIT (allowed, i))
1459 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1460 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1464 #endif
1467 /* Copy the global variables n_reloads and rld into the corresponding elts
1468 of CHAIN. */
1469 static void
1470 copy_reloads (struct insn_chain *chain)
1472 chain->n_reloads = n_reloads;
1473 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1474 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1475 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1478 /* Walk the chain of insns, and determine for each whether it needs reloads
1479 and/or eliminations. Build the corresponding insns_need_reload list, and
1480 set something_needs_elimination as appropriate. */
1481 static void
1482 calculate_needs_all_insns (int global)
1484 struct insn_chain **pprev_reload = &insns_need_reload;
1485 struct insn_chain *chain, *next = 0;
1487 something_needs_elimination = 0;
1489 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1490 for (chain = reload_insn_chain; chain != 0; chain = next)
1492 rtx_insn *insn = chain->insn;
1494 next = chain->next;
1496 /* Clear out the shortcuts. */
1497 chain->n_reloads = 0;
1498 chain->need_elim = 0;
1499 chain->need_reload = 0;
1500 chain->need_operand_change = 0;
1502 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1503 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1504 what effects this has on the known offsets at labels. */
1506 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1507 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1508 set_label_offsets (insn, insn, 0);
1510 if (INSN_P (insn))
1512 rtx old_body = PATTERN (insn);
1513 int old_code = INSN_CODE (insn);
1514 rtx old_notes = REG_NOTES (insn);
1515 int did_elimination = 0;
1516 int operands_changed = 0;
1518 /* Skip insns that only set an equivalence. */
1519 if (will_delete_init_insn_p (insn))
1520 continue;
1522 /* If needed, eliminate any eliminable registers. */
1523 if (num_eliminable || num_eliminable_invariants)
1524 did_elimination = eliminate_regs_in_insn (insn, 0);
1526 /* Analyze the instruction. */
1527 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1528 global, spill_reg_order);
1530 /* If a no-op set needs more than one reload, this is likely
1531 to be something that needs input address reloads. We
1532 can't get rid of this cleanly later, and it is of no use
1533 anyway, so discard it now.
1534 We only do this when expensive_optimizations is enabled,
1535 since this complements reload inheritance / output
1536 reload deletion, and it can make debugging harder. */
1537 if (flag_expensive_optimizations && n_reloads > 1)
1539 rtx set = single_set (insn);
1540 if (set
1542 ((SET_SRC (set) == SET_DEST (set)
1543 && REG_P (SET_SRC (set))
1544 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1545 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1546 && reg_renumber[REGNO (SET_SRC (set))] < 0
1547 && reg_renumber[REGNO (SET_DEST (set))] < 0
1548 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1549 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1550 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1551 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1553 if (ira_conflicts_p)
1554 /* Inform IRA about the insn deletion. */
1555 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1556 REGNO (SET_SRC (set)));
1557 delete_insn (insn);
1558 /* Delete it from the reload chain. */
1559 if (chain->prev)
1560 chain->prev->next = next;
1561 else
1562 reload_insn_chain = next;
1563 if (next)
1564 next->prev = chain->prev;
1565 chain->next = unused_insn_chains;
1566 unused_insn_chains = chain;
1567 continue;
1570 if (num_eliminable)
1571 update_eliminable_offsets ();
1573 /* Remember for later shortcuts which insns had any reloads or
1574 register eliminations. */
1575 chain->need_elim = did_elimination;
1576 chain->need_reload = n_reloads > 0;
1577 chain->need_operand_change = operands_changed;
1579 /* Discard any register replacements done. */
1580 if (did_elimination)
1582 obstack_free (&reload_obstack, reload_insn_firstobj);
1583 PATTERN (insn) = old_body;
1584 INSN_CODE (insn) = old_code;
1585 REG_NOTES (insn) = old_notes;
1586 something_needs_elimination = 1;
1589 something_needs_operands_changed |= operands_changed;
1591 if (n_reloads != 0)
1593 copy_reloads (chain);
1594 *pprev_reload = chain;
1595 pprev_reload = &chain->next_need_reload;
1599 *pprev_reload = 0;
1602 /* This function is called from the register allocator to set up estimates
1603 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1604 an invariant. The structure is similar to calculate_needs_all_insns. */
1606 void
1607 calculate_elim_costs_all_insns (void)
1609 int *reg_equiv_init_cost;
1610 basic_block bb;
1611 int i;
1613 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1614 init_elim_table ();
1615 init_eliminable_invariants (get_insns (), false);
1617 set_initial_elim_offsets ();
1618 set_initial_label_offsets ();
1620 FOR_EACH_BB_FN (bb, cfun)
1622 rtx_insn *insn;
1623 elim_bb = bb;
1625 FOR_BB_INSNS (bb, insn)
1627 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1628 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1629 what effects this has on the known offsets at labels. */
1631 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1632 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1633 set_label_offsets (insn, insn, 0);
1635 if (INSN_P (insn))
1637 rtx set = single_set (insn);
1639 /* Skip insns that only set an equivalence. */
1640 if (set && REG_P (SET_DEST (set))
1641 && reg_renumber[REGNO (SET_DEST (set))] < 0
1642 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1643 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1645 unsigned regno = REGNO (SET_DEST (set));
1646 rtx_insn_list *init = reg_equiv_init (regno);
1647 if (init)
1649 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1650 false, true);
1651 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1652 int freq = REG_FREQ_FROM_BB (bb);
1654 reg_equiv_init_cost[regno] = cost * freq;
1655 continue;
1658 /* If needed, eliminate any eliminable registers. */
1659 if (num_eliminable || num_eliminable_invariants)
1660 elimination_costs_in_insn (insn);
1662 if (num_eliminable)
1663 update_eliminable_offsets ();
1667 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1669 if (reg_equiv_invariant (i))
1671 if (reg_equiv_init (i))
1673 int cost = reg_equiv_init_cost[i];
1674 if (dump_file)
1675 fprintf (dump_file,
1676 "Reg %d has equivalence, initial gains %d\n", i, cost);
1677 if (cost != 0)
1678 ira_adjust_equiv_reg_cost (i, cost);
1680 else
1682 if (dump_file)
1683 fprintf (dump_file,
1684 "Reg %d had equivalence, but can't be eliminated\n",
1686 ira_adjust_equiv_reg_cost (i, 0);
1691 free (reg_equiv_init_cost);
1692 free (offsets_known_at);
1693 free (offsets_at);
1694 offsets_at = NULL;
1695 offsets_known_at = NULL;
1698 /* Comparison function for qsort to decide which of two reloads
1699 should be handled first. *P1 and *P2 are the reload numbers. */
1701 static int
1702 reload_reg_class_lower (const void *r1p, const void *r2p)
1704 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1705 int t;
1707 /* Consider required reloads before optional ones. */
1708 t = rld[r1].optional - rld[r2].optional;
1709 if (t != 0)
1710 return t;
1712 /* Count all solitary classes before non-solitary ones. */
1713 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1714 - (reg_class_size[(int) rld[r1].rclass] == 1));
1715 if (t != 0)
1716 return t;
1718 /* Aside from solitaires, consider all multi-reg groups first. */
1719 t = rld[r2].nregs - rld[r1].nregs;
1720 if (t != 0)
1721 return t;
1723 /* Consider reloads in order of increasing reg-class number. */
1724 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1725 if (t != 0)
1726 return t;
1728 /* If reloads are equally urgent, sort by reload number,
1729 so that the results of qsort leave nothing to chance. */
1730 return r1 - r2;
1733 /* The cost of spilling each hard reg. */
1734 static int spill_cost[FIRST_PSEUDO_REGISTER];
1736 /* When spilling multiple hard registers, we use SPILL_COST for the first
1737 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1738 only the first hard reg for a multi-reg pseudo. */
1739 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1741 /* Map of hard regno to pseudo regno currently occupying the hard
1742 reg. */
1743 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1745 /* Update the spill cost arrays, considering that pseudo REG is live. */
1747 static void
1748 count_pseudo (int reg)
1750 int freq = REG_FREQ (reg);
1751 int r = reg_renumber[reg];
1752 int nregs;
1754 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1755 if (ira_conflicts_p && r < 0)
1756 return;
1758 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1759 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1760 return;
1762 SET_REGNO_REG_SET (&pseudos_counted, reg);
1764 gcc_assert (r >= 0);
1766 spill_add_cost[r] += freq;
1767 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1768 while (nregs-- > 0)
1770 hard_regno_to_pseudo_regno[r + nregs] = reg;
1771 spill_cost[r + nregs] += freq;
1775 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1776 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1778 static void
1779 order_regs_for_reload (struct insn_chain *chain)
1781 unsigned i;
1782 HARD_REG_SET used_by_pseudos;
1783 HARD_REG_SET used_by_pseudos2;
1784 reg_set_iterator rsi;
1786 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1788 memset (spill_cost, 0, sizeof spill_cost);
1789 memset (spill_add_cost, 0, sizeof spill_add_cost);
1790 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1791 hard_regno_to_pseudo_regno[i] = -1;
1793 /* Count number of uses of each hard reg by pseudo regs allocated to it
1794 and then order them by decreasing use. First exclude hard registers
1795 that are live in or across this insn. */
1797 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1798 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1799 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1800 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1802 /* Now find out which pseudos are allocated to it, and update
1803 hard_reg_n_uses. */
1804 CLEAR_REG_SET (&pseudos_counted);
1806 EXECUTE_IF_SET_IN_REG_SET
1807 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1809 count_pseudo (i);
1811 EXECUTE_IF_SET_IN_REG_SET
1812 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1814 count_pseudo (i);
1816 CLEAR_REG_SET (&pseudos_counted);
1819 /* Vector of reload-numbers showing the order in which the reloads should
1820 be processed. */
1821 static short reload_order[MAX_RELOADS];
1823 /* This is used to keep track of the spill regs used in one insn. */
1824 static HARD_REG_SET used_spill_regs_local;
1826 /* We decided to spill hard register SPILLED, which has a size of
1827 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1828 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1829 update SPILL_COST/SPILL_ADD_COST. */
1831 static void
1832 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1834 int freq = REG_FREQ (reg);
1835 int r = reg_renumber[reg];
1836 int nregs;
1838 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1839 if (ira_conflicts_p && r < 0)
1840 return;
1842 gcc_assert (r >= 0);
1844 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1846 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1847 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1848 return;
1850 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1852 spill_add_cost[r] -= freq;
1853 while (nregs-- > 0)
1855 hard_regno_to_pseudo_regno[r + nregs] = -1;
1856 spill_cost[r + nregs] -= freq;
1860 /* Find reload register to use for reload number ORDER. */
1862 static int
1863 find_reg (struct insn_chain *chain, int order)
1865 int rnum = reload_order[order];
1866 struct reload *rl = rld + rnum;
1867 int best_cost = INT_MAX;
1868 int best_reg = -1;
1869 unsigned int i, j, n;
1870 int k;
1871 HARD_REG_SET not_usable;
1872 HARD_REG_SET used_by_other_reload;
1873 reg_set_iterator rsi;
1874 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1875 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1877 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1878 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1879 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1881 CLEAR_HARD_REG_SET (used_by_other_reload);
1882 for (k = 0; k < order; k++)
1884 int other = reload_order[k];
1886 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1887 for (j = 0; j < rld[other].nregs; j++)
1888 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1891 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1893 #ifdef REG_ALLOC_ORDER
1894 unsigned int regno = reg_alloc_order[i];
1895 #else
1896 unsigned int regno = i;
1897 #endif
1899 if (! TEST_HARD_REG_BIT (not_usable, regno)
1900 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1901 && HARD_REGNO_MODE_OK (regno, rl->mode))
1903 int this_cost = spill_cost[regno];
1904 int ok = 1;
1905 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1907 for (j = 1; j < this_nregs; j++)
1909 this_cost += spill_add_cost[regno + j];
1910 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1911 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1912 ok = 0;
1914 if (! ok)
1915 continue;
1917 if (ira_conflicts_p)
1919 /* Ask IRA to find a better pseudo-register for
1920 spilling. */
1921 for (n = j = 0; j < this_nregs; j++)
1923 int r = hard_regno_to_pseudo_regno[regno + j];
1925 if (r < 0)
1926 continue;
1927 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1928 regno_pseudo_regs[n++] = r;
1930 regno_pseudo_regs[n++] = -1;
1931 if (best_reg < 0
1932 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1933 best_regno_pseudo_regs,
1934 rl->in, rl->out,
1935 chain->insn))
1937 best_reg = regno;
1938 for (j = 0;; j++)
1940 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1941 if (regno_pseudo_regs[j] < 0)
1942 break;
1945 continue;
1948 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1949 this_cost--;
1950 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1951 this_cost--;
1952 if (this_cost < best_cost
1953 /* Among registers with equal cost, prefer caller-saved ones, or
1954 use REG_ALLOC_ORDER if it is defined. */
1955 || (this_cost == best_cost
1956 #ifdef REG_ALLOC_ORDER
1957 && (inv_reg_alloc_order[regno]
1958 < inv_reg_alloc_order[best_reg])
1959 #else
1960 && call_used_regs[regno]
1961 && ! call_used_regs[best_reg]
1962 #endif
1965 best_reg = regno;
1966 best_cost = this_cost;
1970 if (best_reg == -1)
1971 return 0;
1973 if (dump_file)
1974 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1976 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1977 rl->regno = best_reg;
1979 EXECUTE_IF_SET_IN_REG_SET
1980 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1982 count_spilled_pseudo (best_reg, rl->nregs, j);
1985 EXECUTE_IF_SET_IN_REG_SET
1986 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1988 count_spilled_pseudo (best_reg, rl->nregs, j);
1991 for (i = 0; i < rl->nregs; i++)
1993 gcc_assert (spill_cost[best_reg + i] == 0);
1994 gcc_assert (spill_add_cost[best_reg + i] == 0);
1995 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1996 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1998 return 1;
2001 /* Find more reload regs to satisfy the remaining need of an insn, which
2002 is given by CHAIN.
2003 Do it by ascending class number, since otherwise a reg
2004 might be spilled for a big class and might fail to count
2005 for a smaller class even though it belongs to that class. */
2007 static void
2008 find_reload_regs (struct insn_chain *chain)
2010 int i;
2012 /* In order to be certain of getting the registers we need,
2013 we must sort the reloads into order of increasing register class.
2014 Then our grabbing of reload registers will parallel the process
2015 that provided the reload registers. */
2016 for (i = 0; i < chain->n_reloads; i++)
2018 /* Show whether this reload already has a hard reg. */
2019 if (chain->rld[i].reg_rtx)
2021 int regno = REGNO (chain->rld[i].reg_rtx);
2022 chain->rld[i].regno = regno;
2023 chain->rld[i].nregs
2024 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2026 else
2027 chain->rld[i].regno = -1;
2028 reload_order[i] = i;
2031 n_reloads = chain->n_reloads;
2032 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2034 CLEAR_HARD_REG_SET (used_spill_regs_local);
2036 if (dump_file)
2037 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2039 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2041 /* Compute the order of preference for hard registers to spill. */
2043 order_regs_for_reload (chain);
2045 for (i = 0; i < n_reloads; i++)
2047 int r = reload_order[i];
2049 /* Ignore reloads that got marked inoperative. */
2050 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2051 && ! rld[r].optional
2052 && rld[r].regno == -1)
2053 if (! find_reg (chain, i))
2055 if (dump_file)
2056 fprintf (dump_file, "reload failure for reload %d\n", r);
2057 spill_failure (chain->insn, rld[r].rclass);
2058 failure = 1;
2059 return;
2063 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2064 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2066 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2069 static void
2070 select_reload_regs (void)
2072 struct insn_chain *chain;
2074 /* Try to satisfy the needs for each insn. */
2075 for (chain = insns_need_reload; chain != 0;
2076 chain = chain->next_need_reload)
2077 find_reload_regs (chain);
2080 /* Delete all insns that were inserted by emit_caller_save_insns during
2081 this iteration. */
2082 static void
2083 delete_caller_save_insns (void)
2085 struct insn_chain *c = reload_insn_chain;
2087 while (c != 0)
2089 while (c != 0 && c->is_caller_save_insn)
2091 struct insn_chain *next = c->next;
2092 rtx_insn *insn = c->insn;
2094 if (c == reload_insn_chain)
2095 reload_insn_chain = next;
2096 delete_insn (insn);
2098 if (next)
2099 next->prev = c->prev;
2100 if (c->prev)
2101 c->prev->next = next;
2102 c->next = unused_insn_chains;
2103 unused_insn_chains = c;
2104 c = next;
2106 if (c != 0)
2107 c = c->next;
2111 /* Handle the failure to find a register to spill.
2112 INSN should be one of the insns which needed this particular spill reg. */
2114 static void
2115 spill_failure (rtx_insn *insn, enum reg_class rclass)
2117 if (asm_noperands (PATTERN (insn)) >= 0)
2118 error_for_asm (insn, "can%'t find a register in class %qs while "
2119 "reloading %<asm%>",
2120 reg_class_names[rclass]);
2121 else
2123 error ("unable to find a register to spill in class %qs",
2124 reg_class_names[rclass]);
2126 if (dump_file)
2128 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2129 debug_reload_to_stream (dump_file);
2131 fatal_insn ("this is the insn:", insn);
2135 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2136 data that is dead in INSN. */
2138 static void
2139 delete_dead_insn (rtx_insn *insn)
2141 rtx_insn *prev = prev_active_insn (insn);
2142 rtx prev_dest;
2144 /* If the previous insn sets a register that dies in our insn make
2145 a note that we want to run DCE immediately after reload.
2147 We used to delete the previous insn & recurse, but that's wrong for
2148 block local equivalences. Instead of trying to figure out the exact
2149 circumstances where we can delete the potentially dead insns, just
2150 let DCE do the job. */
2151 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2152 && GET_CODE (PATTERN (prev)) == SET
2153 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2154 && reg_mentioned_p (prev_dest, PATTERN (insn))
2155 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2156 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2157 need_dce = 1;
2159 SET_INSN_DELETED (insn);
2162 /* Modify the home of pseudo-reg I.
2163 The new home is present in reg_renumber[I].
2165 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2166 or it may be -1, meaning there is none or it is not relevant.
2167 This is used so that all pseudos spilled from a given hard reg
2168 can share one stack slot. */
2170 static void
2171 alter_reg (int i, int from_reg, bool dont_share_p)
2173 /* When outputting an inline function, this can happen
2174 for a reg that isn't actually used. */
2175 if (regno_reg_rtx[i] == 0)
2176 return;
2178 /* If the reg got changed to a MEM at rtl-generation time,
2179 ignore it. */
2180 if (!REG_P (regno_reg_rtx[i]))
2181 return;
2183 /* Modify the reg-rtx to contain the new hard reg
2184 number or else to contain its pseudo reg number. */
2185 SET_REGNO (regno_reg_rtx[i],
2186 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2188 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2189 allocate a stack slot for it. */
2191 if (reg_renumber[i] < 0
2192 && REG_N_REFS (i) > 0
2193 && reg_equiv_constant (i) == 0
2194 && (reg_equiv_invariant (i) == 0
2195 || reg_equiv_init (i) == 0)
2196 && reg_equiv_memory_loc (i) == 0)
2198 rtx x = NULL_RTX;
2199 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2200 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2201 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2202 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2203 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2204 int adjust = 0;
2206 something_was_spilled = true;
2208 if (ira_conflicts_p)
2210 /* Mark the spill for IRA. */
2211 SET_REGNO_REG_SET (&spilled_pseudos, i);
2212 if (!dont_share_p)
2213 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2216 if (x)
2219 /* Each pseudo reg has an inherent size which comes from its own mode,
2220 and a total size which provides room for paradoxical subregs
2221 which refer to the pseudo reg in wider modes.
2223 We can use a slot already allocated if it provides both
2224 enough inherent space and enough total space.
2225 Otherwise, we allocate a new slot, making sure that it has no less
2226 inherent space, and no less total space, then the previous slot. */
2227 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2229 rtx stack_slot;
2231 /* No known place to spill from => no slot to reuse. */
2232 x = assign_stack_local (mode, total_size,
2233 min_align > inherent_align
2234 || total_size > inherent_size ? -1 : 0);
2236 stack_slot = x;
2238 /* Cancel the big-endian correction done in assign_stack_local.
2239 Get the address of the beginning of the slot. This is so we
2240 can do a big-endian correction unconditionally below. */
2241 if (BYTES_BIG_ENDIAN)
2243 adjust = inherent_size - total_size;
2244 if (adjust)
2245 stack_slot
2246 = adjust_address_nv (x, mode_for_size (total_size
2247 * BITS_PER_UNIT,
2248 MODE_INT, 1),
2249 adjust);
2252 if (! dont_share_p && ira_conflicts_p)
2253 /* Inform IRA about allocation a new stack slot. */
2254 ira_mark_new_stack_slot (stack_slot, i, total_size);
2257 /* Reuse a stack slot if possible. */
2258 else if (spill_stack_slot[from_reg] != 0
2259 && spill_stack_slot_width[from_reg] >= total_size
2260 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2261 >= inherent_size)
2262 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2263 x = spill_stack_slot[from_reg];
2265 /* Allocate a bigger slot. */
2266 else
2268 /* Compute maximum size needed, both for inherent size
2269 and for total size. */
2270 rtx stack_slot;
2272 if (spill_stack_slot[from_reg])
2274 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2275 > inherent_size)
2276 mode = GET_MODE (spill_stack_slot[from_reg]);
2277 if (spill_stack_slot_width[from_reg] > total_size)
2278 total_size = spill_stack_slot_width[from_reg];
2279 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2280 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2283 /* Make a slot with that size. */
2284 x = assign_stack_local (mode, total_size,
2285 min_align > inherent_align
2286 || total_size > inherent_size ? -1 : 0);
2287 stack_slot = x;
2289 /* Cancel the big-endian correction done in assign_stack_local.
2290 Get the address of the beginning of the slot. This is so we
2291 can do a big-endian correction unconditionally below. */
2292 if (BYTES_BIG_ENDIAN)
2294 adjust = GET_MODE_SIZE (mode) - total_size;
2295 if (adjust)
2296 stack_slot
2297 = adjust_address_nv (x, mode_for_size (total_size
2298 * BITS_PER_UNIT,
2299 MODE_INT, 1),
2300 adjust);
2303 spill_stack_slot[from_reg] = stack_slot;
2304 spill_stack_slot_width[from_reg] = total_size;
2307 /* On a big endian machine, the "address" of the slot
2308 is the address of the low part that fits its inherent mode. */
2309 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2310 adjust += (total_size - inherent_size);
2312 /* If we have any adjustment to make, or if the stack slot is the
2313 wrong mode, make a new stack slot. */
2314 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2316 /* Set all of the memory attributes as appropriate for a spill. */
2317 set_mem_attrs_for_spill (x);
2319 /* Save the stack slot for later. */
2320 reg_equiv_memory_loc (i) = x;
2324 /* Mark the slots in regs_ever_live for the hard regs used by
2325 pseudo-reg number REGNO, accessed in MODE. */
2327 static void
2328 mark_home_live_1 (int regno, machine_mode mode)
2330 int i, lim;
2332 i = reg_renumber[regno];
2333 if (i < 0)
2334 return;
2335 lim = end_hard_regno (mode, i);
2336 while (i < lim)
2337 df_set_regs_ever_live (i++, true);
2340 /* Mark the slots in regs_ever_live for the hard regs
2341 used by pseudo-reg number REGNO. */
2343 void
2344 mark_home_live (int regno)
2346 if (reg_renumber[regno] >= 0)
2347 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2350 /* This function handles the tracking of elimination offsets around branches.
2352 X is a piece of RTL being scanned.
2354 INSN is the insn that it came from, if any.
2356 INITIAL_P is nonzero if we are to set the offset to be the initial
2357 offset and zero if we are setting the offset of the label to be the
2358 current offset. */
2360 static void
2361 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2363 enum rtx_code code = GET_CODE (x);
2364 rtx tem;
2365 unsigned int i;
2366 struct elim_table *p;
2368 switch (code)
2370 case LABEL_REF:
2371 if (LABEL_REF_NONLOCAL_P (x))
2372 return;
2374 x = LABEL_REF_LABEL (x);
2376 /* ... fall through ... */
2378 case CODE_LABEL:
2379 /* If we know nothing about this label, set the desired offsets. Note
2380 that this sets the offset at a label to be the offset before a label
2381 if we don't know anything about the label. This is not correct for
2382 the label after a BARRIER, but is the best guess we can make. If
2383 we guessed wrong, we will suppress an elimination that might have
2384 been possible had we been able to guess correctly. */
2386 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2388 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2389 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2390 = (initial_p ? reg_eliminate[i].initial_offset
2391 : reg_eliminate[i].offset);
2392 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2395 /* Otherwise, if this is the definition of a label and it is
2396 preceded by a BARRIER, set our offsets to the known offset of
2397 that label. */
2399 else if (x == insn
2400 && (tem = prev_nonnote_insn (insn)) != 0
2401 && BARRIER_P (tem))
2402 set_offsets_for_label (insn);
2403 else
2404 /* If neither of the above cases is true, compare each offset
2405 with those previously recorded and suppress any eliminations
2406 where the offsets disagree. */
2408 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2409 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2410 != (initial_p ? reg_eliminate[i].initial_offset
2411 : reg_eliminate[i].offset))
2412 reg_eliminate[i].can_eliminate = 0;
2414 return;
2416 case JUMP_TABLE_DATA:
2417 set_label_offsets (PATTERN (insn), insn, initial_p);
2418 return;
2420 case JUMP_INSN:
2421 set_label_offsets (PATTERN (insn), insn, initial_p);
2423 /* ... fall through ... */
2425 case INSN:
2426 case CALL_INSN:
2427 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2428 to indirectly and hence must have all eliminations at their
2429 initial offsets. */
2430 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2431 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2432 set_label_offsets (XEXP (tem, 0), insn, 1);
2433 return;
2435 case PARALLEL:
2436 case ADDR_VEC:
2437 case ADDR_DIFF_VEC:
2438 /* Each of the labels in the parallel or address vector must be
2439 at their initial offsets. We want the first field for PARALLEL
2440 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2442 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2443 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2444 insn, initial_p);
2445 return;
2447 case SET:
2448 /* We only care about setting PC. If the source is not RETURN,
2449 IF_THEN_ELSE, or a label, disable any eliminations not at
2450 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2451 isn't one of those possibilities. For branches to a label,
2452 call ourselves recursively.
2454 Note that this can disable elimination unnecessarily when we have
2455 a non-local goto since it will look like a non-constant jump to
2456 someplace in the current function. This isn't a significant
2457 problem since such jumps will normally be when all elimination
2458 pairs are back to their initial offsets. */
2460 if (SET_DEST (x) != pc_rtx)
2461 return;
2463 switch (GET_CODE (SET_SRC (x)))
2465 case PC:
2466 case RETURN:
2467 return;
2469 case LABEL_REF:
2470 set_label_offsets (SET_SRC (x), insn, initial_p);
2471 return;
2473 case IF_THEN_ELSE:
2474 tem = XEXP (SET_SRC (x), 1);
2475 if (GET_CODE (tem) == LABEL_REF)
2476 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2477 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2478 break;
2480 tem = XEXP (SET_SRC (x), 2);
2481 if (GET_CODE (tem) == LABEL_REF)
2482 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2483 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2484 break;
2485 return;
2487 default:
2488 break;
2491 /* If we reach here, all eliminations must be at their initial
2492 offset because we are doing a jump to a variable address. */
2493 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2494 if (p->offset != p->initial_offset)
2495 p->can_eliminate = 0;
2496 break;
2498 default:
2499 break;
2503 /* This function examines every reg that occurs in X and adjusts the
2504 costs for its elimination which are gathered by IRA. INSN is the
2505 insn in which X occurs. We do not recurse into MEM expressions. */
2507 static void
2508 note_reg_elim_costly (const_rtx x, rtx insn)
2510 subrtx_iterator::array_type array;
2511 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2513 const_rtx x = *iter;
2514 if (MEM_P (x))
2515 iter.skip_subrtxes ();
2516 else if (REG_P (x)
2517 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2518 && reg_equiv_init (REGNO (x))
2519 && reg_equiv_invariant (REGNO (x)))
2521 rtx t = reg_equiv_invariant (REGNO (x));
2522 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2523 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2524 int freq = REG_FREQ_FROM_BB (elim_bb);
2526 if (cost != 0)
2527 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2532 /* Scan X and replace any eliminable registers (such as fp) with a
2533 replacement (such as sp), plus an offset.
2535 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2536 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2537 MEM, we are allowed to replace a sum of a register and the constant zero
2538 with the register, which we cannot do outside a MEM. In addition, we need
2539 to record the fact that a register is referenced outside a MEM.
2541 If INSN is an insn, it is the insn containing X. If we replace a REG
2542 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2543 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2544 the REG is being modified.
2546 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2547 That's used when we eliminate in expressions stored in notes.
2548 This means, do not set ref_outside_mem even if the reference
2549 is outside of MEMs.
2551 If FOR_COSTS is true, we are being called before reload in order to
2552 estimate the costs of keeping registers with an equivalence unallocated.
2554 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2555 replacements done assuming all offsets are at their initial values. If
2556 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2557 encounter, return the actual location so that find_reloads will do
2558 the proper thing. */
2560 static rtx
2561 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2562 bool may_use_invariant, bool for_costs)
2564 enum rtx_code code = GET_CODE (x);
2565 struct elim_table *ep;
2566 int regno;
2567 rtx new_rtx;
2568 int i, j;
2569 const char *fmt;
2570 int copied = 0;
2572 if (! current_function_decl)
2573 return x;
2575 switch (code)
2577 CASE_CONST_ANY:
2578 case CONST:
2579 case SYMBOL_REF:
2580 case CODE_LABEL:
2581 case PC:
2582 case CC0:
2583 case ASM_INPUT:
2584 case ADDR_VEC:
2585 case ADDR_DIFF_VEC:
2586 case RETURN:
2587 return x;
2589 case REG:
2590 regno = REGNO (x);
2592 /* First handle the case where we encounter a bare register that
2593 is eliminable. Replace it with a PLUS. */
2594 if (regno < FIRST_PSEUDO_REGISTER)
2596 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2597 ep++)
2598 if (ep->from_rtx == x && ep->can_eliminate)
2599 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2602 else if (reg_renumber && reg_renumber[regno] < 0
2603 && reg_equivs
2604 && reg_equiv_invariant (regno))
2606 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2607 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2608 mem_mode, insn, true, for_costs);
2609 /* There exists at least one use of REGNO that cannot be
2610 eliminated. Prevent the defining insn from being deleted. */
2611 reg_equiv_init (regno) = NULL;
2612 if (!for_costs)
2613 alter_reg (regno, -1, true);
2615 return x;
2617 /* You might think handling MINUS in a manner similar to PLUS is a
2618 good idea. It is not. It has been tried multiple times and every
2619 time the change has had to have been reverted.
2621 Other parts of reload know a PLUS is special (gen_reload for example)
2622 and require special code to handle code a reloaded PLUS operand.
2624 Also consider backends where the flags register is clobbered by a
2625 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2626 lea instruction comes to mind). If we try to reload a MINUS, we
2627 may kill the flags register that was holding a useful value.
2629 So, please before trying to handle MINUS, consider reload as a
2630 whole instead of this little section as well as the backend issues. */
2631 case PLUS:
2632 /* If this is the sum of an eliminable register and a constant, rework
2633 the sum. */
2634 if (REG_P (XEXP (x, 0))
2635 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2636 && CONSTANT_P (XEXP (x, 1)))
2638 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2639 ep++)
2640 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2642 /* The only time we want to replace a PLUS with a REG (this
2643 occurs when the constant operand of the PLUS is the negative
2644 of the offset) is when we are inside a MEM. We won't want
2645 to do so at other times because that would change the
2646 structure of the insn in a way that reload can't handle.
2647 We special-case the commonest situation in
2648 eliminate_regs_in_insn, so just replace a PLUS with a
2649 PLUS here, unless inside a MEM. */
2650 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2651 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2652 return ep->to_rtx;
2653 else
2654 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2655 plus_constant (Pmode, XEXP (x, 1),
2656 ep->previous_offset));
2659 /* If the register is not eliminable, we are done since the other
2660 operand is a constant. */
2661 return x;
2664 /* If this is part of an address, we want to bring any constant to the
2665 outermost PLUS. We will do this by doing register replacement in
2666 our operands and seeing if a constant shows up in one of them.
2668 Note that there is no risk of modifying the structure of the insn,
2669 since we only get called for its operands, thus we are either
2670 modifying the address inside a MEM, or something like an address
2671 operand of a load-address insn. */
2674 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2675 for_costs);
2676 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2677 for_costs);
2679 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2681 /* If one side is a PLUS and the other side is a pseudo that
2682 didn't get a hard register but has a reg_equiv_constant,
2683 we must replace the constant here since it may no longer
2684 be in the position of any operand. */
2685 if (GET_CODE (new0) == PLUS && REG_P (new1)
2686 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2687 && reg_renumber[REGNO (new1)] < 0
2688 && reg_equivs
2689 && reg_equiv_constant (REGNO (new1)) != 0)
2690 new1 = reg_equiv_constant (REGNO (new1));
2691 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2692 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2693 && reg_renumber[REGNO (new0)] < 0
2694 && reg_equiv_constant (REGNO (new0)) != 0)
2695 new0 = reg_equiv_constant (REGNO (new0));
2697 new_rtx = form_sum (GET_MODE (x), new0, new1);
2699 /* As above, if we are not inside a MEM we do not want to
2700 turn a PLUS into something else. We might try to do so here
2701 for an addition of 0 if we aren't optimizing. */
2702 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2703 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2704 else
2705 return new_rtx;
2708 return x;
2710 case MULT:
2711 /* If this is the product of an eliminable register and a
2712 constant, apply the distribute law and move the constant out
2713 so that we have (plus (mult ..) ..). This is needed in order
2714 to keep load-address insns valid. This case is pathological.
2715 We ignore the possibility of overflow here. */
2716 if (REG_P (XEXP (x, 0))
2717 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2718 && CONST_INT_P (XEXP (x, 1)))
2719 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2720 ep++)
2721 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2723 if (! mem_mode
2724 /* Refs inside notes or in DEBUG_INSNs don't count for
2725 this purpose. */
2726 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2727 || GET_CODE (insn) == INSN_LIST
2728 || DEBUG_INSN_P (insn))))
2729 ep->ref_outside_mem = 1;
2731 return
2732 plus_constant (Pmode,
2733 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2734 ep->previous_offset * INTVAL (XEXP (x, 1)));
2737 /* ... fall through ... */
2739 case CALL:
2740 case COMPARE:
2741 /* See comments before PLUS about handling MINUS. */
2742 case MINUS:
2743 case DIV: case UDIV:
2744 case MOD: case UMOD:
2745 case AND: case IOR: case XOR:
2746 case ROTATERT: case ROTATE:
2747 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2748 case NE: case EQ:
2749 case GE: case GT: case GEU: case GTU:
2750 case LE: case LT: case LEU: case LTU:
2752 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2753 for_costs);
2754 rtx new1 = XEXP (x, 1)
2755 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2756 for_costs) : 0;
2758 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2759 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2761 return x;
2763 case EXPR_LIST:
2764 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2765 if (XEXP (x, 0))
2767 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2768 for_costs);
2769 if (new_rtx != XEXP (x, 0))
2771 /* If this is a REG_DEAD note, it is not valid anymore.
2772 Using the eliminated version could result in creating a
2773 REG_DEAD note for the stack or frame pointer. */
2774 if (REG_NOTE_KIND (x) == REG_DEAD)
2775 return (XEXP (x, 1)
2776 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2777 for_costs)
2778 : NULL_RTX);
2780 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2784 /* ... fall through ... */
2786 case INSN_LIST:
2787 case INT_LIST:
2788 /* Now do eliminations in the rest of the chain. If this was
2789 an EXPR_LIST, this might result in allocating more memory than is
2790 strictly needed, but it simplifies the code. */
2791 if (XEXP (x, 1))
2793 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2794 for_costs);
2795 if (new_rtx != XEXP (x, 1))
2796 return
2797 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2799 return x;
2801 case PRE_INC:
2802 case POST_INC:
2803 case PRE_DEC:
2804 case POST_DEC:
2805 /* We do not support elimination of a register that is modified.
2806 elimination_effects has already make sure that this does not
2807 happen. */
2808 return x;
2810 case PRE_MODIFY:
2811 case POST_MODIFY:
2812 /* We do not support elimination of a register that is modified.
2813 elimination_effects has already make sure that this does not
2814 happen. The only remaining case we need to consider here is
2815 that the increment value may be an eliminable register. */
2816 if (GET_CODE (XEXP (x, 1)) == PLUS
2817 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2819 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2820 insn, true, for_costs);
2822 if (new_rtx != XEXP (XEXP (x, 1), 1))
2823 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2824 gen_rtx_PLUS (GET_MODE (x),
2825 XEXP (x, 0), new_rtx));
2827 return x;
2829 case STRICT_LOW_PART:
2830 case NEG: case NOT:
2831 case SIGN_EXTEND: case ZERO_EXTEND:
2832 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2833 case FLOAT: case FIX:
2834 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2835 case ABS:
2836 case SQRT:
2837 case FFS:
2838 case CLZ:
2839 case CTZ:
2840 case POPCOUNT:
2841 case PARITY:
2842 case BSWAP:
2843 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2844 for_costs);
2845 if (new_rtx != XEXP (x, 0))
2846 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2847 return x;
2849 case SUBREG:
2850 /* Similar to above processing, but preserve SUBREG_BYTE.
2851 Convert (subreg (mem)) to (mem) if not paradoxical.
2852 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2853 pseudo didn't get a hard reg, we must replace this with the
2854 eliminated version of the memory location because push_reload
2855 may do the replacement in certain circumstances. */
2856 if (REG_P (SUBREG_REG (x))
2857 && !paradoxical_subreg_p (x)
2858 && reg_equivs
2859 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2861 new_rtx = SUBREG_REG (x);
2863 else
2864 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2866 if (new_rtx != SUBREG_REG (x))
2868 int x_size = GET_MODE_SIZE (GET_MODE (x));
2869 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2871 if (MEM_P (new_rtx)
2872 && ((x_size < new_size
2873 #ifdef WORD_REGISTER_OPERATIONS
2874 /* On these machines, combine can create rtl of the form
2875 (set (subreg:m1 (reg:m2 R) 0) ...)
2876 where m1 < m2, and expects something interesting to
2877 happen to the entire word. Moreover, it will use the
2878 (reg:m2 R) later, expecting all bits to be preserved.
2879 So if the number of words is the same, preserve the
2880 subreg so that push_reload can see it. */
2881 && ! ((x_size - 1) / UNITS_PER_WORD
2882 == (new_size -1 ) / UNITS_PER_WORD)
2883 #endif
2885 || x_size == new_size)
2887 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2888 else
2889 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2892 return x;
2894 case MEM:
2895 /* Our only special processing is to pass the mode of the MEM to our
2896 recursive call and copy the flags. While we are here, handle this
2897 case more efficiently. */
2899 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2900 for_costs);
2901 if (for_costs
2902 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2903 && !memory_address_p (GET_MODE (x), new_rtx))
2904 note_reg_elim_costly (XEXP (x, 0), insn);
2906 return replace_equiv_address_nv (x, new_rtx);
2908 case USE:
2909 /* Handle insn_list USE that a call to a pure function may generate. */
2910 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2911 for_costs);
2912 if (new_rtx != XEXP (x, 0))
2913 return gen_rtx_USE (GET_MODE (x), new_rtx);
2914 return x;
2916 case CLOBBER:
2917 case ASM_OPERANDS:
2918 gcc_assert (insn && DEBUG_INSN_P (insn));
2919 break;
2921 case SET:
2922 gcc_unreachable ();
2924 default:
2925 break;
2928 /* Process each of our operands recursively. If any have changed, make a
2929 copy of the rtx. */
2930 fmt = GET_RTX_FORMAT (code);
2931 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2933 if (*fmt == 'e')
2935 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2936 for_costs);
2937 if (new_rtx != XEXP (x, i) && ! copied)
2939 x = shallow_copy_rtx (x);
2940 copied = 1;
2942 XEXP (x, i) = new_rtx;
2944 else if (*fmt == 'E')
2946 int copied_vec = 0;
2947 for (j = 0; j < XVECLEN (x, i); j++)
2949 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2950 for_costs);
2951 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2953 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2954 XVEC (x, i)->elem);
2955 if (! copied)
2957 x = shallow_copy_rtx (x);
2958 copied = 1;
2960 XVEC (x, i) = new_v;
2961 copied_vec = 1;
2963 XVECEXP (x, i, j) = new_rtx;
2968 return x;
2972 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2974 if (reg_eliminate == NULL)
2976 gcc_assert (targetm.no_register_allocation);
2977 return x;
2979 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2982 /* Scan rtx X for modifications of elimination target registers. Update
2983 the table of eliminables to reflect the changed state. MEM_MODE is
2984 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2986 static void
2987 elimination_effects (rtx x, machine_mode mem_mode)
2989 enum rtx_code code = GET_CODE (x);
2990 struct elim_table *ep;
2991 int regno;
2992 int i, j;
2993 const char *fmt;
2995 switch (code)
2997 CASE_CONST_ANY:
2998 case CONST:
2999 case SYMBOL_REF:
3000 case CODE_LABEL:
3001 case PC:
3002 case CC0:
3003 case ASM_INPUT:
3004 case ADDR_VEC:
3005 case ADDR_DIFF_VEC:
3006 case RETURN:
3007 return;
3009 case REG:
3010 regno = REGNO (x);
3012 /* First handle the case where we encounter a bare register that
3013 is eliminable. Replace it with a PLUS. */
3014 if (regno < FIRST_PSEUDO_REGISTER)
3016 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3017 ep++)
3018 if (ep->from_rtx == x && ep->can_eliminate)
3020 if (! mem_mode)
3021 ep->ref_outside_mem = 1;
3022 return;
3026 else if (reg_renumber[regno] < 0
3027 && reg_equivs
3028 && reg_equiv_constant (regno)
3029 && ! function_invariant_p (reg_equiv_constant (regno)))
3030 elimination_effects (reg_equiv_constant (regno), mem_mode);
3031 return;
3033 case PRE_INC:
3034 case POST_INC:
3035 case PRE_DEC:
3036 case POST_DEC:
3037 case POST_MODIFY:
3038 case PRE_MODIFY:
3039 /* If we modify the source of an elimination rule, disable it. */
3040 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3041 if (ep->from_rtx == XEXP (x, 0))
3042 ep->can_eliminate = 0;
3044 /* If we modify the target of an elimination rule by adding a constant,
3045 update its offset. If we modify the target in any other way, we'll
3046 have to disable the rule as well. */
3047 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3048 if (ep->to_rtx == XEXP (x, 0))
3050 int size = GET_MODE_SIZE (mem_mode);
3052 /* If more bytes than MEM_MODE are pushed, account for them. */
3053 #ifdef PUSH_ROUNDING
3054 if (ep->to_rtx == stack_pointer_rtx)
3055 size = PUSH_ROUNDING (size);
3056 #endif
3057 if (code == PRE_DEC || code == POST_DEC)
3058 ep->offset += size;
3059 else if (code == PRE_INC || code == POST_INC)
3060 ep->offset -= size;
3061 else if (code == PRE_MODIFY || code == POST_MODIFY)
3063 if (GET_CODE (XEXP (x, 1)) == PLUS
3064 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3065 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3066 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3067 else
3068 ep->can_eliminate = 0;
3072 /* These two aren't unary operators. */
3073 if (code == POST_MODIFY || code == PRE_MODIFY)
3074 break;
3076 /* Fall through to generic unary operation case. */
3077 case STRICT_LOW_PART:
3078 case NEG: case NOT:
3079 case SIGN_EXTEND: case ZERO_EXTEND:
3080 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3081 case FLOAT: case FIX:
3082 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3083 case ABS:
3084 case SQRT:
3085 case FFS:
3086 case CLZ:
3087 case CTZ:
3088 case POPCOUNT:
3089 case PARITY:
3090 case BSWAP:
3091 elimination_effects (XEXP (x, 0), mem_mode);
3092 return;
3094 case SUBREG:
3095 if (REG_P (SUBREG_REG (x))
3096 && (GET_MODE_SIZE (GET_MODE (x))
3097 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3098 && reg_equivs
3099 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3100 return;
3102 elimination_effects (SUBREG_REG (x), mem_mode);
3103 return;
3105 case USE:
3106 /* If using a register that is the source of an eliminate we still
3107 think can be performed, note it cannot be performed since we don't
3108 know how this register is used. */
3109 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3110 if (ep->from_rtx == XEXP (x, 0))
3111 ep->can_eliminate = 0;
3113 elimination_effects (XEXP (x, 0), mem_mode);
3114 return;
3116 case CLOBBER:
3117 /* If clobbering a register that is the replacement register for an
3118 elimination we still think can be performed, note that it cannot
3119 be performed. Otherwise, we need not be concerned about it. */
3120 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3121 if (ep->to_rtx == XEXP (x, 0))
3122 ep->can_eliminate = 0;
3124 elimination_effects (XEXP (x, 0), mem_mode);
3125 return;
3127 case SET:
3128 /* Check for setting a register that we know about. */
3129 if (REG_P (SET_DEST (x)))
3131 /* See if this is setting the replacement register for an
3132 elimination.
3134 If DEST is the hard frame pointer, we do nothing because we
3135 assume that all assignments to the frame pointer are for
3136 non-local gotos and are being done at a time when they are valid
3137 and do not disturb anything else. Some machines want to
3138 eliminate a fake argument pointer (or even a fake frame pointer)
3139 with either the real frame or the stack pointer. Assignments to
3140 the hard frame pointer must not prevent this elimination. */
3142 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3143 ep++)
3144 if (ep->to_rtx == SET_DEST (x)
3145 && SET_DEST (x) != hard_frame_pointer_rtx)
3147 /* If it is being incremented, adjust the offset. Otherwise,
3148 this elimination can't be done. */
3149 rtx src = SET_SRC (x);
3151 if (GET_CODE (src) == PLUS
3152 && XEXP (src, 0) == SET_DEST (x)
3153 && CONST_INT_P (XEXP (src, 1)))
3154 ep->offset -= INTVAL (XEXP (src, 1));
3155 else
3156 ep->can_eliminate = 0;
3160 elimination_effects (SET_DEST (x), VOIDmode);
3161 elimination_effects (SET_SRC (x), VOIDmode);
3162 return;
3164 case MEM:
3165 /* Our only special processing is to pass the mode of the MEM to our
3166 recursive call. */
3167 elimination_effects (XEXP (x, 0), GET_MODE (x));
3168 return;
3170 default:
3171 break;
3174 fmt = GET_RTX_FORMAT (code);
3175 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3177 if (*fmt == 'e')
3178 elimination_effects (XEXP (x, i), mem_mode);
3179 else if (*fmt == 'E')
3180 for (j = 0; j < XVECLEN (x, i); j++)
3181 elimination_effects (XVECEXP (x, i, j), mem_mode);
3185 /* Descend through rtx X and verify that no references to eliminable registers
3186 remain. If any do remain, mark the involved register as not
3187 eliminable. */
3189 static void
3190 check_eliminable_occurrences (rtx x)
3192 const char *fmt;
3193 int i;
3194 enum rtx_code code;
3196 if (x == 0)
3197 return;
3199 code = GET_CODE (x);
3201 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3203 struct elim_table *ep;
3205 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3206 if (ep->from_rtx == x)
3207 ep->can_eliminate = 0;
3208 return;
3211 fmt = GET_RTX_FORMAT (code);
3212 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3214 if (*fmt == 'e')
3215 check_eliminable_occurrences (XEXP (x, i));
3216 else if (*fmt == 'E')
3218 int j;
3219 for (j = 0; j < XVECLEN (x, i); j++)
3220 check_eliminable_occurrences (XVECEXP (x, i, j));
3225 /* Scan INSN and eliminate all eliminable registers in it.
3227 If REPLACE is nonzero, do the replacement destructively. Also
3228 delete the insn as dead it if it is setting an eliminable register.
3230 If REPLACE is zero, do all our allocations in reload_obstack.
3232 If no eliminations were done and this insn doesn't require any elimination
3233 processing (these are not identical conditions: it might be updating sp,
3234 but not referencing fp; this needs to be seen during reload_as_needed so
3235 that the offset between fp and sp can be taken into consideration), zero
3236 is returned. Otherwise, 1 is returned. */
3238 static int
3239 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3241 int icode = recog_memoized (insn);
3242 rtx old_body = PATTERN (insn);
3243 int insn_is_asm = asm_noperands (old_body) >= 0;
3244 rtx old_set = single_set (insn);
3245 rtx new_body;
3246 int val = 0;
3247 int i;
3248 rtx substed_operand[MAX_RECOG_OPERANDS];
3249 rtx orig_operand[MAX_RECOG_OPERANDS];
3250 struct elim_table *ep;
3251 rtx plus_src, plus_cst_src;
3253 if (! insn_is_asm && icode < 0)
3255 gcc_assert (DEBUG_INSN_P (insn)
3256 || GET_CODE (PATTERN (insn)) == USE
3257 || GET_CODE (PATTERN (insn)) == CLOBBER
3258 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3259 if (DEBUG_INSN_P (insn))
3260 INSN_VAR_LOCATION_LOC (insn)
3261 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3262 return 0;
3265 if (old_set != 0 && REG_P (SET_DEST (old_set))
3266 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3268 /* Check for setting an eliminable register. */
3269 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3270 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3272 /* If this is setting the frame pointer register to the
3273 hardware frame pointer register and this is an elimination
3274 that will be done (tested above), this insn is really
3275 adjusting the frame pointer downward to compensate for
3276 the adjustment done before a nonlocal goto. */
3277 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3278 && ep->from == FRAME_POINTER_REGNUM
3279 && ep->to == HARD_FRAME_POINTER_REGNUM)
3281 rtx base = SET_SRC (old_set);
3282 rtx_insn *base_insn = insn;
3283 HOST_WIDE_INT offset = 0;
3285 while (base != ep->to_rtx)
3287 rtx_insn *prev_insn;
3288 rtx prev_set;
3290 if (GET_CODE (base) == PLUS
3291 && CONST_INT_P (XEXP (base, 1)))
3293 offset += INTVAL (XEXP (base, 1));
3294 base = XEXP (base, 0);
3296 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3297 && (prev_set = single_set (prev_insn)) != 0
3298 && rtx_equal_p (SET_DEST (prev_set), base))
3300 base = SET_SRC (prev_set);
3301 base_insn = prev_insn;
3303 else
3304 break;
3307 if (base == ep->to_rtx)
3309 rtx src = plus_constant (Pmode, ep->to_rtx,
3310 offset - ep->offset);
3312 new_body = old_body;
3313 if (! replace)
3315 new_body = copy_insn (old_body);
3316 if (REG_NOTES (insn))
3317 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3319 PATTERN (insn) = new_body;
3320 old_set = single_set (insn);
3322 /* First see if this insn remains valid when we
3323 make the change. If not, keep the INSN_CODE
3324 the same and let reload fit it up. */
3325 validate_change (insn, &SET_SRC (old_set), src, 1);
3326 validate_change (insn, &SET_DEST (old_set),
3327 ep->to_rtx, 1);
3328 if (! apply_change_group ())
3330 SET_SRC (old_set) = src;
3331 SET_DEST (old_set) = ep->to_rtx;
3334 val = 1;
3335 goto done;
3339 /* In this case this insn isn't serving a useful purpose. We
3340 will delete it in reload_as_needed once we know that this
3341 elimination is, in fact, being done.
3343 If REPLACE isn't set, we can't delete this insn, but needn't
3344 process it since it won't be used unless something changes. */
3345 if (replace)
3347 delete_dead_insn (insn);
3348 return 1;
3350 val = 1;
3351 goto done;
3355 /* We allow one special case which happens to work on all machines we
3356 currently support: a single set with the source or a REG_EQUAL
3357 note being a PLUS of an eliminable register and a constant. */
3358 plus_src = plus_cst_src = 0;
3359 if (old_set && REG_P (SET_DEST (old_set)))
3361 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3362 plus_src = SET_SRC (old_set);
3363 /* First see if the source is of the form (plus (...) CST). */
3364 if (plus_src
3365 && CONST_INT_P (XEXP (plus_src, 1)))
3366 plus_cst_src = plus_src;
3367 else if (REG_P (SET_SRC (old_set))
3368 || plus_src)
3370 /* Otherwise, see if we have a REG_EQUAL note of the form
3371 (plus (...) CST). */
3372 rtx links;
3373 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3375 if ((REG_NOTE_KIND (links) == REG_EQUAL
3376 || REG_NOTE_KIND (links) == REG_EQUIV)
3377 && GET_CODE (XEXP (links, 0)) == PLUS
3378 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3380 plus_cst_src = XEXP (links, 0);
3381 break;
3386 /* Check that the first operand of the PLUS is a hard reg or
3387 the lowpart subreg of one. */
3388 if (plus_cst_src)
3390 rtx reg = XEXP (plus_cst_src, 0);
3391 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3392 reg = SUBREG_REG (reg);
3394 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3395 plus_cst_src = 0;
3398 if (plus_cst_src)
3400 rtx reg = XEXP (plus_cst_src, 0);
3401 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3403 if (GET_CODE (reg) == SUBREG)
3404 reg = SUBREG_REG (reg);
3406 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3407 if (ep->from_rtx == reg && ep->can_eliminate)
3409 rtx to_rtx = ep->to_rtx;
3410 offset += ep->offset;
3411 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3413 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3414 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3415 to_rtx);
3416 /* If we have a nonzero offset, and the source is already
3417 a simple REG, the following transformation would
3418 increase the cost of the insn by replacing a simple REG
3419 with (plus (reg sp) CST). So try only when we already
3420 had a PLUS before. */
3421 if (offset == 0 || plus_src)
3423 rtx new_src = plus_constant (GET_MODE (to_rtx),
3424 to_rtx, offset);
3426 new_body = old_body;
3427 if (! replace)
3429 new_body = copy_insn (old_body);
3430 if (REG_NOTES (insn))
3431 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3433 PATTERN (insn) = new_body;
3434 old_set = single_set (insn);
3436 /* First see if this insn remains valid when we make the
3437 change. If not, try to replace the whole pattern with
3438 a simple set (this may help if the original insn was a
3439 PARALLEL that was only recognized as single_set due to
3440 REG_UNUSED notes). If this isn't valid either, keep
3441 the INSN_CODE the same and let reload fix it up. */
3442 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3444 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3446 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3447 SET_SRC (old_set) = new_src;
3450 else
3451 break;
3453 val = 1;
3454 /* This can't have an effect on elimination offsets, so skip right
3455 to the end. */
3456 goto done;
3460 /* Determine the effects of this insn on elimination offsets. */
3461 elimination_effects (old_body, VOIDmode);
3463 /* Eliminate all eliminable registers occurring in operands that
3464 can be handled by reload. */
3465 extract_insn (insn);
3466 for (i = 0; i < recog_data.n_operands; i++)
3468 orig_operand[i] = recog_data.operand[i];
3469 substed_operand[i] = recog_data.operand[i];
3471 /* For an asm statement, every operand is eliminable. */
3472 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3474 bool is_set_src, in_plus;
3476 /* Check for setting a register that we know about. */
3477 if (recog_data.operand_type[i] != OP_IN
3478 && REG_P (orig_operand[i]))
3480 /* If we are assigning to a register that can be eliminated, it
3481 must be as part of a PARALLEL, since the code above handles
3482 single SETs. We must indicate that we can no longer
3483 eliminate this reg. */
3484 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3485 ep++)
3486 if (ep->from_rtx == orig_operand[i])
3487 ep->can_eliminate = 0;
3490 /* Companion to the above plus substitution, we can allow
3491 invariants as the source of a plain move. */
3492 is_set_src = false;
3493 if (old_set
3494 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3495 is_set_src = true;
3496 in_plus = false;
3497 if (plus_src
3498 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3499 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3500 in_plus = true;
3502 substed_operand[i]
3503 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3504 replace ? insn : NULL_RTX,
3505 is_set_src || in_plus, false);
3506 if (substed_operand[i] != orig_operand[i])
3507 val = 1;
3508 /* Terminate the search in check_eliminable_occurrences at
3509 this point. */
3510 *recog_data.operand_loc[i] = 0;
3512 /* If an output operand changed from a REG to a MEM and INSN is an
3513 insn, write a CLOBBER insn. */
3514 if (recog_data.operand_type[i] != OP_IN
3515 && REG_P (orig_operand[i])
3516 && MEM_P (substed_operand[i])
3517 && replace)
3518 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3522 for (i = 0; i < recog_data.n_dups; i++)
3523 *recog_data.dup_loc[i]
3524 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3526 /* If any eliminable remain, they aren't eliminable anymore. */
3527 check_eliminable_occurrences (old_body);
3529 /* Substitute the operands; the new values are in the substed_operand
3530 array. */
3531 for (i = 0; i < recog_data.n_operands; i++)
3532 *recog_data.operand_loc[i] = substed_operand[i];
3533 for (i = 0; i < recog_data.n_dups; i++)
3534 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3536 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3537 re-recognize the insn. We do this in case we had a simple addition
3538 but now can do this as a load-address. This saves an insn in this
3539 common case.
3540 If re-recognition fails, the old insn code number will still be used,
3541 and some register operands may have changed into PLUS expressions.
3542 These will be handled by find_reloads by loading them into a register
3543 again. */
3545 if (val)
3547 /* If we aren't replacing things permanently and we changed something,
3548 make another copy to ensure that all the RTL is new. Otherwise
3549 things can go wrong if find_reload swaps commutative operands
3550 and one is inside RTL that has been copied while the other is not. */
3551 new_body = old_body;
3552 if (! replace)
3554 new_body = copy_insn (old_body);
3555 if (REG_NOTES (insn))
3556 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3558 PATTERN (insn) = new_body;
3560 /* If we had a move insn but now we don't, rerecognize it. This will
3561 cause spurious re-recognition if the old move had a PARALLEL since
3562 the new one still will, but we can't call single_set without
3563 having put NEW_BODY into the insn and the re-recognition won't
3564 hurt in this rare case. */
3565 /* ??? Why this huge if statement - why don't we just rerecognize the
3566 thing always? */
3567 if (! insn_is_asm
3568 && old_set != 0
3569 && ((REG_P (SET_SRC (old_set))
3570 && (GET_CODE (new_body) != SET
3571 || !REG_P (SET_SRC (new_body))))
3572 /* If this was a load from or store to memory, compare
3573 the MEM in recog_data.operand to the one in the insn.
3574 If they are not equal, then rerecognize the insn. */
3575 || (old_set != 0
3576 && ((MEM_P (SET_SRC (old_set))
3577 && SET_SRC (old_set) != recog_data.operand[1])
3578 || (MEM_P (SET_DEST (old_set))
3579 && SET_DEST (old_set) != recog_data.operand[0])))
3580 /* If this was an add insn before, rerecognize. */
3581 || GET_CODE (SET_SRC (old_set)) == PLUS))
3583 int new_icode = recog (PATTERN (insn), insn, 0);
3584 if (new_icode >= 0)
3585 INSN_CODE (insn) = new_icode;
3589 /* Restore the old body. If there were any changes to it, we made a copy
3590 of it while the changes were still in place, so we'll correctly return
3591 a modified insn below. */
3592 if (! replace)
3594 /* Restore the old body. */
3595 for (i = 0; i < recog_data.n_operands; i++)
3596 /* Restoring a top-level match_parallel would clobber the new_body
3597 we installed in the insn. */
3598 if (recog_data.operand_loc[i] != &PATTERN (insn))
3599 *recog_data.operand_loc[i] = orig_operand[i];
3600 for (i = 0; i < recog_data.n_dups; i++)
3601 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3604 /* Update all elimination pairs to reflect the status after the current
3605 insn. The changes we make were determined by the earlier call to
3606 elimination_effects.
3608 We also detect cases where register elimination cannot be done,
3609 namely, if a register would be both changed and referenced outside a MEM
3610 in the resulting insn since such an insn is often undefined and, even if
3611 not, we cannot know what meaning will be given to it. Note that it is
3612 valid to have a register used in an address in an insn that changes it
3613 (presumably with a pre- or post-increment or decrement).
3615 If anything changes, return nonzero. */
3617 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3619 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3620 ep->can_eliminate = 0;
3622 ep->ref_outside_mem = 0;
3624 if (ep->previous_offset != ep->offset)
3625 val = 1;
3628 done:
3629 /* If we changed something, perform elimination in REG_NOTES. This is
3630 needed even when REPLACE is zero because a REG_DEAD note might refer
3631 to a register that we eliminate and could cause a different number
3632 of spill registers to be needed in the final reload pass than in
3633 the pre-passes. */
3634 if (val && REG_NOTES (insn) != 0)
3635 REG_NOTES (insn)
3636 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3637 false);
3639 return val;
3642 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3643 register allocator. INSN is the instruction we need to examine, we perform
3644 eliminations in its operands and record cases where eliminating a reg with
3645 an invariant equivalence would add extra cost. */
3647 static void
3648 elimination_costs_in_insn (rtx_insn *insn)
3650 int icode = recog_memoized (insn);
3651 rtx old_body = PATTERN (insn);
3652 int insn_is_asm = asm_noperands (old_body) >= 0;
3653 rtx old_set = single_set (insn);
3654 int i;
3655 rtx orig_operand[MAX_RECOG_OPERANDS];
3656 rtx orig_dup[MAX_RECOG_OPERANDS];
3657 struct elim_table *ep;
3658 rtx plus_src, plus_cst_src;
3659 bool sets_reg_p;
3661 if (! insn_is_asm && icode < 0)
3663 gcc_assert (DEBUG_INSN_P (insn)
3664 || GET_CODE (PATTERN (insn)) == USE
3665 || GET_CODE (PATTERN (insn)) == CLOBBER
3666 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3667 return;
3670 if (old_set != 0 && REG_P (SET_DEST (old_set))
3671 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3673 /* Check for setting an eliminable register. */
3674 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3675 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3676 return;
3679 /* We allow one special case which happens to work on all machines we
3680 currently support: a single set with the source or a REG_EQUAL
3681 note being a PLUS of an eliminable register and a constant. */
3682 plus_src = plus_cst_src = 0;
3683 sets_reg_p = false;
3684 if (old_set && REG_P (SET_DEST (old_set)))
3686 sets_reg_p = true;
3687 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3688 plus_src = SET_SRC (old_set);
3689 /* First see if the source is of the form (plus (...) CST). */
3690 if (plus_src
3691 && CONST_INT_P (XEXP (plus_src, 1)))
3692 plus_cst_src = plus_src;
3693 else if (REG_P (SET_SRC (old_set))
3694 || plus_src)
3696 /* Otherwise, see if we have a REG_EQUAL note of the form
3697 (plus (...) CST). */
3698 rtx links;
3699 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3701 if ((REG_NOTE_KIND (links) == REG_EQUAL
3702 || REG_NOTE_KIND (links) == REG_EQUIV)
3703 && GET_CODE (XEXP (links, 0)) == PLUS
3704 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3706 plus_cst_src = XEXP (links, 0);
3707 break;
3713 /* Determine the effects of this insn on elimination offsets. */
3714 elimination_effects (old_body, VOIDmode);
3716 /* Eliminate all eliminable registers occurring in operands that
3717 can be handled by reload. */
3718 extract_insn (insn);
3719 for (i = 0; i < recog_data.n_dups; i++)
3720 orig_dup[i] = *recog_data.dup_loc[i];
3722 for (i = 0; i < recog_data.n_operands; i++)
3724 orig_operand[i] = recog_data.operand[i];
3726 /* For an asm statement, every operand is eliminable. */
3727 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3729 bool is_set_src, in_plus;
3731 /* Check for setting a register that we know about. */
3732 if (recog_data.operand_type[i] != OP_IN
3733 && REG_P (orig_operand[i]))
3735 /* If we are assigning to a register that can be eliminated, it
3736 must be as part of a PARALLEL, since the code above handles
3737 single SETs. We must indicate that we can no longer
3738 eliminate this reg. */
3739 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3740 ep++)
3741 if (ep->from_rtx == orig_operand[i])
3742 ep->can_eliminate = 0;
3745 /* Companion to the above plus substitution, we can allow
3746 invariants as the source of a plain move. */
3747 is_set_src = false;
3748 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3749 is_set_src = true;
3750 if (is_set_src && !sets_reg_p)
3751 note_reg_elim_costly (SET_SRC (old_set), insn);
3752 in_plus = false;
3753 if (plus_src && sets_reg_p
3754 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3755 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3756 in_plus = true;
3758 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3759 NULL_RTX,
3760 is_set_src || in_plus, true);
3761 /* Terminate the search in check_eliminable_occurrences at
3762 this point. */
3763 *recog_data.operand_loc[i] = 0;
3767 for (i = 0; i < recog_data.n_dups; i++)
3768 *recog_data.dup_loc[i]
3769 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3771 /* If any eliminable remain, they aren't eliminable anymore. */
3772 check_eliminable_occurrences (old_body);
3774 /* Restore the old body. */
3775 for (i = 0; i < recog_data.n_operands; i++)
3776 *recog_data.operand_loc[i] = orig_operand[i];
3777 for (i = 0; i < recog_data.n_dups; i++)
3778 *recog_data.dup_loc[i] = orig_dup[i];
3780 /* Update all elimination pairs to reflect the status after the current
3781 insn. The changes we make were determined by the earlier call to
3782 elimination_effects. */
3784 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3786 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3787 ep->can_eliminate = 0;
3789 ep->ref_outside_mem = 0;
3792 return;
3795 /* Loop through all elimination pairs.
3796 Recalculate the number not at initial offset.
3798 Compute the maximum offset (minimum offset if the stack does not
3799 grow downward) for each elimination pair. */
3801 static void
3802 update_eliminable_offsets (void)
3804 struct elim_table *ep;
3806 num_not_at_initial_offset = 0;
3807 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3809 ep->previous_offset = ep->offset;
3810 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3811 num_not_at_initial_offset++;
3815 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3816 replacement we currently believe is valid, mark it as not eliminable if X
3817 modifies DEST in any way other than by adding a constant integer to it.
3819 If DEST is the frame pointer, we do nothing because we assume that
3820 all assignments to the hard frame pointer are nonlocal gotos and are being
3821 done at a time when they are valid and do not disturb anything else.
3822 Some machines want to eliminate a fake argument pointer with either the
3823 frame or stack pointer. Assignments to the hard frame pointer must not
3824 prevent this elimination.
3826 Called via note_stores from reload before starting its passes to scan
3827 the insns of the function. */
3829 static void
3830 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3832 unsigned int i;
3834 /* A SUBREG of a hard register here is just changing its mode. We should
3835 not see a SUBREG of an eliminable hard register, but check just in
3836 case. */
3837 if (GET_CODE (dest) == SUBREG)
3838 dest = SUBREG_REG (dest);
3840 if (dest == hard_frame_pointer_rtx)
3841 return;
3843 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3844 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3845 && (GET_CODE (x) != SET
3846 || GET_CODE (SET_SRC (x)) != PLUS
3847 || XEXP (SET_SRC (x), 0) != dest
3848 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3850 reg_eliminate[i].can_eliminate_previous
3851 = reg_eliminate[i].can_eliminate = 0;
3852 num_eliminable--;
3856 /* Verify that the initial elimination offsets did not change since the
3857 last call to set_initial_elim_offsets. This is used to catch cases
3858 where something illegal happened during reload_as_needed that could
3859 cause incorrect code to be generated if we did not check for it. */
3861 static bool
3862 verify_initial_elim_offsets (void)
3864 HOST_WIDE_INT t;
3866 if (!num_eliminable)
3867 return true;
3869 #ifdef ELIMINABLE_REGS
3871 struct elim_table *ep;
3873 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3875 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3876 if (t != ep->initial_offset)
3877 return false;
3880 #else
3881 INITIAL_FRAME_POINTER_OFFSET (t);
3882 if (t != reg_eliminate[0].initial_offset)
3883 return false;
3884 #endif
3886 return true;
3889 /* Reset all offsets on eliminable registers to their initial values. */
3891 static void
3892 set_initial_elim_offsets (void)
3894 struct elim_table *ep = reg_eliminate;
3896 #ifdef ELIMINABLE_REGS
3897 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3899 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3900 ep->previous_offset = ep->offset = ep->initial_offset;
3902 #else
3903 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3904 ep->previous_offset = ep->offset = ep->initial_offset;
3905 #endif
3907 num_not_at_initial_offset = 0;
3910 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3912 static void
3913 set_initial_eh_label_offset (rtx label)
3915 set_label_offsets (label, NULL, 1);
3918 /* Initialize the known label offsets.
3919 Set a known offset for each forced label to be at the initial offset
3920 of each elimination. We do this because we assume that all
3921 computed jumps occur from a location where each elimination is
3922 at its initial offset.
3923 For all other labels, show that we don't know the offsets. */
3925 static void
3926 set_initial_label_offsets (void)
3928 memset (offsets_known_at, 0, num_labels);
3930 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3931 if (x->insn ())
3932 set_label_offsets (x->insn (), NULL, 1);
3934 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3935 if (x->insn ())
3936 set_label_offsets (x->insn (), NULL, 1);
3938 for_each_eh_label (set_initial_eh_label_offset);
3941 /* Set all elimination offsets to the known values for the code label given
3942 by INSN. */
3944 static void
3945 set_offsets_for_label (rtx_insn *insn)
3947 unsigned int i;
3948 int label_nr = CODE_LABEL_NUMBER (insn);
3949 struct elim_table *ep;
3951 num_not_at_initial_offset = 0;
3952 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3954 ep->offset = ep->previous_offset
3955 = offsets_at[label_nr - first_label_num][i];
3956 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3957 num_not_at_initial_offset++;
3961 /* See if anything that happened changes which eliminations are valid.
3962 For example, on the SPARC, whether or not the frame pointer can
3963 be eliminated can depend on what registers have been used. We need
3964 not check some conditions again (such as flag_omit_frame_pointer)
3965 since they can't have changed. */
3967 static void
3968 update_eliminables (HARD_REG_SET *pset)
3970 int previous_frame_pointer_needed = frame_pointer_needed;
3971 struct elim_table *ep;
3973 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3974 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3975 && targetm.frame_pointer_required ())
3976 #ifdef ELIMINABLE_REGS
3977 || ! targetm.can_eliminate (ep->from, ep->to)
3978 #endif
3980 ep->can_eliminate = 0;
3982 /* Look for the case where we have discovered that we can't replace
3983 register A with register B and that means that we will now be
3984 trying to replace register A with register C. This means we can
3985 no longer replace register C with register B and we need to disable
3986 such an elimination, if it exists. This occurs often with A == ap,
3987 B == sp, and C == fp. */
3989 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3991 struct elim_table *op;
3992 int new_to = -1;
3994 if (! ep->can_eliminate && ep->can_eliminate_previous)
3996 /* Find the current elimination for ep->from, if there is a
3997 new one. */
3998 for (op = reg_eliminate;
3999 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4000 if (op->from == ep->from && op->can_eliminate)
4002 new_to = op->to;
4003 break;
4006 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
4007 disable it. */
4008 for (op = reg_eliminate;
4009 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4010 if (op->from == new_to && op->to == ep->to)
4011 op->can_eliminate = 0;
4015 /* See if any registers that we thought we could eliminate the previous
4016 time are no longer eliminable. If so, something has changed and we
4017 must spill the register. Also, recompute the number of eliminable
4018 registers and see if the frame pointer is needed; it is if there is
4019 no elimination of the frame pointer that we can perform. */
4021 frame_pointer_needed = 1;
4022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4024 if (ep->can_eliminate
4025 && ep->from == FRAME_POINTER_REGNUM
4026 && ep->to != HARD_FRAME_POINTER_REGNUM
4027 && (! SUPPORTS_STACK_ALIGNMENT
4028 || ! crtl->stack_realign_needed))
4029 frame_pointer_needed = 0;
4031 if (! ep->can_eliminate && ep->can_eliminate_previous)
4033 ep->can_eliminate_previous = 0;
4034 SET_HARD_REG_BIT (*pset, ep->from);
4035 num_eliminable--;
4039 /* If we didn't need a frame pointer last time, but we do now, spill
4040 the hard frame pointer. */
4041 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4042 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4045 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4046 Return true iff a register was spilled. */
4048 static bool
4049 update_eliminables_and_spill (void)
4051 int i;
4052 bool did_spill = false;
4053 HARD_REG_SET to_spill;
4054 CLEAR_HARD_REG_SET (to_spill);
4055 update_eliminables (&to_spill);
4056 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4058 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4059 if (TEST_HARD_REG_BIT (to_spill, i))
4061 spill_hard_reg (i, 1);
4062 did_spill = true;
4064 /* Regardless of the state of spills, if we previously had
4065 a register that we thought we could eliminate, but now can
4066 not eliminate, we must run another pass.
4068 Consider pseudos which have an entry in reg_equiv_* which
4069 reference an eliminable register. We must make another pass
4070 to update reg_equiv_* so that we do not substitute in the
4071 old value from when we thought the elimination could be
4072 performed. */
4074 return did_spill;
4077 /* Return true if X is used as the target register of an elimination. */
4079 bool
4080 elimination_target_reg_p (rtx x)
4082 struct elim_table *ep;
4084 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4085 if (ep->to_rtx == x && ep->can_eliminate)
4086 return true;
4088 return false;
4091 /* Initialize the table of registers to eliminate.
4092 Pre-condition: global flag frame_pointer_needed has been set before
4093 calling this function. */
4095 static void
4096 init_elim_table (void)
4098 struct elim_table *ep;
4099 #ifdef ELIMINABLE_REGS
4100 const struct elim_table_1 *ep1;
4101 #endif
4103 if (!reg_eliminate)
4104 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4106 num_eliminable = 0;
4108 #ifdef ELIMINABLE_REGS
4109 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4110 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4112 ep->from = ep1->from;
4113 ep->to = ep1->to;
4114 ep->can_eliminate = ep->can_eliminate_previous
4115 = (targetm.can_eliminate (ep->from, ep->to)
4116 && ! (ep->to == STACK_POINTER_REGNUM
4117 && frame_pointer_needed
4118 && (! SUPPORTS_STACK_ALIGNMENT
4119 || ! stack_realign_fp)));
4121 #else
4122 reg_eliminate[0].from = reg_eliminate_1[0].from;
4123 reg_eliminate[0].to = reg_eliminate_1[0].to;
4124 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4125 = ! frame_pointer_needed;
4126 #endif
4128 /* Count the number of eliminable registers and build the FROM and TO
4129 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4130 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4131 We depend on this. */
4132 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4134 num_eliminable += ep->can_eliminate;
4135 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4136 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4140 /* Find all the pseudo registers that didn't get hard regs
4141 but do have known equivalent constants or memory slots.
4142 These include parameters (known equivalent to parameter slots)
4143 and cse'd or loop-moved constant memory addresses.
4145 Record constant equivalents in reg_equiv_constant
4146 so they will be substituted by find_reloads.
4147 Record memory equivalents in reg_mem_equiv so they can
4148 be substituted eventually by altering the REG-rtx's. */
4150 static void
4151 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4153 int i;
4154 rtx_insn *insn;
4156 grow_reg_equivs ();
4157 if (do_subregs)
4158 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4159 else
4160 reg_max_ref_width = NULL;
4162 num_eliminable_invariants = 0;
4164 first_label_num = get_first_label_num ();
4165 num_labels = max_label_num () - first_label_num;
4167 /* Allocate the tables used to store offset information at labels. */
4168 offsets_known_at = XNEWVEC (char, num_labels);
4169 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4171 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4172 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4173 find largest such for each pseudo. FIRST is the head of the insn
4174 list. */
4176 for (insn = first; insn; insn = NEXT_INSN (insn))
4178 rtx set = single_set (insn);
4180 /* We may introduce USEs that we want to remove at the end, so
4181 we'll mark them with QImode. Make sure there are no
4182 previously-marked insns left by say regmove. */
4183 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4184 && GET_MODE (insn) != VOIDmode)
4185 PUT_MODE (insn, VOIDmode);
4187 if (do_subregs && NONDEBUG_INSN_P (insn))
4188 scan_paradoxical_subregs (PATTERN (insn));
4190 if (set != 0 && REG_P (SET_DEST (set)))
4192 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4193 rtx x;
4195 if (! note)
4196 continue;
4198 i = REGNO (SET_DEST (set));
4199 x = XEXP (note, 0);
4201 if (i <= LAST_VIRTUAL_REGISTER)
4202 continue;
4204 /* If flag_pic and we have constant, verify it's legitimate. */
4205 if (!CONSTANT_P (x)
4206 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4208 /* It can happen that a REG_EQUIV note contains a MEM
4209 that is not a legitimate memory operand. As later
4210 stages of reload assume that all addresses found
4211 in the reg_equiv_* arrays were originally legitimate,
4212 we ignore such REG_EQUIV notes. */
4213 if (memory_operand (x, VOIDmode))
4215 /* Always unshare the equivalence, so we can
4216 substitute into this insn without touching the
4217 equivalence. */
4218 reg_equiv_memory_loc (i) = copy_rtx (x);
4220 else if (function_invariant_p (x))
4222 machine_mode mode;
4224 mode = GET_MODE (SET_DEST (set));
4225 if (GET_CODE (x) == PLUS)
4227 /* This is PLUS of frame pointer and a constant,
4228 and might be shared. Unshare it. */
4229 reg_equiv_invariant (i) = copy_rtx (x);
4230 num_eliminable_invariants++;
4232 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4234 reg_equiv_invariant (i) = x;
4235 num_eliminable_invariants++;
4237 else if (targetm.legitimate_constant_p (mode, x))
4238 reg_equiv_constant (i) = x;
4239 else
4241 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4242 if (! reg_equiv_memory_loc (i))
4243 reg_equiv_init (i) = NULL;
4246 else
4248 reg_equiv_init (i) = NULL;
4249 continue;
4252 else
4253 reg_equiv_init (i) = NULL;
4257 if (dump_file)
4258 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4259 if (reg_equiv_init (i))
4261 fprintf (dump_file, "init_insns for %u: ", i);
4262 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4263 fprintf (dump_file, "\n");
4267 /* Indicate that we no longer have known memory locations or constants.
4268 Free all data involved in tracking these. */
4270 static void
4271 free_reg_equiv (void)
4273 int i;
4275 free (offsets_known_at);
4276 free (offsets_at);
4277 offsets_at = 0;
4278 offsets_known_at = 0;
4280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4281 if (reg_equiv_alt_mem_list (i))
4282 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4283 vec_free (reg_equivs);
4286 /* Kick all pseudos out of hard register REGNO.
4288 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4289 because we found we can't eliminate some register. In the case, no pseudos
4290 are allowed to be in the register, even if they are only in a block that
4291 doesn't require spill registers, unlike the case when we are spilling this
4292 hard reg to produce another spill register.
4294 Return nonzero if any pseudos needed to be kicked out. */
4296 static void
4297 spill_hard_reg (unsigned int regno, int cant_eliminate)
4299 int i;
4301 if (cant_eliminate)
4303 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4304 df_set_regs_ever_live (regno, true);
4307 /* Spill every pseudo reg that was allocated to this reg
4308 or to something that overlaps this reg. */
4310 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4311 if (reg_renumber[i] >= 0
4312 && (unsigned int) reg_renumber[i] <= regno
4313 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4314 SET_REGNO_REG_SET (&spilled_pseudos, i);
4317 /* After find_reload_regs has been run for all insn that need reloads,
4318 and/or spill_hard_regs was called, this function is used to actually
4319 spill pseudo registers and try to reallocate them. It also sets up the
4320 spill_regs array for use by choose_reload_regs. */
4322 static int
4323 finish_spills (int global)
4325 struct insn_chain *chain;
4326 int something_changed = 0;
4327 unsigned i;
4328 reg_set_iterator rsi;
4330 /* Build the spill_regs array for the function. */
4331 /* If there are some registers still to eliminate and one of the spill regs
4332 wasn't ever used before, additional stack space may have to be
4333 allocated to store this register. Thus, we may have changed the offset
4334 between the stack and frame pointers, so mark that something has changed.
4336 One might think that we need only set VAL to 1 if this is a call-used
4337 register. However, the set of registers that must be saved by the
4338 prologue is not identical to the call-used set. For example, the
4339 register used by the call insn for the return PC is a call-used register,
4340 but must be saved by the prologue. */
4342 n_spills = 0;
4343 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4344 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4346 spill_reg_order[i] = n_spills;
4347 spill_regs[n_spills++] = i;
4348 if (num_eliminable && ! df_regs_ever_live_p (i))
4349 something_changed = 1;
4350 df_set_regs_ever_live (i, true);
4352 else
4353 spill_reg_order[i] = -1;
4355 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4356 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4358 /* Record the current hard register the pseudo is allocated to
4359 in pseudo_previous_regs so we avoid reallocating it to the
4360 same hard reg in a later pass. */
4361 gcc_assert (reg_renumber[i] >= 0);
4363 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4364 /* Mark it as no longer having a hard register home. */
4365 reg_renumber[i] = -1;
4366 if (ira_conflicts_p)
4367 /* Inform IRA about the change. */
4368 ira_mark_allocation_change (i);
4369 /* We will need to scan everything again. */
4370 something_changed = 1;
4373 /* Retry global register allocation if possible. */
4374 if (global && ira_conflicts_p)
4376 unsigned int n;
4378 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4379 /* For every insn that needs reloads, set the registers used as spill
4380 regs in pseudo_forbidden_regs for every pseudo live across the
4381 insn. */
4382 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4384 EXECUTE_IF_SET_IN_REG_SET
4385 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4387 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4388 chain->used_spill_regs);
4390 EXECUTE_IF_SET_IN_REG_SET
4391 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4393 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4394 chain->used_spill_regs);
4398 /* Retry allocating the pseudos spilled in IRA and the
4399 reload. For each reg, merge the various reg sets that
4400 indicate which hard regs can't be used, and call
4401 ira_reassign_pseudos. */
4402 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4403 if (reg_old_renumber[i] != reg_renumber[i])
4405 if (reg_renumber[i] < 0)
4406 temp_pseudo_reg_arr[n++] = i;
4407 else
4408 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4410 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4411 bad_spill_regs_global,
4412 pseudo_forbidden_regs, pseudo_previous_regs,
4413 &spilled_pseudos))
4414 something_changed = 1;
4416 /* Fix up the register information in the insn chain.
4417 This involves deleting those of the spilled pseudos which did not get
4418 a new hard register home from the live_{before,after} sets. */
4419 for (chain = reload_insn_chain; chain; chain = chain->next)
4421 HARD_REG_SET used_by_pseudos;
4422 HARD_REG_SET used_by_pseudos2;
4424 if (! ira_conflicts_p)
4426 /* Don't do it for IRA because IRA and the reload still can
4427 assign hard registers to the spilled pseudos on next
4428 reload iterations. */
4429 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4430 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4432 /* Mark any unallocated hard regs as available for spills. That
4433 makes inheritance work somewhat better. */
4434 if (chain->need_reload)
4436 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4437 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4438 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4440 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4441 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4442 /* Value of chain->used_spill_regs from previous iteration
4443 may be not included in the value calculated here because
4444 of possible removing caller-saves insns (see function
4445 delete_caller_save_insns. */
4446 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4447 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4451 CLEAR_REG_SET (&changed_allocation_pseudos);
4452 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4453 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4455 int regno = reg_renumber[i];
4456 if (reg_old_renumber[i] == regno)
4457 continue;
4459 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4461 alter_reg (i, reg_old_renumber[i], false);
4462 reg_old_renumber[i] = regno;
4463 if (dump_file)
4465 if (regno == -1)
4466 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4467 else
4468 fprintf (dump_file, " Register %d now in %d.\n\n",
4469 i, reg_renumber[i]);
4473 return something_changed;
4476 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4478 static void
4479 scan_paradoxical_subregs (rtx x)
4481 int i;
4482 const char *fmt;
4483 enum rtx_code code = GET_CODE (x);
4485 switch (code)
4487 case REG:
4488 case CONST:
4489 case SYMBOL_REF:
4490 case LABEL_REF:
4491 CASE_CONST_ANY:
4492 case CC0:
4493 case PC:
4494 case USE:
4495 case CLOBBER:
4496 return;
4498 case SUBREG:
4499 if (REG_P (SUBREG_REG (x))
4500 && (GET_MODE_SIZE (GET_MODE (x))
4501 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4503 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4504 = GET_MODE_SIZE (GET_MODE (x));
4505 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4507 return;
4509 default:
4510 break;
4513 fmt = GET_RTX_FORMAT (code);
4514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4516 if (fmt[i] == 'e')
4517 scan_paradoxical_subregs (XEXP (x, i));
4518 else if (fmt[i] == 'E')
4520 int j;
4521 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4522 scan_paradoxical_subregs (XVECEXP (x, i, j));
4527 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4528 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4529 and apply the corresponding narrowing subreg to *OTHER_PTR.
4530 Return true if the operands were changed, false otherwise. */
4532 static bool
4533 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4535 rtx op, inner, other, tem;
4537 op = *op_ptr;
4538 if (!paradoxical_subreg_p (op))
4539 return false;
4540 inner = SUBREG_REG (op);
4542 other = *other_ptr;
4543 tem = gen_lowpart_common (GET_MODE (inner), other);
4544 if (!tem)
4545 return false;
4547 /* If the lowpart operation turned a hard register into a subreg,
4548 rather than simplifying it to another hard register, then the
4549 mode change cannot be properly represented. For example, OTHER
4550 might be valid in its current mode, but not in the new one. */
4551 if (GET_CODE (tem) == SUBREG
4552 && REG_P (other)
4553 && HARD_REGISTER_P (other))
4554 return false;
4556 *op_ptr = inner;
4557 *other_ptr = tem;
4558 return true;
4561 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4562 examine all of the reload insns between PREV and NEXT exclusive, and
4563 annotate all that may trap. */
4565 static void
4566 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4568 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4569 if (note == NULL)
4570 return;
4571 if (!insn_could_throw_p (insn))
4572 remove_note (insn, note);
4573 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4576 /* Reload pseudo-registers into hard regs around each insn as needed.
4577 Additional register load insns are output before the insn that needs it
4578 and perhaps store insns after insns that modify the reloaded pseudo reg.
4580 reg_last_reload_reg and reg_reloaded_contents keep track of
4581 which registers are already available in reload registers.
4582 We update these for the reloads that we perform,
4583 as the insns are scanned. */
4585 static void
4586 reload_as_needed (int live_known)
4588 struct insn_chain *chain;
4589 #if defined (AUTO_INC_DEC)
4590 int i;
4591 #endif
4592 rtx_note *marker;
4594 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4595 memset (spill_reg_store, 0, sizeof spill_reg_store);
4596 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4597 INIT_REG_SET (&reg_has_output_reload);
4598 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4599 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4601 set_initial_elim_offsets ();
4603 /* Generate a marker insn that we will move around. */
4604 marker = emit_note (NOTE_INSN_DELETED);
4605 unlink_insn_chain (marker, marker);
4607 for (chain = reload_insn_chain; chain; chain = chain->next)
4609 rtx_insn *prev = 0;
4610 rtx_insn *insn = chain->insn;
4611 rtx_insn *old_next = NEXT_INSN (insn);
4612 #ifdef AUTO_INC_DEC
4613 rtx_insn *old_prev = PREV_INSN (insn);
4614 #endif
4616 if (will_delete_init_insn_p (insn))
4617 continue;
4619 /* If we pass a label, copy the offsets from the label information
4620 into the current offsets of each elimination. */
4621 if (LABEL_P (insn))
4622 set_offsets_for_label (insn);
4624 else if (INSN_P (insn))
4626 regset_head regs_to_forget;
4627 INIT_REG_SET (&regs_to_forget);
4628 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4630 /* If this is a USE and CLOBBER of a MEM, ensure that any
4631 references to eliminable registers have been removed. */
4633 if ((GET_CODE (PATTERN (insn)) == USE
4634 || GET_CODE (PATTERN (insn)) == CLOBBER)
4635 && MEM_P (XEXP (PATTERN (insn), 0)))
4636 XEXP (XEXP (PATTERN (insn), 0), 0)
4637 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4638 GET_MODE (XEXP (PATTERN (insn), 0)),
4639 NULL_RTX);
4641 /* If we need to do register elimination processing, do so.
4642 This might delete the insn, in which case we are done. */
4643 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4645 eliminate_regs_in_insn (insn, 1);
4646 if (NOTE_P (insn))
4648 update_eliminable_offsets ();
4649 CLEAR_REG_SET (&regs_to_forget);
4650 continue;
4654 /* If need_elim is nonzero but need_reload is zero, one might think
4655 that we could simply set n_reloads to 0. However, find_reloads
4656 could have done some manipulation of the insn (such as swapping
4657 commutative operands), and these manipulations are lost during
4658 the first pass for every insn that needs register elimination.
4659 So the actions of find_reloads must be redone here. */
4661 if (! chain->need_elim && ! chain->need_reload
4662 && ! chain->need_operand_change)
4663 n_reloads = 0;
4664 /* First find the pseudo regs that must be reloaded for this insn.
4665 This info is returned in the tables reload_... (see reload.h).
4666 Also modify the body of INSN by substituting RELOAD
4667 rtx's for those pseudo regs. */
4668 else
4670 CLEAR_REG_SET (&reg_has_output_reload);
4671 CLEAR_HARD_REG_SET (reg_is_output_reload);
4673 find_reloads (insn, 1, spill_indirect_levels, live_known,
4674 spill_reg_order);
4677 if (n_reloads > 0)
4679 rtx_insn *next = NEXT_INSN (insn);
4681 /* ??? PREV can get deleted by reload inheritance.
4682 Work around this by emitting a marker note. */
4683 prev = PREV_INSN (insn);
4684 reorder_insns_nobb (marker, marker, prev);
4686 /* Now compute which reload regs to reload them into. Perhaps
4687 reusing reload regs from previous insns, or else output
4688 load insns to reload them. Maybe output store insns too.
4689 Record the choices of reload reg in reload_reg_rtx. */
4690 choose_reload_regs (chain);
4692 /* Generate the insns to reload operands into or out of
4693 their reload regs. */
4694 emit_reload_insns (chain);
4696 /* Substitute the chosen reload regs from reload_reg_rtx
4697 into the insn's body (or perhaps into the bodies of other
4698 load and store insn that we just made for reloading
4699 and that we moved the structure into). */
4700 subst_reloads (insn);
4702 prev = PREV_INSN (marker);
4703 unlink_insn_chain (marker, marker);
4705 /* Adjust the exception region notes for loads and stores. */
4706 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4707 fixup_eh_region_note (insn, prev, next);
4709 /* Adjust the location of REG_ARGS_SIZE. */
4710 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4711 if (p)
4713 remove_note (insn, p);
4714 fixup_args_size_notes (prev, PREV_INSN (next),
4715 INTVAL (XEXP (p, 0)));
4718 /* If this was an ASM, make sure that all the reload insns
4719 we have generated are valid. If not, give an error
4720 and delete them. */
4721 if (asm_noperands (PATTERN (insn)) >= 0)
4722 for (rtx_insn *p = NEXT_INSN (prev);
4723 p != next;
4724 p = NEXT_INSN (p))
4725 if (p != insn && INSN_P (p)
4726 && GET_CODE (PATTERN (p)) != USE
4727 && (recog_memoized (p) < 0
4728 || (extract_insn (p),
4729 !(constrain_operands (1,
4730 get_enabled_alternatives (p))))))
4732 error_for_asm (insn,
4733 "%<asm%> operand requires "
4734 "impossible reload");
4735 delete_insn (p);
4739 if (num_eliminable && chain->need_elim)
4740 update_eliminable_offsets ();
4742 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4743 is no longer validly lying around to save a future reload.
4744 Note that this does not detect pseudos that were reloaded
4745 for this insn in order to be stored in
4746 (obeying register constraints). That is correct; such reload
4747 registers ARE still valid. */
4748 forget_marked_reloads (&regs_to_forget);
4749 CLEAR_REG_SET (&regs_to_forget);
4751 /* There may have been CLOBBER insns placed after INSN. So scan
4752 between INSN and NEXT and use them to forget old reloads. */
4753 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4754 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4755 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4757 #ifdef AUTO_INC_DEC
4758 /* Likewise for regs altered by auto-increment in this insn.
4759 REG_INC notes have been changed by reloading:
4760 find_reloads_address_1 records substitutions for them,
4761 which have been performed by subst_reloads above. */
4762 for (i = n_reloads - 1; i >= 0; i--)
4764 rtx in_reg = rld[i].in_reg;
4765 if (in_reg)
4767 enum rtx_code code = GET_CODE (in_reg);
4768 /* PRE_INC / PRE_DEC will have the reload register ending up
4769 with the same value as the stack slot, but that doesn't
4770 hold true for POST_INC / POST_DEC. Either we have to
4771 convert the memory access to a true POST_INC / POST_DEC,
4772 or we can't use the reload register for inheritance. */
4773 if ((code == POST_INC || code == POST_DEC)
4774 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4775 REGNO (rld[i].reg_rtx))
4776 /* Make sure it is the inc/dec pseudo, and not
4777 some other (e.g. output operand) pseudo. */
4778 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4779 == REGNO (XEXP (in_reg, 0))))
4782 rtx reload_reg = rld[i].reg_rtx;
4783 machine_mode mode = GET_MODE (reload_reg);
4784 int n = 0;
4785 rtx_insn *p;
4787 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4789 /* We really want to ignore REG_INC notes here, so
4790 use PATTERN (p) as argument to reg_set_p . */
4791 if (reg_set_p (reload_reg, PATTERN (p)))
4792 break;
4793 n = count_occurrences (PATTERN (p), reload_reg, 0);
4794 if (! n)
4795 continue;
4796 if (n == 1)
4798 rtx replace_reg
4799 = gen_rtx_fmt_e (code, mode, reload_reg);
4801 validate_replace_rtx_group (reload_reg,
4802 replace_reg, p);
4803 n = verify_changes (0);
4805 /* We must also verify that the constraints
4806 are met after the replacement. Make sure
4807 extract_insn is only called for an insn
4808 where the replacements were found to be
4809 valid so far. */
4810 if (n)
4812 extract_insn (p);
4813 n = constrain_operands (1,
4814 get_enabled_alternatives (p));
4817 /* If the constraints were not met, then
4818 undo the replacement, else confirm it. */
4819 if (!n)
4820 cancel_changes (0);
4821 else
4822 confirm_change_group ();
4824 break;
4826 if (n == 1)
4828 add_reg_note (p, REG_INC, reload_reg);
4829 /* Mark this as having an output reload so that the
4830 REG_INC processing code below won't invalidate
4831 the reload for inheritance. */
4832 SET_HARD_REG_BIT (reg_is_output_reload,
4833 REGNO (reload_reg));
4834 SET_REGNO_REG_SET (&reg_has_output_reload,
4835 REGNO (XEXP (in_reg, 0)));
4837 else
4838 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4839 NULL);
4841 else if ((code == PRE_INC || code == PRE_DEC)
4842 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4843 REGNO (rld[i].reg_rtx))
4844 /* Make sure it is the inc/dec pseudo, and not
4845 some other (e.g. output operand) pseudo. */
4846 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4847 == REGNO (XEXP (in_reg, 0))))
4849 SET_HARD_REG_BIT (reg_is_output_reload,
4850 REGNO (rld[i].reg_rtx));
4851 SET_REGNO_REG_SET (&reg_has_output_reload,
4852 REGNO (XEXP (in_reg, 0)));
4854 else if (code == PRE_INC || code == PRE_DEC
4855 || code == POST_INC || code == POST_DEC)
4857 int in_regno = REGNO (XEXP (in_reg, 0));
4859 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4861 int in_hard_regno;
4862 bool forget_p = true;
4864 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4865 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4866 in_hard_regno))
4868 for (rtx_insn *x = (old_prev ?
4869 NEXT_INSN (old_prev) : insn);
4870 x != old_next;
4871 x = NEXT_INSN (x))
4872 if (x == reg_reloaded_insn[in_hard_regno])
4874 forget_p = false;
4875 break;
4878 /* If for some reasons, we didn't set up
4879 reg_last_reload_reg in this insn,
4880 invalidate inheritance from previous
4881 insns for the incremented/decremented
4882 register. Such registers will be not in
4883 reg_has_output_reload. Invalidate it
4884 also if the corresponding element in
4885 reg_reloaded_insn is also
4886 invalidated. */
4887 if (forget_p)
4888 forget_old_reloads_1 (XEXP (in_reg, 0),
4889 NULL_RTX, NULL);
4894 /* If a pseudo that got a hard register is auto-incremented,
4895 we must purge records of copying it into pseudos without
4896 hard registers. */
4897 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4898 if (REG_NOTE_KIND (x) == REG_INC)
4900 /* See if this pseudo reg was reloaded in this insn.
4901 If so, its last-reload info is still valid
4902 because it is based on this insn's reload. */
4903 for (i = 0; i < n_reloads; i++)
4904 if (rld[i].out == XEXP (x, 0))
4905 break;
4907 if (i == n_reloads)
4908 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4910 #endif
4912 /* A reload reg's contents are unknown after a label. */
4913 if (LABEL_P (insn))
4914 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4916 /* Don't assume a reload reg is still good after a call insn
4917 if it is a call-used reg, or if it contains a value that will
4918 be partially clobbered by the call. */
4919 else if (CALL_P (insn))
4921 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4922 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4924 /* If this is a call to a setjmp-type function, we must not
4925 reuse any reload reg contents across the call; that will
4926 just be clobbered by other uses of the register in later
4927 code, before the longjmp. */
4928 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4929 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4933 /* Clean up. */
4934 free (reg_last_reload_reg);
4935 CLEAR_REG_SET (&reg_has_output_reload);
4938 /* Discard all record of any value reloaded from X,
4939 or reloaded in X from someplace else;
4940 unless X is an output reload reg of the current insn.
4942 X may be a hard reg (the reload reg)
4943 or it may be a pseudo reg that was reloaded from.
4945 When DATA is non-NULL just mark the registers in regset
4946 to be forgotten later. */
4948 static void
4949 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4950 void *data)
4952 unsigned int regno;
4953 unsigned int nr;
4954 regset regs = (regset) data;
4956 /* note_stores does give us subregs of hard regs,
4957 subreg_regno_offset requires a hard reg. */
4958 while (GET_CODE (x) == SUBREG)
4960 /* We ignore the subreg offset when calculating the regno,
4961 because we are using the entire underlying hard register
4962 below. */
4963 x = SUBREG_REG (x);
4966 if (!REG_P (x))
4967 return;
4969 regno = REGNO (x);
4971 if (regno >= FIRST_PSEUDO_REGISTER)
4972 nr = 1;
4973 else
4975 unsigned int i;
4977 nr = hard_regno_nregs[regno][GET_MODE (x)];
4978 /* Storing into a spilled-reg invalidates its contents.
4979 This can happen if a block-local pseudo is allocated to that reg
4980 and it wasn't spilled because this block's total need is 0.
4981 Then some insn might have an optional reload and use this reg. */
4982 if (!regs)
4983 for (i = 0; i < nr; i++)
4984 /* But don't do this if the reg actually serves as an output
4985 reload reg in the current instruction. */
4986 if (n_reloads == 0
4987 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4989 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4990 spill_reg_store[regno + i] = 0;
4994 if (regs)
4995 while (nr-- > 0)
4996 SET_REGNO_REG_SET (regs, regno + nr);
4997 else
4999 /* Since value of X has changed,
5000 forget any value previously copied from it. */
5002 while (nr-- > 0)
5003 /* But don't forget a copy if this is the output reload
5004 that establishes the copy's validity. */
5005 if (n_reloads == 0
5006 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
5007 reg_last_reload_reg[regno + nr] = 0;
5011 /* Forget the reloads marked in regset by previous function. */
5012 static void
5013 forget_marked_reloads (regset regs)
5015 unsigned int reg;
5016 reg_set_iterator rsi;
5017 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5019 if (reg < FIRST_PSEUDO_REGISTER
5020 /* But don't do this if the reg actually serves as an output
5021 reload reg in the current instruction. */
5022 && (n_reloads == 0
5023 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5025 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5026 spill_reg_store[reg] = 0;
5028 if (n_reloads == 0
5029 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5030 reg_last_reload_reg[reg] = 0;
5034 /* The following HARD_REG_SETs indicate when each hard register is
5035 used for a reload of various parts of the current insn. */
5037 /* If reg is unavailable for all reloads. */
5038 static HARD_REG_SET reload_reg_unavailable;
5039 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5040 static HARD_REG_SET reload_reg_used;
5041 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5042 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5043 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5044 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5045 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5046 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5047 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5048 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5049 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5050 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5051 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5052 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5053 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5054 static HARD_REG_SET reload_reg_used_in_op_addr;
5055 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5056 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5057 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5058 static HARD_REG_SET reload_reg_used_in_insn;
5059 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5060 static HARD_REG_SET reload_reg_used_in_other_addr;
5062 /* If reg is in use as a reload reg for any sort of reload. */
5063 static HARD_REG_SET reload_reg_used_at_all;
5065 /* If reg is use as an inherited reload. We just mark the first register
5066 in the group. */
5067 static HARD_REG_SET reload_reg_used_for_inherit;
5069 /* Records which hard regs are used in any way, either as explicit use or
5070 by being allocated to a pseudo during any point of the current insn. */
5071 static HARD_REG_SET reg_used_in_insn;
5073 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5074 TYPE. MODE is used to indicate how many consecutive regs are
5075 actually used. */
5077 static void
5078 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5079 machine_mode mode)
5081 switch (type)
5083 case RELOAD_OTHER:
5084 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5085 break;
5087 case RELOAD_FOR_INPUT_ADDRESS:
5088 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5089 break;
5091 case RELOAD_FOR_INPADDR_ADDRESS:
5092 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5093 break;
5095 case RELOAD_FOR_OUTPUT_ADDRESS:
5096 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5097 break;
5099 case RELOAD_FOR_OUTADDR_ADDRESS:
5100 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5101 break;
5103 case RELOAD_FOR_OPERAND_ADDRESS:
5104 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5105 break;
5107 case RELOAD_FOR_OPADDR_ADDR:
5108 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5109 break;
5111 case RELOAD_FOR_OTHER_ADDRESS:
5112 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5113 break;
5115 case RELOAD_FOR_INPUT:
5116 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5117 break;
5119 case RELOAD_FOR_OUTPUT:
5120 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5121 break;
5123 case RELOAD_FOR_INSN:
5124 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5125 break;
5128 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5131 /* Similarly, but show REGNO is no longer in use for a reload. */
5133 static void
5134 clear_reload_reg_in_use (unsigned int regno, int opnum,
5135 enum reload_type type, machine_mode mode)
5137 unsigned int nregs = hard_regno_nregs[regno][mode];
5138 unsigned int start_regno, end_regno, r;
5139 int i;
5140 /* A complication is that for some reload types, inheritance might
5141 allow multiple reloads of the same types to share a reload register.
5142 We set check_opnum if we have to check only reloads with the same
5143 operand number, and check_any if we have to check all reloads. */
5144 int check_opnum = 0;
5145 int check_any = 0;
5146 HARD_REG_SET *used_in_set;
5148 switch (type)
5150 case RELOAD_OTHER:
5151 used_in_set = &reload_reg_used;
5152 break;
5154 case RELOAD_FOR_INPUT_ADDRESS:
5155 used_in_set = &reload_reg_used_in_input_addr[opnum];
5156 break;
5158 case RELOAD_FOR_INPADDR_ADDRESS:
5159 check_opnum = 1;
5160 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5161 break;
5163 case RELOAD_FOR_OUTPUT_ADDRESS:
5164 used_in_set = &reload_reg_used_in_output_addr[opnum];
5165 break;
5167 case RELOAD_FOR_OUTADDR_ADDRESS:
5168 check_opnum = 1;
5169 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5170 break;
5172 case RELOAD_FOR_OPERAND_ADDRESS:
5173 used_in_set = &reload_reg_used_in_op_addr;
5174 break;
5176 case RELOAD_FOR_OPADDR_ADDR:
5177 check_any = 1;
5178 used_in_set = &reload_reg_used_in_op_addr_reload;
5179 break;
5181 case RELOAD_FOR_OTHER_ADDRESS:
5182 used_in_set = &reload_reg_used_in_other_addr;
5183 check_any = 1;
5184 break;
5186 case RELOAD_FOR_INPUT:
5187 used_in_set = &reload_reg_used_in_input[opnum];
5188 break;
5190 case RELOAD_FOR_OUTPUT:
5191 used_in_set = &reload_reg_used_in_output[opnum];
5192 break;
5194 case RELOAD_FOR_INSN:
5195 used_in_set = &reload_reg_used_in_insn;
5196 break;
5197 default:
5198 gcc_unreachable ();
5200 /* We resolve conflicts with remaining reloads of the same type by
5201 excluding the intervals of reload registers by them from the
5202 interval of freed reload registers. Since we only keep track of
5203 one set of interval bounds, we might have to exclude somewhat
5204 more than what would be necessary if we used a HARD_REG_SET here.
5205 But this should only happen very infrequently, so there should
5206 be no reason to worry about it. */
5208 start_regno = regno;
5209 end_regno = regno + nregs;
5210 if (check_opnum || check_any)
5212 for (i = n_reloads - 1; i >= 0; i--)
5214 if (rld[i].when_needed == type
5215 && (check_any || rld[i].opnum == opnum)
5216 && rld[i].reg_rtx)
5218 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5219 unsigned int conflict_end
5220 = end_hard_regno (rld[i].mode, conflict_start);
5222 /* If there is an overlap with the first to-be-freed register,
5223 adjust the interval start. */
5224 if (conflict_start <= start_regno && conflict_end > start_regno)
5225 start_regno = conflict_end;
5226 /* Otherwise, if there is a conflict with one of the other
5227 to-be-freed registers, adjust the interval end. */
5228 if (conflict_start > start_regno && conflict_start < end_regno)
5229 end_regno = conflict_start;
5234 for (r = start_regno; r < end_regno; r++)
5235 CLEAR_HARD_REG_BIT (*used_in_set, r);
5238 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5239 specified by OPNUM and TYPE. */
5241 static int
5242 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5244 int i;
5246 /* In use for a RELOAD_OTHER means it's not available for anything. */
5247 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5248 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5249 return 0;
5251 switch (type)
5253 case RELOAD_OTHER:
5254 /* In use for anything means we can't use it for RELOAD_OTHER. */
5255 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5256 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5257 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5258 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5259 return 0;
5261 for (i = 0; i < reload_n_operands; i++)
5262 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5263 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5264 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5265 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5266 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5267 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5268 return 0;
5270 return 1;
5272 case RELOAD_FOR_INPUT:
5273 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5274 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5275 return 0;
5277 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5278 return 0;
5280 /* If it is used for some other input, can't use it. */
5281 for (i = 0; i < reload_n_operands; i++)
5282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5283 return 0;
5285 /* If it is used in a later operand's address, can't use it. */
5286 for (i = opnum + 1; i < reload_n_operands; i++)
5287 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5288 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5289 return 0;
5291 return 1;
5293 case RELOAD_FOR_INPUT_ADDRESS:
5294 /* Can't use a register if it is used for an input address for this
5295 operand or used as an input in an earlier one. */
5296 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5297 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5298 return 0;
5300 for (i = 0; i < opnum; i++)
5301 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5302 return 0;
5304 return 1;
5306 case RELOAD_FOR_INPADDR_ADDRESS:
5307 /* Can't use a register if it is used for an input address
5308 for this operand or used as an input in an earlier
5309 one. */
5310 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5311 return 0;
5313 for (i = 0; i < opnum; i++)
5314 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5315 return 0;
5317 return 1;
5319 case RELOAD_FOR_OUTPUT_ADDRESS:
5320 /* Can't use a register if it is used for an output address for this
5321 operand or used as an output in this or a later operand. Note
5322 that multiple output operands are emitted in reverse order, so
5323 the conflicting ones are those with lower indices. */
5324 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5325 return 0;
5327 for (i = 0; i <= opnum; i++)
5328 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5329 return 0;
5331 return 1;
5333 case RELOAD_FOR_OUTADDR_ADDRESS:
5334 /* Can't use a register if it is used for an output address
5335 for this operand or used as an output in this or a
5336 later operand. Note that multiple output operands are
5337 emitted in reverse order, so the conflicting ones are
5338 those with lower indices. */
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5340 return 0;
5342 for (i = 0; i <= opnum; i++)
5343 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5344 return 0;
5346 return 1;
5348 case RELOAD_FOR_OPERAND_ADDRESS:
5349 for (i = 0; i < reload_n_operands; i++)
5350 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5351 return 0;
5353 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5354 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5356 case RELOAD_FOR_OPADDR_ADDR:
5357 for (i = 0; i < reload_n_operands; i++)
5358 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5359 return 0;
5361 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5363 case RELOAD_FOR_OUTPUT:
5364 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5365 outputs, or an operand address for this or an earlier output.
5366 Note that multiple output operands are emitted in reverse order,
5367 so the conflicting ones are those with higher indices. */
5368 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5369 return 0;
5371 for (i = 0; i < reload_n_operands; i++)
5372 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5373 return 0;
5375 for (i = opnum; i < reload_n_operands; i++)
5376 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5377 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5378 return 0;
5380 return 1;
5382 case RELOAD_FOR_INSN:
5383 for (i = 0; i < reload_n_operands; i++)
5384 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5386 return 0;
5388 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5389 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5391 case RELOAD_FOR_OTHER_ADDRESS:
5392 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5394 default:
5395 gcc_unreachable ();
5399 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5400 the number RELOADNUM, is still available in REGNO at the end of the insn.
5402 We can assume that the reload reg was already tested for availability
5403 at the time it is needed, and we should not check this again,
5404 in case the reg has already been marked in use. */
5406 static int
5407 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5409 int opnum = rld[reloadnum].opnum;
5410 enum reload_type type = rld[reloadnum].when_needed;
5411 int i;
5413 /* See if there is a reload with the same type for this operand, using
5414 the same register. This case is not handled by the code below. */
5415 for (i = reloadnum + 1; i < n_reloads; i++)
5417 rtx reg;
5418 int nregs;
5420 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5421 continue;
5422 reg = rld[i].reg_rtx;
5423 if (reg == NULL_RTX)
5424 continue;
5425 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5426 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5427 return 0;
5430 switch (type)
5432 case RELOAD_OTHER:
5433 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5434 its value must reach the end. */
5435 return 1;
5437 /* If this use is for part of the insn,
5438 its value reaches if no subsequent part uses the same register.
5439 Just like the above function, don't try to do this with lots
5440 of fallthroughs. */
5442 case RELOAD_FOR_OTHER_ADDRESS:
5443 /* Here we check for everything else, since these don't conflict
5444 with anything else and everything comes later. */
5446 for (i = 0; i < reload_n_operands; i++)
5447 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5448 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5449 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5452 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5453 return 0;
5455 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5456 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5457 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5458 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5460 case RELOAD_FOR_INPUT_ADDRESS:
5461 case RELOAD_FOR_INPADDR_ADDRESS:
5462 /* Similar, except that we check only for this and subsequent inputs
5463 and the address of only subsequent inputs and we do not need
5464 to check for RELOAD_OTHER objects since they are known not to
5465 conflict. */
5467 for (i = opnum; i < reload_n_operands; i++)
5468 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5469 return 0;
5471 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5472 could be killed if the register is also used by reload with type
5473 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5474 if (type == RELOAD_FOR_INPADDR_ADDRESS
5475 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5476 return 0;
5478 for (i = opnum + 1; i < reload_n_operands; i++)
5479 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5480 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5481 return 0;
5483 for (i = 0; i < reload_n_operands; i++)
5484 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5485 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5486 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5487 return 0;
5489 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5490 return 0;
5492 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5493 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5494 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5496 case RELOAD_FOR_INPUT:
5497 /* Similar to input address, except we start at the next operand for
5498 both input and input address and we do not check for
5499 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5500 would conflict. */
5502 for (i = opnum + 1; i < reload_n_operands; i++)
5503 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5504 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5505 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5506 return 0;
5508 /* ... fall through ... */
5510 case RELOAD_FOR_OPERAND_ADDRESS:
5511 /* Check outputs and their addresses. */
5513 for (i = 0; i < reload_n_operands; i++)
5514 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5515 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5516 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5517 return 0;
5519 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5521 case RELOAD_FOR_OPADDR_ADDR:
5522 for (i = 0; i < reload_n_operands; i++)
5523 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5524 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5525 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5526 return 0;
5528 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5529 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5530 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5532 case RELOAD_FOR_INSN:
5533 /* These conflict with other outputs with RELOAD_OTHER. So
5534 we need only check for output addresses. */
5536 opnum = reload_n_operands;
5538 /* ... fall through ... */
5540 case RELOAD_FOR_OUTPUT:
5541 case RELOAD_FOR_OUTPUT_ADDRESS:
5542 case RELOAD_FOR_OUTADDR_ADDRESS:
5543 /* We already know these can't conflict with a later output. So the
5544 only thing to check are later output addresses.
5545 Note that multiple output operands are emitted in reverse order,
5546 so the conflicting ones are those with lower indices. */
5547 for (i = 0; i < opnum; i++)
5548 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5549 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5550 return 0;
5552 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5553 could be killed if the register is also used by reload with type
5554 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5555 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5556 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5557 return 0;
5559 return 1;
5561 default:
5562 gcc_unreachable ();
5566 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5567 every register in REG. */
5569 static bool
5570 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5572 unsigned int i;
5574 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5575 if (!reload_reg_reaches_end_p (i, reloadnum))
5576 return false;
5577 return true;
5581 /* Returns whether R1 and R2 are uniquely chained: the value of one
5582 is used by the other, and that value is not used by any other
5583 reload for this insn. This is used to partially undo the decision
5584 made in find_reloads when in the case of multiple
5585 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5586 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5587 reloads. This code tries to avoid the conflict created by that
5588 change. It might be cleaner to explicitly keep track of which
5589 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5590 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5591 this after the fact. */
5592 static bool
5593 reloads_unique_chain_p (int r1, int r2)
5595 int i;
5597 /* We only check input reloads. */
5598 if (! rld[r1].in || ! rld[r2].in)
5599 return false;
5601 /* Avoid anything with output reloads. */
5602 if (rld[r1].out || rld[r2].out)
5603 return false;
5605 /* "chained" means one reload is a component of the other reload,
5606 not the same as the other reload. */
5607 if (rld[r1].opnum != rld[r2].opnum
5608 || rtx_equal_p (rld[r1].in, rld[r2].in)
5609 || rld[r1].optional || rld[r2].optional
5610 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5611 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5612 return false;
5614 /* The following loop assumes that r1 is the reload that feeds r2. */
5615 if (r1 > r2)
5617 int tmp = r2;
5618 r2 = r1;
5619 r1 = tmp;
5622 for (i = 0; i < n_reloads; i ++)
5623 /* Look for input reloads that aren't our two */
5624 if (i != r1 && i != r2 && rld[i].in)
5626 /* If our reload is mentioned at all, it isn't a simple chain. */
5627 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5628 return false;
5630 return true;
5633 /* The recursive function change all occurrences of WHAT in *WHERE
5634 to REPL. */
5635 static void
5636 substitute (rtx *where, const_rtx what, rtx repl)
5638 const char *fmt;
5639 int i;
5640 enum rtx_code code;
5642 if (*where == 0)
5643 return;
5645 if (*where == what || rtx_equal_p (*where, what))
5647 /* Record the location of the changed rtx. */
5648 substitute_stack.safe_push (where);
5649 *where = repl;
5650 return;
5653 code = GET_CODE (*where);
5654 fmt = GET_RTX_FORMAT (code);
5655 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5657 if (fmt[i] == 'E')
5659 int j;
5661 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5662 substitute (&XVECEXP (*where, i, j), what, repl);
5664 else if (fmt[i] == 'e')
5665 substitute (&XEXP (*where, i), what, repl);
5669 /* The function returns TRUE if chain of reload R1 and R2 (in any
5670 order) can be evaluated without usage of intermediate register for
5671 the reload containing another reload. It is important to see
5672 gen_reload to understand what the function is trying to do. As an
5673 example, let us have reload chain
5675 r2: const
5676 r1: <something> + const
5678 and reload R2 got reload reg HR. The function returns true if
5679 there is a correct insn HR = HR + <something>. Otherwise,
5680 gen_reload will use intermediate register (and this is the reload
5681 reg for R1) to reload <something>.
5683 We need this function to find a conflict for chain reloads. In our
5684 example, if HR = HR + <something> is incorrect insn, then we cannot
5685 use HR as a reload register for R2. If we do use it then we get a
5686 wrong code:
5688 HR = const
5689 HR = <something>
5690 HR = HR + HR
5693 static bool
5694 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5696 /* Assume other cases in gen_reload are not possible for
5697 chain reloads or do need an intermediate hard registers. */
5698 bool result = true;
5699 int regno, code;
5700 rtx out, in;
5701 rtx_insn *insn;
5702 rtx_insn *last = get_last_insn ();
5704 /* Make r2 a component of r1. */
5705 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5706 std::swap (r1, r2);
5708 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5709 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5710 gcc_assert (regno >= 0);
5711 out = gen_rtx_REG (rld[r1].mode, regno);
5712 in = rld[r1].in;
5713 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5715 /* If IN is a paradoxical SUBREG, remove it and try to put the
5716 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5717 strip_paradoxical_subreg (&in, &out);
5719 if (GET_CODE (in) == PLUS
5720 && (REG_P (XEXP (in, 0))
5721 || GET_CODE (XEXP (in, 0)) == SUBREG
5722 || MEM_P (XEXP (in, 0)))
5723 && (REG_P (XEXP (in, 1))
5724 || GET_CODE (XEXP (in, 1)) == SUBREG
5725 || CONSTANT_P (XEXP (in, 1))
5726 || MEM_P (XEXP (in, 1))))
5728 insn = emit_insn (gen_rtx_SET (out, in));
5729 code = recog_memoized (insn);
5730 result = false;
5732 if (code >= 0)
5734 extract_insn (insn);
5735 /* We want constrain operands to treat this insn strictly in
5736 its validity determination, i.e., the way it would after
5737 reload has completed. */
5738 result = constrain_operands (1, get_enabled_alternatives (insn));
5741 delete_insns_since (last);
5744 /* Restore the original value at each changed address within R1. */
5745 while (!substitute_stack.is_empty ())
5747 rtx *where = substitute_stack.pop ();
5748 *where = rld[r2].in;
5751 return result;
5754 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5755 Return 0 otherwise.
5757 This function uses the same algorithm as reload_reg_free_p above. */
5759 static int
5760 reloads_conflict (int r1, int r2)
5762 enum reload_type r1_type = rld[r1].when_needed;
5763 enum reload_type r2_type = rld[r2].when_needed;
5764 int r1_opnum = rld[r1].opnum;
5765 int r2_opnum = rld[r2].opnum;
5767 /* RELOAD_OTHER conflicts with everything. */
5768 if (r2_type == RELOAD_OTHER)
5769 return 1;
5771 /* Otherwise, check conflicts differently for each type. */
5773 switch (r1_type)
5775 case RELOAD_FOR_INPUT:
5776 return (r2_type == RELOAD_FOR_INSN
5777 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5778 || r2_type == RELOAD_FOR_OPADDR_ADDR
5779 || r2_type == RELOAD_FOR_INPUT
5780 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5781 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5782 && r2_opnum > r1_opnum));
5784 case RELOAD_FOR_INPUT_ADDRESS:
5785 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5786 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5788 case RELOAD_FOR_INPADDR_ADDRESS:
5789 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5790 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5792 case RELOAD_FOR_OUTPUT_ADDRESS:
5793 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5794 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5796 case RELOAD_FOR_OUTADDR_ADDRESS:
5797 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5798 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5800 case RELOAD_FOR_OPERAND_ADDRESS:
5801 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5802 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5803 && (!reloads_unique_chain_p (r1, r2)
5804 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5806 case RELOAD_FOR_OPADDR_ADDR:
5807 return (r2_type == RELOAD_FOR_INPUT
5808 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5810 case RELOAD_FOR_OUTPUT:
5811 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5812 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5813 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5814 && r2_opnum >= r1_opnum));
5816 case RELOAD_FOR_INSN:
5817 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5818 || r2_type == RELOAD_FOR_INSN
5819 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5821 case RELOAD_FOR_OTHER_ADDRESS:
5822 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5824 case RELOAD_OTHER:
5825 return 1;
5827 default:
5828 gcc_unreachable ();
5832 /* Indexed by reload number, 1 if incoming value
5833 inherited from previous insns. */
5834 static char reload_inherited[MAX_RELOADS];
5836 /* For an inherited reload, this is the insn the reload was inherited from,
5837 if we know it. Otherwise, this is 0. */
5838 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5840 /* If nonzero, this is a place to get the value of the reload,
5841 rather than using reload_in. */
5842 static rtx reload_override_in[MAX_RELOADS];
5844 /* For each reload, the hard register number of the register used,
5845 or -1 if we did not need a register for this reload. */
5846 static int reload_spill_index[MAX_RELOADS];
5848 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5849 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5851 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5852 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5854 /* Subroutine of free_for_value_p, used to check a single register.
5855 START_REGNO is the starting regno of the full reload register
5856 (possibly comprising multiple hard registers) that we are considering. */
5858 static int
5859 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5860 enum reload_type type, rtx value, rtx out,
5861 int reloadnum, int ignore_address_reloads)
5863 int time1;
5864 /* Set if we see an input reload that must not share its reload register
5865 with any new earlyclobber, but might otherwise share the reload
5866 register with an output or input-output reload. */
5867 int check_earlyclobber = 0;
5868 int i;
5869 int copy = 0;
5871 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5872 return 0;
5874 if (out == const0_rtx)
5876 copy = 1;
5877 out = NULL_RTX;
5880 /* We use some pseudo 'time' value to check if the lifetimes of the
5881 new register use would overlap with the one of a previous reload
5882 that is not read-only or uses a different value.
5883 The 'time' used doesn't have to be linear in any shape or form, just
5884 monotonic.
5885 Some reload types use different 'buckets' for each operand.
5886 So there are MAX_RECOG_OPERANDS different time values for each
5887 such reload type.
5888 We compute TIME1 as the time when the register for the prospective
5889 new reload ceases to be live, and TIME2 for each existing
5890 reload as the time when that the reload register of that reload
5891 becomes live.
5892 Where there is little to be gained by exact lifetime calculations,
5893 we just make conservative assumptions, i.e. a longer lifetime;
5894 this is done in the 'default:' cases. */
5895 switch (type)
5897 case RELOAD_FOR_OTHER_ADDRESS:
5898 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5899 time1 = copy ? 0 : 1;
5900 break;
5901 case RELOAD_OTHER:
5902 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5903 break;
5904 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5905 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5906 respectively, to the time values for these, we get distinct time
5907 values. To get distinct time values for each operand, we have to
5908 multiply opnum by at least three. We round that up to four because
5909 multiply by four is often cheaper. */
5910 case RELOAD_FOR_INPADDR_ADDRESS:
5911 time1 = opnum * 4 + 2;
5912 break;
5913 case RELOAD_FOR_INPUT_ADDRESS:
5914 time1 = opnum * 4 + 3;
5915 break;
5916 case RELOAD_FOR_INPUT:
5917 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5918 executes (inclusive). */
5919 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5920 break;
5921 case RELOAD_FOR_OPADDR_ADDR:
5922 /* opnum * 4 + 4
5923 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5924 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5925 break;
5926 case RELOAD_FOR_OPERAND_ADDRESS:
5927 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5928 is executed. */
5929 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5930 break;
5931 case RELOAD_FOR_OUTADDR_ADDRESS:
5932 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5933 break;
5934 case RELOAD_FOR_OUTPUT_ADDRESS:
5935 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5936 break;
5937 default:
5938 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5941 for (i = 0; i < n_reloads; i++)
5943 rtx reg = rld[i].reg_rtx;
5944 if (reg && REG_P (reg)
5945 && ((unsigned) regno - true_regnum (reg)
5946 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5947 && i != reloadnum)
5949 rtx other_input = rld[i].in;
5951 /* If the other reload loads the same input value, that
5952 will not cause a conflict only if it's loading it into
5953 the same register. */
5954 if (true_regnum (reg) != start_regno)
5955 other_input = NULL_RTX;
5956 if (! other_input || ! rtx_equal_p (other_input, value)
5957 || rld[i].out || out)
5959 int time2;
5960 switch (rld[i].when_needed)
5962 case RELOAD_FOR_OTHER_ADDRESS:
5963 time2 = 0;
5964 break;
5965 case RELOAD_FOR_INPADDR_ADDRESS:
5966 /* find_reloads makes sure that a
5967 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5968 by at most one - the first -
5969 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5970 address reload is inherited, the address address reload
5971 goes away, so we can ignore this conflict. */
5972 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5973 && ignore_address_reloads
5974 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5975 Then the address address is still needed to store
5976 back the new address. */
5977 && ! rld[reloadnum].out)
5978 continue;
5979 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5980 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5981 reloads go away. */
5982 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5983 && ignore_address_reloads
5984 /* Unless we are reloading an auto_inc expression. */
5985 && ! rld[reloadnum].out)
5986 continue;
5987 time2 = rld[i].opnum * 4 + 2;
5988 break;
5989 case RELOAD_FOR_INPUT_ADDRESS:
5990 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5991 && ignore_address_reloads
5992 && ! rld[reloadnum].out)
5993 continue;
5994 time2 = rld[i].opnum * 4 + 3;
5995 break;
5996 case RELOAD_FOR_INPUT:
5997 time2 = rld[i].opnum * 4 + 4;
5998 check_earlyclobber = 1;
5999 break;
6000 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
6001 == MAX_RECOG_OPERAND * 4 */
6002 case RELOAD_FOR_OPADDR_ADDR:
6003 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
6004 && ignore_address_reloads
6005 && ! rld[reloadnum].out)
6006 continue;
6007 time2 = MAX_RECOG_OPERANDS * 4 + 1;
6008 break;
6009 case RELOAD_FOR_OPERAND_ADDRESS:
6010 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6011 check_earlyclobber = 1;
6012 break;
6013 case RELOAD_FOR_INSN:
6014 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6015 break;
6016 case RELOAD_FOR_OUTPUT:
6017 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6018 instruction is executed. */
6019 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6020 break;
6021 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6022 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6023 value. */
6024 case RELOAD_FOR_OUTADDR_ADDRESS:
6025 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6026 && ignore_address_reloads
6027 && ! rld[reloadnum].out)
6028 continue;
6029 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6030 break;
6031 case RELOAD_FOR_OUTPUT_ADDRESS:
6032 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6033 break;
6034 case RELOAD_OTHER:
6035 /* If there is no conflict in the input part, handle this
6036 like an output reload. */
6037 if (! rld[i].in || rtx_equal_p (other_input, value))
6039 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6040 /* Earlyclobbered outputs must conflict with inputs. */
6041 if (earlyclobber_operand_p (rld[i].out))
6042 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6044 break;
6046 time2 = 1;
6047 /* RELOAD_OTHER might be live beyond instruction execution,
6048 but this is not obvious when we set time2 = 1. So check
6049 here if there might be a problem with the new reload
6050 clobbering the register used by the RELOAD_OTHER. */
6051 if (out)
6052 return 0;
6053 break;
6054 default:
6055 return 0;
6057 if ((time1 >= time2
6058 && (! rld[i].in || rld[i].out
6059 || ! rtx_equal_p (other_input, value)))
6060 || (out && rld[reloadnum].out_reg
6061 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6062 return 0;
6067 /* Earlyclobbered outputs must conflict with inputs. */
6068 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6069 return 0;
6071 return 1;
6074 /* Return 1 if the value in reload reg REGNO, as used by a reload
6075 needed for the part of the insn specified by OPNUM and TYPE,
6076 may be used to load VALUE into it.
6078 MODE is the mode in which the register is used, this is needed to
6079 determine how many hard regs to test.
6081 Other read-only reloads with the same value do not conflict
6082 unless OUT is nonzero and these other reloads have to live while
6083 output reloads live.
6084 If OUT is CONST0_RTX, this is a special case: it means that the
6085 test should not be for using register REGNO as reload register, but
6086 for copying from register REGNO into the reload register.
6088 RELOADNUM is the number of the reload we want to load this value for;
6089 a reload does not conflict with itself.
6091 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6092 reloads that load an address for the very reload we are considering.
6094 The caller has to make sure that there is no conflict with the return
6095 register. */
6097 static int
6098 free_for_value_p (int regno, machine_mode mode, int opnum,
6099 enum reload_type type, rtx value, rtx out, int reloadnum,
6100 int ignore_address_reloads)
6102 int nregs = hard_regno_nregs[regno][mode];
6103 while (nregs-- > 0)
6104 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6105 value, out, reloadnum,
6106 ignore_address_reloads))
6107 return 0;
6108 return 1;
6111 /* Return nonzero if the rtx X is invariant over the current function. */
6112 /* ??? Actually, the places where we use this expect exactly what is
6113 tested here, and not everything that is function invariant. In
6114 particular, the frame pointer and arg pointer are special cased;
6115 pic_offset_table_rtx is not, and we must not spill these things to
6116 memory. */
6119 function_invariant_p (const_rtx x)
6121 if (CONSTANT_P (x))
6122 return 1;
6123 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6124 return 1;
6125 if (GET_CODE (x) == PLUS
6126 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6127 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6128 return 1;
6129 return 0;
6132 /* Determine whether the reload reg X overlaps any rtx'es used for
6133 overriding inheritance. Return nonzero if so. */
6135 static int
6136 conflicts_with_override (rtx x)
6138 int i;
6139 for (i = 0; i < n_reloads; i++)
6140 if (reload_override_in[i]
6141 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6142 return 1;
6143 return 0;
6146 /* Give an error message saying we failed to find a reload for INSN,
6147 and clear out reload R. */
6148 static void
6149 failed_reload (rtx_insn *insn, int r)
6151 if (asm_noperands (PATTERN (insn)) < 0)
6152 /* It's the compiler's fault. */
6153 fatal_insn ("could not find a spill register", insn);
6155 /* It's the user's fault; the operand's mode and constraint
6156 don't match. Disable this reload so we don't crash in final. */
6157 error_for_asm (insn,
6158 "%<asm%> operand constraint incompatible with operand size");
6159 rld[r].in = 0;
6160 rld[r].out = 0;
6161 rld[r].reg_rtx = 0;
6162 rld[r].optional = 1;
6163 rld[r].secondary_p = 1;
6166 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6167 for reload R. If it's valid, get an rtx for it. Return nonzero if
6168 successful. */
6169 static int
6170 set_reload_reg (int i, int r)
6172 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6173 parameter. */
6174 int regno ATTRIBUTE_UNUSED;
6175 rtx reg = spill_reg_rtx[i];
6177 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6178 spill_reg_rtx[i] = reg
6179 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6181 regno = true_regnum (reg);
6183 /* Detect when the reload reg can't hold the reload mode.
6184 This used to be one `if', but Sequent compiler can't handle that. */
6185 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6187 machine_mode test_mode = VOIDmode;
6188 if (rld[r].in)
6189 test_mode = GET_MODE (rld[r].in);
6190 /* If rld[r].in has VOIDmode, it means we will load it
6191 in whatever mode the reload reg has: to wit, rld[r].mode.
6192 We have already tested that for validity. */
6193 /* Aside from that, we need to test that the expressions
6194 to reload from or into have modes which are valid for this
6195 reload register. Otherwise the reload insns would be invalid. */
6196 if (! (rld[r].in != 0 && test_mode != VOIDmode
6197 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6198 if (! (rld[r].out != 0
6199 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6201 /* The reg is OK. */
6202 last_spill_reg = i;
6204 /* Mark as in use for this insn the reload regs we use
6205 for this. */
6206 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6207 rld[r].when_needed, rld[r].mode);
6209 rld[r].reg_rtx = reg;
6210 reload_spill_index[r] = spill_regs[i];
6211 return 1;
6214 return 0;
6217 /* Find a spill register to use as a reload register for reload R.
6218 LAST_RELOAD is nonzero if this is the last reload for the insn being
6219 processed.
6221 Set rld[R].reg_rtx to the register allocated.
6223 We return 1 if successful, or 0 if we couldn't find a spill reg and
6224 we didn't change anything. */
6226 static int
6227 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6228 int last_reload)
6230 int i, pass, count;
6232 /* If we put this reload ahead, thinking it is a group,
6233 then insist on finding a group. Otherwise we can grab a
6234 reg that some other reload needs.
6235 (That can happen when we have a 68000 DATA_OR_FP_REG
6236 which is a group of data regs or one fp reg.)
6237 We need not be so restrictive if there are no more reloads
6238 for this insn.
6240 ??? Really it would be nicer to have smarter handling
6241 for that kind of reg class, where a problem like this is normal.
6242 Perhaps those classes should be avoided for reloading
6243 by use of more alternatives. */
6245 int force_group = rld[r].nregs > 1 && ! last_reload;
6247 /* If we want a single register and haven't yet found one,
6248 take any reg in the right class and not in use.
6249 If we want a consecutive group, here is where we look for it.
6251 We use three passes so we can first look for reload regs to
6252 reuse, which are already in use for other reloads in this insn,
6253 and only then use additional registers which are not "bad", then
6254 finally any register.
6256 I think that maximizing reuse is needed to make sure we don't
6257 run out of reload regs. Suppose we have three reloads, and
6258 reloads A and B can share regs. These need two regs.
6259 Suppose A and B are given different regs.
6260 That leaves none for C. */
6261 for (pass = 0; pass < 3; pass++)
6263 /* I is the index in spill_regs.
6264 We advance it round-robin between insns to use all spill regs
6265 equally, so that inherited reloads have a chance
6266 of leapfrogging each other. */
6268 i = last_spill_reg;
6270 for (count = 0; count < n_spills; count++)
6272 int rclass = (int) rld[r].rclass;
6273 int regnum;
6275 i++;
6276 if (i >= n_spills)
6277 i -= n_spills;
6278 regnum = spill_regs[i];
6280 if ((reload_reg_free_p (regnum, rld[r].opnum,
6281 rld[r].when_needed)
6282 || (rld[r].in
6283 /* We check reload_reg_used to make sure we
6284 don't clobber the return register. */
6285 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6286 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6287 rld[r].when_needed, rld[r].in,
6288 rld[r].out, r, 1)))
6289 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6290 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6291 /* Look first for regs to share, then for unshared. But
6292 don't share regs used for inherited reloads; they are
6293 the ones we want to preserve. */
6294 && (pass
6295 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6296 regnum)
6297 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6298 regnum))))
6300 int nr = hard_regno_nregs[regnum][rld[r].mode];
6302 /* During the second pass we want to avoid reload registers
6303 which are "bad" for this reload. */
6304 if (pass == 1
6305 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6306 continue;
6308 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6309 (on 68000) got us two FP regs. If NR is 1,
6310 we would reject both of them. */
6311 if (force_group)
6312 nr = rld[r].nregs;
6313 /* If we need only one reg, we have already won. */
6314 if (nr == 1)
6316 /* But reject a single reg if we demand a group. */
6317 if (force_group)
6318 continue;
6319 break;
6321 /* Otherwise check that as many consecutive regs as we need
6322 are available here. */
6323 while (nr > 1)
6325 int regno = regnum + nr - 1;
6326 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6327 && spill_reg_order[regno] >= 0
6328 && reload_reg_free_p (regno, rld[r].opnum,
6329 rld[r].when_needed)))
6330 break;
6331 nr--;
6333 if (nr == 1)
6334 break;
6338 /* If we found something on the current pass, omit later passes. */
6339 if (count < n_spills)
6340 break;
6343 /* We should have found a spill register by now. */
6344 if (count >= n_spills)
6345 return 0;
6347 /* I is the index in SPILL_REG_RTX of the reload register we are to
6348 allocate. Get an rtx for it and find its register number. */
6350 return set_reload_reg (i, r);
6353 /* Initialize all the tables needed to allocate reload registers.
6354 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6355 is the array we use to restore the reg_rtx field for every reload. */
6357 static void
6358 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6360 int i;
6362 for (i = 0; i < n_reloads; i++)
6363 rld[i].reg_rtx = save_reload_reg_rtx[i];
6365 memset (reload_inherited, 0, MAX_RELOADS);
6366 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6367 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6369 CLEAR_HARD_REG_SET (reload_reg_used);
6370 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6371 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6372 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6373 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6374 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6376 CLEAR_HARD_REG_SET (reg_used_in_insn);
6378 HARD_REG_SET tmp;
6379 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6380 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6381 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6382 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6383 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6384 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6387 for (i = 0; i < reload_n_operands; i++)
6389 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6390 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6391 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6392 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6393 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6394 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6397 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6399 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6401 for (i = 0; i < n_reloads; i++)
6402 /* If we have already decided to use a certain register,
6403 don't use it in another way. */
6404 if (rld[i].reg_rtx)
6405 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6406 rld[i].when_needed, rld[i].mode);
6409 #ifdef SECONDARY_MEMORY_NEEDED
6410 /* If X is not a subreg, return it unmodified. If it is a subreg,
6411 look up whether we made a replacement for the SUBREG_REG. Return
6412 either the replacement or the SUBREG_REG. */
6414 static rtx
6415 replaced_subreg (rtx x)
6417 if (GET_CODE (x) == SUBREG)
6418 return find_replacement (&SUBREG_REG (x));
6419 return x;
6421 #endif
6423 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6424 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6425 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6426 otherwise it is NULL. */
6428 static int
6429 compute_reload_subreg_offset (machine_mode outermode,
6430 rtx subreg,
6431 machine_mode innermode)
6433 int outer_offset;
6434 machine_mode middlemode;
6436 if (!subreg)
6437 return subreg_lowpart_offset (outermode, innermode);
6439 outer_offset = SUBREG_BYTE (subreg);
6440 middlemode = GET_MODE (SUBREG_REG (subreg));
6442 /* If SUBREG is paradoxical then return the normal lowpart offset
6443 for OUTERMODE and INNERMODE. Our caller has already checked
6444 that OUTERMODE fits in INNERMODE. */
6445 if (outer_offset == 0
6446 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6447 return subreg_lowpart_offset (outermode, innermode);
6449 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6450 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6451 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6454 /* Assign hard reg targets for the pseudo-registers we must reload
6455 into hard regs for this insn.
6456 Also output the instructions to copy them in and out of the hard regs.
6458 For machines with register classes, we are responsible for
6459 finding a reload reg in the proper class. */
6461 static void
6462 choose_reload_regs (struct insn_chain *chain)
6464 rtx_insn *insn = chain->insn;
6465 int i, j;
6466 unsigned int max_group_size = 1;
6467 enum reg_class group_class = NO_REGS;
6468 int pass, win, inheritance;
6470 rtx save_reload_reg_rtx[MAX_RELOADS];
6472 /* In order to be certain of getting the registers we need,
6473 we must sort the reloads into order of increasing register class.
6474 Then our grabbing of reload registers will parallel the process
6475 that provided the reload registers.
6477 Also note whether any of the reloads wants a consecutive group of regs.
6478 If so, record the maximum size of the group desired and what
6479 register class contains all the groups needed by this insn. */
6481 for (j = 0; j < n_reloads; j++)
6483 reload_order[j] = j;
6484 if (rld[j].reg_rtx != NULL_RTX)
6486 gcc_assert (REG_P (rld[j].reg_rtx)
6487 && HARD_REGISTER_P (rld[j].reg_rtx));
6488 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6490 else
6491 reload_spill_index[j] = -1;
6493 if (rld[j].nregs > 1)
6495 max_group_size = MAX (rld[j].nregs, max_group_size);
6496 group_class
6497 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6500 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6503 if (n_reloads > 1)
6504 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6506 /* If -O, try first with inheritance, then turning it off.
6507 If not -O, don't do inheritance.
6508 Using inheritance when not optimizing leads to paradoxes
6509 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6510 because one side of the comparison might be inherited. */
6511 win = 0;
6512 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6514 choose_reload_regs_init (chain, save_reload_reg_rtx);
6516 /* Process the reloads in order of preference just found.
6517 Beyond this point, subregs can be found in reload_reg_rtx.
6519 This used to look for an existing reloaded home for all of the
6520 reloads, and only then perform any new reloads. But that could lose
6521 if the reloads were done out of reg-class order because a later
6522 reload with a looser constraint might have an old home in a register
6523 needed by an earlier reload with a tighter constraint.
6525 To solve this, we make two passes over the reloads, in the order
6526 described above. In the first pass we try to inherit a reload
6527 from a previous insn. If there is a later reload that needs a
6528 class that is a proper subset of the class being processed, we must
6529 also allocate a spill register during the first pass.
6531 Then make a second pass over the reloads to allocate any reloads
6532 that haven't been given registers yet. */
6534 for (j = 0; j < n_reloads; j++)
6536 int r = reload_order[j];
6537 rtx search_equiv = NULL_RTX;
6539 /* Ignore reloads that got marked inoperative. */
6540 if (rld[r].out == 0 && rld[r].in == 0
6541 && ! rld[r].secondary_p)
6542 continue;
6544 /* If find_reloads chose to use reload_in or reload_out as a reload
6545 register, we don't need to chose one. Otherwise, try even if it
6546 found one since we might save an insn if we find the value lying
6547 around.
6548 Try also when reload_in is a pseudo without a hard reg. */
6549 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6550 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6551 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6552 && !MEM_P (rld[r].in)
6553 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6554 continue;
6556 #if 0 /* No longer needed for correct operation.
6557 It might give better code, or might not; worth an experiment? */
6558 /* If this is an optional reload, we can't inherit from earlier insns
6559 until we are sure that any non-optional reloads have been allocated.
6560 The following code takes advantage of the fact that optional reloads
6561 are at the end of reload_order. */
6562 if (rld[r].optional != 0)
6563 for (i = 0; i < j; i++)
6564 if ((rld[reload_order[i]].out != 0
6565 || rld[reload_order[i]].in != 0
6566 || rld[reload_order[i]].secondary_p)
6567 && ! rld[reload_order[i]].optional
6568 && rld[reload_order[i]].reg_rtx == 0)
6569 allocate_reload_reg (chain, reload_order[i], 0);
6570 #endif
6572 /* First see if this pseudo is already available as reloaded
6573 for a previous insn. We cannot try to inherit for reloads
6574 that are smaller than the maximum number of registers needed
6575 for groups unless the register we would allocate cannot be used
6576 for the groups.
6578 We could check here to see if this is a secondary reload for
6579 an object that is already in a register of the desired class.
6580 This would avoid the need for the secondary reload register.
6581 But this is complex because we can't easily determine what
6582 objects might want to be loaded via this reload. So let a
6583 register be allocated here. In `emit_reload_insns' we suppress
6584 one of the loads in the case described above. */
6586 if (inheritance)
6588 int byte = 0;
6589 int regno = -1;
6590 machine_mode mode = VOIDmode;
6591 rtx subreg = NULL_RTX;
6593 if (rld[r].in == 0)
6595 else if (REG_P (rld[r].in))
6597 regno = REGNO (rld[r].in);
6598 mode = GET_MODE (rld[r].in);
6600 else if (REG_P (rld[r].in_reg))
6602 regno = REGNO (rld[r].in_reg);
6603 mode = GET_MODE (rld[r].in_reg);
6605 else if (GET_CODE (rld[r].in_reg) == SUBREG
6606 && REG_P (SUBREG_REG (rld[r].in_reg)))
6608 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6609 if (regno < FIRST_PSEUDO_REGISTER)
6610 regno = subreg_regno (rld[r].in_reg);
6611 else
6613 subreg = rld[r].in_reg;
6614 byte = SUBREG_BYTE (subreg);
6616 mode = GET_MODE (rld[r].in_reg);
6618 #ifdef AUTO_INC_DEC
6619 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6620 && REG_P (XEXP (rld[r].in_reg, 0)))
6622 regno = REGNO (XEXP (rld[r].in_reg, 0));
6623 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6624 rld[r].out = rld[r].in;
6626 #endif
6627 #if 0
6628 /* This won't work, since REGNO can be a pseudo reg number.
6629 Also, it takes much more hair to keep track of all the things
6630 that can invalidate an inherited reload of part of a pseudoreg. */
6631 else if (GET_CODE (rld[r].in) == SUBREG
6632 && REG_P (SUBREG_REG (rld[r].in)))
6633 regno = subreg_regno (rld[r].in);
6634 #endif
6636 if (regno >= 0
6637 && reg_last_reload_reg[regno] != 0
6638 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6639 >= GET_MODE_SIZE (mode) + byte)
6640 #ifdef CANNOT_CHANGE_MODE_CLASS
6641 /* Verify that the register it's in can be used in
6642 mode MODE. */
6643 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6644 GET_MODE (reg_last_reload_reg[regno]),
6645 mode)
6646 #endif
6649 enum reg_class rclass = rld[r].rclass, last_class;
6650 rtx last_reg = reg_last_reload_reg[regno];
6652 i = REGNO (last_reg);
6653 byte = compute_reload_subreg_offset (mode,
6654 subreg,
6655 GET_MODE (last_reg));
6656 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6657 last_class = REGNO_REG_CLASS (i);
6659 if (reg_reloaded_contents[i] == regno
6660 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6661 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6662 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6663 /* Even if we can't use this register as a reload
6664 register, we might use it for reload_override_in,
6665 if copying it to the desired class is cheap
6666 enough. */
6667 || ((register_move_cost (mode, last_class, rclass)
6668 < memory_move_cost (mode, rclass, true))
6669 && (secondary_reload_class (1, rclass, mode,
6670 last_reg)
6671 == NO_REGS)
6672 #ifdef SECONDARY_MEMORY_NEEDED
6673 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6674 mode)
6675 #endif
6678 && (rld[r].nregs == max_group_size
6679 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6681 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6682 rld[r].when_needed, rld[r].in,
6683 const0_rtx, r, 1))
6685 /* If a group is needed, verify that all the subsequent
6686 registers still have their values intact. */
6687 int nr = hard_regno_nregs[i][rld[r].mode];
6688 int k;
6690 for (k = 1; k < nr; k++)
6691 if (reg_reloaded_contents[i + k] != regno
6692 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6693 break;
6695 if (k == nr)
6697 int i1;
6698 int bad_for_class;
6700 last_reg = (GET_MODE (last_reg) == mode
6701 ? last_reg : gen_rtx_REG (mode, i));
6703 bad_for_class = 0;
6704 for (k = 0; k < nr; k++)
6705 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6706 i+k);
6708 /* We found a register that contains the
6709 value we need. If this register is the
6710 same as an `earlyclobber' operand of the
6711 current insn, just mark it as a place to
6712 reload from since we can't use it as the
6713 reload register itself. */
6715 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6716 if (reg_overlap_mentioned_for_reload_p
6717 (reg_last_reload_reg[regno],
6718 reload_earlyclobbers[i1]))
6719 break;
6721 if (i1 != n_earlyclobbers
6722 || ! (free_for_value_p (i, rld[r].mode,
6723 rld[r].opnum,
6724 rld[r].when_needed, rld[r].in,
6725 rld[r].out, r, 1))
6726 /* Don't use it if we'd clobber a pseudo reg. */
6727 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6728 && rld[r].out
6729 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6730 /* Don't clobber the frame pointer. */
6731 || (i == HARD_FRAME_POINTER_REGNUM
6732 && frame_pointer_needed
6733 && rld[r].out)
6734 /* Don't really use the inherited spill reg
6735 if we need it wider than we've got it. */
6736 || (GET_MODE_SIZE (rld[r].mode)
6737 > GET_MODE_SIZE (mode))
6738 || bad_for_class
6740 /* If find_reloads chose reload_out as reload
6741 register, stay with it - that leaves the
6742 inherited register for subsequent reloads. */
6743 || (rld[r].out && rld[r].reg_rtx
6744 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6746 if (! rld[r].optional)
6748 reload_override_in[r] = last_reg;
6749 reload_inheritance_insn[r]
6750 = reg_reloaded_insn[i];
6753 else
6755 int k;
6756 /* We can use this as a reload reg. */
6757 /* Mark the register as in use for this part of
6758 the insn. */
6759 mark_reload_reg_in_use (i,
6760 rld[r].opnum,
6761 rld[r].when_needed,
6762 rld[r].mode);
6763 rld[r].reg_rtx = last_reg;
6764 reload_inherited[r] = 1;
6765 reload_inheritance_insn[r]
6766 = reg_reloaded_insn[i];
6767 reload_spill_index[r] = i;
6768 for (k = 0; k < nr; k++)
6769 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6770 i + k);
6777 /* Here's another way to see if the value is already lying around. */
6778 if (inheritance
6779 && rld[r].in != 0
6780 && ! reload_inherited[r]
6781 && rld[r].out == 0
6782 && (CONSTANT_P (rld[r].in)
6783 || GET_CODE (rld[r].in) == PLUS
6784 || REG_P (rld[r].in)
6785 || MEM_P (rld[r].in))
6786 && (rld[r].nregs == max_group_size
6787 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6788 search_equiv = rld[r].in;
6790 if (search_equiv)
6792 rtx equiv
6793 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6794 -1, NULL, 0, rld[r].mode);
6795 int regno = 0;
6797 if (equiv != 0)
6799 if (REG_P (equiv))
6800 regno = REGNO (equiv);
6801 else
6803 /* This must be a SUBREG of a hard register.
6804 Make a new REG since this might be used in an
6805 address and not all machines support SUBREGs
6806 there. */
6807 gcc_assert (GET_CODE (equiv) == SUBREG);
6808 regno = subreg_regno (equiv);
6809 equiv = gen_rtx_REG (rld[r].mode, regno);
6810 /* If we choose EQUIV as the reload register, but the
6811 loop below decides to cancel the inheritance, we'll
6812 end up reloading EQUIV in rld[r].mode, not the mode
6813 it had originally. That isn't safe when EQUIV isn't
6814 available as a spill register since its value might
6815 still be live at this point. */
6816 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6817 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6818 equiv = 0;
6822 /* If we found a spill reg, reject it unless it is free
6823 and of the desired class. */
6824 if (equiv != 0)
6826 int regs_used = 0;
6827 int bad_for_class = 0;
6828 int max_regno = regno + rld[r].nregs;
6830 for (i = regno; i < max_regno; i++)
6832 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6834 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6838 if ((regs_used
6839 && ! free_for_value_p (regno, rld[r].mode,
6840 rld[r].opnum, rld[r].when_needed,
6841 rld[r].in, rld[r].out, r, 1))
6842 || bad_for_class)
6843 equiv = 0;
6846 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6847 equiv = 0;
6849 /* We found a register that contains the value we need.
6850 If this register is the same as an `earlyclobber' operand
6851 of the current insn, just mark it as a place to reload from
6852 since we can't use it as the reload register itself. */
6854 if (equiv != 0)
6855 for (i = 0; i < n_earlyclobbers; i++)
6856 if (reg_overlap_mentioned_for_reload_p (equiv,
6857 reload_earlyclobbers[i]))
6859 if (! rld[r].optional)
6860 reload_override_in[r] = equiv;
6861 equiv = 0;
6862 break;
6865 /* If the equiv register we have found is explicitly clobbered
6866 in the current insn, it depends on the reload type if we
6867 can use it, use it for reload_override_in, or not at all.
6868 In particular, we then can't use EQUIV for a
6869 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6871 if (equiv != 0)
6873 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6874 switch (rld[r].when_needed)
6876 case RELOAD_FOR_OTHER_ADDRESS:
6877 case RELOAD_FOR_INPADDR_ADDRESS:
6878 case RELOAD_FOR_INPUT_ADDRESS:
6879 case RELOAD_FOR_OPADDR_ADDR:
6880 break;
6881 case RELOAD_OTHER:
6882 case RELOAD_FOR_INPUT:
6883 case RELOAD_FOR_OPERAND_ADDRESS:
6884 if (! rld[r].optional)
6885 reload_override_in[r] = equiv;
6886 /* Fall through. */
6887 default:
6888 equiv = 0;
6889 break;
6891 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6892 switch (rld[r].when_needed)
6894 case RELOAD_FOR_OTHER_ADDRESS:
6895 case RELOAD_FOR_INPADDR_ADDRESS:
6896 case RELOAD_FOR_INPUT_ADDRESS:
6897 case RELOAD_FOR_OPADDR_ADDR:
6898 case RELOAD_FOR_OPERAND_ADDRESS:
6899 case RELOAD_FOR_INPUT:
6900 break;
6901 case RELOAD_OTHER:
6902 if (! rld[r].optional)
6903 reload_override_in[r] = equiv;
6904 /* Fall through. */
6905 default:
6906 equiv = 0;
6907 break;
6911 /* If we found an equivalent reg, say no code need be generated
6912 to load it, and use it as our reload reg. */
6913 if (equiv != 0
6914 && (regno != HARD_FRAME_POINTER_REGNUM
6915 || !frame_pointer_needed))
6917 int nr = hard_regno_nregs[regno][rld[r].mode];
6918 int k;
6919 rld[r].reg_rtx = equiv;
6920 reload_spill_index[r] = regno;
6921 reload_inherited[r] = 1;
6923 /* If reg_reloaded_valid is not set for this register,
6924 there might be a stale spill_reg_store lying around.
6925 We must clear it, since otherwise emit_reload_insns
6926 might delete the store. */
6927 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6928 spill_reg_store[regno] = NULL;
6929 /* If any of the hard registers in EQUIV are spill
6930 registers, mark them as in use for this insn. */
6931 for (k = 0; k < nr; k++)
6933 i = spill_reg_order[regno + k];
6934 if (i >= 0)
6936 mark_reload_reg_in_use (regno, rld[r].opnum,
6937 rld[r].when_needed,
6938 rld[r].mode);
6939 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6940 regno + k);
6946 /* If we found a register to use already, or if this is an optional
6947 reload, we are done. */
6948 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6949 continue;
6951 #if 0
6952 /* No longer needed for correct operation. Might or might
6953 not give better code on the average. Want to experiment? */
6955 /* See if there is a later reload that has a class different from our
6956 class that intersects our class or that requires less register
6957 than our reload. If so, we must allocate a register to this
6958 reload now, since that reload might inherit a previous reload
6959 and take the only available register in our class. Don't do this
6960 for optional reloads since they will force all previous reloads
6961 to be allocated. Also don't do this for reloads that have been
6962 turned off. */
6964 for (i = j + 1; i < n_reloads; i++)
6966 int s = reload_order[i];
6968 if ((rld[s].in == 0 && rld[s].out == 0
6969 && ! rld[s].secondary_p)
6970 || rld[s].optional)
6971 continue;
6973 if ((rld[s].rclass != rld[r].rclass
6974 && reg_classes_intersect_p (rld[r].rclass,
6975 rld[s].rclass))
6976 || rld[s].nregs < rld[r].nregs)
6977 break;
6980 if (i == n_reloads)
6981 continue;
6983 allocate_reload_reg (chain, r, j == n_reloads - 1);
6984 #endif
6987 /* Now allocate reload registers for anything non-optional that
6988 didn't get one yet. */
6989 for (j = 0; j < n_reloads; j++)
6991 int r = reload_order[j];
6993 /* Ignore reloads that got marked inoperative. */
6994 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6995 continue;
6997 /* Skip reloads that already have a register allocated or are
6998 optional. */
6999 if (rld[r].reg_rtx != 0 || rld[r].optional)
7000 continue;
7002 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
7003 break;
7006 /* If that loop got all the way, we have won. */
7007 if (j == n_reloads)
7009 win = 1;
7010 break;
7013 /* Loop around and try without any inheritance. */
7016 if (! win)
7018 /* First undo everything done by the failed attempt
7019 to allocate with inheritance. */
7020 choose_reload_regs_init (chain, save_reload_reg_rtx);
7022 /* Some sanity tests to verify that the reloads found in the first
7023 pass are identical to the ones we have now. */
7024 gcc_assert (chain->n_reloads == n_reloads);
7026 for (i = 0; i < n_reloads; i++)
7028 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7029 continue;
7030 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7031 for (j = 0; j < n_spills; j++)
7032 if (spill_regs[j] == chain->rld[i].regno)
7033 if (! set_reload_reg (j, i))
7034 failed_reload (chain->insn, i);
7038 /* If we thought we could inherit a reload, because it seemed that
7039 nothing else wanted the same reload register earlier in the insn,
7040 verify that assumption, now that all reloads have been assigned.
7041 Likewise for reloads where reload_override_in has been set. */
7043 /* If doing expensive optimizations, do one preliminary pass that doesn't
7044 cancel any inheritance, but removes reloads that have been needed only
7045 for reloads that we know can be inherited. */
7046 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7048 for (j = 0; j < n_reloads; j++)
7050 int r = reload_order[j];
7051 rtx check_reg;
7052 #ifdef SECONDARY_MEMORY_NEEDED
7053 rtx tem;
7054 #endif
7055 if (reload_inherited[r] && rld[r].reg_rtx)
7056 check_reg = rld[r].reg_rtx;
7057 else if (reload_override_in[r]
7058 && (REG_P (reload_override_in[r])
7059 || GET_CODE (reload_override_in[r]) == SUBREG))
7060 check_reg = reload_override_in[r];
7061 else
7062 continue;
7063 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7064 rld[r].opnum, rld[r].when_needed, rld[r].in,
7065 (reload_inherited[r]
7066 ? rld[r].out : const0_rtx),
7067 r, 1))
7069 if (pass)
7070 continue;
7071 reload_inherited[r] = 0;
7072 reload_override_in[r] = 0;
7074 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7075 reload_override_in, then we do not need its related
7076 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7077 likewise for other reload types.
7078 We handle this by removing a reload when its only replacement
7079 is mentioned in reload_in of the reload we are going to inherit.
7080 A special case are auto_inc expressions; even if the input is
7081 inherited, we still need the address for the output. We can
7082 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7083 If we succeeded removing some reload and we are doing a preliminary
7084 pass just to remove such reloads, make another pass, since the
7085 removal of one reload might allow us to inherit another one. */
7086 else if (rld[r].in
7087 && rld[r].out != rld[r].in
7088 && remove_address_replacements (rld[r].in))
7090 if (pass)
7091 pass = 2;
7093 #ifdef SECONDARY_MEMORY_NEEDED
7094 /* If we needed a memory location for the reload, we also have to
7095 remove its related reloads. */
7096 else if (rld[r].in
7097 && rld[r].out != rld[r].in
7098 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7099 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7100 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7101 rld[r].rclass, rld[r].inmode)
7102 && remove_address_replacements
7103 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7104 rld[r].when_needed)))
7106 if (pass)
7107 pass = 2;
7109 #endif
7113 /* Now that reload_override_in is known valid,
7114 actually override reload_in. */
7115 for (j = 0; j < n_reloads; j++)
7116 if (reload_override_in[j])
7117 rld[j].in = reload_override_in[j];
7119 /* If this reload won't be done because it has been canceled or is
7120 optional and not inherited, clear reload_reg_rtx so other
7121 routines (such as subst_reloads) don't get confused. */
7122 for (j = 0; j < n_reloads; j++)
7123 if (rld[j].reg_rtx != 0
7124 && ((rld[j].optional && ! reload_inherited[j])
7125 || (rld[j].in == 0 && rld[j].out == 0
7126 && ! rld[j].secondary_p)))
7128 int regno = true_regnum (rld[j].reg_rtx);
7130 if (spill_reg_order[regno] >= 0)
7131 clear_reload_reg_in_use (regno, rld[j].opnum,
7132 rld[j].when_needed, rld[j].mode);
7133 rld[j].reg_rtx = 0;
7134 reload_spill_index[j] = -1;
7137 /* Record which pseudos and which spill regs have output reloads. */
7138 for (j = 0; j < n_reloads; j++)
7140 int r = reload_order[j];
7142 i = reload_spill_index[r];
7144 /* I is nonneg if this reload uses a register.
7145 If rld[r].reg_rtx is 0, this is an optional reload
7146 that we opted to ignore. */
7147 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7148 && rld[r].reg_rtx != 0)
7150 int nregno = REGNO (rld[r].out_reg);
7151 int nr = 1;
7153 if (nregno < FIRST_PSEUDO_REGISTER)
7154 nr = hard_regno_nregs[nregno][rld[r].mode];
7156 while (--nr >= 0)
7157 SET_REGNO_REG_SET (&reg_has_output_reload,
7158 nregno + nr);
7160 if (i >= 0)
7161 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7163 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7164 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7165 || rld[r].when_needed == RELOAD_FOR_INSN);
7170 /* Deallocate the reload register for reload R. This is called from
7171 remove_address_replacements. */
7173 void
7174 deallocate_reload_reg (int r)
7176 int regno;
7178 if (! rld[r].reg_rtx)
7179 return;
7180 regno = true_regnum (rld[r].reg_rtx);
7181 rld[r].reg_rtx = 0;
7182 if (spill_reg_order[regno] >= 0)
7183 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7184 rld[r].mode);
7185 reload_spill_index[r] = -1;
7188 /* These arrays are filled by emit_reload_insns and its subroutines. */
7189 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7190 static rtx_insn *other_input_address_reload_insns = 0;
7191 static rtx_insn *other_input_reload_insns = 0;
7192 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7193 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7194 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7195 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7196 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7197 static rtx_insn *operand_reload_insns = 0;
7198 static rtx_insn *other_operand_reload_insns = 0;
7199 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7201 /* Values to be put in spill_reg_store are put here first. Instructions
7202 must only be placed here if the associated reload register reaches
7203 the end of the instruction's reload sequence. */
7204 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7205 static HARD_REG_SET reg_reloaded_died;
7207 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7208 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7209 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7210 adjusted register, and return true. Otherwise, return false. */
7211 static bool
7212 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7213 enum reg_class new_class,
7214 machine_mode new_mode)
7217 rtx reg;
7219 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7221 unsigned regno = REGNO (reg);
7223 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7224 continue;
7225 if (GET_MODE (reg) != new_mode)
7227 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7228 continue;
7229 if (hard_regno_nregs[regno][new_mode]
7230 > hard_regno_nregs[regno][GET_MODE (reg)])
7231 continue;
7232 reg = reload_adjust_reg_for_mode (reg, new_mode);
7234 *reload_reg = reg;
7235 return true;
7237 return false;
7240 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7241 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7242 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7243 adjusted register, and return true. Otherwise, return false. */
7244 static bool
7245 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7246 enum insn_code icode)
7249 enum reg_class new_class = scratch_reload_class (icode);
7250 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7252 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7253 new_class, new_mode);
7256 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7257 has the number J. OLD contains the value to be used as input. */
7259 static void
7260 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7261 rtx old, int j)
7263 rtx_insn *insn = chain->insn;
7264 rtx reloadreg;
7265 rtx oldequiv_reg = 0;
7266 rtx oldequiv = 0;
7267 int special = 0;
7268 machine_mode mode;
7269 rtx_insn **where;
7271 /* delete_output_reload is only invoked properly if old contains
7272 the original pseudo register. Since this is replaced with a
7273 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7274 find the pseudo in RELOAD_IN_REG. This is also used to
7275 determine whether a secondary reload is needed. */
7276 if (reload_override_in[j]
7277 && (REG_P (rl->in_reg)
7278 || (GET_CODE (rl->in_reg) == SUBREG
7279 && REG_P (SUBREG_REG (rl->in_reg)))))
7281 oldequiv = old;
7282 old = rl->in_reg;
7284 if (oldequiv == 0)
7285 oldequiv = old;
7286 else if (REG_P (oldequiv))
7287 oldequiv_reg = oldequiv;
7288 else if (GET_CODE (oldequiv) == SUBREG)
7289 oldequiv_reg = SUBREG_REG (oldequiv);
7291 reloadreg = reload_reg_rtx_for_input[j];
7292 mode = GET_MODE (reloadreg);
7294 /* If we are reloading from a register that was recently stored in
7295 with an output-reload, see if we can prove there was
7296 actually no need to store the old value in it. */
7298 if (optimize && REG_P (oldequiv)
7299 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7300 && spill_reg_store[REGNO (oldequiv)]
7301 && REG_P (old)
7302 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7303 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7304 rl->out_reg)))
7305 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7307 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7308 OLDEQUIV. */
7310 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7311 oldequiv = SUBREG_REG (oldequiv);
7312 if (GET_MODE (oldequiv) != VOIDmode
7313 && mode != GET_MODE (oldequiv))
7314 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7316 /* Switch to the right place to emit the reload insns. */
7317 switch (rl->when_needed)
7319 case RELOAD_OTHER:
7320 where = &other_input_reload_insns;
7321 break;
7322 case RELOAD_FOR_INPUT:
7323 where = &input_reload_insns[rl->opnum];
7324 break;
7325 case RELOAD_FOR_INPUT_ADDRESS:
7326 where = &input_address_reload_insns[rl->opnum];
7327 break;
7328 case RELOAD_FOR_INPADDR_ADDRESS:
7329 where = &inpaddr_address_reload_insns[rl->opnum];
7330 break;
7331 case RELOAD_FOR_OUTPUT_ADDRESS:
7332 where = &output_address_reload_insns[rl->opnum];
7333 break;
7334 case RELOAD_FOR_OUTADDR_ADDRESS:
7335 where = &outaddr_address_reload_insns[rl->opnum];
7336 break;
7337 case RELOAD_FOR_OPERAND_ADDRESS:
7338 where = &operand_reload_insns;
7339 break;
7340 case RELOAD_FOR_OPADDR_ADDR:
7341 where = &other_operand_reload_insns;
7342 break;
7343 case RELOAD_FOR_OTHER_ADDRESS:
7344 where = &other_input_address_reload_insns;
7345 break;
7346 default:
7347 gcc_unreachable ();
7350 push_to_sequence (*where);
7352 /* Auto-increment addresses must be reloaded in a special way. */
7353 if (rl->out && ! rl->out_reg)
7355 /* We are not going to bother supporting the case where a
7356 incremented register can't be copied directly from
7357 OLDEQUIV since this seems highly unlikely. */
7358 gcc_assert (rl->secondary_in_reload < 0);
7360 if (reload_inherited[j])
7361 oldequiv = reloadreg;
7363 old = XEXP (rl->in_reg, 0);
7365 /* Prevent normal processing of this reload. */
7366 special = 1;
7367 /* Output a special code sequence for this case. */
7368 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7371 /* If we are reloading a pseudo-register that was set by the previous
7372 insn, see if we can get rid of that pseudo-register entirely
7373 by redirecting the previous insn into our reload register. */
7375 else if (optimize && REG_P (old)
7376 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7377 && dead_or_set_p (insn, old)
7378 /* This is unsafe if some other reload
7379 uses the same reg first. */
7380 && ! conflicts_with_override (reloadreg)
7381 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7382 rl->when_needed, old, rl->out, j, 0))
7384 rtx_insn *temp = PREV_INSN (insn);
7385 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7386 temp = PREV_INSN (temp);
7387 if (temp
7388 && NONJUMP_INSN_P (temp)
7389 && GET_CODE (PATTERN (temp)) == SET
7390 && SET_DEST (PATTERN (temp)) == old
7391 /* Make sure we can access insn_operand_constraint. */
7392 && asm_noperands (PATTERN (temp)) < 0
7393 /* This is unsafe if operand occurs more than once in current
7394 insn. Perhaps some occurrences aren't reloaded. */
7395 && count_occurrences (PATTERN (insn), old, 0) == 1)
7397 rtx old = SET_DEST (PATTERN (temp));
7398 /* Store into the reload register instead of the pseudo. */
7399 SET_DEST (PATTERN (temp)) = reloadreg;
7401 /* Verify that resulting insn is valid.
7403 Note that we have replaced the destination of TEMP with
7404 RELOADREG. If TEMP references RELOADREG within an
7405 autoincrement addressing mode, then the resulting insn
7406 is ill-formed and we must reject this optimization. */
7407 extract_insn (temp);
7408 if (constrain_operands (1, get_enabled_alternatives (temp))
7409 #ifdef AUTO_INC_DEC
7410 && ! find_reg_note (temp, REG_INC, reloadreg)
7411 #endif
7414 /* If the previous insn is an output reload, the source is
7415 a reload register, and its spill_reg_store entry will
7416 contain the previous destination. This is now
7417 invalid. */
7418 if (REG_P (SET_SRC (PATTERN (temp)))
7419 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7421 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7422 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7425 /* If these are the only uses of the pseudo reg,
7426 pretend for GDB it lives in the reload reg we used. */
7427 if (REG_N_DEATHS (REGNO (old)) == 1
7428 && REG_N_SETS (REGNO (old)) == 1)
7430 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7431 if (ira_conflicts_p)
7432 /* Inform IRA about the change. */
7433 ira_mark_allocation_change (REGNO (old));
7434 alter_reg (REGNO (old), -1, false);
7436 special = 1;
7438 /* Adjust any debug insns between temp and insn. */
7439 while ((temp = NEXT_INSN (temp)) != insn)
7440 if (DEBUG_INSN_P (temp))
7441 replace_rtx (PATTERN (temp), old, reloadreg);
7442 else
7443 gcc_assert (NOTE_P (temp));
7445 else
7447 SET_DEST (PATTERN (temp)) = old;
7452 /* We can't do that, so output an insn to load RELOADREG. */
7454 /* If we have a secondary reload, pick up the secondary register
7455 and icode, if any. If OLDEQUIV and OLD are different or
7456 if this is an in-out reload, recompute whether or not we
7457 still need a secondary register and what the icode should
7458 be. If we still need a secondary register and the class or
7459 icode is different, go back to reloading from OLD if using
7460 OLDEQUIV means that we got the wrong type of register. We
7461 cannot have different class or icode due to an in-out reload
7462 because we don't make such reloads when both the input and
7463 output need secondary reload registers. */
7465 if (! special && rl->secondary_in_reload >= 0)
7467 rtx second_reload_reg = 0;
7468 rtx third_reload_reg = 0;
7469 int secondary_reload = rl->secondary_in_reload;
7470 rtx real_oldequiv = oldequiv;
7471 rtx real_old = old;
7472 rtx tmp;
7473 enum insn_code icode;
7474 enum insn_code tertiary_icode = CODE_FOR_nothing;
7476 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7477 and similarly for OLD.
7478 See comments in get_secondary_reload in reload.c. */
7479 /* If it is a pseudo that cannot be replaced with its
7480 equivalent MEM, we must fall back to reload_in, which
7481 will have all the necessary substitutions registered.
7482 Likewise for a pseudo that can't be replaced with its
7483 equivalent constant.
7485 Take extra care for subregs of such pseudos. Note that
7486 we cannot use reg_equiv_mem in this case because it is
7487 not in the right mode. */
7489 tmp = oldequiv;
7490 if (GET_CODE (tmp) == SUBREG)
7491 tmp = SUBREG_REG (tmp);
7492 if (REG_P (tmp)
7493 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7494 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7495 || reg_equiv_constant (REGNO (tmp)) != 0))
7497 if (! reg_equiv_mem (REGNO (tmp))
7498 || num_not_at_initial_offset
7499 || GET_CODE (oldequiv) == SUBREG)
7500 real_oldequiv = rl->in;
7501 else
7502 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7505 tmp = old;
7506 if (GET_CODE (tmp) == SUBREG)
7507 tmp = SUBREG_REG (tmp);
7508 if (REG_P (tmp)
7509 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7510 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7511 || reg_equiv_constant (REGNO (tmp)) != 0))
7513 if (! reg_equiv_mem (REGNO (tmp))
7514 || num_not_at_initial_offset
7515 || GET_CODE (old) == SUBREG)
7516 real_old = rl->in;
7517 else
7518 real_old = reg_equiv_mem (REGNO (tmp));
7521 second_reload_reg = rld[secondary_reload].reg_rtx;
7522 if (rld[secondary_reload].secondary_in_reload >= 0)
7524 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7526 third_reload_reg = rld[tertiary_reload].reg_rtx;
7527 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7528 /* We'd have to add more code for quartary reloads. */
7529 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7531 icode = rl->secondary_in_icode;
7533 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7534 || (rl->in != 0 && rl->out != 0))
7536 secondary_reload_info sri, sri2;
7537 enum reg_class new_class, new_t_class;
7539 sri.icode = CODE_FOR_nothing;
7540 sri.prev_sri = NULL;
7541 new_class
7542 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7543 rl->rclass, mode,
7544 &sri);
7546 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7547 second_reload_reg = 0;
7548 else if (new_class == NO_REGS)
7550 if (reload_adjust_reg_for_icode (&second_reload_reg,
7551 third_reload_reg,
7552 (enum insn_code) sri.icode))
7554 icode = (enum insn_code) sri.icode;
7555 third_reload_reg = 0;
7557 else
7559 oldequiv = old;
7560 real_oldequiv = real_old;
7563 else if (sri.icode != CODE_FOR_nothing)
7564 /* We currently lack a way to express this in reloads. */
7565 gcc_unreachable ();
7566 else
7568 sri2.icode = CODE_FOR_nothing;
7569 sri2.prev_sri = &sri;
7570 new_t_class
7571 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7572 new_class, mode,
7573 &sri);
7574 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7576 if (reload_adjust_reg_for_temp (&second_reload_reg,
7577 third_reload_reg,
7578 new_class, mode))
7580 third_reload_reg = 0;
7581 tertiary_icode = (enum insn_code) sri2.icode;
7583 else
7585 oldequiv = old;
7586 real_oldequiv = real_old;
7589 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7591 rtx intermediate = second_reload_reg;
7593 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7594 new_class, mode)
7595 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7596 ((enum insn_code)
7597 sri2.icode)))
7599 second_reload_reg = intermediate;
7600 tertiary_icode = (enum insn_code) sri2.icode;
7602 else
7604 oldequiv = old;
7605 real_oldequiv = real_old;
7608 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7610 rtx intermediate = second_reload_reg;
7612 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7613 new_class, mode)
7614 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7615 new_t_class, mode))
7617 second_reload_reg = intermediate;
7618 tertiary_icode = (enum insn_code) sri2.icode;
7620 else
7622 oldequiv = old;
7623 real_oldequiv = real_old;
7626 else
7628 /* This could be handled more intelligently too. */
7629 oldequiv = old;
7630 real_oldequiv = real_old;
7635 /* If we still need a secondary reload register, check
7636 to see if it is being used as a scratch or intermediate
7637 register and generate code appropriately. If we need
7638 a scratch register, use REAL_OLDEQUIV since the form of
7639 the insn may depend on the actual address if it is
7640 a MEM. */
7642 if (second_reload_reg)
7644 if (icode != CODE_FOR_nothing)
7646 /* We'd have to add extra code to handle this case. */
7647 gcc_assert (!third_reload_reg);
7649 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7650 second_reload_reg));
7651 special = 1;
7653 else
7655 /* See if we need a scratch register to load the
7656 intermediate register (a tertiary reload). */
7657 if (tertiary_icode != CODE_FOR_nothing)
7659 emit_insn ((GEN_FCN (tertiary_icode)
7660 (second_reload_reg, real_oldequiv,
7661 third_reload_reg)));
7663 else if (third_reload_reg)
7665 gen_reload (third_reload_reg, real_oldequiv,
7666 rl->opnum,
7667 rl->when_needed);
7668 gen_reload (second_reload_reg, third_reload_reg,
7669 rl->opnum,
7670 rl->when_needed);
7672 else
7673 gen_reload (second_reload_reg, real_oldequiv,
7674 rl->opnum,
7675 rl->when_needed);
7677 oldequiv = second_reload_reg;
7682 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7684 rtx real_oldequiv = oldequiv;
7686 if ((REG_P (oldequiv)
7687 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7688 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7689 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7690 || (GET_CODE (oldequiv) == SUBREG
7691 && REG_P (SUBREG_REG (oldequiv))
7692 && (REGNO (SUBREG_REG (oldequiv))
7693 >= FIRST_PSEUDO_REGISTER)
7694 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7695 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7696 || (CONSTANT_P (oldequiv)
7697 && (targetm.preferred_reload_class (oldequiv,
7698 REGNO_REG_CLASS (REGNO (reloadreg)))
7699 == NO_REGS)))
7700 real_oldequiv = rl->in;
7701 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7702 rl->when_needed);
7705 if (cfun->can_throw_non_call_exceptions)
7706 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7708 /* End this sequence. */
7709 *where = get_insns ();
7710 end_sequence ();
7712 /* Update reload_override_in so that delete_address_reloads_1
7713 can see the actual register usage. */
7714 if (oldequiv_reg)
7715 reload_override_in[j] = oldequiv;
7718 /* Generate insns to for the output reload RL, which is for the insn described
7719 by CHAIN and has the number J. */
7720 static void
7721 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7722 int j)
7724 rtx reloadreg;
7725 rtx_insn *insn = chain->insn;
7726 int special = 0;
7727 rtx old = rl->out;
7728 machine_mode mode;
7729 rtx_insn *p;
7730 rtx rl_reg_rtx;
7732 if (rl->when_needed == RELOAD_OTHER)
7733 start_sequence ();
7734 else
7735 push_to_sequence (output_reload_insns[rl->opnum]);
7737 rl_reg_rtx = reload_reg_rtx_for_output[j];
7738 mode = GET_MODE (rl_reg_rtx);
7740 reloadreg = rl_reg_rtx;
7742 /* If we need two reload regs, set RELOADREG to the intermediate
7743 one, since it will be stored into OLD. We might need a secondary
7744 register only for an input reload, so check again here. */
7746 if (rl->secondary_out_reload >= 0)
7748 rtx real_old = old;
7749 int secondary_reload = rl->secondary_out_reload;
7750 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7752 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7753 && reg_equiv_mem (REGNO (old)) != 0)
7754 real_old = reg_equiv_mem (REGNO (old));
7756 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7758 rtx second_reloadreg = reloadreg;
7759 reloadreg = rld[secondary_reload].reg_rtx;
7761 /* See if RELOADREG is to be used as a scratch register
7762 or as an intermediate register. */
7763 if (rl->secondary_out_icode != CODE_FOR_nothing)
7765 /* We'd have to add extra code to handle this case. */
7766 gcc_assert (tertiary_reload < 0);
7768 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7769 (real_old, second_reloadreg, reloadreg)));
7770 special = 1;
7772 else
7774 /* See if we need both a scratch and intermediate reload
7775 register. */
7777 enum insn_code tertiary_icode
7778 = rld[secondary_reload].secondary_out_icode;
7780 /* We'd have to add more code for quartary reloads. */
7781 gcc_assert (tertiary_reload < 0
7782 || rld[tertiary_reload].secondary_out_reload < 0);
7784 if (GET_MODE (reloadreg) != mode)
7785 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7787 if (tertiary_icode != CODE_FOR_nothing)
7789 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7791 /* Copy primary reload reg to secondary reload reg.
7792 (Note that these have been swapped above, then
7793 secondary reload reg to OLD using our insn.) */
7795 /* If REAL_OLD is a paradoxical SUBREG, remove it
7796 and try to put the opposite SUBREG on
7797 RELOADREG. */
7798 strip_paradoxical_subreg (&real_old, &reloadreg);
7800 gen_reload (reloadreg, second_reloadreg,
7801 rl->opnum, rl->when_needed);
7802 emit_insn ((GEN_FCN (tertiary_icode)
7803 (real_old, reloadreg, third_reloadreg)));
7804 special = 1;
7807 else
7809 /* Copy between the reload regs here and then to
7810 OUT later. */
7812 gen_reload (reloadreg, second_reloadreg,
7813 rl->opnum, rl->when_needed);
7814 if (tertiary_reload >= 0)
7816 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7818 gen_reload (third_reloadreg, reloadreg,
7819 rl->opnum, rl->when_needed);
7820 reloadreg = third_reloadreg;
7827 /* Output the last reload insn. */
7828 if (! special)
7830 rtx set;
7832 /* Don't output the last reload if OLD is not the dest of
7833 INSN and is in the src and is clobbered by INSN. */
7834 if (! flag_expensive_optimizations
7835 || !REG_P (old)
7836 || !(set = single_set (insn))
7837 || rtx_equal_p (old, SET_DEST (set))
7838 || !reg_mentioned_p (old, SET_SRC (set))
7839 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7840 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7841 gen_reload (old, reloadreg, rl->opnum,
7842 rl->when_needed);
7845 /* Look at all insns we emitted, just to be safe. */
7846 for (p = get_insns (); p; p = NEXT_INSN (p))
7847 if (INSN_P (p))
7849 rtx pat = PATTERN (p);
7851 /* If this output reload doesn't come from a spill reg,
7852 clear any memory of reloaded copies of the pseudo reg.
7853 If this output reload comes from a spill reg,
7854 reg_has_output_reload will make this do nothing. */
7855 note_stores (pat, forget_old_reloads_1, NULL);
7857 if (reg_mentioned_p (rl_reg_rtx, pat))
7859 rtx set = single_set (insn);
7860 if (reload_spill_index[j] < 0
7861 && set
7862 && SET_SRC (set) == rl_reg_rtx)
7864 int src = REGNO (SET_SRC (set));
7866 reload_spill_index[j] = src;
7867 SET_HARD_REG_BIT (reg_is_output_reload, src);
7868 if (find_regno_note (insn, REG_DEAD, src))
7869 SET_HARD_REG_BIT (reg_reloaded_died, src);
7871 if (HARD_REGISTER_P (rl_reg_rtx))
7873 int s = rl->secondary_out_reload;
7874 set = single_set (p);
7875 /* If this reload copies only to the secondary reload
7876 register, the secondary reload does the actual
7877 store. */
7878 if (s >= 0 && set == NULL_RTX)
7879 /* We can't tell what function the secondary reload
7880 has and where the actual store to the pseudo is
7881 made; leave new_spill_reg_store alone. */
7883 else if (s >= 0
7884 && SET_SRC (set) == rl_reg_rtx
7885 && SET_DEST (set) == rld[s].reg_rtx)
7887 /* Usually the next instruction will be the
7888 secondary reload insn; if we can confirm
7889 that it is, setting new_spill_reg_store to
7890 that insn will allow an extra optimization. */
7891 rtx s_reg = rld[s].reg_rtx;
7892 rtx_insn *next = NEXT_INSN (p);
7893 rld[s].out = rl->out;
7894 rld[s].out_reg = rl->out_reg;
7895 set = single_set (next);
7896 if (set && SET_SRC (set) == s_reg
7897 && reload_reg_rtx_reaches_end_p (s_reg, s))
7899 SET_HARD_REG_BIT (reg_is_output_reload,
7900 REGNO (s_reg));
7901 new_spill_reg_store[REGNO (s_reg)] = next;
7904 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7905 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7910 if (rl->when_needed == RELOAD_OTHER)
7912 emit_insn (other_output_reload_insns[rl->opnum]);
7913 other_output_reload_insns[rl->opnum] = get_insns ();
7915 else
7916 output_reload_insns[rl->opnum] = get_insns ();
7918 if (cfun->can_throw_non_call_exceptions)
7919 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7921 end_sequence ();
7924 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7925 and has the number J. */
7926 static void
7927 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7929 rtx_insn *insn = chain->insn;
7930 rtx old = (rl->in && MEM_P (rl->in)
7931 ? rl->in_reg : rl->in);
7932 rtx reg_rtx = rl->reg_rtx;
7934 if (old && reg_rtx)
7936 machine_mode mode;
7938 /* Determine the mode to reload in.
7939 This is very tricky because we have three to choose from.
7940 There is the mode the insn operand wants (rl->inmode).
7941 There is the mode of the reload register RELOADREG.
7942 There is the intrinsic mode of the operand, which we could find
7943 by stripping some SUBREGs.
7944 It turns out that RELOADREG's mode is irrelevant:
7945 we can change that arbitrarily.
7947 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7948 then the reload reg may not support QImode moves, so use SImode.
7949 If foo is in memory due to spilling a pseudo reg, this is safe,
7950 because the QImode value is in the least significant part of a
7951 slot big enough for a SImode. If foo is some other sort of
7952 memory reference, then it is impossible to reload this case,
7953 so previous passes had better make sure this never happens.
7955 Then consider a one-word union which has SImode and one of its
7956 members is a float, being fetched as (SUBREG:SF union:SI).
7957 We must fetch that as SFmode because we could be loading into
7958 a float-only register. In this case OLD's mode is correct.
7960 Consider an immediate integer: it has VOIDmode. Here we need
7961 to get a mode from something else.
7963 In some cases, there is a fourth mode, the operand's
7964 containing mode. If the insn specifies a containing mode for
7965 this operand, it overrides all others.
7967 I am not sure whether the algorithm here is always right,
7968 but it does the right things in those cases. */
7970 mode = GET_MODE (old);
7971 if (mode == VOIDmode)
7972 mode = rl->inmode;
7974 /* We cannot use gen_lowpart_common since it can do the wrong thing
7975 when REG_RTX has a multi-word mode. Note that REG_RTX must
7976 always be a REG here. */
7977 if (GET_MODE (reg_rtx) != mode)
7978 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7980 reload_reg_rtx_for_input[j] = reg_rtx;
7982 if (old != 0
7983 /* AUTO_INC reloads need to be handled even if inherited. We got an
7984 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7985 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7986 && ! rtx_equal_p (reg_rtx, old)
7987 && reg_rtx != 0)
7988 emit_input_reload_insns (chain, rld + j, old, j);
7990 /* When inheriting a wider reload, we have a MEM in rl->in,
7991 e.g. inheriting a SImode output reload for
7992 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7993 if (optimize && reload_inherited[j] && rl->in
7994 && MEM_P (rl->in)
7995 && MEM_P (rl->in_reg)
7996 && reload_spill_index[j] >= 0
7997 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7998 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
8000 /* If we are reloading a register that was recently stored in with an
8001 output-reload, see if we can prove there was
8002 actually no need to store the old value in it. */
8004 if (optimize
8005 && (reload_inherited[j] || reload_override_in[j])
8006 && reg_rtx
8007 && REG_P (reg_rtx)
8008 && spill_reg_store[REGNO (reg_rtx)] != 0
8009 #if 0
8010 /* There doesn't seem to be any reason to restrict this to pseudos
8011 and doing so loses in the case where we are copying from a
8012 register of the wrong class. */
8013 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8014 #endif
8015 /* The insn might have already some references to stackslots
8016 replaced by MEMs, while reload_out_reg still names the
8017 original pseudo. */
8018 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8019 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8020 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8023 /* Do output reloading for reload RL, which is for the insn described by
8024 CHAIN and has the number J.
8025 ??? At some point we need to support handling output reloads of
8026 JUMP_INSNs or insns that set cc0. */
8027 static void
8028 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8030 rtx note, old;
8031 rtx_insn *insn = chain->insn;
8032 /* If this is an output reload that stores something that is
8033 not loaded in this same reload, see if we can eliminate a previous
8034 store. */
8035 rtx pseudo = rl->out_reg;
8036 rtx reg_rtx = rl->reg_rtx;
8038 if (rl->out && reg_rtx)
8040 machine_mode mode;
8042 /* Determine the mode to reload in.
8043 See comments above (for input reloading). */
8044 mode = GET_MODE (rl->out);
8045 if (mode == VOIDmode)
8047 /* VOIDmode should never happen for an output. */
8048 if (asm_noperands (PATTERN (insn)) < 0)
8049 /* It's the compiler's fault. */
8050 fatal_insn ("VOIDmode on an output", insn);
8051 error_for_asm (insn, "output operand is constant in %<asm%>");
8052 /* Prevent crash--use something we know is valid. */
8053 mode = word_mode;
8054 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8056 if (GET_MODE (reg_rtx) != mode)
8057 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8059 reload_reg_rtx_for_output[j] = reg_rtx;
8061 if (pseudo
8062 && optimize
8063 && REG_P (pseudo)
8064 && ! rtx_equal_p (rl->in_reg, pseudo)
8065 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8066 && reg_last_reload_reg[REGNO (pseudo)])
8068 int pseudo_no = REGNO (pseudo);
8069 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8071 /* We don't need to test full validity of last_regno for
8072 inherit here; we only want to know if the store actually
8073 matches the pseudo. */
8074 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8075 && reg_reloaded_contents[last_regno] == pseudo_no
8076 && spill_reg_store[last_regno]
8077 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8078 delete_output_reload (insn, j, last_regno, reg_rtx);
8081 old = rl->out_reg;
8082 if (old == 0
8083 || reg_rtx == 0
8084 || rtx_equal_p (old, reg_rtx))
8085 return;
8087 /* An output operand that dies right away does need a reload,
8088 but need not be copied from it. Show the new location in the
8089 REG_UNUSED note. */
8090 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8091 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8093 XEXP (note, 0) = reg_rtx;
8094 return;
8096 /* Likewise for a SUBREG of an operand that dies. */
8097 else if (GET_CODE (old) == SUBREG
8098 && REG_P (SUBREG_REG (old))
8099 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8100 SUBREG_REG (old))))
8102 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8103 return;
8105 else if (GET_CODE (old) == SCRATCH)
8106 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8107 but we don't want to make an output reload. */
8108 return;
8110 /* If is a JUMP_INSN, we can't support output reloads yet. */
8111 gcc_assert (NONJUMP_INSN_P (insn));
8113 emit_output_reload_insns (chain, rld + j, j);
8116 /* A reload copies values of MODE from register SRC to register DEST.
8117 Return true if it can be treated for inheritance purposes like a
8118 group of reloads, each one reloading a single hard register. The
8119 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8120 occupy the same number of hard registers. */
8122 static bool
8123 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8124 int src ATTRIBUTE_UNUSED,
8125 machine_mode mode ATTRIBUTE_UNUSED)
8127 #ifdef CANNOT_CHANGE_MODE_CLASS
8128 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8129 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8130 #else
8131 return true;
8132 #endif
8135 /* Output insns to reload values in and out of the chosen reload regs. */
8137 static void
8138 emit_reload_insns (struct insn_chain *chain)
8140 rtx_insn *insn = chain->insn;
8142 int j;
8144 CLEAR_HARD_REG_SET (reg_reloaded_died);
8146 for (j = 0; j < reload_n_operands; j++)
8147 input_reload_insns[j] = input_address_reload_insns[j]
8148 = inpaddr_address_reload_insns[j]
8149 = output_reload_insns[j] = output_address_reload_insns[j]
8150 = outaddr_address_reload_insns[j]
8151 = other_output_reload_insns[j] = 0;
8152 other_input_address_reload_insns = 0;
8153 other_input_reload_insns = 0;
8154 operand_reload_insns = 0;
8155 other_operand_reload_insns = 0;
8157 /* Dump reloads into the dump file. */
8158 if (dump_file)
8160 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8161 debug_reload_to_stream (dump_file);
8164 for (j = 0; j < n_reloads; j++)
8165 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8167 unsigned int i;
8169 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8170 new_spill_reg_store[i] = 0;
8173 /* Now output the instructions to copy the data into and out of the
8174 reload registers. Do these in the order that the reloads were reported,
8175 since reloads of base and index registers precede reloads of operands
8176 and the operands may need the base and index registers reloaded. */
8178 for (j = 0; j < n_reloads; j++)
8180 do_input_reload (chain, rld + j, j);
8181 do_output_reload (chain, rld + j, j);
8184 /* Now write all the insns we made for reloads in the order expected by
8185 the allocation functions. Prior to the insn being reloaded, we write
8186 the following reloads:
8188 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8190 RELOAD_OTHER reloads.
8192 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8193 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8194 RELOAD_FOR_INPUT reload for the operand.
8196 RELOAD_FOR_OPADDR_ADDRS reloads.
8198 RELOAD_FOR_OPERAND_ADDRESS reloads.
8200 After the insn being reloaded, we write the following:
8202 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8203 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8204 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8205 reloads for the operand. The RELOAD_OTHER output reloads are
8206 output in descending order by reload number. */
8208 emit_insn_before (other_input_address_reload_insns, insn);
8209 emit_insn_before (other_input_reload_insns, insn);
8211 for (j = 0; j < reload_n_operands; j++)
8213 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8214 emit_insn_before (input_address_reload_insns[j], insn);
8215 emit_insn_before (input_reload_insns[j], insn);
8218 emit_insn_before (other_operand_reload_insns, insn);
8219 emit_insn_before (operand_reload_insns, insn);
8221 for (j = 0; j < reload_n_operands; j++)
8223 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8224 x = emit_insn_after (output_address_reload_insns[j], x);
8225 x = emit_insn_after (output_reload_insns[j], x);
8226 emit_insn_after (other_output_reload_insns[j], x);
8229 /* For all the spill regs newly reloaded in this instruction,
8230 record what they were reloaded from, so subsequent instructions
8231 can inherit the reloads.
8233 Update spill_reg_store for the reloads of this insn.
8234 Copy the elements that were updated in the loop above. */
8236 for (j = 0; j < n_reloads; j++)
8238 int r = reload_order[j];
8239 int i = reload_spill_index[r];
8241 /* If this is a non-inherited input reload from a pseudo, we must
8242 clear any memory of a previous store to the same pseudo. Only do
8243 something if there will not be an output reload for the pseudo
8244 being reloaded. */
8245 if (rld[r].in_reg != 0
8246 && ! (reload_inherited[r] || reload_override_in[r]))
8248 rtx reg = rld[r].in_reg;
8250 if (GET_CODE (reg) == SUBREG)
8251 reg = SUBREG_REG (reg);
8253 if (REG_P (reg)
8254 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8255 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8257 int nregno = REGNO (reg);
8259 if (reg_last_reload_reg[nregno])
8261 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8263 if (reg_reloaded_contents[last_regno] == nregno)
8264 spill_reg_store[last_regno] = 0;
8269 /* I is nonneg if this reload used a register.
8270 If rld[r].reg_rtx is 0, this is an optional reload
8271 that we opted to ignore. */
8273 if (i >= 0 && rld[r].reg_rtx != 0)
8275 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8276 int k;
8278 /* For a multi register reload, we need to check if all or part
8279 of the value lives to the end. */
8280 for (k = 0; k < nr; k++)
8281 if (reload_reg_reaches_end_p (i + k, r))
8282 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8284 /* Maybe the spill reg contains a copy of reload_out. */
8285 if (rld[r].out != 0
8286 && (REG_P (rld[r].out)
8287 || (rld[r].out_reg
8288 ? REG_P (rld[r].out_reg)
8289 /* The reload value is an auto-modification of
8290 some kind. For PRE_INC, POST_INC, PRE_DEC
8291 and POST_DEC, we record an equivalence
8292 between the reload register and the operand
8293 on the optimistic assumption that we can make
8294 the equivalence hold. reload_as_needed must
8295 then either make it hold or invalidate the
8296 equivalence.
8298 PRE_MODIFY and POST_MODIFY addresses are reloaded
8299 somewhat differently, and allowing them here leads
8300 to problems. */
8301 : (GET_CODE (rld[r].out) != POST_MODIFY
8302 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8304 rtx reg;
8306 reg = reload_reg_rtx_for_output[r];
8307 if (reload_reg_rtx_reaches_end_p (reg, r))
8309 machine_mode mode = GET_MODE (reg);
8310 int regno = REGNO (reg);
8311 int nregs = hard_regno_nregs[regno][mode];
8312 rtx out = (REG_P (rld[r].out)
8313 ? rld[r].out
8314 : rld[r].out_reg
8315 ? rld[r].out_reg
8316 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8317 int out_regno = REGNO (out);
8318 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8319 : hard_regno_nregs[out_regno][mode]);
8320 bool piecemeal;
8322 spill_reg_store[regno] = new_spill_reg_store[regno];
8323 spill_reg_stored_to[regno] = out;
8324 reg_last_reload_reg[out_regno] = reg;
8326 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8327 && nregs == out_nregs
8328 && inherit_piecemeal_p (out_regno, regno, mode));
8330 /* If OUT_REGNO is a hard register, it may occupy more than
8331 one register. If it does, say what is in the
8332 rest of the registers assuming that both registers
8333 agree on how many words the object takes. If not,
8334 invalidate the subsequent registers. */
8336 if (HARD_REGISTER_NUM_P (out_regno))
8337 for (k = 1; k < out_nregs; k++)
8338 reg_last_reload_reg[out_regno + k]
8339 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8341 /* Now do the inverse operation. */
8342 for (k = 0; k < nregs; k++)
8344 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8345 reg_reloaded_contents[regno + k]
8346 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8347 ? out_regno
8348 : out_regno + k);
8349 reg_reloaded_insn[regno + k] = insn;
8350 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8351 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8352 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8353 regno + k);
8354 else
8355 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8356 regno + k);
8360 /* Maybe the spill reg contains a copy of reload_in. Only do
8361 something if there will not be an output reload for
8362 the register being reloaded. */
8363 else if (rld[r].out_reg == 0
8364 && rld[r].in != 0
8365 && ((REG_P (rld[r].in)
8366 && !HARD_REGISTER_P (rld[r].in)
8367 && !REGNO_REG_SET_P (&reg_has_output_reload,
8368 REGNO (rld[r].in)))
8369 || (REG_P (rld[r].in_reg)
8370 && !REGNO_REG_SET_P (&reg_has_output_reload,
8371 REGNO (rld[r].in_reg))))
8372 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8374 rtx reg;
8376 reg = reload_reg_rtx_for_input[r];
8377 if (reload_reg_rtx_reaches_end_p (reg, r))
8379 machine_mode mode;
8380 int regno;
8381 int nregs;
8382 int in_regno;
8383 int in_nregs;
8384 rtx in;
8385 bool piecemeal;
8387 mode = GET_MODE (reg);
8388 regno = REGNO (reg);
8389 nregs = hard_regno_nregs[regno][mode];
8390 if (REG_P (rld[r].in)
8391 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8392 in = rld[r].in;
8393 else if (REG_P (rld[r].in_reg))
8394 in = rld[r].in_reg;
8395 else
8396 in = XEXP (rld[r].in_reg, 0);
8397 in_regno = REGNO (in);
8399 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8400 : hard_regno_nregs[in_regno][mode]);
8402 reg_last_reload_reg[in_regno] = reg;
8404 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8405 && nregs == in_nregs
8406 && inherit_piecemeal_p (regno, in_regno, mode));
8408 if (HARD_REGISTER_NUM_P (in_regno))
8409 for (k = 1; k < in_nregs; k++)
8410 reg_last_reload_reg[in_regno + k]
8411 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8413 /* Unless we inherited this reload, show we haven't
8414 recently done a store.
8415 Previous stores of inherited auto_inc expressions
8416 also have to be discarded. */
8417 if (! reload_inherited[r]
8418 || (rld[r].out && ! rld[r].out_reg))
8419 spill_reg_store[regno] = 0;
8421 for (k = 0; k < nregs; k++)
8423 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8424 reg_reloaded_contents[regno + k]
8425 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8426 ? in_regno
8427 : in_regno + k);
8428 reg_reloaded_insn[regno + k] = insn;
8429 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8430 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8431 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8432 regno + k);
8433 else
8434 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8435 regno + k);
8441 /* The following if-statement was #if 0'd in 1.34 (or before...).
8442 It's reenabled in 1.35 because supposedly nothing else
8443 deals with this problem. */
8445 /* If a register gets output-reloaded from a non-spill register,
8446 that invalidates any previous reloaded copy of it.
8447 But forget_old_reloads_1 won't get to see it, because
8448 it thinks only about the original insn. So invalidate it here.
8449 Also do the same thing for RELOAD_OTHER constraints where the
8450 output is discarded. */
8451 if (i < 0
8452 && ((rld[r].out != 0
8453 && (REG_P (rld[r].out)
8454 || (MEM_P (rld[r].out)
8455 && REG_P (rld[r].out_reg))))
8456 || (rld[r].out == 0 && rld[r].out_reg
8457 && REG_P (rld[r].out_reg))))
8459 rtx out = ((rld[r].out && REG_P (rld[r].out))
8460 ? rld[r].out : rld[r].out_reg);
8461 int out_regno = REGNO (out);
8462 machine_mode mode = GET_MODE (out);
8464 /* REG_RTX is now set or clobbered by the main instruction.
8465 As the comment above explains, forget_old_reloads_1 only
8466 sees the original instruction, and there is no guarantee
8467 that the original instruction also clobbered REG_RTX.
8468 For example, if find_reloads sees that the input side of
8469 a matched operand pair dies in this instruction, it may
8470 use the input register as the reload register.
8472 Calling forget_old_reloads_1 is a waste of effort if
8473 REG_RTX is also the output register.
8475 If we know that REG_RTX holds the value of a pseudo
8476 register, the code after the call will record that fact. */
8477 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8478 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8480 if (!HARD_REGISTER_NUM_P (out_regno))
8482 rtx src_reg;
8483 rtx_insn *store_insn = NULL;
8485 reg_last_reload_reg[out_regno] = 0;
8487 /* If we can find a hard register that is stored, record
8488 the storing insn so that we may delete this insn with
8489 delete_output_reload. */
8490 src_reg = reload_reg_rtx_for_output[r];
8492 if (src_reg)
8494 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8495 store_insn = new_spill_reg_store[REGNO (src_reg)];
8496 else
8497 src_reg = NULL_RTX;
8499 else
8501 /* If this is an optional reload, try to find the
8502 source reg from an input reload. */
8503 rtx set = single_set (insn);
8504 if (set && SET_DEST (set) == rld[r].out)
8506 int k;
8508 src_reg = SET_SRC (set);
8509 store_insn = insn;
8510 for (k = 0; k < n_reloads; k++)
8512 if (rld[k].in == src_reg)
8514 src_reg = reload_reg_rtx_for_input[k];
8515 break;
8520 if (src_reg && REG_P (src_reg)
8521 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8523 int src_regno, src_nregs, k;
8524 rtx note;
8526 gcc_assert (GET_MODE (src_reg) == mode);
8527 src_regno = REGNO (src_reg);
8528 src_nregs = hard_regno_nregs[src_regno][mode];
8529 /* The place where to find a death note varies with
8530 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8531 necessarily checked exactly in the code that moves
8532 notes, so just check both locations. */
8533 note = find_regno_note (insn, REG_DEAD, src_regno);
8534 if (! note && store_insn)
8535 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8536 for (k = 0; k < src_nregs; k++)
8538 spill_reg_store[src_regno + k] = store_insn;
8539 spill_reg_stored_to[src_regno + k] = out;
8540 reg_reloaded_contents[src_regno + k] = out_regno;
8541 reg_reloaded_insn[src_regno + k] = store_insn;
8542 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8543 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8544 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8545 mode))
8546 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8547 src_regno + k);
8548 else
8549 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8550 src_regno + k);
8551 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8552 if (note)
8553 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8554 else
8555 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8557 reg_last_reload_reg[out_regno] = src_reg;
8558 /* We have to set reg_has_output_reload here, or else
8559 forget_old_reloads_1 will clear reg_last_reload_reg
8560 right away. */
8561 SET_REGNO_REG_SET (&reg_has_output_reload,
8562 out_regno);
8565 else
8567 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8569 for (k = 0; k < out_nregs; k++)
8570 reg_last_reload_reg[out_regno + k] = 0;
8574 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8577 /* Go through the motions to emit INSN and test if it is strictly valid.
8578 Return the emitted insn if valid, else return NULL. */
8580 static rtx_insn *
8581 emit_insn_if_valid_for_reload (rtx pat)
8583 rtx_insn *last = get_last_insn ();
8584 int code;
8586 rtx_insn *insn = emit_insn (pat);
8587 code = recog_memoized (insn);
8589 if (code >= 0)
8591 extract_insn (insn);
8592 /* We want constrain operands to treat this insn strictly in its
8593 validity determination, i.e., the way it would after reload has
8594 completed. */
8595 if (constrain_operands (1, get_enabled_alternatives (insn)))
8596 return insn;
8599 delete_insns_since (last);
8600 return NULL;
8603 /* Emit code to perform a reload from IN (which may be a reload register) to
8604 OUT (which may also be a reload register). IN or OUT is from operand
8605 OPNUM with reload type TYPE.
8607 Returns first insn emitted. */
8609 static rtx_insn *
8610 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8612 rtx_insn *last = get_last_insn ();
8613 rtx_insn *tem;
8614 #ifdef SECONDARY_MEMORY_NEEDED
8615 rtx tem1, tem2;
8616 #endif
8618 /* If IN is a paradoxical SUBREG, remove it and try to put the
8619 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8620 if (!strip_paradoxical_subreg (&in, &out))
8621 strip_paradoxical_subreg (&out, &in);
8623 /* How to do this reload can get quite tricky. Normally, we are being
8624 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8625 register that didn't get a hard register. In that case we can just
8626 call emit_move_insn.
8628 We can also be asked to reload a PLUS that adds a register or a MEM to
8629 another register, constant or MEM. This can occur during frame pointer
8630 elimination and while reloading addresses. This case is handled by
8631 trying to emit a single insn to perform the add. If it is not valid,
8632 we use a two insn sequence.
8634 Or we can be asked to reload an unary operand that was a fragment of
8635 an addressing mode, into a register. If it isn't recognized as-is,
8636 we try making the unop operand and the reload-register the same:
8637 (set reg:X (unop:X expr:Y))
8638 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8640 Finally, we could be called to handle an 'o' constraint by putting
8641 an address into a register. In that case, we first try to do this
8642 with a named pattern of "reload_load_address". If no such pattern
8643 exists, we just emit a SET insn and hope for the best (it will normally
8644 be valid on machines that use 'o').
8646 This entire process is made complex because reload will never
8647 process the insns we generate here and so we must ensure that
8648 they will fit their constraints and also by the fact that parts of
8649 IN might be being reloaded separately and replaced with spill registers.
8650 Because of this, we are, in some sense, just guessing the right approach
8651 here. The one listed above seems to work.
8653 ??? At some point, this whole thing needs to be rethought. */
8655 if (GET_CODE (in) == PLUS
8656 && (REG_P (XEXP (in, 0))
8657 || GET_CODE (XEXP (in, 0)) == SUBREG
8658 || MEM_P (XEXP (in, 0)))
8659 && (REG_P (XEXP (in, 1))
8660 || GET_CODE (XEXP (in, 1)) == SUBREG
8661 || CONSTANT_P (XEXP (in, 1))
8662 || MEM_P (XEXP (in, 1))))
8664 /* We need to compute the sum of a register or a MEM and another
8665 register, constant, or MEM, and put it into the reload
8666 register. The best possible way of doing this is if the machine
8667 has a three-operand ADD insn that accepts the required operands.
8669 The simplest approach is to try to generate such an insn and see if it
8670 is recognized and matches its constraints. If so, it can be used.
8672 It might be better not to actually emit the insn unless it is valid,
8673 but we need to pass the insn as an operand to `recog' and
8674 `extract_insn' and it is simpler to emit and then delete the insn if
8675 not valid than to dummy things up. */
8677 rtx op0, op1, tem;
8678 rtx_insn *insn;
8679 enum insn_code code;
8681 op0 = find_replacement (&XEXP (in, 0));
8682 op1 = find_replacement (&XEXP (in, 1));
8684 /* Since constraint checking is strict, commutativity won't be
8685 checked, so we need to do that here to avoid spurious failure
8686 if the add instruction is two-address and the second operand
8687 of the add is the same as the reload reg, which is frequently
8688 the case. If the insn would be A = B + A, rearrange it so
8689 it will be A = A + B as constrain_operands expects. */
8691 if (REG_P (XEXP (in, 1))
8692 && REGNO (out) == REGNO (XEXP (in, 1)))
8693 tem = op0, op0 = op1, op1 = tem;
8695 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8696 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8698 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8699 if (insn)
8700 return insn;
8702 /* If that failed, we must use a conservative two-insn sequence.
8704 Use a move to copy one operand into the reload register. Prefer
8705 to reload a constant, MEM or pseudo since the move patterns can
8706 handle an arbitrary operand. If OP1 is not a constant, MEM or
8707 pseudo and OP1 is not a valid operand for an add instruction, then
8708 reload OP1.
8710 After reloading one of the operands into the reload register, add
8711 the reload register to the output register.
8713 If there is another way to do this for a specific machine, a
8714 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8715 we emit below. */
8717 code = optab_handler (add_optab, GET_MODE (out));
8719 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8720 || (REG_P (op1)
8721 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8722 || (code != CODE_FOR_nothing
8723 && !insn_operand_matches (code, 2, op1)))
8724 tem = op0, op0 = op1, op1 = tem;
8726 gen_reload (out, op0, opnum, type);
8728 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8729 This fixes a problem on the 32K where the stack pointer cannot
8730 be used as an operand of an add insn. */
8732 if (rtx_equal_p (op0, op1))
8733 op1 = out;
8735 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8736 if (insn)
8738 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8739 set_dst_reg_note (insn, REG_EQUIV, in, out);
8740 return insn;
8743 /* If that failed, copy the address register to the reload register.
8744 Then add the constant to the reload register. */
8746 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8747 gen_reload (out, op1, opnum, type);
8748 insn = emit_insn (gen_add2_insn (out, op0));
8749 set_dst_reg_note (insn, REG_EQUIV, in, out);
8752 #ifdef SECONDARY_MEMORY_NEEDED
8753 /* If we need a memory location to do the move, do it that way. */
8754 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8755 (REG_P (tem1) && REG_P (tem2)))
8756 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8757 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8758 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8759 REGNO_REG_CLASS (REGNO (tem2)),
8760 GET_MODE (out)))
8762 /* Get the memory to use and rewrite both registers to its mode. */
8763 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8765 if (GET_MODE (loc) != GET_MODE (out))
8766 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8768 if (GET_MODE (loc) != GET_MODE (in))
8769 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8771 gen_reload (loc, in, opnum, type);
8772 gen_reload (out, loc, opnum, type);
8774 #endif
8775 else if (REG_P (out) && UNARY_P (in))
8777 rtx insn;
8778 rtx op1;
8779 rtx out_moded;
8780 rtx_insn *set;
8782 op1 = find_replacement (&XEXP (in, 0));
8783 if (op1 != XEXP (in, 0))
8784 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8786 /* First, try a plain SET. */
8787 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8788 if (set)
8789 return set;
8791 /* If that failed, move the inner operand to the reload
8792 register, and try the same unop with the inner expression
8793 replaced with the reload register. */
8795 if (GET_MODE (op1) != GET_MODE (out))
8796 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8797 else
8798 out_moded = out;
8800 gen_reload (out_moded, op1, opnum, type);
8802 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8803 out_moded));
8804 insn = emit_insn_if_valid_for_reload (insn);
8805 if (insn)
8807 set_unique_reg_note (insn, REG_EQUIV, in);
8808 return as_a <rtx_insn *> (insn);
8811 fatal_insn ("failure trying to reload:", set);
8813 /* If IN is a simple operand, use gen_move_insn. */
8814 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8816 tem = emit_insn (gen_move_insn (out, in));
8817 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8818 mark_jump_label (in, tem, 0);
8821 #ifdef HAVE_reload_load_address
8822 else if (HAVE_reload_load_address)
8823 emit_insn (gen_reload_load_address (out, in));
8824 #endif
8826 /* Otherwise, just write (set OUT IN) and hope for the best. */
8827 else
8828 emit_insn (gen_rtx_SET (out, in));
8830 /* Return the first insn emitted.
8831 We can not just return get_last_insn, because there may have
8832 been multiple instructions emitted. Also note that gen_move_insn may
8833 emit more than one insn itself, so we can not assume that there is one
8834 insn emitted per emit_insn_before call. */
8836 return last ? NEXT_INSN (last) : get_insns ();
8839 /* Delete a previously made output-reload whose result we now believe
8840 is not needed. First we double-check.
8842 INSN is the insn now being processed.
8843 LAST_RELOAD_REG is the hard register number for which we want to delete
8844 the last output reload.
8845 J is the reload-number that originally used REG. The caller has made
8846 certain that reload J doesn't use REG any longer for input.
8847 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8849 static void
8850 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8851 rtx new_reload_reg)
8853 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8854 rtx reg = spill_reg_stored_to[last_reload_reg];
8855 int k;
8856 int n_occurrences;
8857 int n_inherited = 0;
8858 rtx substed;
8859 unsigned regno;
8860 int nregs;
8862 /* It is possible that this reload has been only used to set another reload
8863 we eliminated earlier and thus deleted this instruction too. */
8864 if (output_reload_insn->deleted ())
8865 return;
8867 /* Get the raw pseudo-register referred to. */
8869 while (GET_CODE (reg) == SUBREG)
8870 reg = SUBREG_REG (reg);
8871 substed = reg_equiv_memory_loc (REGNO (reg));
8873 /* This is unsafe if the operand occurs more often in the current
8874 insn than it is inherited. */
8875 for (k = n_reloads - 1; k >= 0; k--)
8877 rtx reg2 = rld[k].in;
8878 if (! reg2)
8879 continue;
8880 if (MEM_P (reg2) || reload_override_in[k])
8881 reg2 = rld[k].in_reg;
8882 #ifdef AUTO_INC_DEC
8883 if (rld[k].out && ! rld[k].out_reg)
8884 reg2 = XEXP (rld[k].in_reg, 0);
8885 #endif
8886 while (GET_CODE (reg2) == SUBREG)
8887 reg2 = SUBREG_REG (reg2);
8888 if (rtx_equal_p (reg2, reg))
8890 if (reload_inherited[k] || reload_override_in[k] || k == j)
8891 n_inherited++;
8892 else
8893 return;
8896 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8897 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8898 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8899 reg, 0);
8900 if (substed)
8901 n_occurrences += count_occurrences (PATTERN (insn),
8902 eliminate_regs (substed, VOIDmode,
8903 NULL_RTX), 0);
8904 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8906 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8907 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8909 if (n_occurrences > n_inherited)
8910 return;
8912 regno = REGNO (reg);
8913 if (regno >= FIRST_PSEUDO_REGISTER)
8914 nregs = 1;
8915 else
8916 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8918 /* If the pseudo-reg we are reloading is no longer referenced
8919 anywhere between the store into it and here,
8920 and we're within the same basic block, then the value can only
8921 pass through the reload reg and end up here.
8922 Otherwise, give up--return. */
8923 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8924 i1 != insn; i1 = NEXT_INSN (i1))
8926 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8927 return;
8928 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8929 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8931 /* If this is USE in front of INSN, we only have to check that
8932 there are no more references than accounted for by inheritance. */
8933 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8935 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8936 i1 = NEXT_INSN (i1);
8938 if (n_occurrences <= n_inherited && i1 == insn)
8939 break;
8940 return;
8944 /* We will be deleting the insn. Remove the spill reg information. */
8945 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8947 spill_reg_store[last_reload_reg + k] = 0;
8948 spill_reg_stored_to[last_reload_reg + k] = 0;
8951 /* The caller has already checked that REG dies or is set in INSN.
8952 It has also checked that we are optimizing, and thus some
8953 inaccuracies in the debugging information are acceptable.
8954 So we could just delete output_reload_insn. But in some cases
8955 we can improve the debugging information without sacrificing
8956 optimization - maybe even improving the code: See if the pseudo
8957 reg has been completely replaced with reload regs. If so, delete
8958 the store insn and forget we had a stack slot for the pseudo. */
8959 if (rld[j].out != rld[j].in
8960 && REG_N_DEATHS (REGNO (reg)) == 1
8961 && REG_N_SETS (REGNO (reg)) == 1
8962 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8963 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8965 rtx_insn *i2;
8967 /* We know that it was used only between here and the beginning of
8968 the current basic block. (We also know that the last use before
8969 INSN was the output reload we are thinking of deleting, but never
8970 mind that.) Search that range; see if any ref remains. */
8971 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8973 rtx set = single_set (i2);
8975 /* Uses which just store in the pseudo don't count,
8976 since if they are the only uses, they are dead. */
8977 if (set != 0 && SET_DEST (set) == reg)
8978 continue;
8979 if (LABEL_P (i2) || JUMP_P (i2))
8980 break;
8981 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8982 && reg_mentioned_p (reg, PATTERN (i2)))
8984 /* Some other ref remains; just delete the output reload we
8985 know to be dead. */
8986 delete_address_reloads (output_reload_insn, insn);
8987 delete_insn (output_reload_insn);
8988 return;
8992 /* Delete the now-dead stores into this pseudo. Note that this
8993 loop also takes care of deleting output_reload_insn. */
8994 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8996 rtx set = single_set (i2);
8998 if (set != 0 && SET_DEST (set) == reg)
9000 delete_address_reloads (i2, insn);
9001 delete_insn (i2);
9003 if (LABEL_P (i2) || JUMP_P (i2))
9004 break;
9007 /* For the debugging info, say the pseudo lives in this reload reg. */
9008 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
9009 if (ira_conflicts_p)
9010 /* Inform IRA about the change. */
9011 ira_mark_allocation_change (REGNO (reg));
9012 alter_reg (REGNO (reg), -1, false);
9014 else
9016 delete_address_reloads (output_reload_insn, insn);
9017 delete_insn (output_reload_insn);
9021 /* We are going to delete DEAD_INSN. Recursively delete loads of
9022 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9023 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9024 static void
9025 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9027 rtx set = single_set (dead_insn);
9028 rtx set2, dst;
9029 rtx_insn *prev, *next;
9030 if (set)
9032 rtx dst = SET_DEST (set);
9033 if (MEM_P (dst))
9034 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9036 /* If we deleted the store from a reloaded post_{in,de}c expression,
9037 we can delete the matching adds. */
9038 prev = PREV_INSN (dead_insn);
9039 next = NEXT_INSN (dead_insn);
9040 if (! prev || ! next)
9041 return;
9042 set = single_set (next);
9043 set2 = single_set (prev);
9044 if (! set || ! set2
9045 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9046 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9047 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9048 return;
9049 dst = SET_DEST (set);
9050 if (! rtx_equal_p (dst, SET_DEST (set2))
9051 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9052 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9053 || (INTVAL (XEXP (SET_SRC (set), 1))
9054 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9055 return;
9056 delete_related_insns (prev);
9057 delete_related_insns (next);
9060 /* Subfunction of delete_address_reloads: process registers found in X. */
9061 static void
9062 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9064 rtx_insn *prev, *i2;
9065 rtx set, dst;
9066 int i, j;
9067 enum rtx_code code = GET_CODE (x);
9069 if (code != REG)
9071 const char *fmt = GET_RTX_FORMAT (code);
9072 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9074 if (fmt[i] == 'e')
9075 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9076 else if (fmt[i] == 'E')
9078 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9079 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9080 current_insn);
9083 return;
9086 if (spill_reg_order[REGNO (x)] < 0)
9087 return;
9089 /* Scan backwards for the insn that sets x. This might be a way back due
9090 to inheritance. */
9091 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9093 code = GET_CODE (prev);
9094 if (code == CODE_LABEL || code == JUMP_INSN)
9095 return;
9096 if (!INSN_P (prev))
9097 continue;
9098 if (reg_set_p (x, PATTERN (prev)))
9099 break;
9100 if (reg_referenced_p (x, PATTERN (prev)))
9101 return;
9103 if (! prev || INSN_UID (prev) < reload_first_uid)
9104 return;
9105 /* Check that PREV only sets the reload register. */
9106 set = single_set (prev);
9107 if (! set)
9108 return;
9109 dst = SET_DEST (set);
9110 if (!REG_P (dst)
9111 || ! rtx_equal_p (dst, x))
9112 return;
9113 if (! reg_set_p (dst, PATTERN (dead_insn)))
9115 /* Check if DST was used in a later insn -
9116 it might have been inherited. */
9117 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9119 if (LABEL_P (i2))
9120 break;
9121 if (! INSN_P (i2))
9122 continue;
9123 if (reg_referenced_p (dst, PATTERN (i2)))
9125 /* If there is a reference to the register in the current insn,
9126 it might be loaded in a non-inherited reload. If no other
9127 reload uses it, that means the register is set before
9128 referenced. */
9129 if (i2 == current_insn)
9131 for (j = n_reloads - 1; j >= 0; j--)
9132 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9133 || reload_override_in[j] == dst)
9134 return;
9135 for (j = n_reloads - 1; j >= 0; j--)
9136 if (rld[j].in && rld[j].reg_rtx == dst)
9137 break;
9138 if (j >= 0)
9139 break;
9141 return;
9143 if (JUMP_P (i2))
9144 break;
9145 /* If DST is still live at CURRENT_INSN, check if it is used for
9146 any reload. Note that even if CURRENT_INSN sets DST, we still
9147 have to check the reloads. */
9148 if (i2 == current_insn)
9150 for (j = n_reloads - 1; j >= 0; j--)
9151 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9152 || reload_override_in[j] == dst)
9153 return;
9154 /* ??? We can't finish the loop here, because dst might be
9155 allocated to a pseudo in this block if no reload in this
9156 block needs any of the classes containing DST - see
9157 spill_hard_reg. There is no easy way to tell this, so we
9158 have to scan till the end of the basic block. */
9160 if (reg_set_p (dst, PATTERN (i2)))
9161 break;
9164 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9165 reg_reloaded_contents[REGNO (dst)] = -1;
9166 delete_insn (prev);
9169 /* Output reload-insns to reload VALUE into RELOADREG.
9170 VALUE is an autoincrement or autodecrement RTX whose operand
9171 is a register or memory location;
9172 so reloading involves incrementing that location.
9173 IN is either identical to VALUE, or some cheaper place to reload from.
9175 INC_AMOUNT is the number to increment or decrement by (always positive).
9176 This cannot be deduced from VALUE. */
9178 static void
9179 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9181 /* REG or MEM to be copied and incremented. */
9182 rtx incloc = find_replacement (&XEXP (value, 0));
9183 /* Nonzero if increment after copying. */
9184 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9185 || GET_CODE (value) == POST_MODIFY);
9186 rtx_insn *last;
9187 rtx inc;
9188 rtx_insn *add_insn;
9189 int code;
9190 rtx real_in = in == value ? incloc : in;
9192 /* No hard register is equivalent to this register after
9193 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9194 we could inc/dec that register as well (maybe even using it for
9195 the source), but I'm not sure it's worth worrying about. */
9196 if (REG_P (incloc))
9197 reg_last_reload_reg[REGNO (incloc)] = 0;
9199 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9201 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9202 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9204 else
9206 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9207 inc_amount = -inc_amount;
9209 inc = GEN_INT (inc_amount);
9212 /* If this is post-increment, first copy the location to the reload reg. */
9213 if (post && real_in != reloadreg)
9214 emit_insn (gen_move_insn (reloadreg, real_in));
9216 if (in == value)
9218 /* See if we can directly increment INCLOC. Use a method similar to
9219 that in gen_reload. */
9221 last = get_last_insn ();
9222 add_insn = emit_insn (gen_rtx_SET (incloc,
9223 gen_rtx_PLUS (GET_MODE (incloc),
9224 incloc, inc)));
9226 code = recog_memoized (add_insn);
9227 if (code >= 0)
9229 extract_insn (add_insn);
9230 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9232 /* If this is a pre-increment and we have incremented the value
9233 where it lives, copy the incremented value to RELOADREG to
9234 be used as an address. */
9236 if (! post)
9237 emit_insn (gen_move_insn (reloadreg, incloc));
9238 return;
9241 delete_insns_since (last);
9244 /* If couldn't do the increment directly, must increment in RELOADREG.
9245 The way we do this depends on whether this is pre- or post-increment.
9246 For pre-increment, copy INCLOC to the reload register, increment it
9247 there, then save back. */
9249 if (! post)
9251 if (in != reloadreg)
9252 emit_insn (gen_move_insn (reloadreg, real_in));
9253 emit_insn (gen_add2_insn (reloadreg, inc));
9254 emit_insn (gen_move_insn (incloc, reloadreg));
9256 else
9258 /* Postincrement.
9259 Because this might be a jump insn or a compare, and because RELOADREG
9260 may not be available after the insn in an input reload, we must do
9261 the incrementation before the insn being reloaded for.
9263 We have already copied IN to RELOADREG. Increment the copy in
9264 RELOADREG, save that back, then decrement RELOADREG so it has
9265 the original value. */
9267 emit_insn (gen_add2_insn (reloadreg, inc));
9268 emit_insn (gen_move_insn (incloc, reloadreg));
9269 if (CONST_INT_P (inc))
9270 emit_insn (gen_add2_insn (reloadreg,
9271 gen_int_mode (-INTVAL (inc),
9272 GET_MODE (reloadreg))));
9273 else
9274 emit_insn (gen_sub2_insn (reloadreg, inc));
9278 #ifdef AUTO_INC_DEC
9279 static void
9280 add_auto_inc_notes (rtx_insn *insn, rtx x)
9282 enum rtx_code code = GET_CODE (x);
9283 const char *fmt;
9284 int i, j;
9286 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9288 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9289 return;
9292 /* Scan all the operand sub-expressions. */
9293 fmt = GET_RTX_FORMAT (code);
9294 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9296 if (fmt[i] == 'e')
9297 add_auto_inc_notes (insn, XEXP (x, i));
9298 else if (fmt[i] == 'E')
9299 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9300 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9303 #endif