2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / predict.c
blobfdfb8efab5b94dd97e88f73c3bff7d7c1acfa3db
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "input.h"
35 #include "alias.h"
36 #include "symtab.h"
37 #include "tree.h"
38 #include "fold-const.h"
39 #include "calls.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "hard-reg-set.h"
43 #include "predict.h"
44 #include "function.h"
45 #include "dominance.h"
46 #include "cfg.h"
47 #include "cfganal.h"
48 #include "basic-block.h"
49 #include "insn-config.h"
50 #include "regs.h"
51 #include "flags.h"
52 #include "profile.h"
53 #include "except.h"
54 #include "diagnostic-core.h"
55 #include "recog.h"
56 #include "expmed.h"
57 #include "dojump.h"
58 #include "explow.h"
59 #include "emit-rtl.h"
60 #include "varasm.h"
61 #include "stmt.h"
62 #include "expr.h"
63 #include "coverage.h"
64 #include "sreal.h"
65 #include "params.h"
66 #include "target.h"
67 #include "cfgloop.h"
68 #include "tree-ssa-alias.h"
69 #include "internal-fn.h"
70 #include "gimple-expr.h"
71 #include "is-a.h"
72 #include "gimple.h"
73 #include "gimple-iterator.h"
74 #include "gimple-ssa.h"
75 #include "plugin-api.h"
76 #include "ipa-ref.h"
77 #include "cgraph.h"
78 #include "tree-cfg.h"
79 #include "tree-phinodes.h"
80 #include "ssa-iterators.h"
81 #include "tree-ssa-loop-niter.h"
82 #include "tree-ssa-loop.h"
83 #include "tree-pass.h"
84 #include "tree-scalar-evolution.h"
86 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
87 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
88 static sreal real_almost_one, real_br_prob_base,
89 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
91 static void combine_predictions_for_insn (rtx_insn *, basic_block);
92 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
93 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
94 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
95 static bool can_predict_insn_p (const rtx_insn *);
97 /* Information we hold about each branch predictor.
98 Filled using information from predict.def. */
100 struct predictor_info
102 const char *const name; /* Name used in the debugging dumps. */
103 const int hitrate; /* Expected hitrate used by
104 predict_insn_def call. */
105 const int flags;
108 /* Use given predictor without Dempster-Shaffer theory if it matches
109 using first_match heuristics. */
110 #define PRED_FLAG_FIRST_MATCH 1
112 /* Recompute hitrate in percent to our representation. */
114 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
116 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
117 static const struct predictor_info predictor_info[]= {
118 #include "predict.def"
120 /* Upper bound on predictors. */
121 {NULL, 0, 0}
123 #undef DEF_PREDICTOR
125 /* Return TRUE if frequency FREQ is considered to be hot. */
127 static inline bool
128 maybe_hot_frequency_p (struct function *fun, int freq)
130 struct cgraph_node *node = cgraph_node::get (fun->decl);
131 if (!profile_info
132 || !opt_for_fn (fun->decl, flag_branch_probabilities))
134 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
135 return false;
136 if (node->frequency == NODE_FREQUENCY_HOT)
137 return true;
139 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
140 return true;
141 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
142 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
143 return false;
144 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
145 return false;
146 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
147 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
148 return false;
149 return true;
152 static gcov_type min_count = -1;
154 /* Determine the threshold for hot BB counts. */
156 gcov_type
157 get_hot_bb_threshold ()
159 gcov_working_set_t *ws;
160 if (min_count == -1)
162 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
163 gcc_assert (ws);
164 min_count = ws->min_counter;
166 return min_count;
169 /* Set the threshold for hot BB counts. */
171 void
172 set_hot_bb_threshold (gcov_type min)
174 min_count = min;
177 /* Return TRUE if frequency FREQ is considered to be hot. */
179 bool
180 maybe_hot_count_p (struct function *fun, gcov_type count)
182 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
183 return true;
184 /* Code executed at most once is not hot. */
185 if (profile_info->runs >= count)
186 return false;
187 return (count >= get_hot_bb_threshold ());
190 /* Return true in case BB can be CPU intensive and should be optimized
191 for maximal performance. */
193 bool
194 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
196 gcc_checking_assert (fun);
197 if (profile_status_for_fn (fun) == PROFILE_READ)
198 return maybe_hot_count_p (fun, bb->count);
199 return maybe_hot_frequency_p (fun, bb->frequency);
202 /* Return true in case BB can be CPU intensive and should be optimized
203 for maximal performance. */
205 bool
206 maybe_hot_edge_p (edge e)
208 if (profile_status_for_fn (cfun) == PROFILE_READ)
209 return maybe_hot_count_p (cfun, e->count);
210 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
213 /* Return true if profile COUNT and FREQUENCY, or function FUN static
214 node frequency reflects never being executed. */
216 static bool
217 probably_never_executed (struct function *fun,
218 gcov_type count, int frequency)
220 gcc_checking_assert (fun);
221 if (profile_status_for_fn (fun) == PROFILE_READ)
223 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
224 if (count * unlikely_count_fraction >= profile_info->runs)
225 return false;
226 if (!frequency)
227 return true;
228 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
229 return false;
230 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
232 gcov_type computed_count;
233 /* Check for possibility of overflow, in which case entry bb count
234 is large enough to do the division first without losing much
235 precision. */
236 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
237 REG_BR_PROB_BASE)
239 gcov_type scaled_count
240 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
241 unlikely_count_fraction;
242 computed_count = RDIV (scaled_count,
243 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
245 else
247 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
248 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
249 computed_count *= frequency * unlikely_count_fraction;
251 if (computed_count >= profile_info->runs)
252 return false;
254 return true;
256 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
257 && (cgraph_node::get (fun->decl)->frequency
258 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
259 return true;
260 return false;
264 /* Return true in case BB is probably never executed. */
266 bool
267 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
269 return probably_never_executed (fun, bb->count, bb->frequency);
273 /* Return true in case edge E is probably never executed. */
275 bool
276 probably_never_executed_edge_p (struct function *fun, edge e)
278 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
281 /* Return true when current function should always be optimized for size. */
283 bool
284 optimize_function_for_size_p (struct function *fun)
286 if (!fun || !fun->decl)
287 return optimize_size;
288 cgraph_node *n = cgraph_node::get (fun->decl);
289 return n && n->optimize_for_size_p ();
292 /* Return true when current function should always be optimized for speed. */
294 bool
295 optimize_function_for_speed_p (struct function *fun)
297 return !optimize_function_for_size_p (fun);
300 /* Return TRUE when BB should be optimized for size. */
302 bool
303 optimize_bb_for_size_p (const_basic_block bb)
305 return (optimize_function_for_size_p (cfun)
306 || (bb && !maybe_hot_bb_p (cfun, bb)));
309 /* Return TRUE when BB should be optimized for speed. */
311 bool
312 optimize_bb_for_speed_p (const_basic_block bb)
314 return !optimize_bb_for_size_p (bb);
317 /* Return TRUE when BB should be optimized for size. */
319 bool
320 optimize_edge_for_size_p (edge e)
322 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
325 /* Return TRUE when BB should be optimized for speed. */
327 bool
328 optimize_edge_for_speed_p (edge e)
330 return !optimize_edge_for_size_p (e);
333 /* Return TRUE when BB should be optimized for size. */
335 bool
336 optimize_insn_for_size_p (void)
338 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
341 /* Return TRUE when BB should be optimized for speed. */
343 bool
344 optimize_insn_for_speed_p (void)
346 return !optimize_insn_for_size_p ();
349 /* Return TRUE when LOOP should be optimized for size. */
351 bool
352 optimize_loop_for_size_p (struct loop *loop)
354 return optimize_bb_for_size_p (loop->header);
357 /* Return TRUE when LOOP should be optimized for speed. */
359 bool
360 optimize_loop_for_speed_p (struct loop *loop)
362 return optimize_bb_for_speed_p (loop->header);
365 /* Return TRUE when LOOP nest should be optimized for speed. */
367 bool
368 optimize_loop_nest_for_speed_p (struct loop *loop)
370 struct loop *l = loop;
371 if (optimize_loop_for_speed_p (loop))
372 return true;
373 l = loop->inner;
374 while (l && l != loop)
376 if (optimize_loop_for_speed_p (l))
377 return true;
378 if (l->inner)
379 l = l->inner;
380 else if (l->next)
381 l = l->next;
382 else
384 while (l != loop && !l->next)
385 l = loop_outer (l);
386 if (l != loop)
387 l = l->next;
390 return false;
393 /* Return TRUE when LOOP nest should be optimized for size. */
395 bool
396 optimize_loop_nest_for_size_p (struct loop *loop)
398 return !optimize_loop_nest_for_speed_p (loop);
401 /* Return true when edge E is likely to be well predictable by branch
402 predictor. */
404 bool
405 predictable_edge_p (edge e)
407 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
408 return false;
409 if ((e->probability
410 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
411 || (REG_BR_PROB_BASE - e->probability
412 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
413 return true;
414 return false;
418 /* Set RTL expansion for BB profile. */
420 void
421 rtl_profile_for_bb (basic_block bb)
423 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
426 /* Set RTL expansion for edge profile. */
428 void
429 rtl_profile_for_edge (edge e)
431 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
434 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
435 void
436 default_rtl_profile (void)
438 crtl->maybe_hot_insn_p = true;
441 /* Return true if the one of outgoing edges is already predicted by
442 PREDICTOR. */
444 bool
445 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
447 rtx note;
448 if (!INSN_P (BB_END (bb)))
449 return false;
450 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
451 if (REG_NOTE_KIND (note) == REG_BR_PRED
452 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
453 return true;
454 return false;
457 /* Structure representing predictions in tree level. */
459 struct edge_prediction {
460 struct edge_prediction *ep_next;
461 edge ep_edge;
462 enum br_predictor ep_predictor;
463 int ep_probability;
466 /* This map contains for a basic block the list of predictions for the
467 outgoing edges. */
469 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
471 /* Return true if the one of outgoing edges is already predicted by
472 PREDICTOR. */
474 bool
475 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
477 struct edge_prediction *i;
478 edge_prediction **preds = bb_predictions->get (bb);
480 if (!preds)
481 return false;
483 for (i = *preds; i; i = i->ep_next)
484 if (i->ep_predictor == predictor)
485 return true;
486 return false;
489 /* Return true when the probability of edge is reliable.
491 The profile guessing code is good at predicting branch outcome (ie.
492 taken/not taken), that is predicted right slightly over 75% of time.
493 It is however notoriously poor on predicting the probability itself.
494 In general the profile appear a lot flatter (with probabilities closer
495 to 50%) than the reality so it is bad idea to use it to drive optimization
496 such as those disabling dynamic branch prediction for well predictable
497 branches.
499 There are two exceptions - edges leading to noreturn edges and edges
500 predicted by number of iterations heuristics are predicted well. This macro
501 should be able to distinguish those, but at the moment it simply check for
502 noreturn heuristic that is only one giving probability over 99% or bellow
503 1%. In future we might want to propagate reliability information across the
504 CFG if we find this information useful on multiple places. */
505 static bool
506 probability_reliable_p (int prob)
508 return (profile_status_for_fn (cfun) == PROFILE_READ
509 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
510 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
513 /* Same predicate as above, working on edges. */
514 bool
515 edge_probability_reliable_p (const_edge e)
517 return probability_reliable_p (e->probability);
520 /* Same predicate as edge_probability_reliable_p, working on notes. */
521 bool
522 br_prob_note_reliable_p (const_rtx note)
524 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
525 return probability_reliable_p (XINT (note, 0));
528 static void
529 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
531 gcc_assert (any_condjump_p (insn));
532 if (!flag_guess_branch_prob)
533 return;
535 add_reg_note (insn, REG_BR_PRED,
536 gen_rtx_CONCAT (VOIDmode,
537 GEN_INT ((int) predictor),
538 GEN_INT ((int) probability)));
541 /* Predict insn by given predictor. */
543 void
544 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
545 enum prediction taken)
547 int probability = predictor_info[(int) predictor].hitrate;
549 if (taken != TAKEN)
550 probability = REG_BR_PROB_BASE - probability;
552 predict_insn (insn, predictor, probability);
555 /* Predict edge E with given probability if possible. */
557 void
558 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
560 rtx_insn *last_insn;
561 last_insn = BB_END (e->src);
563 /* We can store the branch prediction information only about
564 conditional jumps. */
565 if (!any_condjump_p (last_insn))
566 return;
568 /* We always store probability of branching. */
569 if (e->flags & EDGE_FALLTHRU)
570 probability = REG_BR_PROB_BASE - probability;
572 predict_insn (last_insn, predictor, probability);
575 /* Predict edge E with the given PROBABILITY. */
576 void
577 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
579 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
580 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
582 && flag_guess_branch_prob && optimize)
584 struct edge_prediction *i = XNEW (struct edge_prediction);
585 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
587 i->ep_next = preds;
588 preds = i;
589 i->ep_probability = probability;
590 i->ep_predictor = predictor;
591 i->ep_edge = e;
595 /* Remove all predictions on given basic block that are attached
596 to edge E. */
597 void
598 remove_predictions_associated_with_edge (edge e)
600 if (!bb_predictions)
601 return;
603 edge_prediction **preds = bb_predictions->get (e->src);
605 if (preds)
607 struct edge_prediction **prediction = preds;
608 struct edge_prediction *next;
610 while (*prediction)
612 if ((*prediction)->ep_edge == e)
614 next = (*prediction)->ep_next;
615 free (*prediction);
616 *prediction = next;
618 else
619 prediction = &((*prediction)->ep_next);
624 /* Clears the list of predictions stored for BB. */
626 static void
627 clear_bb_predictions (basic_block bb)
629 edge_prediction **preds = bb_predictions->get (bb);
630 struct edge_prediction *pred, *next;
632 if (!preds)
633 return;
635 for (pred = *preds; pred; pred = next)
637 next = pred->ep_next;
638 free (pred);
640 *preds = NULL;
643 /* Return true when we can store prediction on insn INSN.
644 At the moment we represent predictions only on conditional
645 jumps, not at computed jump or other complicated cases. */
646 static bool
647 can_predict_insn_p (const rtx_insn *insn)
649 return (JUMP_P (insn)
650 && any_condjump_p (insn)
651 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
654 /* Predict edge E by given predictor if possible. */
656 void
657 predict_edge_def (edge e, enum br_predictor predictor,
658 enum prediction taken)
660 int probability = predictor_info[(int) predictor].hitrate;
662 if (taken != TAKEN)
663 probability = REG_BR_PROB_BASE - probability;
665 predict_edge (e, predictor, probability);
668 /* Invert all branch predictions or probability notes in the INSN. This needs
669 to be done each time we invert the condition used by the jump. */
671 void
672 invert_br_probabilities (rtx insn)
674 rtx note;
676 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
677 if (REG_NOTE_KIND (note) == REG_BR_PROB)
678 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
679 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
680 XEXP (XEXP (note, 0), 1)
681 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
684 /* Dump information about the branch prediction to the output file. */
686 static void
687 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
688 basic_block bb, int used)
690 edge e;
691 edge_iterator ei;
693 if (!file)
694 return;
696 FOR_EACH_EDGE (e, ei, bb->succs)
697 if (! (e->flags & EDGE_FALLTHRU))
698 break;
700 fprintf (file, " %s heuristics%s: %.1f%%",
701 predictor_info[predictor].name,
702 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
704 if (bb->count)
706 fprintf (file, " exec %" PRId64, bb->count);
707 if (e)
709 fprintf (file, " hit %" PRId64, e->count);
710 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
714 fprintf (file, "\n");
717 /* We can not predict the probabilities of outgoing edges of bb. Set them
718 evenly and hope for the best. */
719 static void
720 set_even_probabilities (basic_block bb)
722 int nedges = 0;
723 edge e;
724 edge_iterator ei;
726 FOR_EACH_EDGE (e, ei, bb->succs)
727 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
728 nedges ++;
729 FOR_EACH_EDGE (e, ei, bb->succs)
730 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
731 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
732 else
733 e->probability = 0;
736 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
737 note if not already present. Remove now useless REG_BR_PRED notes. */
739 static void
740 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
742 rtx prob_note;
743 rtx *pnote;
744 rtx note;
745 int best_probability = PROB_EVEN;
746 enum br_predictor best_predictor = END_PREDICTORS;
747 int combined_probability = REG_BR_PROB_BASE / 2;
748 int d;
749 bool first_match = false;
750 bool found = false;
752 if (!can_predict_insn_p (insn))
754 set_even_probabilities (bb);
755 return;
758 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
759 pnote = &REG_NOTES (insn);
760 if (dump_file)
761 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
762 bb->index);
764 /* We implement "first match" heuristics and use probability guessed
765 by predictor with smallest index. */
766 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
767 if (REG_NOTE_KIND (note) == REG_BR_PRED)
769 enum br_predictor predictor = ((enum br_predictor)
770 INTVAL (XEXP (XEXP (note, 0), 0)));
771 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
773 found = true;
774 if (best_predictor > predictor)
775 best_probability = probability, best_predictor = predictor;
777 d = (combined_probability * probability
778 + (REG_BR_PROB_BASE - combined_probability)
779 * (REG_BR_PROB_BASE - probability));
781 /* Use FP math to avoid overflows of 32bit integers. */
782 if (d == 0)
783 /* If one probability is 0% and one 100%, avoid division by zero. */
784 combined_probability = REG_BR_PROB_BASE / 2;
785 else
786 combined_probability = (((double) combined_probability) * probability
787 * REG_BR_PROB_BASE / d + 0.5);
790 /* Decide which heuristic to use. In case we didn't match anything,
791 use no_prediction heuristic, in case we did match, use either
792 first match or Dempster-Shaffer theory depending on the flags. */
794 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
795 first_match = true;
797 if (!found)
798 dump_prediction (dump_file, PRED_NO_PREDICTION,
799 combined_probability, bb, true);
800 else
802 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
803 bb, !first_match);
804 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
805 bb, first_match);
808 if (first_match)
809 combined_probability = best_probability;
810 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
812 while (*pnote)
814 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
816 enum br_predictor predictor = ((enum br_predictor)
817 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
818 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
820 dump_prediction (dump_file, predictor, probability, bb,
821 !first_match || best_predictor == predictor);
822 *pnote = XEXP (*pnote, 1);
824 else
825 pnote = &XEXP (*pnote, 1);
828 if (!prob_note)
830 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
832 /* Save the prediction into CFG in case we are seeing non-degenerated
833 conditional jump. */
834 if (!single_succ_p (bb))
836 BRANCH_EDGE (bb)->probability = combined_probability;
837 FALLTHRU_EDGE (bb)->probability
838 = REG_BR_PROB_BASE - combined_probability;
841 else if (!single_succ_p (bb))
843 int prob = XINT (prob_note, 0);
845 BRANCH_EDGE (bb)->probability = prob;
846 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
848 else
849 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
852 /* Combine predictions into single probability and store them into CFG.
853 Remove now useless prediction entries. */
855 static void
856 combine_predictions_for_bb (basic_block bb)
858 int best_probability = PROB_EVEN;
859 enum br_predictor best_predictor = END_PREDICTORS;
860 int combined_probability = REG_BR_PROB_BASE / 2;
861 int d;
862 bool first_match = false;
863 bool found = false;
864 struct edge_prediction *pred;
865 int nedges = 0;
866 edge e, first = NULL, second = NULL;
867 edge_iterator ei;
869 FOR_EACH_EDGE (e, ei, bb->succs)
870 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
872 nedges ++;
873 if (first && !second)
874 second = e;
875 if (!first)
876 first = e;
879 /* When there is no successor or only one choice, prediction is easy.
881 We are lazy for now and predict only basic blocks with two outgoing
882 edges. It is possible to predict generic case too, but we have to
883 ignore first match heuristics and do more involved combining. Implement
884 this later. */
885 if (nedges != 2)
887 if (!bb->count)
888 set_even_probabilities (bb);
889 clear_bb_predictions (bb);
890 if (dump_file)
891 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
892 nedges, bb->index);
893 return;
896 if (dump_file)
897 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
899 edge_prediction **preds = bb_predictions->get (bb);
900 if (preds)
902 /* We implement "first match" heuristics and use probability guessed
903 by predictor with smallest index. */
904 for (pred = *preds; pred; pred = pred->ep_next)
906 enum br_predictor predictor = pred->ep_predictor;
907 int probability = pred->ep_probability;
909 if (pred->ep_edge != first)
910 probability = REG_BR_PROB_BASE - probability;
912 found = true;
913 /* First match heuristics would be widly confused if we predicted
914 both directions. */
915 if (best_predictor > predictor)
917 struct edge_prediction *pred2;
918 int prob = probability;
920 for (pred2 = (struct edge_prediction *) *preds;
921 pred2; pred2 = pred2->ep_next)
922 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
924 int probability2 = pred->ep_probability;
926 if (pred2->ep_edge != first)
927 probability2 = REG_BR_PROB_BASE - probability2;
929 if ((probability < REG_BR_PROB_BASE / 2) !=
930 (probability2 < REG_BR_PROB_BASE / 2))
931 break;
933 /* If the same predictor later gave better result, go for it! */
934 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
935 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
936 prob = probability2;
938 if (!pred2)
939 best_probability = prob, best_predictor = predictor;
942 d = (combined_probability * probability
943 + (REG_BR_PROB_BASE - combined_probability)
944 * (REG_BR_PROB_BASE - probability));
946 /* Use FP math to avoid overflows of 32bit integers. */
947 if (d == 0)
948 /* If one probability is 0% and one 100%, avoid division by zero. */
949 combined_probability = REG_BR_PROB_BASE / 2;
950 else
951 combined_probability = (((double) combined_probability)
952 * probability
953 * REG_BR_PROB_BASE / d + 0.5);
957 /* Decide which heuristic to use. In case we didn't match anything,
958 use no_prediction heuristic, in case we did match, use either
959 first match or Dempster-Shaffer theory depending on the flags. */
961 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
962 first_match = true;
964 if (!found)
965 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
966 else
968 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
969 !first_match);
970 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
971 first_match);
974 if (first_match)
975 combined_probability = best_probability;
976 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
978 if (preds)
980 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
982 enum br_predictor predictor = pred->ep_predictor;
983 int probability = pred->ep_probability;
985 if (pred->ep_edge != EDGE_SUCC (bb, 0))
986 probability = REG_BR_PROB_BASE - probability;
987 dump_prediction (dump_file, predictor, probability, bb,
988 !first_match || best_predictor == predictor);
991 clear_bb_predictions (bb);
993 if (!bb->count)
995 first->probability = combined_probability;
996 second->probability = REG_BR_PROB_BASE - combined_probability;
1000 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1001 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1003 T1 and T2 should be one of the following cases:
1004 1. T1 is SSA_NAME, T2 is NULL
1005 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1006 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1008 static tree
1009 strips_small_constant (tree t1, tree t2)
1011 tree ret = NULL;
1012 int value = 0;
1014 if (!t1)
1015 return NULL;
1016 else if (TREE_CODE (t1) == SSA_NAME)
1017 ret = t1;
1018 else if (tree_fits_shwi_p (t1))
1019 value = tree_to_shwi (t1);
1020 else
1021 return NULL;
1023 if (!t2)
1024 return ret;
1025 else if (tree_fits_shwi_p (t2))
1026 value = tree_to_shwi (t2);
1027 else if (TREE_CODE (t2) == SSA_NAME)
1029 if (ret)
1030 return NULL;
1031 else
1032 ret = t2;
1035 if (value <= 4 && value >= -4)
1036 return ret;
1037 else
1038 return NULL;
1041 /* Return the SSA_NAME in T or T's operands.
1042 Return NULL if SSA_NAME cannot be found. */
1044 static tree
1045 get_base_value (tree t)
1047 if (TREE_CODE (t) == SSA_NAME)
1048 return t;
1050 if (!BINARY_CLASS_P (t))
1051 return NULL;
1053 switch (TREE_OPERAND_LENGTH (t))
1055 case 1:
1056 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1057 case 2:
1058 return strips_small_constant (TREE_OPERAND (t, 0),
1059 TREE_OPERAND (t, 1));
1060 default:
1061 return NULL;
1065 /* Check the compare STMT in LOOP. If it compares an induction
1066 variable to a loop invariant, return true, and save
1067 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1068 Otherwise return false and set LOOP_INVAIANT to NULL. */
1070 static bool
1071 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1072 tree *loop_invariant,
1073 enum tree_code *compare_code,
1074 tree *loop_step,
1075 tree *loop_iv_base)
1077 tree op0, op1, bound, base;
1078 affine_iv iv0, iv1;
1079 enum tree_code code;
1080 tree step;
1082 code = gimple_cond_code (stmt);
1083 *loop_invariant = NULL;
1085 switch (code)
1087 case GT_EXPR:
1088 case GE_EXPR:
1089 case NE_EXPR:
1090 case LT_EXPR:
1091 case LE_EXPR:
1092 case EQ_EXPR:
1093 break;
1095 default:
1096 return false;
1099 op0 = gimple_cond_lhs (stmt);
1100 op1 = gimple_cond_rhs (stmt);
1102 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1103 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1104 return false;
1105 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1106 return false;
1107 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1108 return false;
1109 if (TREE_CODE (iv0.step) != INTEGER_CST
1110 || TREE_CODE (iv1.step) != INTEGER_CST)
1111 return false;
1112 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1113 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1114 return false;
1116 if (integer_zerop (iv0.step))
1118 if (code != NE_EXPR && code != EQ_EXPR)
1119 code = invert_tree_comparison (code, false);
1120 bound = iv0.base;
1121 base = iv1.base;
1122 if (tree_fits_shwi_p (iv1.step))
1123 step = iv1.step;
1124 else
1125 return false;
1127 else
1129 bound = iv1.base;
1130 base = iv0.base;
1131 if (tree_fits_shwi_p (iv0.step))
1132 step = iv0.step;
1133 else
1134 return false;
1137 if (TREE_CODE (bound) != INTEGER_CST)
1138 bound = get_base_value (bound);
1139 if (!bound)
1140 return false;
1141 if (TREE_CODE (base) != INTEGER_CST)
1142 base = get_base_value (base);
1143 if (!base)
1144 return false;
1146 *loop_invariant = bound;
1147 *compare_code = code;
1148 *loop_step = step;
1149 *loop_iv_base = base;
1150 return true;
1153 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1155 static bool
1156 expr_coherent_p (tree t1, tree t2)
1158 gimple stmt;
1159 tree ssa_name_1 = NULL;
1160 tree ssa_name_2 = NULL;
1162 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1163 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1165 if (t1 == t2)
1166 return true;
1168 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1169 return true;
1170 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1171 return false;
1173 /* Check to see if t1 is expressed/defined with t2. */
1174 stmt = SSA_NAME_DEF_STMT (t1);
1175 gcc_assert (stmt != NULL);
1176 if (is_gimple_assign (stmt))
1178 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1179 if (ssa_name_1 && ssa_name_1 == t2)
1180 return true;
1183 /* Check to see if t2 is expressed/defined with t1. */
1184 stmt = SSA_NAME_DEF_STMT (t2);
1185 gcc_assert (stmt != NULL);
1186 if (is_gimple_assign (stmt))
1188 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1189 if (ssa_name_2 && ssa_name_2 == t1)
1190 return true;
1193 /* Compare if t1 and t2's def_stmts are identical. */
1194 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1195 return true;
1196 else
1197 return false;
1200 /* Predict branch probability of BB when BB contains a branch that compares
1201 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1202 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1204 E.g.
1205 for (int i = 0; i < bound; i++) {
1206 if (i < bound - 2)
1207 computation_1();
1208 else
1209 computation_2();
1212 In this loop, we will predict the branch inside the loop to be taken. */
1214 static void
1215 predict_iv_comparison (struct loop *loop, basic_block bb,
1216 tree loop_bound_var,
1217 tree loop_iv_base_var,
1218 enum tree_code loop_bound_code,
1219 int loop_bound_step)
1221 gimple stmt;
1222 tree compare_var, compare_base;
1223 enum tree_code compare_code;
1224 tree compare_step_var;
1225 edge then_edge;
1226 edge_iterator ei;
1228 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1229 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1230 || predicted_by_p (bb, PRED_LOOP_EXIT))
1231 return;
1233 stmt = last_stmt (bb);
1234 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1235 return;
1236 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1237 loop, &compare_var,
1238 &compare_code,
1239 &compare_step_var,
1240 &compare_base))
1241 return;
1243 /* Find the taken edge. */
1244 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1245 if (then_edge->flags & EDGE_TRUE_VALUE)
1246 break;
1248 /* When comparing an IV to a loop invariant, NE is more likely to be
1249 taken while EQ is more likely to be not-taken. */
1250 if (compare_code == NE_EXPR)
1252 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1253 return;
1255 else if (compare_code == EQ_EXPR)
1257 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1258 return;
1261 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1262 return;
1264 /* If loop bound, base and compare bound are all constants, we can
1265 calculate the probability directly. */
1266 if (tree_fits_shwi_p (loop_bound_var)
1267 && tree_fits_shwi_p (compare_var)
1268 && tree_fits_shwi_p (compare_base))
1270 int probability;
1271 bool overflow, overall_overflow = false;
1272 widest_int compare_count, tem;
1274 /* (loop_bound - base) / compare_step */
1275 tem = wi::sub (wi::to_widest (loop_bound_var),
1276 wi::to_widest (compare_base), SIGNED, &overflow);
1277 overall_overflow |= overflow;
1278 widest_int loop_count = wi::div_trunc (tem,
1279 wi::to_widest (compare_step_var),
1280 SIGNED, &overflow);
1281 overall_overflow |= overflow;
1283 if (!wi::neg_p (wi::to_widest (compare_step_var))
1284 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1286 /* (loop_bound - compare_bound) / compare_step */
1287 tem = wi::sub (wi::to_widest (loop_bound_var),
1288 wi::to_widest (compare_var), SIGNED, &overflow);
1289 overall_overflow |= overflow;
1290 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1291 SIGNED, &overflow);
1292 overall_overflow |= overflow;
1294 else
1296 /* (compare_bound - base) / compare_step */
1297 tem = wi::sub (wi::to_widest (compare_var),
1298 wi::to_widest (compare_base), SIGNED, &overflow);
1299 overall_overflow |= overflow;
1300 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1301 SIGNED, &overflow);
1302 overall_overflow |= overflow;
1304 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1305 ++compare_count;
1306 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1307 ++loop_count;
1308 if (wi::neg_p (compare_count))
1309 compare_count = 0;
1310 if (wi::neg_p (loop_count))
1311 loop_count = 0;
1312 if (loop_count == 0)
1313 probability = 0;
1314 else if (wi::cmps (compare_count, loop_count) == 1)
1315 probability = REG_BR_PROB_BASE;
1316 else
1318 tem = compare_count * REG_BR_PROB_BASE;
1319 tem = wi::udiv_trunc (tem, loop_count);
1320 probability = tem.to_uhwi ();
1323 if (!overall_overflow)
1324 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1326 return;
1329 if (expr_coherent_p (loop_bound_var, compare_var))
1331 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1332 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1333 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1334 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1335 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1336 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1337 else if (loop_bound_code == NE_EXPR)
1339 /* If the loop backedge condition is "(i != bound)", we do
1340 the comparison based on the step of IV:
1341 * step < 0 : backedge condition is like (i > bound)
1342 * step > 0 : backedge condition is like (i < bound) */
1343 gcc_assert (loop_bound_step != 0);
1344 if (loop_bound_step > 0
1345 && (compare_code == LT_EXPR
1346 || compare_code == LE_EXPR))
1347 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1348 else if (loop_bound_step < 0
1349 && (compare_code == GT_EXPR
1350 || compare_code == GE_EXPR))
1351 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1352 else
1353 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1355 else
1356 /* The branch is predicted not-taken if loop_bound_code is
1357 opposite with compare_code. */
1358 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1360 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1362 /* For cases like:
1363 for (i = s; i < h; i++)
1364 if (i > s + 2) ....
1365 The branch should be predicted taken. */
1366 if (loop_bound_step > 0
1367 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1368 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1369 else if (loop_bound_step < 0
1370 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1371 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1372 else
1373 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1377 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1378 exits are resulted from short-circuit conditions that will generate an
1379 if_tmp. E.g.:
1381 if (foo() || global > 10)
1382 break;
1384 This will be translated into:
1386 BB3:
1387 loop header...
1388 BB4:
1389 if foo() goto BB6 else goto BB5
1390 BB5:
1391 if global > 10 goto BB6 else goto BB7
1392 BB6:
1393 goto BB7
1394 BB7:
1395 iftmp = (PHI 0(BB5), 1(BB6))
1396 if iftmp == 1 goto BB8 else goto BB3
1397 BB8:
1398 outside of the loop...
1400 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1401 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1402 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1403 exits to predict them using PRED_LOOP_EXIT. */
1405 static void
1406 predict_extra_loop_exits (edge exit_edge)
1408 unsigned i;
1409 bool check_value_one;
1410 gimple lhs_def_stmt;
1411 gphi *phi_stmt;
1412 tree cmp_rhs, cmp_lhs;
1413 gimple last;
1414 gcond *cmp_stmt;
1416 last = last_stmt (exit_edge->src);
1417 if (!last)
1418 return;
1419 cmp_stmt = dyn_cast <gcond *> (last);
1420 if (!cmp_stmt)
1421 return;
1423 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1424 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1425 if (!TREE_CONSTANT (cmp_rhs)
1426 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1427 return;
1428 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1429 return;
1431 /* If check_value_one is true, only the phi_args with value '1' will lead
1432 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1433 loop exit. */
1434 check_value_one = (((integer_onep (cmp_rhs))
1435 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1436 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1438 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1439 if (!lhs_def_stmt)
1440 return;
1442 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1443 if (!phi_stmt)
1444 return;
1446 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1448 edge e1;
1449 edge_iterator ei;
1450 tree val = gimple_phi_arg_def (phi_stmt, i);
1451 edge e = gimple_phi_arg_edge (phi_stmt, i);
1453 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1454 continue;
1455 if ((check_value_one ^ integer_onep (val)) == 1)
1456 continue;
1457 if (EDGE_COUNT (e->src->succs) != 1)
1459 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1460 continue;
1463 FOR_EACH_EDGE (e1, ei, e->src->preds)
1464 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1468 /* Predict edge probabilities by exploiting loop structure. */
1470 static void
1471 predict_loops (void)
1473 struct loop *loop;
1475 /* Try to predict out blocks in a loop that are not part of a
1476 natural loop. */
1477 FOR_EACH_LOOP (loop, 0)
1479 basic_block bb, *bbs;
1480 unsigned j, n_exits;
1481 vec<edge> exits;
1482 struct tree_niter_desc niter_desc;
1483 edge ex;
1484 struct nb_iter_bound *nb_iter;
1485 enum tree_code loop_bound_code = ERROR_MARK;
1486 tree loop_bound_step = NULL;
1487 tree loop_bound_var = NULL;
1488 tree loop_iv_base = NULL;
1489 gcond *stmt = NULL;
1491 exits = get_loop_exit_edges (loop);
1492 n_exits = exits.length ();
1493 if (!n_exits)
1495 exits.release ();
1496 continue;
1499 FOR_EACH_VEC_ELT (exits, j, ex)
1501 tree niter = NULL;
1502 HOST_WIDE_INT nitercst;
1503 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1504 int probability;
1505 enum br_predictor predictor;
1507 predict_extra_loop_exits (ex);
1509 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1510 niter = niter_desc.niter;
1511 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1512 niter = loop_niter_by_eval (loop, ex);
1514 if (TREE_CODE (niter) == INTEGER_CST)
1516 if (tree_fits_uhwi_p (niter)
1517 && max
1518 && compare_tree_int (niter, max - 1) == -1)
1519 nitercst = tree_to_uhwi (niter) + 1;
1520 else
1521 nitercst = max;
1522 predictor = PRED_LOOP_ITERATIONS;
1524 /* If we have just one exit and we can derive some information about
1525 the number of iterations of the loop from the statements inside
1526 the loop, use it to predict this exit. */
1527 else if (n_exits == 1)
1529 nitercst = estimated_stmt_executions_int (loop);
1530 if (nitercst < 0)
1531 continue;
1532 if (nitercst > max)
1533 nitercst = max;
1535 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1537 else
1538 continue;
1540 /* If the prediction for number of iterations is zero, do not
1541 predict the exit edges. */
1542 if (nitercst == 0)
1543 continue;
1545 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1546 predict_edge (ex, predictor, probability);
1548 exits.release ();
1550 /* Find information about loop bound variables. */
1551 for (nb_iter = loop->bounds; nb_iter;
1552 nb_iter = nb_iter->next)
1553 if (nb_iter->stmt
1554 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1556 stmt = as_a <gcond *> (nb_iter->stmt);
1557 break;
1559 if (!stmt && last_stmt (loop->header)
1560 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1561 stmt = as_a <gcond *> (last_stmt (loop->header));
1562 if (stmt)
1563 is_comparison_with_loop_invariant_p (stmt, loop,
1564 &loop_bound_var,
1565 &loop_bound_code,
1566 &loop_bound_step,
1567 &loop_iv_base);
1569 bbs = get_loop_body (loop);
1571 for (j = 0; j < loop->num_nodes; j++)
1573 int header_found = 0;
1574 edge e;
1575 edge_iterator ei;
1577 bb = bbs[j];
1579 /* Bypass loop heuristics on continue statement. These
1580 statements construct loops via "non-loop" constructs
1581 in the source language and are better to be handled
1582 separately. */
1583 if (predicted_by_p (bb, PRED_CONTINUE))
1584 continue;
1586 /* Loop branch heuristics - predict an edge back to a
1587 loop's head as taken. */
1588 if (bb == loop->latch)
1590 e = find_edge (loop->latch, loop->header);
1591 if (e)
1593 header_found = 1;
1594 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1598 /* Loop exit heuristics - predict an edge exiting the loop if the
1599 conditional has no loop header successors as not taken. */
1600 if (!header_found
1601 /* If we already used more reliable loop exit predictors, do not
1602 bother with PRED_LOOP_EXIT. */
1603 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1604 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1606 /* For loop with many exits we don't want to predict all exits
1607 with the pretty large probability, because if all exits are
1608 considered in row, the loop would be predicted to iterate
1609 almost never. The code to divide probability by number of
1610 exits is very rough. It should compute the number of exits
1611 taken in each patch through function (not the overall number
1612 of exits that might be a lot higher for loops with wide switch
1613 statements in them) and compute n-th square root.
1615 We limit the minimal probability by 2% to avoid
1616 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1617 as this was causing regression in perl benchmark containing such
1618 a wide loop. */
1620 int probability = ((REG_BR_PROB_BASE
1621 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1622 / n_exits);
1623 if (probability < HITRATE (2))
1624 probability = HITRATE (2);
1625 FOR_EACH_EDGE (e, ei, bb->succs)
1626 if (e->dest->index < NUM_FIXED_BLOCKS
1627 || !flow_bb_inside_loop_p (loop, e->dest))
1628 predict_edge (e, PRED_LOOP_EXIT, probability);
1630 if (loop_bound_var)
1631 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1632 loop_bound_code,
1633 tree_to_shwi (loop_bound_step));
1636 /* Free basic blocks from get_loop_body. */
1637 free (bbs);
1641 /* Attempt to predict probabilities of BB outgoing edges using local
1642 properties. */
1643 static void
1644 bb_estimate_probability_locally (basic_block bb)
1646 rtx_insn *last_insn = BB_END (bb);
1647 rtx cond;
1649 if (! can_predict_insn_p (last_insn))
1650 return;
1651 cond = get_condition (last_insn, NULL, false, false);
1652 if (! cond)
1653 return;
1655 /* Try "pointer heuristic."
1656 A comparison ptr == 0 is predicted as false.
1657 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1658 if (COMPARISON_P (cond)
1659 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1660 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1662 if (GET_CODE (cond) == EQ)
1663 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1664 else if (GET_CODE (cond) == NE)
1665 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1667 else
1669 /* Try "opcode heuristic."
1670 EQ tests are usually false and NE tests are usually true. Also,
1671 most quantities are positive, so we can make the appropriate guesses
1672 about signed comparisons against zero. */
1673 switch (GET_CODE (cond))
1675 case CONST_INT:
1676 /* Unconditional branch. */
1677 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1678 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1679 break;
1681 case EQ:
1682 case UNEQ:
1683 /* Floating point comparisons appears to behave in a very
1684 unpredictable way because of special role of = tests in
1685 FP code. */
1686 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1688 /* Comparisons with 0 are often used for booleans and there is
1689 nothing useful to predict about them. */
1690 else if (XEXP (cond, 1) == const0_rtx
1691 || XEXP (cond, 0) == const0_rtx)
1693 else
1694 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1695 break;
1697 case NE:
1698 case LTGT:
1699 /* Floating point comparisons appears to behave in a very
1700 unpredictable way because of special role of = tests in
1701 FP code. */
1702 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1704 /* Comparisons with 0 are often used for booleans and there is
1705 nothing useful to predict about them. */
1706 else if (XEXP (cond, 1) == const0_rtx
1707 || XEXP (cond, 0) == const0_rtx)
1709 else
1710 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1711 break;
1713 case ORDERED:
1714 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1715 break;
1717 case UNORDERED:
1718 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1719 break;
1721 case LE:
1722 case LT:
1723 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1724 || XEXP (cond, 1) == constm1_rtx)
1725 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1726 break;
1728 case GE:
1729 case GT:
1730 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1731 || XEXP (cond, 1) == constm1_rtx)
1732 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1733 break;
1735 default:
1736 break;
1740 /* Set edge->probability for each successor edge of BB. */
1741 void
1742 guess_outgoing_edge_probabilities (basic_block bb)
1744 bb_estimate_probability_locally (bb);
1745 combine_predictions_for_insn (BB_END (bb), bb);
1748 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1750 /* Helper function for expr_expected_value. */
1752 static tree
1753 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1754 tree op1, bitmap visited, enum br_predictor *predictor)
1756 gimple def;
1758 if (predictor)
1759 *predictor = PRED_UNCONDITIONAL;
1761 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1763 if (TREE_CONSTANT (op0))
1764 return op0;
1766 if (code != SSA_NAME)
1767 return NULL_TREE;
1769 def = SSA_NAME_DEF_STMT (op0);
1771 /* If we were already here, break the infinite cycle. */
1772 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1773 return NULL;
1775 if (gimple_code (def) == GIMPLE_PHI)
1777 /* All the arguments of the PHI node must have the same constant
1778 length. */
1779 int i, n = gimple_phi_num_args (def);
1780 tree val = NULL, new_val;
1782 for (i = 0; i < n; i++)
1784 tree arg = PHI_ARG_DEF (def, i);
1785 enum br_predictor predictor2;
1787 /* If this PHI has itself as an argument, we cannot
1788 determine the string length of this argument. However,
1789 if we can find an expected constant value for the other
1790 PHI args then we can still be sure that this is
1791 likely a constant. So be optimistic and just
1792 continue with the next argument. */
1793 if (arg == PHI_RESULT (def))
1794 continue;
1796 new_val = expr_expected_value (arg, visited, &predictor2);
1798 /* It is difficult to combine value predictors. Simply assume
1799 that later predictor is weaker and take its prediction. */
1800 if (predictor && *predictor < predictor2)
1801 *predictor = predictor2;
1802 if (!new_val)
1803 return NULL;
1804 if (!val)
1805 val = new_val;
1806 else if (!operand_equal_p (val, new_val, false))
1807 return NULL;
1809 return val;
1811 if (is_gimple_assign (def))
1813 if (gimple_assign_lhs (def) != op0)
1814 return NULL;
1816 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1817 gimple_assign_rhs1 (def),
1818 gimple_assign_rhs_code (def),
1819 gimple_assign_rhs2 (def),
1820 visited, predictor);
1823 if (is_gimple_call (def))
1825 tree decl = gimple_call_fndecl (def);
1826 if (!decl)
1828 if (gimple_call_internal_p (def)
1829 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1831 gcc_assert (gimple_call_num_args (def) == 3);
1832 tree val = gimple_call_arg (def, 0);
1833 if (TREE_CONSTANT (val))
1834 return val;
1835 if (predictor)
1837 tree val2 = gimple_call_arg (def, 2);
1838 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1839 && tree_fits_uhwi_p (val2)
1840 && tree_to_uhwi (val2) < END_PREDICTORS);
1841 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1843 return gimple_call_arg (def, 1);
1845 return NULL;
1847 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1848 switch (DECL_FUNCTION_CODE (decl))
1850 case BUILT_IN_EXPECT:
1852 tree val;
1853 if (gimple_call_num_args (def) != 2)
1854 return NULL;
1855 val = gimple_call_arg (def, 0);
1856 if (TREE_CONSTANT (val))
1857 return val;
1858 if (predictor)
1859 *predictor = PRED_BUILTIN_EXPECT;
1860 return gimple_call_arg (def, 1);
1863 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1864 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1865 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1866 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1867 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1868 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1869 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1870 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1871 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1872 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1873 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1874 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1875 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1876 /* Assume that any given atomic operation has low contention,
1877 and thus the compare-and-swap operation succeeds. */
1878 if (predictor)
1879 *predictor = PRED_COMPARE_AND_SWAP;
1880 return boolean_true_node;
1881 default:
1882 break;
1886 return NULL;
1889 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1891 tree res;
1892 enum br_predictor predictor2;
1893 op0 = expr_expected_value (op0, visited, predictor);
1894 if (!op0)
1895 return NULL;
1896 op1 = expr_expected_value (op1, visited, &predictor2);
1897 if (predictor && *predictor < predictor2)
1898 *predictor = predictor2;
1899 if (!op1)
1900 return NULL;
1901 res = fold_build2 (code, type, op0, op1);
1902 if (TREE_CONSTANT (res))
1903 return res;
1904 return NULL;
1906 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1908 tree res;
1909 op0 = expr_expected_value (op0, visited, predictor);
1910 if (!op0)
1911 return NULL;
1912 res = fold_build1 (code, type, op0);
1913 if (TREE_CONSTANT (res))
1914 return res;
1915 return NULL;
1917 return NULL;
1920 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1921 The function is used by builtin_expect branch predictor so the evidence
1922 must come from this construct and additional possible constant folding.
1924 We may want to implement more involved value guess (such as value range
1925 propagation based prediction), but such tricks shall go to new
1926 implementation. */
1928 static tree
1929 expr_expected_value (tree expr, bitmap visited,
1930 enum br_predictor *predictor)
1932 enum tree_code code;
1933 tree op0, op1;
1935 if (TREE_CONSTANT (expr))
1937 if (predictor)
1938 *predictor = PRED_UNCONDITIONAL;
1939 return expr;
1942 extract_ops_from_tree (expr, &code, &op0, &op1);
1943 return expr_expected_value_1 (TREE_TYPE (expr),
1944 op0, code, op1, visited, predictor);
1947 /* Predict using opcode of the last statement in basic block. */
1948 static void
1949 tree_predict_by_opcode (basic_block bb)
1951 gimple stmt = last_stmt (bb);
1952 edge then_edge;
1953 tree op0, op1;
1954 tree type;
1955 tree val;
1956 enum tree_code cmp;
1957 bitmap visited;
1958 edge_iterator ei;
1959 enum br_predictor predictor;
1961 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1962 return;
1963 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1964 if (then_edge->flags & EDGE_TRUE_VALUE)
1965 break;
1966 op0 = gimple_cond_lhs (stmt);
1967 op1 = gimple_cond_rhs (stmt);
1968 cmp = gimple_cond_code (stmt);
1969 type = TREE_TYPE (op0);
1970 visited = BITMAP_ALLOC (NULL);
1971 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1972 &predictor);
1973 BITMAP_FREE (visited);
1974 if (val && TREE_CODE (val) == INTEGER_CST)
1976 if (predictor == PRED_BUILTIN_EXPECT)
1978 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
1980 gcc_assert (percent >= 0 && percent <= 100);
1981 if (integer_zerop (val))
1982 percent = 100 - percent;
1983 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
1985 else
1986 predict_edge (then_edge, predictor,
1987 integer_zerop (val) ? NOT_TAKEN : TAKEN);
1989 /* Try "pointer heuristic."
1990 A comparison ptr == 0 is predicted as false.
1991 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1992 if (POINTER_TYPE_P (type))
1994 if (cmp == EQ_EXPR)
1995 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1996 else if (cmp == NE_EXPR)
1997 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1999 else
2001 /* Try "opcode heuristic."
2002 EQ tests are usually false and NE tests are usually true. Also,
2003 most quantities are positive, so we can make the appropriate guesses
2004 about signed comparisons against zero. */
2005 switch (cmp)
2007 case EQ_EXPR:
2008 case UNEQ_EXPR:
2009 /* Floating point comparisons appears to behave in a very
2010 unpredictable way because of special role of = tests in
2011 FP code. */
2012 if (FLOAT_TYPE_P (type))
2014 /* Comparisons with 0 are often used for booleans and there is
2015 nothing useful to predict about them. */
2016 else if (integer_zerop (op0) || integer_zerop (op1))
2018 else
2019 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2020 break;
2022 case NE_EXPR:
2023 case LTGT_EXPR:
2024 /* Floating point comparisons appears to behave in a very
2025 unpredictable way because of special role of = tests in
2026 FP code. */
2027 if (FLOAT_TYPE_P (type))
2029 /* Comparisons with 0 are often used for booleans and there is
2030 nothing useful to predict about them. */
2031 else if (integer_zerop (op0)
2032 || integer_zerop (op1))
2034 else
2035 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2036 break;
2038 case ORDERED_EXPR:
2039 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2040 break;
2042 case UNORDERED_EXPR:
2043 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2044 break;
2046 case LE_EXPR:
2047 case LT_EXPR:
2048 if (integer_zerop (op1)
2049 || integer_onep (op1)
2050 || integer_all_onesp (op1)
2051 || real_zerop (op1)
2052 || real_onep (op1)
2053 || real_minus_onep (op1))
2054 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2055 break;
2057 case GE_EXPR:
2058 case GT_EXPR:
2059 if (integer_zerop (op1)
2060 || integer_onep (op1)
2061 || integer_all_onesp (op1)
2062 || real_zerop (op1)
2063 || real_onep (op1)
2064 || real_minus_onep (op1))
2065 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2066 break;
2068 default:
2069 break;
2073 /* Try to guess whether the value of return means error code. */
2075 static enum br_predictor
2076 return_prediction (tree val, enum prediction *prediction)
2078 /* VOID. */
2079 if (!val)
2080 return PRED_NO_PREDICTION;
2081 /* Different heuristics for pointers and scalars. */
2082 if (POINTER_TYPE_P (TREE_TYPE (val)))
2084 /* NULL is usually not returned. */
2085 if (integer_zerop (val))
2087 *prediction = NOT_TAKEN;
2088 return PRED_NULL_RETURN;
2091 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2093 /* Negative return values are often used to indicate
2094 errors. */
2095 if (TREE_CODE (val) == INTEGER_CST
2096 && tree_int_cst_sgn (val) < 0)
2098 *prediction = NOT_TAKEN;
2099 return PRED_NEGATIVE_RETURN;
2101 /* Constant return values seems to be commonly taken.
2102 Zero/one often represent booleans so exclude them from the
2103 heuristics. */
2104 if (TREE_CONSTANT (val)
2105 && (!integer_zerop (val) && !integer_onep (val)))
2107 *prediction = TAKEN;
2108 return PRED_CONST_RETURN;
2111 return PRED_NO_PREDICTION;
2114 /* Find the basic block with return expression and look up for possible
2115 return value trying to apply RETURN_PREDICTION heuristics. */
2116 static void
2117 apply_return_prediction (void)
2119 greturn *return_stmt = NULL;
2120 tree return_val;
2121 edge e;
2122 gphi *phi;
2123 int phi_num_args, i;
2124 enum br_predictor pred;
2125 enum prediction direction;
2126 edge_iterator ei;
2128 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2130 gimple last = last_stmt (e->src);
2131 if (last
2132 && gimple_code (last) == GIMPLE_RETURN)
2134 return_stmt = as_a <greturn *> (last);
2135 break;
2138 if (!e)
2139 return;
2140 return_val = gimple_return_retval (return_stmt);
2141 if (!return_val)
2142 return;
2143 if (TREE_CODE (return_val) != SSA_NAME
2144 || !SSA_NAME_DEF_STMT (return_val)
2145 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2146 return;
2147 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2148 phi_num_args = gimple_phi_num_args (phi);
2149 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2151 /* Avoid the degenerate case where all return values form the function
2152 belongs to same category (ie they are all positive constants)
2153 so we can hardly say something about them. */
2154 for (i = 1; i < phi_num_args; i++)
2155 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2156 break;
2157 if (i != phi_num_args)
2158 for (i = 0; i < phi_num_args; i++)
2160 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2161 if (pred != PRED_NO_PREDICTION)
2162 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2163 direction);
2167 /* Look for basic block that contains unlikely to happen events
2168 (such as noreturn calls) and mark all paths leading to execution
2169 of this basic blocks as unlikely. */
2171 static void
2172 tree_bb_level_predictions (void)
2174 basic_block bb;
2175 bool has_return_edges = false;
2176 edge e;
2177 edge_iterator ei;
2179 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2180 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2182 has_return_edges = true;
2183 break;
2186 apply_return_prediction ();
2188 FOR_EACH_BB_FN (bb, cfun)
2190 gimple_stmt_iterator gsi;
2192 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2194 gimple stmt = gsi_stmt (gsi);
2195 tree decl;
2197 if (is_gimple_call (stmt))
2199 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2200 && has_return_edges)
2201 predict_paths_leading_to (bb, PRED_NORETURN,
2202 NOT_TAKEN);
2203 decl = gimple_call_fndecl (stmt);
2204 if (decl
2205 && lookup_attribute ("cold",
2206 DECL_ATTRIBUTES (decl)))
2207 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2208 NOT_TAKEN);
2210 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2212 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2213 gimple_predict_outcome (stmt));
2214 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2215 hints to callers. */
2221 #ifdef ENABLE_CHECKING
2223 /* Callback for hash_map::traverse, asserts that the pointer map is
2224 empty. */
2226 bool
2227 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2228 void *)
2230 gcc_assert (!value);
2231 return false;
2233 #endif
2235 /* Predict branch probabilities and estimate profile for basic block BB. */
2237 static void
2238 tree_estimate_probability_bb (basic_block bb)
2240 edge e;
2241 edge_iterator ei;
2242 gimple last;
2244 FOR_EACH_EDGE (e, ei, bb->succs)
2246 /* Predict edges to user labels with attributes. */
2247 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2249 gimple_stmt_iterator gi;
2250 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2252 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
2253 tree decl;
2255 if (!label_stmt)
2256 break;
2257 decl = gimple_label_label (label_stmt);
2258 if (DECL_ARTIFICIAL (decl))
2259 continue;
2261 /* Finally, we have a user-defined label. */
2262 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2263 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2264 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2265 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2269 /* Predict early returns to be probable, as we've already taken
2270 care for error returns and other cases are often used for
2271 fast paths through function.
2273 Since we've already removed the return statements, we are
2274 looking for CFG like:
2276 if (conditional)
2279 goto return_block
2281 some other blocks
2282 return_block:
2283 return_stmt. */
2284 if (e->dest != bb->next_bb
2285 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2286 && single_succ_p (e->dest)
2287 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2288 && (last = last_stmt (e->dest)) != NULL
2289 && gimple_code (last) == GIMPLE_RETURN)
2291 edge e1;
2292 edge_iterator ei1;
2294 if (single_succ_p (bb))
2296 FOR_EACH_EDGE (e1, ei1, bb->preds)
2297 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2298 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2299 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2300 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2302 else
2303 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2304 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2305 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2306 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2309 /* Look for block we are guarding (ie we dominate it,
2310 but it doesn't postdominate us). */
2311 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2312 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2313 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2315 gimple_stmt_iterator bi;
2317 /* The call heuristic claims that a guarded function call
2318 is improbable. This is because such calls are often used
2319 to signal exceptional situations such as printing error
2320 messages. */
2321 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2322 gsi_next (&bi))
2324 gimple stmt = gsi_stmt (bi);
2325 if (is_gimple_call (stmt)
2326 /* Constant and pure calls are hardly used to signalize
2327 something exceptional. */
2328 && gimple_has_side_effects (stmt))
2330 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2331 break;
2336 tree_predict_by_opcode (bb);
2339 /* Predict branch probabilities and estimate profile of the tree CFG.
2340 This function can be called from the loop optimizers to recompute
2341 the profile information. */
2343 void
2344 tree_estimate_probability (void)
2346 basic_block bb;
2348 add_noreturn_fake_exit_edges ();
2349 connect_infinite_loops_to_exit ();
2350 /* We use loop_niter_by_eval, which requires that the loops have
2351 preheaders. */
2352 create_preheaders (CP_SIMPLE_PREHEADERS);
2353 calculate_dominance_info (CDI_POST_DOMINATORS);
2355 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2356 tree_bb_level_predictions ();
2357 record_loop_exits ();
2359 if (number_of_loops (cfun) > 1)
2360 predict_loops ();
2362 FOR_EACH_BB_FN (bb, cfun)
2363 tree_estimate_probability_bb (bb);
2365 FOR_EACH_BB_FN (bb, cfun)
2366 combine_predictions_for_bb (bb);
2368 #ifdef ENABLE_CHECKING
2369 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2370 #endif
2371 delete bb_predictions;
2372 bb_predictions = NULL;
2374 estimate_bb_frequencies (false);
2375 free_dominance_info (CDI_POST_DOMINATORS);
2376 remove_fake_exit_edges ();
2379 /* Predict edges to successors of CUR whose sources are not postdominated by
2380 BB by PRED and recurse to all postdominators. */
2382 static void
2383 predict_paths_for_bb (basic_block cur, basic_block bb,
2384 enum br_predictor pred,
2385 enum prediction taken,
2386 bitmap visited)
2388 edge e;
2389 edge_iterator ei;
2390 basic_block son;
2392 /* We are looking for all edges forming edge cut induced by
2393 set of all blocks postdominated by BB. */
2394 FOR_EACH_EDGE (e, ei, cur->preds)
2395 if (e->src->index >= NUM_FIXED_BLOCKS
2396 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2398 edge e2;
2399 edge_iterator ei2;
2400 bool found = false;
2402 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2403 if (e->flags & (EDGE_EH | EDGE_FAKE))
2404 continue;
2405 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2407 /* See if there is an edge from e->src that is not abnormal
2408 and does not lead to BB. */
2409 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2410 if (e2 != e
2411 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2412 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2414 found = true;
2415 break;
2418 /* If there is non-abnormal path leaving e->src, predict edge
2419 using predictor. Otherwise we need to look for paths
2420 leading to e->src.
2422 The second may lead to infinite loop in the case we are predicitng
2423 regions that are only reachable by abnormal edges. We simply
2424 prevent visiting given BB twice. */
2425 if (found)
2426 predict_edge_def (e, pred, taken);
2427 else if (bitmap_set_bit (visited, e->src->index))
2428 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2430 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2431 son;
2432 son = next_dom_son (CDI_POST_DOMINATORS, son))
2433 predict_paths_for_bb (son, bb, pred, taken, visited);
2436 /* Sets branch probabilities according to PREDiction and
2437 FLAGS. */
2439 static void
2440 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2441 enum prediction taken)
2443 bitmap visited = BITMAP_ALLOC (NULL);
2444 predict_paths_for_bb (bb, bb, pred, taken, visited);
2445 BITMAP_FREE (visited);
2448 /* Like predict_paths_leading_to but take edge instead of basic block. */
2450 static void
2451 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2452 enum prediction taken)
2454 bool has_nonloop_edge = false;
2455 edge_iterator ei;
2456 edge e2;
2458 basic_block bb = e->src;
2459 FOR_EACH_EDGE (e2, ei, bb->succs)
2460 if (e2->dest != e->src && e2->dest != e->dest
2461 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2462 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2464 has_nonloop_edge = true;
2465 break;
2467 if (!has_nonloop_edge)
2469 bitmap visited = BITMAP_ALLOC (NULL);
2470 predict_paths_for_bb (bb, bb, pred, taken, visited);
2471 BITMAP_FREE (visited);
2473 else
2474 predict_edge_def (e, pred, taken);
2477 /* This is used to carry information about basic blocks. It is
2478 attached to the AUX field of the standard CFG block. */
2480 struct block_info
2482 /* Estimated frequency of execution of basic_block. */
2483 sreal frequency;
2485 /* To keep queue of basic blocks to process. */
2486 basic_block next;
2488 /* Number of predecessors we need to visit first. */
2489 int npredecessors;
2492 /* Similar information for edges. */
2493 struct edge_prob_info
2495 /* In case edge is a loopback edge, the probability edge will be reached
2496 in case header is. Estimated number of iterations of the loop can be
2497 then computed as 1 / (1 - back_edge_prob). */
2498 sreal back_edge_prob;
2499 /* True if the edge is a loopback edge in the natural loop. */
2500 unsigned int back_edge:1;
2503 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2504 #undef EDGE_INFO
2505 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2507 /* Helper function for estimate_bb_frequencies.
2508 Propagate the frequencies in blocks marked in
2509 TOVISIT, starting in HEAD. */
2511 static void
2512 propagate_freq (basic_block head, bitmap tovisit)
2514 basic_block bb;
2515 basic_block last;
2516 unsigned i;
2517 edge e;
2518 basic_block nextbb;
2519 bitmap_iterator bi;
2521 /* For each basic block we need to visit count number of his predecessors
2522 we need to visit first. */
2523 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2525 edge_iterator ei;
2526 int count = 0;
2528 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2530 FOR_EACH_EDGE (e, ei, bb->preds)
2532 bool visit = bitmap_bit_p (tovisit, e->src->index);
2534 if (visit && !(e->flags & EDGE_DFS_BACK))
2535 count++;
2536 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2537 fprintf (dump_file,
2538 "Irreducible region hit, ignoring edge to %i->%i\n",
2539 e->src->index, bb->index);
2541 BLOCK_INFO (bb)->npredecessors = count;
2542 /* When function never returns, we will never process exit block. */
2543 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2544 bb->count = bb->frequency = 0;
2547 BLOCK_INFO (head)->frequency = 1;
2548 last = head;
2549 for (bb = head; bb; bb = nextbb)
2551 edge_iterator ei;
2552 sreal cyclic_probability = 0;
2553 sreal frequency = 0;
2555 nextbb = BLOCK_INFO (bb)->next;
2556 BLOCK_INFO (bb)->next = NULL;
2558 /* Compute frequency of basic block. */
2559 if (bb != head)
2561 #ifdef ENABLE_CHECKING
2562 FOR_EACH_EDGE (e, ei, bb->preds)
2563 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2564 || (e->flags & EDGE_DFS_BACK));
2565 #endif
2567 FOR_EACH_EDGE (e, ei, bb->preds)
2568 if (EDGE_INFO (e)->back_edge)
2570 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
2572 else if (!(e->flags & EDGE_DFS_BACK))
2574 /* frequency += (e->probability
2575 * BLOCK_INFO (e->src)->frequency /
2576 REG_BR_PROB_BASE); */
2578 sreal tmp = e->probability;
2579 tmp *= BLOCK_INFO (e->src)->frequency;
2580 tmp *= real_inv_br_prob_base;
2581 frequency += tmp;
2584 if (cyclic_probability == 0)
2586 BLOCK_INFO (bb)->frequency = frequency;
2588 else
2590 if (cyclic_probability > real_almost_one)
2591 cyclic_probability = real_almost_one;
2593 /* BLOCK_INFO (bb)->frequency = frequency
2594 / (1 - cyclic_probability) */
2596 cyclic_probability = sreal (1) - cyclic_probability;
2597 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2601 bitmap_clear_bit (tovisit, bb->index);
2603 e = find_edge (bb, head);
2604 if (e)
2606 /* EDGE_INFO (e)->back_edge_prob
2607 = ((e->probability * BLOCK_INFO (bb)->frequency)
2608 / REG_BR_PROB_BASE); */
2610 sreal tmp = e->probability;
2611 tmp *= BLOCK_INFO (bb)->frequency;
2612 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
2615 /* Propagate to successor blocks. */
2616 FOR_EACH_EDGE (e, ei, bb->succs)
2617 if (!(e->flags & EDGE_DFS_BACK)
2618 && BLOCK_INFO (e->dest)->npredecessors)
2620 BLOCK_INFO (e->dest)->npredecessors--;
2621 if (!BLOCK_INFO (e->dest)->npredecessors)
2623 if (!nextbb)
2624 nextbb = e->dest;
2625 else
2626 BLOCK_INFO (last)->next = e->dest;
2628 last = e->dest;
2634 /* Estimate frequencies in loops at same nest level. */
2636 static void
2637 estimate_loops_at_level (struct loop *first_loop)
2639 struct loop *loop;
2641 for (loop = first_loop; loop; loop = loop->next)
2643 edge e;
2644 basic_block *bbs;
2645 unsigned i;
2646 bitmap tovisit = BITMAP_ALLOC (NULL);
2648 estimate_loops_at_level (loop->inner);
2650 /* Find current loop back edge and mark it. */
2651 e = loop_latch_edge (loop);
2652 EDGE_INFO (e)->back_edge = 1;
2654 bbs = get_loop_body (loop);
2655 for (i = 0; i < loop->num_nodes; i++)
2656 bitmap_set_bit (tovisit, bbs[i]->index);
2657 free (bbs);
2658 propagate_freq (loop->header, tovisit);
2659 BITMAP_FREE (tovisit);
2663 /* Propagates frequencies through structure of loops. */
2665 static void
2666 estimate_loops (void)
2668 bitmap tovisit = BITMAP_ALLOC (NULL);
2669 basic_block bb;
2671 /* Start by estimating the frequencies in the loops. */
2672 if (number_of_loops (cfun) > 1)
2673 estimate_loops_at_level (current_loops->tree_root->inner);
2675 /* Now propagate the frequencies through all the blocks. */
2676 FOR_ALL_BB_FN (bb, cfun)
2678 bitmap_set_bit (tovisit, bb->index);
2680 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2681 BITMAP_FREE (tovisit);
2684 /* Drop the profile for NODE to guessed, and update its frequency based on
2685 whether it is expected to be hot given the CALL_COUNT. */
2687 static void
2688 drop_profile (struct cgraph_node *node, gcov_type call_count)
2690 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2691 /* In the case where this was called by another function with a
2692 dropped profile, call_count will be 0. Since there are no
2693 non-zero call counts to this function, we don't know for sure
2694 whether it is hot, and therefore it will be marked normal below. */
2695 bool hot = maybe_hot_count_p (NULL, call_count);
2697 if (dump_file)
2698 fprintf (dump_file,
2699 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2700 node->name (), node->order,
2701 hot ? "Function is hot" : "Function is normal");
2702 /* We only expect to miss profiles for functions that are reached
2703 via non-zero call edges in cases where the function may have
2704 been linked from another module or library (COMDATs and extern
2705 templates). See the comments below for handle_missing_profiles.
2706 Also, only warn in cases where the missing counts exceed the
2707 number of training runs. In certain cases with an execv followed
2708 by a no-return call the profile for the no-return call is not
2709 dumped and there can be a mismatch. */
2710 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2711 && call_count > profile_info->runs)
2713 if (flag_profile_correction)
2715 if (dump_file)
2716 fprintf (dump_file,
2717 "Missing counts for called function %s/%i\n",
2718 node->name (), node->order);
2720 else
2721 warning (0, "Missing counts for called function %s/%i",
2722 node->name (), node->order);
2725 profile_status_for_fn (fn)
2726 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2727 node->frequency
2728 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2731 /* In the case of COMDAT routines, multiple object files will contain the same
2732 function and the linker will select one for the binary. In that case
2733 all the other copies from the profile instrument binary will be missing
2734 profile counts. Look for cases where this happened, due to non-zero
2735 call counts going to 0-count functions, and drop the profile to guessed
2736 so that we can use the estimated probabilities and avoid optimizing only
2737 for size.
2739 The other case where the profile may be missing is when the routine
2740 is not going to be emitted to the object file, e.g. for "extern template"
2741 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2742 all other cases of non-zero calls to 0-count functions. */
2744 void
2745 handle_missing_profiles (void)
2747 struct cgraph_node *node;
2748 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2749 vec<struct cgraph_node *> worklist;
2750 worklist.create (64);
2752 /* See if 0 count function has non-0 count callers. In this case we
2753 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2754 FOR_EACH_DEFINED_FUNCTION (node)
2756 struct cgraph_edge *e;
2757 gcov_type call_count = 0;
2758 gcov_type max_tp_first_run = 0;
2759 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2761 if (node->count)
2762 continue;
2763 for (e = node->callers; e; e = e->next_caller)
2765 call_count += e->count;
2767 if (e->caller->tp_first_run > max_tp_first_run)
2768 max_tp_first_run = e->caller->tp_first_run;
2771 /* If time profile is missing, let assign the maximum that comes from
2772 caller functions. */
2773 if (!node->tp_first_run && max_tp_first_run)
2774 node->tp_first_run = max_tp_first_run + 1;
2776 if (call_count
2777 && fn && fn->cfg
2778 && (call_count * unlikely_count_fraction >= profile_info->runs))
2780 drop_profile (node, call_count);
2781 worklist.safe_push (node);
2785 /* Propagate the profile dropping to other 0-count COMDATs that are
2786 potentially called by COMDATs we already dropped the profile on. */
2787 while (worklist.length () > 0)
2789 struct cgraph_edge *e;
2791 node = worklist.pop ();
2792 for (e = node->callees; e; e = e->next_caller)
2794 struct cgraph_node *callee = e->callee;
2795 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2797 if (callee->count > 0)
2798 continue;
2799 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2800 && profile_status_for_fn (fn) == PROFILE_READ)
2802 drop_profile (node, 0);
2803 worklist.safe_push (callee);
2807 worklist.release ();
2810 /* Convert counts measured by profile driven feedback to frequencies.
2811 Return nonzero iff there was any nonzero execution count. */
2814 counts_to_freqs (void)
2816 gcov_type count_max, true_count_max = 0;
2817 basic_block bb;
2819 /* Don't overwrite the estimated frequencies when the profile for
2820 the function is missing. We may drop this function PROFILE_GUESSED
2821 later in drop_profile (). */
2822 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2823 return 0;
2825 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2826 true_count_max = MAX (bb->count, true_count_max);
2828 count_max = MAX (true_count_max, 1);
2829 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2830 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2832 return true_count_max;
2835 /* Return true if function is likely to be expensive, so there is no point to
2836 optimize performance of prologue, epilogue or do inlining at the expense
2837 of code size growth. THRESHOLD is the limit of number of instructions
2838 function can execute at average to be still considered not expensive. */
2840 bool
2841 expensive_function_p (int threshold)
2843 unsigned int sum = 0;
2844 basic_block bb;
2845 unsigned int limit;
2847 /* We can not compute accurately for large thresholds due to scaled
2848 frequencies. */
2849 gcc_assert (threshold <= BB_FREQ_MAX);
2851 /* Frequencies are out of range. This either means that function contains
2852 internal loop executing more than BB_FREQ_MAX times or profile feedback
2853 is available and function has not been executed at all. */
2854 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2855 return true;
2857 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2858 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2859 FOR_EACH_BB_FN (bb, cfun)
2861 rtx_insn *insn;
2863 FOR_BB_INSNS (bb, insn)
2864 if (active_insn_p (insn))
2866 sum += bb->frequency;
2867 if (sum > limit)
2868 return true;
2872 return false;
2875 /* Estimate and propagate basic block frequencies using the given branch
2876 probabilities. If FORCE is true, the frequencies are used to estimate
2877 the counts even when there are already non-zero profile counts. */
2879 void
2880 estimate_bb_frequencies (bool force)
2882 basic_block bb;
2883 sreal freq_max;
2885 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2887 static int real_values_initialized = 0;
2889 if (!real_values_initialized)
2891 real_values_initialized = 1;
2892 real_br_prob_base = REG_BR_PROB_BASE;
2893 real_bb_freq_max = BB_FREQ_MAX;
2894 real_one_half = sreal (1, -1);
2895 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
2896 real_almost_one = sreal (1) - real_inv_br_prob_base;
2899 mark_dfs_back_edges ();
2901 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2902 REG_BR_PROB_BASE;
2904 /* Set up block info for each basic block. */
2905 alloc_aux_for_blocks (sizeof (block_info));
2906 alloc_aux_for_edges (sizeof (edge_prob_info));
2907 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2909 edge e;
2910 edge_iterator ei;
2912 FOR_EACH_EDGE (e, ei, bb->succs)
2914 EDGE_INFO (e)->back_edge_prob = e->probability;
2915 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
2919 /* First compute frequencies locally for each loop from innermost
2920 to outermost to examine frequencies for back edges. */
2921 estimate_loops ();
2923 freq_max = 0;
2924 FOR_EACH_BB_FN (bb, cfun)
2925 if (freq_max < BLOCK_INFO (bb)->frequency)
2926 freq_max = BLOCK_INFO (bb)->frequency;
2928 freq_max = real_bb_freq_max / freq_max;
2929 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2931 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
2932 bb->frequency = tmp.to_int ();
2935 free_aux_for_blocks ();
2936 free_aux_for_edges ();
2938 compute_function_frequency ();
2941 /* Decide whether function is hot, cold or unlikely executed. */
2942 void
2943 compute_function_frequency (void)
2945 basic_block bb;
2946 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2948 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2949 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2950 node->only_called_at_startup = true;
2951 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2952 node->only_called_at_exit = true;
2954 if (profile_status_for_fn (cfun) != PROFILE_READ)
2956 int flags = flags_from_decl_or_type (current_function_decl);
2957 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2958 != NULL)
2959 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2960 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2961 != NULL)
2962 node->frequency = NODE_FREQUENCY_HOT;
2963 else if (flags & ECF_NORETURN)
2964 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2965 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2966 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2967 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2968 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2969 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2970 return;
2973 /* Only first time try to drop function into unlikely executed.
2974 After inlining the roundoff errors may confuse us.
2975 Ipa-profile pass will drop functions only called from unlikely
2976 functions to unlikely and that is most of what we care about. */
2977 if (!cfun->after_inlining)
2978 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2979 FOR_EACH_BB_FN (bb, cfun)
2981 if (maybe_hot_bb_p (cfun, bb))
2983 node->frequency = NODE_FREQUENCY_HOT;
2984 return;
2986 if (!probably_never_executed_bb_p (cfun, bb))
2987 node->frequency = NODE_FREQUENCY_NORMAL;
2991 /* Build PREDICT_EXPR. */
2992 tree
2993 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2995 tree t = build1 (PREDICT_EXPR, void_type_node,
2996 build_int_cst (integer_type_node, predictor));
2997 SET_PREDICT_EXPR_OUTCOME (t, taken);
2998 return t;
3001 const char *
3002 predictor_name (enum br_predictor predictor)
3004 return predictor_info[predictor].name;
3007 /* Predict branch probabilities and estimate profile of the tree CFG. */
3009 namespace {
3011 const pass_data pass_data_profile =
3013 GIMPLE_PASS, /* type */
3014 "profile_estimate", /* name */
3015 OPTGROUP_NONE, /* optinfo_flags */
3016 TV_BRANCH_PROB, /* tv_id */
3017 PROP_cfg, /* properties_required */
3018 0, /* properties_provided */
3019 0, /* properties_destroyed */
3020 0, /* todo_flags_start */
3021 0, /* todo_flags_finish */
3024 class pass_profile : public gimple_opt_pass
3026 public:
3027 pass_profile (gcc::context *ctxt)
3028 : gimple_opt_pass (pass_data_profile, ctxt)
3031 /* opt_pass methods: */
3032 virtual bool gate (function *) { return flag_guess_branch_prob; }
3033 virtual unsigned int execute (function *);
3035 }; // class pass_profile
3037 unsigned int
3038 pass_profile::execute (function *fun)
3040 unsigned nb_loops;
3042 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3043 return 0;
3045 loop_optimizer_init (LOOPS_NORMAL);
3046 if (dump_file && (dump_flags & TDF_DETAILS))
3047 flow_loops_dump (dump_file, NULL, 0);
3049 mark_irreducible_loops ();
3051 nb_loops = number_of_loops (fun);
3052 if (nb_loops > 1)
3053 scev_initialize ();
3055 tree_estimate_probability ();
3057 if (nb_loops > 1)
3058 scev_finalize ();
3060 loop_optimizer_finalize ();
3061 if (dump_file && (dump_flags & TDF_DETAILS))
3062 gimple_dump_cfg (dump_file, dump_flags);
3063 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3064 profile_status_for_fn (fun) = PROFILE_GUESSED;
3065 return 0;
3068 } // anon namespace
3070 gimple_opt_pass *
3071 make_pass_profile (gcc::context *ctxt)
3073 return new pass_profile (ctxt);
3076 namespace {
3078 const pass_data pass_data_strip_predict_hints =
3080 GIMPLE_PASS, /* type */
3081 "*strip_predict_hints", /* name */
3082 OPTGROUP_NONE, /* optinfo_flags */
3083 TV_BRANCH_PROB, /* tv_id */
3084 PROP_cfg, /* properties_required */
3085 0, /* properties_provided */
3086 0, /* properties_destroyed */
3087 0, /* todo_flags_start */
3088 0, /* todo_flags_finish */
3091 class pass_strip_predict_hints : public gimple_opt_pass
3093 public:
3094 pass_strip_predict_hints (gcc::context *ctxt)
3095 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3098 /* opt_pass methods: */
3099 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3100 virtual unsigned int execute (function *);
3102 }; // class pass_strip_predict_hints
3104 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3105 we no longer need. */
3106 unsigned int
3107 pass_strip_predict_hints::execute (function *fun)
3109 basic_block bb;
3110 gimple ass_stmt;
3111 tree var;
3113 FOR_EACH_BB_FN (bb, fun)
3115 gimple_stmt_iterator bi;
3116 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3118 gimple stmt = gsi_stmt (bi);
3120 if (gimple_code (stmt) == GIMPLE_PREDICT)
3122 gsi_remove (&bi, true);
3123 continue;
3125 else if (is_gimple_call (stmt))
3127 tree fndecl = gimple_call_fndecl (stmt);
3129 if ((fndecl
3130 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3131 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3132 && gimple_call_num_args (stmt) == 2)
3133 || (gimple_call_internal_p (stmt)
3134 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3136 var = gimple_call_lhs (stmt);
3137 if (var)
3139 ass_stmt
3140 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3141 gsi_replace (&bi, ass_stmt, true);
3143 else
3145 gsi_remove (&bi, true);
3146 continue;
3150 gsi_next (&bi);
3153 return 0;
3156 } // anon namespace
3158 gimple_opt_pass *
3159 make_pass_strip_predict_hints (gcc::context *ctxt)
3161 return new pass_strip_predict_hints (ctxt);
3164 /* Rebuild function frequencies. Passes are in general expected to
3165 maintain profile by hand, however in some cases this is not possible:
3166 for example when inlining several functions with loops freuqencies might run
3167 out of scale and thus needs to be recomputed. */
3169 void
3170 rebuild_frequencies (void)
3172 timevar_push (TV_REBUILD_FREQUENCIES);
3174 /* When the max bb count in the function is small, there is a higher
3175 chance that there were truncation errors in the integer scaling
3176 of counts by inlining and other optimizations. This could lead
3177 to incorrect classification of code as being cold when it isn't.
3178 In that case, force the estimation of bb counts/frequencies from the
3179 branch probabilities, rather than computing frequencies from counts,
3180 which may also lead to frequencies incorrectly reduced to 0. There
3181 is less precision in the probabilities, so we only do this for small
3182 max counts. */
3183 gcov_type count_max = 0;
3184 basic_block bb;
3185 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3186 count_max = MAX (bb->count, count_max);
3188 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3189 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3190 && count_max < REG_BR_PROB_BASE/10))
3192 loop_optimizer_init (0);
3193 add_noreturn_fake_exit_edges ();
3194 mark_irreducible_loops ();
3195 connect_infinite_loops_to_exit ();
3196 estimate_bb_frequencies (true);
3197 remove_fake_exit_edges ();
3198 loop_optimizer_finalize ();
3200 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3201 counts_to_freqs ();
3202 else
3203 gcc_unreachable ();
3204 timevar_pop (TV_REBUILD_FREQUENCIES);