2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / haifa-sched.c
blobfc7e0a1672a30277b03522659eb7d023baef0127
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "input.h"
135 #include "function.h"
136 #include "flags.h"
137 #include "insn-config.h"
138 #include "insn-attr.h"
139 #include "except.h"
140 #include "recog.h"
141 #include "dominance.h"
142 #include "cfg.h"
143 #include "cfgrtl.h"
144 #include "cfgbuild.h"
145 #include "predict.h"
146 #include "basic-block.h"
147 #include "sched-int.h"
148 #include "target.h"
149 #include "common/common-target.h"
150 #include "params.h"
151 #include "dbgcnt.h"
152 #include "cfgloop.h"
153 #include "ira.h"
154 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
155 #include "dumpfile.h"
157 #ifdef INSN_SCHEDULING
159 /* True if we do register pressure relief through live-range
160 shrinkage. */
161 static bool live_range_shrinkage_p;
163 /* Switch on live range shrinkage. */
164 void
165 initialize_live_range_shrinkage (void)
167 live_range_shrinkage_p = true;
170 /* Switch off live range shrinkage. */
171 void
172 finish_live_range_shrinkage (void)
174 live_range_shrinkage_p = false;
177 /* issue_rate is the number of insns that can be scheduled in the same
178 machine cycle. It can be defined in the config/mach/mach.h file,
179 otherwise we set it to 1. */
181 int issue_rate;
183 /* This can be set to true by a backend if the scheduler should not
184 enable a DCE pass. */
185 bool sched_no_dce;
187 /* The current initiation interval used when modulo scheduling. */
188 static int modulo_ii;
190 /* The maximum number of stages we are prepared to handle. */
191 static int modulo_max_stages;
193 /* The number of insns that exist in each iteration of the loop. We use this
194 to detect when we've scheduled all insns from the first iteration. */
195 static int modulo_n_insns;
197 /* The current count of insns in the first iteration of the loop that have
198 already been scheduled. */
199 static int modulo_insns_scheduled;
201 /* The maximum uid of insns from the first iteration of the loop. */
202 static int modulo_iter0_max_uid;
204 /* The number of times we should attempt to backtrack when modulo scheduling.
205 Decreased each time we have to backtrack. */
206 static int modulo_backtracks_left;
208 /* The stage in which the last insn from the original loop was
209 scheduled. */
210 static int modulo_last_stage;
212 /* sched-verbose controls the amount of debugging output the
213 scheduler prints. It is controlled by -fsched-verbose=N:
214 N>0 and no -DSR : the output is directed to stderr.
215 N>=10 will direct the printouts to stderr (regardless of -dSR).
216 N=1: same as -dSR.
217 N=2: bb's probabilities, detailed ready list info, unit/insn info.
218 N=3: rtl at abort point, control-flow, regions info.
219 N=5: dependences info. */
221 int sched_verbose = 0;
223 /* Debugging file. All printouts are sent to dump, which is always set,
224 either to stderr, or to the dump listing file (-dRS). */
225 FILE *sched_dump = 0;
227 /* This is a placeholder for the scheduler parameters common
228 to all schedulers. */
229 struct common_sched_info_def *common_sched_info;
231 #define INSN_TICK(INSN) (HID (INSN)->tick)
232 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
233 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
234 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
235 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
236 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
237 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
238 /* Cached cost of the instruction. Use insn_cost to get cost of the
239 insn. -1 here means that the field is not initialized. */
240 #define INSN_COST(INSN) (HID (INSN)->cost)
242 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
243 then it should be recalculated from scratch. */
244 #define INVALID_TICK (-(max_insn_queue_index + 1))
245 /* The minimal value of the INSN_TICK of an instruction. */
246 #define MIN_TICK (-max_insn_queue_index)
248 /* Original order of insns in the ready list.
249 Used to keep order of normal insns while separating DEBUG_INSNs. */
250 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
252 /* The deciding reason for INSN's place in the ready list. */
253 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
255 /* List of important notes we must keep around. This is a pointer to the
256 last element in the list. */
257 rtx_insn *note_list;
259 static struct spec_info_def spec_info_var;
260 /* Description of the speculative part of the scheduling.
261 If NULL - no speculation. */
262 spec_info_t spec_info = NULL;
264 /* True, if recovery block was added during scheduling of current block.
265 Used to determine, if we need to fix INSN_TICKs. */
266 static bool haifa_recovery_bb_recently_added_p;
268 /* True, if recovery block was added during this scheduling pass.
269 Used to determine if we should have empty memory pools of dependencies
270 after finishing current region. */
271 bool haifa_recovery_bb_ever_added_p;
273 /* Counters of different types of speculative instructions. */
274 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
276 /* Array used in {unlink, restore}_bb_notes. */
277 static rtx_insn **bb_header = 0;
279 /* Basic block after which recovery blocks will be created. */
280 static basic_block before_recovery;
282 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
283 created it. */
284 basic_block after_recovery;
286 /* FALSE if we add bb to another region, so we don't need to initialize it. */
287 bool adding_bb_to_current_region_p = true;
289 /* Queues, etc. */
291 /* An instruction is ready to be scheduled when all insns preceding it
292 have already been scheduled. It is important to ensure that all
293 insns which use its result will not be executed until its result
294 has been computed. An insn is maintained in one of four structures:
296 (P) the "Pending" set of insns which cannot be scheduled until
297 their dependencies have been satisfied.
298 (Q) the "Queued" set of insns that can be scheduled when sufficient
299 time has passed.
300 (R) the "Ready" list of unscheduled, uncommitted insns.
301 (S) the "Scheduled" list of insns.
303 Initially, all insns are either "Pending" or "Ready" depending on
304 whether their dependencies are satisfied.
306 Insns move from the "Ready" list to the "Scheduled" list as they
307 are committed to the schedule. As this occurs, the insns in the
308 "Pending" list have their dependencies satisfied and move to either
309 the "Ready" list or the "Queued" set depending on whether
310 sufficient time has passed to make them ready. As time passes,
311 insns move from the "Queued" set to the "Ready" list.
313 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
314 unscheduled insns, i.e., those that are ready, queued, and pending.
315 The "Queued" set (Q) is implemented by the variable `insn_queue'.
316 The "Ready" list (R) is implemented by the variables `ready' and
317 `n_ready'.
318 The "Scheduled" list (S) is the new insn chain built by this pass.
320 The transition (R->S) is implemented in the scheduling loop in
321 `schedule_block' when the best insn to schedule is chosen.
322 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
323 insns move from the ready list to the scheduled list.
324 The transition (Q->R) is implemented in 'queue_to_insn' as time
325 passes or stalls are introduced. */
327 /* Implement a circular buffer to delay instructions until sufficient
328 time has passed. For the new pipeline description interface,
329 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
330 than maximal time of instruction execution computed by genattr.c on
331 the base maximal time of functional unit reservations and getting a
332 result. This is the longest time an insn may be queued. */
334 static rtx_insn_list **insn_queue;
335 static int q_ptr = 0;
336 static int q_size = 0;
337 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
338 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
340 #define QUEUE_SCHEDULED (-3)
341 #define QUEUE_NOWHERE (-2)
342 #define QUEUE_READY (-1)
343 /* QUEUE_SCHEDULED - INSN is scheduled.
344 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
345 queue or ready list.
346 QUEUE_READY - INSN is in ready list.
347 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
349 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
351 /* The following variable value refers for all current and future
352 reservations of the processor units. */
353 state_t curr_state;
355 /* The following variable value is size of memory representing all
356 current and future reservations of the processor units. */
357 size_t dfa_state_size;
359 /* The following array is used to find the best insn from ready when
360 the automaton pipeline interface is used. */
361 signed char *ready_try = NULL;
363 /* The ready list. */
364 struct ready_list ready = {NULL, 0, 0, 0, 0};
366 /* The pointer to the ready list (to be removed). */
367 static struct ready_list *readyp = &ready;
369 /* Scheduling clock. */
370 static int clock_var;
372 /* Clock at which the previous instruction was issued. */
373 static int last_clock_var;
375 /* Set to true if, when queuing a shadow insn, we discover that it would be
376 scheduled too late. */
377 static bool must_backtrack;
379 /* The following variable value is number of essential insns issued on
380 the current cycle. An insn is essential one if it changes the
381 processors state. */
382 int cycle_issued_insns;
384 /* This records the actual schedule. It is built up during the main phase
385 of schedule_block, and afterwards used to reorder the insns in the RTL. */
386 static vec<rtx_insn *> scheduled_insns;
388 static int may_trap_exp (const_rtx, int);
390 /* Nonzero iff the address is comprised from at most 1 register. */
391 #define CONST_BASED_ADDRESS_P(x) \
392 (REG_P (x) \
393 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
394 || (GET_CODE (x) == LO_SUM)) \
395 && (CONSTANT_P (XEXP (x, 0)) \
396 || CONSTANT_P (XEXP (x, 1)))))
398 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
399 as found by analyzing insn's expression. */
402 static int haifa_luid_for_non_insn (rtx x);
404 /* Haifa version of sched_info hooks common to all headers. */
405 const struct common_sched_info_def haifa_common_sched_info =
407 NULL, /* fix_recovery_cfg */
408 NULL, /* add_block */
409 NULL, /* estimate_number_of_insns */
410 haifa_luid_for_non_insn, /* luid_for_non_insn */
411 SCHED_PASS_UNKNOWN /* sched_pass_id */
414 /* Mapping from instruction UID to its Logical UID. */
415 vec<int> sched_luids = vNULL;
417 /* Next LUID to assign to an instruction. */
418 int sched_max_luid = 1;
420 /* Haifa Instruction Data. */
421 vec<haifa_insn_data_def> h_i_d = vNULL;
423 void (* sched_init_only_bb) (basic_block, basic_block);
425 /* Split block function. Different schedulers might use different functions
426 to handle their internal data consistent. */
427 basic_block (* sched_split_block) (basic_block, rtx);
429 /* Create empty basic block after the specified block. */
430 basic_block (* sched_create_empty_bb) (basic_block);
432 /* Return the number of cycles until INSN is expected to be ready.
433 Return zero if it already is. */
434 static int
435 insn_delay (rtx_insn *insn)
437 return MAX (INSN_TICK (insn) - clock_var, 0);
440 static int
441 may_trap_exp (const_rtx x, int is_store)
443 enum rtx_code code;
445 if (x == 0)
446 return TRAP_FREE;
447 code = GET_CODE (x);
448 if (is_store)
450 if (code == MEM && may_trap_p (x))
451 return TRAP_RISKY;
452 else
453 return TRAP_FREE;
455 if (code == MEM)
457 /* The insn uses memory: a volatile load. */
458 if (MEM_VOLATILE_P (x))
459 return IRISKY;
460 /* An exception-free load. */
461 if (!may_trap_p (x))
462 return IFREE;
463 /* A load with 1 base register, to be further checked. */
464 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
465 return PFREE_CANDIDATE;
466 /* No info on the load, to be further checked. */
467 return PRISKY_CANDIDATE;
469 else
471 const char *fmt;
472 int i, insn_class = TRAP_FREE;
474 /* Neither store nor load, check if it may cause a trap. */
475 if (may_trap_p (x))
476 return TRAP_RISKY;
477 /* Recursive step: walk the insn... */
478 fmt = GET_RTX_FORMAT (code);
479 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
481 if (fmt[i] == 'e')
483 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
484 insn_class = WORST_CLASS (insn_class, tmp_class);
486 else if (fmt[i] == 'E')
488 int j;
489 for (j = 0; j < XVECLEN (x, i); j++)
491 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
492 insn_class = WORST_CLASS (insn_class, tmp_class);
493 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
494 break;
497 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
498 break;
500 return insn_class;
504 /* Classifies rtx X of an insn for the purpose of verifying that X can be
505 executed speculatively (and consequently the insn can be moved
506 speculatively), by examining X, returning:
507 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
508 TRAP_FREE: non-load insn.
509 IFREE: load from a globally safe location.
510 IRISKY: volatile load.
511 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
512 being either PFREE or PRISKY. */
514 static int
515 haifa_classify_rtx (const_rtx x)
517 int tmp_class = TRAP_FREE;
518 int insn_class = TRAP_FREE;
519 enum rtx_code code;
521 if (GET_CODE (x) == PARALLEL)
523 int i, len = XVECLEN (x, 0);
525 for (i = len - 1; i >= 0; i--)
527 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
528 insn_class = WORST_CLASS (insn_class, tmp_class);
529 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
530 break;
533 else
535 code = GET_CODE (x);
536 switch (code)
538 case CLOBBER:
539 /* Test if it is a 'store'. */
540 tmp_class = may_trap_exp (XEXP (x, 0), 1);
541 break;
542 case SET:
543 /* Test if it is a store. */
544 tmp_class = may_trap_exp (SET_DEST (x), 1);
545 if (tmp_class == TRAP_RISKY)
546 break;
547 /* Test if it is a load. */
548 tmp_class =
549 WORST_CLASS (tmp_class,
550 may_trap_exp (SET_SRC (x), 0));
551 break;
552 case COND_EXEC:
553 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
554 if (tmp_class == TRAP_RISKY)
555 break;
556 tmp_class = WORST_CLASS (tmp_class,
557 may_trap_exp (COND_EXEC_TEST (x), 0));
558 break;
559 case TRAP_IF:
560 tmp_class = TRAP_RISKY;
561 break;
562 default:;
564 insn_class = tmp_class;
567 return insn_class;
571 haifa_classify_insn (const_rtx insn)
573 return haifa_classify_rtx (PATTERN (insn));
576 /* After the scheduler initialization function has been called, this function
577 can be called to enable modulo scheduling. II is the initiation interval
578 we should use, it affects the delays for delay_pairs that were recorded as
579 separated by a given number of stages.
581 MAX_STAGES provides us with a limit
582 after which we give up scheduling; the caller must have unrolled at least
583 as many copies of the loop body and recorded delay_pairs for them.
585 INSNS is the number of real (non-debug) insns in one iteration of
586 the loop. MAX_UID can be used to test whether an insn belongs to
587 the first iteration of the loop; all of them have a uid lower than
588 MAX_UID. */
589 void
590 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
592 modulo_ii = ii;
593 modulo_max_stages = max_stages;
594 modulo_n_insns = insns;
595 modulo_iter0_max_uid = max_uid;
596 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
599 /* A structure to record a pair of insns where the first one is a real
600 insn that has delay slots, and the second is its delayed shadow.
601 I1 is scheduled normally and will emit an assembly instruction,
602 while I2 describes the side effect that takes place at the
603 transition between cycles CYCLES and (CYCLES + 1) after I1. */
604 struct delay_pair
606 struct delay_pair *next_same_i1;
607 rtx_insn *i1, *i2;
608 int cycles;
609 /* When doing modulo scheduling, we a delay_pair can also be used to
610 show that I1 and I2 are the same insn in a different stage. If that
611 is the case, STAGES will be nonzero. */
612 int stages;
615 /* Helpers for delay hashing. */
617 struct delay_i1_hasher : typed_noop_remove <delay_pair>
619 typedef delay_pair *value_type;
620 typedef void *compare_type;
621 static inline hashval_t hash (const delay_pair *);
622 static inline bool equal (const delay_pair *, const void *);
625 /* Returns a hash value for X, based on hashing just I1. */
627 inline hashval_t
628 delay_i1_hasher::hash (const delay_pair *x)
630 return htab_hash_pointer (x->i1);
633 /* Return true if I1 of pair X is the same as that of pair Y. */
635 inline bool
636 delay_i1_hasher::equal (const delay_pair *x, const void *y)
638 return x->i1 == y;
641 struct delay_i2_hasher : typed_free_remove <delay_pair>
643 typedef delay_pair *value_type;
644 typedef void *compare_type;
645 static inline hashval_t hash (const delay_pair *);
646 static inline bool equal (const delay_pair *, const void *);
649 /* Returns a hash value for X, based on hashing just I2. */
651 inline hashval_t
652 delay_i2_hasher::hash (const delay_pair *x)
654 return htab_hash_pointer (x->i2);
657 /* Return true if I2 of pair X is the same as that of pair Y. */
659 inline bool
660 delay_i2_hasher::equal (const delay_pair *x, const void *y)
662 return x->i2 == y;
665 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
666 indexed by I2. */
667 static hash_table<delay_i1_hasher> *delay_htab;
668 static hash_table<delay_i2_hasher> *delay_htab_i2;
670 /* Called through htab_traverse. Walk the hashtable using I2 as
671 index, and delete all elements involving an UID higher than
672 that pointed to by *DATA. */
674 haifa_htab_i2_traverse (delay_pair **slot, int *data)
676 int maxuid = *data;
677 struct delay_pair *p = *slot;
678 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
680 delay_htab_i2->clear_slot (slot);
682 return 1;
685 /* Called through htab_traverse. Walk the hashtable using I2 as
686 index, and delete all elements involving an UID higher than
687 that pointed to by *DATA. */
689 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
691 int maxuid = *data;
692 struct delay_pair *p, *first, **pprev;
694 if (INSN_UID ((*pslot)->i1) >= maxuid)
696 delay_htab->clear_slot (pslot);
697 return 1;
699 pprev = &first;
700 for (p = *pslot; p; p = p->next_same_i1)
702 if (INSN_UID (p->i2) < maxuid)
704 *pprev = p;
705 pprev = &p->next_same_i1;
708 *pprev = NULL;
709 if (first == NULL)
710 delay_htab->clear_slot (pslot);
711 else
712 *pslot = first;
713 return 1;
716 /* Discard all delay pairs which involve an insn with an UID higher
717 than MAX_UID. */
718 void
719 discard_delay_pairs_above (int max_uid)
721 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
722 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
725 /* This function can be called by a port just before it starts the final
726 scheduling pass. It records the fact that an instruction with delay
727 slots has been split into two insns, I1 and I2. The first one will be
728 scheduled normally and initiates the operation. The second one is a
729 shadow which must follow a specific number of cycles after I1; its only
730 purpose is to show the side effect that occurs at that cycle in the RTL.
731 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
732 while I2 retains the original insn type.
734 There are two ways in which the number of cycles can be specified,
735 involving the CYCLES and STAGES arguments to this function. If STAGES
736 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
737 which is multiplied by MODULO_II to give the number of cycles. This is
738 only useful if the caller also calls set_modulo_params to enable modulo
739 scheduling. */
741 void
742 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
744 struct delay_pair *p = XNEW (struct delay_pair);
745 struct delay_pair **slot;
747 p->i1 = i1;
748 p->i2 = i2;
749 p->cycles = cycles;
750 p->stages = stages;
752 if (!delay_htab)
754 delay_htab = new hash_table<delay_i1_hasher> (10);
755 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
757 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
758 p->next_same_i1 = *slot;
759 *slot = p;
760 slot = delay_htab_i2->find_slot (p, INSERT);
761 *slot = p;
764 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
765 and return the other insn if so. Return NULL otherwise. */
766 rtx_insn *
767 real_insn_for_shadow (rtx_insn *insn)
769 struct delay_pair *pair;
771 if (!delay_htab)
772 return NULL;
774 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
775 if (!pair || pair->stages > 0)
776 return NULL;
777 return pair->i1;
780 /* For a pair P of insns, return the fixed distance in cycles from the first
781 insn after which the second must be scheduled. */
782 static int
783 pair_delay (struct delay_pair *p)
785 if (p->stages == 0)
786 return p->cycles;
787 else
788 return p->stages * modulo_ii;
791 /* Given an insn INSN, add a dependence on its delayed shadow if it
792 has one. Also try to find situations where shadows depend on each other
793 and add dependencies to the real insns to limit the amount of backtracking
794 needed. */
795 void
796 add_delay_dependencies (rtx_insn *insn)
798 struct delay_pair *pair;
799 sd_iterator_def sd_it;
800 dep_t dep;
802 if (!delay_htab)
803 return;
805 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
806 if (!pair)
807 return;
808 add_dependence (insn, pair->i1, REG_DEP_ANTI);
809 if (pair->stages)
810 return;
812 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
814 rtx_insn *pro = DEP_PRO (dep);
815 struct delay_pair *other_pair
816 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
817 if (!other_pair || other_pair->stages)
818 continue;
819 if (pair_delay (other_pair) >= pair_delay (pair))
821 if (sched_verbose >= 4)
823 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
824 INSN_UID (other_pair->i1),
825 INSN_UID (pair->i1));
826 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
827 INSN_UID (pair->i1),
828 INSN_UID (pair->i2),
829 pair_delay (pair));
830 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
831 INSN_UID (other_pair->i1),
832 INSN_UID (other_pair->i2),
833 pair_delay (other_pair));
835 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
840 /* Forward declarations. */
842 static int priority (rtx_insn *);
843 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
844 static int rank_for_schedule (const void *, const void *);
845 static void swap_sort (rtx_insn **, int);
846 static void queue_insn (rtx_insn *, int, const char *);
847 static int schedule_insn (rtx_insn *);
848 static void adjust_priority (rtx_insn *);
849 static void advance_one_cycle (void);
850 static void extend_h_i_d (void);
853 /* Notes handling mechanism:
854 =========================
855 Generally, NOTES are saved before scheduling and restored after scheduling.
856 The scheduler distinguishes between two types of notes:
858 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
859 Before scheduling a region, a pointer to the note is added to the insn
860 that follows or precedes it. (This happens as part of the data dependence
861 computation). After scheduling an insn, the pointer contained in it is
862 used for regenerating the corresponding note (in reemit_notes).
864 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
865 these notes are put in a list (in rm_other_notes() and
866 unlink_other_notes ()). After scheduling the block, these notes are
867 inserted at the beginning of the block (in schedule_block()). */
869 static void ready_add (struct ready_list *, rtx_insn *, bool);
870 static rtx_insn *ready_remove_first (struct ready_list *);
871 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
873 static void queue_to_ready (struct ready_list *);
874 static int early_queue_to_ready (state_t, struct ready_list *);
876 /* The following functions are used to implement multi-pass scheduling
877 on the first cycle. */
878 static rtx_insn *ready_remove (struct ready_list *, int);
879 static void ready_remove_insn (rtx_insn *);
881 static void fix_inter_tick (rtx_insn *, rtx_insn *);
882 static int fix_tick_ready (rtx_insn *);
883 static void change_queue_index (rtx_insn *, int);
885 /* The following functions are used to implement scheduling of data/control
886 speculative instructions. */
888 static void extend_h_i_d (void);
889 static void init_h_i_d (rtx_insn *);
890 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
891 static void generate_recovery_code (rtx_insn *);
892 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
893 static void begin_speculative_block (rtx_insn *);
894 static void add_to_speculative_block (rtx_insn *);
895 static void init_before_recovery (basic_block *);
896 static void create_check_block_twin (rtx_insn *, bool);
897 static void fix_recovery_deps (basic_block);
898 static bool haifa_change_pattern (rtx_insn *, rtx);
899 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
900 static void restore_bb_notes (basic_block);
901 static void fix_jump_move (rtx_insn *);
902 static void move_block_after_check (rtx_insn *);
903 static void move_succs (vec<edge, va_gc> **, basic_block);
904 static void sched_remove_insn (rtx_insn *);
905 static void clear_priorities (rtx_insn *, rtx_vec_t *);
906 static void calc_priorities (rtx_vec_t);
907 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
909 #endif /* INSN_SCHEDULING */
911 /* Point to state used for the current scheduling pass. */
912 struct haifa_sched_info *current_sched_info;
914 #ifndef INSN_SCHEDULING
915 void
916 schedule_insns (void)
919 #else
921 /* Do register pressure sensitive insn scheduling if the flag is set
922 up. */
923 enum sched_pressure_algorithm sched_pressure;
925 /* Map regno -> its pressure class. The map defined only when
926 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
927 enum reg_class *sched_regno_pressure_class;
929 /* The current register pressure. Only elements corresponding pressure
930 classes are defined. */
931 static int curr_reg_pressure[N_REG_CLASSES];
933 /* Saved value of the previous array. */
934 static int saved_reg_pressure[N_REG_CLASSES];
936 /* Register living at given scheduling point. */
937 static bitmap curr_reg_live;
939 /* Saved value of the previous array. */
940 static bitmap saved_reg_live;
942 /* Registers mentioned in the current region. */
943 static bitmap region_ref_regs;
945 /* Effective number of available registers of a given class (see comment
946 in sched_pressure_start_bb). */
947 static int sched_class_regs_num[N_REG_CLASSES];
948 /* Number of call_used_regs. This is a helper for calculating of
949 sched_class_regs_num. */
950 static int call_used_regs_num[N_REG_CLASSES];
952 /* Initiate register pressure relative info for scheduling the current
953 region. Currently it is only clearing register mentioned in the
954 current region. */
955 void
956 sched_init_region_reg_pressure_info (void)
958 bitmap_clear (region_ref_regs);
961 /* PRESSURE[CL] describes the pressure on register class CL. Update it
962 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
963 LIVE tracks the set of live registers; if it is null, assume that
964 every birth or death is genuine. */
965 static inline void
966 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
968 enum reg_class pressure_class;
970 pressure_class = sched_regno_pressure_class[regno];
971 if (regno >= FIRST_PSEUDO_REGISTER)
973 if (pressure_class != NO_REGS)
975 if (birth_p)
977 if (!live || bitmap_set_bit (live, regno))
978 pressure[pressure_class]
979 += (ira_reg_class_max_nregs
980 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
982 else
984 if (!live || bitmap_clear_bit (live, regno))
985 pressure[pressure_class]
986 -= (ira_reg_class_max_nregs
987 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
991 else if (pressure_class != NO_REGS
992 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
994 if (birth_p)
996 if (!live || bitmap_set_bit (live, regno))
997 pressure[pressure_class]++;
999 else
1001 if (!live || bitmap_clear_bit (live, regno))
1002 pressure[pressure_class]--;
1007 /* Initiate current register pressure related info from living
1008 registers given by LIVE. */
1009 static void
1010 initiate_reg_pressure_info (bitmap live)
1012 int i;
1013 unsigned int j;
1014 bitmap_iterator bi;
1016 for (i = 0; i < ira_pressure_classes_num; i++)
1017 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1018 bitmap_clear (curr_reg_live);
1019 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1020 if (sched_pressure == SCHED_PRESSURE_MODEL
1021 || current_nr_blocks == 1
1022 || bitmap_bit_p (region_ref_regs, j))
1023 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1026 /* Mark registers in X as mentioned in the current region. */
1027 static void
1028 setup_ref_regs (rtx x)
1030 int i, j;
1031 const RTX_CODE code = GET_CODE (x);
1032 const char *fmt;
1034 if (REG_P (x))
1036 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1037 return;
1039 fmt = GET_RTX_FORMAT (code);
1040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1041 if (fmt[i] == 'e')
1042 setup_ref_regs (XEXP (x, i));
1043 else if (fmt[i] == 'E')
1045 for (j = 0; j < XVECLEN (x, i); j++)
1046 setup_ref_regs (XVECEXP (x, i, j));
1050 /* Initiate current register pressure related info at the start of
1051 basic block BB. */
1052 static void
1053 initiate_bb_reg_pressure_info (basic_block bb)
1055 unsigned int i ATTRIBUTE_UNUSED;
1056 rtx_insn *insn;
1058 if (current_nr_blocks > 1)
1059 FOR_BB_INSNS (bb, insn)
1060 if (NONDEBUG_INSN_P (insn))
1061 setup_ref_regs (PATTERN (insn));
1062 initiate_reg_pressure_info (df_get_live_in (bb));
1063 if (bb_has_eh_pred (bb))
1064 for (i = 0; ; ++i)
1066 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1068 if (regno == INVALID_REGNUM)
1069 break;
1070 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1071 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1072 regno, true);
1076 /* Save current register pressure related info. */
1077 static void
1078 save_reg_pressure (void)
1080 int i;
1082 for (i = 0; i < ira_pressure_classes_num; i++)
1083 saved_reg_pressure[ira_pressure_classes[i]]
1084 = curr_reg_pressure[ira_pressure_classes[i]];
1085 bitmap_copy (saved_reg_live, curr_reg_live);
1088 /* Restore saved register pressure related info. */
1089 static void
1090 restore_reg_pressure (void)
1092 int i;
1094 for (i = 0; i < ira_pressure_classes_num; i++)
1095 curr_reg_pressure[ira_pressure_classes[i]]
1096 = saved_reg_pressure[ira_pressure_classes[i]];
1097 bitmap_copy (curr_reg_live, saved_reg_live);
1100 /* Return TRUE if the register is dying after its USE. */
1101 static bool
1102 dying_use_p (struct reg_use_data *use)
1104 struct reg_use_data *next;
1106 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1107 if (NONDEBUG_INSN_P (next->insn)
1108 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1109 return false;
1110 return true;
1113 /* Print info about the current register pressure and its excess for
1114 each pressure class. */
1115 static void
1116 print_curr_reg_pressure (void)
1118 int i;
1119 enum reg_class cl;
1121 fprintf (sched_dump, ";;\t");
1122 for (i = 0; i < ira_pressure_classes_num; i++)
1124 cl = ira_pressure_classes[i];
1125 gcc_assert (curr_reg_pressure[cl] >= 0);
1126 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1127 curr_reg_pressure[cl],
1128 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1130 fprintf (sched_dump, "\n");
1133 /* Determine if INSN has a condition that is clobbered if a register
1134 in SET_REGS is modified. */
1135 static bool
1136 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1138 rtx pat = PATTERN (insn);
1139 gcc_assert (GET_CODE (pat) == COND_EXEC);
1140 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1142 sd_iterator_def sd_it;
1143 dep_t dep;
1144 haifa_change_pattern (insn, ORIG_PAT (insn));
1145 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1146 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1147 TODO_SPEC (insn) = HARD_DEP;
1148 if (sched_verbose >= 2)
1149 fprintf (sched_dump,
1150 ";;\t\tdequeue insn %s because of clobbered condition\n",
1151 (*current_sched_info->print_insn) (insn, 0));
1152 return true;
1155 return false;
1158 /* This function should be called after modifying the pattern of INSN,
1159 to update scheduler data structures as needed. */
1160 static void
1161 update_insn_after_change (rtx_insn *insn)
1163 sd_iterator_def sd_it;
1164 dep_t dep;
1166 dfa_clear_single_insn_cache (insn);
1168 sd_it = sd_iterator_start (insn,
1169 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1170 while (sd_iterator_cond (&sd_it, &dep))
1172 DEP_COST (dep) = UNKNOWN_DEP_COST;
1173 sd_iterator_next (&sd_it);
1176 /* Invalidate INSN_COST, so it'll be recalculated. */
1177 INSN_COST (insn) = -1;
1178 /* Invalidate INSN_TICK, so it'll be recalculated. */
1179 INSN_TICK (insn) = INVALID_TICK;
1181 /* Invalidate autoprefetch data entry. */
1182 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1183 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1184 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1185 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1189 /* Two VECs, one to hold dependencies for which pattern replacements
1190 need to be applied or restored at the start of the next cycle, and
1191 another to hold an integer that is either one, to apply the
1192 corresponding replacement, or zero to restore it. */
1193 static vec<dep_t> next_cycle_replace_deps;
1194 static vec<int> next_cycle_apply;
1196 static void apply_replacement (dep_t, bool);
1197 static void restore_pattern (dep_t, bool);
1199 /* Look at the remaining dependencies for insn NEXT, and compute and return
1200 the TODO_SPEC value we should use for it. This is called after one of
1201 NEXT's dependencies has been resolved.
1202 We also perform pattern replacements for predication, and for broken
1203 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1204 false. */
1206 static ds_t
1207 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1209 ds_t new_ds;
1210 sd_iterator_def sd_it;
1211 dep_t dep, modify_dep = NULL;
1212 int n_spec = 0;
1213 int n_control = 0;
1214 int n_replace = 0;
1215 bool first_p = true;
1217 if (sd_lists_empty_p (next, SD_LIST_BACK))
1218 /* NEXT has all its dependencies resolved. */
1219 return 0;
1221 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1222 return HARD_DEP;
1224 /* If NEXT is intended to sit adjacent to this instruction, we don't
1225 want to try to break any dependencies. Treat it as a HARD_DEP. */
1226 if (SCHED_GROUP_P (next))
1227 return HARD_DEP;
1229 /* Now we've got NEXT with speculative deps only.
1230 1. Look at the deps to see what we have to do.
1231 2. Check if we can do 'todo'. */
1232 new_ds = 0;
1234 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1236 rtx_insn *pro = DEP_PRO (dep);
1237 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1239 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1240 continue;
1242 if (ds)
1244 n_spec++;
1245 if (first_p)
1247 first_p = false;
1249 new_ds = ds;
1251 else
1252 new_ds = ds_merge (new_ds, ds);
1254 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1256 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1258 n_control++;
1259 modify_dep = dep;
1261 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1263 else if (DEP_REPLACE (dep) != NULL)
1265 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1267 n_replace++;
1268 modify_dep = dep;
1270 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1274 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1276 if (!dbg_cnt (sched_breakdep))
1277 return HARD_DEP;
1278 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1280 struct dep_replacement *desc = DEP_REPLACE (dep);
1281 if (desc != NULL)
1283 if (desc->insn == next && !for_backtrack)
1285 gcc_assert (n_replace == 1);
1286 apply_replacement (dep, true);
1288 DEP_STATUS (dep) |= DEP_CANCELLED;
1291 return 0;
1294 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1296 rtx_insn *pro, *other;
1297 rtx new_pat;
1298 rtx cond = NULL_RTX;
1299 bool success;
1300 rtx_insn *prev = NULL;
1301 int i;
1302 unsigned regno;
1304 if ((current_sched_info->flags & DO_PREDICATION) == 0
1305 || (ORIG_PAT (next) != NULL_RTX
1306 && PREDICATED_PAT (next) == NULL_RTX))
1307 return HARD_DEP;
1309 pro = DEP_PRO (modify_dep);
1310 other = real_insn_for_shadow (pro);
1311 if (other != NULL_RTX)
1312 pro = other;
1314 cond = sched_get_reverse_condition_uncached (pro);
1315 regno = REGNO (XEXP (cond, 0));
1317 /* Find the last scheduled insn that modifies the condition register.
1318 We can stop looking once we find the insn we depend on through the
1319 REG_DEP_CONTROL; if the condition register isn't modified after it,
1320 we know that it still has the right value. */
1321 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1322 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1324 HARD_REG_SET t;
1326 find_all_hard_reg_sets (prev, &t, true);
1327 if (TEST_HARD_REG_BIT (t, regno))
1328 return HARD_DEP;
1329 if (prev == pro)
1330 break;
1332 if (ORIG_PAT (next) == NULL_RTX)
1334 ORIG_PAT (next) = PATTERN (next);
1336 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1337 success = haifa_change_pattern (next, new_pat);
1338 if (!success)
1339 return HARD_DEP;
1340 PREDICATED_PAT (next) = new_pat;
1342 else if (PATTERN (next) != PREDICATED_PAT (next))
1344 bool success = haifa_change_pattern (next,
1345 PREDICATED_PAT (next));
1346 gcc_assert (success);
1348 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1349 return DEP_CONTROL;
1352 if (PREDICATED_PAT (next) != NULL_RTX)
1354 int tick = INSN_TICK (next);
1355 bool success = haifa_change_pattern (next,
1356 ORIG_PAT (next));
1357 INSN_TICK (next) = tick;
1358 gcc_assert (success);
1361 /* We can't handle the case where there are both speculative and control
1362 dependencies, so we return HARD_DEP in such a case. Also fail if
1363 we have speculative dependencies with not enough points, or more than
1364 one control dependency. */
1365 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1366 || (n_spec > 0
1367 /* Too few points? */
1368 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1369 || n_control > 0
1370 || n_replace > 0)
1371 return HARD_DEP;
1373 return new_ds;
1376 /* Pointer to the last instruction scheduled. */
1377 static rtx_insn *last_scheduled_insn;
1379 /* Pointer to the last nondebug instruction scheduled within the
1380 block, or the prev_head of the scheduling block. Used by
1381 rank_for_schedule, so that insns independent of the last scheduled
1382 insn will be preferred over dependent instructions. */
1383 static rtx_insn *last_nondebug_scheduled_insn;
1385 /* Pointer that iterates through the list of unscheduled insns if we
1386 have a dbg_cnt enabled. It always points at an insn prior to the
1387 first unscheduled one. */
1388 static rtx_insn *nonscheduled_insns_begin;
1390 /* Compute cost of executing INSN.
1391 This is the number of cycles between instruction issue and
1392 instruction results. */
1394 insn_cost (rtx_insn *insn)
1396 int cost;
1398 if (sched_fusion)
1399 return 0;
1401 if (sel_sched_p ())
1403 if (recog_memoized (insn) < 0)
1404 return 0;
1406 cost = insn_default_latency (insn);
1407 if (cost < 0)
1408 cost = 0;
1410 return cost;
1413 cost = INSN_COST (insn);
1415 if (cost < 0)
1417 /* A USE insn, or something else we don't need to
1418 understand. We can't pass these directly to
1419 result_ready_cost or insn_default_latency because it will
1420 trigger a fatal error for unrecognizable insns. */
1421 if (recog_memoized (insn) < 0)
1423 INSN_COST (insn) = 0;
1424 return 0;
1426 else
1428 cost = insn_default_latency (insn);
1429 if (cost < 0)
1430 cost = 0;
1432 INSN_COST (insn) = cost;
1436 return cost;
1439 /* Compute cost of dependence LINK.
1440 This is the number of cycles between instruction issue and
1441 instruction results.
1442 ??? We also use this function to call recog_memoized on all insns. */
1444 dep_cost_1 (dep_t link, dw_t dw)
1446 rtx_insn *insn = DEP_PRO (link);
1447 rtx_insn *used = DEP_CON (link);
1448 int cost;
1450 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1451 return DEP_COST (link);
1453 if (delay_htab)
1455 struct delay_pair *delay_entry;
1456 delay_entry
1457 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1458 if (delay_entry)
1460 if (delay_entry->i1 == insn)
1462 DEP_COST (link) = pair_delay (delay_entry);
1463 return DEP_COST (link);
1468 /* A USE insn should never require the value used to be computed.
1469 This allows the computation of a function's result and parameter
1470 values to overlap the return and call. We don't care about the
1471 dependence cost when only decreasing register pressure. */
1472 if (recog_memoized (used) < 0)
1474 cost = 0;
1475 recog_memoized (insn);
1477 else
1479 enum reg_note dep_type = DEP_TYPE (link);
1481 cost = insn_cost (insn);
1483 if (INSN_CODE (insn) >= 0)
1485 if (dep_type == REG_DEP_ANTI)
1486 cost = 0;
1487 else if (dep_type == REG_DEP_OUTPUT)
1489 cost = (insn_default_latency (insn)
1490 - insn_default_latency (used));
1491 if (cost <= 0)
1492 cost = 1;
1494 else if (bypass_p (insn))
1495 cost = insn_latency (insn, used);
1499 if (targetm.sched.adjust_cost_2)
1500 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1501 dw);
1502 else if (targetm.sched.adjust_cost != NULL)
1504 /* This variable is used for backward compatibility with the
1505 targets. */
1506 rtx_insn_list *dep_cost_rtx_link =
1507 alloc_INSN_LIST (NULL_RTX, NULL);
1509 /* Make it self-cycled, so that if some tries to walk over this
1510 incomplete list he/she will be caught in an endless loop. */
1511 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1513 /* Targets use only REG_NOTE_KIND of the link. */
1514 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1516 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1517 insn, cost);
1519 free_INSN_LIST_node (dep_cost_rtx_link);
1522 if (cost < 0)
1523 cost = 0;
1526 DEP_COST (link) = cost;
1527 return cost;
1530 /* Compute cost of dependence LINK.
1531 This is the number of cycles between instruction issue and
1532 instruction results. */
1534 dep_cost (dep_t link)
1536 return dep_cost_1 (link, 0);
1539 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1540 INSN_PRIORITY explicitly. */
1541 void
1542 increase_insn_priority (rtx_insn *insn, int amount)
1544 if (!sel_sched_p ())
1546 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1547 if (INSN_PRIORITY_KNOWN (insn))
1548 INSN_PRIORITY (insn) += amount;
1550 else
1552 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1553 Use EXPR_PRIORITY instead. */
1554 sel_add_to_insn_priority (insn, amount);
1558 /* Return 'true' if DEP should be included in priority calculations. */
1559 static bool
1560 contributes_to_priority_p (dep_t dep)
1562 if (DEBUG_INSN_P (DEP_CON (dep))
1563 || DEBUG_INSN_P (DEP_PRO (dep)))
1564 return false;
1566 /* Critical path is meaningful in block boundaries only. */
1567 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1568 DEP_PRO (dep)))
1569 return false;
1571 if (DEP_REPLACE (dep) != NULL)
1572 return false;
1574 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1575 then speculative instructions will less likely be
1576 scheduled. That is because the priority of
1577 their producers will increase, and, thus, the
1578 producers will more likely be scheduled, thus,
1579 resolving the dependence. */
1580 if (sched_deps_info->generate_spec_deps
1581 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1582 && (DEP_STATUS (dep) & SPECULATIVE))
1583 return false;
1585 return true;
1588 /* Compute the number of nondebug deps in list LIST for INSN. */
1590 static int
1591 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1593 sd_iterator_def sd_it;
1594 dep_t dep;
1595 int dbgcount = 0, nodbgcount = 0;
1597 if (!MAY_HAVE_DEBUG_INSNS)
1598 return sd_lists_size (insn, list);
1600 FOR_EACH_DEP (insn, list, sd_it, dep)
1602 if (DEBUG_INSN_P (DEP_CON (dep)))
1603 dbgcount++;
1604 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1605 nodbgcount++;
1608 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1610 return nodbgcount;
1613 bool sched_fusion;
1615 /* Compute the priority number for INSN. */
1616 static int
1617 priority (rtx_insn *insn)
1619 if (! INSN_P (insn))
1620 return 0;
1622 /* We should not be interested in priority of an already scheduled insn. */
1623 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1625 if (!INSN_PRIORITY_KNOWN (insn))
1627 int this_priority = -1;
1629 if (sched_fusion)
1631 int this_fusion_priority;
1633 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1634 &this_fusion_priority, &this_priority);
1635 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1637 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1638 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1639 some forward deps but all of them are ignored by
1640 contributes_to_priority hook. At the moment we set priority of
1641 such insn to 0. */
1642 this_priority = insn_cost (insn);
1643 else
1645 rtx_insn *prev_first, *twin;
1646 basic_block rec;
1648 /* For recovery check instructions we calculate priority slightly
1649 different than that of normal instructions. Instead of walking
1650 through INSN_FORW_DEPS (check) list, we walk through
1651 INSN_FORW_DEPS list of each instruction in the corresponding
1652 recovery block. */
1654 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1655 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1656 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1658 prev_first = PREV_INSN (insn);
1659 twin = insn;
1661 else
1663 prev_first = NEXT_INSN (BB_HEAD (rec));
1664 twin = PREV_INSN (BB_END (rec));
1669 sd_iterator_def sd_it;
1670 dep_t dep;
1672 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1674 rtx_insn *next;
1675 int next_priority;
1677 next = DEP_CON (dep);
1679 if (BLOCK_FOR_INSN (next) != rec)
1681 int cost;
1683 if (!contributes_to_priority_p (dep))
1684 continue;
1686 if (twin == insn)
1687 cost = dep_cost (dep);
1688 else
1690 struct _dep _dep1, *dep1 = &_dep1;
1692 init_dep (dep1, insn, next, REG_DEP_ANTI);
1694 cost = dep_cost (dep1);
1697 next_priority = cost + priority (next);
1699 if (next_priority > this_priority)
1700 this_priority = next_priority;
1704 twin = PREV_INSN (twin);
1706 while (twin != prev_first);
1709 if (this_priority < 0)
1711 gcc_assert (this_priority == -1);
1713 this_priority = insn_cost (insn);
1716 INSN_PRIORITY (insn) = this_priority;
1717 INSN_PRIORITY_STATUS (insn) = 1;
1720 return INSN_PRIORITY (insn);
1723 /* Macros and functions for keeping the priority queue sorted, and
1724 dealing with queuing and dequeuing of instructions. */
1726 /* For each pressure class CL, set DEATH[CL] to the number of registers
1727 in that class that die in INSN. */
1729 static void
1730 calculate_reg_deaths (rtx_insn *insn, int *death)
1732 int i;
1733 struct reg_use_data *use;
1735 for (i = 0; i < ira_pressure_classes_num; i++)
1736 death[ira_pressure_classes[i]] = 0;
1737 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1738 if (dying_use_p (use))
1739 mark_regno_birth_or_death (0, death, use->regno, true);
1742 /* Setup info about the current register pressure impact of scheduling
1743 INSN at the current scheduling point. */
1744 static void
1745 setup_insn_reg_pressure_info (rtx_insn *insn)
1747 int i, change, before, after, hard_regno;
1748 int excess_cost_change;
1749 machine_mode mode;
1750 enum reg_class cl;
1751 struct reg_pressure_data *pressure_info;
1752 int *max_reg_pressure;
1753 static int death[N_REG_CLASSES];
1755 gcc_checking_assert (!DEBUG_INSN_P (insn));
1757 excess_cost_change = 0;
1758 calculate_reg_deaths (insn, death);
1759 pressure_info = INSN_REG_PRESSURE (insn);
1760 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1761 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1762 for (i = 0; i < ira_pressure_classes_num; i++)
1764 cl = ira_pressure_classes[i];
1765 gcc_assert (curr_reg_pressure[cl] >= 0);
1766 change = (int) pressure_info[i].set_increase - death[cl];
1767 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1768 after = MAX (0, max_reg_pressure[i] + change
1769 - sched_class_regs_num[cl]);
1770 hard_regno = ira_class_hard_regs[cl][0];
1771 gcc_assert (hard_regno >= 0);
1772 mode = reg_raw_mode[hard_regno];
1773 excess_cost_change += ((after - before)
1774 * (ira_memory_move_cost[mode][cl][0]
1775 + ira_memory_move_cost[mode][cl][1]));
1777 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1780 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1781 It tries to make the scheduler take register pressure into account
1782 without introducing too many unnecessary stalls. It hooks into the
1783 main scheduling algorithm at several points:
1785 - Before scheduling starts, model_start_schedule constructs a
1786 "model schedule" for the current block. This model schedule is
1787 chosen solely to keep register pressure down. It does not take the
1788 target's pipeline or the original instruction order into account,
1789 except as a tie-breaker. It also doesn't work to a particular
1790 pressure limit.
1792 This model schedule gives us an idea of what pressure can be
1793 achieved for the block and gives us an example of a schedule that
1794 keeps to that pressure. It also makes the final schedule less
1795 dependent on the original instruction order. This is important
1796 because the original order can either be "wide" (many values live
1797 at once, such as in user-scheduled code) or "narrow" (few values
1798 live at once, such as after loop unrolling, where several
1799 iterations are executed sequentially).
1801 We do not apply this model schedule to the rtx stream. We simply
1802 record it in model_schedule. We also compute the maximum pressure,
1803 MP, that was seen during this schedule.
1805 - Instructions are added to the ready queue even if they require
1806 a stall. The length of the stall is instead computed as:
1808 MAX (INSN_TICK (INSN) - clock_var, 0)
1810 (= insn_delay). This allows rank_for_schedule to choose between
1811 introducing a deliberate stall or increasing pressure.
1813 - Before sorting the ready queue, model_set_excess_costs assigns
1814 a pressure-based cost to each ready instruction in the queue.
1815 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1816 (ECC for short) and is effectively measured in cycles.
1818 - rank_for_schedule ranks instructions based on:
1820 ECC (insn) + insn_delay (insn)
1822 then as:
1824 insn_delay (insn)
1826 So, for example, an instruction X1 with an ECC of 1 that can issue
1827 now will win over an instruction X0 with an ECC of zero that would
1828 introduce a stall of one cycle. However, an instruction X2 with an
1829 ECC of 2 that can issue now will lose to both X0 and X1.
1831 - When an instruction is scheduled, model_recompute updates the model
1832 schedule with the new pressures (some of which might now exceed the
1833 original maximum pressure MP). model_update_limit_points then searches
1834 for the new point of maximum pressure, if not already known. */
1836 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1837 from surrounding debug information. */
1838 #define MODEL_BAR \
1839 ";;\t\t+------------------------------------------------------\n"
1841 /* Information about the pressure on a particular register class at a
1842 particular point of the model schedule. */
1843 struct model_pressure_data {
1844 /* The pressure at this point of the model schedule, or -1 if the
1845 point is associated with an instruction that has already been
1846 scheduled. */
1847 int ref_pressure;
1849 /* The maximum pressure during or after this point of the model schedule. */
1850 int max_pressure;
1853 /* Per-instruction information that is used while building the model
1854 schedule. Here, "schedule" refers to the model schedule rather
1855 than the main schedule. */
1856 struct model_insn_info {
1857 /* The instruction itself. */
1858 rtx_insn *insn;
1860 /* If this instruction is in model_worklist, these fields link to the
1861 previous (higher-priority) and next (lower-priority) instructions
1862 in the list. */
1863 struct model_insn_info *prev;
1864 struct model_insn_info *next;
1866 /* While constructing the schedule, QUEUE_INDEX describes whether an
1867 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1868 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1869 old_queue records the value that QUEUE_INDEX had before scheduling
1870 started, so that we can restore it once the schedule is complete. */
1871 int old_queue;
1873 /* The relative importance of an unscheduled instruction. Higher
1874 values indicate greater importance. */
1875 unsigned int model_priority;
1877 /* The length of the longest path of satisfied true dependencies
1878 that leads to this instruction. */
1879 unsigned int depth;
1881 /* The length of the longest path of dependencies of any kind
1882 that leads from this instruction. */
1883 unsigned int alap;
1885 /* The number of predecessor nodes that must still be scheduled. */
1886 int unscheduled_preds;
1889 /* Information about the pressure limit for a particular register class.
1890 This structure is used when applying a model schedule to the main
1891 schedule. */
1892 struct model_pressure_limit {
1893 /* The maximum register pressure seen in the original model schedule. */
1894 int orig_pressure;
1896 /* The maximum register pressure seen in the current model schedule
1897 (which excludes instructions that have already been scheduled). */
1898 int pressure;
1900 /* The point of the current model schedule at which PRESSURE is first
1901 reached. It is set to -1 if the value needs to be recomputed. */
1902 int point;
1905 /* Describes a particular way of measuring register pressure. */
1906 struct model_pressure_group {
1907 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1908 struct model_pressure_limit limits[N_REG_CLASSES];
1910 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1911 on register class ira_pressure_classes[PCI] at point POINT of the
1912 current model schedule. A POINT of model_num_insns describes the
1913 pressure at the end of the schedule. */
1914 struct model_pressure_data *model;
1917 /* Index POINT gives the instruction at point POINT of the model schedule.
1918 This array doesn't change during main scheduling. */
1919 static vec<rtx_insn *> model_schedule;
1921 /* The list of instructions in the model worklist, sorted in order of
1922 decreasing priority. */
1923 static struct model_insn_info *model_worklist;
1925 /* Index I describes the instruction with INSN_LUID I. */
1926 static struct model_insn_info *model_insns;
1928 /* The number of instructions in the model schedule. */
1929 static int model_num_insns;
1931 /* The index of the first instruction in model_schedule that hasn't yet been
1932 added to the main schedule, or model_num_insns if all of them have. */
1933 static int model_curr_point;
1935 /* Describes the pressure before each instruction in the model schedule. */
1936 static struct model_pressure_group model_before_pressure;
1938 /* The first unused model_priority value (as used in model_insn_info). */
1939 static unsigned int model_next_priority;
1942 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1943 at point POINT of the model schedule. */
1944 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1945 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1947 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1948 after point POINT of the model schedule. */
1949 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1950 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1952 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1953 of the model schedule. */
1954 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1955 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1957 /* Information about INSN that is used when creating the model schedule. */
1958 #define MODEL_INSN_INFO(INSN) \
1959 (&model_insns[INSN_LUID (INSN)])
1961 /* The instruction at point POINT of the model schedule. */
1962 #define MODEL_INSN(POINT) \
1963 (model_schedule[POINT])
1966 /* Return INSN's index in the model schedule, or model_num_insns if it
1967 doesn't belong to that schedule. */
1969 static int
1970 model_index (rtx_insn *insn)
1972 if (INSN_MODEL_INDEX (insn) == 0)
1973 return model_num_insns;
1974 return INSN_MODEL_INDEX (insn) - 1;
1977 /* Make sure that GROUP->limits is up-to-date for the current point
1978 of the model schedule. */
1980 static void
1981 model_update_limit_points_in_group (struct model_pressure_group *group)
1983 int pci, max_pressure, point;
1985 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1987 /* We may have passed the final point at which the pressure in
1988 group->limits[pci].pressure was reached. Update the limit if so. */
1989 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1990 group->limits[pci].pressure = max_pressure;
1992 /* Find the point at which MAX_PRESSURE is first reached. We need
1993 to search in three cases:
1995 - We've already moved past the previous pressure point.
1996 In this case we search forward from model_curr_point.
1998 - We scheduled the previous point of maximum pressure ahead of
1999 its position in the model schedule, but doing so didn't bring
2000 the pressure point earlier. In this case we search forward
2001 from that previous pressure point.
2003 - Scheduling an instruction early caused the maximum pressure
2004 to decrease. In this case we will have set the pressure
2005 point to -1, and we search forward from model_curr_point. */
2006 point = MAX (group->limits[pci].point, model_curr_point);
2007 while (point < model_num_insns
2008 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2009 point++;
2010 group->limits[pci].point = point;
2012 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2013 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2017 /* Make sure that all register-pressure limits are up-to-date for the
2018 current position in the model schedule. */
2020 static void
2021 model_update_limit_points (void)
2023 model_update_limit_points_in_group (&model_before_pressure);
2026 /* Return the model_index of the last unscheduled use in chain USE
2027 outside of USE's instruction. Return -1 if there are no other uses,
2028 or model_num_insns if the register is live at the end of the block. */
2030 static int
2031 model_last_use_except (struct reg_use_data *use)
2033 struct reg_use_data *next;
2034 int last, index;
2036 last = -1;
2037 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2038 if (NONDEBUG_INSN_P (next->insn)
2039 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2041 index = model_index (next->insn);
2042 if (index == model_num_insns)
2043 return model_num_insns;
2044 if (last < index)
2045 last = index;
2047 return last;
2050 /* An instruction with model_index POINT has just been scheduled, and it
2051 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2052 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2053 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2055 static void
2056 model_start_update_pressure (struct model_pressure_group *group,
2057 int point, int pci, int delta)
2059 int next_max_pressure;
2061 if (point == model_num_insns)
2063 /* The instruction wasn't part of the model schedule; it was moved
2064 from a different block. Update the pressure for the end of
2065 the model schedule. */
2066 MODEL_REF_PRESSURE (group, point, pci) += delta;
2067 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2069 else
2071 /* Record that this instruction has been scheduled. Nothing now
2072 changes between POINT and POINT + 1, so get the maximum pressure
2073 from the latter. If the maximum pressure decreases, the new
2074 pressure point may be before POINT. */
2075 MODEL_REF_PRESSURE (group, point, pci) = -1;
2076 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2077 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2079 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2080 if (group->limits[pci].point == point)
2081 group->limits[pci].point = -1;
2086 /* Record that scheduling a later instruction has changed the pressure
2087 at point POINT of the model schedule by DELTA (which might be 0).
2088 Update GROUP accordingly. Return nonzero if these changes might
2089 trigger changes to previous points as well. */
2091 static int
2092 model_update_pressure (struct model_pressure_group *group,
2093 int point, int pci, int delta)
2095 int ref_pressure, max_pressure, next_max_pressure;
2097 /* If POINT hasn't yet been scheduled, update its pressure. */
2098 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2099 if (ref_pressure >= 0 && delta != 0)
2101 ref_pressure += delta;
2102 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2104 /* Check whether the maximum pressure in the overall schedule
2105 has increased. (This means that the MODEL_MAX_PRESSURE of
2106 every point <= POINT will need to increase too; see below.) */
2107 if (group->limits[pci].pressure < ref_pressure)
2108 group->limits[pci].pressure = ref_pressure;
2110 /* If we are at maximum pressure, and the maximum pressure
2111 point was previously unknown or later than POINT,
2112 bring it forward. */
2113 if (group->limits[pci].pressure == ref_pressure
2114 && !IN_RANGE (group->limits[pci].point, 0, point))
2115 group->limits[pci].point = point;
2117 /* If POINT used to be the point of maximum pressure, but isn't
2118 any longer, we need to recalculate it using a forward walk. */
2119 if (group->limits[pci].pressure > ref_pressure
2120 && group->limits[pci].point == point)
2121 group->limits[pci].point = -1;
2124 /* Update the maximum pressure at POINT. Changes here might also
2125 affect the maximum pressure at POINT - 1. */
2126 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2127 max_pressure = MAX (ref_pressure, next_max_pressure);
2128 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2130 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2131 return 1;
2133 return 0;
2136 /* INSN has just been scheduled. Update the model schedule accordingly. */
2138 static void
2139 model_recompute (rtx_insn *insn)
2141 struct {
2142 int last_use;
2143 int regno;
2144 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2145 struct reg_use_data *use;
2146 struct reg_pressure_data *reg_pressure;
2147 int delta[N_REG_CLASSES];
2148 int pci, point, mix, new_last, cl, ref_pressure, queue;
2149 unsigned int i, num_uses, num_pending_births;
2150 bool print_p;
2152 /* The destinations of INSN were previously live from POINT onwards, but are
2153 now live from model_curr_point onwards. Set up DELTA accordingly. */
2154 point = model_index (insn);
2155 reg_pressure = INSN_REG_PRESSURE (insn);
2156 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2158 cl = ira_pressure_classes[pci];
2159 delta[cl] = reg_pressure[pci].set_increase;
2162 /* Record which registers previously died at POINT, but which now die
2163 before POINT. Adjust DELTA so that it represents the effect of
2164 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2165 registers that will be born in the range [model_curr_point, POINT). */
2166 num_uses = 0;
2167 num_pending_births = 0;
2168 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2170 new_last = model_last_use_except (use);
2171 if (new_last < point)
2173 gcc_assert (num_uses < ARRAY_SIZE (uses));
2174 uses[num_uses].last_use = new_last;
2175 uses[num_uses].regno = use->regno;
2176 /* This register is no longer live after POINT - 1. */
2177 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2178 num_uses++;
2179 if (new_last >= 0)
2180 num_pending_births++;
2184 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2185 Also set each group pressure limit for POINT. */
2186 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2188 cl = ira_pressure_classes[pci];
2189 model_start_update_pressure (&model_before_pressure,
2190 point, pci, delta[cl]);
2193 /* Walk the model schedule backwards, starting immediately before POINT. */
2194 print_p = false;
2195 if (point != model_curr_point)
2198 point--;
2199 insn = MODEL_INSN (point);
2200 queue = QUEUE_INDEX (insn);
2202 if (queue != QUEUE_SCHEDULED)
2204 /* DELTA describes the effect of the move on the register pressure
2205 after POINT. Make it describe the effect on the pressure
2206 before POINT. */
2207 i = 0;
2208 while (i < num_uses)
2210 if (uses[i].last_use == point)
2212 /* This register is now live again. */
2213 mark_regno_birth_or_death (NULL, delta,
2214 uses[i].regno, true);
2216 /* Remove this use from the array. */
2217 uses[i] = uses[num_uses - 1];
2218 num_uses--;
2219 num_pending_births--;
2221 else
2222 i++;
2225 if (sched_verbose >= 5)
2227 if (!print_p)
2229 fprintf (sched_dump, MODEL_BAR);
2230 fprintf (sched_dump, ";;\t\t| New pressure for model"
2231 " schedule\n");
2232 fprintf (sched_dump, MODEL_BAR);
2233 print_p = true;
2236 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2237 point, INSN_UID (insn),
2238 str_pattern_slim (PATTERN (insn)));
2239 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2241 cl = ira_pressure_classes[pci];
2242 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2243 point, pci);
2244 fprintf (sched_dump, " %s:[%d->%d]",
2245 reg_class_names[ira_pressure_classes[pci]],
2246 ref_pressure, ref_pressure + delta[cl]);
2248 fprintf (sched_dump, "\n");
2252 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2253 might have changed as well. */
2254 mix = num_pending_births;
2255 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2257 cl = ira_pressure_classes[pci];
2258 mix |= delta[cl];
2259 mix |= model_update_pressure (&model_before_pressure,
2260 point, pci, delta[cl]);
2263 while (mix && point > model_curr_point);
2265 if (print_p)
2266 fprintf (sched_dump, MODEL_BAR);
2269 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2270 check whether the insn's pattern needs restoring. */
2271 static bool
2272 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2274 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2275 return false;
2277 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2279 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2280 gcc_assert (next == DEP_CON (dep));
2282 else
2284 struct dep_replacement *desc = DEP_REPLACE (dep);
2285 if (desc->insn != next)
2287 gcc_assert (*desc->loc == desc->orig);
2288 return false;
2291 return true;
2294 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2295 pressure on CL from P to P'. We use this to calculate a "base ECC",
2296 baseECC (CL, X), for each pressure class CL and each instruction X.
2297 Supposing X changes the pressure on CL from P to P', and that the
2298 maximum pressure on CL in the current model schedule is MP', then:
2300 * if X occurs before or at the next point of maximum pressure in
2301 the model schedule and P' > MP', then:
2303 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2305 The idea is that the pressure after scheduling a fixed set of
2306 instructions -- in this case, the set up to and including the
2307 next maximum pressure point -- is going to be the same regardless
2308 of the order; we simply want to keep the intermediate pressure
2309 under control. Thus X has a cost of zero unless scheduling it
2310 now would exceed MP'.
2312 If all increases in the set are by the same amount, no zero-cost
2313 instruction will ever cause the pressure to exceed MP'. However,
2314 if X is instead moved past an instruction X' with pressure in the
2315 range (MP' - (P' - P), MP'), the pressure at X' will increase
2316 beyond MP'. Since baseECC is very much a heuristic anyway,
2317 it doesn't seem worth the overhead of tracking cases like these.
2319 The cost of exceeding MP' is always based on the original maximum
2320 pressure MP. This is so that going 2 registers over the original
2321 limit has the same cost regardless of whether it comes from two
2322 separate +1 deltas or from a single +2 delta.
2324 * if X occurs after the next point of maximum pressure in the model
2325 schedule and P' > P, then:
2327 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2329 That is, if we move X forward across a point of maximum pressure,
2330 and if X increases the pressure by P' - P, then we conservatively
2331 assume that scheduling X next would increase the maximum pressure
2332 by P' - P. Again, the cost of doing this is based on the original
2333 maximum pressure MP, for the same reason as above.
2335 * if P' < P, P > MP, and X occurs at or after the next point of
2336 maximum pressure, then:
2338 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2340 That is, if we have already exceeded the original maximum pressure MP,
2341 and if X might reduce the maximum pressure again -- or at least push
2342 it further back, and thus allow more scheduling freedom -- it is given
2343 a negative cost to reflect the improvement.
2345 * otherwise,
2347 baseECC (CL, X) = 0
2349 In this case, X is not expected to affect the maximum pressure MP',
2350 so it has zero cost.
2352 We then create a combined value baseECC (X) that is the sum of
2353 baseECC (CL, X) for each pressure class CL.
2355 baseECC (X) could itself be used as the ECC value described above.
2356 However, this is often too conservative, in the sense that it
2357 tends to make high-priority instructions that increase pressure
2358 wait too long in cases where introducing a spill would be better.
2359 For this reason the final ECC is a priority-adjusted form of
2360 baseECC (X). Specifically, we calculate:
2362 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2363 baseP = MAX { P (X) | baseECC (X) <= 0 }
2365 Then:
2367 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2369 Thus an instruction's effect on pressure is ignored if it has a high
2370 enough priority relative to the ones that don't increase pressure.
2371 Negative values of baseECC (X) do not increase the priority of X
2372 itself, but they do make it harder for other instructions to
2373 increase the pressure further.
2375 This pressure cost is deliberately timid. The intention has been
2376 to choose a heuristic that rarely interferes with the normal list
2377 scheduler in cases where that scheduler would produce good code.
2378 We simply want to curb some of its worst excesses. */
2380 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2382 Here we use the very simplistic cost model that every register above
2383 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2384 measures instead, such as one based on MEMORY_MOVE_COST. However:
2386 (1) In order for an instruction to be scheduled, the higher cost
2387 would need to be justified in a single saving of that many stalls.
2388 This is overly pessimistic, because the benefit of spilling is
2389 often to avoid a sequence of several short stalls rather than
2390 a single long one.
2392 (2) The cost is still arbitrary. Because we are not allocating
2393 registers during scheduling, we have no way of knowing for
2394 sure how many memory accesses will be required by each spill,
2395 where the spills will be placed within the block, or even
2396 which block(s) will contain the spills.
2398 So a higher cost than 1 is often too conservative in practice,
2399 forcing blocks to contain unnecessary stalls instead of spill code.
2400 The simple cost below seems to be the best compromise. It reduces
2401 the interference with the normal list scheduler, which helps make
2402 it more suitable for a default-on option. */
2404 static int
2405 model_spill_cost (int cl, int from, int to)
2407 from = MAX (from, sched_class_regs_num[cl]);
2408 return MAX (to, from) - from;
2411 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2412 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2413 P' = P + DELTA. */
2415 static int
2416 model_excess_group_cost (struct model_pressure_group *group,
2417 int point, int pci, int delta)
2419 int pressure, cl;
2421 cl = ira_pressure_classes[pci];
2422 if (delta < 0 && point >= group->limits[pci].point)
2424 pressure = MAX (group->limits[pci].orig_pressure,
2425 curr_reg_pressure[cl] + delta);
2426 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2429 if (delta > 0)
2431 if (point > group->limits[pci].point)
2432 pressure = group->limits[pci].pressure + delta;
2433 else
2434 pressure = curr_reg_pressure[cl] + delta;
2436 if (pressure > group->limits[pci].pressure)
2437 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2438 pressure);
2441 return 0;
2444 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2445 if PRINT_P. */
2447 static int
2448 model_excess_cost (rtx_insn *insn, bool print_p)
2450 int point, pci, cl, cost, this_cost, delta;
2451 struct reg_pressure_data *insn_reg_pressure;
2452 int insn_death[N_REG_CLASSES];
2454 calculate_reg_deaths (insn, insn_death);
2455 point = model_index (insn);
2456 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2457 cost = 0;
2459 if (print_p)
2460 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2461 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2463 /* Sum up the individual costs for each register class. */
2464 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2466 cl = ira_pressure_classes[pci];
2467 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2468 this_cost = model_excess_group_cost (&model_before_pressure,
2469 point, pci, delta);
2470 cost += this_cost;
2471 if (print_p)
2472 fprintf (sched_dump, " %s:[%d base cost %d]",
2473 reg_class_names[cl], delta, this_cost);
2476 if (print_p)
2477 fprintf (sched_dump, "\n");
2479 return cost;
2482 /* Dump the next points of maximum pressure for GROUP. */
2484 static void
2485 model_dump_pressure_points (struct model_pressure_group *group)
2487 int pci, cl;
2489 fprintf (sched_dump, ";;\t\t| pressure points");
2490 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2492 cl = ira_pressure_classes[pci];
2493 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2494 curr_reg_pressure[cl], group->limits[pci].pressure);
2495 if (group->limits[pci].point < model_num_insns)
2496 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2497 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2498 else
2499 fprintf (sched_dump, "end]");
2501 fprintf (sched_dump, "\n");
2504 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2506 static void
2507 model_set_excess_costs (rtx_insn **insns, int count)
2509 int i, cost, priority_base, priority;
2510 bool print_p;
2512 /* Record the baseECC value for each instruction in the model schedule,
2513 except that negative costs are converted to zero ones now rather than
2514 later. Do not assign a cost to debug instructions, since they must
2515 not change code-generation decisions. Experiments suggest we also
2516 get better results by not assigning a cost to instructions from
2517 a different block.
2519 Set PRIORITY_BASE to baseP in the block comment above. This is the
2520 maximum priority of the "cheap" instructions, which should always
2521 include the next model instruction. */
2522 priority_base = 0;
2523 print_p = false;
2524 for (i = 0; i < count; i++)
2525 if (INSN_MODEL_INDEX (insns[i]))
2527 if (sched_verbose >= 6 && !print_p)
2529 fprintf (sched_dump, MODEL_BAR);
2530 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2531 model_dump_pressure_points (&model_before_pressure);
2532 fprintf (sched_dump, MODEL_BAR);
2533 print_p = true;
2535 cost = model_excess_cost (insns[i], print_p);
2536 if (cost <= 0)
2538 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2539 priority_base = MAX (priority_base, priority);
2540 cost = 0;
2542 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2544 if (print_p)
2545 fprintf (sched_dump, MODEL_BAR);
2547 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2548 instruction. */
2549 for (i = 0; i < count; i++)
2551 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2552 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2553 if (cost > 0 && priority > priority_base)
2555 cost += priority_base - priority;
2556 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2562 /* Enum of rank_for_schedule heuristic decisions. */
2563 enum rfs_decision {
2564 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2565 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2566 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2567 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2568 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2570 /* Corresponding strings for print outs. */
2571 static const char *rfs_str[RFS_N] = {
2572 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2573 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2574 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2575 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2576 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2578 /* Statistical breakdown of rank_for_schedule decisions. */
2579 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2580 static rank_for_schedule_stats_t rank_for_schedule_stats;
2582 /* Return the result of comparing insns TMP and TMP2 and update
2583 Rank_For_Schedule statistics. */
2584 static int
2585 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2587 ++rank_for_schedule_stats.stats[decision];
2588 if (result < 0)
2589 INSN_LAST_RFS_WIN (tmp) = decision;
2590 else if (result > 0)
2591 INSN_LAST_RFS_WIN (tmp2) = decision;
2592 else
2593 gcc_unreachable ();
2594 return result;
2597 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2598 keeping normal insns in original order. */
2600 static int
2601 rank_for_schedule_debug (const void *x, const void *y)
2603 rtx_insn *tmp = *(rtx_insn * const *) y;
2604 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2606 /* Schedule debug insns as early as possible. */
2607 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2608 return -1;
2609 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2610 return 1;
2611 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2612 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2613 else
2614 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2617 /* Returns a positive value if x is preferred; returns a negative value if
2618 y is preferred. Should never return 0, since that will make the sort
2619 unstable. */
2621 static int
2622 rank_for_schedule (const void *x, const void *y)
2624 rtx_insn *tmp = *(rtx_insn * const *) y;
2625 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2626 int tmp_class, tmp2_class;
2627 int val, priority_val, info_val, diff;
2629 if (live_range_shrinkage_p)
2631 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2632 code. */
2633 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2634 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2635 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2636 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2637 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2638 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2639 /* Sort by INSN_LUID (original insn order), so that we make the
2640 sort stable. This minimizes instruction movement, thus
2641 minimizing sched's effect on debugging and cross-jumping. */
2642 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2643 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2646 /* The insn in a schedule group should be issued the first. */
2647 if (flag_sched_group_heuristic &&
2648 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2649 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2650 tmp, tmp2);
2652 /* Make sure that priority of TMP and TMP2 are initialized. */
2653 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2655 if (sched_fusion)
2657 /* The instruction that has the same fusion priority as the last
2658 instruction is the instruction we picked next. If that is not
2659 the case, we sort ready list firstly by fusion priority, then
2660 by priority, and at last by INSN_LUID. */
2661 int a = INSN_FUSION_PRIORITY (tmp);
2662 int b = INSN_FUSION_PRIORITY (tmp2);
2663 int last = -1;
2665 if (last_nondebug_scheduled_insn
2666 && !NOTE_P (last_nondebug_scheduled_insn)
2667 && BLOCK_FOR_INSN (tmp)
2668 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2669 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2671 if (a != last && b != last)
2673 if (a == b)
2675 a = INSN_PRIORITY (tmp);
2676 b = INSN_PRIORITY (tmp2);
2678 if (a != b)
2679 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2680 else
2681 return rfs_result (RFS_FUSION,
2682 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2684 else if (a == b)
2686 gcc_assert (last_nondebug_scheduled_insn
2687 && !NOTE_P (last_nondebug_scheduled_insn));
2688 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2690 a = abs (INSN_PRIORITY (tmp) - last);
2691 b = abs (INSN_PRIORITY (tmp2) - last);
2692 if (a != b)
2693 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2694 else
2695 return rfs_result (RFS_FUSION,
2696 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2698 else if (a == last)
2699 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2700 else
2701 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2704 if (sched_pressure != SCHED_PRESSURE_NONE)
2706 /* Prefer insn whose scheduling results in the smallest register
2707 pressure excess. */
2708 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2709 + insn_delay (tmp)
2710 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2711 - insn_delay (tmp2))))
2712 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2715 if (sched_pressure != SCHED_PRESSURE_NONE
2716 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2717 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2719 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2720 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2723 /* If we are doing backtracking in this schedule, prefer insns that
2724 have forward dependencies with negative cost against an insn that
2725 was already scheduled. */
2726 if (current_sched_info->flags & DO_BACKTRACKING)
2728 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2729 if (priority_val)
2730 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2733 /* Prefer insn with higher priority. */
2734 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2736 if (flag_sched_critical_path_heuristic && priority_val)
2737 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2739 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2741 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2742 if (autopref != 0)
2743 return autopref;
2746 /* Prefer speculative insn with greater dependencies weakness. */
2747 if (flag_sched_spec_insn_heuristic && spec_info)
2749 ds_t ds1, ds2;
2750 dw_t dw1, dw2;
2751 int dw;
2753 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2754 if (ds1)
2755 dw1 = ds_weak (ds1);
2756 else
2757 dw1 = NO_DEP_WEAK;
2759 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2760 if (ds2)
2761 dw2 = ds_weak (ds2);
2762 else
2763 dw2 = NO_DEP_WEAK;
2765 dw = dw2 - dw1;
2766 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2767 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2770 info_val = (*current_sched_info->rank) (tmp, tmp2);
2771 if (flag_sched_rank_heuristic && info_val)
2772 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2774 /* Compare insns based on their relation to the last scheduled
2775 non-debug insn. */
2776 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2778 dep_t dep1;
2779 dep_t dep2;
2780 rtx_insn *last = last_nondebug_scheduled_insn;
2782 /* Classify the instructions into three classes:
2783 1) Data dependent on last schedule insn.
2784 2) Anti/Output dependent on last scheduled insn.
2785 3) Independent of last scheduled insn, or has latency of one.
2786 Choose the insn from the highest numbered class if different. */
2787 dep1 = sd_find_dep_between (last, tmp, true);
2789 if (dep1 == NULL || dep_cost (dep1) == 1)
2790 tmp_class = 3;
2791 else if (/* Data dependence. */
2792 DEP_TYPE (dep1) == REG_DEP_TRUE)
2793 tmp_class = 1;
2794 else
2795 tmp_class = 2;
2797 dep2 = sd_find_dep_between (last, tmp2, true);
2799 if (dep2 == NULL || dep_cost (dep2) == 1)
2800 tmp2_class = 3;
2801 else if (/* Data dependence. */
2802 DEP_TYPE (dep2) == REG_DEP_TRUE)
2803 tmp2_class = 1;
2804 else
2805 tmp2_class = 2;
2807 if ((val = tmp2_class - tmp_class))
2808 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2811 /* Prefer instructions that occur earlier in the model schedule. */
2812 if (sched_pressure == SCHED_PRESSURE_MODEL
2813 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2815 diff = model_index (tmp) - model_index (tmp2);
2816 gcc_assert (diff != 0);
2817 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2820 /* Prefer the insn which has more later insns that depend on it.
2821 This gives the scheduler more freedom when scheduling later
2822 instructions at the expense of added register pressure. */
2824 val = (dep_list_size (tmp2, SD_LIST_FORW)
2825 - dep_list_size (tmp, SD_LIST_FORW));
2827 if (flag_sched_dep_count_heuristic && val != 0)
2828 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2830 /* If insns are equally good, sort by INSN_LUID (original insn order),
2831 so that we make the sort stable. This minimizes instruction movement,
2832 thus minimizing sched's effect on debugging and cross-jumping. */
2833 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2836 /* Resort the array A in which only element at index N may be out of order. */
2838 HAIFA_INLINE static void
2839 swap_sort (rtx_insn **a, int n)
2841 rtx_insn *insn = a[n - 1];
2842 int i = n - 2;
2844 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2846 a[i + 1] = a[i];
2847 i -= 1;
2849 a[i + 1] = insn;
2852 /* Add INSN to the insn queue so that it can be executed at least
2853 N_CYCLES after the currently executing insn. Preserve insns
2854 chain for debugging purposes. REASON will be printed in debugging
2855 output. */
2857 HAIFA_INLINE static void
2858 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2860 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2861 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2862 int new_tick;
2864 gcc_assert (n_cycles <= max_insn_queue_index);
2865 gcc_assert (!DEBUG_INSN_P (insn));
2867 insn_queue[next_q] = link;
2868 q_size += 1;
2870 if (sched_verbose >= 2)
2872 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2873 (*current_sched_info->print_insn) (insn, 0));
2875 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2878 QUEUE_INDEX (insn) = next_q;
2880 if (current_sched_info->flags & DO_BACKTRACKING)
2882 new_tick = clock_var + n_cycles;
2883 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2884 INSN_TICK (insn) = new_tick;
2886 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2887 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2889 must_backtrack = true;
2890 if (sched_verbose >= 2)
2891 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2896 /* Remove INSN from queue. */
2897 static void
2898 queue_remove (rtx_insn *insn)
2900 gcc_assert (QUEUE_INDEX (insn) >= 0);
2901 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2902 q_size--;
2903 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2906 /* Return a pointer to the bottom of the ready list, i.e. the insn
2907 with the lowest priority. */
2909 rtx_insn **
2910 ready_lastpos (struct ready_list *ready)
2912 gcc_assert (ready->n_ready >= 1);
2913 return ready->vec + ready->first - ready->n_ready + 1;
2916 /* Add an element INSN to the ready list so that it ends up with the
2917 lowest/highest priority depending on FIRST_P. */
2919 HAIFA_INLINE static void
2920 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2922 if (!first_p)
2924 if (ready->first == ready->n_ready)
2926 memmove (ready->vec + ready->veclen - ready->n_ready,
2927 ready_lastpos (ready),
2928 ready->n_ready * sizeof (rtx));
2929 ready->first = ready->veclen - 1;
2931 ready->vec[ready->first - ready->n_ready] = insn;
2933 else
2935 if (ready->first == ready->veclen - 1)
2937 if (ready->n_ready)
2938 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2939 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2940 ready_lastpos (ready),
2941 ready->n_ready * sizeof (rtx));
2942 ready->first = ready->veclen - 2;
2944 ready->vec[++(ready->first)] = insn;
2947 ready->n_ready++;
2948 if (DEBUG_INSN_P (insn))
2949 ready->n_debug++;
2951 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2952 QUEUE_INDEX (insn) = QUEUE_READY;
2954 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2955 && INSN_EXACT_TICK (insn) < clock_var)
2957 must_backtrack = true;
2961 /* Remove the element with the highest priority from the ready list and
2962 return it. */
2964 HAIFA_INLINE static rtx_insn *
2965 ready_remove_first (struct ready_list *ready)
2967 rtx_insn *t;
2969 gcc_assert (ready->n_ready);
2970 t = ready->vec[ready->first--];
2971 ready->n_ready--;
2972 if (DEBUG_INSN_P (t))
2973 ready->n_debug--;
2974 /* If the queue becomes empty, reset it. */
2975 if (ready->n_ready == 0)
2976 ready->first = ready->veclen - 1;
2978 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2979 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2981 return t;
2984 /* The following code implements multi-pass scheduling for the first
2985 cycle. In other words, we will try to choose ready insn which
2986 permits to start maximum number of insns on the same cycle. */
2988 /* Return a pointer to the element INDEX from the ready. INDEX for
2989 insn with the highest priority is 0, and the lowest priority has
2990 N_READY - 1. */
2992 rtx_insn *
2993 ready_element (struct ready_list *ready, int index)
2995 gcc_assert (ready->n_ready && index < ready->n_ready);
2997 return ready->vec[ready->first - index];
3000 /* Remove the element INDEX from the ready list and return it. INDEX
3001 for insn with the highest priority is 0, and the lowest priority
3002 has N_READY - 1. */
3004 HAIFA_INLINE static rtx_insn *
3005 ready_remove (struct ready_list *ready, int index)
3007 rtx_insn *t;
3008 int i;
3010 if (index == 0)
3011 return ready_remove_first (ready);
3012 gcc_assert (ready->n_ready && index < ready->n_ready);
3013 t = ready->vec[ready->first - index];
3014 ready->n_ready--;
3015 if (DEBUG_INSN_P (t))
3016 ready->n_debug--;
3017 for (i = index; i < ready->n_ready; i++)
3018 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3019 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3020 return t;
3023 /* Remove INSN from the ready list. */
3024 static void
3025 ready_remove_insn (rtx_insn *insn)
3027 int i;
3029 for (i = 0; i < readyp->n_ready; i++)
3030 if (ready_element (readyp, i) == insn)
3032 ready_remove (readyp, i);
3033 return;
3035 gcc_unreachable ();
3038 /* Calculate difference of two statistics set WAS and NOW.
3039 Result returned in WAS. */
3040 static void
3041 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3042 const rank_for_schedule_stats_t *now)
3044 for (int i = 0; i < RFS_N; ++i)
3045 was->stats[i] = now->stats[i] - was->stats[i];
3048 /* Print rank_for_schedule statistics. */
3049 static void
3050 print_rank_for_schedule_stats (const char *prefix,
3051 const rank_for_schedule_stats_t *stats,
3052 struct ready_list *ready)
3054 for (int i = 0; i < RFS_N; ++i)
3055 if (stats->stats[i])
3057 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3059 if (ready != NULL)
3060 /* Print out insns that won due to RFS_<I>. */
3062 rtx_insn **p = ready_lastpos (ready);
3064 fprintf (sched_dump, ":");
3065 /* Start with 1 since least-priority insn didn't have any wins. */
3066 for (int j = 1; j < ready->n_ready; ++j)
3067 if (INSN_LAST_RFS_WIN (p[j]) == i)
3068 fprintf (sched_dump, " %s",
3069 (*current_sched_info->print_insn) (p[j], 0));
3071 fprintf (sched_dump, "\n");
3075 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3076 of array. */
3077 static void
3078 ready_sort_debug (struct ready_list *ready)
3080 int i;
3081 rtx_insn **first = ready_lastpos (ready);
3083 for (i = 0; i < ready->n_ready; ++i)
3084 if (!DEBUG_INSN_P (first[i]))
3085 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3087 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3090 /* Sort non-debug insns in the ready list READY by ascending priority.
3091 Assumes that all debug insns are separated from the real insns. */
3092 static void
3093 ready_sort_real (struct ready_list *ready)
3095 int i;
3096 rtx_insn **first = ready_lastpos (ready);
3097 int n_ready_real = ready->n_ready - ready->n_debug;
3099 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3100 for (i = 0; i < n_ready_real; ++i)
3101 setup_insn_reg_pressure_info (first[i]);
3102 else if (sched_pressure == SCHED_PRESSURE_MODEL
3103 && model_curr_point < model_num_insns)
3104 model_set_excess_costs (first, n_ready_real);
3106 rank_for_schedule_stats_t stats1;
3107 if (sched_verbose >= 4)
3108 stats1 = rank_for_schedule_stats;
3110 if (n_ready_real == 2)
3111 swap_sort (first, n_ready_real);
3112 else if (n_ready_real > 2)
3113 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3115 if (sched_verbose >= 4)
3117 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3118 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3122 /* Sort the ready list READY by ascending priority. */
3123 static void
3124 ready_sort (struct ready_list *ready)
3126 if (ready->n_debug > 0)
3127 ready_sort_debug (ready);
3128 else
3129 ready_sort_real (ready);
3132 /* PREV is an insn that is ready to execute. Adjust its priority if that
3133 will help shorten or lengthen register lifetimes as appropriate. Also
3134 provide a hook for the target to tweak itself. */
3136 HAIFA_INLINE static void
3137 adjust_priority (rtx_insn *prev)
3139 /* ??? There used to be code here to try and estimate how an insn
3140 affected register lifetimes, but it did it by looking at REG_DEAD
3141 notes, which we removed in schedule_region. Nor did it try to
3142 take into account register pressure or anything useful like that.
3144 Revisit when we have a machine model to work with and not before. */
3146 if (targetm.sched.adjust_priority)
3147 INSN_PRIORITY (prev) =
3148 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3151 /* Advance DFA state STATE on one cycle. */
3152 void
3153 advance_state (state_t state)
3155 if (targetm.sched.dfa_pre_advance_cycle)
3156 targetm.sched.dfa_pre_advance_cycle ();
3158 if (targetm.sched.dfa_pre_cycle_insn)
3159 state_transition (state,
3160 targetm.sched.dfa_pre_cycle_insn ());
3162 state_transition (state, NULL);
3164 if (targetm.sched.dfa_post_cycle_insn)
3165 state_transition (state,
3166 targetm.sched.dfa_post_cycle_insn ());
3168 if (targetm.sched.dfa_post_advance_cycle)
3169 targetm.sched.dfa_post_advance_cycle ();
3172 /* Advance time on one cycle. */
3173 HAIFA_INLINE static void
3174 advance_one_cycle (void)
3176 advance_state (curr_state);
3177 if (sched_verbose >= 4)
3178 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3181 /* Update register pressure after scheduling INSN. */
3182 static void
3183 update_register_pressure (rtx_insn *insn)
3185 struct reg_use_data *use;
3186 struct reg_set_data *set;
3188 gcc_checking_assert (!DEBUG_INSN_P (insn));
3190 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3191 if (dying_use_p (use))
3192 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3193 use->regno, false);
3194 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3195 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3196 set->regno, true);
3199 /* Set up or update (if UPDATE_P) max register pressure (see its
3200 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3201 after insn AFTER. */
3202 static void
3203 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3205 int i, p;
3206 bool eq_p;
3207 rtx_insn *insn;
3208 static int max_reg_pressure[N_REG_CLASSES];
3210 save_reg_pressure ();
3211 for (i = 0; i < ira_pressure_classes_num; i++)
3212 max_reg_pressure[ira_pressure_classes[i]]
3213 = curr_reg_pressure[ira_pressure_classes[i]];
3214 for (insn = NEXT_INSN (after);
3215 insn != NULL_RTX && ! BARRIER_P (insn)
3216 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3217 insn = NEXT_INSN (insn))
3218 if (NONDEBUG_INSN_P (insn))
3220 eq_p = true;
3221 for (i = 0; i < ira_pressure_classes_num; i++)
3223 p = max_reg_pressure[ira_pressure_classes[i]];
3224 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3226 eq_p = false;
3227 INSN_MAX_REG_PRESSURE (insn)[i]
3228 = max_reg_pressure[ira_pressure_classes[i]];
3231 if (update_p && eq_p)
3232 break;
3233 update_register_pressure (insn);
3234 for (i = 0; i < ira_pressure_classes_num; i++)
3235 if (max_reg_pressure[ira_pressure_classes[i]]
3236 < curr_reg_pressure[ira_pressure_classes[i]])
3237 max_reg_pressure[ira_pressure_classes[i]]
3238 = curr_reg_pressure[ira_pressure_classes[i]];
3240 restore_reg_pressure ();
3243 /* Update the current register pressure after scheduling INSN. Update
3244 also max register pressure for unscheduled insns of the current
3245 BB. */
3246 static void
3247 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3249 int i;
3250 int before[N_REG_CLASSES];
3252 for (i = 0; i < ira_pressure_classes_num; i++)
3253 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3254 update_register_pressure (insn);
3255 for (i = 0; i < ira_pressure_classes_num; i++)
3256 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3257 break;
3258 if (i < ira_pressure_classes_num)
3259 setup_insn_max_reg_pressure (insn, true);
3262 /* Set up register pressure at the beginning of basic block BB whose
3263 insns starting after insn AFTER. Set up also max register pressure
3264 for all insns of the basic block. */
3265 void
3266 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3268 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3269 initiate_bb_reg_pressure_info (bb);
3270 setup_insn_max_reg_pressure (after, false);
3273 /* If doing predication while scheduling, verify whether INSN, which
3274 has just been scheduled, clobbers the conditions of any
3275 instructions that must be predicated in order to break their
3276 dependencies. If so, remove them from the queues so that they will
3277 only be scheduled once their control dependency is resolved. */
3279 static void
3280 check_clobbered_conditions (rtx_insn *insn)
3282 HARD_REG_SET t;
3283 int i;
3285 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3286 return;
3288 find_all_hard_reg_sets (insn, &t, true);
3290 restart:
3291 for (i = 0; i < ready.n_ready; i++)
3293 rtx_insn *x = ready_element (&ready, i);
3294 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3296 ready_remove_insn (x);
3297 goto restart;
3300 for (i = 0; i <= max_insn_queue_index; i++)
3302 rtx_insn_list *link;
3303 int q = NEXT_Q_AFTER (q_ptr, i);
3305 restart_queue:
3306 for (link = insn_queue[q]; link; link = link->next ())
3308 rtx_insn *x = link->insn ();
3309 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3311 queue_remove (x);
3312 goto restart_queue;
3318 /* Return (in order):
3320 - positive if INSN adversely affects the pressure on one
3321 register class
3323 - negative if INSN reduces the pressure on one register class
3325 - 0 if INSN doesn't affect the pressure on any register class. */
3327 static int
3328 model_classify_pressure (struct model_insn_info *insn)
3330 struct reg_pressure_data *reg_pressure;
3331 int death[N_REG_CLASSES];
3332 int pci, cl, sum;
3334 calculate_reg_deaths (insn->insn, death);
3335 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3336 sum = 0;
3337 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3339 cl = ira_pressure_classes[pci];
3340 if (death[cl] < reg_pressure[pci].set_increase)
3341 return 1;
3342 sum += reg_pressure[pci].set_increase - death[cl];
3344 return sum;
3347 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3349 static int
3350 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3352 unsigned int height1, height2;
3353 unsigned int priority1, priority2;
3355 /* Prefer instructions with a higher model priority. */
3356 if (insn1->model_priority != insn2->model_priority)
3357 return insn1->model_priority > insn2->model_priority;
3359 /* Combine the length of the longest path of satisfied true dependencies
3360 that leads to each instruction (depth) with the length of the longest
3361 path of any dependencies that leads from the instruction (alap).
3362 Prefer instructions with the greatest combined length. If the combined
3363 lengths are equal, prefer instructions with the greatest depth.
3365 The idea is that, if we have a set S of "equal" instructions that each
3366 have ALAP value X, and we pick one such instruction I, any true-dependent
3367 successors of I that have ALAP value X - 1 should be preferred over S.
3368 This encourages the schedule to be "narrow" rather than "wide".
3369 However, if I is a low-priority instruction that we decided to
3370 schedule because of its model_classify_pressure, and if there
3371 is a set of higher-priority instructions T, the aforementioned
3372 successors of I should not have the edge over T. */
3373 height1 = insn1->depth + insn1->alap;
3374 height2 = insn2->depth + insn2->alap;
3375 if (height1 != height2)
3376 return height1 > height2;
3377 if (insn1->depth != insn2->depth)
3378 return insn1->depth > insn2->depth;
3380 /* We have no real preference between INSN1 an INSN2 as far as attempts
3381 to reduce pressure go. Prefer instructions with higher priorities. */
3382 priority1 = INSN_PRIORITY (insn1->insn);
3383 priority2 = INSN_PRIORITY (insn2->insn);
3384 if (priority1 != priority2)
3385 return priority1 > priority2;
3387 /* Use the original rtl sequence as a tie-breaker. */
3388 return insn1 < insn2;
3391 /* Add INSN to the model worklist immediately after PREV. Add it to the
3392 beginning of the list if PREV is null. */
3394 static void
3395 model_add_to_worklist_at (struct model_insn_info *insn,
3396 struct model_insn_info *prev)
3398 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3399 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3401 insn->prev = prev;
3402 if (prev)
3404 insn->next = prev->next;
3405 prev->next = insn;
3407 else
3409 insn->next = model_worklist;
3410 model_worklist = insn;
3412 if (insn->next)
3413 insn->next->prev = insn;
3416 /* Remove INSN from the model worklist. */
3418 static void
3419 model_remove_from_worklist (struct model_insn_info *insn)
3421 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3422 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3424 if (insn->prev)
3425 insn->prev->next = insn->next;
3426 else
3427 model_worklist = insn->next;
3428 if (insn->next)
3429 insn->next->prev = insn->prev;
3432 /* Add INSN to the model worklist. Start looking for a suitable position
3433 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3434 insns either side. A null PREV indicates the beginning of the list and
3435 a null NEXT indicates the end. */
3437 static void
3438 model_add_to_worklist (struct model_insn_info *insn,
3439 struct model_insn_info *prev,
3440 struct model_insn_info *next)
3442 int count;
3444 count = MAX_SCHED_READY_INSNS;
3445 if (count > 0 && prev && model_order_p (insn, prev))
3448 count--;
3449 prev = prev->prev;
3451 while (count > 0 && prev && model_order_p (insn, prev));
3452 else
3453 while (count > 0 && next && model_order_p (next, insn))
3455 count--;
3456 prev = next;
3457 next = next->next;
3459 model_add_to_worklist_at (insn, prev);
3462 /* INSN may now have a higher priority (in the model_order_p sense)
3463 than before. Move it up the worklist if necessary. */
3465 static void
3466 model_promote_insn (struct model_insn_info *insn)
3468 struct model_insn_info *prev;
3469 int count;
3471 prev = insn->prev;
3472 count = MAX_SCHED_READY_INSNS;
3473 while (count > 0 && prev && model_order_p (insn, prev))
3475 count--;
3476 prev = prev->prev;
3478 if (prev != insn->prev)
3480 model_remove_from_worklist (insn);
3481 model_add_to_worklist_at (insn, prev);
3485 /* Add INSN to the end of the model schedule. */
3487 static void
3488 model_add_to_schedule (rtx_insn *insn)
3490 unsigned int point;
3492 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3493 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3495 point = model_schedule.length ();
3496 model_schedule.quick_push (insn);
3497 INSN_MODEL_INDEX (insn) = point + 1;
3500 /* Analyze the instructions that are to be scheduled, setting up
3501 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3502 instructions to model_worklist. */
3504 static void
3505 model_analyze_insns (void)
3507 rtx_insn *start, *end, *iter;
3508 sd_iterator_def sd_it;
3509 dep_t dep;
3510 struct model_insn_info *insn, *con;
3512 model_num_insns = 0;
3513 start = PREV_INSN (current_sched_info->next_tail);
3514 end = current_sched_info->prev_head;
3515 for (iter = start; iter != end; iter = PREV_INSN (iter))
3516 if (NONDEBUG_INSN_P (iter))
3518 insn = MODEL_INSN_INFO (iter);
3519 insn->insn = iter;
3520 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3522 con = MODEL_INSN_INFO (DEP_CON (dep));
3523 if (con->insn && insn->alap < con->alap + 1)
3524 insn->alap = con->alap + 1;
3527 insn->old_queue = QUEUE_INDEX (iter);
3528 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3530 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3531 if (insn->unscheduled_preds == 0)
3532 model_add_to_worklist (insn, NULL, model_worklist);
3534 model_num_insns++;
3538 /* The global state describes the register pressure at the start of the
3539 model schedule. Initialize GROUP accordingly. */
3541 static void
3542 model_init_pressure_group (struct model_pressure_group *group)
3544 int pci, cl;
3546 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3548 cl = ira_pressure_classes[pci];
3549 group->limits[pci].pressure = curr_reg_pressure[cl];
3550 group->limits[pci].point = 0;
3552 /* Use index model_num_insns to record the state after the last
3553 instruction in the model schedule. */
3554 group->model = XNEWVEC (struct model_pressure_data,
3555 (model_num_insns + 1) * ira_pressure_classes_num);
3558 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3559 Update the maximum pressure for the whole schedule. */
3561 static void
3562 model_record_pressure (struct model_pressure_group *group,
3563 int point, int pci, int pressure)
3565 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3566 if (group->limits[pci].pressure < pressure)
3568 group->limits[pci].pressure = pressure;
3569 group->limits[pci].point = point;
3573 /* INSN has just been added to the end of the model schedule. Record its
3574 register-pressure information. */
3576 static void
3577 model_record_pressures (struct model_insn_info *insn)
3579 struct reg_pressure_data *reg_pressure;
3580 int point, pci, cl, delta;
3581 int death[N_REG_CLASSES];
3583 point = model_index (insn->insn);
3584 if (sched_verbose >= 2)
3586 if (point == 0)
3588 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3589 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3591 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3592 point, INSN_UID (insn->insn), insn->model_priority,
3593 insn->depth + insn->alap, insn->depth,
3594 INSN_PRIORITY (insn->insn),
3595 str_pattern_slim (PATTERN (insn->insn)));
3597 calculate_reg_deaths (insn->insn, death);
3598 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3599 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3601 cl = ira_pressure_classes[pci];
3602 delta = reg_pressure[pci].set_increase - death[cl];
3603 if (sched_verbose >= 2)
3604 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3605 curr_reg_pressure[cl], delta);
3606 model_record_pressure (&model_before_pressure, point, pci,
3607 curr_reg_pressure[cl]);
3609 if (sched_verbose >= 2)
3610 fprintf (sched_dump, "\n");
3613 /* All instructions have been added to the model schedule. Record the
3614 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3616 static void
3617 model_record_final_pressures (struct model_pressure_group *group)
3619 int point, pci, max_pressure, ref_pressure, cl;
3621 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3623 /* Record the final pressure for this class. */
3624 cl = ira_pressure_classes[pci];
3625 point = model_num_insns;
3626 ref_pressure = curr_reg_pressure[cl];
3627 model_record_pressure (group, point, pci, ref_pressure);
3629 /* Record the original maximum pressure. */
3630 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3632 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3633 max_pressure = ref_pressure;
3634 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3635 while (point > 0)
3637 point--;
3638 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3639 max_pressure = MAX (max_pressure, ref_pressure);
3640 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3645 /* Update all successors of INSN, given that INSN has just been scheduled. */
3647 static void
3648 model_add_successors_to_worklist (struct model_insn_info *insn)
3650 sd_iterator_def sd_it;
3651 struct model_insn_info *con;
3652 dep_t dep;
3654 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3656 con = MODEL_INSN_INFO (DEP_CON (dep));
3657 /* Ignore debug instructions, and instructions from other blocks. */
3658 if (con->insn)
3660 con->unscheduled_preds--;
3662 /* Update the depth field of each true-dependent successor.
3663 Increasing the depth gives them a higher priority than
3664 before. */
3665 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3667 con->depth = insn->depth + 1;
3668 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3669 model_promote_insn (con);
3672 /* If this is a true dependency, or if there are no remaining
3673 dependencies for CON (meaning that CON only had non-true
3674 dependencies), make sure that CON is on the worklist.
3675 We don't bother otherwise because it would tend to fill the
3676 worklist with a lot of low-priority instructions that are not
3677 yet ready to issue. */
3678 if ((con->depth > 0 || con->unscheduled_preds == 0)
3679 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3680 model_add_to_worklist (con, insn, insn->next);
3685 /* Give INSN a higher priority than any current instruction, then give
3686 unscheduled predecessors of INSN a higher priority still. If any of
3687 those predecessors are not on the model worklist, do the same for its
3688 predecessors, and so on. */
3690 static void
3691 model_promote_predecessors (struct model_insn_info *insn)
3693 struct model_insn_info *pro, *first;
3694 sd_iterator_def sd_it;
3695 dep_t dep;
3697 if (sched_verbose >= 7)
3698 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3699 INSN_UID (insn->insn), model_next_priority);
3700 insn->model_priority = model_next_priority++;
3701 model_remove_from_worklist (insn);
3702 model_add_to_worklist_at (insn, NULL);
3704 first = NULL;
3705 for (;;)
3707 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3709 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3710 /* The first test is to ignore debug instructions, and instructions
3711 from other blocks. */
3712 if (pro->insn
3713 && pro->model_priority != model_next_priority
3714 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3716 pro->model_priority = model_next_priority;
3717 if (sched_verbose >= 7)
3718 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3719 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3721 /* PRO is already in the worklist, but it now has
3722 a higher priority than before. Move it at the
3723 appropriate place. */
3724 model_remove_from_worklist (pro);
3725 model_add_to_worklist (pro, NULL, model_worklist);
3727 else
3729 /* PRO isn't in the worklist. Recursively process
3730 its predecessors until we find one that is. */
3731 pro->next = first;
3732 first = pro;
3736 if (!first)
3737 break;
3738 insn = first;
3739 first = insn->next;
3741 if (sched_verbose >= 7)
3742 fprintf (sched_dump, " = %d\n", model_next_priority);
3743 model_next_priority++;
3746 /* Pick one instruction from model_worklist and process it. */
3748 static void
3749 model_choose_insn (void)
3751 struct model_insn_info *insn, *fallback;
3752 int count;
3754 if (sched_verbose >= 7)
3756 fprintf (sched_dump, ";;\t+--- worklist:\n");
3757 insn = model_worklist;
3758 count = MAX_SCHED_READY_INSNS;
3759 while (count > 0 && insn)
3761 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3762 INSN_UID (insn->insn), insn->model_priority,
3763 insn->depth + insn->alap, insn->depth,
3764 INSN_PRIORITY (insn->insn));
3765 count--;
3766 insn = insn->next;
3770 /* Look for a ready instruction whose model_classify_priority is zero
3771 or negative, picking the highest-priority one. Adding such an
3772 instruction to the schedule now should do no harm, and may actually
3773 do some good.
3775 Failing that, see whether there is an instruction with the highest
3776 extant model_priority that is not yet ready, but which would reduce
3777 pressure if it became ready. This is designed to catch cases like:
3779 (set (mem (reg R1)) (reg R2))
3781 where the instruction is the last remaining use of R1 and where the
3782 value of R2 is not yet available (or vice versa). The death of R1
3783 means that this instruction already reduces pressure. It is of
3784 course possible that the computation of R2 involves other registers
3785 that are hard to kill, but such cases are rare enough for this
3786 heuristic to be a win in general.
3788 Failing that, just pick the highest-priority instruction in the
3789 worklist. */
3790 count = MAX_SCHED_READY_INSNS;
3791 insn = model_worklist;
3792 fallback = 0;
3793 for (;;)
3795 if (count == 0 || !insn)
3797 insn = fallback ? fallback : model_worklist;
3798 break;
3800 if (insn->unscheduled_preds)
3802 if (model_worklist->model_priority == insn->model_priority
3803 && !fallback
3804 && model_classify_pressure (insn) < 0)
3805 fallback = insn;
3807 else
3809 if (model_classify_pressure (insn) <= 0)
3810 break;
3812 count--;
3813 insn = insn->next;
3816 if (sched_verbose >= 7 && insn != model_worklist)
3818 if (insn->unscheduled_preds)
3819 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3820 INSN_UID (insn->insn));
3821 else
3822 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3823 INSN_UID (insn->insn));
3825 if (insn->unscheduled_preds)
3826 /* INSN isn't yet ready to issue. Give all its predecessors the
3827 highest priority. */
3828 model_promote_predecessors (insn);
3829 else
3831 /* INSN is ready. Add it to the end of model_schedule and
3832 process its successors. */
3833 model_add_successors_to_worklist (insn);
3834 model_remove_from_worklist (insn);
3835 model_add_to_schedule (insn->insn);
3836 model_record_pressures (insn);
3837 update_register_pressure (insn->insn);
3841 /* Restore all QUEUE_INDEXs to the values that they had before
3842 model_start_schedule was called. */
3844 static void
3845 model_reset_queue_indices (void)
3847 unsigned int i;
3848 rtx_insn *insn;
3850 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3851 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3854 /* We have calculated the model schedule and spill costs. Print a summary
3855 to sched_dump. */
3857 static void
3858 model_dump_pressure_summary (void)
3860 int pci, cl;
3862 fprintf (sched_dump, ";; Pressure summary:");
3863 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3865 cl = ira_pressure_classes[pci];
3866 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3867 model_before_pressure.limits[pci].pressure);
3869 fprintf (sched_dump, "\n\n");
3872 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3873 scheduling region. */
3875 static void
3876 model_start_schedule (basic_block bb)
3878 model_next_priority = 1;
3879 model_schedule.create (sched_max_luid);
3880 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3882 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3883 initiate_reg_pressure_info (df_get_live_in (bb));
3885 model_analyze_insns ();
3886 model_init_pressure_group (&model_before_pressure);
3887 while (model_worklist)
3888 model_choose_insn ();
3889 gcc_assert (model_num_insns == (int) model_schedule.length ());
3890 if (sched_verbose >= 2)
3891 fprintf (sched_dump, "\n");
3893 model_record_final_pressures (&model_before_pressure);
3894 model_reset_queue_indices ();
3896 XDELETEVEC (model_insns);
3898 model_curr_point = 0;
3899 initiate_reg_pressure_info (df_get_live_in (bb));
3900 if (sched_verbose >= 1)
3901 model_dump_pressure_summary ();
3904 /* Free the information associated with GROUP. */
3906 static void
3907 model_finalize_pressure_group (struct model_pressure_group *group)
3909 XDELETEVEC (group->model);
3912 /* Free the information created by model_start_schedule. */
3914 static void
3915 model_end_schedule (void)
3917 model_finalize_pressure_group (&model_before_pressure);
3918 model_schedule.release ();
3921 /* Prepare reg pressure scheduling for basic block BB. */
3922 static void
3923 sched_pressure_start_bb (basic_block bb)
3925 /* Set the number of available registers for each class taking into account
3926 relative probability of current basic block versus function prologue and
3927 epilogue.
3928 * If the basic block executes much more often than the prologue/epilogue
3929 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3930 nil, so the effective number of available registers is
3931 (ira_class_hard_regs_num[cl] - 0).
3932 * If the basic block executes as often as the prologue/epilogue,
3933 then spill in the block is as costly as in the prologue, so the effective
3934 number of available registers is
3935 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3936 Note that all-else-equal, we prefer to spill in the prologue, since that
3937 allows "extra" registers for other basic blocks of the function.
3938 * If the basic block is on the cold path of the function and executes
3939 rarely, then we should always prefer to spill in the block, rather than
3940 in the prologue/epilogue. The effective number of available register is
3941 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3943 int i;
3944 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3945 int bb_freq = bb->frequency;
3947 if (bb_freq == 0)
3949 if (entry_freq == 0)
3950 entry_freq = bb_freq = 1;
3952 if (bb_freq < entry_freq)
3953 bb_freq = entry_freq;
3955 for (i = 0; i < ira_pressure_classes_num; ++i)
3957 enum reg_class cl = ira_pressure_classes[i];
3958 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3959 sched_class_regs_num[cl]
3960 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3964 if (sched_pressure == SCHED_PRESSURE_MODEL)
3965 model_start_schedule (bb);
3968 /* A structure that holds local state for the loop in schedule_block. */
3969 struct sched_block_state
3971 /* True if no real insns have been scheduled in the current cycle. */
3972 bool first_cycle_insn_p;
3973 /* True if a shadow insn has been scheduled in the current cycle, which
3974 means that no more normal insns can be issued. */
3975 bool shadows_only_p;
3976 /* True if we're winding down a modulo schedule, which means that we only
3977 issue insns with INSN_EXACT_TICK set. */
3978 bool modulo_epilogue;
3979 /* Initialized with the machine's issue rate every cycle, and updated
3980 by calls to the variable_issue hook. */
3981 int can_issue_more;
3984 /* INSN is the "currently executing insn". Launch each insn which was
3985 waiting on INSN. READY is the ready list which contains the insns
3986 that are ready to fire. CLOCK is the current cycle. The function
3987 returns necessary cycle advance after issuing the insn (it is not
3988 zero for insns in a schedule group). */
3990 static int
3991 schedule_insn (rtx_insn *insn)
3993 sd_iterator_def sd_it;
3994 dep_t dep;
3995 int i;
3996 int advance = 0;
3998 if (sched_verbose >= 1)
4000 struct reg_pressure_data *pressure_info;
4001 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4002 clock_var, (*current_sched_info->print_insn) (insn, 1),
4003 str_pattern_slim (PATTERN (insn)));
4005 if (recog_memoized (insn) < 0)
4006 fprintf (sched_dump, "nothing");
4007 else
4008 print_reservation (sched_dump, insn);
4009 pressure_info = INSN_REG_PRESSURE (insn);
4010 if (pressure_info != NULL)
4012 fputc (':', sched_dump);
4013 for (i = 0; i < ira_pressure_classes_num; i++)
4014 fprintf (sched_dump, "%s%s%+d(%d)",
4015 scheduled_insns.length () > 1
4016 && INSN_LUID (insn)
4017 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4018 reg_class_names[ira_pressure_classes[i]],
4019 pressure_info[i].set_increase, pressure_info[i].change);
4021 if (sched_pressure == SCHED_PRESSURE_MODEL
4022 && model_curr_point < model_num_insns
4023 && model_index (insn) == model_curr_point)
4024 fprintf (sched_dump, ":model %d", model_curr_point);
4025 fputc ('\n', sched_dump);
4028 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4029 update_reg_and_insn_max_reg_pressure (insn);
4031 /* Scheduling instruction should have all its dependencies resolved and
4032 should have been removed from the ready list. */
4033 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4035 /* Reset debug insns invalidated by moving this insn. */
4036 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4037 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4038 sd_iterator_cond (&sd_it, &dep);)
4040 rtx_insn *dbg = DEP_PRO (dep);
4041 struct reg_use_data *use, *next;
4043 if (DEP_STATUS (dep) & DEP_CANCELLED)
4045 sd_iterator_next (&sd_it);
4046 continue;
4049 gcc_assert (DEBUG_INSN_P (dbg));
4051 if (sched_verbose >= 6)
4052 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4053 INSN_UID (dbg));
4055 /* ??? Rather than resetting the debug insn, we might be able
4056 to emit a debug temp before the just-scheduled insn, but
4057 this would involve checking that the expression at the
4058 point of the debug insn is equivalent to the expression
4059 before the just-scheduled insn. They might not be: the
4060 expression in the debug insn may depend on other insns not
4061 yet scheduled that set MEMs, REGs or even other debug
4062 insns. It's not clear that attempting to preserve debug
4063 information in these cases is worth the effort, given how
4064 uncommon these resets are and the likelihood that the debug
4065 temps introduced won't survive the schedule change. */
4066 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4067 df_insn_rescan (dbg);
4069 /* Unknown location doesn't use any registers. */
4070 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4072 struct reg_use_data *prev = use;
4074 /* Remove use from the cyclic next_regno_use chain first. */
4075 while (prev->next_regno_use != use)
4076 prev = prev->next_regno_use;
4077 prev->next_regno_use = use->next_regno_use;
4078 next = use->next_insn_use;
4079 free (use);
4081 INSN_REG_USE_LIST (dbg) = NULL;
4083 /* We delete rather than resolve these deps, otherwise we
4084 crash in sched_free_deps(), because forward deps are
4085 expected to be released before backward deps. */
4086 sd_delete_dep (sd_it);
4089 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4090 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4092 if (sched_pressure == SCHED_PRESSURE_MODEL
4093 && model_curr_point < model_num_insns
4094 && NONDEBUG_INSN_P (insn))
4096 if (model_index (insn) == model_curr_point)
4098 model_curr_point++;
4099 while (model_curr_point < model_num_insns
4100 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4101 == QUEUE_SCHEDULED));
4102 else
4103 model_recompute (insn);
4104 model_update_limit_points ();
4105 update_register_pressure (insn);
4106 if (sched_verbose >= 2)
4107 print_curr_reg_pressure ();
4110 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4111 if (INSN_TICK (insn) > clock_var)
4112 /* INSN has been prematurely moved from the queue to the ready list.
4113 This is possible only if following flags are set. */
4114 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4116 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4117 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4118 INSN_TICK (insn) = clock_var;
4120 check_clobbered_conditions (insn);
4122 /* Update dependent instructions. First, see if by scheduling this insn
4123 now we broke a dependence in a way that requires us to change another
4124 insn. */
4125 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4126 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4128 struct dep_replacement *desc = DEP_REPLACE (dep);
4129 rtx_insn *pro = DEP_PRO (dep);
4130 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4131 && desc != NULL && desc->insn == pro)
4132 apply_replacement (dep, false);
4135 /* Go through and resolve forward dependencies. */
4136 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4137 sd_iterator_cond (&sd_it, &dep);)
4139 rtx_insn *next = DEP_CON (dep);
4140 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4142 /* Resolve the dependence between INSN and NEXT.
4143 sd_resolve_dep () moves current dep to another list thus
4144 advancing the iterator. */
4145 sd_resolve_dep (sd_it);
4147 if (cancelled)
4149 if (must_restore_pattern_p (next, dep))
4150 restore_pattern (dep, false);
4151 continue;
4154 /* Don't bother trying to mark next as ready if insn is a debug
4155 insn. If insn is the last hard dependency, it will have
4156 already been discounted. */
4157 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4158 continue;
4160 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4162 int effective_cost;
4164 effective_cost = try_ready (next);
4166 if (effective_cost >= 0
4167 && SCHED_GROUP_P (next)
4168 && advance < effective_cost)
4169 advance = effective_cost;
4171 else
4172 /* Check always has only one forward dependence (to the first insn in
4173 the recovery block), therefore, this will be executed only once. */
4175 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4176 fix_recovery_deps (RECOVERY_BLOCK (insn));
4180 /* Annotate the instruction with issue information -- TImode
4181 indicates that the instruction is expected not to be able
4182 to issue on the same cycle as the previous insn. A machine
4183 may use this information to decide how the instruction should
4184 be aligned. */
4185 if (issue_rate > 1
4186 && GET_CODE (PATTERN (insn)) != USE
4187 && GET_CODE (PATTERN (insn)) != CLOBBER
4188 && !DEBUG_INSN_P (insn))
4190 if (reload_completed)
4191 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4192 last_clock_var = clock_var;
4195 if (nonscheduled_insns_begin != NULL_RTX)
4196 /* Indicate to debug counters that INSN is scheduled. */
4197 nonscheduled_insns_begin = insn;
4199 return advance;
4202 /* Functions for handling of notes. */
4204 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4205 void
4206 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4208 rtx_insn *from_start;
4210 /* It's easy when have nothing to concat. */
4211 if (from_end == NULL)
4212 return;
4214 /* It's also easy when destination is empty. */
4215 if (*to_endp == NULL)
4217 *to_endp = from_end;
4218 return;
4221 from_start = from_end;
4222 while (PREV_INSN (from_start) != NULL)
4223 from_start = PREV_INSN (from_start);
4225 SET_PREV_INSN (from_start) = *to_endp;
4226 SET_NEXT_INSN (*to_endp) = from_start;
4227 *to_endp = from_end;
4230 /* Delete notes between HEAD and TAIL and put them in the chain
4231 of notes ended by NOTE_LIST. */
4232 void
4233 remove_notes (rtx_insn *head, rtx_insn *tail)
4235 rtx_insn *next_tail, *insn, *next;
4237 note_list = 0;
4238 if (head == tail && !INSN_P (head))
4239 return;
4241 next_tail = NEXT_INSN (tail);
4242 for (insn = head; insn != next_tail; insn = next)
4244 next = NEXT_INSN (insn);
4245 if (!NOTE_P (insn))
4246 continue;
4248 switch (NOTE_KIND (insn))
4250 case NOTE_INSN_BASIC_BLOCK:
4251 continue;
4253 case NOTE_INSN_EPILOGUE_BEG:
4254 if (insn != tail)
4256 remove_insn (insn);
4257 add_reg_note (next, REG_SAVE_NOTE,
4258 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4259 break;
4261 /* FALLTHRU */
4263 default:
4264 remove_insn (insn);
4266 /* Add the note to list that ends at NOTE_LIST. */
4267 SET_PREV_INSN (insn) = note_list;
4268 SET_NEXT_INSN (insn) = NULL_RTX;
4269 if (note_list)
4270 SET_NEXT_INSN (note_list) = insn;
4271 note_list = insn;
4272 break;
4275 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4279 /* A structure to record enough data to allow us to backtrack the scheduler to
4280 a previous state. */
4281 struct haifa_saved_data
4283 /* Next entry on the list. */
4284 struct haifa_saved_data *next;
4286 /* Backtracking is associated with scheduling insns that have delay slots.
4287 DELAY_PAIR points to the structure that contains the insns involved, and
4288 the number of cycles between them. */
4289 struct delay_pair *delay_pair;
4291 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4292 void *fe_saved_data;
4293 /* Data used by the backend. */
4294 void *be_saved_data;
4296 /* Copies of global state. */
4297 int clock_var, last_clock_var;
4298 struct ready_list ready;
4299 state_t curr_state;
4301 rtx_insn *last_scheduled_insn;
4302 rtx_insn *last_nondebug_scheduled_insn;
4303 rtx_insn *nonscheduled_insns_begin;
4304 int cycle_issued_insns;
4306 /* Copies of state used in the inner loop of schedule_block. */
4307 struct sched_block_state sched_block;
4309 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4310 to 0 when restoring. */
4311 int q_size;
4312 rtx_insn_list **insn_queue;
4314 /* Describe pattern replacements that occurred since this backtrack point
4315 was queued. */
4316 vec<dep_t> replacement_deps;
4317 vec<int> replace_apply;
4319 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4320 point. */
4321 vec<dep_t> next_cycle_deps;
4322 vec<int> next_cycle_apply;
4325 /* A record, in reverse order, of all scheduled insns which have delay slots
4326 and may require backtracking. */
4327 static struct haifa_saved_data *backtrack_queue;
4329 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4330 to SET_P. */
4331 static void
4332 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4334 sd_iterator_def sd_it;
4335 dep_t dep;
4336 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4338 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4342 /* Save the current scheduler state so that we can backtrack to it
4343 later if necessary. PAIR gives the insns that make it necessary to
4344 save this point. SCHED_BLOCK is the local state of schedule_block
4345 that need to be saved. */
4346 static void
4347 save_backtrack_point (struct delay_pair *pair,
4348 struct sched_block_state sched_block)
4350 int i;
4351 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4353 save->curr_state = xmalloc (dfa_state_size);
4354 memcpy (save->curr_state, curr_state, dfa_state_size);
4356 save->ready.first = ready.first;
4357 save->ready.n_ready = ready.n_ready;
4358 save->ready.n_debug = ready.n_debug;
4359 save->ready.veclen = ready.veclen;
4360 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4361 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4363 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4364 save->q_size = q_size;
4365 for (i = 0; i <= max_insn_queue_index; i++)
4367 int q = NEXT_Q_AFTER (q_ptr, i);
4368 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4371 save->clock_var = clock_var;
4372 save->last_clock_var = last_clock_var;
4373 save->cycle_issued_insns = cycle_issued_insns;
4374 save->last_scheduled_insn = last_scheduled_insn;
4375 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4376 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4378 save->sched_block = sched_block;
4380 save->replacement_deps.create (0);
4381 save->replace_apply.create (0);
4382 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4383 save->next_cycle_apply = next_cycle_apply.copy ();
4385 if (current_sched_info->save_state)
4386 save->fe_saved_data = (*current_sched_info->save_state) ();
4388 if (targetm.sched.alloc_sched_context)
4390 save->be_saved_data = targetm.sched.alloc_sched_context ();
4391 targetm.sched.init_sched_context (save->be_saved_data, false);
4393 else
4394 save->be_saved_data = NULL;
4396 save->delay_pair = pair;
4398 save->next = backtrack_queue;
4399 backtrack_queue = save;
4401 while (pair)
4403 mark_backtrack_feeds (pair->i2, 1);
4404 INSN_TICK (pair->i2) = INVALID_TICK;
4405 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4406 SHADOW_P (pair->i2) = pair->stages == 0;
4407 pair = pair->next_same_i1;
4411 /* Walk the ready list and all queues. If any insns have unresolved backwards
4412 dependencies, these must be cancelled deps, broken by predication. Set or
4413 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4415 static void
4416 toggle_cancelled_flags (bool set)
4418 int i;
4419 sd_iterator_def sd_it;
4420 dep_t dep;
4422 if (ready.n_ready > 0)
4424 rtx_insn **first = ready_lastpos (&ready);
4425 for (i = 0; i < ready.n_ready; i++)
4426 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4427 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4429 if (set)
4430 DEP_STATUS (dep) |= DEP_CANCELLED;
4431 else
4432 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4435 for (i = 0; i <= max_insn_queue_index; i++)
4437 int q = NEXT_Q_AFTER (q_ptr, i);
4438 rtx_insn_list *link;
4439 for (link = insn_queue[q]; link; link = link->next ())
4441 rtx_insn *insn = link->insn ();
4442 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4443 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4445 if (set)
4446 DEP_STATUS (dep) |= DEP_CANCELLED;
4447 else
4448 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4454 /* Undo the replacements that have occurred after backtrack point SAVE
4455 was placed. */
4456 static void
4457 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4459 while (!save->replacement_deps.is_empty ())
4461 dep_t dep = save->replacement_deps.pop ();
4462 int apply_p = save->replace_apply.pop ();
4464 if (apply_p)
4465 restore_pattern (dep, true);
4466 else
4467 apply_replacement (dep, true);
4469 save->replacement_deps.release ();
4470 save->replace_apply.release ();
4473 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4474 Restore their dependencies to an unresolved state, and mark them as
4475 queued nowhere. */
4477 static void
4478 unschedule_insns_until (rtx_insn *insn)
4480 auto_vec<rtx_insn *> recompute_vec;
4482 /* Make two passes over the insns to be unscheduled. First, we clear out
4483 dependencies and other trivial bookkeeping. */
4484 for (;;)
4486 rtx_insn *last;
4487 sd_iterator_def sd_it;
4488 dep_t dep;
4490 last = scheduled_insns.pop ();
4492 /* This will be changed by restore_backtrack_point if the insn is in
4493 any queue. */
4494 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4495 if (last != insn)
4496 INSN_TICK (last) = INVALID_TICK;
4498 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4499 modulo_insns_scheduled--;
4501 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4502 sd_iterator_cond (&sd_it, &dep);)
4504 rtx_insn *con = DEP_CON (dep);
4505 sd_unresolve_dep (sd_it);
4506 if (!MUST_RECOMPUTE_SPEC_P (con))
4508 MUST_RECOMPUTE_SPEC_P (con) = 1;
4509 recompute_vec.safe_push (con);
4513 if (last == insn)
4514 break;
4517 /* A second pass, to update ready and speculation status for insns
4518 depending on the unscheduled ones. The first pass must have
4519 popped the scheduled_insns vector up to the point where we
4520 restart scheduling, as recompute_todo_spec requires it to be
4521 up-to-date. */
4522 while (!recompute_vec.is_empty ())
4524 rtx_insn *con;
4526 con = recompute_vec.pop ();
4527 MUST_RECOMPUTE_SPEC_P (con) = 0;
4528 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4530 TODO_SPEC (con) = HARD_DEP;
4531 INSN_TICK (con) = INVALID_TICK;
4532 if (PREDICATED_PAT (con) != NULL_RTX)
4533 haifa_change_pattern (con, ORIG_PAT (con));
4535 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4536 TODO_SPEC (con) = recompute_todo_spec (con, true);
4540 /* Restore scheduler state from the topmost entry on the backtracking queue.
4541 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4542 overwrite with the saved data.
4543 The caller must already have called unschedule_insns_until. */
4545 static void
4546 restore_last_backtrack_point (struct sched_block_state *psched_block)
4548 int i;
4549 struct haifa_saved_data *save = backtrack_queue;
4551 backtrack_queue = save->next;
4553 if (current_sched_info->restore_state)
4554 (*current_sched_info->restore_state) (save->fe_saved_data);
4556 if (targetm.sched.alloc_sched_context)
4558 targetm.sched.set_sched_context (save->be_saved_data);
4559 targetm.sched.free_sched_context (save->be_saved_data);
4562 /* Do this first since it clobbers INSN_TICK of the involved
4563 instructions. */
4564 undo_replacements_for_backtrack (save);
4566 /* Clear the QUEUE_INDEX of everything in the ready list or one
4567 of the queues. */
4568 if (ready.n_ready > 0)
4570 rtx_insn **first = ready_lastpos (&ready);
4571 for (i = 0; i < ready.n_ready; i++)
4573 rtx_insn *insn = first[i];
4574 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4575 INSN_TICK (insn) = INVALID_TICK;
4578 for (i = 0; i <= max_insn_queue_index; i++)
4580 int q = NEXT_Q_AFTER (q_ptr, i);
4582 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4584 rtx_insn *x = link->insn ();
4585 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4586 INSN_TICK (x) = INVALID_TICK;
4588 free_INSN_LIST_list (&insn_queue[q]);
4591 free (ready.vec);
4592 ready = save->ready;
4594 if (ready.n_ready > 0)
4596 rtx_insn **first = ready_lastpos (&ready);
4597 for (i = 0; i < ready.n_ready; i++)
4599 rtx_insn *insn = first[i];
4600 QUEUE_INDEX (insn) = QUEUE_READY;
4601 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4602 INSN_TICK (insn) = save->clock_var;
4606 q_ptr = 0;
4607 q_size = save->q_size;
4608 for (i = 0; i <= max_insn_queue_index; i++)
4610 int q = NEXT_Q_AFTER (q_ptr, i);
4612 insn_queue[q] = save->insn_queue[q];
4614 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4616 rtx_insn *x = link->insn ();
4617 QUEUE_INDEX (x) = i;
4618 TODO_SPEC (x) = recompute_todo_spec (x, true);
4619 INSN_TICK (x) = save->clock_var + i;
4622 free (save->insn_queue);
4624 toggle_cancelled_flags (true);
4626 clock_var = save->clock_var;
4627 last_clock_var = save->last_clock_var;
4628 cycle_issued_insns = save->cycle_issued_insns;
4629 last_scheduled_insn = save->last_scheduled_insn;
4630 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4631 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4633 *psched_block = save->sched_block;
4635 memcpy (curr_state, save->curr_state, dfa_state_size);
4636 free (save->curr_state);
4638 mark_backtrack_feeds (save->delay_pair->i2, 0);
4640 gcc_assert (next_cycle_replace_deps.is_empty ());
4641 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4642 next_cycle_apply = save->next_cycle_apply.copy ();
4644 free (save);
4646 for (save = backtrack_queue; save; save = save->next)
4648 mark_backtrack_feeds (save->delay_pair->i2, 1);
4652 /* Discard all data associated with the topmost entry in the backtrack
4653 queue. If RESET_TICK is false, we just want to free the data. If true,
4654 we are doing this because we discovered a reason to backtrack. In the
4655 latter case, also reset the INSN_TICK for the shadow insn. */
4656 static void
4657 free_topmost_backtrack_point (bool reset_tick)
4659 struct haifa_saved_data *save = backtrack_queue;
4660 int i;
4662 backtrack_queue = save->next;
4664 if (reset_tick)
4666 struct delay_pair *pair = save->delay_pair;
4667 while (pair)
4669 INSN_TICK (pair->i2) = INVALID_TICK;
4670 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4671 pair = pair->next_same_i1;
4673 undo_replacements_for_backtrack (save);
4675 else
4677 save->replacement_deps.release ();
4678 save->replace_apply.release ();
4681 if (targetm.sched.free_sched_context)
4682 targetm.sched.free_sched_context (save->be_saved_data);
4683 if (current_sched_info->restore_state)
4684 free (save->fe_saved_data);
4685 for (i = 0; i <= max_insn_queue_index; i++)
4686 free_INSN_LIST_list (&save->insn_queue[i]);
4687 free (save->insn_queue);
4688 free (save->curr_state);
4689 free (save->ready.vec);
4690 free (save);
4693 /* Free the entire backtrack queue. */
4694 static void
4695 free_backtrack_queue (void)
4697 while (backtrack_queue)
4698 free_topmost_backtrack_point (false);
4701 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4702 may have to postpone the replacement until the start of the next cycle,
4703 at which point we will be called again with IMMEDIATELY true. This is
4704 only done for machines which have instruction packets with explicit
4705 parallelism however. */
4706 static void
4707 apply_replacement (dep_t dep, bool immediately)
4709 struct dep_replacement *desc = DEP_REPLACE (dep);
4710 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4712 next_cycle_replace_deps.safe_push (dep);
4713 next_cycle_apply.safe_push (1);
4715 else
4717 bool success;
4719 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4720 return;
4722 if (sched_verbose >= 5)
4723 fprintf (sched_dump, "applying replacement for insn %d\n",
4724 INSN_UID (desc->insn));
4726 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4727 gcc_assert (success);
4729 update_insn_after_change (desc->insn);
4730 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4731 fix_tick_ready (desc->insn);
4733 if (backtrack_queue != NULL)
4735 backtrack_queue->replacement_deps.safe_push (dep);
4736 backtrack_queue->replace_apply.safe_push (1);
4741 /* We have determined that a pattern involved in DEP must be restored.
4742 If IMMEDIATELY is false, we may have to postpone the replacement
4743 until the start of the next cycle, at which point we will be called
4744 again with IMMEDIATELY true. */
4745 static void
4746 restore_pattern (dep_t dep, bool immediately)
4748 rtx_insn *next = DEP_CON (dep);
4749 int tick = INSN_TICK (next);
4751 /* If we already scheduled the insn, the modified version is
4752 correct. */
4753 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4754 return;
4756 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4758 next_cycle_replace_deps.safe_push (dep);
4759 next_cycle_apply.safe_push (0);
4760 return;
4764 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4766 if (sched_verbose >= 5)
4767 fprintf (sched_dump, "restoring pattern for insn %d\n",
4768 INSN_UID (next));
4769 haifa_change_pattern (next, ORIG_PAT (next));
4771 else
4773 struct dep_replacement *desc = DEP_REPLACE (dep);
4774 bool success;
4776 if (sched_verbose >= 5)
4777 fprintf (sched_dump, "restoring pattern for insn %d\n",
4778 INSN_UID (desc->insn));
4779 tick = INSN_TICK (desc->insn);
4781 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4782 gcc_assert (success);
4783 update_insn_after_change (desc->insn);
4784 if (backtrack_queue != NULL)
4786 backtrack_queue->replacement_deps.safe_push (dep);
4787 backtrack_queue->replace_apply.safe_push (0);
4790 INSN_TICK (next) = tick;
4791 if (TODO_SPEC (next) == DEP_POSTPONED)
4792 return;
4794 if (sd_lists_empty_p (next, SD_LIST_BACK))
4795 TODO_SPEC (next) = 0;
4796 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4797 TODO_SPEC (next) = HARD_DEP;
4800 /* Perform pattern replacements that were queued up until the next
4801 cycle. */
4802 static void
4803 perform_replacements_new_cycle (void)
4805 int i;
4806 dep_t dep;
4807 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4809 int apply_p = next_cycle_apply[i];
4810 if (apply_p)
4811 apply_replacement (dep, true);
4812 else
4813 restore_pattern (dep, true);
4815 next_cycle_replace_deps.truncate (0);
4816 next_cycle_apply.truncate (0);
4819 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4820 instructions we've previously encountered, a set bit prevents
4821 recursion. BUDGET is a limit on how far ahead we look, it is
4822 reduced on recursive calls. Return true if we produced a good
4823 estimate, or false if we exceeded the budget. */
4824 static bool
4825 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4827 sd_iterator_def sd_it;
4828 dep_t dep;
4829 int earliest = INSN_TICK (insn);
4831 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4833 rtx_insn *pro = DEP_PRO (dep);
4834 int t;
4836 if (DEP_STATUS (dep) & DEP_CANCELLED)
4837 continue;
4839 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4840 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4841 else
4843 int cost = dep_cost (dep);
4844 if (cost >= budget)
4845 return false;
4846 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4848 if (!estimate_insn_tick (processed, pro, budget - cost))
4849 return false;
4851 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4852 t = INSN_TICK_ESTIMATE (pro) + cost;
4853 if (earliest == INVALID_TICK || t > earliest)
4854 earliest = t;
4857 bitmap_set_bit (processed, INSN_LUID (insn));
4858 INSN_TICK_ESTIMATE (insn) = earliest;
4859 return true;
4862 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4863 infinite resources) the cycle in which the delayed shadow can be issued.
4864 Return the number of cycles that must pass before the real insn can be
4865 issued in order to meet this constraint. */
4866 static int
4867 estimate_shadow_tick (struct delay_pair *p)
4869 bitmap_head processed;
4870 int t;
4871 bool cutoff;
4872 bitmap_initialize (&processed, 0);
4874 cutoff = !estimate_insn_tick (&processed, p->i2,
4875 max_insn_queue_index + pair_delay (p));
4876 bitmap_clear (&processed);
4877 if (cutoff)
4878 return max_insn_queue_index;
4879 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4880 if (t > 0)
4881 return t;
4882 return 0;
4885 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4886 recursively resolve all its forward dependencies. */
4887 static void
4888 resolve_dependencies (rtx_insn *insn)
4890 sd_iterator_def sd_it;
4891 dep_t dep;
4893 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4894 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4895 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4896 return;
4898 if (sched_verbose >= 4)
4899 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4901 if (QUEUE_INDEX (insn) >= 0)
4902 queue_remove (insn);
4904 scheduled_insns.safe_push (insn);
4906 /* Update dependent instructions. */
4907 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4908 sd_iterator_cond (&sd_it, &dep);)
4910 rtx_insn *next = DEP_CON (dep);
4912 if (sched_verbose >= 4)
4913 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4914 INSN_UID (next));
4916 /* Resolve the dependence between INSN and NEXT.
4917 sd_resolve_dep () moves current dep to another list thus
4918 advancing the iterator. */
4919 sd_resolve_dep (sd_it);
4921 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4923 resolve_dependencies (next);
4925 else
4926 /* Check always has only one forward dependence (to the first insn in
4927 the recovery block), therefore, this will be executed only once. */
4929 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4935 /* Return the head and tail pointers of ebb starting at BEG and ending
4936 at END. */
4937 void
4938 get_ebb_head_tail (basic_block beg, basic_block end,
4939 rtx_insn **headp, rtx_insn **tailp)
4941 rtx_insn *beg_head = BB_HEAD (beg);
4942 rtx_insn * beg_tail = BB_END (beg);
4943 rtx_insn * end_head = BB_HEAD (end);
4944 rtx_insn * end_tail = BB_END (end);
4946 /* Don't include any notes or labels at the beginning of the BEG
4947 basic block, or notes at the end of the END basic blocks. */
4949 if (LABEL_P (beg_head))
4950 beg_head = NEXT_INSN (beg_head);
4952 while (beg_head != beg_tail)
4953 if (NOTE_P (beg_head))
4954 beg_head = NEXT_INSN (beg_head);
4955 else if (DEBUG_INSN_P (beg_head))
4957 rtx_insn * note, *next;
4959 for (note = NEXT_INSN (beg_head);
4960 note != beg_tail;
4961 note = next)
4963 next = NEXT_INSN (note);
4964 if (NOTE_P (note))
4966 if (sched_verbose >= 9)
4967 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4969 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4971 if (BLOCK_FOR_INSN (note) != beg)
4972 df_insn_change_bb (note, beg);
4974 else if (!DEBUG_INSN_P (note))
4975 break;
4978 break;
4980 else
4981 break;
4983 *headp = beg_head;
4985 if (beg == end)
4986 end_head = beg_head;
4987 else if (LABEL_P (end_head))
4988 end_head = NEXT_INSN (end_head);
4990 while (end_head != end_tail)
4991 if (NOTE_P (end_tail))
4992 end_tail = PREV_INSN (end_tail);
4993 else if (DEBUG_INSN_P (end_tail))
4995 rtx_insn * note, *prev;
4997 for (note = PREV_INSN (end_tail);
4998 note != end_head;
4999 note = prev)
5001 prev = PREV_INSN (note);
5002 if (NOTE_P (note))
5004 if (sched_verbose >= 9)
5005 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5007 reorder_insns_nobb (note, note, end_tail);
5009 if (end_tail == BB_END (end))
5010 BB_END (end) = note;
5012 if (BLOCK_FOR_INSN (note) != end)
5013 df_insn_change_bb (note, end);
5015 else if (!DEBUG_INSN_P (note))
5016 break;
5019 break;
5021 else
5022 break;
5024 *tailp = end_tail;
5027 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5030 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5032 while (head != NEXT_INSN (tail))
5034 if (!NOTE_P (head) && !LABEL_P (head))
5035 return 0;
5036 head = NEXT_INSN (head);
5038 return 1;
5041 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5042 previously found among the insns. Insert them just before HEAD. */
5043 rtx_insn *
5044 restore_other_notes (rtx_insn *head, basic_block head_bb)
5046 if (note_list != 0)
5048 rtx_insn *note_head = note_list;
5050 if (head)
5051 head_bb = BLOCK_FOR_INSN (head);
5052 else
5053 head = NEXT_INSN (bb_note (head_bb));
5055 while (PREV_INSN (note_head))
5057 set_block_for_insn (note_head, head_bb);
5058 note_head = PREV_INSN (note_head);
5060 /* In the above cycle we've missed this note. */
5061 set_block_for_insn (note_head, head_bb);
5063 SET_PREV_INSN (note_head) = PREV_INSN (head);
5064 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5065 SET_PREV_INSN (head) = note_list;
5066 SET_NEXT_INSN (note_list) = head;
5068 if (BLOCK_FOR_INSN (head) != head_bb)
5069 BB_END (head_bb) = note_list;
5071 head = note_head;
5074 return head;
5077 /* When we know we are going to discard the schedule due to a failed attempt
5078 at modulo scheduling, undo all replacements. */
5079 static void
5080 undo_all_replacements (void)
5082 rtx_insn *insn;
5083 int i;
5085 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5087 sd_iterator_def sd_it;
5088 dep_t dep;
5090 /* See if we must undo a replacement. */
5091 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5092 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5094 struct dep_replacement *desc = DEP_REPLACE (dep);
5095 if (desc != NULL)
5096 validate_change (desc->insn, desc->loc, desc->orig, 0);
5101 /* Return first non-scheduled insn in the current scheduling block.
5102 This is mostly used for debug-counter purposes. */
5103 static rtx_insn *
5104 first_nonscheduled_insn (void)
5106 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5107 ? nonscheduled_insns_begin
5108 : current_sched_info->prev_head);
5112 insn = next_nonnote_nondebug_insn (insn);
5114 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5116 return insn;
5119 /* Move insns that became ready to fire from queue to ready list. */
5121 static void
5122 queue_to_ready (struct ready_list *ready)
5124 rtx_insn *insn;
5125 rtx_insn_list *link;
5126 rtx_insn *skip_insn;
5128 q_ptr = NEXT_Q (q_ptr);
5130 if (dbg_cnt (sched_insn) == false)
5131 /* If debug counter is activated do not requeue the first
5132 nonscheduled insn. */
5133 skip_insn = first_nonscheduled_insn ();
5134 else
5135 skip_insn = NULL;
5137 /* Add all pending insns that can be scheduled without stalls to the
5138 ready list. */
5139 for (link = insn_queue[q_ptr]; link; link = link->next ())
5141 insn = link->insn ();
5142 q_size -= 1;
5144 if (sched_verbose >= 2)
5145 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5146 (*current_sched_info->print_insn) (insn, 0));
5148 /* If the ready list is full, delay the insn for 1 cycle.
5149 See the comment in schedule_block for the rationale. */
5150 if (!reload_completed
5151 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5152 || (sched_pressure == SCHED_PRESSURE_MODEL
5153 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5154 instructions too. */
5155 && model_index (insn) > (model_curr_point
5156 + MAX_SCHED_READY_INSNS)))
5157 && !(sched_pressure == SCHED_PRESSURE_MODEL
5158 && model_curr_point < model_num_insns
5159 /* Always allow the next model instruction to issue. */
5160 && model_index (insn) == model_curr_point)
5161 && !SCHED_GROUP_P (insn)
5162 && insn != skip_insn)
5164 if (sched_verbose >= 2)
5165 fprintf (sched_dump, "keeping in queue, ready full\n");
5166 queue_insn (insn, 1, "ready full");
5168 else
5170 ready_add (ready, insn, false);
5171 if (sched_verbose >= 2)
5172 fprintf (sched_dump, "moving to ready without stalls\n");
5175 free_INSN_LIST_list (&insn_queue[q_ptr]);
5177 /* If there are no ready insns, stall until one is ready and add all
5178 of the pending insns at that point to the ready list. */
5179 if (ready->n_ready == 0)
5181 int stalls;
5183 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5185 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5187 for (; link; link = link->next ())
5189 insn = link->insn ();
5190 q_size -= 1;
5192 if (sched_verbose >= 2)
5193 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5194 (*current_sched_info->print_insn) (insn, 0));
5196 ready_add (ready, insn, false);
5197 if (sched_verbose >= 2)
5198 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5200 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5202 advance_one_cycle ();
5204 break;
5207 advance_one_cycle ();
5210 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5211 clock_var += stalls;
5212 if (sched_verbose >= 2)
5213 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5214 stalls, clock_var);
5218 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5219 prematurely move INSN from the queue to the ready list. Currently,
5220 if a target defines the hook 'is_costly_dependence', this function
5221 uses the hook to check whether there exist any dependences which are
5222 considered costly by the target, between INSN and other insns that
5223 have already been scheduled. Dependences are checked up to Y cycles
5224 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5225 controlling this value.
5226 (Other considerations could be taken into account instead (or in
5227 addition) depending on user flags and target hooks. */
5229 static bool
5230 ok_for_early_queue_removal (rtx_insn *insn)
5232 if (targetm.sched.is_costly_dependence)
5234 int n_cycles;
5235 int i = scheduled_insns.length ();
5236 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5238 while (i-- > 0)
5240 int cost;
5242 rtx_insn *prev_insn = scheduled_insns[i];
5244 if (!NOTE_P (prev_insn))
5246 dep_t dep;
5248 dep = sd_find_dep_between (prev_insn, insn, true);
5250 if (dep != NULL)
5252 cost = dep_cost (dep);
5254 if (targetm.sched.is_costly_dependence (dep, cost,
5255 flag_sched_stalled_insns_dep - n_cycles))
5256 return false;
5260 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5261 break;
5264 if (i == 0)
5265 break;
5269 return true;
5273 /* Remove insns from the queue, before they become "ready" with respect
5274 to FU latency considerations. */
5276 static int
5277 early_queue_to_ready (state_t state, struct ready_list *ready)
5279 rtx_insn *insn;
5280 rtx_insn_list *link;
5281 rtx_insn_list *next_link;
5282 rtx_insn_list *prev_link;
5283 bool move_to_ready;
5284 int cost;
5285 state_t temp_state = alloca (dfa_state_size);
5286 int stalls;
5287 int insns_removed = 0;
5290 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5291 function:
5293 X == 0: There is no limit on how many queued insns can be removed
5294 prematurely. (flag_sched_stalled_insns = -1).
5296 X >= 1: Only X queued insns can be removed prematurely in each
5297 invocation. (flag_sched_stalled_insns = X).
5299 Otherwise: Early queue removal is disabled.
5300 (flag_sched_stalled_insns = 0)
5303 if (! flag_sched_stalled_insns)
5304 return 0;
5306 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5308 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5310 if (sched_verbose > 6)
5311 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5313 prev_link = 0;
5314 while (link)
5316 next_link = link->next ();
5317 insn = link->insn ();
5318 if (insn && sched_verbose > 6)
5319 print_rtl_single (sched_dump, insn);
5321 memcpy (temp_state, state, dfa_state_size);
5322 if (recog_memoized (insn) < 0)
5323 /* non-negative to indicate that it's not ready
5324 to avoid infinite Q->R->Q->R... */
5325 cost = 0;
5326 else
5327 cost = state_transition (temp_state, insn);
5329 if (sched_verbose >= 6)
5330 fprintf (sched_dump, "transition cost = %d\n", cost);
5332 move_to_ready = false;
5333 if (cost < 0)
5335 move_to_ready = ok_for_early_queue_removal (insn);
5336 if (move_to_ready == true)
5338 /* move from Q to R */
5339 q_size -= 1;
5340 ready_add (ready, insn, false);
5342 if (prev_link)
5343 XEXP (prev_link, 1) = next_link;
5344 else
5345 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5347 free_INSN_LIST_node (link);
5349 if (sched_verbose >= 2)
5350 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5351 (*current_sched_info->print_insn) (insn, 0));
5353 insns_removed++;
5354 if (insns_removed == flag_sched_stalled_insns)
5355 /* Remove no more than flag_sched_stalled_insns insns
5356 from Q at a time. */
5357 return insns_removed;
5361 if (move_to_ready == false)
5362 prev_link = link;
5364 link = next_link;
5365 } /* while link */
5366 } /* if link */
5368 } /* for stalls.. */
5370 return insns_removed;
5374 /* Print the ready list for debugging purposes.
5375 If READY_TRY is non-zero then only print insns that max_issue
5376 will consider. */
5377 static void
5378 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5380 rtx_insn **p;
5381 int i;
5383 if (ready->n_ready == 0)
5385 fprintf (sched_dump, "\n");
5386 return;
5389 p = ready_lastpos (ready);
5390 for (i = 0; i < ready->n_ready; i++)
5392 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5393 continue;
5395 fprintf (sched_dump, " %s:%d",
5396 (*current_sched_info->print_insn) (p[i], 0),
5397 INSN_LUID (p[i]));
5398 if (sched_pressure != SCHED_PRESSURE_NONE)
5399 fprintf (sched_dump, "(cost=%d",
5400 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5401 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5402 if (INSN_TICK (p[i]) > clock_var)
5403 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5404 if (sched_pressure == SCHED_PRESSURE_MODEL)
5405 fprintf (sched_dump, ":idx=%d",
5406 model_index (p[i]));
5407 if (sched_pressure != SCHED_PRESSURE_NONE)
5408 fprintf (sched_dump, ")");
5410 fprintf (sched_dump, "\n");
5413 /* Print the ready list. Callable from debugger. */
5414 static void
5415 debug_ready_list (struct ready_list *ready)
5417 debug_ready_list_1 (ready, NULL);
5420 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5421 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5422 replaces the epilogue note in the correct basic block. */
5423 void
5424 reemit_notes (rtx_insn *insn)
5426 rtx note;
5427 rtx_insn *last = insn;
5429 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5431 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5433 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5435 last = emit_note_before (note_type, last);
5436 remove_note (insn, note);
5441 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5442 static void
5443 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5445 if (PREV_INSN (insn) != last)
5447 basic_block bb;
5448 rtx_insn *note;
5449 int jump_p = 0;
5451 bb = BLOCK_FOR_INSN (insn);
5453 /* BB_HEAD is either LABEL or NOTE. */
5454 gcc_assert (BB_HEAD (bb) != insn);
5456 if (BB_END (bb) == insn)
5457 /* If this is last instruction in BB, move end marker one
5458 instruction up. */
5460 /* Jumps are always placed at the end of basic block. */
5461 jump_p = control_flow_insn_p (insn);
5463 gcc_assert (!jump_p
5464 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5465 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5466 || (common_sched_info->sched_pass_id
5467 == SCHED_EBB_PASS));
5469 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5471 BB_END (bb) = PREV_INSN (insn);
5474 gcc_assert (BB_END (bb) != last);
5476 if (jump_p)
5477 /* We move the block note along with jump. */
5479 gcc_assert (nt);
5481 note = NEXT_INSN (insn);
5482 while (NOTE_NOT_BB_P (note) && note != nt)
5483 note = NEXT_INSN (note);
5485 if (note != nt
5486 && (LABEL_P (note)
5487 || BARRIER_P (note)))
5488 note = NEXT_INSN (note);
5490 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5492 else
5493 note = insn;
5495 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5496 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5498 SET_NEXT_INSN (note) = NEXT_INSN (last);
5499 SET_PREV_INSN (NEXT_INSN (last)) = note;
5501 SET_NEXT_INSN (last) = insn;
5502 SET_PREV_INSN (insn) = last;
5504 bb = BLOCK_FOR_INSN (last);
5506 if (jump_p)
5508 fix_jump_move (insn);
5510 if (BLOCK_FOR_INSN (insn) != bb)
5511 move_block_after_check (insn);
5513 gcc_assert (BB_END (bb) == last);
5516 df_insn_change_bb (insn, bb);
5518 /* Update BB_END, if needed. */
5519 if (BB_END (bb) == last)
5520 BB_END (bb) = insn;
5523 SCHED_GROUP_P (insn) = 0;
5526 /* Return true if scheduling INSN will finish current clock cycle. */
5527 static bool
5528 insn_finishes_cycle_p (rtx_insn *insn)
5530 if (SCHED_GROUP_P (insn))
5531 /* After issuing INSN, rest of the sched_group will be forced to issue
5532 in order. Don't make any plans for the rest of cycle. */
5533 return true;
5535 /* Finishing the block will, apparently, finish the cycle. */
5536 if (current_sched_info->insn_finishes_block_p
5537 && current_sched_info->insn_finishes_block_p (insn))
5538 return true;
5540 return false;
5543 /* Functions to model cache auto-prefetcher.
5545 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5546 memory prefetches if it sees instructions with consequitive memory accesses
5547 in the instruction stream. Details of such hardware units are not published,
5548 so we can only guess what exactly is going on there.
5549 In the scheduler, we model abstract auto-prefetcher. If there are memory
5550 insns in the ready list (or the queue) that have same memory base, but
5551 different offsets, then we delay the insns with larger offsets until insns
5552 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5553 is "1", then we look at the ready list; if it is N>1, then we also look
5554 through N-1 queue entries.
5555 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5556 among its heuristics.
5557 Param value of "-1" disables modelling of the auto-prefetcher. */
5559 /* Initialize autoprefetcher model data for INSN. */
5560 static void
5561 autopref_multipass_init (const rtx_insn *insn, int write)
5563 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5565 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5566 data->base = NULL_RTX;
5567 data->offset = 0;
5568 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5569 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5571 rtx set = single_set (insn);
5572 if (set == NULL_RTX)
5573 return;
5575 rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5576 if (!MEM_P (mem))
5577 return;
5579 struct address_info info;
5580 decompose_mem_address (&info, mem);
5582 /* TODO: Currently only (base+const) addressing is supported. */
5583 if (info.base == NULL || !REG_P (*info.base)
5584 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5585 return;
5587 /* This insn is relevant for auto-prefetcher. */
5588 data->base = *info.base;
5589 data->offset = info.disp ? INTVAL (*info.disp) : 0;
5590 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5593 /* Helper function for rank_for_schedule sorting. */
5594 static int
5595 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5597 for (int write = 0; write < 2; ++write)
5599 autopref_multipass_data_t data1
5600 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5601 autopref_multipass_data_t data2
5602 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5604 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5605 autopref_multipass_init (insn1, write);
5606 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5607 continue;
5609 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5610 autopref_multipass_init (insn2, write);
5611 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5612 continue;
5614 if (!rtx_equal_p (data1->base, data2->base))
5615 continue;
5617 return data1->offset - data2->offset;
5620 return 0;
5623 /* True if header of debug dump was printed. */
5624 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5626 /* Helper for autopref_multipass_dfa_lookahead_guard.
5627 Return "1" if INSN1 should be delayed in favor of INSN2. */
5628 static int
5629 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5630 const rtx_insn *insn2, int write)
5632 autopref_multipass_data_t data1
5633 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5634 autopref_multipass_data_t data2
5635 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5637 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5638 autopref_multipass_init (insn2, write);
5639 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5640 return 0;
5642 if (rtx_equal_p (data1->base, data2->base)
5643 && data1->offset > data2->offset)
5645 if (sched_verbose >= 2)
5647 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5649 fprintf (sched_dump,
5650 ";;\t\tnot trying in max_issue due to autoprefetch "
5651 "model: ");
5652 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5655 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5658 return 1;
5661 return 0;
5664 /* General note:
5666 We could have also hooked autoprefetcher model into
5667 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5668 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5669 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5670 unblocked). We don't bother about this yet because target of interest
5671 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5673 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5674 Return "1" if INSN1 should not be considered in max_issue due to
5675 auto-prefetcher considerations. */
5677 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5679 int r = 0;
5681 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5682 return 0;
5684 if (sched_verbose >= 2 && ready_index == 0)
5685 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5687 for (int write = 0; write < 2; ++write)
5689 autopref_multipass_data_t data1
5690 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5692 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5693 autopref_multipass_init (insn1, write);
5694 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5695 continue;
5697 if (ready_index == 0
5698 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5699 /* We allow only a single delay on priviledged instructions.
5700 Doing otherwise would cause infinite loop. */
5702 if (sched_verbose >= 2)
5704 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5706 fprintf (sched_dump,
5707 ";;\t\tnot trying in max_issue due to autoprefetch "
5708 "model: ");
5709 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5712 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5714 continue;
5717 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5719 rtx_insn *insn2 = get_ready_element (i2);
5720 if (insn1 == insn2)
5721 continue;
5722 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5723 if (r)
5725 if (ready_index == 0)
5727 r = -1;
5728 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5730 goto finish;
5734 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5735 continue;
5737 /* Everything from the current queue slot should have been moved to
5738 the ready list. */
5739 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5741 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5742 if (n_stalls > max_insn_queue_index)
5743 n_stalls = max_insn_queue_index;
5745 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5747 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5748 link != NULL_RTX;
5749 link = link->next ())
5751 rtx_insn *insn2 = link->insn ();
5752 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5753 write);
5754 if (r)
5756 /* Queue INSN1 until INSN2 can issue. */
5757 r = -stalls;
5758 if (ready_index == 0)
5759 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5760 goto finish;
5766 finish:
5767 if (sched_verbose >= 2
5768 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5769 && (ready_index == ready.n_ready - 1 || r < 0))
5770 /* This does not /always/ trigger. We don't output EOL if the last
5771 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5772 called. We can live with this. */
5773 fprintf (sched_dump, "\n");
5775 return r;
5778 /* Define type for target data used in multipass scheduling. */
5779 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5780 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5781 #endif
5782 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5784 /* The following structure describe an entry of the stack of choices. */
5785 struct choice_entry
5787 /* Ordinal number of the issued insn in the ready queue. */
5788 int index;
5789 /* The number of the rest insns whose issues we should try. */
5790 int rest;
5791 /* The number of issued essential insns. */
5792 int n;
5793 /* State after issuing the insn. */
5794 state_t state;
5795 /* Target-specific data. */
5796 first_cycle_multipass_data_t target_data;
5799 /* The following array is used to implement a stack of choices used in
5800 function max_issue. */
5801 static struct choice_entry *choice_stack;
5803 /* This holds the value of the target dfa_lookahead hook. */
5804 int dfa_lookahead;
5806 /* The following variable value is maximal number of tries of issuing
5807 insns for the first cycle multipass insn scheduling. We define
5808 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5809 need this constraint if all real insns (with non-negative codes)
5810 had reservations because in this case the algorithm complexity is
5811 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5812 might be incomplete and such insn might occur. For such
5813 descriptions, the complexity of algorithm (without the constraint)
5814 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5815 static int max_lookahead_tries;
5817 /* The following function returns maximal (or close to maximal) number
5818 of insns which can be issued on the same cycle and one of which
5819 insns is insns with the best rank (the first insn in READY). To
5820 make this function tries different samples of ready insns. READY
5821 is current queue `ready'. Global array READY_TRY reflects what
5822 insns are already issued in this try. The function stops immediately,
5823 if it reached the such a solution, that all instruction can be issued.
5824 INDEX will contain index of the best insn in READY. The following
5825 function is used only for first cycle multipass scheduling.
5827 PRIVILEGED_N >= 0
5829 This function expects recognized insns only. All USEs,
5830 CLOBBERs, etc must be filtered elsewhere. */
5832 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5833 bool first_cycle_insn_p, int *index)
5835 int n, i, all, n_ready, best, delay, tries_num;
5836 int more_issue;
5837 struct choice_entry *top;
5838 rtx_insn *insn;
5840 if (sched_fusion)
5841 return 0;
5843 n_ready = ready->n_ready;
5844 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5845 && privileged_n <= n_ready);
5847 /* Init MAX_LOOKAHEAD_TRIES. */
5848 if (max_lookahead_tries == 0)
5850 max_lookahead_tries = 100;
5851 for (i = 0; i < issue_rate; i++)
5852 max_lookahead_tries *= dfa_lookahead;
5855 /* Init max_points. */
5856 more_issue = issue_rate - cycle_issued_insns;
5857 gcc_assert (more_issue >= 0);
5859 /* The number of the issued insns in the best solution. */
5860 best = 0;
5862 top = choice_stack;
5864 /* Set initial state of the search. */
5865 memcpy (top->state, state, dfa_state_size);
5866 top->rest = dfa_lookahead;
5867 top->n = 0;
5868 if (targetm.sched.first_cycle_multipass_begin)
5869 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5870 ready_try, n_ready,
5871 first_cycle_insn_p);
5873 /* Count the number of the insns to search among. */
5874 for (all = i = 0; i < n_ready; i++)
5875 if (!ready_try [i])
5876 all++;
5878 if (sched_verbose >= 2)
5880 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5881 debug_ready_list_1 (ready, ready_try);
5884 /* I is the index of the insn to try next. */
5885 i = 0;
5886 tries_num = 0;
5887 for (;;)
5889 if (/* If we've reached a dead end or searched enough of what we have
5890 been asked... */
5891 top->rest == 0
5892 /* or have nothing else to try... */
5893 || i >= n_ready
5894 /* or should not issue more. */
5895 || top->n >= more_issue)
5897 /* ??? (... || i == n_ready). */
5898 gcc_assert (i <= n_ready);
5900 /* We should not issue more than issue_rate instructions. */
5901 gcc_assert (top->n <= more_issue);
5903 if (top == choice_stack)
5904 break;
5906 if (best < top - choice_stack)
5908 if (privileged_n)
5910 n = privileged_n;
5911 /* Try to find issued privileged insn. */
5912 while (n && !ready_try[--n])
5916 if (/* If all insns are equally good... */
5917 privileged_n == 0
5918 /* Or a privileged insn will be issued. */
5919 || ready_try[n])
5920 /* Then we have a solution. */
5922 best = top - choice_stack;
5923 /* This is the index of the insn issued first in this
5924 solution. */
5925 *index = choice_stack [1].index;
5926 if (top->n == more_issue || best == all)
5927 break;
5931 /* Set ready-list index to point to the last insn
5932 ('i++' below will advance it to the next insn). */
5933 i = top->index;
5935 /* Backtrack. */
5936 ready_try [i] = 0;
5938 if (targetm.sched.first_cycle_multipass_backtrack)
5939 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5940 ready_try, n_ready);
5942 top--;
5943 memcpy (state, top->state, dfa_state_size);
5945 else if (!ready_try [i])
5947 tries_num++;
5948 if (tries_num > max_lookahead_tries)
5949 break;
5950 insn = ready_element (ready, i);
5951 delay = state_transition (state, insn);
5952 if (delay < 0)
5954 if (state_dead_lock_p (state)
5955 || insn_finishes_cycle_p (insn))
5956 /* We won't issue any more instructions in the next
5957 choice_state. */
5958 top->rest = 0;
5959 else
5960 top->rest--;
5962 n = top->n;
5963 if (memcmp (top->state, state, dfa_state_size) != 0)
5964 n++;
5966 /* Advance to the next choice_entry. */
5967 top++;
5968 /* Initialize it. */
5969 top->rest = dfa_lookahead;
5970 top->index = i;
5971 top->n = n;
5972 memcpy (top->state, state, dfa_state_size);
5973 ready_try [i] = 1;
5975 if (targetm.sched.first_cycle_multipass_issue)
5976 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5977 ready_try, n_ready,
5978 insn,
5979 &((top - 1)
5980 ->target_data));
5982 i = -1;
5986 /* Increase ready-list index. */
5987 i++;
5990 if (targetm.sched.first_cycle_multipass_end)
5991 targetm.sched.first_cycle_multipass_end (best != 0
5992 ? &choice_stack[1].target_data
5993 : NULL);
5995 /* Restore the original state of the DFA. */
5996 memcpy (state, choice_stack->state, dfa_state_size);
5998 return best;
6001 /* The following function chooses insn from READY and modifies
6002 READY. The following function is used only for first
6003 cycle multipass scheduling.
6004 Return:
6005 -1 if cycle should be advanced,
6006 0 if INSN_PTR is set to point to the desirable insn,
6007 1 if choose_ready () should be restarted without advancing the cycle. */
6008 static int
6009 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6010 rtx_insn **insn_ptr)
6012 if (dbg_cnt (sched_insn) == false)
6014 if (nonscheduled_insns_begin == NULL_RTX)
6015 nonscheduled_insns_begin = current_sched_info->prev_head;
6017 rtx_insn *insn = first_nonscheduled_insn ();
6019 if (QUEUE_INDEX (insn) == QUEUE_READY)
6020 /* INSN is in the ready_list. */
6022 ready_remove_insn (insn);
6023 *insn_ptr = insn;
6024 return 0;
6027 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6028 gcc_assert (QUEUE_INDEX (insn) >= 0);
6029 return -1;
6032 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6033 || DEBUG_INSN_P (ready_element (ready, 0)))
6035 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6036 *insn_ptr = ready_remove_first_dispatch (ready);
6037 else
6038 *insn_ptr = ready_remove_first (ready);
6040 return 0;
6042 else
6044 /* Try to choose the best insn. */
6045 int index = 0, i;
6046 rtx_insn *insn;
6048 insn = ready_element (ready, 0);
6049 if (INSN_CODE (insn) < 0)
6051 *insn_ptr = ready_remove_first (ready);
6052 return 0;
6055 /* Filter the search space. */
6056 for (i = 0; i < ready->n_ready; i++)
6058 ready_try[i] = 0;
6060 insn = ready_element (ready, i);
6062 /* If this insn is recognizable we should have already
6063 recognized it earlier.
6064 ??? Not very clear where this is supposed to be done.
6065 See dep_cost_1. */
6066 gcc_checking_assert (INSN_CODE (insn) >= 0
6067 || recog_memoized (insn) < 0);
6068 if (INSN_CODE (insn) < 0)
6070 /* Non-recognized insns at position 0 are handled above. */
6071 gcc_assert (i > 0);
6072 ready_try[i] = 1;
6073 continue;
6076 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6078 ready_try[i]
6079 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6080 (insn, i));
6082 if (ready_try[i] < 0)
6083 /* Queue instruction for several cycles.
6084 We need to restart choose_ready as we have changed
6085 the ready list. */
6087 change_queue_index (insn, -ready_try[i]);
6088 return 1;
6091 /* Make sure that we didn't end up with 0'th insn filtered out.
6092 Don't be tempted to make life easier for backends and just
6093 requeue 0'th insn if (ready_try[0] == 0) and restart
6094 choose_ready. Backends should be very considerate about
6095 requeueing instructions -- especially the highest priority
6096 one at position 0. */
6097 gcc_assert (ready_try[i] == 0 || i > 0);
6098 if (ready_try[i])
6099 continue;
6102 gcc_assert (ready_try[i] == 0);
6103 /* INSN made it through the scrutiny of filters! */
6106 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6108 *insn_ptr = ready_remove_first (ready);
6109 if (sched_verbose >= 4)
6110 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6111 (*current_sched_info->print_insn) (*insn_ptr, 0));
6112 return 0;
6114 else
6116 if (sched_verbose >= 4)
6117 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6118 (*current_sched_info->print_insn)
6119 (ready_element (ready, index), 0));
6121 *insn_ptr = ready_remove (ready, index);
6122 return 0;
6127 /* This function is called when we have successfully scheduled a
6128 block. It uses the schedule stored in the scheduled_insns vector
6129 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6130 append the scheduled insns; TAIL is the insn after the scheduled
6131 block. TARGET_BB is the argument passed to schedule_block. */
6133 static void
6134 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6136 unsigned int i;
6137 rtx_insn *insn;
6139 last_scheduled_insn = prev_head;
6140 for (i = 0;
6141 scheduled_insns.iterate (i, &insn);
6142 i++)
6144 if (control_flow_insn_p (last_scheduled_insn)
6145 || current_sched_info->advance_target_bb (*target_bb, insn))
6147 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6149 if (sched_verbose)
6151 rtx_insn *x;
6153 x = next_real_insn (last_scheduled_insn);
6154 gcc_assert (x);
6155 dump_new_block_header (1, *target_bb, x, tail);
6158 last_scheduled_insn = bb_note (*target_bb);
6161 if (current_sched_info->begin_move_insn)
6162 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6163 move_insn (insn, last_scheduled_insn,
6164 current_sched_info->next_tail);
6165 if (!DEBUG_INSN_P (insn))
6166 reemit_notes (insn);
6167 last_scheduled_insn = insn;
6170 scheduled_insns.truncate (0);
6173 /* Examine all insns on the ready list and queue those which can't be
6174 issued in this cycle. TEMP_STATE is temporary scheduler state we
6175 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6176 have been issued for the current cycle, which means it is valid to
6177 issue an asm statement.
6179 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6180 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6181 we only leave insns which have an INSN_EXACT_TICK. */
6183 static void
6184 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6185 bool shadows_only_p, bool modulo_epilogue_p)
6187 int i, pass;
6188 bool sched_group_found = false;
6189 int min_cost_group = 1;
6191 if (sched_fusion)
6192 return;
6194 for (i = 0; i < ready.n_ready; i++)
6196 rtx_insn *insn = ready_element (&ready, i);
6197 if (SCHED_GROUP_P (insn))
6199 sched_group_found = true;
6200 break;
6204 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6205 such an insn first and note its cost, then schedule all other insns
6206 for one cycle later. */
6207 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6209 int n = ready.n_ready;
6210 for (i = 0; i < n; i++)
6212 rtx_insn *insn = ready_element (&ready, i);
6213 int cost = 0;
6214 const char *reason = "resource conflict";
6216 if (DEBUG_INSN_P (insn))
6217 continue;
6219 if (sched_group_found && !SCHED_GROUP_P (insn))
6221 if (pass == 0)
6222 continue;
6223 cost = min_cost_group;
6224 reason = "not in sched group";
6226 else if (modulo_epilogue_p
6227 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6229 cost = max_insn_queue_index;
6230 reason = "not an epilogue insn";
6232 else if (shadows_only_p && !SHADOW_P (insn))
6234 cost = 1;
6235 reason = "not a shadow";
6237 else if (recog_memoized (insn) < 0)
6239 if (!first_cycle_insn_p
6240 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6241 || asm_noperands (PATTERN (insn)) >= 0))
6242 cost = 1;
6243 reason = "asm";
6245 else if (sched_pressure != SCHED_PRESSURE_NONE)
6247 if (sched_pressure == SCHED_PRESSURE_MODEL
6248 && INSN_TICK (insn) <= clock_var)
6250 memcpy (temp_state, curr_state, dfa_state_size);
6251 if (state_transition (temp_state, insn) >= 0)
6252 INSN_TICK (insn) = clock_var + 1;
6254 cost = 0;
6256 else
6258 int delay_cost = 0;
6260 if (delay_htab)
6262 struct delay_pair *delay_entry;
6263 delay_entry
6264 = delay_htab->find_with_hash (insn,
6265 htab_hash_pointer (insn));
6266 while (delay_entry && delay_cost == 0)
6268 delay_cost = estimate_shadow_tick (delay_entry);
6269 if (delay_cost > max_insn_queue_index)
6270 delay_cost = max_insn_queue_index;
6271 delay_entry = delay_entry->next_same_i1;
6275 memcpy (temp_state, curr_state, dfa_state_size);
6276 cost = state_transition (temp_state, insn);
6277 if (cost < 0)
6278 cost = 0;
6279 else if (cost == 0)
6280 cost = 1;
6281 if (cost < delay_cost)
6283 cost = delay_cost;
6284 reason = "shadow tick";
6287 if (cost >= 1)
6289 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6290 min_cost_group = cost;
6291 ready_remove (&ready, i);
6292 /* Normally we'd want to queue INSN for COST cycles. However,
6293 if SCHED_GROUP_P is set, then we must ensure that nothing
6294 else comes between INSN and its predecessor. If there is
6295 some other insn ready to fire on the next cycle, then that
6296 invariant would be broken.
6298 So when SCHED_GROUP_P is set, just queue this insn for a
6299 single cycle. */
6300 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6301 if (i + 1 < n)
6302 break;
6305 if (i == n)
6306 pass++;
6310 /* Called when we detect that the schedule is impossible. We examine the
6311 backtrack queue to find the earliest insn that caused this condition. */
6313 static struct haifa_saved_data *
6314 verify_shadows (void)
6316 struct haifa_saved_data *save, *earliest_fail = NULL;
6317 for (save = backtrack_queue; save; save = save->next)
6319 int t;
6320 struct delay_pair *pair = save->delay_pair;
6321 rtx_insn *i1 = pair->i1;
6323 for (; pair; pair = pair->next_same_i1)
6325 rtx_insn *i2 = pair->i2;
6327 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6328 continue;
6330 t = INSN_TICK (i1) + pair_delay (pair);
6331 if (t < clock_var)
6333 if (sched_verbose >= 2)
6334 fprintf (sched_dump,
6335 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6336 ", not ready\n",
6337 INSN_UID (pair->i1), INSN_UID (pair->i2),
6338 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6339 earliest_fail = save;
6340 break;
6342 if (QUEUE_INDEX (i2) >= 0)
6344 int queued_for = INSN_TICK (i2);
6346 if (t < queued_for)
6348 if (sched_verbose >= 2)
6349 fprintf (sched_dump,
6350 ";;\t\tfailed delay requirements for %d/%d"
6351 " (%d->%d), queued too late\n",
6352 INSN_UID (pair->i1), INSN_UID (pair->i2),
6353 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6354 earliest_fail = save;
6355 break;
6361 return earliest_fail;
6364 /* Print instructions together with useful scheduling information between
6365 HEAD and TAIL (inclusive). */
6366 static void
6367 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6369 fprintf (sched_dump, ";;\t| insn | prio |\n");
6371 rtx_insn *next_tail = NEXT_INSN (tail);
6372 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6374 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6375 const char *pattern = (NOTE_P (insn)
6376 ? "note"
6377 : str_pattern_slim (PATTERN (insn)));
6379 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6380 INSN_UID (insn), priority, pattern);
6382 if (sched_verbose >= 4)
6384 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6385 fprintf (sched_dump, "nothing");
6386 else
6387 print_reservation (sched_dump, insn);
6389 fprintf (sched_dump, "\n");
6393 /* Use forward list scheduling to rearrange insns of block pointed to by
6394 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6395 region. */
6397 bool
6398 schedule_block (basic_block *target_bb, state_t init_state)
6400 int i;
6401 bool success = modulo_ii == 0;
6402 struct sched_block_state ls;
6403 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6404 int sort_p, advance, start_clock_var;
6406 /* Head/tail info for this block. */
6407 rtx_insn *prev_head = current_sched_info->prev_head;
6408 rtx_insn *next_tail = current_sched_info->next_tail;
6409 rtx_insn *head = NEXT_INSN (prev_head);
6410 rtx_insn *tail = PREV_INSN (next_tail);
6412 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6413 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6414 find_modifiable_mems (head, tail);
6416 /* We used to have code to avoid getting parameters moved from hard
6417 argument registers into pseudos.
6419 However, it was removed when it proved to be of marginal benefit
6420 and caused problems because schedule_block and compute_forward_dependences
6421 had different notions of what the "head" insn was. */
6423 gcc_assert (head != tail || INSN_P (head));
6425 haifa_recovery_bb_recently_added_p = false;
6427 backtrack_queue = NULL;
6429 /* Debug info. */
6430 if (sched_verbose)
6432 dump_new_block_header (0, *target_bb, head, tail);
6434 if (sched_verbose >= 2)
6436 dump_insn_stream (head, tail);
6437 memset (&rank_for_schedule_stats, 0,
6438 sizeof (rank_for_schedule_stats));
6442 if (init_state == NULL)
6443 state_reset (curr_state);
6444 else
6445 memcpy (curr_state, init_state, dfa_state_size);
6447 /* Clear the ready list. */
6448 ready.first = ready.veclen - 1;
6449 ready.n_ready = 0;
6450 ready.n_debug = 0;
6452 /* It is used for first cycle multipass scheduling. */
6453 temp_state = alloca (dfa_state_size);
6455 if (targetm.sched.init)
6456 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6458 /* We start inserting insns after PREV_HEAD. */
6459 last_scheduled_insn = prev_head;
6460 last_nondebug_scheduled_insn = NULL;
6461 nonscheduled_insns_begin = NULL;
6463 gcc_assert ((NOTE_P (last_scheduled_insn)
6464 || DEBUG_INSN_P (last_scheduled_insn))
6465 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6467 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6468 queue. */
6469 q_ptr = 0;
6470 q_size = 0;
6472 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6473 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6475 /* Start just before the beginning of time. */
6476 clock_var = -1;
6478 /* We need queue and ready lists and clock_var be initialized
6479 in try_ready () (which is called through init_ready_list ()). */
6480 (*current_sched_info->init_ready_list) ();
6482 if (sched_pressure)
6483 sched_pressure_start_bb (*target_bb);
6485 /* The algorithm is O(n^2) in the number of ready insns at any given
6486 time in the worst case. Before reload we are more likely to have
6487 big lists so truncate them to a reasonable size. */
6488 if (!reload_completed
6489 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6491 ready_sort_debug (&ready);
6492 ready_sort_real (&ready);
6494 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6495 If there are debug insns, we know they're first. */
6496 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6497 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6498 break;
6500 if (sched_verbose >= 2)
6502 fprintf (sched_dump,
6503 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6504 debug_ready_list (&ready);
6505 fprintf (sched_dump,
6506 ";;\t\t before reload => truncated to %d insns\n", i);
6509 /* Delay all insns past it for 1 cycle. If debug counter is
6510 activated make an exception for the insn right after
6511 nonscheduled_insns_begin. */
6513 rtx_insn *skip_insn;
6515 if (dbg_cnt (sched_insn) == false)
6516 skip_insn = first_nonscheduled_insn ();
6517 else
6518 skip_insn = NULL;
6520 while (i < ready.n_ready)
6522 rtx_insn *insn;
6524 insn = ready_remove (&ready, i);
6526 if (insn != skip_insn)
6527 queue_insn (insn, 1, "list truncated");
6529 if (skip_insn)
6530 ready_add (&ready, skip_insn, true);
6534 /* Now we can restore basic block notes and maintain precise cfg. */
6535 restore_bb_notes (*target_bb);
6537 last_clock_var = -1;
6539 advance = 0;
6541 gcc_assert (scheduled_insns.length () == 0);
6542 sort_p = TRUE;
6543 must_backtrack = false;
6544 modulo_insns_scheduled = 0;
6546 ls.modulo_epilogue = false;
6547 ls.first_cycle_insn_p = true;
6549 /* Loop until all the insns in BB are scheduled. */
6550 while ((*current_sched_info->schedule_more_p) ())
6552 perform_replacements_new_cycle ();
6555 start_clock_var = clock_var;
6557 clock_var++;
6559 advance_one_cycle ();
6561 /* Add to the ready list all pending insns that can be issued now.
6562 If there are no ready insns, increment clock until one
6563 is ready and add all pending insns at that point to the ready
6564 list. */
6565 queue_to_ready (&ready);
6567 gcc_assert (ready.n_ready);
6569 if (sched_verbose >= 2)
6571 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6572 debug_ready_list (&ready);
6574 advance -= clock_var - start_clock_var;
6576 while (advance > 0);
6578 if (ls.modulo_epilogue)
6580 int stage = clock_var / modulo_ii;
6581 if (stage > modulo_last_stage * 2 + 2)
6583 if (sched_verbose >= 2)
6584 fprintf (sched_dump,
6585 ";;\t\tmodulo scheduled succeeded at II %d\n",
6586 modulo_ii);
6587 success = true;
6588 goto end_schedule;
6591 else if (modulo_ii > 0)
6593 int stage = clock_var / modulo_ii;
6594 if (stage > modulo_max_stages)
6596 if (sched_verbose >= 2)
6597 fprintf (sched_dump,
6598 ";;\t\tfailing schedule due to excessive stages\n");
6599 goto end_schedule;
6601 if (modulo_n_insns == modulo_insns_scheduled
6602 && stage > modulo_last_stage)
6604 if (sched_verbose >= 2)
6605 fprintf (sched_dump,
6606 ";;\t\tfound kernel after %d stages, II %d\n",
6607 stage, modulo_ii);
6608 ls.modulo_epilogue = true;
6612 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6613 if (ready.n_ready == 0)
6614 continue;
6615 if (must_backtrack)
6616 goto do_backtrack;
6618 ls.shadows_only_p = false;
6619 cycle_issued_insns = 0;
6620 ls.can_issue_more = issue_rate;
6621 for (;;)
6623 rtx_insn *insn;
6624 int cost;
6625 bool asm_p;
6627 if (sort_p && ready.n_ready > 0)
6629 /* Sort the ready list based on priority. This must be
6630 done every iteration through the loop, as schedule_insn
6631 may have readied additional insns that will not be
6632 sorted correctly. */
6633 ready_sort (&ready);
6635 if (sched_verbose >= 2)
6637 fprintf (sched_dump,
6638 ";;\t\tReady list after ready_sort: ");
6639 debug_ready_list (&ready);
6643 /* We don't want md sched reorder to even see debug isns, so put
6644 them out right away. */
6645 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6646 && (*current_sched_info->schedule_more_p) ())
6648 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6650 rtx_insn *insn = ready_remove_first (&ready);
6651 gcc_assert (DEBUG_INSN_P (insn));
6652 (*current_sched_info->begin_schedule_ready) (insn);
6653 scheduled_insns.safe_push (insn);
6654 last_scheduled_insn = insn;
6655 advance = schedule_insn (insn);
6656 gcc_assert (advance == 0);
6657 if (ready.n_ready > 0)
6658 ready_sort (&ready);
6662 if (ls.first_cycle_insn_p && !ready.n_ready)
6663 break;
6665 resume_after_backtrack:
6666 /* Allow the target to reorder the list, typically for
6667 better instruction bundling. */
6668 if (sort_p
6669 && (ready.n_ready == 0
6670 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6672 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6673 ls.can_issue_more
6674 = targetm.sched.reorder (sched_dump, sched_verbose,
6675 ready_lastpos (&ready),
6676 &ready.n_ready, clock_var);
6677 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6678 ls.can_issue_more
6679 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6680 ready.n_ready
6681 ? ready_lastpos (&ready) : NULL,
6682 &ready.n_ready, clock_var);
6685 restart_choose_ready:
6686 if (sched_verbose >= 2)
6688 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6689 clock_var);
6690 debug_ready_list (&ready);
6691 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6692 print_curr_reg_pressure ();
6695 if (ready.n_ready == 0
6696 && ls.can_issue_more
6697 && reload_completed)
6699 /* Allow scheduling insns directly from the queue in case
6700 there's nothing better to do (ready list is empty) but
6701 there are still vacant dispatch slots in the current cycle. */
6702 if (sched_verbose >= 6)
6703 fprintf (sched_dump,";;\t\tSecond chance\n");
6704 memcpy (temp_state, curr_state, dfa_state_size);
6705 if (early_queue_to_ready (temp_state, &ready))
6706 ready_sort (&ready);
6709 if (ready.n_ready == 0
6710 || !ls.can_issue_more
6711 || state_dead_lock_p (curr_state)
6712 || !(*current_sched_info->schedule_more_p) ())
6713 break;
6715 /* Select and remove the insn from the ready list. */
6716 if (sort_p)
6718 int res;
6720 insn = NULL;
6721 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6723 if (res < 0)
6724 /* Finish cycle. */
6725 break;
6726 if (res > 0)
6727 goto restart_choose_ready;
6729 gcc_assert (insn != NULL_RTX);
6731 else
6732 insn = ready_remove_first (&ready);
6734 if (sched_pressure != SCHED_PRESSURE_NONE
6735 && INSN_TICK (insn) > clock_var)
6737 ready_add (&ready, insn, true);
6738 advance = 1;
6739 break;
6742 if (targetm.sched.dfa_new_cycle
6743 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6744 insn, last_clock_var,
6745 clock_var, &sort_p))
6746 /* SORT_P is used by the target to override sorting
6747 of the ready list. This is needed when the target
6748 has modified its internal structures expecting that
6749 the insn will be issued next. As we need the insn
6750 to have the highest priority (so it will be returned by
6751 the ready_remove_first call above), we invoke
6752 ready_add (&ready, insn, true).
6753 But, still, there is one issue: INSN can be later
6754 discarded by scheduler's front end through
6755 current_sched_info->can_schedule_ready_p, hence, won't
6756 be issued next. */
6758 ready_add (&ready, insn, true);
6759 break;
6762 sort_p = TRUE;
6764 if (current_sched_info->can_schedule_ready_p
6765 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6766 /* We normally get here only if we don't want to move
6767 insn from the split block. */
6769 TODO_SPEC (insn) = DEP_POSTPONED;
6770 goto restart_choose_ready;
6773 if (delay_htab)
6775 /* If this insn is the first part of a delay-slot pair, record a
6776 backtrack point. */
6777 struct delay_pair *delay_entry;
6778 delay_entry
6779 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6780 if (delay_entry)
6782 save_backtrack_point (delay_entry, ls);
6783 if (sched_verbose >= 2)
6784 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6788 /* DECISION is made. */
6790 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6792 modulo_insns_scheduled++;
6793 modulo_last_stage = clock_var / modulo_ii;
6795 if (TODO_SPEC (insn) & SPECULATIVE)
6796 generate_recovery_code (insn);
6798 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6799 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6801 /* Update counters, etc in the scheduler's front end. */
6802 (*current_sched_info->begin_schedule_ready) (insn);
6803 scheduled_insns.safe_push (insn);
6804 gcc_assert (NONDEBUG_INSN_P (insn));
6805 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6807 if (recog_memoized (insn) >= 0)
6809 memcpy (temp_state, curr_state, dfa_state_size);
6810 cost = state_transition (curr_state, insn);
6811 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6812 gcc_assert (cost < 0);
6813 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6814 cycle_issued_insns++;
6815 asm_p = false;
6817 else
6818 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6819 || asm_noperands (PATTERN (insn)) >= 0);
6821 if (targetm.sched.variable_issue)
6822 ls.can_issue_more =
6823 targetm.sched.variable_issue (sched_dump, sched_verbose,
6824 insn, ls.can_issue_more);
6825 /* A naked CLOBBER or USE generates no instruction, so do
6826 not count them against the issue rate. */
6827 else if (GET_CODE (PATTERN (insn)) != USE
6828 && GET_CODE (PATTERN (insn)) != CLOBBER)
6829 ls.can_issue_more--;
6830 advance = schedule_insn (insn);
6832 if (SHADOW_P (insn))
6833 ls.shadows_only_p = true;
6835 /* After issuing an asm insn we should start a new cycle. */
6836 if (advance == 0 && asm_p)
6837 advance = 1;
6839 if (must_backtrack)
6840 break;
6842 if (advance != 0)
6843 break;
6845 ls.first_cycle_insn_p = false;
6846 if (ready.n_ready > 0)
6847 prune_ready_list (temp_state, false, ls.shadows_only_p,
6848 ls.modulo_epilogue);
6851 do_backtrack:
6852 if (!must_backtrack)
6853 for (i = 0; i < ready.n_ready; i++)
6855 rtx_insn *insn = ready_element (&ready, i);
6856 if (INSN_EXACT_TICK (insn) == clock_var)
6858 must_backtrack = true;
6859 clock_var++;
6860 break;
6863 if (must_backtrack && modulo_ii > 0)
6865 if (modulo_backtracks_left == 0)
6866 goto end_schedule;
6867 modulo_backtracks_left--;
6869 while (must_backtrack)
6871 struct haifa_saved_data *failed;
6872 rtx_insn *failed_insn;
6874 must_backtrack = false;
6875 failed = verify_shadows ();
6876 gcc_assert (failed);
6878 failed_insn = failed->delay_pair->i1;
6879 /* Clear these queues. */
6880 perform_replacements_new_cycle ();
6881 toggle_cancelled_flags (false);
6882 unschedule_insns_until (failed_insn);
6883 while (failed != backtrack_queue)
6884 free_topmost_backtrack_point (true);
6885 restore_last_backtrack_point (&ls);
6886 if (sched_verbose >= 2)
6887 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6888 /* Delay by at least a cycle. This could cause additional
6889 backtracking. */
6890 queue_insn (failed_insn, 1, "backtracked");
6891 advance = 0;
6892 if (must_backtrack)
6893 continue;
6894 if (ready.n_ready > 0)
6895 goto resume_after_backtrack;
6896 else
6898 if (clock_var == 0 && ls.first_cycle_insn_p)
6899 goto end_schedule;
6900 advance = 1;
6901 break;
6904 ls.first_cycle_insn_p = true;
6906 if (ls.modulo_epilogue)
6907 success = true;
6908 end_schedule:
6909 if (!ls.first_cycle_insn_p || advance)
6910 advance_one_cycle ();
6911 perform_replacements_new_cycle ();
6912 if (modulo_ii > 0)
6914 /* Once again, debug insn suckiness: they can be on the ready list
6915 even if they have unresolved dependencies. To make our view
6916 of the world consistent, remove such "ready" insns. */
6917 restart_debug_insn_loop:
6918 for (i = ready.n_ready - 1; i >= 0; i--)
6920 rtx_insn *x;
6922 x = ready_element (&ready, i);
6923 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6924 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6926 ready_remove (&ready, i);
6927 goto restart_debug_insn_loop;
6930 for (i = ready.n_ready - 1; i >= 0; i--)
6932 rtx_insn *x;
6934 x = ready_element (&ready, i);
6935 resolve_dependencies (x);
6937 for (i = 0; i <= max_insn_queue_index; i++)
6939 rtx_insn_list *link;
6940 while ((link = insn_queue[i]) != NULL)
6942 rtx_insn *x = link->insn ();
6943 insn_queue[i] = link->next ();
6944 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6945 free_INSN_LIST_node (link);
6946 resolve_dependencies (x);
6951 if (!success)
6952 undo_all_replacements ();
6954 /* Debug info. */
6955 if (sched_verbose)
6957 fprintf (sched_dump, ";;\tReady list (final): ");
6958 debug_ready_list (&ready);
6961 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6962 /* Sanity check -- queue must be empty now. Meaningless if region has
6963 multiple bbs. */
6964 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6965 else if (modulo_ii == 0)
6967 /* We must maintain QUEUE_INDEX between blocks in region. */
6968 for (i = ready.n_ready - 1; i >= 0; i--)
6970 rtx_insn *x;
6972 x = ready_element (&ready, i);
6973 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6974 TODO_SPEC (x) = HARD_DEP;
6977 if (q_size)
6978 for (i = 0; i <= max_insn_queue_index; i++)
6980 rtx_insn_list *link;
6981 for (link = insn_queue[i]; link; link = link->next ())
6983 rtx_insn *x;
6985 x = link->insn ();
6986 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6987 TODO_SPEC (x) = HARD_DEP;
6989 free_INSN_LIST_list (&insn_queue[i]);
6993 if (sched_pressure == SCHED_PRESSURE_MODEL)
6994 model_end_schedule ();
6996 if (success)
6998 commit_schedule (prev_head, tail, target_bb);
6999 if (sched_verbose)
7000 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7002 else
7003 last_scheduled_insn = tail;
7005 scheduled_insns.truncate (0);
7007 if (!current_sched_info->queue_must_finish_empty
7008 || haifa_recovery_bb_recently_added_p)
7010 /* INSN_TICK (minimum clock tick at which the insn becomes
7011 ready) may be not correct for the insn in the subsequent
7012 blocks of the region. We should use a correct value of
7013 `clock_var' or modify INSN_TICK. It is better to keep
7014 clock_var value equal to 0 at the start of a basic block.
7015 Therefore we modify INSN_TICK here. */
7016 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7019 if (targetm.sched.finish)
7021 targetm.sched.finish (sched_dump, sched_verbose);
7022 /* Target might have added some instructions to the scheduled block
7023 in its md_finish () hook. These new insns don't have any data
7024 initialized and to identify them we extend h_i_d so that they'll
7025 get zero luids. */
7026 sched_extend_luids ();
7029 /* Update head/tail boundaries. */
7030 head = NEXT_INSN (prev_head);
7031 tail = last_scheduled_insn;
7033 if (sched_verbose)
7035 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7036 INSN_UID (head), INSN_UID (tail));
7038 if (sched_verbose >= 2)
7040 dump_insn_stream (head, tail);
7041 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7042 NULL);
7045 fprintf (sched_dump, "\n");
7048 head = restore_other_notes (head, NULL);
7050 current_sched_info->head = head;
7051 current_sched_info->tail = tail;
7053 free_backtrack_queue ();
7055 return success;
7058 /* Set_priorities: compute priority of each insn in the block. */
7061 set_priorities (rtx_insn *head, rtx_insn *tail)
7063 rtx_insn *insn;
7064 int n_insn;
7065 int sched_max_insns_priority =
7066 current_sched_info->sched_max_insns_priority;
7067 rtx_insn *prev_head;
7069 if (head == tail && ! INSN_P (head))
7070 gcc_unreachable ();
7072 n_insn = 0;
7074 prev_head = PREV_INSN (head);
7075 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7077 if (!INSN_P (insn))
7078 continue;
7080 n_insn++;
7081 (void) priority (insn);
7083 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7085 sched_max_insns_priority = MAX (sched_max_insns_priority,
7086 INSN_PRIORITY (insn));
7089 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7091 return n_insn;
7094 /* Set dump and sched_verbose for the desired debugging output. If no
7095 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7096 For -fsched-verbose=N, N>=10, print everything to stderr. */
7097 void
7098 setup_sched_dump (void)
7100 sched_verbose = sched_verbose_param;
7101 if (sched_verbose_param == 0 && dump_file)
7102 sched_verbose = 1;
7103 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7104 ? stderr : dump_file);
7107 /* Allocate data for register pressure sensitive scheduling. */
7108 static void
7109 alloc_global_sched_pressure_data (void)
7111 if (sched_pressure != SCHED_PRESSURE_NONE)
7113 int i, max_regno = max_reg_num ();
7115 if (sched_dump != NULL)
7116 /* We need info about pseudos for rtl dumps about pseudo
7117 classes and costs. */
7118 regstat_init_n_sets_and_refs ();
7119 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7120 sched_regno_pressure_class
7121 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7122 for (i = 0; i < max_regno; i++)
7123 sched_regno_pressure_class[i]
7124 = (i < FIRST_PSEUDO_REGISTER
7125 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7126 : ira_pressure_class_translate[reg_allocno_class (i)]);
7127 curr_reg_live = BITMAP_ALLOC (NULL);
7128 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7130 saved_reg_live = BITMAP_ALLOC (NULL);
7131 region_ref_regs = BITMAP_ALLOC (NULL);
7134 /* Calculate number of CALL_USED_REGS in register classes that
7135 we calculate register pressure for. */
7136 for (int c = 0; c < ira_pressure_classes_num; ++c)
7138 enum reg_class cl = ira_pressure_classes[c];
7140 call_used_regs_num[cl] = 0;
7142 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7143 if (call_used_regs[ira_class_hard_regs[cl][i]])
7144 ++call_used_regs_num[cl];
7149 /* Free data for register pressure sensitive scheduling. Also called
7150 from schedule_region when stopping sched-pressure early. */
7151 void
7152 free_global_sched_pressure_data (void)
7154 if (sched_pressure != SCHED_PRESSURE_NONE)
7156 if (regstat_n_sets_and_refs != NULL)
7157 regstat_free_n_sets_and_refs ();
7158 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7160 BITMAP_FREE (region_ref_regs);
7161 BITMAP_FREE (saved_reg_live);
7163 BITMAP_FREE (curr_reg_live);
7164 free (sched_regno_pressure_class);
7168 /* Initialize some global state for the scheduler. This function works
7169 with the common data shared between all the schedulers. It is called
7170 from the scheduler specific initialization routine. */
7172 void
7173 sched_init (void)
7175 /* Disable speculative loads in their presence if cc0 defined. */
7176 if (HAVE_cc0)
7177 flag_schedule_speculative_load = 0;
7179 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7180 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7182 if (live_range_shrinkage_p)
7183 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7184 else if (flag_sched_pressure
7185 && !reload_completed
7186 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7187 sched_pressure = ((enum sched_pressure_algorithm)
7188 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7189 else
7190 sched_pressure = SCHED_PRESSURE_NONE;
7192 if (sched_pressure != SCHED_PRESSURE_NONE)
7193 ira_setup_eliminable_regset ();
7195 /* Initialize SPEC_INFO. */
7196 if (targetm.sched.set_sched_flags)
7198 spec_info = &spec_info_var;
7199 targetm.sched.set_sched_flags (spec_info);
7201 if (spec_info->mask != 0)
7203 spec_info->data_weakness_cutoff =
7204 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7205 spec_info->control_weakness_cutoff =
7206 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7207 * REG_BR_PROB_BASE) / 100;
7209 else
7210 /* So we won't read anything accidentally. */
7211 spec_info = NULL;
7214 else
7215 /* So we won't read anything accidentally. */
7216 spec_info = 0;
7218 /* Initialize issue_rate. */
7219 if (targetm.sched.issue_rate)
7220 issue_rate = targetm.sched.issue_rate ();
7221 else
7222 issue_rate = 1;
7224 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7225 /* Don't use max_issue with reg_pressure scheduling. Multipass
7226 scheduling and reg_pressure scheduling undo each other's decisions. */
7227 && sched_pressure == SCHED_PRESSURE_NONE)
7228 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7229 else
7230 dfa_lookahead = 0;
7232 /* Set to "0" so that we recalculate. */
7233 max_lookahead_tries = 0;
7235 if (targetm.sched.init_dfa_pre_cycle_insn)
7236 targetm.sched.init_dfa_pre_cycle_insn ();
7238 if (targetm.sched.init_dfa_post_cycle_insn)
7239 targetm.sched.init_dfa_post_cycle_insn ();
7241 dfa_start ();
7242 dfa_state_size = state_size ();
7244 init_alias_analysis ();
7246 if (!sched_no_dce)
7247 df_set_flags (DF_LR_RUN_DCE);
7248 df_note_add_problem ();
7250 /* More problems needed for interloop dep calculation in SMS. */
7251 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7253 df_rd_add_problem ();
7254 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7257 df_analyze ();
7259 /* Do not run DCE after reload, as this can kill nops inserted
7260 by bundling. */
7261 if (reload_completed)
7262 df_clear_flags (DF_LR_RUN_DCE);
7264 regstat_compute_calls_crossed ();
7266 if (targetm.sched.init_global)
7267 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7269 alloc_global_sched_pressure_data ();
7271 curr_state = xmalloc (dfa_state_size);
7274 static void haifa_init_only_bb (basic_block, basic_block);
7276 /* Initialize data structures specific to the Haifa scheduler. */
7277 void
7278 haifa_sched_init (void)
7280 setup_sched_dump ();
7281 sched_init ();
7283 scheduled_insns.create (0);
7285 if (spec_info != NULL)
7287 sched_deps_info->use_deps_list = 1;
7288 sched_deps_info->generate_spec_deps = 1;
7291 /* Initialize luids, dependency caches, target and h_i_d for the
7292 whole function. */
7294 bb_vec_t bbs;
7295 bbs.create (n_basic_blocks_for_fn (cfun));
7296 basic_block bb;
7298 sched_init_bbs ();
7300 FOR_EACH_BB_FN (bb, cfun)
7301 bbs.quick_push (bb);
7302 sched_init_luids (bbs);
7303 sched_deps_init (true);
7304 sched_extend_target ();
7305 haifa_init_h_i_d (bbs);
7307 bbs.release ();
7310 sched_init_only_bb = haifa_init_only_bb;
7311 sched_split_block = sched_split_block_1;
7312 sched_create_empty_bb = sched_create_empty_bb_1;
7313 haifa_recovery_bb_ever_added_p = false;
7315 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7316 before_recovery = 0;
7317 after_recovery = 0;
7319 modulo_ii = 0;
7322 /* Finish work with the data specific to the Haifa scheduler. */
7323 void
7324 haifa_sched_finish (void)
7326 sched_create_empty_bb = NULL;
7327 sched_split_block = NULL;
7328 sched_init_only_bb = NULL;
7330 if (spec_info && spec_info->dump)
7332 char c = reload_completed ? 'a' : 'b';
7334 fprintf (spec_info->dump,
7335 ";; %s:\n", current_function_name ());
7337 fprintf (spec_info->dump,
7338 ";; Procedure %cr-begin-data-spec motions == %d\n",
7339 c, nr_begin_data);
7340 fprintf (spec_info->dump,
7341 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7342 c, nr_be_in_data);
7343 fprintf (spec_info->dump,
7344 ";; Procedure %cr-begin-control-spec motions == %d\n",
7345 c, nr_begin_control);
7346 fprintf (spec_info->dump,
7347 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7348 c, nr_be_in_control);
7351 scheduled_insns.release ();
7353 /* Finalize h_i_d, dependency caches, and luids for the whole
7354 function. Target will be finalized in md_global_finish (). */
7355 sched_deps_finish ();
7356 sched_finish_luids ();
7357 current_sched_info = NULL;
7358 sched_finish ();
7361 /* Free global data used during insn scheduling. This function works with
7362 the common data shared between the schedulers. */
7364 void
7365 sched_finish (void)
7367 haifa_finish_h_i_d ();
7368 free_global_sched_pressure_data ();
7369 free (curr_state);
7371 if (targetm.sched.finish_global)
7372 targetm.sched.finish_global (sched_dump, sched_verbose);
7374 end_alias_analysis ();
7376 regstat_free_calls_crossed ();
7378 dfa_finish ();
7381 /* Free all delay_pair structures that were recorded. */
7382 void
7383 free_delay_pairs (void)
7385 if (delay_htab)
7387 delay_htab->empty ();
7388 delay_htab_i2->empty ();
7392 /* Fix INSN_TICKs of the instructions in the current block as well as
7393 INSN_TICKs of their dependents.
7394 HEAD and TAIL are the begin and the end of the current scheduled block. */
7395 static void
7396 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7398 /* Set of instructions with corrected INSN_TICK. */
7399 bitmap_head processed;
7400 /* ??? It is doubtful if we should assume that cycle advance happens on
7401 basic block boundaries. Basically insns that are unconditionally ready
7402 on the start of the block are more preferable then those which have
7403 a one cycle dependency over insn from the previous block. */
7404 int next_clock = clock_var + 1;
7406 bitmap_initialize (&processed, 0);
7408 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7409 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7410 across different blocks. */
7411 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7413 if (INSN_P (head))
7415 int tick;
7416 sd_iterator_def sd_it;
7417 dep_t dep;
7419 tick = INSN_TICK (head);
7420 gcc_assert (tick >= MIN_TICK);
7422 /* Fix INSN_TICK of instruction from just scheduled block. */
7423 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7425 tick -= next_clock;
7427 if (tick < MIN_TICK)
7428 tick = MIN_TICK;
7430 INSN_TICK (head) = tick;
7433 if (DEBUG_INSN_P (head))
7434 continue;
7436 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7438 rtx_insn *next;
7440 next = DEP_CON (dep);
7441 tick = INSN_TICK (next);
7443 if (tick != INVALID_TICK
7444 /* If NEXT has its INSN_TICK calculated, fix it.
7445 If not - it will be properly calculated from
7446 scratch later in fix_tick_ready. */
7447 && bitmap_set_bit (&processed, INSN_LUID (next)))
7449 tick -= next_clock;
7451 if (tick < MIN_TICK)
7452 tick = MIN_TICK;
7454 if (tick > INTER_TICK (next))
7455 INTER_TICK (next) = tick;
7456 else
7457 tick = INTER_TICK (next);
7459 INSN_TICK (next) = tick;
7464 bitmap_clear (&processed);
7467 /* Check if NEXT is ready to be added to the ready or queue list.
7468 If "yes", add it to the proper list.
7469 Returns:
7470 -1 - is not ready yet,
7471 0 - added to the ready list,
7472 0 < N - queued for N cycles. */
7474 try_ready (rtx_insn *next)
7476 ds_t old_ts, new_ts;
7478 old_ts = TODO_SPEC (next);
7480 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7481 && (old_ts == HARD_DEP
7482 || old_ts == DEP_POSTPONED
7483 || (old_ts & SPECULATIVE)
7484 || old_ts == DEP_CONTROL));
7486 new_ts = recompute_todo_spec (next, false);
7488 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7489 gcc_assert (new_ts == old_ts
7490 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7491 else if (current_sched_info->new_ready)
7492 new_ts = current_sched_info->new_ready (next, new_ts);
7494 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7495 have its original pattern or changed (speculative) one. This is due
7496 to changing ebb in region scheduling.
7497 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7498 has speculative pattern.
7500 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7501 control-speculative NEXT could have been discarded by sched-rgn.c
7502 (the same case as when discarded by can_schedule_ready_p ()). */
7504 if ((new_ts & SPECULATIVE)
7505 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7506 need to change anything. */
7507 && new_ts != old_ts)
7509 int res;
7510 rtx new_pat;
7512 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7514 res = haifa_speculate_insn (next, new_ts, &new_pat);
7516 switch (res)
7518 case -1:
7519 /* It would be nice to change DEP_STATUS of all dependences,
7520 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7521 so we won't reanalyze anything. */
7522 new_ts = HARD_DEP;
7523 break;
7525 case 0:
7526 /* We follow the rule, that every speculative insn
7527 has non-null ORIG_PAT. */
7528 if (!ORIG_PAT (next))
7529 ORIG_PAT (next) = PATTERN (next);
7530 break;
7532 case 1:
7533 if (!ORIG_PAT (next))
7534 /* If we gonna to overwrite the original pattern of insn,
7535 save it. */
7536 ORIG_PAT (next) = PATTERN (next);
7538 res = haifa_change_pattern (next, new_pat);
7539 gcc_assert (res);
7540 break;
7542 default:
7543 gcc_unreachable ();
7547 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7548 either correct (new_ts & SPECULATIVE),
7549 or we simply don't care (new_ts & HARD_DEP). */
7551 gcc_assert (!ORIG_PAT (next)
7552 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7554 TODO_SPEC (next) = new_ts;
7556 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7558 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7559 control-speculative NEXT could have been discarded by sched-rgn.c
7560 (the same case as when discarded by can_schedule_ready_p ()). */
7561 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7563 change_queue_index (next, QUEUE_NOWHERE);
7565 return -1;
7567 else if (!(new_ts & BEGIN_SPEC)
7568 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7569 && !IS_SPECULATION_CHECK_P (next))
7570 /* We should change pattern of every previously speculative
7571 instruction - and we determine if NEXT was speculative by using
7572 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7573 pat too, so skip them. */
7575 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7576 gcc_assert (success);
7577 ORIG_PAT (next) = 0;
7580 if (sched_verbose >= 2)
7582 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7583 (*current_sched_info->print_insn) (next, 0));
7585 if (spec_info && spec_info->dump)
7587 if (new_ts & BEGIN_DATA)
7588 fprintf (spec_info->dump, "; data-spec;");
7589 if (new_ts & BEGIN_CONTROL)
7590 fprintf (spec_info->dump, "; control-spec;");
7591 if (new_ts & BE_IN_CONTROL)
7592 fprintf (spec_info->dump, "; in-control-spec;");
7594 if (TODO_SPEC (next) & DEP_CONTROL)
7595 fprintf (sched_dump, " predicated");
7596 fprintf (sched_dump, "\n");
7599 adjust_priority (next);
7601 return fix_tick_ready (next);
7604 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7605 static int
7606 fix_tick_ready (rtx_insn *next)
7608 int tick, delay;
7610 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7612 int full_p;
7613 sd_iterator_def sd_it;
7614 dep_t dep;
7616 tick = INSN_TICK (next);
7617 /* if tick is not equal to INVALID_TICK, then update
7618 INSN_TICK of NEXT with the most recent resolved dependence
7619 cost. Otherwise, recalculate from scratch. */
7620 full_p = (tick == INVALID_TICK);
7622 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7624 rtx_insn *pro = DEP_PRO (dep);
7625 int tick1;
7627 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7629 tick1 = INSN_TICK (pro) + dep_cost (dep);
7630 if (tick1 > tick)
7631 tick = tick1;
7633 if (!full_p)
7634 break;
7637 else
7638 tick = -1;
7640 INSN_TICK (next) = tick;
7642 delay = tick - clock_var;
7643 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7644 delay = QUEUE_READY;
7646 change_queue_index (next, delay);
7648 return delay;
7651 /* Move NEXT to the proper queue list with (DELAY >= 1),
7652 or add it to the ready list (DELAY == QUEUE_READY),
7653 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7654 static void
7655 change_queue_index (rtx_insn *next, int delay)
7657 int i = QUEUE_INDEX (next);
7659 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7660 && delay != 0);
7661 gcc_assert (i != QUEUE_SCHEDULED);
7663 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7664 || (delay < 0 && delay == i))
7665 /* We have nothing to do. */
7666 return;
7668 /* Remove NEXT from wherever it is now. */
7669 if (i == QUEUE_READY)
7670 ready_remove_insn (next);
7671 else if (i >= 0)
7672 queue_remove (next);
7674 /* Add it to the proper place. */
7675 if (delay == QUEUE_READY)
7676 ready_add (readyp, next, false);
7677 else if (delay >= 1)
7678 queue_insn (next, delay, "change queue index");
7680 if (sched_verbose >= 2)
7682 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7683 (*current_sched_info->print_insn) (next, 0));
7685 if (delay == QUEUE_READY)
7686 fprintf (sched_dump, " into ready\n");
7687 else if (delay >= 1)
7688 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7689 else
7690 fprintf (sched_dump, " removed from ready or queue lists\n");
7694 static int sched_ready_n_insns = -1;
7696 /* Initialize per region data structures. */
7697 void
7698 sched_extend_ready_list (int new_sched_ready_n_insns)
7700 int i;
7702 if (sched_ready_n_insns == -1)
7703 /* At the first call we need to initialize one more choice_stack
7704 entry. */
7706 i = 0;
7707 sched_ready_n_insns = 0;
7708 scheduled_insns.reserve (new_sched_ready_n_insns);
7710 else
7711 i = sched_ready_n_insns + 1;
7713 ready.veclen = new_sched_ready_n_insns + issue_rate;
7714 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7716 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7718 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7719 sched_ready_n_insns,
7720 sizeof (*ready_try));
7722 /* We allocate +1 element to save initial state in the choice_stack[0]
7723 entry. */
7724 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7725 new_sched_ready_n_insns + 1);
7727 for (; i <= new_sched_ready_n_insns; i++)
7729 choice_stack[i].state = xmalloc (dfa_state_size);
7731 if (targetm.sched.first_cycle_multipass_init)
7732 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7733 .target_data));
7736 sched_ready_n_insns = new_sched_ready_n_insns;
7739 /* Free per region data structures. */
7740 void
7741 sched_finish_ready_list (void)
7743 int i;
7745 free (ready.vec);
7746 ready.vec = NULL;
7747 ready.veclen = 0;
7749 free (ready_try);
7750 ready_try = NULL;
7752 for (i = 0; i <= sched_ready_n_insns; i++)
7754 if (targetm.sched.first_cycle_multipass_fini)
7755 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7756 .target_data));
7758 free (choice_stack [i].state);
7760 free (choice_stack);
7761 choice_stack = NULL;
7763 sched_ready_n_insns = -1;
7766 static int
7767 haifa_luid_for_non_insn (rtx x)
7769 gcc_assert (NOTE_P (x) || LABEL_P (x));
7771 return 0;
7774 /* Generates recovery code for INSN. */
7775 static void
7776 generate_recovery_code (rtx_insn *insn)
7778 if (TODO_SPEC (insn) & BEGIN_SPEC)
7779 begin_speculative_block (insn);
7781 /* Here we have insn with no dependencies to
7782 instructions other then CHECK_SPEC ones. */
7784 if (TODO_SPEC (insn) & BE_IN_SPEC)
7785 add_to_speculative_block (insn);
7788 /* Helper function.
7789 Tries to add speculative dependencies of type FS between instructions
7790 in deps_list L and TWIN. */
7791 static void
7792 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7794 sd_iterator_def sd_it;
7795 dep_t dep;
7797 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7799 ds_t ds;
7800 rtx_insn *consumer;
7802 consumer = DEP_CON (dep);
7804 ds = DEP_STATUS (dep);
7806 if (/* If we want to create speculative dep. */
7808 /* And we can do that because this is a true dep. */
7809 && (ds & DEP_TYPES) == DEP_TRUE)
7811 gcc_assert (!(ds & BE_IN_SPEC));
7813 if (/* If this dep can be overcome with 'begin speculation'. */
7814 ds & BEGIN_SPEC)
7815 /* Then we have a choice: keep the dep 'begin speculative'
7816 or transform it into 'be in speculative'. */
7818 if (/* In try_ready we assert that if insn once became ready
7819 it can be removed from the ready (or queue) list only
7820 due to backend decision. Hence we can't let the
7821 probability of the speculative dep to decrease. */
7822 ds_weak (ds) <= ds_weak (fs))
7824 ds_t new_ds;
7826 new_ds = (ds & ~BEGIN_SPEC) | fs;
7828 if (/* consumer can 'be in speculative'. */
7829 sched_insn_is_legitimate_for_speculation_p (consumer,
7830 new_ds))
7831 /* Transform it to be in speculative. */
7832 ds = new_ds;
7835 else
7836 /* Mark the dep as 'be in speculative'. */
7837 ds |= fs;
7841 dep_def _new_dep, *new_dep = &_new_dep;
7843 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7844 sd_add_dep (new_dep, false);
7849 /* Generates recovery code for BEGIN speculative INSN. */
7850 static void
7851 begin_speculative_block (rtx_insn *insn)
7853 if (TODO_SPEC (insn) & BEGIN_DATA)
7854 nr_begin_data++;
7855 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7856 nr_begin_control++;
7858 create_check_block_twin (insn, false);
7860 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7863 static void haifa_init_insn (rtx_insn *);
7865 /* Generates recovery code for BE_IN speculative INSN. */
7866 static void
7867 add_to_speculative_block (rtx_insn *insn)
7869 ds_t ts;
7870 sd_iterator_def sd_it;
7871 dep_t dep;
7872 rtx_insn_list *twins = NULL;
7873 rtx_vec_t priorities_roots;
7875 ts = TODO_SPEC (insn);
7876 gcc_assert (!(ts & ~BE_IN_SPEC));
7878 if (ts & BE_IN_DATA)
7879 nr_be_in_data++;
7880 if (ts & BE_IN_CONTROL)
7881 nr_be_in_control++;
7883 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7884 gcc_assert (!TODO_SPEC (insn));
7886 DONE_SPEC (insn) |= ts;
7888 /* First we convert all simple checks to branchy. */
7889 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7890 sd_iterator_cond (&sd_it, &dep);)
7892 rtx_insn *check = DEP_PRO (dep);
7894 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7896 create_check_block_twin (check, true);
7898 /* Restart search. */
7899 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7901 else
7902 /* Continue search. */
7903 sd_iterator_next (&sd_it);
7906 priorities_roots.create (0);
7907 clear_priorities (insn, &priorities_roots);
7909 while (1)
7911 rtx_insn *check, *twin;
7912 basic_block rec;
7914 /* Get the first backward dependency of INSN. */
7915 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7916 if (!sd_iterator_cond (&sd_it, &dep))
7917 /* INSN has no backward dependencies left. */
7918 break;
7920 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7921 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7922 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7924 check = DEP_PRO (dep);
7926 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7927 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7929 rec = BLOCK_FOR_INSN (check);
7931 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7932 haifa_init_insn (twin);
7934 sd_copy_back_deps (twin, insn, true);
7936 if (sched_verbose && spec_info->dump)
7937 /* INSN_BB (insn) isn't determined for twin insns yet.
7938 So we can't use current_sched_info->print_insn. */
7939 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7940 INSN_UID (twin), rec->index);
7942 twins = alloc_INSN_LIST (twin, twins);
7944 /* Add dependences between TWIN and all appropriate
7945 instructions from REC. */
7946 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7948 rtx_insn *pro = DEP_PRO (dep);
7950 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7952 /* INSN might have dependencies from the instructions from
7953 several recovery blocks. At this iteration we process those
7954 producers that reside in REC. */
7955 if (BLOCK_FOR_INSN (pro) == rec)
7957 dep_def _new_dep, *new_dep = &_new_dep;
7959 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7960 sd_add_dep (new_dep, false);
7964 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7966 /* Remove all dependencies between INSN and insns in REC. */
7967 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7968 sd_iterator_cond (&sd_it, &dep);)
7970 rtx_insn *pro = DEP_PRO (dep);
7972 if (BLOCK_FOR_INSN (pro) == rec)
7973 sd_delete_dep (sd_it);
7974 else
7975 sd_iterator_next (&sd_it);
7979 /* We couldn't have added the dependencies between INSN and TWINS earlier
7980 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7981 while (twins)
7983 rtx_insn *twin;
7984 rtx_insn_list *next_node;
7986 twin = twins->insn ();
7989 dep_def _new_dep, *new_dep = &_new_dep;
7991 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7992 sd_add_dep (new_dep, false);
7995 next_node = twins->next ();
7996 free_INSN_LIST_node (twins);
7997 twins = next_node;
8000 calc_priorities (priorities_roots);
8001 priorities_roots.release ();
8004 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8005 void *
8006 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8008 gcc_assert (new_nmemb >= old_nmemb);
8009 p = XRESIZEVAR (void, p, new_nmemb * size);
8010 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8011 return p;
8014 /* Helper function.
8015 Find fallthru edge from PRED. */
8016 edge
8017 find_fallthru_edge_from (basic_block pred)
8019 edge e;
8020 basic_block succ;
8022 succ = pred->next_bb;
8023 gcc_assert (succ->prev_bb == pred);
8025 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8027 e = find_fallthru_edge (pred->succs);
8029 if (e)
8031 gcc_assert (e->dest == succ);
8032 return e;
8035 else
8037 e = find_fallthru_edge (succ->preds);
8039 if (e)
8041 gcc_assert (e->src == pred);
8042 return e;
8046 return NULL;
8049 /* Extend per basic block data structures. */
8050 static void
8051 sched_extend_bb (void)
8053 /* The following is done to keep current_sched_info->next_tail non null. */
8054 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8055 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8056 if (NEXT_INSN (end) == 0
8057 || (!NOTE_P (insn)
8058 && !LABEL_P (insn)
8059 /* Don't emit a NOTE if it would end up before a BARRIER. */
8060 && !BARRIER_P (NEXT_INSN (end))))
8062 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8063 /* Make note appear outside BB. */
8064 set_block_for_insn (note, NULL);
8065 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8069 /* Init per basic block data structures. */
8070 void
8071 sched_init_bbs (void)
8073 sched_extend_bb ();
8076 /* Initialize BEFORE_RECOVERY variable. */
8077 static void
8078 init_before_recovery (basic_block *before_recovery_ptr)
8080 basic_block last;
8081 edge e;
8083 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8084 e = find_fallthru_edge_from (last);
8086 if (e)
8088 /* We create two basic blocks:
8089 1. Single instruction block is inserted right after E->SRC
8090 and has jump to
8091 2. Empty block right before EXIT_BLOCK.
8092 Between these two blocks recovery blocks will be emitted. */
8094 basic_block single, empty;
8096 /* If the fallthrough edge to exit we've found is from the block we've
8097 created before, don't do anything more. */
8098 if (last == after_recovery)
8099 return;
8101 adding_bb_to_current_region_p = false;
8103 single = sched_create_empty_bb (last);
8104 empty = sched_create_empty_bb (single);
8106 /* Add new blocks to the root loop. */
8107 if (current_loops != NULL)
8109 add_bb_to_loop (single, (*current_loops->larray)[0]);
8110 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8113 single->count = last->count;
8114 empty->count = last->count;
8115 single->frequency = last->frequency;
8116 empty->frequency = last->frequency;
8117 BB_COPY_PARTITION (single, last);
8118 BB_COPY_PARTITION (empty, last);
8120 redirect_edge_succ (e, single);
8121 make_single_succ_edge (single, empty, 0);
8122 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8123 EDGE_FALLTHRU);
8125 rtx_code_label *label = block_label (empty);
8126 rtx_jump_insn *x = emit_jump_insn_after (gen_jump (label),
8127 BB_END (single));
8128 JUMP_LABEL (x) = label;
8129 LABEL_NUSES (label)++;
8130 haifa_init_insn (x);
8132 emit_barrier_after (x);
8134 sched_init_only_bb (empty, NULL);
8135 sched_init_only_bb (single, NULL);
8136 sched_extend_bb ();
8138 adding_bb_to_current_region_p = true;
8139 before_recovery = single;
8140 after_recovery = empty;
8142 if (before_recovery_ptr)
8143 *before_recovery_ptr = before_recovery;
8145 if (sched_verbose >= 2 && spec_info->dump)
8146 fprintf (spec_info->dump,
8147 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8148 last->index, single->index, empty->index);
8150 else
8151 before_recovery = last;
8154 /* Returns new recovery block. */
8155 basic_block
8156 sched_create_recovery_block (basic_block *before_recovery_ptr)
8158 rtx_insn *barrier;
8159 basic_block rec;
8161 haifa_recovery_bb_recently_added_p = true;
8162 haifa_recovery_bb_ever_added_p = true;
8164 init_before_recovery (before_recovery_ptr);
8166 barrier = get_last_bb_insn (before_recovery);
8167 gcc_assert (BARRIER_P (barrier));
8169 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8171 rec = create_basic_block (label, label, before_recovery);
8173 /* A recovery block always ends with an unconditional jump. */
8174 emit_barrier_after (BB_END (rec));
8176 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8177 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8179 if (sched_verbose && spec_info->dump)
8180 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8181 rec->index);
8183 return rec;
8186 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8187 and emit necessary jumps. */
8188 void
8189 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8190 basic_block second_bb)
8192 int edge_flags;
8194 /* This is fixing of incoming edge. */
8195 /* ??? Which other flags should be specified? */
8196 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8197 /* Partition type is the same, if it is "unpartitioned". */
8198 edge_flags = EDGE_CROSSING;
8199 else
8200 edge_flags = 0;
8202 make_edge (first_bb, rec, edge_flags);
8203 rtx_code_label *label = block_label (second_bb);
8204 rtx_jump_insn *jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8205 JUMP_LABEL (jump) = label;
8206 LABEL_NUSES (label)++;
8208 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8209 /* Partition type is the same, if it is "unpartitioned". */
8211 /* Rewritten from cfgrtl.c. */
8212 if (flag_reorder_blocks_and_partition
8213 && targetm_common.have_named_sections)
8215 /* We don't need the same note for the check because
8216 any_condjump_p (check) == true. */
8217 CROSSING_JUMP_P (jump) = 1;
8219 edge_flags = EDGE_CROSSING;
8221 else
8222 edge_flags = 0;
8224 make_single_succ_edge (rec, second_bb, edge_flags);
8225 if (dom_info_available_p (CDI_DOMINATORS))
8226 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8229 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8230 INSN is a simple check, that should be converted to branchy one. */
8231 static void
8232 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8234 basic_block rec;
8235 rtx_insn *label, *check, *twin;
8236 rtx check_pat;
8237 ds_t fs;
8238 sd_iterator_def sd_it;
8239 dep_t dep;
8240 dep_def _new_dep, *new_dep = &_new_dep;
8241 ds_t todo_spec;
8243 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8245 if (!mutate_p)
8246 todo_spec = TODO_SPEC (insn);
8247 else
8249 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8250 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8252 todo_spec = CHECK_SPEC (insn);
8255 todo_spec &= SPECULATIVE;
8257 /* Create recovery block. */
8258 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8260 rec = sched_create_recovery_block (NULL);
8261 label = BB_HEAD (rec);
8263 else
8265 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8266 label = NULL;
8269 /* Emit CHECK. */
8270 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8272 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8274 /* To have mem_reg alive at the beginning of second_bb,
8275 we emit check BEFORE insn, so insn after splitting
8276 insn will be at the beginning of second_bb, which will
8277 provide us with the correct life information. */
8278 check = emit_jump_insn_before (check_pat, insn);
8279 JUMP_LABEL (check) = label;
8280 LABEL_NUSES (label)++;
8282 else
8283 check = emit_insn_before (check_pat, insn);
8285 /* Extend data structures. */
8286 haifa_init_insn (check);
8288 /* CHECK is being added to current region. Extend ready list. */
8289 gcc_assert (sched_ready_n_insns != -1);
8290 sched_extend_ready_list (sched_ready_n_insns + 1);
8292 if (current_sched_info->add_remove_insn)
8293 current_sched_info->add_remove_insn (insn, 0);
8295 RECOVERY_BLOCK (check) = rec;
8297 if (sched_verbose && spec_info->dump)
8298 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8299 (*current_sched_info->print_insn) (check, 0));
8301 gcc_assert (ORIG_PAT (insn));
8303 /* Initialize TWIN (twin is a duplicate of original instruction
8304 in the recovery block). */
8305 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8307 sd_iterator_def sd_it;
8308 dep_t dep;
8310 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8311 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8313 struct _dep _dep2, *dep2 = &_dep2;
8315 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8317 sd_add_dep (dep2, true);
8320 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8321 haifa_init_insn (twin);
8323 if (sched_verbose && spec_info->dump)
8324 /* INSN_BB (insn) isn't determined for twin insns yet.
8325 So we can't use current_sched_info->print_insn. */
8326 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8327 INSN_UID (twin), rec->index);
8329 else
8331 ORIG_PAT (check) = ORIG_PAT (insn);
8332 HAS_INTERNAL_DEP (check) = 1;
8333 twin = check;
8334 /* ??? We probably should change all OUTPUT dependencies to
8335 (TRUE | OUTPUT). */
8338 /* Copy all resolved back dependencies of INSN to TWIN. This will
8339 provide correct value for INSN_TICK (TWIN). */
8340 sd_copy_back_deps (twin, insn, true);
8342 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8343 /* In case of branchy check, fix CFG. */
8345 basic_block first_bb, second_bb;
8346 rtx_insn *jump;
8348 first_bb = BLOCK_FOR_INSN (check);
8349 second_bb = sched_split_block (first_bb, check);
8351 sched_create_recovery_edges (first_bb, rec, second_bb);
8353 sched_init_only_bb (second_bb, first_bb);
8354 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8356 jump = BB_END (rec);
8357 haifa_init_insn (jump);
8360 /* Move backward dependences from INSN to CHECK and
8361 move forward dependences from INSN to TWIN. */
8363 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8364 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8366 rtx_insn *pro = DEP_PRO (dep);
8367 ds_t ds;
8369 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8370 check --TRUE--> producer ??? or ANTI ???
8371 twin --TRUE--> producer
8372 twin --ANTI--> check
8374 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8375 check --ANTI--> producer
8376 twin --ANTI--> producer
8377 twin --ANTI--> check
8379 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8380 check ~~TRUE~~> producer
8381 twin ~~TRUE~~> producer
8382 twin --ANTI--> check */
8384 ds = DEP_STATUS (dep);
8386 if (ds & BEGIN_SPEC)
8388 gcc_assert (!mutate_p);
8389 ds &= ~BEGIN_SPEC;
8392 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8393 sd_add_dep (new_dep, false);
8395 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8397 DEP_CON (new_dep) = twin;
8398 sd_add_dep (new_dep, false);
8402 /* Second, remove backward dependencies of INSN. */
8403 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8404 sd_iterator_cond (&sd_it, &dep);)
8406 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8407 || mutate_p)
8408 /* We can delete this dep because we overcome it with
8409 BEGIN_SPECULATION. */
8410 sd_delete_dep (sd_it);
8411 else
8412 sd_iterator_next (&sd_it);
8415 /* Future Speculations. Determine what BE_IN speculations will be like. */
8416 fs = 0;
8418 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8419 here. */
8421 gcc_assert (!DONE_SPEC (insn));
8423 if (!mutate_p)
8425 ds_t ts = TODO_SPEC (insn);
8427 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8428 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8430 /* Luckiness of future speculations solely depends upon initial
8431 BEGIN speculation. */
8432 if (ts & BEGIN_DATA)
8433 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8434 if (ts & BEGIN_CONTROL)
8435 fs = set_dep_weak (fs, BE_IN_CONTROL,
8436 get_dep_weak (ts, BEGIN_CONTROL));
8438 else
8439 CHECK_SPEC (check) = CHECK_SPEC (insn);
8441 /* Future speculations: call the helper. */
8442 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8444 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8446 /* Which types of dependencies should we use here is,
8447 generally, machine-dependent question... But, for now,
8448 it is not. */
8450 if (!mutate_p)
8452 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8453 sd_add_dep (new_dep, false);
8455 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8456 sd_add_dep (new_dep, false);
8458 else
8460 if (spec_info->dump)
8461 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8462 (*current_sched_info->print_insn) (insn, 0));
8464 /* Remove all dependencies of the INSN. */
8466 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8467 | SD_LIST_BACK
8468 | SD_LIST_RES_BACK));
8469 while (sd_iterator_cond (&sd_it, &dep))
8470 sd_delete_dep (sd_it);
8473 /* If former check (INSN) already was moved to the ready (or queue)
8474 list, add new check (CHECK) there too. */
8475 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8476 try_ready (check);
8478 /* Remove old check from instruction stream and free its
8479 data. */
8480 sched_remove_insn (insn);
8483 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8484 sd_add_dep (new_dep, false);
8486 else
8488 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8489 sd_add_dep (new_dep, false);
8492 if (!mutate_p)
8493 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8494 because it'll be done later in add_to_speculative_block. */
8496 rtx_vec_t priorities_roots = rtx_vec_t ();
8498 clear_priorities (twin, &priorities_roots);
8499 calc_priorities (priorities_roots);
8500 priorities_roots.release ();
8504 /* Removes dependency between instructions in the recovery block REC
8505 and usual region instructions. It keeps inner dependences so it
8506 won't be necessary to recompute them. */
8507 static void
8508 fix_recovery_deps (basic_block rec)
8510 rtx_insn *note, *insn, *jump;
8511 rtx_insn_list *ready_list = 0;
8512 bitmap_head in_ready;
8513 rtx_insn_list *link;
8515 bitmap_initialize (&in_ready, 0);
8517 /* NOTE - a basic block note. */
8518 note = NEXT_INSN (BB_HEAD (rec));
8519 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8520 insn = BB_END (rec);
8521 gcc_assert (JUMP_P (insn));
8522 insn = PREV_INSN (insn);
8526 sd_iterator_def sd_it;
8527 dep_t dep;
8529 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8530 sd_iterator_cond (&sd_it, &dep);)
8532 rtx_insn *consumer = DEP_CON (dep);
8534 if (BLOCK_FOR_INSN (consumer) != rec)
8536 sd_delete_dep (sd_it);
8538 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8539 ready_list = alloc_INSN_LIST (consumer, ready_list);
8541 else
8543 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8545 sd_iterator_next (&sd_it);
8549 insn = PREV_INSN (insn);
8551 while (insn != note);
8553 bitmap_clear (&in_ready);
8555 /* Try to add instructions to the ready or queue list. */
8556 for (link = ready_list; link; link = link->next ())
8557 try_ready (link->insn ());
8558 free_INSN_LIST_list (&ready_list);
8560 /* Fixing jump's dependences. */
8561 insn = BB_HEAD (rec);
8562 jump = BB_END (rec);
8564 gcc_assert (LABEL_P (insn));
8565 insn = NEXT_INSN (insn);
8567 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8568 add_jump_dependencies (insn, jump);
8571 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8572 instruction data. */
8573 static bool
8574 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8576 int t;
8578 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8579 if (!t)
8580 return false;
8582 update_insn_after_change (insn);
8583 return true;
8586 /* -1 - can't speculate,
8587 0 - for speculation with REQUEST mode it is OK to use
8588 current instruction pattern,
8589 1 - need to change pattern for *NEW_PAT to be speculative. */
8591 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8593 gcc_assert (current_sched_info->flags & DO_SPECULATION
8594 && (request & SPECULATIVE)
8595 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8597 if ((request & spec_info->mask) != request)
8598 return -1;
8600 if (request & BE_IN_SPEC
8601 && !(request & BEGIN_SPEC))
8602 return 0;
8604 return targetm.sched.speculate_insn (insn, request, new_pat);
8607 static int
8608 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8610 gcc_assert (sched_deps_info->generate_spec_deps
8611 && !IS_SPECULATION_CHECK_P (insn));
8613 if (HAS_INTERNAL_DEP (insn)
8614 || SCHED_GROUP_P (insn))
8615 return -1;
8617 return sched_speculate_insn (insn, request, new_pat);
8620 /* Print some information about block BB, which starts with HEAD and
8621 ends with TAIL, before scheduling it.
8622 I is zero, if scheduler is about to start with the fresh ebb. */
8623 static void
8624 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8626 if (!i)
8627 fprintf (sched_dump,
8628 ";; ======================================================\n");
8629 else
8630 fprintf (sched_dump,
8631 ";; =====================ADVANCING TO=====================\n");
8632 fprintf (sched_dump,
8633 ";; -- basic block %d from %d to %d -- %s reload\n",
8634 bb->index, INSN_UID (head), INSN_UID (tail),
8635 (reload_completed ? "after" : "before"));
8636 fprintf (sched_dump,
8637 ";; ======================================================\n");
8638 fprintf (sched_dump, "\n");
8641 /* Unlink basic block notes and labels and saves them, so they
8642 can be easily restored. We unlink basic block notes in EBB to
8643 provide back-compatibility with the previous code, as target backends
8644 assume, that there'll be only instructions between
8645 current_sched_info->{head and tail}. We restore these notes as soon
8646 as we can.
8647 FIRST (LAST) is the first (last) basic block in the ebb.
8648 NB: In usual case (FIRST == LAST) nothing is really done. */
8649 void
8650 unlink_bb_notes (basic_block first, basic_block last)
8652 /* We DON'T unlink basic block notes of the first block in the ebb. */
8653 if (first == last)
8654 return;
8656 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8658 /* Make a sentinel. */
8659 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8660 bb_header[last->next_bb->index] = 0;
8662 first = first->next_bb;
8665 rtx_insn *prev, *label, *note, *next;
8667 label = BB_HEAD (last);
8668 if (LABEL_P (label))
8669 note = NEXT_INSN (label);
8670 else
8671 note = label;
8672 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8674 prev = PREV_INSN (label);
8675 next = NEXT_INSN (note);
8676 gcc_assert (prev && next);
8678 SET_NEXT_INSN (prev) = next;
8679 SET_PREV_INSN (next) = prev;
8681 bb_header[last->index] = label;
8683 if (last == first)
8684 break;
8686 last = last->prev_bb;
8688 while (1);
8691 /* Restore basic block notes.
8692 FIRST is the first basic block in the ebb. */
8693 static void
8694 restore_bb_notes (basic_block first)
8696 if (!bb_header)
8697 return;
8699 /* We DON'T unlink basic block notes of the first block in the ebb. */
8700 first = first->next_bb;
8701 /* Remember: FIRST is actually a second basic block in the ebb. */
8703 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8704 && bb_header[first->index])
8706 rtx_insn *prev, *label, *note, *next;
8708 label = bb_header[first->index];
8709 prev = PREV_INSN (label);
8710 next = NEXT_INSN (prev);
8712 if (LABEL_P (label))
8713 note = NEXT_INSN (label);
8714 else
8715 note = label;
8716 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8718 bb_header[first->index] = 0;
8720 SET_NEXT_INSN (prev) = label;
8721 SET_NEXT_INSN (note) = next;
8722 SET_PREV_INSN (next) = note;
8724 first = first->next_bb;
8727 free (bb_header);
8728 bb_header = 0;
8731 /* Helper function.
8732 Fix CFG after both in- and inter-block movement of
8733 control_flow_insn_p JUMP. */
8734 static void
8735 fix_jump_move (rtx_insn *jump)
8737 basic_block bb, jump_bb, jump_bb_next;
8739 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8740 jump_bb = BLOCK_FOR_INSN (jump);
8741 jump_bb_next = jump_bb->next_bb;
8743 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8744 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8746 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8747 /* if jump_bb_next is not empty. */
8748 BB_END (jump_bb) = BB_END (jump_bb_next);
8750 if (BB_END (bb) != PREV_INSN (jump))
8751 /* Then there are instruction after jump that should be placed
8752 to jump_bb_next. */
8753 BB_END (jump_bb_next) = BB_END (bb);
8754 else
8755 /* Otherwise jump_bb_next is empty. */
8756 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8758 /* To make assertion in move_insn happy. */
8759 BB_END (bb) = PREV_INSN (jump);
8761 update_bb_for_insn (jump_bb_next);
8764 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8765 static void
8766 move_block_after_check (rtx_insn *jump)
8768 basic_block bb, jump_bb, jump_bb_next;
8769 vec<edge, va_gc> *t;
8771 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8772 jump_bb = BLOCK_FOR_INSN (jump);
8773 jump_bb_next = jump_bb->next_bb;
8775 update_bb_for_insn (jump_bb);
8777 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8778 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8780 unlink_block (jump_bb_next);
8781 link_block (jump_bb_next, bb);
8783 t = bb->succs;
8784 bb->succs = 0;
8785 move_succs (&(jump_bb->succs), bb);
8786 move_succs (&(jump_bb_next->succs), jump_bb);
8787 move_succs (&t, jump_bb_next);
8789 df_mark_solutions_dirty ();
8791 common_sched_info->fix_recovery_cfg
8792 (bb->index, jump_bb->index, jump_bb_next->index);
8795 /* Helper function for move_block_after_check.
8796 This functions attaches edge vector pointed to by SUCCSP to
8797 block TO. */
8798 static void
8799 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8801 edge e;
8802 edge_iterator ei;
8804 gcc_assert (to->succs == 0);
8806 to->succs = *succsp;
8808 FOR_EACH_EDGE (e, ei, to->succs)
8809 e->src = to;
8811 *succsp = 0;
8814 /* Remove INSN from the instruction stream.
8815 INSN should have any dependencies. */
8816 static void
8817 sched_remove_insn (rtx_insn *insn)
8819 sd_finish_insn (insn);
8821 change_queue_index (insn, QUEUE_NOWHERE);
8822 current_sched_info->add_remove_insn (insn, 1);
8823 delete_insn (insn);
8826 /* Clear priorities of all instructions, that are forward dependent on INSN.
8827 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8828 be invoked to initialize all cleared priorities. */
8829 static void
8830 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8832 sd_iterator_def sd_it;
8833 dep_t dep;
8834 bool insn_is_root_p = true;
8836 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8838 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8840 rtx_insn *pro = DEP_PRO (dep);
8842 if (INSN_PRIORITY_STATUS (pro) >= 0
8843 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8845 /* If DEP doesn't contribute to priority then INSN itself should
8846 be added to priority roots. */
8847 if (contributes_to_priority_p (dep))
8848 insn_is_root_p = false;
8850 INSN_PRIORITY_STATUS (pro) = -1;
8851 clear_priorities (pro, roots_ptr);
8855 if (insn_is_root_p)
8856 roots_ptr->safe_push (insn);
8859 /* Recompute priorities of instructions, whose priorities might have been
8860 changed. ROOTS is a vector of instructions whose priority computation will
8861 trigger initialization of all cleared priorities. */
8862 static void
8863 calc_priorities (rtx_vec_t roots)
8865 int i;
8866 rtx_insn *insn;
8868 FOR_EACH_VEC_ELT (roots, i, insn)
8869 priority (insn);
8873 /* Add dependences between JUMP and other instructions in the recovery
8874 block. INSN is the first insn the recovery block. */
8875 static void
8876 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8880 insn = NEXT_INSN (insn);
8881 if (insn == jump)
8882 break;
8884 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8886 dep_def _new_dep, *new_dep = &_new_dep;
8888 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8889 sd_add_dep (new_dep, false);
8892 while (1);
8894 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8897 /* Extend data structures for logical insn UID. */
8898 void
8899 sched_extend_luids (void)
8901 int new_luids_max_uid = get_max_uid () + 1;
8903 sched_luids.safe_grow_cleared (new_luids_max_uid);
8906 /* Initialize LUID for INSN. */
8907 void
8908 sched_init_insn_luid (rtx_insn *insn)
8910 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8911 int luid;
8913 if (i >= 0)
8915 luid = sched_max_luid;
8916 sched_max_luid += i;
8918 else
8919 luid = -1;
8921 SET_INSN_LUID (insn, luid);
8924 /* Initialize luids for BBS.
8925 The hook common_sched_info->luid_for_non_insn () is used to determine
8926 if notes, labels, etc. need luids. */
8927 void
8928 sched_init_luids (bb_vec_t bbs)
8930 int i;
8931 basic_block bb;
8933 sched_extend_luids ();
8934 FOR_EACH_VEC_ELT (bbs, i, bb)
8936 rtx_insn *insn;
8938 FOR_BB_INSNS (bb, insn)
8939 sched_init_insn_luid (insn);
8943 /* Free LUIDs. */
8944 void
8945 sched_finish_luids (void)
8947 sched_luids.release ();
8948 sched_max_luid = 1;
8951 /* Return logical uid of INSN. Helpful while debugging. */
8953 insn_luid (rtx_insn *insn)
8955 return INSN_LUID (insn);
8958 /* Extend per insn data in the target. */
8959 void
8960 sched_extend_target (void)
8962 if (targetm.sched.h_i_d_extended)
8963 targetm.sched.h_i_d_extended ();
8966 /* Extend global scheduler structures (those, that live across calls to
8967 schedule_block) to include information about just emitted INSN. */
8968 static void
8969 extend_h_i_d (void)
8971 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8972 if (reserve > 0
8973 && ! h_i_d.space (reserve))
8975 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8976 sched_extend_target ();
8980 /* Initialize h_i_d entry of the INSN with default values.
8981 Values, that are not explicitly initialized here, hold zero. */
8982 static void
8983 init_h_i_d (rtx_insn *insn)
8985 if (INSN_LUID (insn) > 0)
8987 INSN_COST (insn) = -1;
8988 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8989 INSN_TICK (insn) = INVALID_TICK;
8990 INSN_EXACT_TICK (insn) = INVALID_TICK;
8991 INTER_TICK (insn) = INVALID_TICK;
8992 TODO_SPEC (insn) = HARD_DEP;
8993 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
8994 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
8995 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
8996 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9000 /* Initialize haifa_insn_data for BBS. */
9001 void
9002 haifa_init_h_i_d (bb_vec_t bbs)
9004 int i;
9005 basic_block bb;
9007 extend_h_i_d ();
9008 FOR_EACH_VEC_ELT (bbs, i, bb)
9010 rtx_insn *insn;
9012 FOR_BB_INSNS (bb, insn)
9013 init_h_i_d (insn);
9017 /* Finalize haifa_insn_data. */
9018 void
9019 haifa_finish_h_i_d (void)
9021 int i;
9022 haifa_insn_data_t data;
9023 struct reg_use_data *use, *next;
9025 FOR_EACH_VEC_ELT (h_i_d, i, data)
9027 free (data->max_reg_pressure);
9028 free (data->reg_pressure);
9029 for (use = data->reg_use_list; use != NULL; use = next)
9031 next = use->next_insn_use;
9032 free (use);
9035 h_i_d.release ();
9038 /* Init data for the new insn INSN. */
9039 static void
9040 haifa_init_insn (rtx_insn *insn)
9042 gcc_assert (insn != NULL);
9044 sched_extend_luids ();
9045 sched_init_insn_luid (insn);
9046 sched_extend_target ();
9047 sched_deps_init (false);
9048 extend_h_i_d ();
9049 init_h_i_d (insn);
9051 if (adding_bb_to_current_region_p)
9053 sd_init_insn (insn);
9055 /* Extend dependency caches by one element. */
9056 extend_dependency_caches (1, false);
9058 if (sched_pressure != SCHED_PRESSURE_NONE)
9059 init_insn_reg_pressure_info (insn);
9062 /* Init data for the new basic block BB which comes after AFTER. */
9063 static void
9064 haifa_init_only_bb (basic_block bb, basic_block after)
9066 gcc_assert (bb != NULL);
9068 sched_init_bbs ();
9070 if (common_sched_info->add_block)
9071 /* This changes only data structures of the front-end. */
9072 common_sched_info->add_block (bb, after);
9075 /* A generic version of sched_split_block (). */
9076 basic_block
9077 sched_split_block_1 (basic_block first_bb, rtx after)
9079 edge e;
9081 e = split_block (first_bb, after);
9082 gcc_assert (e->src == first_bb);
9084 /* sched_split_block emits note if *check == BB_END. Probably it
9085 is better to rip that note off. */
9087 return e->dest;
9090 /* A generic version of sched_create_empty_bb (). */
9091 basic_block
9092 sched_create_empty_bb_1 (basic_block after)
9094 return create_empty_bb (after);
9097 /* Insert PAT as an INSN into the schedule and update the necessary data
9098 structures to account for it. */
9099 rtx_insn *
9100 sched_emit_insn (rtx pat)
9102 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9103 haifa_init_insn (insn);
9105 if (current_sched_info->add_remove_insn)
9106 current_sched_info->add_remove_insn (insn, 0);
9108 (*current_sched_info->begin_schedule_ready) (insn);
9109 scheduled_insns.safe_push (insn);
9111 last_scheduled_insn = insn;
9112 return insn;
9115 /* This function returns a candidate satisfying dispatch constraints from
9116 the ready list. */
9118 static rtx_insn *
9119 ready_remove_first_dispatch (struct ready_list *ready)
9121 int i;
9122 rtx_insn *insn = ready_element (ready, 0);
9124 if (ready->n_ready == 1
9125 || !INSN_P (insn)
9126 || INSN_CODE (insn) < 0
9127 || !active_insn_p (insn)
9128 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9129 return ready_remove_first (ready);
9131 for (i = 1; i < ready->n_ready; i++)
9133 insn = ready_element (ready, i);
9135 if (!INSN_P (insn)
9136 || INSN_CODE (insn) < 0
9137 || !active_insn_p (insn))
9138 continue;
9140 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9142 /* Return ith element of ready. */
9143 insn = ready_remove (ready, i);
9144 return insn;
9148 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9149 return ready_remove_first (ready);
9151 for (i = 1; i < ready->n_ready; i++)
9153 insn = ready_element (ready, i);
9155 if (!INSN_P (insn)
9156 || INSN_CODE (insn) < 0
9157 || !active_insn_p (insn))
9158 continue;
9160 /* Return i-th element of ready. */
9161 if (targetm.sched.dispatch (insn, IS_CMP))
9162 return ready_remove (ready, i);
9165 return ready_remove_first (ready);
9168 /* Get number of ready insn in the ready list. */
9171 number_in_ready (void)
9173 return ready.n_ready;
9176 /* Get number of ready's in the ready list. */
9178 rtx_insn *
9179 get_ready_element (int i)
9181 return ready_element (&ready, i);
9184 #endif /* INSN_SCHEDULING */