2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / reg-stack.c
bloba73c7ec029340bb82ddac81332662dafb2fd889b
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 * asm_operands:
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
103 asm ("foo" : "=t" (a) : "f" (b));
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
114 The asm above would be written as
116 asm ("foo" : "=&t" (a) : "f" (b));
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "tm.h"
156 #include "input.h"
157 #include "alias.h"
158 #include "symtab.h"
159 #include "tree.h"
160 #include "varasm.h"
161 #include "rtl-error.h"
162 #include "tm_p.h"
163 #include "hard-reg-set.h"
164 #include "input.h"
165 #include "function.h"
166 #include "insn-config.h"
167 #include "regs.h"
168 #include "flags.h"
169 #include "recog.h"
170 #include "predict.h"
171 #include "dominance.h"
172 #include "cfg.h"
173 #include "cfgrtl.h"
174 #include "cfganal.h"
175 #include "cfgbuild.h"
176 #include "cfgcleanup.h"
177 #include "basic-block.h"
178 #include "reload.h"
179 #include "tree-pass.h"
180 #include "target.h"
181 #include "df.h"
182 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
183 #include "rtl-iter.h"
185 #ifdef STACK_REGS
187 /* We use this array to cache info about insns, because otherwise we
188 spend too much time in stack_regs_mentioned_p.
190 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
191 the insn uses stack registers, two indicates the insn does not use
192 stack registers. */
193 static vec<char> stack_regs_mentioned_data;
195 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
197 int regstack_completed = 0;
199 /* This is the basic stack record. TOP is an index into REG[] such
200 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
202 If TOP is -2, REG[] is not yet initialized. Stack initialization
203 consists of placing each live reg in array `reg' and setting `top'
204 appropriately.
206 REG_SET indicates which registers are live. */
208 typedef struct stack_def
210 int top; /* index to top stack element */
211 HARD_REG_SET reg_set; /* set of live registers */
212 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
213 } *stack_ptr;
215 /* This is used to carry information about basic blocks. It is
216 attached to the AUX field of the standard CFG block. */
218 typedef struct block_info_def
220 struct stack_def stack_in; /* Input stack configuration. */
221 struct stack_def stack_out; /* Output stack configuration. */
222 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
223 int done; /* True if block already converted. */
224 int predecessors; /* Number of predecessors that need
225 to be visited. */
226 } *block_info;
228 #define BLOCK_INFO(B) ((block_info) (B)->aux)
230 /* Passed to change_stack to indicate where to emit insns. */
231 enum emit_where
233 EMIT_AFTER,
234 EMIT_BEFORE
237 /* The block we're currently working on. */
238 static basic_block current_block;
240 /* In the current_block, whether we're processing the first register
241 stack or call instruction, i.e. the regstack is currently the
242 same as BLOCK_INFO(current_block)->stack_in. */
243 static bool starting_stack_p;
245 /* This is the register file for all register after conversion. */
246 static rtx
247 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
249 #define FP_MODE_REG(regno,mode) \
250 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
252 /* Used to initialize uninitialized registers. */
253 static rtx not_a_num;
255 /* Forward declarations */
257 static int stack_regs_mentioned_p (const_rtx pat);
258 static void pop_stack (stack_ptr, int);
259 static rtx *get_true_reg (rtx *);
261 static int check_asm_stack_operands (rtx_insn *);
262 static void get_asm_operands_in_out (rtx, int *, int *);
263 static rtx stack_result (tree);
264 static void replace_reg (rtx *, int);
265 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
266 static int get_hard_regnum (stack_ptr, rtx);
267 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
268 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
269 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
270 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
271 static int swap_rtx_condition_1 (rtx);
272 static int swap_rtx_condition (rtx_insn *);
273 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
274 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
275 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
276 static bool subst_stack_regs (rtx_insn *, stack_ptr);
277 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
278 static void print_stack (FILE *, stack_ptr);
279 static rtx_insn *next_flags_user (rtx_insn *);
281 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
283 static int
284 stack_regs_mentioned_p (const_rtx pat)
286 const char *fmt;
287 int i;
289 if (STACK_REG_P (pat))
290 return 1;
292 fmt = GET_RTX_FORMAT (GET_CODE (pat));
293 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
295 if (fmt[i] == 'E')
297 int j;
299 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
300 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
301 return 1;
303 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
304 return 1;
307 return 0;
310 /* Return nonzero if INSN mentions stacked registers, else return zero. */
313 stack_regs_mentioned (const_rtx insn)
315 unsigned int uid, max;
316 int test;
318 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
319 return 0;
321 uid = INSN_UID (insn);
322 max = stack_regs_mentioned_data.length ();
323 if (uid >= max)
325 /* Allocate some extra size to avoid too many reallocs, but
326 do not grow too quickly. */
327 max = uid + uid / 20 + 1;
328 stack_regs_mentioned_data.safe_grow_cleared (max);
331 test = stack_regs_mentioned_data[uid];
332 if (test == 0)
334 /* This insn has yet to be examined. Do so now. */
335 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
336 stack_regs_mentioned_data[uid] = test;
339 return test == 1;
342 static rtx ix86_flags_rtx;
344 static rtx_insn *
345 next_flags_user (rtx_insn *insn)
347 /* Search forward looking for the first use of this value.
348 Stop at block boundaries. */
350 while (insn != BB_END (current_block))
352 insn = NEXT_INSN (insn);
354 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
355 return insn;
357 if (CALL_P (insn))
358 return NULL;
360 return NULL;
363 /* Reorganize the stack into ascending numbers, before this insn. */
365 static void
366 straighten_stack (rtx_insn *insn, stack_ptr regstack)
368 struct stack_def temp_stack;
369 int top;
371 /* If there is only a single register on the stack, then the stack is
372 already in increasing order and no reorganization is needed.
374 Similarly if the stack is empty. */
375 if (regstack->top <= 0)
376 return;
378 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
380 for (top = temp_stack.top = regstack->top; top >= 0; top--)
381 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
383 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
386 /* Pop a register from the stack. */
388 static void
389 pop_stack (stack_ptr regstack, int regno)
391 int top = regstack->top;
393 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
394 regstack->top--;
395 /* If regno was not at the top of stack then adjust stack. */
396 if (regstack->reg [top] != regno)
398 int i;
399 for (i = regstack->top; i >= 0; i--)
400 if (regstack->reg [i] == regno)
402 int j;
403 for (j = i; j < top; j++)
404 regstack->reg [j] = regstack->reg [j + 1];
405 break;
410 /* Return a pointer to the REG expression within PAT. If PAT is not a
411 REG, possible enclosed by a conversion rtx, return the inner part of
412 PAT that stopped the search. */
414 static rtx *
415 get_true_reg (rtx *pat)
417 for (;;)
418 switch (GET_CODE (*pat))
420 case SUBREG:
421 /* Eliminate FP subregister accesses in favor of the
422 actual FP register in use. */
424 rtx subreg;
425 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
427 int regno_off = subreg_regno_offset (REGNO (subreg),
428 GET_MODE (subreg),
429 SUBREG_BYTE (*pat),
430 GET_MODE (*pat));
431 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
432 GET_MODE (subreg));
433 return pat;
436 case FLOAT:
437 case FIX:
438 case FLOAT_EXTEND:
439 pat = & XEXP (*pat, 0);
440 break;
442 case UNSPEC:
443 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
444 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
445 pat = & XVECEXP (*pat, 0, 0);
446 return pat;
448 case FLOAT_TRUNCATE:
449 if (!flag_unsafe_math_optimizations)
450 return pat;
451 pat = & XEXP (*pat, 0);
452 break;
454 default:
455 return pat;
459 /* Set if we find any malformed asms in a block. */
460 static bool any_malformed_asm;
462 /* There are many rules that an asm statement for stack-like regs must
463 follow. Those rules are explained at the top of this file: the rule
464 numbers below refer to that explanation. */
466 static int
467 check_asm_stack_operands (rtx_insn *insn)
469 int i;
470 int n_clobbers;
471 int malformed_asm = 0;
472 rtx body = PATTERN (insn);
474 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
475 char implicitly_dies[FIRST_PSEUDO_REGISTER];
477 rtx *clobber_reg = 0;
478 int n_inputs, n_outputs;
480 /* Find out what the constraints require. If no constraint
481 alternative matches, this asm is malformed. */
482 extract_constrain_insn (insn);
484 preprocess_constraints (insn);
486 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
488 if (which_alternative < 0)
490 malformed_asm = 1;
491 /* Avoid further trouble with this insn. */
492 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
493 return 0;
495 const operand_alternative *op_alt = which_op_alt ();
497 /* Strip SUBREGs here to make the following code simpler. */
498 for (i = 0; i < recog_data.n_operands; i++)
499 if (GET_CODE (recog_data.operand[i]) == SUBREG
500 && REG_P (SUBREG_REG (recog_data.operand[i])))
501 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
503 /* Set up CLOBBER_REG. */
505 n_clobbers = 0;
507 if (GET_CODE (body) == PARALLEL)
509 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
511 for (i = 0; i < XVECLEN (body, 0); i++)
512 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
514 rtx clobber = XVECEXP (body, 0, i);
515 rtx reg = XEXP (clobber, 0);
517 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
518 reg = SUBREG_REG (reg);
520 if (STACK_REG_P (reg))
522 clobber_reg[n_clobbers] = reg;
523 n_clobbers++;
528 /* Enforce rule #4: Output operands must specifically indicate which
529 reg an output appears in after an asm. "=f" is not allowed: the
530 operand constraints must select a class with a single reg.
532 Also enforce rule #5: Output operands must start at the top of
533 the reg-stack: output operands may not "skip" a reg. */
535 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
536 for (i = 0; i < n_outputs; i++)
537 if (STACK_REG_P (recog_data.operand[i]))
539 if (reg_class_size[(int) op_alt[i].cl] != 1)
541 error_for_asm (insn, "output constraint %d must specify a single register", i);
542 malformed_asm = 1;
544 else
546 int j;
548 for (j = 0; j < n_clobbers; j++)
549 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
551 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
552 i, reg_names [REGNO (clobber_reg[j])]);
553 malformed_asm = 1;
554 break;
556 if (j == n_clobbers)
557 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
562 /* Search for first non-popped reg. */
563 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
564 if (! reg_used_as_output[i])
565 break;
567 /* If there are any other popped regs, that's an error. */
568 for (; i < LAST_STACK_REG + 1; i++)
569 if (reg_used_as_output[i])
570 break;
572 if (i != LAST_STACK_REG + 1)
574 error_for_asm (insn, "output regs must be grouped at top of stack");
575 malformed_asm = 1;
578 /* Enforce rule #2: All implicitly popped input regs must be closer
579 to the top of the reg-stack than any input that is not implicitly
580 popped. */
582 memset (implicitly_dies, 0, sizeof (implicitly_dies));
583 for (i = n_outputs; i < n_outputs + n_inputs; i++)
584 if (STACK_REG_P (recog_data.operand[i]))
586 /* An input reg is implicitly popped if it is tied to an
587 output, or if there is a CLOBBER for it. */
588 int j;
590 for (j = 0; j < n_clobbers; j++)
591 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
592 break;
594 if (j < n_clobbers || op_alt[i].matches >= 0)
595 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
598 /* Search for first non-popped reg. */
599 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
600 if (! implicitly_dies[i])
601 break;
603 /* If there are any other popped regs, that's an error. */
604 for (; i < LAST_STACK_REG + 1; i++)
605 if (implicitly_dies[i])
606 break;
608 if (i != LAST_STACK_REG + 1)
610 error_for_asm (insn,
611 "implicitly popped regs must be grouped at top of stack");
612 malformed_asm = 1;
615 /* Enforce rule #3: If any input operand uses the "f" constraint, all
616 output constraints must use the "&" earlyclobber.
618 ??? Detect this more deterministically by having constrain_asm_operands
619 record any earlyclobber. */
621 for (i = n_outputs; i < n_outputs + n_inputs; i++)
622 if (op_alt[i].matches == -1)
624 int j;
626 for (j = 0; j < n_outputs; j++)
627 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
629 error_for_asm (insn,
630 "output operand %d must use %<&%> constraint", j);
631 malformed_asm = 1;
635 if (malformed_asm)
637 /* Avoid further trouble with this insn. */
638 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
639 any_malformed_asm = true;
640 return 0;
643 return 1;
646 /* Calculate the number of inputs and outputs in BODY, an
647 asm_operands. N_OPERANDS is the total number of operands, and
648 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
649 placed. */
651 static void
652 get_asm_operands_in_out (rtx body, int *pout, int *pin)
654 rtx asmop = extract_asm_operands (body);
656 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
657 *pout = (recog_data.n_operands
658 - ASM_OPERANDS_INPUT_LENGTH (asmop)
659 - ASM_OPERANDS_LABEL_LENGTH (asmop));
662 /* If current function returns its result in an fp stack register,
663 return the REG. Otherwise, return 0. */
665 static rtx
666 stack_result (tree decl)
668 rtx result;
670 /* If the value is supposed to be returned in memory, then clearly
671 it is not returned in a stack register. */
672 if (aggregate_value_p (DECL_RESULT (decl), decl))
673 return 0;
675 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
676 if (result != 0)
677 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
678 decl, true);
680 return result != 0 && STACK_REG_P (result) ? result : 0;
685 * This section deals with stack register substitution, and forms the second
686 * pass over the RTL.
689 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
690 the desired hard REGNO. */
692 static void
693 replace_reg (rtx *reg, int regno)
695 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
696 gcc_assert (STACK_REG_P (*reg));
698 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
699 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
701 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
704 /* Remove a note of type NOTE, which must be found, for register
705 number REGNO from INSN. Remove only one such note. */
707 static void
708 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
710 rtx *note_link, this_rtx;
712 note_link = &REG_NOTES (insn);
713 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
714 if (REG_NOTE_KIND (this_rtx) == note
715 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
717 *note_link = XEXP (this_rtx, 1);
718 return;
720 else
721 note_link = &XEXP (this_rtx, 1);
723 gcc_unreachable ();
726 /* Find the hard register number of virtual register REG in REGSTACK.
727 The hard register number is relative to the top of the stack. -1 is
728 returned if the register is not found. */
730 static int
731 get_hard_regnum (stack_ptr regstack, rtx reg)
733 int i;
735 gcc_assert (STACK_REG_P (reg));
737 for (i = regstack->top; i >= 0; i--)
738 if (regstack->reg[i] == REGNO (reg))
739 break;
741 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
744 /* Emit an insn to pop virtual register REG before or after INSN.
745 REGSTACK is the stack state after INSN and is updated to reflect this
746 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
747 is represented as a SET whose destination is the register to be popped
748 and source is the top of stack. A death note for the top of stack
749 cases the movdf pattern to pop. */
751 static rtx_insn *
752 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
754 rtx_insn *pop_insn;
755 rtx pop_rtx;
756 int hard_regno;
758 /* For complex types take care to pop both halves. These may survive in
759 CLOBBER and USE expressions. */
760 if (COMPLEX_MODE_P (GET_MODE (reg)))
762 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
763 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
765 pop_insn = NULL;
766 if (get_hard_regnum (regstack, reg1) >= 0)
767 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
768 if (get_hard_regnum (regstack, reg2) >= 0)
769 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
770 gcc_assert (pop_insn);
771 return pop_insn;
774 hard_regno = get_hard_regnum (regstack, reg);
776 gcc_assert (hard_regno >= FIRST_STACK_REG);
778 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
779 FP_MODE_REG (FIRST_STACK_REG, DFmode));
781 if (where == EMIT_AFTER)
782 pop_insn = emit_insn_after (pop_rtx, insn);
783 else
784 pop_insn = emit_insn_before (pop_rtx, insn);
786 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
788 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
789 = regstack->reg[regstack->top];
790 regstack->top -= 1;
791 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
793 return pop_insn;
796 /* Emit an insn before or after INSN to swap virtual register REG with
797 the top of stack. REGSTACK is the stack state before the swap, and
798 is updated to reflect the swap. A swap insn is represented as a
799 PARALLEL of two patterns: each pattern moves one reg to the other.
801 If REG is already at the top of the stack, no insn is emitted. */
803 static void
804 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
806 int hard_regno;
807 rtx swap_rtx;
808 int other_reg; /* swap regno temps */
809 rtx_insn *i1; /* the stack-reg insn prior to INSN */
810 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
812 hard_regno = get_hard_regnum (regstack, reg);
814 if (hard_regno == FIRST_STACK_REG)
815 return;
816 if (hard_regno == -1)
818 /* Something failed if the register wasn't on the stack. If we had
819 malformed asms, we zapped the instruction itself, but that didn't
820 produce the same pattern of register sets as before. To prevent
821 further failure, adjust REGSTACK to include REG at TOP. */
822 gcc_assert (any_malformed_asm);
823 regstack->reg[++regstack->top] = REGNO (reg);
824 return;
826 gcc_assert (hard_regno >= FIRST_STACK_REG);
828 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
829 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
831 /* Find the previous insn involving stack regs, but don't pass a
832 block boundary. */
833 i1 = NULL;
834 if (current_block && insn != BB_HEAD (current_block))
836 rtx_insn *tmp = PREV_INSN (insn);
837 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
838 while (tmp != limit)
840 if (LABEL_P (tmp)
841 || CALL_P (tmp)
842 || NOTE_INSN_BASIC_BLOCK_P (tmp)
843 || (NONJUMP_INSN_P (tmp)
844 && stack_regs_mentioned (tmp)))
846 i1 = tmp;
847 break;
849 tmp = PREV_INSN (tmp);
853 if (i1 != NULL_RTX
854 && (i1set = single_set (i1)) != NULL_RTX)
856 rtx i1src = *get_true_reg (&SET_SRC (i1set));
857 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
859 /* If the previous register stack push was from the reg we are to
860 swap with, omit the swap. */
862 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
863 && REG_P (i1src)
864 && REGNO (i1src) == (unsigned) hard_regno - 1
865 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
866 return;
868 /* If the previous insn wrote to the reg we are to swap with,
869 omit the swap. */
871 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
872 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
873 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
874 return;
877 /* Avoid emitting the swap if this is the first register stack insn
878 of the current_block. Instead update the current_block's stack_in
879 and let compensate edges take care of this for us. */
880 if (current_block && starting_stack_p)
882 BLOCK_INFO (current_block)->stack_in = *regstack;
883 starting_stack_p = false;
884 return;
887 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
888 FP_MODE_REG (FIRST_STACK_REG, XFmode));
890 if (i1)
891 emit_insn_after (swap_rtx, i1);
892 else if (current_block)
893 emit_insn_before (swap_rtx, BB_HEAD (current_block));
894 else
895 emit_insn_before (swap_rtx, insn);
898 /* Emit an insns before INSN to swap virtual register SRC1 with
899 the top of stack and virtual register SRC2 with second stack
900 slot. REGSTACK is the stack state before the swaps, and
901 is updated to reflect the swaps. A swap insn is represented as a
902 PARALLEL of two patterns: each pattern moves one reg to the other.
904 If SRC1 and/or SRC2 are already at the right place, no swap insn
905 is emitted. */
907 static void
908 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
910 struct stack_def temp_stack;
911 int regno, j, k;
913 temp_stack = *regstack;
915 /* Place operand 1 at the top of stack. */
916 regno = get_hard_regnum (&temp_stack, src1);
917 gcc_assert (regno >= 0);
918 if (regno != FIRST_STACK_REG)
920 k = temp_stack.top - (regno - FIRST_STACK_REG);
921 j = temp_stack.top;
923 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
926 /* Place operand 2 next on the stack. */
927 regno = get_hard_regnum (&temp_stack, src2);
928 gcc_assert (regno >= 0);
929 if (regno != FIRST_STACK_REG + 1)
931 k = temp_stack.top - (regno - FIRST_STACK_REG);
932 j = temp_stack.top - 1;
934 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
937 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
940 /* Handle a move to or from a stack register in PAT, which is in INSN.
941 REGSTACK is the current stack. Return whether a control flow insn
942 was deleted in the process. */
944 static bool
945 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
947 rtx *psrc = get_true_reg (&SET_SRC (pat));
948 rtx *pdest = get_true_reg (&SET_DEST (pat));
949 rtx src, dest;
950 rtx note;
951 bool control_flow_insn_deleted = false;
953 src = *psrc; dest = *pdest;
955 if (STACK_REG_P (src) && STACK_REG_P (dest))
957 /* Write from one stack reg to another. If SRC dies here, then
958 just change the register mapping and delete the insn. */
960 note = find_regno_note (insn, REG_DEAD, REGNO (src));
961 if (note)
963 int i;
965 /* If this is a no-op move, there must not be a REG_DEAD note. */
966 gcc_assert (REGNO (src) != REGNO (dest));
968 for (i = regstack->top; i >= 0; i--)
969 if (regstack->reg[i] == REGNO (src))
970 break;
972 /* The destination must be dead, or life analysis is borked. */
973 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
975 /* If the source is not live, this is yet another case of
976 uninitialized variables. Load up a NaN instead. */
977 if (i < 0)
978 return move_nan_for_stack_reg (insn, regstack, dest);
980 /* It is possible that the dest is unused after this insn.
981 If so, just pop the src. */
983 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
984 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
985 else
987 regstack->reg[i] = REGNO (dest);
988 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
989 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
992 control_flow_insn_deleted |= control_flow_insn_p (insn);
993 delete_insn (insn);
994 return control_flow_insn_deleted;
997 /* The source reg does not die. */
999 /* If this appears to be a no-op move, delete it, or else it
1000 will confuse the machine description output patterns. But if
1001 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1002 for REG_UNUSED will not work for deleted insns. */
1004 if (REGNO (src) == REGNO (dest))
1006 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1007 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1009 control_flow_insn_deleted |= control_flow_insn_p (insn);
1010 delete_insn (insn);
1011 return control_flow_insn_deleted;
1014 /* The destination ought to be dead. */
1015 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1017 replace_reg (psrc, get_hard_regnum (regstack, src));
1019 regstack->reg[++regstack->top] = REGNO (dest);
1020 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1021 replace_reg (pdest, FIRST_STACK_REG);
1023 else if (STACK_REG_P (src))
1025 /* Save from a stack reg to MEM, or possibly integer reg. Since
1026 only top of stack may be saved, emit an exchange first if
1027 needs be. */
1029 emit_swap_insn (insn, regstack, src);
1031 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1032 if (note)
1034 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1035 regstack->top--;
1036 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1038 else if ((GET_MODE (src) == XFmode)
1039 && regstack->top < REG_STACK_SIZE - 1)
1041 /* A 387 cannot write an XFmode value to a MEM without
1042 clobbering the source reg. The output code can handle
1043 this by reading back the value from the MEM.
1044 But it is more efficient to use a temp register if one is
1045 available. Push the source value here if the register
1046 stack is not full, and then write the value to memory via
1047 a pop. */
1048 rtx push_rtx;
1049 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1051 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1052 emit_insn_before (push_rtx, insn);
1053 add_reg_note (insn, REG_DEAD, top_stack_reg);
1056 replace_reg (psrc, FIRST_STACK_REG);
1058 else
1060 rtx pat = PATTERN (insn);
1062 gcc_assert (STACK_REG_P (dest));
1064 /* Load from MEM, or possibly integer REG or constant, into the
1065 stack regs. The actual target is always the top of the
1066 stack. The stack mapping is changed to reflect that DEST is
1067 now at top of stack. */
1069 /* The destination ought to be dead. However, there is a
1070 special case with i387 UNSPEC_TAN, where destination is live
1071 (an argument to fptan) but inherent load of 1.0 is modelled
1072 as a load from a constant. */
1073 if (GET_CODE (pat) == PARALLEL
1074 && XVECLEN (pat, 0) == 2
1075 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1076 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1077 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1078 emit_swap_insn (insn, regstack, dest);
1079 else
1080 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1082 gcc_assert (regstack->top < REG_STACK_SIZE);
1084 regstack->reg[++regstack->top] = REGNO (dest);
1085 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1086 replace_reg (pdest, FIRST_STACK_REG);
1089 return control_flow_insn_deleted;
1092 /* A helper function which replaces INSN with a pattern that loads up
1093 a NaN into DEST, then invokes move_for_stack_reg. */
1095 static bool
1096 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1098 rtx pat;
1100 dest = FP_MODE_REG (REGNO (dest), SFmode);
1101 pat = gen_rtx_SET (dest, not_a_num);
1102 PATTERN (insn) = pat;
1103 INSN_CODE (insn) = -1;
1105 return move_for_stack_reg (insn, regstack, pat);
1108 /* Swap the condition on a branch, if there is one. Return true if we
1109 found a condition to swap. False if the condition was not used as
1110 such. */
1112 static int
1113 swap_rtx_condition_1 (rtx pat)
1115 const char *fmt;
1116 int i, r = 0;
1118 if (COMPARISON_P (pat))
1120 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1121 r = 1;
1123 else
1125 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1126 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1128 if (fmt[i] == 'E')
1130 int j;
1132 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1133 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1135 else if (fmt[i] == 'e')
1136 r |= swap_rtx_condition_1 (XEXP (pat, i));
1140 return r;
1143 static int
1144 swap_rtx_condition (rtx_insn *insn)
1146 rtx pat = PATTERN (insn);
1148 /* We're looking for a single set to cc0 or an HImode temporary. */
1150 if (GET_CODE (pat) == SET
1151 && REG_P (SET_DEST (pat))
1152 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1154 insn = next_flags_user (insn);
1155 if (insn == NULL_RTX)
1156 return 0;
1157 pat = PATTERN (insn);
1160 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1161 with the cc value right now. We may be able to search for one
1162 though. */
1164 if (GET_CODE (pat) == SET
1165 && GET_CODE (SET_SRC (pat)) == UNSPEC
1166 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1168 rtx dest = SET_DEST (pat);
1170 /* Search forward looking for the first use of this value.
1171 Stop at block boundaries. */
1172 while (insn != BB_END (current_block))
1174 insn = NEXT_INSN (insn);
1175 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1176 break;
1177 if (CALL_P (insn))
1178 return 0;
1181 /* We haven't found it. */
1182 if (insn == BB_END (current_block))
1183 return 0;
1185 /* So we've found the insn using this value. If it is anything
1186 other than sahf or the value does not die (meaning we'd have
1187 to search further), then we must give up. */
1188 pat = PATTERN (insn);
1189 if (GET_CODE (pat) != SET
1190 || GET_CODE (SET_SRC (pat)) != UNSPEC
1191 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1192 || ! dead_or_set_p (insn, dest))
1193 return 0;
1195 /* Now we are prepared to handle this as a normal cc0 setter. */
1196 insn = next_flags_user (insn);
1197 if (insn == NULL_RTX)
1198 return 0;
1199 pat = PATTERN (insn);
1202 if (swap_rtx_condition_1 (pat))
1204 int fail = 0;
1205 INSN_CODE (insn) = -1;
1206 if (recog_memoized (insn) == -1)
1207 fail = 1;
1208 /* In case the flags don't die here, recurse to try fix
1209 following user too. */
1210 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1212 insn = next_flags_user (insn);
1213 if (!insn || !swap_rtx_condition (insn))
1214 fail = 1;
1216 if (fail)
1218 swap_rtx_condition_1 (pat);
1219 return 0;
1221 return 1;
1223 return 0;
1226 /* Handle a comparison. Special care needs to be taken to avoid
1227 causing comparisons that a 387 cannot do correctly, such as EQ.
1229 Also, a pop insn may need to be emitted. The 387 does have an
1230 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1231 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1232 set up. */
1234 static void
1235 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1237 rtx *src1, *src2;
1238 rtx src1_note, src2_note;
1240 src1 = get_true_reg (&XEXP (pat_src, 0));
1241 src2 = get_true_reg (&XEXP (pat_src, 1));
1243 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1244 registers that die in this insn - move those to stack top first. */
1245 if ((! STACK_REG_P (*src1)
1246 || (STACK_REG_P (*src2)
1247 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1248 && swap_rtx_condition (insn))
1250 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1252 src1 = get_true_reg (&XEXP (pat_src, 0));
1253 src2 = get_true_reg (&XEXP (pat_src, 1));
1255 INSN_CODE (insn) = -1;
1258 /* We will fix any death note later. */
1260 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1262 if (STACK_REG_P (*src2))
1263 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1264 else
1265 src2_note = NULL_RTX;
1267 emit_swap_insn (insn, regstack, *src1);
1269 replace_reg (src1, FIRST_STACK_REG);
1271 if (STACK_REG_P (*src2))
1272 replace_reg (src2, get_hard_regnum (regstack, *src2));
1274 if (src1_note)
1276 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1277 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1280 /* If the second operand dies, handle that. But if the operands are
1281 the same stack register, don't bother, because only one death is
1282 needed, and it was just handled. */
1284 if (src2_note
1285 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1286 && REGNO (*src1) == REGNO (*src2)))
1288 /* As a special case, two regs may die in this insn if src2 is
1289 next to top of stack and the top of stack also dies. Since
1290 we have already popped src1, "next to top of stack" is really
1291 at top (FIRST_STACK_REG) now. */
1293 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1294 && src1_note)
1296 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1297 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1299 else
1301 /* The 386 can only represent death of the first operand in
1302 the case handled above. In all other cases, emit a separate
1303 pop and remove the death note from here. */
1304 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1305 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1306 EMIT_AFTER);
1311 /* Substitute hardware stack regs in debug insn INSN, using stack
1312 layout REGSTACK. If we can't find a hardware stack reg for any of
1313 the REGs in it, reset the debug insn. */
1315 static void
1316 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1318 subrtx_ptr_iterator::array_type array;
1319 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1321 rtx *loc = *iter;
1322 rtx x = *loc;
1323 if (STACK_REG_P (x))
1325 int hard_regno = get_hard_regnum (regstack, x);
1327 /* If we can't find an active register, reset this debug insn. */
1328 if (hard_regno == -1)
1330 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1331 return;
1334 gcc_assert (hard_regno >= FIRST_STACK_REG);
1335 replace_reg (loc, hard_regno);
1336 iter.skip_subrtxes ();
1341 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1342 is the current register layout. Return whether a control flow insn
1343 was deleted in the process. */
1345 static bool
1346 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1348 rtx *dest, *src;
1349 bool control_flow_insn_deleted = false;
1351 switch (GET_CODE (pat))
1353 case USE:
1354 /* Deaths in USE insns can happen in non optimizing compilation.
1355 Handle them by popping the dying register. */
1356 src = get_true_reg (&XEXP (pat, 0));
1357 if (STACK_REG_P (*src)
1358 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1360 /* USEs are ignored for liveness information so USEs of dead
1361 register might happen. */
1362 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1363 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1364 return control_flow_insn_deleted;
1366 /* Uninitialized USE might happen for functions returning uninitialized
1367 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1368 so it is safe to ignore the use here. This is consistent with behavior
1369 of dataflow analyzer that ignores USE too. (This also imply that
1370 forcibly initializing the register to NaN here would lead to ICE later,
1371 since the REG_DEAD notes are not issued.) */
1372 break;
1374 case VAR_LOCATION:
1375 gcc_unreachable ();
1377 case CLOBBER:
1379 rtx note;
1381 dest = get_true_reg (&XEXP (pat, 0));
1382 if (STACK_REG_P (*dest))
1384 note = find_reg_note (insn, REG_DEAD, *dest);
1386 if (pat != PATTERN (insn))
1388 /* The fix_truncdi_1 pattern wants to be able to
1389 allocate its own scratch register. It does this by
1390 clobbering an fp reg so that it is assured of an
1391 empty reg-stack register. If the register is live,
1392 kill it now. Remove the DEAD/UNUSED note so we
1393 don't try to kill it later too.
1395 In reality the UNUSED note can be absent in some
1396 complicated cases when the register is reused for
1397 partially set variable. */
1399 if (note)
1400 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1401 else
1402 note = find_reg_note (insn, REG_UNUSED, *dest);
1403 if (note)
1404 remove_note (insn, note);
1405 replace_reg (dest, FIRST_STACK_REG + 1);
1407 else
1409 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1410 indicates an uninitialized value. Because reload removed
1411 all other clobbers, this must be due to a function
1412 returning without a value. Load up a NaN. */
1414 if (!note)
1416 rtx t = *dest;
1417 if (COMPLEX_MODE_P (GET_MODE (t)))
1419 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1420 if (get_hard_regnum (regstack, u) == -1)
1422 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1423 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1424 control_flow_insn_deleted
1425 |= move_nan_for_stack_reg (insn2, regstack, u);
1428 if (get_hard_regnum (regstack, t) == -1)
1429 control_flow_insn_deleted
1430 |= move_nan_for_stack_reg (insn, regstack, t);
1434 break;
1437 case SET:
1439 rtx *src1 = (rtx *) 0, *src2;
1440 rtx src1_note, src2_note;
1441 rtx pat_src;
1443 dest = get_true_reg (&SET_DEST (pat));
1444 src = get_true_reg (&SET_SRC (pat));
1445 pat_src = SET_SRC (pat);
1447 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1448 if (STACK_REG_P (*src)
1449 || (STACK_REG_P (*dest)
1450 && (REG_P (*src) || MEM_P (*src)
1451 || CONST_DOUBLE_P (*src))))
1453 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1454 break;
1457 switch (GET_CODE (pat_src))
1459 case COMPARE:
1460 compare_for_stack_reg (insn, regstack, pat_src);
1461 break;
1463 case CALL:
1465 int count;
1466 for (count = REG_NREGS (*dest); --count >= 0;)
1468 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1469 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1472 replace_reg (dest, FIRST_STACK_REG);
1473 break;
1475 case REG:
1476 /* This is a `tstM2' case. */
1477 gcc_assert (*dest == cc0_rtx);
1478 src1 = src;
1480 /* Fall through. */
1482 case FLOAT_TRUNCATE:
1483 case SQRT:
1484 case ABS:
1485 case NEG:
1486 /* These insns only operate on the top of the stack. DEST might
1487 be cc0_rtx if we're processing a tstM pattern. Also, it's
1488 possible that the tstM case results in a REG_DEAD note on the
1489 source. */
1491 if (src1 == 0)
1492 src1 = get_true_reg (&XEXP (pat_src, 0));
1494 emit_swap_insn (insn, regstack, *src1);
1496 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1498 if (STACK_REG_P (*dest))
1499 replace_reg (dest, FIRST_STACK_REG);
1501 if (src1_note)
1503 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1504 regstack->top--;
1505 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1508 replace_reg (src1, FIRST_STACK_REG);
1509 break;
1511 case MINUS:
1512 case DIV:
1513 /* On i386, reversed forms of subM3 and divM3 exist for
1514 MODE_FLOAT, so the same code that works for addM3 and mulM3
1515 can be used. */
1516 case MULT:
1517 case PLUS:
1518 /* These insns can accept the top of stack as a destination
1519 from a stack reg or mem, or can use the top of stack as a
1520 source and some other stack register (possibly top of stack)
1521 as a destination. */
1523 src1 = get_true_reg (&XEXP (pat_src, 0));
1524 src2 = get_true_reg (&XEXP (pat_src, 1));
1526 /* We will fix any death note later. */
1528 if (STACK_REG_P (*src1))
1529 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1530 else
1531 src1_note = NULL_RTX;
1532 if (STACK_REG_P (*src2))
1533 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1534 else
1535 src2_note = NULL_RTX;
1537 /* If either operand is not a stack register, then the dest
1538 must be top of stack. */
1540 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1541 emit_swap_insn (insn, regstack, *dest);
1542 else
1544 /* Both operands are REG. If neither operand is already
1545 at the top of stack, choose to make the one that is the
1546 dest the new top of stack. */
1548 int src1_hard_regnum, src2_hard_regnum;
1550 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1551 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1553 /* If the source is not live, this is yet another case of
1554 uninitialized variables. Load up a NaN instead. */
1555 if (src1_hard_regnum == -1)
1557 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1558 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1559 control_flow_insn_deleted
1560 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1562 if (src2_hard_regnum == -1)
1564 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1565 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1566 control_flow_insn_deleted
1567 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1570 if (src1_hard_regnum != FIRST_STACK_REG
1571 && src2_hard_regnum != FIRST_STACK_REG)
1572 emit_swap_insn (insn, regstack, *dest);
1575 if (STACK_REG_P (*src1))
1576 replace_reg (src1, get_hard_regnum (regstack, *src1));
1577 if (STACK_REG_P (*src2))
1578 replace_reg (src2, get_hard_regnum (regstack, *src2));
1580 if (src1_note)
1582 rtx src1_reg = XEXP (src1_note, 0);
1584 /* If the register that dies is at the top of stack, then
1585 the destination is somewhere else - merely substitute it.
1586 But if the reg that dies is not at top of stack, then
1587 move the top of stack to the dead reg, as though we had
1588 done the insn and then a store-with-pop. */
1590 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1592 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1593 replace_reg (dest, get_hard_regnum (regstack, *dest));
1595 else
1597 int regno = get_hard_regnum (regstack, src1_reg);
1599 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1600 replace_reg (dest, regno);
1602 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1603 = regstack->reg[regstack->top];
1606 CLEAR_HARD_REG_BIT (regstack->reg_set,
1607 REGNO (XEXP (src1_note, 0)));
1608 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1609 regstack->top--;
1611 else if (src2_note)
1613 rtx src2_reg = XEXP (src2_note, 0);
1614 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1616 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1617 replace_reg (dest, get_hard_regnum (regstack, *dest));
1619 else
1621 int regno = get_hard_regnum (regstack, src2_reg);
1623 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1624 replace_reg (dest, regno);
1626 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1627 = regstack->reg[regstack->top];
1630 CLEAR_HARD_REG_BIT (regstack->reg_set,
1631 REGNO (XEXP (src2_note, 0)));
1632 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1633 regstack->top--;
1635 else
1637 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1638 replace_reg (dest, get_hard_regnum (regstack, *dest));
1641 /* Keep operand 1 matching with destination. */
1642 if (COMMUTATIVE_ARITH_P (pat_src)
1643 && REG_P (*src1) && REG_P (*src2)
1644 && REGNO (*src1) != REGNO (*dest))
1646 int tmp = REGNO (*src1);
1647 replace_reg (src1, REGNO (*src2));
1648 replace_reg (src2, tmp);
1650 break;
1652 case UNSPEC:
1653 switch (XINT (pat_src, 1))
1655 case UNSPEC_FIST:
1656 case UNSPEC_FIST_ATOMIC:
1658 case UNSPEC_FIST_FLOOR:
1659 case UNSPEC_FIST_CEIL:
1661 /* These insns only operate on the top of the stack. */
1663 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1664 emit_swap_insn (insn, regstack, *src1);
1666 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1668 if (STACK_REG_P (*dest))
1669 replace_reg (dest, FIRST_STACK_REG);
1671 if (src1_note)
1673 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1674 regstack->top--;
1675 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1678 replace_reg (src1, FIRST_STACK_REG);
1679 break;
1681 case UNSPEC_FXAM:
1683 /* This insn only operate on the top of the stack. */
1685 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1686 emit_swap_insn (insn, regstack, *src1);
1688 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1690 replace_reg (src1, FIRST_STACK_REG);
1692 if (src1_note)
1694 remove_regno_note (insn, REG_DEAD,
1695 REGNO (XEXP (src1_note, 0)));
1696 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1697 EMIT_AFTER);
1700 break;
1702 case UNSPEC_SIN:
1703 case UNSPEC_COS:
1704 case UNSPEC_FRNDINT:
1705 case UNSPEC_F2XM1:
1707 case UNSPEC_FRNDINT_FLOOR:
1708 case UNSPEC_FRNDINT_CEIL:
1709 case UNSPEC_FRNDINT_TRUNC:
1710 case UNSPEC_FRNDINT_MASK_PM:
1712 /* Above insns operate on the top of the stack. */
1714 case UNSPEC_SINCOS_COS:
1715 case UNSPEC_XTRACT_FRACT:
1717 /* Above insns operate on the top two stack slots,
1718 first part of one input, double output insn. */
1720 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1722 emit_swap_insn (insn, regstack, *src1);
1724 /* Input should never die, it is replaced with output. */
1725 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1726 gcc_assert (!src1_note);
1728 if (STACK_REG_P (*dest))
1729 replace_reg (dest, FIRST_STACK_REG);
1731 replace_reg (src1, FIRST_STACK_REG);
1732 break;
1734 case UNSPEC_SINCOS_SIN:
1735 case UNSPEC_XTRACT_EXP:
1737 /* These insns operate on the top two stack slots,
1738 second part of one input, double output insn. */
1740 regstack->top++;
1741 /* FALLTHRU */
1743 case UNSPEC_TAN:
1745 /* For UNSPEC_TAN, regstack->top is already increased
1746 by inherent load of constant 1.0. */
1748 /* Output value is generated in the second stack slot.
1749 Move current value from second slot to the top. */
1750 regstack->reg[regstack->top]
1751 = regstack->reg[regstack->top - 1];
1753 gcc_assert (STACK_REG_P (*dest));
1755 regstack->reg[regstack->top - 1] = REGNO (*dest);
1756 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1757 replace_reg (dest, FIRST_STACK_REG + 1);
1759 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1761 replace_reg (src1, FIRST_STACK_REG);
1762 break;
1764 case UNSPEC_FPATAN:
1765 case UNSPEC_FYL2X:
1766 case UNSPEC_FYL2XP1:
1767 /* These insns operate on the top two stack slots. */
1769 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1770 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1772 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1773 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1775 swap_to_top (insn, regstack, *src1, *src2);
1777 replace_reg (src1, FIRST_STACK_REG);
1778 replace_reg (src2, FIRST_STACK_REG + 1);
1780 if (src1_note)
1781 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1782 if (src2_note)
1783 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1785 /* Pop both input operands from the stack. */
1786 CLEAR_HARD_REG_BIT (regstack->reg_set,
1787 regstack->reg[regstack->top]);
1788 CLEAR_HARD_REG_BIT (regstack->reg_set,
1789 regstack->reg[regstack->top - 1]);
1790 regstack->top -= 2;
1792 /* Push the result back onto the stack. */
1793 regstack->reg[++regstack->top] = REGNO (*dest);
1794 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1795 replace_reg (dest, FIRST_STACK_REG);
1796 break;
1798 case UNSPEC_FSCALE_FRACT:
1799 case UNSPEC_FPREM_F:
1800 case UNSPEC_FPREM1_F:
1801 /* These insns operate on the top two stack slots,
1802 first part of double input, double output insn. */
1804 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1805 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1807 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1808 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1810 /* Inputs should never die, they are
1811 replaced with outputs. */
1812 gcc_assert (!src1_note);
1813 gcc_assert (!src2_note);
1815 swap_to_top (insn, regstack, *src1, *src2);
1817 /* Push the result back onto stack. Empty stack slot
1818 will be filled in second part of insn. */
1819 if (STACK_REG_P (*dest))
1821 regstack->reg[regstack->top] = REGNO (*dest);
1822 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1823 replace_reg (dest, FIRST_STACK_REG);
1826 replace_reg (src1, FIRST_STACK_REG);
1827 replace_reg (src2, FIRST_STACK_REG + 1);
1828 break;
1830 case UNSPEC_FSCALE_EXP:
1831 case UNSPEC_FPREM_U:
1832 case UNSPEC_FPREM1_U:
1833 /* These insns operate on the top two stack slots,
1834 second part of double input, double output insn. */
1836 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1837 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1839 /* Push the result back onto stack. Fill empty slot from
1840 first part of insn and fix top of stack pointer. */
1841 if (STACK_REG_P (*dest))
1843 regstack->reg[regstack->top - 1] = REGNO (*dest);
1844 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1845 replace_reg (dest, FIRST_STACK_REG + 1);
1848 replace_reg (src1, FIRST_STACK_REG);
1849 replace_reg (src2, FIRST_STACK_REG + 1);
1850 break;
1852 case UNSPEC_C2_FLAG:
1853 /* This insn operates on the top two stack slots,
1854 third part of C2 setting double input insn. */
1856 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1857 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1859 replace_reg (src1, FIRST_STACK_REG);
1860 replace_reg (src2, FIRST_STACK_REG + 1);
1861 break;
1863 case UNSPEC_SAHF:
1864 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1865 The combination matches the PPRO fcomi instruction. */
1867 pat_src = XVECEXP (pat_src, 0, 0);
1868 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1869 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1870 /* Fall through. */
1872 case UNSPEC_FNSTSW:
1873 /* Combined fcomp+fnstsw generated for doing well with
1874 CSE. When optimizing this would have been broken
1875 up before now. */
1877 pat_src = XVECEXP (pat_src, 0, 0);
1878 gcc_assert (GET_CODE (pat_src) == COMPARE);
1880 compare_for_stack_reg (insn, regstack, pat_src);
1881 break;
1883 default:
1884 gcc_unreachable ();
1886 break;
1888 case IF_THEN_ELSE:
1889 /* This insn requires the top of stack to be the destination. */
1891 src1 = get_true_reg (&XEXP (pat_src, 1));
1892 src2 = get_true_reg (&XEXP (pat_src, 2));
1894 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1895 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1897 /* If the comparison operator is an FP comparison operator,
1898 it is handled correctly by compare_for_stack_reg () who
1899 will move the destination to the top of stack. But if the
1900 comparison operator is not an FP comparison operator, we
1901 have to handle it here. */
1902 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1903 && REGNO (*dest) != regstack->reg[regstack->top])
1905 /* In case one of operands is the top of stack and the operands
1906 dies, it is safe to make it the destination operand by
1907 reversing the direction of cmove and avoid fxch. */
1908 if ((REGNO (*src1) == regstack->reg[regstack->top]
1909 && src1_note)
1910 || (REGNO (*src2) == regstack->reg[regstack->top]
1911 && src2_note))
1913 int idx1 = (get_hard_regnum (regstack, *src1)
1914 - FIRST_STACK_REG);
1915 int idx2 = (get_hard_regnum (regstack, *src2)
1916 - FIRST_STACK_REG);
1918 /* Make reg-stack believe that the operands are already
1919 swapped on the stack */
1920 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1921 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1923 /* Reverse condition to compensate the operand swap.
1924 i386 do have comparison always reversible. */
1925 PUT_CODE (XEXP (pat_src, 0),
1926 reversed_comparison_code (XEXP (pat_src, 0), insn));
1928 else
1929 emit_swap_insn (insn, regstack, *dest);
1933 rtx src_note [3];
1934 int i;
1936 src_note[0] = 0;
1937 src_note[1] = src1_note;
1938 src_note[2] = src2_note;
1940 if (STACK_REG_P (*src1))
1941 replace_reg (src1, get_hard_regnum (regstack, *src1));
1942 if (STACK_REG_P (*src2))
1943 replace_reg (src2, get_hard_regnum (regstack, *src2));
1945 for (i = 1; i <= 2; i++)
1946 if (src_note [i])
1948 int regno = REGNO (XEXP (src_note[i], 0));
1950 /* If the register that dies is not at the top of
1951 stack, then move the top of stack to the dead reg.
1952 Top of stack should never die, as it is the
1953 destination. */
1954 gcc_assert (regno != regstack->reg[regstack->top]);
1955 remove_regno_note (insn, REG_DEAD, regno);
1956 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1957 EMIT_AFTER);
1961 /* Make dest the top of stack. Add dest to regstack if
1962 not present. */
1963 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1964 regstack->reg[++regstack->top] = REGNO (*dest);
1965 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1966 replace_reg (dest, FIRST_STACK_REG);
1967 break;
1969 default:
1970 gcc_unreachable ();
1972 break;
1975 default:
1976 break;
1979 return control_flow_insn_deleted;
1982 /* Substitute hard regnums for any stack regs in INSN, which has
1983 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1984 before the insn, and is updated with changes made here.
1986 There are several requirements and assumptions about the use of
1987 stack-like regs in asm statements. These rules are enforced by
1988 record_asm_stack_regs; see comments there for details. Any
1989 asm_operands left in the RTL at this point may be assume to meet the
1990 requirements, since record_asm_stack_regs removes any problem asm. */
1992 static void
1993 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
1995 rtx body = PATTERN (insn);
1997 rtx *note_reg; /* Array of note contents */
1998 rtx **note_loc; /* Address of REG field of each note */
1999 enum reg_note *note_kind; /* The type of each note */
2001 rtx *clobber_reg = 0;
2002 rtx **clobber_loc = 0;
2004 struct stack_def temp_stack;
2005 int n_notes;
2006 int n_clobbers;
2007 rtx note;
2008 int i;
2009 int n_inputs, n_outputs;
2011 if (! check_asm_stack_operands (insn))
2012 return;
2014 /* Find out what the constraints required. If no constraint
2015 alternative matches, that is a compiler bug: we should have caught
2016 such an insn in check_asm_stack_operands. */
2017 extract_constrain_insn (insn);
2019 preprocess_constraints (insn);
2020 const operand_alternative *op_alt = which_op_alt ();
2022 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2024 /* Strip SUBREGs here to make the following code simpler. */
2025 for (i = 0; i < recog_data.n_operands; i++)
2026 if (GET_CODE (recog_data.operand[i]) == SUBREG
2027 && REG_P (SUBREG_REG (recog_data.operand[i])))
2029 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2030 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2033 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2035 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2036 i++;
2038 note_reg = XALLOCAVEC (rtx, i);
2039 note_loc = XALLOCAVEC (rtx *, i);
2040 note_kind = XALLOCAVEC (enum reg_note, i);
2042 n_notes = 0;
2043 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2045 if (GET_CODE (note) != EXPR_LIST)
2046 continue;
2047 rtx reg = XEXP (note, 0);
2048 rtx *loc = & XEXP (note, 0);
2050 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2052 loc = & SUBREG_REG (reg);
2053 reg = SUBREG_REG (reg);
2056 if (STACK_REG_P (reg)
2057 && (REG_NOTE_KIND (note) == REG_DEAD
2058 || REG_NOTE_KIND (note) == REG_UNUSED))
2060 note_reg[n_notes] = reg;
2061 note_loc[n_notes] = loc;
2062 note_kind[n_notes] = REG_NOTE_KIND (note);
2063 n_notes++;
2067 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2069 n_clobbers = 0;
2071 if (GET_CODE (body) == PARALLEL)
2073 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2074 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2076 for (i = 0; i < XVECLEN (body, 0); i++)
2077 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2079 rtx clobber = XVECEXP (body, 0, i);
2080 rtx reg = XEXP (clobber, 0);
2081 rtx *loc = & XEXP (clobber, 0);
2083 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2085 loc = & SUBREG_REG (reg);
2086 reg = SUBREG_REG (reg);
2089 if (STACK_REG_P (reg))
2091 clobber_reg[n_clobbers] = reg;
2092 clobber_loc[n_clobbers] = loc;
2093 n_clobbers++;
2098 temp_stack = *regstack;
2100 /* Put the input regs into the desired place in TEMP_STACK. */
2102 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2103 if (STACK_REG_P (recog_data.operand[i])
2104 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2105 && op_alt[i].cl != FLOAT_REGS)
2107 /* If an operand needs to be in a particular reg in
2108 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2109 these constraints are for single register classes, and
2110 reload guaranteed that operand[i] is already in that class,
2111 we can just use REGNO (recog_data.operand[i]) to know which
2112 actual reg this operand needs to be in. */
2114 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2116 gcc_assert (regno >= 0);
2118 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2120 /* recog_data.operand[i] is not in the right place. Find
2121 it and swap it with whatever is already in I's place.
2122 K is where recog_data.operand[i] is now. J is where it
2123 should be. */
2124 int j, k;
2126 k = temp_stack.top - (regno - FIRST_STACK_REG);
2127 j = (temp_stack.top
2128 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2130 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2134 /* Emit insns before INSN to make sure the reg-stack is in the right
2135 order. */
2137 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2139 /* Make the needed input register substitutions. Do death notes and
2140 clobbers too, because these are for inputs, not outputs. */
2142 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2143 if (STACK_REG_P (recog_data.operand[i]))
2145 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2147 gcc_assert (regnum >= 0);
2149 replace_reg (recog_data.operand_loc[i], regnum);
2152 for (i = 0; i < n_notes; i++)
2153 if (note_kind[i] == REG_DEAD)
2155 int regnum = get_hard_regnum (regstack, note_reg[i]);
2157 gcc_assert (regnum >= 0);
2159 replace_reg (note_loc[i], regnum);
2162 for (i = 0; i < n_clobbers; i++)
2164 /* It's OK for a CLOBBER to reference a reg that is not live.
2165 Don't try to replace it in that case. */
2166 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2168 if (regnum >= 0)
2170 /* Sigh - clobbers always have QImode. But replace_reg knows
2171 that these regs can't be MODE_INT and will assert. Just put
2172 the right reg there without calling replace_reg. */
2174 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2178 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2180 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2181 if (STACK_REG_P (recog_data.operand[i]))
2183 /* An input reg is implicitly popped if it is tied to an
2184 output, or if there is a CLOBBER for it. */
2185 int j;
2187 for (j = 0; j < n_clobbers; j++)
2188 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2189 break;
2191 if (j < n_clobbers || op_alt[i].matches >= 0)
2193 /* recog_data.operand[i] might not be at the top of stack.
2194 But that's OK, because all we need to do is pop the
2195 right number of regs off of the top of the reg-stack.
2196 record_asm_stack_regs guaranteed that all implicitly
2197 popped regs were grouped at the top of the reg-stack. */
2199 CLEAR_HARD_REG_BIT (regstack->reg_set,
2200 regstack->reg[regstack->top]);
2201 regstack->top--;
2205 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2206 Note that there isn't any need to substitute register numbers.
2207 ??? Explain why this is true. */
2209 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2211 /* See if there is an output for this hard reg. */
2212 int j;
2214 for (j = 0; j < n_outputs; j++)
2215 if (STACK_REG_P (recog_data.operand[j])
2216 && REGNO (recog_data.operand[j]) == (unsigned) i)
2218 regstack->reg[++regstack->top] = i;
2219 SET_HARD_REG_BIT (regstack->reg_set, i);
2220 break;
2224 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2225 input that the asm didn't implicitly pop. If the asm didn't
2226 implicitly pop an input reg, that reg will still be live.
2228 Note that we can't use find_regno_note here: the register numbers
2229 in the death notes have already been substituted. */
2231 for (i = 0; i < n_outputs; i++)
2232 if (STACK_REG_P (recog_data.operand[i]))
2234 int j;
2236 for (j = 0; j < n_notes; j++)
2237 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2238 && note_kind[j] == REG_UNUSED)
2240 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2241 EMIT_AFTER);
2242 break;
2246 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2247 if (STACK_REG_P (recog_data.operand[i]))
2249 int j;
2251 for (j = 0; j < n_notes; j++)
2252 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2253 && note_kind[j] == REG_DEAD
2254 && TEST_HARD_REG_BIT (regstack->reg_set,
2255 REGNO (recog_data.operand[i])))
2257 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2258 EMIT_AFTER);
2259 break;
2264 /* Substitute stack hard reg numbers for stack virtual registers in
2265 INSN. Non-stack register numbers are not changed. REGSTACK is the
2266 current stack content. Insns may be emitted as needed to arrange the
2267 stack for the 387 based on the contents of the insn. Return whether
2268 a control flow insn was deleted in the process. */
2270 static bool
2271 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2273 rtx *note_link, note;
2274 bool control_flow_insn_deleted = false;
2275 int i;
2277 if (CALL_P (insn))
2279 int top = regstack->top;
2281 /* If there are any floating point parameters to be passed in
2282 registers for this call, make sure they are in the right
2283 order. */
2285 if (top >= 0)
2287 straighten_stack (insn, regstack);
2289 /* Now mark the arguments as dead after the call. */
2291 while (regstack->top >= 0)
2293 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2294 regstack->top--;
2299 /* Do the actual substitution if any stack regs are mentioned.
2300 Since we only record whether entire insn mentions stack regs, and
2301 subst_stack_regs_pat only works for patterns that contain stack regs,
2302 we must check each pattern in a parallel here. A call_value_pop could
2303 fail otherwise. */
2305 if (stack_regs_mentioned (insn))
2307 int n_operands = asm_noperands (PATTERN (insn));
2308 if (n_operands >= 0)
2310 /* This insn is an `asm' with operands. Decode the operands,
2311 decide how many are inputs, and do register substitution.
2312 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2314 subst_asm_stack_regs (insn, regstack);
2315 return control_flow_insn_deleted;
2318 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2319 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2321 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2323 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2324 XVECEXP (PATTERN (insn), 0, i)
2325 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2326 control_flow_insn_deleted
2327 |= subst_stack_regs_pat (insn, regstack,
2328 XVECEXP (PATTERN (insn), 0, i));
2331 else
2332 control_flow_insn_deleted
2333 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2336 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2337 REG_UNUSED will already have been dealt with, so just return. */
2339 if (NOTE_P (insn) || insn->deleted ())
2340 return control_flow_insn_deleted;
2342 /* If this a noreturn call, we can't insert pop insns after it.
2343 Instead, reset the stack state to empty. */
2344 if (CALL_P (insn)
2345 && find_reg_note (insn, REG_NORETURN, NULL))
2347 regstack->top = -1;
2348 CLEAR_HARD_REG_SET (regstack->reg_set);
2349 return control_flow_insn_deleted;
2352 /* If there is a REG_UNUSED note on a stack register on this insn,
2353 the indicated reg must be popped. The REG_UNUSED note is removed,
2354 since the form of the newly emitted pop insn references the reg,
2355 making it no longer `unset'. */
2357 note_link = &REG_NOTES (insn);
2358 for (note = *note_link; note; note = XEXP (note, 1))
2359 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2361 *note_link = XEXP (note, 1);
2362 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2364 else
2365 note_link = &XEXP (note, 1);
2367 return control_flow_insn_deleted;
2370 /* Change the organization of the stack so that it fits a new basic
2371 block. Some registers might have to be popped, but there can never be
2372 a register live in the new block that is not now live.
2374 Insert any needed insns before or after INSN, as indicated by
2375 WHERE. OLD is the original stack layout, and NEW is the desired
2376 form. OLD is updated to reflect the code emitted, i.e., it will be
2377 the same as NEW upon return.
2379 This function will not preserve block_end[]. But that information
2380 is no longer needed once this has executed. */
2382 static void
2383 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2384 enum emit_where where)
2386 int reg;
2387 int update_end = 0;
2388 int i;
2390 /* Stack adjustments for the first insn in a block update the
2391 current_block's stack_in instead of inserting insns directly.
2392 compensate_edges will add the necessary code later. */
2393 if (current_block
2394 && starting_stack_p
2395 && where == EMIT_BEFORE)
2397 BLOCK_INFO (current_block)->stack_in = *new_stack;
2398 starting_stack_p = false;
2399 *old = *new_stack;
2400 return;
2403 /* We will be inserting new insns "backwards". If we are to insert
2404 after INSN, find the next insn, and insert before it. */
2406 if (where == EMIT_AFTER)
2408 if (current_block && BB_END (current_block) == insn)
2409 update_end = 1;
2410 insn = NEXT_INSN (insn);
2413 /* Initialize partially dead variables. */
2414 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2415 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2416 && !TEST_HARD_REG_BIT (old->reg_set, i))
2418 old->reg[++old->top] = i;
2419 SET_HARD_REG_BIT (old->reg_set, i);
2420 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2421 insn);
2424 /* Pop any registers that are not needed in the new block. */
2426 /* If the destination block's stack already has a specified layout
2427 and contains two or more registers, use a more intelligent algorithm
2428 to pop registers that minimizes the number number of fxchs below. */
2429 if (new_stack->top > 0)
2431 bool slots[REG_STACK_SIZE];
2432 int pops[REG_STACK_SIZE];
2433 int next, dest, topsrc;
2435 /* First pass to determine the free slots. */
2436 for (reg = 0; reg <= new_stack->top; reg++)
2437 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2439 /* Second pass to allocate preferred slots. */
2440 topsrc = -1;
2441 for (reg = old->top; reg > new_stack->top; reg--)
2442 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2444 dest = -1;
2445 for (next = 0; next <= new_stack->top; next++)
2446 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2448 /* If this is a preference for the new top of stack, record
2449 the fact by remembering it's old->reg in topsrc. */
2450 if (next == new_stack->top)
2451 topsrc = reg;
2452 slots[next] = true;
2453 dest = next;
2454 break;
2456 pops[reg] = dest;
2458 else
2459 pops[reg] = reg;
2461 /* Intentionally, avoid placing the top of stack in it's correct
2462 location, if we still need to permute the stack below and we
2463 can usefully place it somewhere else. This is the case if any
2464 slot is still unallocated, in which case we should place the
2465 top of stack there. */
2466 if (topsrc != -1)
2467 for (reg = 0; reg < new_stack->top; reg++)
2468 if (!slots[reg])
2470 pops[topsrc] = reg;
2471 slots[new_stack->top] = false;
2472 slots[reg] = true;
2473 break;
2476 /* Third pass allocates remaining slots and emits pop insns. */
2477 next = new_stack->top;
2478 for (reg = old->top; reg > new_stack->top; reg--)
2480 dest = pops[reg];
2481 if (dest == -1)
2483 /* Find next free slot. */
2484 while (slots[next])
2485 next--;
2486 dest = next--;
2488 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2489 EMIT_BEFORE);
2492 else
2494 /* The following loop attempts to maximize the number of times we
2495 pop the top of the stack, as this permits the use of the faster
2496 ffreep instruction on platforms that support it. */
2497 int live, next;
2499 live = 0;
2500 for (reg = 0; reg <= old->top; reg++)
2501 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2502 live++;
2504 next = live;
2505 while (old->top >= live)
2506 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2508 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2509 next--;
2510 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2511 EMIT_BEFORE);
2513 else
2514 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2515 EMIT_BEFORE);
2518 if (new_stack->top == -2)
2520 /* If the new block has never been processed, then it can inherit
2521 the old stack order. */
2523 new_stack->top = old->top;
2524 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2526 else
2528 /* This block has been entered before, and we must match the
2529 previously selected stack order. */
2531 /* By now, the only difference should be the order of the stack,
2532 not their depth or liveliness. */
2534 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2535 gcc_assert (old->top == new_stack->top);
2537 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2538 swaps until the stack is correct.
2540 The worst case number of swaps emitted is N + 2, where N is the
2541 depth of the stack. In some cases, the reg at the top of
2542 stack may be correct, but swapped anyway in order to fix
2543 other regs. But since we never swap any other reg away from
2544 its correct slot, this algorithm will converge. */
2546 if (new_stack->top != -1)
2549 /* Swap the reg at top of stack into the position it is
2550 supposed to be in, until the correct top of stack appears. */
2552 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2554 for (reg = new_stack->top; reg >= 0; reg--)
2555 if (new_stack->reg[reg] == old->reg[old->top])
2556 break;
2558 gcc_assert (reg != -1);
2560 emit_swap_insn (insn, old,
2561 FP_MODE_REG (old->reg[reg], DFmode));
2564 /* See if any regs remain incorrect. If so, bring an
2565 incorrect reg to the top of stack, and let the while loop
2566 above fix it. */
2568 for (reg = new_stack->top; reg >= 0; reg--)
2569 if (new_stack->reg[reg] != old->reg[reg])
2571 emit_swap_insn (insn, old,
2572 FP_MODE_REG (old->reg[reg], DFmode));
2573 break;
2575 } while (reg >= 0);
2577 /* At this point there must be no differences. */
2579 for (reg = old->top; reg >= 0; reg--)
2580 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2583 if (update_end)
2584 BB_END (current_block) = PREV_INSN (insn);
2587 /* Print stack configuration. */
2589 static void
2590 print_stack (FILE *file, stack_ptr s)
2592 if (! file)
2593 return;
2595 if (s->top == -2)
2596 fprintf (file, "uninitialized\n");
2597 else if (s->top == -1)
2598 fprintf (file, "empty\n");
2599 else
2601 int i;
2602 fputs ("[ ", file);
2603 for (i = 0; i <= s->top; ++i)
2604 fprintf (file, "%d ", s->reg[i]);
2605 fputs ("]\n", file);
2609 /* This function was doing life analysis. We now let the regular live
2610 code do it's job, so we only need to check some extra invariants
2611 that reg-stack expects. Primary among these being that all registers
2612 are initialized before use.
2614 The function returns true when code was emitted to CFG edges and
2615 commit_edge_insertions needs to be called. */
2617 static int
2618 convert_regs_entry (void)
2620 int inserted = 0;
2621 edge e;
2622 edge_iterator ei;
2624 /* Load something into each stack register live at function entry.
2625 Such live registers can be caused by uninitialized variables or
2626 functions not returning values on all paths. In order to keep
2627 the push/pop code happy, and to not scrog the register stack, we
2628 must put something in these registers. Use a QNaN.
2630 Note that we are inserting converted code here. This code is
2631 never seen by the convert_regs pass. */
2633 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2635 basic_block block = e->dest;
2636 block_info bi = BLOCK_INFO (block);
2637 int reg, top = -1;
2639 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2640 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2642 rtx init;
2644 bi->stack_in.reg[++top] = reg;
2646 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2647 not_a_num);
2648 insert_insn_on_edge (init, e);
2649 inserted = 1;
2652 bi->stack_in.top = top;
2655 return inserted;
2658 /* Construct the desired stack for function exit. This will either
2659 be `empty', or the function return value at top-of-stack. */
2661 static void
2662 convert_regs_exit (void)
2664 int value_reg_low, value_reg_high;
2665 stack_ptr output_stack;
2666 rtx retvalue;
2668 retvalue = stack_result (current_function_decl);
2669 value_reg_low = value_reg_high = -1;
2670 if (retvalue)
2672 value_reg_low = REGNO (retvalue);
2673 value_reg_high = END_REGNO (retvalue) - 1;
2676 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2677 if (value_reg_low == -1)
2678 output_stack->top = -1;
2679 else
2681 int reg;
2683 output_stack->top = value_reg_high - value_reg_low;
2684 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2686 output_stack->reg[value_reg_high - reg] = reg;
2687 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2692 /* Copy the stack info from the end of edge E's source block to the
2693 start of E's destination block. */
2695 static void
2696 propagate_stack (edge e)
2698 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2699 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2700 int reg;
2702 /* Preserve the order of the original stack, but check whether
2703 any pops are needed. */
2704 dest_stack->top = -1;
2705 for (reg = 0; reg <= src_stack->top; ++reg)
2706 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2707 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2709 /* Push in any partially dead values. */
2710 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2711 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2712 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2713 dest_stack->reg[++dest_stack->top] = reg;
2717 /* Adjust the stack of edge E's source block on exit to match the stack
2718 of it's target block upon input. The stack layouts of both blocks
2719 should have been defined by now. */
2721 static bool
2722 compensate_edge (edge e)
2724 basic_block source = e->src, target = e->dest;
2725 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2726 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2727 struct stack_def regstack;
2728 int reg;
2730 if (dump_file)
2731 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2733 gcc_assert (target_stack->top != -2);
2735 /* Check whether stacks are identical. */
2736 if (target_stack->top == source_stack->top)
2738 for (reg = target_stack->top; reg >= 0; --reg)
2739 if (target_stack->reg[reg] != source_stack->reg[reg])
2740 break;
2742 if (reg == -1)
2744 if (dump_file)
2745 fprintf (dump_file, "no changes needed\n");
2746 return false;
2750 if (dump_file)
2752 fprintf (dump_file, "correcting stack to ");
2753 print_stack (dump_file, target_stack);
2756 /* Abnormal calls may appear to have values live in st(0), but the
2757 abnormal return path will not have actually loaded the values. */
2758 if (e->flags & EDGE_ABNORMAL_CALL)
2760 /* Assert that the lifetimes are as we expect -- one value
2761 live at st(0) on the end of the source block, and no
2762 values live at the beginning of the destination block.
2763 For complex return values, we may have st(1) live as well. */
2764 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2765 gcc_assert (target_stack->top == -1);
2766 return false;
2769 /* Handle non-call EH edges specially. The normal return path have
2770 values in registers. These will be popped en masse by the unwind
2771 library. */
2772 if (e->flags & EDGE_EH)
2774 gcc_assert (target_stack->top == -1);
2775 return false;
2778 /* We don't support abnormal edges. Global takes care to
2779 avoid any live register across them, so we should never
2780 have to insert instructions on such edges. */
2781 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2783 /* Make a copy of source_stack as change_stack is destructive. */
2784 regstack = *source_stack;
2786 /* It is better to output directly to the end of the block
2787 instead of to the edge, because emit_swap can do minimal
2788 insn scheduling. We can do this when there is only one
2789 edge out, and it is not abnormal. */
2790 if (EDGE_COUNT (source->succs) == 1)
2792 current_block = source;
2793 change_stack (BB_END (source), &regstack, target_stack,
2794 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2796 else
2798 rtx_insn *seq;
2799 rtx_note *after;
2801 current_block = NULL;
2802 start_sequence ();
2804 /* ??? change_stack needs some point to emit insns after. */
2805 after = emit_note (NOTE_INSN_DELETED);
2807 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2809 seq = get_insns ();
2810 end_sequence ();
2812 insert_insn_on_edge (seq, e);
2813 return true;
2815 return false;
2818 /* Traverse all non-entry edges in the CFG, and emit the necessary
2819 edge compensation code to change the stack from stack_out of the
2820 source block to the stack_in of the destination block. */
2822 static bool
2823 compensate_edges (void)
2825 bool inserted = false;
2826 basic_block bb;
2828 starting_stack_p = false;
2830 FOR_EACH_BB_FN (bb, cfun)
2831 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2833 edge e;
2834 edge_iterator ei;
2836 FOR_EACH_EDGE (e, ei, bb->succs)
2837 inserted |= compensate_edge (e);
2839 return inserted;
2842 /* Select the better of two edges E1 and E2 to use to determine the
2843 stack layout for their shared destination basic block. This is
2844 typically the more frequently executed. The edge E1 may be NULL
2845 (in which case E2 is returned), but E2 is always non-NULL. */
2847 static edge
2848 better_edge (edge e1, edge e2)
2850 if (!e1)
2851 return e2;
2853 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2854 return e1;
2855 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2856 return e2;
2858 if (e1->count > e2->count)
2859 return e1;
2860 if (e1->count < e2->count)
2861 return e2;
2863 /* Prefer critical edges to minimize inserting compensation code on
2864 critical edges. */
2866 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2867 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2869 /* Avoid non-deterministic behavior. */
2870 return (e1->src->index < e2->src->index) ? e1 : e2;
2873 /* Convert stack register references in one block. Return true if the CFG
2874 has been modified in the process. */
2876 static bool
2877 convert_regs_1 (basic_block block)
2879 struct stack_def regstack;
2880 block_info bi = BLOCK_INFO (block);
2881 int reg;
2882 rtx_insn *insn, *next;
2883 bool control_flow_insn_deleted = false;
2884 bool cfg_altered = false;
2885 int debug_insns_with_starting_stack = 0;
2887 any_malformed_asm = false;
2889 /* Choose an initial stack layout, if one hasn't already been chosen. */
2890 if (bi->stack_in.top == -2)
2892 edge e, beste = NULL;
2893 edge_iterator ei;
2895 /* Select the best incoming edge (typically the most frequent) to
2896 use as a template for this basic block. */
2897 FOR_EACH_EDGE (e, ei, block->preds)
2898 if (BLOCK_INFO (e->src)->done)
2899 beste = better_edge (beste, e);
2901 if (beste)
2902 propagate_stack (beste);
2903 else
2905 /* No predecessors. Create an arbitrary input stack. */
2906 bi->stack_in.top = -1;
2907 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2908 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2909 bi->stack_in.reg[++bi->stack_in.top] = reg;
2913 if (dump_file)
2915 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2916 print_stack (dump_file, &bi->stack_in);
2919 /* Process all insns in this block. Keep track of NEXT so that we
2920 don't process insns emitted while substituting in INSN. */
2921 current_block = block;
2922 next = BB_HEAD (block);
2923 regstack = bi->stack_in;
2924 starting_stack_p = true;
2928 insn = next;
2929 next = NEXT_INSN (insn);
2931 /* Ensure we have not missed a block boundary. */
2932 gcc_assert (next);
2933 if (insn == BB_END (block))
2934 next = NULL;
2936 /* Don't bother processing unless there is a stack reg
2937 mentioned or if it's a CALL_INSN. */
2938 if (DEBUG_INSN_P (insn))
2940 if (starting_stack_p)
2941 debug_insns_with_starting_stack++;
2942 else
2944 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2946 /* Nothing must ever die at a debug insn. If something
2947 is referenced in it that becomes dead, it should have
2948 died before and the reference in the debug insn
2949 should have been removed so as to avoid changing code
2950 generation. */
2951 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2954 else if (stack_regs_mentioned (insn)
2955 || CALL_P (insn))
2957 if (dump_file)
2959 fprintf (dump_file, " insn %d input stack: ",
2960 INSN_UID (insn));
2961 print_stack (dump_file, &regstack);
2963 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2964 starting_stack_p = false;
2967 while (next);
2969 if (debug_insns_with_starting_stack)
2971 /* Since it's the first non-debug instruction that determines
2972 the stack requirements of the current basic block, we refrain
2973 from updating debug insns before it in the loop above, and
2974 fix them up here. */
2975 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2976 insn = NEXT_INSN (insn))
2978 if (!DEBUG_INSN_P (insn))
2979 continue;
2981 debug_insns_with_starting_stack--;
2982 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
2986 if (dump_file)
2988 fprintf (dump_file, "Expected live registers [");
2989 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2990 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2991 fprintf (dump_file, " %d", reg);
2992 fprintf (dump_file, " ]\nOutput stack: ");
2993 print_stack (dump_file, &regstack);
2996 insn = BB_END (block);
2997 if (JUMP_P (insn))
2998 insn = PREV_INSN (insn);
3000 /* If the function is declared to return a value, but it returns one
3001 in only some cases, some registers might come live here. Emit
3002 necessary moves for them. */
3004 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3006 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3007 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3009 rtx set;
3011 if (dump_file)
3012 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3014 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3015 insn = emit_insn_after (set, insn);
3016 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3020 /* Amongst the insns possibly deleted during the substitution process above,
3021 might have been the only trapping insn in the block. We purge the now
3022 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3023 called at the end of convert_regs. The order in which we process the
3024 blocks ensures that we never delete an already processed edge.
3026 Note that, at this point, the CFG may have been damaged by the emission
3027 of instructions after an abnormal call, which moves the basic block end
3028 (and is the reason why we call fixup_abnormal_edges later). So we must
3029 be sure that the trapping insn has been deleted before trying to purge
3030 dead edges, otherwise we risk purging valid edges.
3032 ??? We are normally supposed not to delete trapping insns, so we pretend
3033 that the insns deleted above don't actually trap. It would have been
3034 better to detect this earlier and avoid creating the EH edge in the first
3035 place, still, but we don't have enough information at that time. */
3037 if (control_flow_insn_deleted)
3038 cfg_altered |= purge_dead_edges (block);
3040 /* Something failed if the stack lives don't match. If we had malformed
3041 asms, we zapped the instruction itself, but that didn't produce the
3042 same pattern of register kills as before. */
3044 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3045 || any_malformed_asm);
3046 bi->stack_out = regstack;
3047 bi->done = true;
3049 return cfg_altered;
3052 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3053 CFG has been modified in the process. */
3055 static bool
3056 convert_regs_2 (basic_block block)
3058 basic_block *stack, *sp;
3059 bool cfg_altered = false;
3061 /* We process the blocks in a top-down manner, in a way such that one block
3062 is only processed after all its predecessors. The number of predecessors
3063 of every block has already been computed. */
3065 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3066 sp = stack;
3068 *sp++ = block;
3072 edge e;
3073 edge_iterator ei;
3075 block = *--sp;
3077 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3078 some dead EH outgoing edge after the deletion of the trapping
3079 insn inside the block. Since the number of predecessors of
3080 BLOCK's successors was computed based on the initial edge set,
3081 we check the necessity to process some of these successors
3082 before such an edge deletion may happen. However, there is
3083 a pitfall: if BLOCK is the only predecessor of a successor and
3084 the edge between them happens to be deleted, the successor
3085 becomes unreachable and should not be processed. The problem
3086 is that there is no way to preventively detect this case so we
3087 stack the successor in all cases and hand over the task of
3088 fixing up the discrepancy to convert_regs_1. */
3090 FOR_EACH_EDGE (e, ei, block->succs)
3091 if (! (e->flags & EDGE_DFS_BACK))
3093 BLOCK_INFO (e->dest)->predecessors--;
3094 if (!BLOCK_INFO (e->dest)->predecessors)
3095 *sp++ = e->dest;
3098 cfg_altered |= convert_regs_1 (block);
3100 while (sp != stack);
3102 free (stack);
3104 return cfg_altered;
3107 /* Traverse all basic blocks in a function, converting the register
3108 references in each insn from the "flat" register file that gcc uses,
3109 to the stack-like registers the 387 uses. */
3111 static void
3112 convert_regs (void)
3114 bool cfg_altered = false;
3115 int inserted;
3116 basic_block b;
3117 edge e;
3118 edge_iterator ei;
3120 /* Initialize uninitialized registers on function entry. */
3121 inserted = convert_regs_entry ();
3123 /* Construct the desired stack for function exit. */
3124 convert_regs_exit ();
3125 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3127 /* ??? Future: process inner loops first, and give them arbitrary
3128 initial stacks which emit_swap_insn can modify. This ought to
3129 prevent double fxch that often appears at the head of a loop. */
3131 /* Process all blocks reachable from all entry points. */
3132 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3133 cfg_altered |= convert_regs_2 (e->dest);
3135 /* ??? Process all unreachable blocks. Though there's no excuse
3136 for keeping these even when not optimizing. */
3137 FOR_EACH_BB_FN (b, cfun)
3139 block_info bi = BLOCK_INFO (b);
3141 if (! bi->done)
3142 cfg_altered |= convert_regs_2 (b);
3145 /* We must fix up abnormal edges before inserting compensation code
3146 because both mechanisms insert insns on edges. */
3147 inserted |= fixup_abnormal_edges ();
3149 inserted |= compensate_edges ();
3151 clear_aux_for_blocks ();
3153 if (inserted)
3154 commit_edge_insertions ();
3156 if (cfg_altered)
3157 cleanup_cfg (0);
3159 if (dump_file)
3160 fputc ('\n', dump_file);
3163 /* Convert register usage from "flat" register file usage to a "stack
3164 register file. FILE is the dump file, if used.
3166 Construct a CFG and run life analysis. Then convert each insn one
3167 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3168 code duplication created when the converter inserts pop insns on
3169 the edges. */
3171 static bool
3172 reg_to_stack (void)
3174 basic_block bb;
3175 int i;
3176 int max_uid;
3178 /* Clean up previous run. */
3179 stack_regs_mentioned_data.release ();
3181 /* See if there is something to do. Flow analysis is quite
3182 expensive so we might save some compilation time. */
3183 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3184 if (df_regs_ever_live_p (i))
3185 break;
3186 if (i > LAST_STACK_REG)
3187 return false;
3189 df_note_add_problem ();
3190 df_analyze ();
3192 mark_dfs_back_edges ();
3194 /* Set up block info for each basic block. */
3195 alloc_aux_for_blocks (sizeof (struct block_info_def));
3196 FOR_EACH_BB_FN (bb, cfun)
3198 block_info bi = BLOCK_INFO (bb);
3199 edge_iterator ei;
3200 edge e;
3201 int reg;
3203 FOR_EACH_EDGE (e, ei, bb->preds)
3204 if (!(e->flags & EDGE_DFS_BACK)
3205 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3206 bi->predecessors++;
3208 /* Set current register status at last instruction `uninitialized'. */
3209 bi->stack_in.top = -2;
3211 /* Copy live_at_end and live_at_start into temporaries. */
3212 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3214 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3215 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3216 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3217 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3221 /* Create the replacement registers up front. */
3222 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3224 machine_mode mode;
3225 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3226 mode != VOIDmode;
3227 mode = GET_MODE_WIDER_MODE (mode))
3228 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3229 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3230 mode != VOIDmode;
3231 mode = GET_MODE_WIDER_MODE (mode))
3232 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3235 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3237 /* A QNaN for initializing uninitialized variables.
3239 ??? We can't load from constant memory in PIC mode, because
3240 we're inserting these instructions before the prologue and
3241 the PIC register hasn't been set up. In that case, fall back
3242 on zero, which we can get from `fldz'. */
3244 if ((flag_pic && !TARGET_64BIT)
3245 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3246 not_a_num = CONST0_RTX (SFmode);
3247 else
3249 REAL_VALUE_TYPE r;
3251 real_nan (&r, "", 1, SFmode);
3252 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3253 not_a_num = force_const_mem (SFmode, not_a_num);
3256 /* Allocate a cache for stack_regs_mentioned. */
3257 max_uid = get_max_uid ();
3258 stack_regs_mentioned_data.create (max_uid + 1);
3259 memset (stack_regs_mentioned_data.address (),
3260 0, sizeof (char) * (max_uid + 1));
3262 convert_regs ();
3264 free_aux_for_blocks ();
3265 return true;
3267 #endif /* STACK_REGS */
3269 namespace {
3271 const pass_data pass_data_stack_regs =
3273 RTL_PASS, /* type */
3274 "*stack_regs", /* name */
3275 OPTGROUP_NONE, /* optinfo_flags */
3276 TV_REG_STACK, /* tv_id */
3277 0, /* properties_required */
3278 0, /* properties_provided */
3279 0, /* properties_destroyed */
3280 0, /* todo_flags_start */
3281 0, /* todo_flags_finish */
3284 class pass_stack_regs : public rtl_opt_pass
3286 public:
3287 pass_stack_regs (gcc::context *ctxt)
3288 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3291 /* opt_pass methods: */
3292 virtual bool gate (function *)
3294 #ifdef STACK_REGS
3295 return true;
3296 #else
3297 return false;
3298 #endif
3301 }; // class pass_stack_regs
3303 } // anon namespace
3305 rtl_opt_pass *
3306 make_pass_stack_regs (gcc::context *ctxt)
3308 return new pass_stack_regs (ctxt);
3311 /* Convert register usage from flat register file usage to a stack
3312 register file. */
3313 static unsigned int
3314 rest_of_handle_stack_regs (void)
3316 #ifdef STACK_REGS
3317 reg_to_stack ();
3318 regstack_completed = 1;
3319 #endif
3320 return 0;
3323 namespace {
3325 const pass_data pass_data_stack_regs_run =
3327 RTL_PASS, /* type */
3328 "stack", /* name */
3329 OPTGROUP_NONE, /* optinfo_flags */
3330 TV_REG_STACK, /* tv_id */
3331 0, /* properties_required */
3332 0, /* properties_provided */
3333 0, /* properties_destroyed */
3334 0, /* todo_flags_start */
3335 TODO_df_finish, /* todo_flags_finish */
3338 class pass_stack_regs_run : public rtl_opt_pass
3340 public:
3341 pass_stack_regs_run (gcc::context *ctxt)
3342 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3345 /* opt_pass methods: */
3346 virtual unsigned int execute (function *)
3348 return rest_of_handle_stack_regs ();
3351 }; // class pass_stack_regs_run
3353 } // anon namespace
3355 rtl_opt_pass *
3356 make_pass_stack_regs_run (gcc::context *ctxt)
3358 return new pass_stack_regs_run (ctxt);