2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / jump.c
blob5d4beacc0c2f2003d320b44539c7ad5467647d73
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "input.h"
49 #include "function.h"
50 #include "predict.h"
51 #include "dominance.h"
52 #include "cfg.h"
53 #include "cfgrtl.h"
54 #include "basic-block.h"
55 #include "symtab.h"
56 #include "alias.h"
57 #include "tree.h"
58 #include "expmed.h"
59 #include "dojump.h"
60 #include "explow.h"
61 #include "calls.h"
62 #include "emit-rtl.h"
63 #include "varasm.h"
64 #include "stmt.h"
65 #include "expr.h"
66 #include "except.h"
67 #include "diagnostic-core.h"
68 #include "reload.h"
69 #include "tree-pass.h"
70 #include "target.h"
71 #include "rtl-iter.h"
73 /* Optimize jump y; x: ... y: jumpif... x?
74 Don't know if it is worth bothering with. */
75 /* Optimize two cases of conditional jump to conditional jump?
76 This can never delete any instruction or make anything dead,
77 or even change what is live at any point.
78 So perhaps let combiner do it. */
80 static void init_label_info (rtx_insn *);
81 static void mark_all_labels (rtx_insn *);
82 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
83 static void mark_jump_label_asm (rtx, rtx_insn *);
84 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
85 static int invert_exp_1 (rtx, rtx);
87 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
88 static void
89 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
91 rtx_insn_list *insn;
93 timevar_push (TV_REBUILD_JUMP);
94 init_label_info (f);
95 mark_all_labels (f);
97 /* Keep track of labels used from static data; we don't track them
98 closely enough to delete them here, so make sure their reference
99 count doesn't drop to zero. */
101 if (count_forced)
102 for (insn = forced_labels; insn; insn = insn->next ())
103 if (LABEL_P (insn->insn ()))
104 LABEL_NUSES (insn->insn ())++;
105 timevar_pop (TV_REBUILD_JUMP);
108 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
109 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
110 instructions and jumping insns that have labels as operands
111 (e.g. cbranchsi4). */
112 void
113 rebuild_jump_labels (rtx_insn *f)
115 rebuild_jump_labels_1 (f, true);
118 /* This function is like rebuild_jump_labels, but doesn't run over
119 forced_labels. It can be used on insn chains that aren't the
120 main function chain. */
121 void
122 rebuild_jump_labels_chain (rtx_insn *chain)
124 rebuild_jump_labels_1 (chain, false);
127 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
128 non-fallthru insn. This is not generally true, as multiple barriers
129 may have crept in, or the BARRIER may be separated from the last
130 real insn by one or more NOTEs.
132 This simple pass moves barriers and removes duplicates so that the
133 old code is happy.
135 static unsigned int
136 cleanup_barriers (void)
138 rtx_insn *insn;
139 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
141 if (BARRIER_P (insn))
143 rtx_insn *prev = prev_nonnote_insn (insn);
144 if (!prev)
145 continue;
147 if (CALL_P (prev))
149 /* Make sure we do not split a call and its corresponding
150 CALL_ARG_LOCATION note. */
151 rtx_insn *next = NEXT_INSN (prev);
153 if (NOTE_P (next)
154 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
155 prev = next;
158 if (BARRIER_P (prev))
159 delete_insn (insn);
160 else if (prev != PREV_INSN (insn))
162 basic_block bb = BLOCK_FOR_INSN (prev);
163 rtx_insn *end = PREV_INSN (insn);
164 reorder_insns_nobb (insn, insn, prev);
165 if (bb)
167 /* If the backend called in machine reorg compute_bb_for_insn
168 and didn't free_bb_for_insn again, preserve basic block
169 boundaries. Move the end of basic block to PREV since
170 it is followed by a barrier now, and clear BLOCK_FOR_INSN
171 on the following notes.
172 ??? Maybe the proper solution for the targets that have
173 cfg around after machine reorg is not to run cleanup_barriers
174 pass at all. */
175 BB_END (bb) = prev;
178 prev = NEXT_INSN (prev);
179 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
180 BLOCK_FOR_INSN (prev) = NULL;
182 while (prev != end);
187 return 0;
190 namespace {
192 const pass_data pass_data_cleanup_barriers =
194 RTL_PASS, /* type */
195 "barriers", /* name */
196 OPTGROUP_NONE, /* optinfo_flags */
197 TV_NONE, /* tv_id */
198 0, /* properties_required */
199 0, /* properties_provided */
200 0, /* properties_destroyed */
201 0, /* todo_flags_start */
202 0, /* todo_flags_finish */
205 class pass_cleanup_barriers : public rtl_opt_pass
207 public:
208 pass_cleanup_barriers (gcc::context *ctxt)
209 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
212 /* opt_pass methods: */
213 virtual unsigned int execute (function *) { return cleanup_barriers (); }
215 }; // class pass_cleanup_barriers
217 } // anon namespace
219 rtl_opt_pass *
220 make_pass_cleanup_barriers (gcc::context *ctxt)
222 return new pass_cleanup_barriers (ctxt);
226 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
227 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
228 notes whose labels don't occur in the insn any more. */
230 static void
231 init_label_info (rtx_insn *f)
233 rtx_insn *insn;
235 for (insn = f; insn; insn = NEXT_INSN (insn))
237 if (LABEL_P (insn))
238 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
240 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
241 sticky and not reset here; that way we won't lose association
242 with a label when e.g. the source for a target register
243 disappears out of reach for targets that may use jump-target
244 registers. Jump transformations are supposed to transform
245 any REG_LABEL_TARGET notes. The target label reference in a
246 branch may disappear from the branch (and from the
247 instruction before it) for other reasons, like register
248 allocation. */
250 if (INSN_P (insn))
252 rtx note, next;
254 for (note = REG_NOTES (insn); note; note = next)
256 next = XEXP (note, 1);
257 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
258 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
259 remove_note (insn, note);
265 /* A subroutine of mark_all_labels. Trivially propagate a simple label
266 load into a jump_insn that uses it. */
268 static void
269 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
271 rtx label_note, pc, pc_src;
273 pc = pc_set (jump_insn);
274 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
275 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
277 /* If the previous non-jump insn sets something to a label,
278 something that this jump insn uses, make that label the primary
279 target of this insn if we don't yet have any. That previous
280 insn must be a single_set and not refer to more than one label.
281 The jump insn must not refer to other labels as jump targets
282 and must be a plain (set (pc) ...), maybe in a parallel, and
283 may refer to the item being set only directly or as one of the
284 arms in an IF_THEN_ELSE. */
286 if (label_note != NULL && pc_src != NULL)
288 rtx label_set = single_set (prev_nonjump_insn);
289 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
291 if (label_set != NULL
292 /* The source must be the direct LABEL_REF, not a
293 PLUS, UNSPEC, IF_THEN_ELSE etc. */
294 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
295 && (rtx_equal_p (label_dest, pc_src)
296 || (GET_CODE (pc_src) == IF_THEN_ELSE
297 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
298 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
300 /* The CODE_LABEL referred to in the note must be the
301 CODE_LABEL in the LABEL_REF of the "set". We can
302 conveniently use it for the marker function, which
303 requires a LABEL_REF wrapping. */
304 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
306 mark_jump_label_1 (label_set, jump_insn, false, true);
308 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
313 /* Mark the label each jump jumps to.
314 Combine consecutive labels, and count uses of labels. */
316 static void
317 mark_all_labels (rtx_insn *f)
319 rtx_insn *insn;
321 if (current_ir_type () == IR_RTL_CFGLAYOUT)
323 basic_block bb;
324 FOR_EACH_BB_FN (bb, cfun)
326 /* In cfglayout mode, we don't bother with trivial next-insn
327 propagation of LABEL_REFs into JUMP_LABEL. This will be
328 handled by other optimizers using better algorithms. */
329 FOR_BB_INSNS (bb, insn)
331 gcc_assert (! insn->deleted ());
332 if (NONDEBUG_INSN_P (insn))
333 mark_jump_label (PATTERN (insn), insn, 0);
336 /* In cfglayout mode, there may be non-insns between the
337 basic blocks. If those non-insns represent tablejump data,
338 they contain label references that we must record. */
339 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
340 if (JUMP_TABLE_DATA_P (insn))
341 mark_jump_label (PATTERN (insn), insn, 0);
342 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
343 if (JUMP_TABLE_DATA_P (insn))
344 mark_jump_label (PATTERN (insn), insn, 0);
347 else
349 rtx_insn *prev_nonjump_insn = NULL;
350 for (insn = f; insn; insn = NEXT_INSN (insn))
352 if (insn->deleted ())
354 else if (LABEL_P (insn))
355 prev_nonjump_insn = NULL;
356 else if (JUMP_TABLE_DATA_P (insn))
357 mark_jump_label (PATTERN (insn), insn, 0);
358 else if (NONDEBUG_INSN_P (insn))
360 mark_jump_label (PATTERN (insn), insn, 0);
361 if (JUMP_P (insn))
363 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
364 maybe_propagate_label_ref (insn, prev_nonjump_insn);
366 else
367 prev_nonjump_insn = insn;
373 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
374 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
375 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
376 know whether it's source is floating point or integer comparison. Machine
377 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
378 to help this function avoid overhead in these cases. */
379 enum rtx_code
380 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
381 const_rtx arg1, const_rtx insn)
383 machine_mode mode;
385 /* If this is not actually a comparison, we can't reverse it. */
386 if (GET_RTX_CLASS (code) != RTX_COMPARE
387 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
388 return UNKNOWN;
390 mode = GET_MODE (arg0);
391 if (mode == VOIDmode)
392 mode = GET_MODE (arg1);
394 /* First see if machine description supplies us way to reverse the
395 comparison. Give it priority over everything else to allow
396 machine description to do tricks. */
397 if (GET_MODE_CLASS (mode) == MODE_CC
398 && REVERSIBLE_CC_MODE (mode))
400 #ifdef REVERSE_CONDITION
401 return REVERSE_CONDITION (code, mode);
402 #else
403 return reverse_condition (code);
404 #endif
407 /* Try a few special cases based on the comparison code. */
408 switch (code)
410 case GEU:
411 case GTU:
412 case LEU:
413 case LTU:
414 case NE:
415 case EQ:
416 /* It is always safe to reverse EQ and NE, even for the floating
417 point. Similarly the unsigned comparisons are never used for
418 floating point so we can reverse them in the default way. */
419 return reverse_condition (code);
420 case ORDERED:
421 case UNORDERED:
422 case LTGT:
423 case UNEQ:
424 /* In case we already see unordered comparison, we can be sure to
425 be dealing with floating point so we don't need any more tests. */
426 return reverse_condition_maybe_unordered (code);
427 case UNLT:
428 case UNLE:
429 case UNGT:
430 case UNGE:
431 /* We don't have safe way to reverse these yet. */
432 return UNKNOWN;
433 default:
434 break;
437 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
439 /* Try to search for the comparison to determine the real mode.
440 This code is expensive, but with sane machine description it
441 will be never used, since REVERSIBLE_CC_MODE will return true
442 in all cases. */
443 if (! insn)
444 return UNKNOWN;
446 /* These CONST_CAST's are okay because prev_nonnote_insn just
447 returns its argument and we assign it to a const_rtx
448 variable. */
449 for (rtx_insn *prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
450 prev != 0 && !LABEL_P (prev);
451 prev = prev_nonnote_insn (prev))
453 const_rtx set = set_of (arg0, prev);
454 if (set && GET_CODE (set) == SET
455 && rtx_equal_p (SET_DEST (set), arg0))
457 rtx src = SET_SRC (set);
459 if (GET_CODE (src) == COMPARE)
461 rtx comparison = src;
462 arg0 = XEXP (src, 0);
463 mode = GET_MODE (arg0);
464 if (mode == VOIDmode)
465 mode = GET_MODE (XEXP (comparison, 1));
466 break;
468 /* We can get past reg-reg moves. This may be useful for model
469 of i387 comparisons that first move flag registers around. */
470 if (REG_P (src))
472 arg0 = src;
473 continue;
476 /* If register is clobbered in some ununderstandable way,
477 give up. */
478 if (set)
479 return UNKNOWN;
483 /* Test for an integer condition, or a floating-point comparison
484 in which NaNs can be ignored. */
485 if (CONST_INT_P (arg0)
486 || (GET_MODE (arg0) != VOIDmode
487 && GET_MODE_CLASS (mode) != MODE_CC
488 && !HONOR_NANS (mode)))
489 return reverse_condition (code);
491 return UNKNOWN;
494 /* A wrapper around the previous function to take COMPARISON as rtx
495 expression. This simplifies many callers. */
496 enum rtx_code
497 reversed_comparison_code (const_rtx comparison, const_rtx insn)
499 if (!COMPARISON_P (comparison))
500 return UNKNOWN;
501 return reversed_comparison_code_parts (GET_CODE (comparison),
502 XEXP (comparison, 0),
503 XEXP (comparison, 1), insn);
506 /* Return comparison with reversed code of EXP.
507 Return NULL_RTX in case we fail to do the reversal. */
509 reversed_comparison (const_rtx exp, machine_mode mode)
511 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
512 if (reversed_code == UNKNOWN)
513 return NULL_RTX;
514 else
515 return simplify_gen_relational (reversed_code, mode, VOIDmode,
516 XEXP (exp, 0), XEXP (exp, 1));
520 /* Given an rtx-code for a comparison, return the code for the negated
521 comparison. If no such code exists, return UNKNOWN.
523 WATCH OUT! reverse_condition is not safe to use on a jump that might
524 be acting on the results of an IEEE floating point comparison, because
525 of the special treatment of non-signaling nans in comparisons.
526 Use reversed_comparison_code instead. */
528 enum rtx_code
529 reverse_condition (enum rtx_code code)
531 switch (code)
533 case EQ:
534 return NE;
535 case NE:
536 return EQ;
537 case GT:
538 return LE;
539 case GE:
540 return LT;
541 case LT:
542 return GE;
543 case LE:
544 return GT;
545 case GTU:
546 return LEU;
547 case GEU:
548 return LTU;
549 case LTU:
550 return GEU;
551 case LEU:
552 return GTU;
553 case UNORDERED:
554 return ORDERED;
555 case ORDERED:
556 return UNORDERED;
558 case UNLT:
559 case UNLE:
560 case UNGT:
561 case UNGE:
562 case UNEQ:
563 case LTGT:
564 return UNKNOWN;
566 default:
567 gcc_unreachable ();
571 /* Similar, but we're allowed to generate unordered comparisons, which
572 makes it safe for IEEE floating-point. Of course, we have to recognize
573 that the target will support them too... */
575 enum rtx_code
576 reverse_condition_maybe_unordered (enum rtx_code code)
578 switch (code)
580 case EQ:
581 return NE;
582 case NE:
583 return EQ;
584 case GT:
585 return UNLE;
586 case GE:
587 return UNLT;
588 case LT:
589 return UNGE;
590 case LE:
591 return UNGT;
592 case LTGT:
593 return UNEQ;
594 case UNORDERED:
595 return ORDERED;
596 case ORDERED:
597 return UNORDERED;
598 case UNLT:
599 return GE;
600 case UNLE:
601 return GT;
602 case UNGT:
603 return LE;
604 case UNGE:
605 return LT;
606 case UNEQ:
607 return LTGT;
609 default:
610 gcc_unreachable ();
614 /* Similar, but return the code when two operands of a comparison are swapped.
615 This IS safe for IEEE floating-point. */
617 enum rtx_code
618 swap_condition (enum rtx_code code)
620 switch (code)
622 case EQ:
623 case NE:
624 case UNORDERED:
625 case ORDERED:
626 case UNEQ:
627 case LTGT:
628 return code;
630 case GT:
631 return LT;
632 case GE:
633 return LE;
634 case LT:
635 return GT;
636 case LE:
637 return GE;
638 case GTU:
639 return LTU;
640 case GEU:
641 return LEU;
642 case LTU:
643 return GTU;
644 case LEU:
645 return GEU;
646 case UNLT:
647 return UNGT;
648 case UNLE:
649 return UNGE;
650 case UNGT:
651 return UNLT;
652 case UNGE:
653 return UNLE;
655 default:
656 gcc_unreachable ();
660 /* Given a comparison CODE, return the corresponding unsigned comparison.
661 If CODE is an equality comparison or already an unsigned comparison,
662 CODE is returned. */
664 enum rtx_code
665 unsigned_condition (enum rtx_code code)
667 switch (code)
669 case EQ:
670 case NE:
671 case GTU:
672 case GEU:
673 case LTU:
674 case LEU:
675 return code;
677 case GT:
678 return GTU;
679 case GE:
680 return GEU;
681 case LT:
682 return LTU;
683 case LE:
684 return LEU;
686 default:
687 gcc_unreachable ();
691 /* Similarly, return the signed version of a comparison. */
693 enum rtx_code
694 signed_condition (enum rtx_code code)
696 switch (code)
698 case EQ:
699 case NE:
700 case GT:
701 case GE:
702 case LT:
703 case LE:
704 return code;
706 case GTU:
707 return GT;
708 case GEU:
709 return GE;
710 case LTU:
711 return LT;
712 case LEU:
713 return LE;
715 default:
716 gcc_unreachable ();
720 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
721 truth of CODE1 implies the truth of CODE2. */
724 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
726 /* UNKNOWN comparison codes can happen as a result of trying to revert
727 comparison codes.
728 They can't match anything, so we have to reject them here. */
729 if (code1 == UNKNOWN || code2 == UNKNOWN)
730 return 0;
732 if (code1 == code2)
733 return 1;
735 switch (code1)
737 case UNEQ:
738 if (code2 == UNLE || code2 == UNGE)
739 return 1;
740 break;
742 case EQ:
743 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
744 || code2 == ORDERED)
745 return 1;
746 break;
748 case UNLT:
749 if (code2 == UNLE || code2 == NE)
750 return 1;
751 break;
753 case LT:
754 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
755 return 1;
756 break;
758 case UNGT:
759 if (code2 == UNGE || code2 == NE)
760 return 1;
761 break;
763 case GT:
764 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
765 return 1;
766 break;
768 case GE:
769 case LE:
770 if (code2 == ORDERED)
771 return 1;
772 break;
774 case LTGT:
775 if (code2 == NE || code2 == ORDERED)
776 return 1;
777 break;
779 case LTU:
780 if (code2 == LEU || code2 == NE)
781 return 1;
782 break;
784 case GTU:
785 if (code2 == GEU || code2 == NE)
786 return 1;
787 break;
789 case UNORDERED:
790 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
791 || code2 == UNGE || code2 == UNGT)
792 return 1;
793 break;
795 default:
796 break;
799 return 0;
802 /* Return 1 if INSN is an unconditional jump and nothing else. */
805 simplejump_p (const rtx_insn *insn)
807 return (JUMP_P (insn)
808 && GET_CODE (PATTERN (insn)) == SET
809 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
810 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
813 /* Return nonzero if INSN is a (possibly) conditional jump
814 and nothing more.
816 Use of this function is deprecated, since we need to support combined
817 branch and compare insns. Use any_condjump_p instead whenever possible. */
820 condjump_p (const rtx_insn *insn)
822 const_rtx x = PATTERN (insn);
824 if (GET_CODE (x) != SET
825 || GET_CODE (SET_DEST (x)) != PC)
826 return 0;
828 x = SET_SRC (x);
829 if (GET_CODE (x) == LABEL_REF)
830 return 1;
831 else
832 return (GET_CODE (x) == IF_THEN_ELSE
833 && ((GET_CODE (XEXP (x, 2)) == PC
834 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
835 || ANY_RETURN_P (XEXP (x, 1))))
836 || (GET_CODE (XEXP (x, 1)) == PC
837 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
838 || ANY_RETURN_P (XEXP (x, 2))))));
841 /* Return nonzero if INSN is a (possibly) conditional jump inside a
842 PARALLEL.
844 Use this function is deprecated, since we need to support combined
845 branch and compare insns. Use any_condjump_p instead whenever possible. */
848 condjump_in_parallel_p (const rtx_insn *insn)
850 const_rtx x = PATTERN (insn);
852 if (GET_CODE (x) != PARALLEL)
853 return 0;
854 else
855 x = XVECEXP (x, 0, 0);
857 if (GET_CODE (x) != SET)
858 return 0;
859 if (GET_CODE (SET_DEST (x)) != PC)
860 return 0;
861 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
862 return 1;
863 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
864 return 0;
865 if (XEXP (SET_SRC (x), 2) == pc_rtx
866 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
867 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
868 return 1;
869 if (XEXP (SET_SRC (x), 1) == pc_rtx
870 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
871 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
872 return 1;
873 return 0;
876 /* Return set of PC, otherwise NULL. */
879 pc_set (const rtx_insn *insn)
881 rtx pat;
882 if (!JUMP_P (insn))
883 return NULL_RTX;
884 pat = PATTERN (insn);
886 /* The set is allowed to appear either as the insn pattern or
887 the first set in a PARALLEL. */
888 if (GET_CODE (pat) == PARALLEL)
889 pat = XVECEXP (pat, 0, 0);
890 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
891 return pat;
893 return NULL_RTX;
896 /* Return true when insn is an unconditional direct jump,
897 possibly bundled inside a PARALLEL. */
900 any_uncondjump_p (const rtx_insn *insn)
902 const_rtx x = pc_set (insn);
903 if (!x)
904 return 0;
905 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
906 return 0;
907 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
908 return 0;
909 return 1;
912 /* Return true when insn is a conditional jump. This function works for
913 instructions containing PC sets in PARALLELs. The instruction may have
914 various other effects so before removing the jump you must verify
915 onlyjump_p.
917 Note that unlike condjump_p it returns false for unconditional jumps. */
920 any_condjump_p (const rtx_insn *insn)
922 const_rtx x = pc_set (insn);
923 enum rtx_code a, b;
925 if (!x)
926 return 0;
927 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
928 return 0;
930 a = GET_CODE (XEXP (SET_SRC (x), 1));
931 b = GET_CODE (XEXP (SET_SRC (x), 2));
933 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
934 || (a == PC
935 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
938 /* Return the label of a conditional jump. */
941 condjump_label (const rtx_insn *insn)
943 rtx x = pc_set (insn);
945 if (!x)
946 return NULL_RTX;
947 x = SET_SRC (x);
948 if (GET_CODE (x) == LABEL_REF)
949 return x;
950 if (GET_CODE (x) != IF_THEN_ELSE)
951 return NULL_RTX;
952 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
953 return XEXP (x, 1);
954 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
955 return XEXP (x, 2);
956 return NULL_RTX;
959 /* Return TRUE if INSN is a return jump. */
962 returnjump_p (const rtx_insn *insn)
964 if (JUMP_P (insn))
966 subrtx_iterator::array_type array;
967 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
969 const_rtx x = *iter;
970 switch (GET_CODE (x))
972 case RETURN:
973 case SIMPLE_RETURN:
974 case EH_RETURN:
975 return true;
977 case SET:
978 if (SET_IS_RETURN_P (x))
979 return true;
980 break;
982 default:
983 break;
987 return false;
990 /* Return true if INSN is a (possibly conditional) return insn. */
993 eh_returnjump_p (rtx_insn *insn)
995 if (JUMP_P (insn))
997 subrtx_iterator::array_type array;
998 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
999 if (GET_CODE (*iter) == EH_RETURN)
1000 return true;
1002 return false;
1005 /* Return true if INSN is a jump that only transfers control and
1006 nothing more. */
1009 onlyjump_p (const rtx_insn *insn)
1011 rtx set;
1013 if (!JUMP_P (insn))
1014 return 0;
1016 set = single_set (insn);
1017 if (set == NULL)
1018 return 0;
1019 if (GET_CODE (SET_DEST (set)) != PC)
1020 return 0;
1021 if (side_effects_p (SET_SRC (set)))
1022 return 0;
1024 return 1;
1027 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1028 NULL or a return. */
1029 bool
1030 jump_to_label_p (const rtx_insn *insn)
1032 return (JUMP_P (insn)
1033 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1036 /* Return nonzero if X is an RTX that only sets the condition codes
1037 and has no side effects. */
1040 only_sets_cc0_p (const_rtx x)
1042 if (! x)
1043 return 0;
1045 if (INSN_P (x))
1046 x = PATTERN (x);
1048 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1051 /* Return 1 if X is an RTX that does nothing but set the condition codes
1052 and CLOBBER or USE registers.
1053 Return -1 if X does explicitly set the condition codes,
1054 but also does other things. */
1057 sets_cc0_p (const_rtx x)
1059 if (! x)
1060 return 0;
1062 if (INSN_P (x))
1063 x = PATTERN (x);
1065 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1066 return 1;
1067 if (GET_CODE (x) == PARALLEL)
1069 int i;
1070 int sets_cc0 = 0;
1071 int other_things = 0;
1072 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1074 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1075 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1076 sets_cc0 = 1;
1077 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1078 other_things = 1;
1080 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1082 return 0;
1085 /* Find all CODE_LABELs referred to in X, and increment their use
1086 counts. If INSN is a JUMP_INSN and there is at least one
1087 CODE_LABEL referenced in INSN as a jump target, then store the last
1088 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1089 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1090 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1091 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1092 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1093 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1095 Note that two labels separated by a loop-beginning note
1096 must be kept distinct if we have not yet done loop-optimization,
1097 because the gap between them is where loop-optimize
1098 will want to move invariant code to. CROSS_JUMP tells us
1099 that loop-optimization is done with. */
1101 void
1102 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1104 rtx asmop = extract_asm_operands (x);
1105 if (asmop)
1106 mark_jump_label_asm (asmop, insn);
1107 else
1108 mark_jump_label_1 (x, insn, in_mem != 0,
1109 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1112 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1113 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1114 jump-target; when the JUMP_LABEL field of INSN should be set or a
1115 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1116 note. */
1118 static void
1119 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1121 RTX_CODE code = GET_CODE (x);
1122 int i;
1123 const char *fmt;
1125 switch (code)
1127 case PC:
1128 case CC0:
1129 case REG:
1130 case CLOBBER:
1131 case CALL:
1132 return;
1134 case RETURN:
1135 case SIMPLE_RETURN:
1136 if (is_target)
1138 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1139 JUMP_LABEL (insn) = x;
1141 return;
1143 case MEM:
1144 in_mem = true;
1145 break;
1147 case SEQUENCE:
1149 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1150 for (i = 0; i < seq->len (); i++)
1151 mark_jump_label (PATTERN (seq->insn (i)),
1152 seq->insn (i), 0);
1154 return;
1156 case SYMBOL_REF:
1157 if (!in_mem)
1158 return;
1160 /* If this is a constant-pool reference, see if it is a label. */
1161 if (CONSTANT_POOL_ADDRESS_P (x))
1162 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1163 break;
1165 /* Handle operands in the condition of an if-then-else as for a
1166 non-jump insn. */
1167 case IF_THEN_ELSE:
1168 if (!is_target)
1169 break;
1170 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1171 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1172 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1173 return;
1175 case LABEL_REF:
1177 rtx label = LABEL_REF_LABEL (x);
1179 /* Ignore remaining references to unreachable labels that
1180 have been deleted. */
1181 if (NOTE_P (label)
1182 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1183 break;
1185 gcc_assert (LABEL_P (label));
1187 /* Ignore references to labels of containing functions. */
1188 if (LABEL_REF_NONLOCAL_P (x))
1189 break;
1191 LABEL_REF_LABEL (x) = label;
1192 if (! insn || ! insn->deleted ())
1193 ++LABEL_NUSES (label);
1195 if (insn)
1197 if (is_target
1198 /* Do not change a previous setting of JUMP_LABEL. If the
1199 JUMP_LABEL slot is occupied by a different label,
1200 create a note for this label. */
1201 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1202 JUMP_LABEL (insn) = label;
1203 else
1205 enum reg_note kind
1206 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1208 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1209 for LABEL unless there already is one. All uses of
1210 a label, except for the primary target of a jump,
1211 must have such a note. */
1212 if (! find_reg_note (insn, kind, label))
1213 add_reg_note (insn, kind, label);
1216 return;
1219 /* Do walk the labels in a vector, but not the first operand of an
1220 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1221 case ADDR_VEC:
1222 case ADDR_DIFF_VEC:
1223 if (! insn->deleted ())
1225 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1227 for (i = 0; i < XVECLEN (x, eltnum); i++)
1228 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1229 is_target);
1231 return;
1233 default:
1234 break;
1237 fmt = GET_RTX_FORMAT (code);
1239 /* The primary target of a tablejump is the label of the ADDR_VEC,
1240 which is canonically mentioned *last* in the insn. To get it
1241 marked as JUMP_LABEL, we iterate over items in reverse order. */
1242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1244 if (fmt[i] == 'e')
1245 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1246 else if (fmt[i] == 'E')
1248 int j;
1250 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1251 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1252 is_target);
1257 /* Worker function for mark_jump_label. Handle asm insns specially.
1258 In particular, output operands need not be considered so we can
1259 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1260 need to be considered targets. */
1262 static void
1263 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1265 int i;
1267 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1268 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1270 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1271 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1274 /* Delete insn INSN from the chain of insns and update label ref counts
1275 and delete insns now unreachable.
1277 Returns the first insn after INSN that was not deleted.
1279 Usage of this instruction is deprecated. Use delete_insn instead and
1280 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1282 rtx_insn *
1283 delete_related_insns (rtx uncast_insn)
1285 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1286 int was_code_label = (LABEL_P (insn));
1287 rtx note;
1288 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1290 while (next && next->deleted ())
1291 next = NEXT_INSN (next);
1293 /* This insn is already deleted => return first following nondeleted. */
1294 if (insn->deleted ())
1295 return next;
1297 delete_insn (insn);
1299 /* If instruction is followed by a barrier,
1300 delete the barrier too. */
1302 if (next != 0 && BARRIER_P (next))
1303 delete_insn (next);
1305 /* If this is a call, then we have to remove the var tracking note
1306 for the call arguments. */
1308 if (CALL_P (insn)
1309 || (NONJUMP_INSN_P (insn)
1310 && GET_CODE (PATTERN (insn)) == SEQUENCE
1311 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1313 rtx_insn *p;
1315 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1316 p && NOTE_P (p);
1317 p = NEXT_INSN (p))
1318 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1320 remove_insn (p);
1321 break;
1325 /* If deleting a jump, decrement the count of the label,
1326 and delete the label if it is now unused. */
1328 if (jump_to_label_p (insn))
1330 rtx lab = JUMP_LABEL (insn);
1331 rtx_jump_table_data *lab_next;
1333 if (LABEL_NUSES (lab) == 0)
1334 /* This can delete NEXT or PREV,
1335 either directly if NEXT is JUMP_LABEL (INSN),
1336 or indirectly through more levels of jumps. */
1337 delete_related_insns (lab);
1338 else if (tablejump_p (insn, NULL, &lab_next))
1340 /* If we're deleting the tablejump, delete the dispatch table.
1341 We may not be able to kill the label immediately preceding
1342 just yet, as it might be referenced in code leading up to
1343 the tablejump. */
1344 delete_related_insns (lab_next);
1348 /* Likewise if we're deleting a dispatch table. */
1350 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1352 rtvec labels = table->get_labels ();
1353 int i;
1354 int len = GET_NUM_ELEM (labels);
1356 for (i = 0; i < len; i++)
1357 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1358 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1359 while (next && next->deleted ())
1360 next = NEXT_INSN (next);
1361 return next;
1364 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1365 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1366 if (INSN_P (insn))
1367 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1368 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1369 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1370 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1371 && LABEL_P (XEXP (note, 0)))
1372 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1373 delete_related_insns (XEXP (note, 0));
1375 while (prev && (prev->deleted () || NOTE_P (prev)))
1376 prev = PREV_INSN (prev);
1378 /* If INSN was a label and a dispatch table follows it,
1379 delete the dispatch table. The tablejump must have gone already.
1380 It isn't useful to fall through into a table. */
1382 if (was_code_label
1383 && NEXT_INSN (insn) != 0
1384 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1385 next = delete_related_insns (NEXT_INSN (insn));
1387 /* If INSN was a label, delete insns following it if now unreachable. */
1389 if (was_code_label && prev && BARRIER_P (prev))
1391 enum rtx_code code;
1392 while (next)
1394 code = GET_CODE (next);
1395 if (code == NOTE)
1396 next = NEXT_INSN (next);
1397 /* Keep going past other deleted labels to delete what follows. */
1398 else if (code == CODE_LABEL && next->deleted ())
1399 next = NEXT_INSN (next);
1400 /* Keep the (use (insn))s created by dbr_schedule, which needs
1401 them in order to track liveness relative to a previous
1402 barrier. */
1403 else if (INSN_P (next)
1404 && GET_CODE (PATTERN (next)) == USE
1405 && INSN_P (XEXP (PATTERN (next), 0)))
1406 next = NEXT_INSN (next);
1407 else if (code == BARRIER || INSN_P (next))
1408 /* Note: if this deletes a jump, it can cause more
1409 deletion of unreachable code, after a different label.
1410 As long as the value from this recursive call is correct,
1411 this invocation functions correctly. */
1412 next = delete_related_insns (next);
1413 else
1414 break;
1418 /* I feel a little doubtful about this loop,
1419 but I see no clean and sure alternative way
1420 to find the first insn after INSN that is not now deleted.
1421 I hope this works. */
1422 while (next && next->deleted ())
1423 next = NEXT_INSN (next);
1424 return next;
1427 /* Delete a range of insns from FROM to TO, inclusive.
1428 This is for the sake of peephole optimization, so assume
1429 that whatever these insns do will still be done by a new
1430 peephole insn that will replace them. */
1432 void
1433 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1435 rtx_insn *insn = from;
1437 while (1)
1439 rtx_insn *next = NEXT_INSN (insn);
1440 rtx_insn *prev = PREV_INSN (insn);
1442 if (!NOTE_P (insn))
1444 insn->set_deleted();
1446 /* Patch this insn out of the chain. */
1447 /* We don't do this all at once, because we
1448 must preserve all NOTEs. */
1449 if (prev)
1450 SET_NEXT_INSN (prev) = next;
1452 if (next)
1453 SET_PREV_INSN (next) = prev;
1456 if (insn == to)
1457 break;
1458 insn = next;
1461 /* Note that if TO is an unconditional jump
1462 we *do not* delete the BARRIER that follows,
1463 since the peephole that replaces this sequence
1464 is also an unconditional jump in that case. */
1467 /* A helper function for redirect_exp_1; examines its input X and returns
1468 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1469 static rtx
1470 redirect_target (rtx x)
1472 if (x == NULL_RTX)
1473 return ret_rtx;
1474 if (!ANY_RETURN_P (x))
1475 return gen_rtx_LABEL_REF (Pmode, x);
1476 return x;
1479 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1480 NLABEL as a return. Accrue modifications into the change group. */
1482 static void
1483 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1485 rtx x = *loc;
1486 RTX_CODE code = GET_CODE (x);
1487 int i;
1488 const char *fmt;
1490 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1491 || x == olabel)
1493 x = redirect_target (nlabel);
1494 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1495 x = gen_rtx_SET (pc_rtx, x);
1496 validate_change (insn, loc, x, 1);
1497 return;
1500 if (code == SET && SET_DEST (x) == pc_rtx
1501 && ANY_RETURN_P (nlabel)
1502 && GET_CODE (SET_SRC (x)) == LABEL_REF
1503 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1505 validate_change (insn, loc, nlabel, 1);
1506 return;
1509 if (code == IF_THEN_ELSE)
1511 /* Skip the condition of an IF_THEN_ELSE. We only want to
1512 change jump destinations, not eventual label comparisons. */
1513 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1514 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1515 return;
1518 fmt = GET_RTX_FORMAT (code);
1519 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1521 if (fmt[i] == 'e')
1522 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1523 else if (fmt[i] == 'E')
1525 int j;
1526 for (j = 0; j < XVECLEN (x, i); j++)
1527 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1532 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1533 the modifications into the change group. Return false if we did
1534 not see how to do that. */
1537 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1539 int ochanges = num_validated_changes ();
1540 rtx *loc, asmop;
1542 gcc_assert (nlabel != NULL_RTX);
1543 asmop = extract_asm_operands (PATTERN (jump));
1544 if (asmop)
1546 if (nlabel == NULL)
1547 return 0;
1548 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1549 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1551 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1552 loc = &XVECEXP (PATTERN (jump), 0, 0);
1553 else
1554 loc = &PATTERN (jump);
1556 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1557 return num_validated_changes () > ochanges;
1560 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1561 jump target label is unused as a result, it and the code following
1562 it may be deleted.
1564 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1565 in that case we are to turn the jump into a (possibly conditional)
1566 return insn.
1568 The return value will be 1 if the change was made, 0 if it wasn't
1569 (this can only occur when trying to produce return insns). */
1572 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1574 rtx olabel = jump->jump_label ();
1576 if (!nlabel)
1578 /* If there is no label, we are asked to redirect to the EXIT block.
1579 When before the epilogue is emitted, return/simple_return cannot be
1580 created so we return 0 immediately. After the epilogue is emitted,
1581 we always expect a label, either a non-null label, or a
1582 return/simple_return RTX. */
1584 if (!epilogue_completed)
1585 return 0;
1586 gcc_unreachable ();
1589 if (nlabel == olabel)
1590 return 1;
1592 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1593 return 0;
1595 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1596 return 1;
1599 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1600 NLABEL in JUMP.
1601 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1602 count has dropped to zero. */
1603 void
1604 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1605 int invert)
1607 rtx note;
1609 gcc_assert (JUMP_LABEL (jump) == olabel);
1611 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1612 moving FUNCTION_END note. Just sanity check that no user still worry
1613 about this. */
1614 gcc_assert (delete_unused >= 0);
1615 JUMP_LABEL (jump) = nlabel;
1616 if (!ANY_RETURN_P (nlabel))
1617 ++LABEL_NUSES (nlabel);
1619 /* Update labels in any REG_EQUAL note. */
1620 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1622 if (ANY_RETURN_P (nlabel)
1623 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1624 remove_note (jump, note);
1625 else
1627 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1628 confirm_change_group ();
1632 /* Handle the case where we had a conditional crossing jump to a return
1633 label and are now changing it into a direct conditional return.
1634 The jump is no longer crossing in that case. */
1635 if (ANY_RETURN_P (nlabel))
1636 CROSSING_JUMP_P (jump) = 0;
1638 if (!ANY_RETURN_P (olabel)
1639 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1640 /* Undefined labels will remain outside the insn stream. */
1641 && INSN_UID (olabel))
1642 delete_related_insns (olabel);
1643 if (invert)
1644 invert_br_probabilities (jump);
1647 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1648 modifications into the change group. Return nonzero for success. */
1649 static int
1650 invert_exp_1 (rtx x, rtx insn)
1652 RTX_CODE code = GET_CODE (x);
1654 if (code == IF_THEN_ELSE)
1656 rtx comp = XEXP (x, 0);
1657 rtx tem;
1658 enum rtx_code reversed_code;
1660 /* We can do this in two ways: The preferable way, which can only
1661 be done if this is not an integer comparison, is to reverse
1662 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1663 of the IF_THEN_ELSE. If we can't do either, fail. */
1665 reversed_code = reversed_comparison_code (comp, insn);
1667 if (reversed_code != UNKNOWN)
1669 validate_change (insn, &XEXP (x, 0),
1670 gen_rtx_fmt_ee (reversed_code,
1671 GET_MODE (comp), XEXP (comp, 0),
1672 XEXP (comp, 1)),
1674 return 1;
1677 tem = XEXP (x, 1);
1678 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1679 validate_change (insn, &XEXP (x, 2), tem, 1);
1680 return 1;
1682 else
1683 return 0;
1686 /* Invert the condition of the jump JUMP, and make it jump to label
1687 NLABEL instead of where it jumps now. Accrue changes into the
1688 change group. Return false if we didn't see how to perform the
1689 inversion and redirection. */
1692 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1694 rtx x = pc_set (jump);
1695 int ochanges;
1696 int ok;
1698 ochanges = num_validated_changes ();
1699 if (x == NULL)
1700 return 0;
1701 ok = invert_exp_1 (SET_SRC (x), jump);
1702 gcc_assert (ok);
1704 if (num_validated_changes () == ochanges)
1705 return 0;
1707 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1708 in Pmode, so checking this is not merely an optimization. */
1709 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1712 /* Invert the condition of the jump JUMP, and make it jump to label
1713 NLABEL instead of where it jumps now. Return true if successful. */
1716 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1718 rtx olabel = JUMP_LABEL (jump);
1720 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1722 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1723 return 1;
1725 cancel_changes (0);
1726 return 0;
1730 /* Like rtx_equal_p except that it considers two REGs as equal
1731 if they renumber to the same value and considers two commutative
1732 operations to be the same if the order of the operands has been
1733 reversed. */
1736 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1738 int i;
1739 const enum rtx_code code = GET_CODE (x);
1740 const char *fmt;
1742 if (x == y)
1743 return 1;
1745 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1746 && (REG_P (y) || (GET_CODE (y) == SUBREG
1747 && REG_P (SUBREG_REG (y)))))
1749 int reg_x = -1, reg_y = -1;
1750 int byte_x = 0, byte_y = 0;
1751 struct subreg_info info;
1753 if (GET_MODE (x) != GET_MODE (y))
1754 return 0;
1756 /* If we haven't done any renumbering, don't
1757 make any assumptions. */
1758 if (reg_renumber == 0)
1759 return rtx_equal_p (x, y);
1761 if (code == SUBREG)
1763 reg_x = REGNO (SUBREG_REG (x));
1764 byte_x = SUBREG_BYTE (x);
1766 if (reg_renumber[reg_x] >= 0)
1768 subreg_get_info (reg_renumber[reg_x],
1769 GET_MODE (SUBREG_REG (x)), byte_x,
1770 GET_MODE (x), &info);
1771 if (!info.representable_p)
1772 return 0;
1773 reg_x = info.offset;
1774 byte_x = 0;
1777 else
1779 reg_x = REGNO (x);
1780 if (reg_renumber[reg_x] >= 0)
1781 reg_x = reg_renumber[reg_x];
1784 if (GET_CODE (y) == SUBREG)
1786 reg_y = REGNO (SUBREG_REG (y));
1787 byte_y = SUBREG_BYTE (y);
1789 if (reg_renumber[reg_y] >= 0)
1791 subreg_get_info (reg_renumber[reg_y],
1792 GET_MODE (SUBREG_REG (y)), byte_y,
1793 GET_MODE (y), &info);
1794 if (!info.representable_p)
1795 return 0;
1796 reg_y = info.offset;
1797 byte_y = 0;
1800 else
1802 reg_y = REGNO (y);
1803 if (reg_renumber[reg_y] >= 0)
1804 reg_y = reg_renumber[reg_y];
1807 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1810 /* Now we have disposed of all the cases
1811 in which different rtx codes can match. */
1812 if (code != GET_CODE (y))
1813 return 0;
1815 switch (code)
1817 case PC:
1818 case CC0:
1819 case ADDR_VEC:
1820 case ADDR_DIFF_VEC:
1821 CASE_CONST_UNIQUE:
1822 return 0;
1824 case LABEL_REF:
1825 /* We can't assume nonlocal labels have their following insns yet. */
1826 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1827 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1829 /* Two label-refs are equivalent if they point at labels
1830 in the same position in the instruction stream. */
1831 return (next_real_insn (LABEL_REF_LABEL (x))
1832 == next_real_insn (LABEL_REF_LABEL (y)));
1834 case SYMBOL_REF:
1835 return XSTR (x, 0) == XSTR (y, 0);
1837 case CODE_LABEL:
1838 /* If we didn't match EQ equality above, they aren't the same. */
1839 return 0;
1841 default:
1842 break;
1845 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1847 if (GET_MODE (x) != GET_MODE (y))
1848 return 0;
1850 /* MEMs referring to different address space are not equivalent. */
1851 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1852 return 0;
1854 /* For commutative operations, the RTX match if the operand match in any
1855 order. Also handle the simple binary and unary cases without a loop. */
1856 if (targetm.commutative_p (x, UNKNOWN))
1857 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1858 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1859 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1860 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1861 else if (NON_COMMUTATIVE_P (x))
1862 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1863 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1864 else if (UNARY_P (x))
1865 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1867 /* Compare the elements. If any pair of corresponding elements
1868 fail to match, return 0 for the whole things. */
1870 fmt = GET_RTX_FORMAT (code);
1871 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1873 int j;
1874 switch (fmt[i])
1876 case 'w':
1877 if (XWINT (x, i) != XWINT (y, i))
1878 return 0;
1879 break;
1881 case 'i':
1882 if (XINT (x, i) != XINT (y, i))
1884 if (((code == ASM_OPERANDS && i == 6)
1885 || (code == ASM_INPUT && i == 1)))
1886 break;
1887 return 0;
1889 break;
1891 case 't':
1892 if (XTREE (x, i) != XTREE (y, i))
1893 return 0;
1894 break;
1896 case 's':
1897 if (strcmp (XSTR (x, i), XSTR (y, i)))
1898 return 0;
1899 break;
1901 case 'e':
1902 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1903 return 0;
1904 break;
1906 case 'u':
1907 if (XEXP (x, i) != XEXP (y, i))
1908 return 0;
1909 /* Fall through. */
1910 case '0':
1911 break;
1913 case 'E':
1914 if (XVECLEN (x, i) != XVECLEN (y, i))
1915 return 0;
1916 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1917 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1918 return 0;
1919 break;
1921 default:
1922 gcc_unreachable ();
1925 return 1;
1928 /* If X is a hard register or equivalent to one or a subregister of one,
1929 return the hard register number. If X is a pseudo register that was not
1930 assigned a hard register, return the pseudo register number. Otherwise,
1931 return -1. Any rtx is valid for X. */
1934 true_regnum (const_rtx x)
1936 if (REG_P (x))
1938 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1939 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1940 return reg_renumber[REGNO (x)];
1941 return REGNO (x);
1943 if (GET_CODE (x) == SUBREG)
1945 int base = true_regnum (SUBREG_REG (x));
1946 if (base >= 0
1947 && base < FIRST_PSEUDO_REGISTER)
1949 struct subreg_info info;
1951 subreg_get_info (lra_in_progress
1952 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1953 GET_MODE (SUBREG_REG (x)),
1954 SUBREG_BYTE (x), GET_MODE (x), &info);
1956 if (info.representable_p)
1957 return base + info.offset;
1960 return -1;
1963 /* Return regno of the register REG and handle subregs too. */
1964 unsigned int
1965 reg_or_subregno (const_rtx reg)
1967 if (GET_CODE (reg) == SUBREG)
1968 reg = SUBREG_REG (reg);
1969 gcc_assert (REG_P (reg));
1970 return REGNO (reg);