2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / ggc-page.c
blobf5f09733833b0158d14a6e207d54592030af3f05
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "input.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "diagnostic-core.h"
31 #include "flags.h"
32 #include "ggc-internal.h"
33 #include "timevar.h"
34 #include "params.h"
35 #include "is-a.h"
36 #include "plugin-api.h"
37 #include "hard-reg-set.h"
38 #include "input.h"
39 #include "function.h"
40 #include "ipa-ref.h"
41 #include "cgraph.h"
42 #include "cfgloop.h"
43 #include "plugin.h"
44 #include "predict.h"
45 #include "basic-block.h"
47 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
48 file open. Prefer either to valloc. */
49 #ifdef HAVE_MMAP_ANON
50 # undef HAVE_MMAP_DEV_ZERO
51 # define USING_MMAP
52 #endif
54 #ifdef HAVE_MMAP_DEV_ZERO
55 # define USING_MMAP
56 #endif
58 #ifndef USING_MMAP
59 #define USING_MALLOC_PAGE_GROUPS
60 #endif
62 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
63 && defined(USING_MMAP)
64 # define USING_MADVISE
65 #endif
67 /* Strategy:
69 This garbage-collecting allocator allocates objects on one of a set
70 of pages. Each page can allocate objects of a single size only;
71 available sizes are powers of two starting at four bytes. The size
72 of an allocation request is rounded up to the next power of two
73 (`order'), and satisfied from the appropriate page.
75 Each page is recorded in a page-entry, which also maintains an
76 in-use bitmap of object positions on the page. This allows the
77 allocation state of a particular object to be flipped without
78 touching the page itself.
80 Each page-entry also has a context depth, which is used to track
81 pushing and popping of allocation contexts. Only objects allocated
82 in the current (highest-numbered) context may be collected.
84 Page entries are arranged in an array of singly-linked lists. The
85 array is indexed by the allocation size, in bits, of the pages on
86 it; i.e. all pages on a list allocate objects of the same size.
87 Pages are ordered on the list such that all non-full pages precede
88 all full pages, with non-full pages arranged in order of decreasing
89 context depth.
91 Empty pages (of all orders) are kept on a single page cache list,
92 and are considered first when new pages are required; they are
93 deallocated at the start of the next collection if they haven't
94 been recycled by then. */
96 /* Define GGC_DEBUG_LEVEL to print debugging information.
97 0: No debugging output.
98 1: GC statistics only.
99 2: Page-entry allocations/deallocations as well.
100 3: Object allocations as well.
101 4: Object marks as well. */
102 #define GGC_DEBUG_LEVEL (0)
104 #ifndef HOST_BITS_PER_PTR
105 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
106 #endif
109 /* A two-level tree is used to look up the page-entry for a given
110 pointer. Two chunks of the pointer's bits are extracted to index
111 the first and second levels of the tree, as follows:
113 HOST_PAGE_SIZE_BITS
114 32 | |
115 msb +----------------+----+------+------+ lsb
116 | | |
117 PAGE_L1_BITS |
119 PAGE_L2_BITS
121 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
122 pages are aligned on system page boundaries. The next most
123 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
124 index values in the lookup table, respectively.
126 For 32-bit architectures and the settings below, there are no
127 leftover bits. For architectures with wider pointers, the lookup
128 tree points to a list of pages, which must be scanned to find the
129 correct one. */
131 #define PAGE_L1_BITS (8)
132 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
133 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
134 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
136 #define LOOKUP_L1(p) \
137 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
139 #define LOOKUP_L2(p) \
140 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
142 /* The number of objects per allocation page, for objects on a page of
143 the indicated ORDER. */
144 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
146 /* The number of objects in P. */
147 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
149 /* The size of an object on a page of the indicated ORDER. */
150 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
152 /* For speed, we avoid doing a general integer divide to locate the
153 offset in the allocation bitmap, by precalculating numbers M, S
154 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
155 within the page which is evenly divisible by the object size Z. */
156 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
157 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
158 #define OFFSET_TO_BIT(OFFSET, ORDER) \
159 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
161 /* We use this structure to determine the alignment required for
162 allocations. For power-of-two sized allocations, that's not a
163 problem, but it does matter for odd-sized allocations.
164 We do not care about alignment for floating-point types. */
166 struct max_alignment {
167 char c;
168 union {
169 int64_t i;
170 void *p;
171 } u;
174 /* The biggest alignment required. */
176 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
179 /* The number of extra orders, not corresponding to power-of-two sized
180 objects. */
182 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
184 #define RTL_SIZE(NSLOTS) \
185 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
187 #define TREE_EXP_SIZE(OPS) \
188 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
190 /* The Ith entry is the maximum size of an object to be stored in the
191 Ith extra order. Adding a new entry to this array is the *only*
192 thing you need to do to add a new special allocation size. */
194 static const size_t extra_order_size_table[] = {
195 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
196 There are a lot of structures with these sizes and explicitly
197 listing them risks orders being dropped because they changed size. */
198 MAX_ALIGNMENT * 3,
199 MAX_ALIGNMENT * 5,
200 MAX_ALIGNMENT * 6,
201 MAX_ALIGNMENT * 7,
202 MAX_ALIGNMENT * 9,
203 MAX_ALIGNMENT * 10,
204 MAX_ALIGNMENT * 11,
205 MAX_ALIGNMENT * 12,
206 MAX_ALIGNMENT * 13,
207 MAX_ALIGNMENT * 14,
208 MAX_ALIGNMENT * 15,
209 sizeof (struct tree_decl_non_common),
210 sizeof (struct tree_field_decl),
211 sizeof (struct tree_parm_decl),
212 sizeof (struct tree_var_decl),
213 sizeof (struct tree_type_non_common),
214 sizeof (struct function),
215 sizeof (struct basic_block_def),
216 sizeof (struct cgraph_node),
217 sizeof (struct loop),
220 /* The total number of orders. */
222 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
224 /* Compute the smallest nonnegative number which when added to X gives
225 a multiple of F. */
227 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
229 /* Compute the smallest multiple of F that is >= X. */
231 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
233 /* Round X to next multiple of the page size */
235 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
237 /* The Ith entry is the number of objects on a page or order I. */
239 static unsigned objects_per_page_table[NUM_ORDERS];
241 /* The Ith entry is the size of an object on a page of order I. */
243 static size_t object_size_table[NUM_ORDERS];
245 /* The Ith entry is a pair of numbers (mult, shift) such that
246 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
247 for all k evenly divisible by OBJECT_SIZE(I). */
249 static struct
251 size_t mult;
252 unsigned int shift;
254 inverse_table[NUM_ORDERS];
256 /* A page_entry records the status of an allocation page. This
257 structure is dynamically sized to fit the bitmap in_use_p. */
258 typedef struct page_entry
260 /* The next page-entry with objects of the same size, or NULL if
261 this is the last page-entry. */
262 struct page_entry *next;
264 /* The previous page-entry with objects of the same size, or NULL if
265 this is the first page-entry. The PREV pointer exists solely to
266 keep the cost of ggc_free manageable. */
267 struct page_entry *prev;
269 /* The number of bytes allocated. (This will always be a multiple
270 of the host system page size.) */
271 size_t bytes;
273 /* The address at which the memory is allocated. */
274 char *page;
276 #ifdef USING_MALLOC_PAGE_GROUPS
277 /* Back pointer to the page group this page came from. */
278 struct page_group *group;
279 #endif
281 /* This is the index in the by_depth varray where this page table
282 can be found. */
283 unsigned long index_by_depth;
285 /* Context depth of this page. */
286 unsigned short context_depth;
288 /* The number of free objects remaining on this page. */
289 unsigned short num_free_objects;
291 /* A likely candidate for the bit position of a free object for the
292 next allocation from this page. */
293 unsigned short next_bit_hint;
295 /* The lg of size of objects allocated from this page. */
296 unsigned char order;
298 /* Discarded page? */
299 bool discarded;
301 /* A bit vector indicating whether or not objects are in use. The
302 Nth bit is one if the Nth object on this page is allocated. This
303 array is dynamically sized. */
304 unsigned long in_use_p[1];
305 } page_entry;
307 #ifdef USING_MALLOC_PAGE_GROUPS
308 /* A page_group describes a large allocation from malloc, from which
309 we parcel out aligned pages. */
310 typedef struct page_group
312 /* A linked list of all extant page groups. */
313 struct page_group *next;
315 /* The address we received from malloc. */
316 char *allocation;
318 /* The size of the block. */
319 size_t alloc_size;
321 /* A bitmask of pages in use. */
322 unsigned int in_use;
323 } page_group;
324 #endif
326 #if HOST_BITS_PER_PTR <= 32
328 /* On 32-bit hosts, we use a two level page table, as pictured above. */
329 typedef page_entry **page_table[PAGE_L1_SIZE];
331 #else
333 /* On 64-bit hosts, we use the same two level page tables plus a linked
334 list that disambiguates the top 32-bits. There will almost always be
335 exactly one entry in the list. */
336 typedef struct page_table_chain
338 struct page_table_chain *next;
339 size_t high_bits;
340 page_entry **table[PAGE_L1_SIZE];
341 } *page_table;
343 #endif
345 class finalizer
347 public:
348 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
350 void *addr () const { return m_addr; }
352 void call () const { m_function (m_addr); }
354 private:
355 void *m_addr;
356 void (*m_function)(void *);
359 class vec_finalizer
361 public:
362 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
363 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
365 void call () const
367 for (size_t i = 0; i < m_n_objects; i++)
368 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
371 void *addr () const { return reinterpret_cast<void *> (m_addr); }
373 private:
374 uintptr_t m_addr;
375 void (*m_function)(void *);
376 size_t m_object_size;
377 size_t m_n_objects;
380 #ifdef ENABLE_GC_ALWAYS_COLLECT
381 /* List of free objects to be verified as actually free on the
382 next collection. */
383 struct free_object
385 void *object;
386 struct free_object *next;
388 #endif
390 /* The rest of the global variables. */
391 static struct ggc_globals
393 /* The Nth element in this array is a page with objects of size 2^N.
394 If there are any pages with free objects, they will be at the
395 head of the list. NULL if there are no page-entries for this
396 object size. */
397 page_entry *pages[NUM_ORDERS];
399 /* The Nth element in this array is the last page with objects of
400 size 2^N. NULL if there are no page-entries for this object
401 size. */
402 page_entry *page_tails[NUM_ORDERS];
404 /* Lookup table for associating allocation pages with object addresses. */
405 page_table lookup;
407 /* The system's page size. */
408 size_t pagesize;
409 size_t lg_pagesize;
411 /* Bytes currently allocated. */
412 size_t allocated;
414 /* Bytes currently allocated at the end of the last collection. */
415 size_t allocated_last_gc;
417 /* Total amount of memory mapped. */
418 size_t bytes_mapped;
420 /* Bit N set if any allocations have been done at context depth N. */
421 unsigned long context_depth_allocations;
423 /* Bit N set if any collections have been done at context depth N. */
424 unsigned long context_depth_collections;
426 /* The current depth in the context stack. */
427 unsigned short context_depth;
429 /* A file descriptor open to /dev/zero for reading. */
430 #if defined (HAVE_MMAP_DEV_ZERO)
431 int dev_zero_fd;
432 #endif
434 /* A cache of free system pages. */
435 page_entry *free_pages;
437 #ifdef USING_MALLOC_PAGE_GROUPS
438 page_group *page_groups;
439 #endif
441 /* The file descriptor for debugging output. */
442 FILE *debug_file;
444 /* Current number of elements in use in depth below. */
445 unsigned int depth_in_use;
447 /* Maximum number of elements that can be used before resizing. */
448 unsigned int depth_max;
450 /* Each element of this array is an index in by_depth where the given
451 depth starts. This structure is indexed by that given depth we
452 are interested in. */
453 unsigned int *depth;
455 /* Current number of elements in use in by_depth below. */
456 unsigned int by_depth_in_use;
458 /* Maximum number of elements that can be used before resizing. */
459 unsigned int by_depth_max;
461 /* Each element of this array is a pointer to a page_entry, all
462 page_entries can be found in here by increasing depth.
463 index_by_depth in the page_entry is the index into this data
464 structure where that page_entry can be found. This is used to
465 speed up finding all page_entries at a particular depth. */
466 page_entry **by_depth;
468 /* Each element is a pointer to the saved in_use_p bits, if any,
469 zero otherwise. We allocate them all together, to enable a
470 better runtime data access pattern. */
471 unsigned long **save_in_use;
473 /* Finalizers for single objects. */
474 vec<finalizer> finalizers;
476 /* Finalizers for vectors of objects. */
477 vec<vec_finalizer> vec_finalizers;
479 #ifdef ENABLE_GC_ALWAYS_COLLECT
480 /* List of free objects to be verified as actually free on the
481 next collection. */
482 struct free_object *free_object_list;
483 #endif
485 struct
487 /* Total GC-allocated memory. */
488 unsigned long long total_allocated;
489 /* Total overhead for GC-allocated memory. */
490 unsigned long long total_overhead;
492 /* Total allocations and overhead for sizes less than 32, 64 and 128.
493 These sizes are interesting because they are typical cache line
494 sizes. */
496 unsigned long long total_allocated_under32;
497 unsigned long long total_overhead_under32;
499 unsigned long long total_allocated_under64;
500 unsigned long long total_overhead_under64;
502 unsigned long long total_allocated_under128;
503 unsigned long long total_overhead_under128;
505 /* The allocations for each of the allocation orders. */
506 unsigned long long total_allocated_per_order[NUM_ORDERS];
508 /* The overhead for each of the allocation orders. */
509 unsigned long long total_overhead_per_order[NUM_ORDERS];
510 } stats;
511 } G;
513 /* True if a gc is currently taking place. */
515 static bool in_gc = false;
517 /* The size in bytes required to maintain a bitmap for the objects
518 on a page-entry. */
519 #define BITMAP_SIZE(Num_objects) \
520 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
522 /* Allocate pages in chunks of this size, to throttle calls to memory
523 allocation routines. The first page is used, the rest go onto the
524 free list. This cannot be larger than HOST_BITS_PER_INT for the
525 in_use bitmask for page_group. Hosts that need a different value
526 can override this by defining GGC_QUIRE_SIZE explicitly. */
527 #ifndef GGC_QUIRE_SIZE
528 # ifdef USING_MMAP
529 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
530 # else
531 # define GGC_QUIRE_SIZE 16
532 # endif
533 #endif
535 /* Initial guess as to how many page table entries we might need. */
536 #define INITIAL_PTE_COUNT 128
538 static int ggc_allocated_p (const void *);
539 static page_entry *lookup_page_table_entry (const void *);
540 static void set_page_table_entry (void *, page_entry *);
541 #ifdef USING_MMAP
542 static char *alloc_anon (char *, size_t, bool check);
543 #endif
544 #ifdef USING_MALLOC_PAGE_GROUPS
545 static size_t page_group_index (char *, char *);
546 static void set_page_group_in_use (page_group *, char *);
547 static void clear_page_group_in_use (page_group *, char *);
548 #endif
549 static struct page_entry * alloc_page (unsigned);
550 static void free_page (struct page_entry *);
551 static void release_pages (void);
552 static void clear_marks (void);
553 static void sweep_pages (void);
554 static void ggc_recalculate_in_use_p (page_entry *);
555 static void compute_inverse (unsigned);
556 static inline void adjust_depth (void);
557 static void move_ptes_to_front (int, int);
559 void debug_print_page_list (int);
560 static void push_depth (unsigned int);
561 static void push_by_depth (page_entry *, unsigned long *);
563 /* Push an entry onto G.depth. */
565 inline static void
566 push_depth (unsigned int i)
568 if (G.depth_in_use >= G.depth_max)
570 G.depth_max *= 2;
571 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
573 G.depth[G.depth_in_use++] = i;
576 /* Push an entry onto G.by_depth and G.save_in_use. */
578 inline static void
579 push_by_depth (page_entry *p, unsigned long *s)
581 if (G.by_depth_in_use >= G.by_depth_max)
583 G.by_depth_max *= 2;
584 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
585 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
586 G.by_depth_max);
588 G.by_depth[G.by_depth_in_use] = p;
589 G.save_in_use[G.by_depth_in_use++] = s;
592 #if (GCC_VERSION < 3001)
593 #define prefetch(X) ((void) X)
594 #else
595 #define prefetch(X) __builtin_prefetch (X)
596 #endif
598 #define save_in_use_p_i(__i) \
599 (G.save_in_use[__i])
600 #define save_in_use_p(__p) \
601 (save_in_use_p_i (__p->index_by_depth))
603 /* Returns nonzero if P was allocated in GC'able memory. */
605 static inline int
606 ggc_allocated_p (const void *p)
608 page_entry ***base;
609 size_t L1, L2;
611 #if HOST_BITS_PER_PTR <= 32
612 base = &G.lookup[0];
613 #else
614 page_table table = G.lookup;
615 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
616 while (1)
618 if (table == NULL)
619 return 0;
620 if (table->high_bits == high_bits)
621 break;
622 table = table->next;
624 base = &table->table[0];
625 #endif
627 /* Extract the level 1 and 2 indices. */
628 L1 = LOOKUP_L1 (p);
629 L2 = LOOKUP_L2 (p);
631 return base[L1] && base[L1][L2];
634 /* Traverse the page table and find the entry for a page.
635 Die (probably) if the object wasn't allocated via GC. */
637 static inline page_entry *
638 lookup_page_table_entry (const void *p)
640 page_entry ***base;
641 size_t L1, L2;
643 #if HOST_BITS_PER_PTR <= 32
644 base = &G.lookup[0];
645 #else
646 page_table table = G.lookup;
647 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
648 while (table->high_bits != high_bits)
649 table = table->next;
650 base = &table->table[0];
651 #endif
653 /* Extract the level 1 and 2 indices. */
654 L1 = LOOKUP_L1 (p);
655 L2 = LOOKUP_L2 (p);
657 return base[L1][L2];
660 /* Set the page table entry for a page. */
662 static void
663 set_page_table_entry (void *p, page_entry *entry)
665 page_entry ***base;
666 size_t L1, L2;
668 #if HOST_BITS_PER_PTR <= 32
669 base = &G.lookup[0];
670 #else
671 page_table table;
672 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
673 for (table = G.lookup; table; table = table->next)
674 if (table->high_bits == high_bits)
675 goto found;
677 /* Not found -- allocate a new table. */
678 table = XCNEW (struct page_table_chain);
679 table->next = G.lookup;
680 table->high_bits = high_bits;
681 G.lookup = table;
682 found:
683 base = &table->table[0];
684 #endif
686 /* Extract the level 1 and 2 indices. */
687 L1 = LOOKUP_L1 (p);
688 L2 = LOOKUP_L2 (p);
690 if (base[L1] == NULL)
691 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
693 base[L1][L2] = entry;
696 /* Prints the page-entry for object size ORDER, for debugging. */
698 DEBUG_FUNCTION void
699 debug_print_page_list (int order)
701 page_entry *p;
702 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
703 (void *) G.page_tails[order]);
704 p = G.pages[order];
705 while (p != NULL)
707 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
708 p->num_free_objects);
709 p = p->next;
711 printf ("NULL\n");
712 fflush (stdout);
715 #ifdef USING_MMAP
716 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
717 (if non-null). The ifdef structure here is intended to cause a
718 compile error unless exactly one of the HAVE_* is defined. */
720 static inline char *
721 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
723 #ifdef HAVE_MMAP_ANON
724 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
725 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
726 #endif
727 #ifdef HAVE_MMAP_DEV_ZERO
728 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
729 MAP_PRIVATE, G.dev_zero_fd, 0);
730 #endif
732 if (page == (char *) MAP_FAILED)
734 if (!check)
735 return NULL;
736 perror ("virtual memory exhausted");
737 exit (FATAL_EXIT_CODE);
740 /* Remember that we allocated this memory. */
741 G.bytes_mapped += size;
743 /* Pretend we don't have access to the allocated pages. We'll enable
744 access to smaller pieces of the area in ggc_internal_alloc. Discard the
745 handle to avoid handle leak. */
746 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
748 return page;
750 #endif
751 #ifdef USING_MALLOC_PAGE_GROUPS
752 /* Compute the index for this page into the page group. */
754 static inline size_t
755 page_group_index (char *allocation, char *page)
757 return (size_t) (page - allocation) >> G.lg_pagesize;
760 /* Set and clear the in_use bit for this page in the page group. */
762 static inline void
763 set_page_group_in_use (page_group *group, char *page)
765 group->in_use |= 1 << page_group_index (group->allocation, page);
768 static inline void
769 clear_page_group_in_use (page_group *group, char *page)
771 group->in_use &= ~(1 << page_group_index (group->allocation, page));
773 #endif
775 /* Allocate a new page for allocating objects of size 2^ORDER,
776 and return an entry for it. The entry is not added to the
777 appropriate page_table list. */
779 static inline struct page_entry *
780 alloc_page (unsigned order)
782 struct page_entry *entry, *p, **pp;
783 char *page;
784 size_t num_objects;
785 size_t bitmap_size;
786 size_t page_entry_size;
787 size_t entry_size;
788 #ifdef USING_MALLOC_PAGE_GROUPS
789 page_group *group;
790 #endif
792 num_objects = OBJECTS_PER_PAGE (order);
793 bitmap_size = BITMAP_SIZE (num_objects + 1);
794 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
795 entry_size = num_objects * OBJECT_SIZE (order);
796 if (entry_size < G.pagesize)
797 entry_size = G.pagesize;
798 entry_size = PAGE_ALIGN (entry_size);
800 entry = NULL;
801 page = NULL;
803 /* Check the list of free pages for one we can use. */
804 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
805 if (p->bytes == entry_size)
806 break;
808 if (p != NULL)
810 if (p->discarded)
811 G.bytes_mapped += p->bytes;
812 p->discarded = false;
814 /* Recycle the allocated memory from this page ... */
815 *pp = p->next;
816 page = p->page;
818 #ifdef USING_MALLOC_PAGE_GROUPS
819 group = p->group;
820 #endif
822 /* ... and, if possible, the page entry itself. */
823 if (p->order == order)
825 entry = p;
826 memset (entry, 0, page_entry_size);
828 else
829 free (p);
831 #ifdef USING_MMAP
832 else if (entry_size == G.pagesize)
834 /* We want just one page. Allocate a bunch of them and put the
835 extras on the freelist. (Can only do this optimization with
836 mmap for backing store.) */
837 struct page_entry *e, *f = G.free_pages;
838 int i, entries = GGC_QUIRE_SIZE;
840 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
841 if (page == NULL)
843 page = alloc_anon (NULL, G.pagesize, true);
844 entries = 1;
847 /* This loop counts down so that the chain will be in ascending
848 memory order. */
849 for (i = entries - 1; i >= 1; i--)
851 e = XCNEWVAR (struct page_entry, page_entry_size);
852 e->order = order;
853 e->bytes = G.pagesize;
854 e->page = page + (i << G.lg_pagesize);
855 e->next = f;
856 f = e;
859 G.free_pages = f;
861 else
862 page = alloc_anon (NULL, entry_size, true);
863 #endif
864 #ifdef USING_MALLOC_PAGE_GROUPS
865 else
867 /* Allocate a large block of memory and serve out the aligned
868 pages therein. This results in much less memory wastage
869 than the traditional implementation of valloc. */
871 char *allocation, *a, *enda;
872 size_t alloc_size, head_slop, tail_slop;
873 int multiple_pages = (entry_size == G.pagesize);
875 if (multiple_pages)
876 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
877 else
878 alloc_size = entry_size + G.pagesize - 1;
879 allocation = XNEWVEC (char, alloc_size);
881 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
882 head_slop = page - allocation;
883 if (multiple_pages)
884 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
885 else
886 tail_slop = alloc_size - entry_size - head_slop;
887 enda = allocation + alloc_size - tail_slop;
889 /* We allocated N pages, which are likely not aligned, leaving
890 us with N-1 usable pages. We plan to place the page_group
891 structure somewhere in the slop. */
892 if (head_slop >= sizeof (page_group))
893 group = (page_group *)page - 1;
894 else
896 /* We magically got an aligned allocation. Too bad, we have
897 to waste a page anyway. */
898 if (tail_slop == 0)
900 enda -= G.pagesize;
901 tail_slop += G.pagesize;
903 gcc_assert (tail_slop >= sizeof (page_group));
904 group = (page_group *)enda;
905 tail_slop -= sizeof (page_group);
908 /* Remember that we allocated this memory. */
909 group->next = G.page_groups;
910 group->allocation = allocation;
911 group->alloc_size = alloc_size;
912 group->in_use = 0;
913 G.page_groups = group;
914 G.bytes_mapped += alloc_size;
916 /* If we allocated multiple pages, put the rest on the free list. */
917 if (multiple_pages)
919 struct page_entry *e, *f = G.free_pages;
920 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
922 e = XCNEWVAR (struct page_entry, page_entry_size);
923 e->order = order;
924 e->bytes = G.pagesize;
925 e->page = a;
926 e->group = group;
927 e->next = f;
928 f = e;
930 G.free_pages = f;
933 #endif
935 if (entry == NULL)
936 entry = XCNEWVAR (struct page_entry, page_entry_size);
938 entry->bytes = entry_size;
939 entry->page = page;
940 entry->context_depth = G.context_depth;
941 entry->order = order;
942 entry->num_free_objects = num_objects;
943 entry->next_bit_hint = 1;
945 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
947 #ifdef USING_MALLOC_PAGE_GROUPS
948 entry->group = group;
949 set_page_group_in_use (group, page);
950 #endif
952 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
953 increment the hint. */
954 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
955 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
957 set_page_table_entry (page, entry);
959 if (GGC_DEBUG_LEVEL >= 2)
960 fprintf (G.debug_file,
961 "Allocating page at %p, object size=%lu, data %p-%p\n",
962 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
963 page + entry_size - 1);
965 return entry;
968 /* Adjust the size of G.depth so that no index greater than the one
969 used by the top of the G.by_depth is used. */
971 static inline void
972 adjust_depth (void)
974 page_entry *top;
976 if (G.by_depth_in_use)
978 top = G.by_depth[G.by_depth_in_use-1];
980 /* Peel back indices in depth that index into by_depth, so that
981 as new elements are added to by_depth, we note the indices
982 of those elements, if they are for new context depths. */
983 while (G.depth_in_use > (size_t)top->context_depth+1)
984 --G.depth_in_use;
988 /* For a page that is no longer needed, put it on the free page list. */
990 static void
991 free_page (page_entry *entry)
993 if (GGC_DEBUG_LEVEL >= 2)
994 fprintf (G.debug_file,
995 "Deallocating page at %p, data %p-%p\n", (void *) entry,
996 entry->page, entry->page + entry->bytes - 1);
998 /* Mark the page as inaccessible. Discard the handle to avoid handle
999 leak. */
1000 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
1002 set_page_table_entry (entry->page, NULL);
1004 #ifdef USING_MALLOC_PAGE_GROUPS
1005 clear_page_group_in_use (entry->group, entry->page);
1006 #endif
1008 if (G.by_depth_in_use > 1)
1010 page_entry *top = G.by_depth[G.by_depth_in_use-1];
1011 int i = entry->index_by_depth;
1013 /* We cannot free a page from a context deeper than the current
1014 one. */
1015 gcc_assert (entry->context_depth == top->context_depth);
1017 /* Put top element into freed slot. */
1018 G.by_depth[i] = top;
1019 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1020 top->index_by_depth = i;
1022 --G.by_depth_in_use;
1024 adjust_depth ();
1026 entry->next = G.free_pages;
1027 G.free_pages = entry;
1030 /* Release the free page cache to the system. */
1032 static void
1033 release_pages (void)
1035 #ifdef USING_MADVISE
1036 page_entry *p, *start_p;
1037 char *start;
1038 size_t len;
1039 size_t mapped_len;
1040 page_entry *next, *prev, *newprev;
1041 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1043 /* First free larger continuous areas to the OS.
1044 This allows other allocators to grab these areas if needed.
1045 This is only done on larger chunks to avoid fragmentation.
1046 This does not always work because the free_pages list is only
1047 approximately sorted. */
1049 p = G.free_pages;
1050 prev = NULL;
1051 while (p)
1053 start = p->page;
1054 start_p = p;
1055 len = 0;
1056 mapped_len = 0;
1057 newprev = prev;
1058 while (p && p->page == start + len)
1060 len += p->bytes;
1061 if (!p->discarded)
1062 mapped_len += p->bytes;
1063 newprev = p;
1064 p = p->next;
1066 if (len >= free_unit)
1068 while (start_p != p)
1070 next = start_p->next;
1071 free (start_p);
1072 start_p = next;
1074 munmap (start, len);
1075 if (prev)
1076 prev->next = p;
1077 else
1078 G.free_pages = p;
1079 G.bytes_mapped -= mapped_len;
1080 continue;
1082 prev = newprev;
1085 /* Now give back the fragmented pages to the OS, but keep the address
1086 space to reuse it next time. */
1088 for (p = G.free_pages; p; )
1090 if (p->discarded)
1092 p = p->next;
1093 continue;
1095 start = p->page;
1096 len = p->bytes;
1097 start_p = p;
1098 p = p->next;
1099 while (p && p->page == start + len)
1101 len += p->bytes;
1102 p = p->next;
1104 /* Give the page back to the kernel, but don't free the mapping.
1105 This avoids fragmentation in the virtual memory map of the
1106 process. Next time we can reuse it by just touching it. */
1107 madvise (start, len, MADV_DONTNEED);
1108 /* Don't count those pages as mapped to not touch the garbage collector
1109 unnecessarily. */
1110 G.bytes_mapped -= len;
1111 while (start_p != p)
1113 start_p->discarded = true;
1114 start_p = start_p->next;
1117 #endif
1118 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1119 page_entry *p, *next;
1120 char *start;
1121 size_t len;
1123 /* Gather up adjacent pages so they are unmapped together. */
1124 p = G.free_pages;
1126 while (p)
1128 start = p->page;
1129 next = p->next;
1130 len = p->bytes;
1131 free (p);
1132 p = next;
1134 while (p && p->page == start + len)
1136 next = p->next;
1137 len += p->bytes;
1138 free (p);
1139 p = next;
1142 munmap (start, len);
1143 G.bytes_mapped -= len;
1146 G.free_pages = NULL;
1147 #endif
1148 #ifdef USING_MALLOC_PAGE_GROUPS
1149 page_entry **pp, *p;
1150 page_group **gp, *g;
1152 /* Remove all pages from free page groups from the list. */
1153 pp = &G.free_pages;
1154 while ((p = *pp) != NULL)
1155 if (p->group->in_use == 0)
1157 *pp = p->next;
1158 free (p);
1160 else
1161 pp = &p->next;
1163 /* Remove all free page groups, and release the storage. */
1164 gp = &G.page_groups;
1165 while ((g = *gp) != NULL)
1166 if (g->in_use == 0)
1168 *gp = g->next;
1169 G.bytes_mapped -= g->alloc_size;
1170 free (g->allocation);
1172 else
1173 gp = &g->next;
1174 #endif
1177 /* This table provides a fast way to determine ceil(log_2(size)) for
1178 allocation requests. The minimum allocation size is eight bytes. */
1179 #define NUM_SIZE_LOOKUP 512
1180 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1182 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1183 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1184 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1185 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1186 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1187 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1188 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1189 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1190 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1191 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1192 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1193 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1194 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1195 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1196 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1197 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1198 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1204 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1205 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1206 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1207 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1208 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1209 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1210 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1211 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1212 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1213 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1216 /* For a given size of memory requested for allocation, return the
1217 actual size that is going to be allocated, as well as the size
1218 order. */
1220 static void
1221 ggc_round_alloc_size_1 (size_t requested_size,
1222 size_t *size_order,
1223 size_t *alloced_size)
1225 size_t order, object_size;
1227 if (requested_size < NUM_SIZE_LOOKUP)
1229 order = size_lookup[requested_size];
1230 object_size = OBJECT_SIZE (order);
1232 else
1234 order = 10;
1235 while (requested_size > (object_size = OBJECT_SIZE (order)))
1236 order++;
1239 if (size_order)
1240 *size_order = order;
1241 if (alloced_size)
1242 *alloced_size = object_size;
1245 /* For a given size of memory requested for allocation, return the
1246 actual size that is going to be allocated. */
1248 size_t
1249 ggc_round_alloc_size (size_t requested_size)
1251 size_t size = 0;
1253 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1254 return size;
1257 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1259 void *
1260 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1261 MEM_STAT_DECL)
1263 size_t order, word, bit, object_offset, object_size;
1264 struct page_entry *entry;
1265 void *result;
1267 ggc_round_alloc_size_1 (size, &order, &object_size);
1269 /* If there are non-full pages for this size allocation, they are at
1270 the head of the list. */
1271 entry = G.pages[order];
1273 /* If there is no page for this object size, or all pages in this
1274 context are full, allocate a new page. */
1275 if (entry == NULL || entry->num_free_objects == 0)
1277 struct page_entry *new_entry;
1278 new_entry = alloc_page (order);
1280 new_entry->index_by_depth = G.by_depth_in_use;
1281 push_by_depth (new_entry, 0);
1283 /* We can skip context depths, if we do, make sure we go all the
1284 way to the new depth. */
1285 while (new_entry->context_depth >= G.depth_in_use)
1286 push_depth (G.by_depth_in_use-1);
1288 /* If this is the only entry, it's also the tail. If it is not
1289 the only entry, then we must update the PREV pointer of the
1290 ENTRY (G.pages[order]) to point to our new page entry. */
1291 if (entry == NULL)
1292 G.page_tails[order] = new_entry;
1293 else
1294 entry->prev = new_entry;
1296 /* Put new pages at the head of the page list. By definition the
1297 entry at the head of the list always has a NULL pointer. */
1298 new_entry->next = entry;
1299 new_entry->prev = NULL;
1300 entry = new_entry;
1301 G.pages[order] = new_entry;
1303 /* For a new page, we know the word and bit positions (in the
1304 in_use bitmap) of the first available object -- they're zero. */
1305 new_entry->next_bit_hint = 1;
1306 word = 0;
1307 bit = 0;
1308 object_offset = 0;
1310 else
1312 /* First try to use the hint left from the previous allocation
1313 to locate a clear bit in the in-use bitmap. We've made sure
1314 that the one-past-the-end bit is always set, so if the hint
1315 has run over, this test will fail. */
1316 unsigned hint = entry->next_bit_hint;
1317 word = hint / HOST_BITS_PER_LONG;
1318 bit = hint % HOST_BITS_PER_LONG;
1320 /* If the hint didn't work, scan the bitmap from the beginning. */
1321 if ((entry->in_use_p[word] >> bit) & 1)
1323 word = bit = 0;
1324 while (~entry->in_use_p[word] == 0)
1325 ++word;
1327 #if GCC_VERSION >= 3004
1328 bit = __builtin_ctzl (~entry->in_use_p[word]);
1329 #else
1330 while ((entry->in_use_p[word] >> bit) & 1)
1331 ++bit;
1332 #endif
1334 hint = word * HOST_BITS_PER_LONG + bit;
1337 /* Next time, try the next bit. */
1338 entry->next_bit_hint = hint + 1;
1340 object_offset = hint * object_size;
1343 /* Set the in-use bit. */
1344 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1346 /* Keep a running total of the number of free objects. If this page
1347 fills up, we may have to move it to the end of the list if the
1348 next page isn't full. If the next page is full, all subsequent
1349 pages are full, so there's no need to move it. */
1350 if (--entry->num_free_objects == 0
1351 && entry->next != NULL
1352 && entry->next->num_free_objects > 0)
1354 /* We have a new head for the list. */
1355 G.pages[order] = entry->next;
1357 /* We are moving ENTRY to the end of the page table list.
1358 The new page at the head of the list will have NULL in
1359 its PREV field and ENTRY will have NULL in its NEXT field. */
1360 entry->next->prev = NULL;
1361 entry->next = NULL;
1363 /* Append ENTRY to the tail of the list. */
1364 entry->prev = G.page_tails[order];
1365 G.page_tails[order]->next = entry;
1366 G.page_tails[order] = entry;
1369 /* Calculate the object's address. */
1370 result = entry->page + object_offset;
1371 if (GATHER_STATISTICS)
1372 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1373 result FINAL_PASS_MEM_STAT);
1375 #ifdef ENABLE_GC_CHECKING
1376 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1377 exact same semantics in presence of memory bugs, regardless of
1378 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1379 handle to avoid handle leak. */
1380 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1382 /* `Poison' the entire allocated object, including any padding at
1383 the end. */
1384 memset (result, 0xaf, object_size);
1386 /* Make the bytes after the end of the object unaccessible. Discard the
1387 handle to avoid handle leak. */
1388 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1389 object_size - size));
1390 #endif
1392 /* Tell Valgrind that the memory is there, but its content isn't
1393 defined. The bytes at the end of the object are still marked
1394 unaccessible. */
1395 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1397 /* Keep track of how many bytes are being allocated. This
1398 information is used in deciding when to collect. */
1399 G.allocated += object_size;
1401 /* For timevar statistics. */
1402 timevar_ggc_mem_total += object_size;
1404 if (f && n == 1)
1405 G.finalizers.safe_push (finalizer (result, f));
1406 else if (f)
1407 G.vec_finalizers.safe_push
1408 (vec_finalizer (reinterpret_cast<uintptr_t> (result), f, s, n));
1410 if (GATHER_STATISTICS)
1412 size_t overhead = object_size - size;
1414 G.stats.total_overhead += overhead;
1415 G.stats.total_allocated += object_size;
1416 G.stats.total_overhead_per_order[order] += overhead;
1417 G.stats.total_allocated_per_order[order] += object_size;
1419 if (size <= 32)
1421 G.stats.total_overhead_under32 += overhead;
1422 G.stats.total_allocated_under32 += object_size;
1424 if (size <= 64)
1426 G.stats.total_overhead_under64 += overhead;
1427 G.stats.total_allocated_under64 += object_size;
1429 if (size <= 128)
1431 G.stats.total_overhead_under128 += overhead;
1432 G.stats.total_allocated_under128 += object_size;
1436 if (GGC_DEBUG_LEVEL >= 3)
1437 fprintf (G.debug_file,
1438 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1439 (unsigned long) size, (unsigned long) object_size, result,
1440 (void *) entry);
1442 return result;
1445 /* Mark function for strings. */
1447 void
1448 gt_ggc_m_S (const void *p)
1450 page_entry *entry;
1451 unsigned bit, word;
1452 unsigned long mask;
1453 unsigned long offset;
1455 if (!p || !ggc_allocated_p (p))
1456 return;
1458 /* Look up the page on which the object is alloced. . */
1459 entry = lookup_page_table_entry (p);
1460 gcc_assert (entry);
1462 /* Calculate the index of the object on the page; this is its bit
1463 position in the in_use_p bitmap. Note that because a char* might
1464 point to the middle of an object, we need special code here to
1465 make sure P points to the start of an object. */
1466 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1467 if (offset)
1469 /* Here we've seen a char* which does not point to the beginning
1470 of an allocated object. We assume it points to the middle of
1471 a STRING_CST. */
1472 gcc_assert (offset == offsetof (struct tree_string, str));
1473 p = ((const char *) p) - offset;
1474 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1475 return;
1478 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1479 word = bit / HOST_BITS_PER_LONG;
1480 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1482 /* If the bit was previously set, skip it. */
1483 if (entry->in_use_p[word] & mask)
1484 return;
1486 /* Otherwise set it, and decrement the free object count. */
1487 entry->in_use_p[word] |= mask;
1488 entry->num_free_objects -= 1;
1490 if (GGC_DEBUG_LEVEL >= 4)
1491 fprintf (G.debug_file, "Marking %p\n", p);
1493 return;
1497 /* User-callable entry points for marking string X. */
1499 void
1500 gt_ggc_mx (const char *& x)
1502 gt_ggc_m_S (x);
1505 void
1506 gt_ggc_mx (unsigned char *& x)
1508 gt_ggc_m_S (x);
1511 void
1512 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1516 /* If P is not marked, marks it and return false. Otherwise return true.
1517 P must have been allocated by the GC allocator; it mustn't point to
1518 static objects, stack variables, or memory allocated with malloc. */
1521 ggc_set_mark (const void *p)
1523 page_entry *entry;
1524 unsigned bit, word;
1525 unsigned long mask;
1527 /* Look up the page on which the object is alloced. If the object
1528 wasn't allocated by the collector, we'll probably die. */
1529 entry = lookup_page_table_entry (p);
1530 gcc_assert (entry);
1532 /* Calculate the index of the object on the page; this is its bit
1533 position in the in_use_p bitmap. */
1534 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1535 word = bit / HOST_BITS_PER_LONG;
1536 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1538 /* If the bit was previously set, skip it. */
1539 if (entry->in_use_p[word] & mask)
1540 return 1;
1542 /* Otherwise set it, and decrement the free object count. */
1543 entry->in_use_p[word] |= mask;
1544 entry->num_free_objects -= 1;
1546 if (GGC_DEBUG_LEVEL >= 4)
1547 fprintf (G.debug_file, "Marking %p\n", p);
1549 return 0;
1552 /* Return 1 if P has been marked, zero otherwise.
1553 P must have been allocated by the GC allocator; it mustn't point to
1554 static objects, stack variables, or memory allocated with malloc. */
1557 ggc_marked_p (const void *p)
1559 page_entry *entry;
1560 unsigned bit, word;
1561 unsigned long mask;
1563 /* Look up the page on which the object is alloced. If the object
1564 wasn't allocated by the collector, we'll probably die. */
1565 entry = lookup_page_table_entry (p);
1566 gcc_assert (entry);
1568 /* Calculate the index of the object on the page; this is its bit
1569 position in the in_use_p bitmap. */
1570 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1571 word = bit / HOST_BITS_PER_LONG;
1572 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1574 return (entry->in_use_p[word] & mask) != 0;
1577 /* Return the size of the gc-able object P. */
1579 size_t
1580 ggc_get_size (const void *p)
1582 page_entry *pe = lookup_page_table_entry (p);
1583 return OBJECT_SIZE (pe->order);
1586 /* Release the memory for object P. */
1588 void
1589 ggc_free (void *p)
1591 if (in_gc)
1592 return;
1594 page_entry *pe = lookup_page_table_entry (p);
1595 size_t order = pe->order;
1596 size_t size = OBJECT_SIZE (order);
1598 if (GATHER_STATISTICS)
1599 ggc_free_overhead (p);
1601 if (GGC_DEBUG_LEVEL >= 3)
1602 fprintf (G.debug_file,
1603 "Freeing object, actual size=%lu, at %p on %p\n",
1604 (unsigned long) size, p, (void *) pe);
1606 #ifdef ENABLE_GC_CHECKING
1607 /* Poison the data, to indicate the data is garbage. */
1608 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1609 memset (p, 0xa5, size);
1610 #endif
1611 /* Let valgrind know the object is free. */
1612 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1614 #ifdef ENABLE_GC_ALWAYS_COLLECT
1615 /* In the completely-anal-checking mode, we do *not* immediately free
1616 the data, but instead verify that the data is *actually* not
1617 reachable the next time we collect. */
1619 struct free_object *fo = XNEW (struct free_object);
1620 fo->object = p;
1621 fo->next = G.free_object_list;
1622 G.free_object_list = fo;
1624 #else
1626 unsigned int bit_offset, word, bit;
1628 G.allocated -= size;
1630 /* Mark the object not-in-use. */
1631 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1632 word = bit_offset / HOST_BITS_PER_LONG;
1633 bit = bit_offset % HOST_BITS_PER_LONG;
1634 pe->in_use_p[word] &= ~(1UL << bit);
1636 if (pe->num_free_objects++ == 0)
1638 page_entry *p, *q;
1640 /* If the page is completely full, then it's supposed to
1641 be after all pages that aren't. Since we've freed one
1642 object from a page that was full, we need to move the
1643 page to the head of the list.
1645 PE is the node we want to move. Q is the previous node
1646 and P is the next node in the list. */
1647 q = pe->prev;
1648 if (q && q->num_free_objects == 0)
1650 p = pe->next;
1652 q->next = p;
1654 /* If PE was at the end of the list, then Q becomes the
1655 new end of the list. If PE was not the end of the
1656 list, then we need to update the PREV field for P. */
1657 if (!p)
1658 G.page_tails[order] = q;
1659 else
1660 p->prev = q;
1662 /* Move PE to the head of the list. */
1663 pe->next = G.pages[order];
1664 pe->prev = NULL;
1665 G.pages[order]->prev = pe;
1666 G.pages[order] = pe;
1669 /* Reset the hint bit to point to the only free object. */
1670 pe->next_bit_hint = bit_offset;
1673 #endif
1676 /* Subroutine of init_ggc which computes the pair of numbers used to
1677 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1679 This algorithm is taken from Granlund and Montgomery's paper
1680 "Division by Invariant Integers using Multiplication"
1681 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1682 constants). */
1684 static void
1685 compute_inverse (unsigned order)
1687 size_t size, inv;
1688 unsigned int e;
1690 size = OBJECT_SIZE (order);
1691 e = 0;
1692 while (size % 2 == 0)
1694 e++;
1695 size >>= 1;
1698 inv = size;
1699 while (inv * size != 1)
1700 inv = inv * (2 - inv*size);
1702 DIV_MULT (order) = inv;
1703 DIV_SHIFT (order) = e;
1706 /* Initialize the ggc-mmap allocator. */
1707 void
1708 init_ggc (void)
1710 static bool init_p = false;
1711 unsigned order;
1713 if (init_p)
1714 return;
1715 init_p = true;
1717 G.pagesize = getpagesize ();
1718 G.lg_pagesize = exact_log2 (G.pagesize);
1720 #ifdef HAVE_MMAP_DEV_ZERO
1721 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1722 if (G.dev_zero_fd == -1)
1723 internal_error ("open /dev/zero: %m");
1724 #endif
1726 #if 0
1727 G.debug_file = fopen ("ggc-mmap.debug", "w");
1728 #else
1729 G.debug_file = stdout;
1730 #endif
1732 #ifdef USING_MMAP
1733 /* StunOS has an amazing off-by-one error for the first mmap allocation
1734 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1735 believe, is an unaligned page allocation, which would cause us to
1736 hork badly if we tried to use it. */
1738 char *p = alloc_anon (NULL, G.pagesize, true);
1739 struct page_entry *e;
1740 if ((uintptr_t)p & (G.pagesize - 1))
1742 /* How losing. Discard this one and try another. If we still
1743 can't get something useful, give up. */
1745 p = alloc_anon (NULL, G.pagesize, true);
1746 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1749 /* We have a good page, might as well hold onto it... */
1750 e = XCNEW (struct page_entry);
1751 e->bytes = G.pagesize;
1752 e->page = p;
1753 e->next = G.free_pages;
1754 G.free_pages = e;
1756 #endif
1758 /* Initialize the object size table. */
1759 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1760 object_size_table[order] = (size_t) 1 << order;
1761 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1763 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1765 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1766 so that we're sure of getting aligned memory. */
1767 s = ROUND_UP (s, MAX_ALIGNMENT);
1768 object_size_table[order] = s;
1771 /* Initialize the objects-per-page and inverse tables. */
1772 for (order = 0; order < NUM_ORDERS; ++order)
1774 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1775 if (objects_per_page_table[order] == 0)
1776 objects_per_page_table[order] = 1;
1777 compute_inverse (order);
1780 /* Reset the size_lookup array to put appropriately sized objects in
1781 the special orders. All objects bigger than the previous power
1782 of two, but no greater than the special size, should go in the
1783 new order. */
1784 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1786 int o;
1787 int i;
1789 i = OBJECT_SIZE (order);
1790 if (i >= NUM_SIZE_LOOKUP)
1791 continue;
1793 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1794 size_lookup[i] = order;
1797 G.depth_in_use = 0;
1798 G.depth_max = 10;
1799 G.depth = XNEWVEC (unsigned int, G.depth_max);
1801 G.by_depth_in_use = 0;
1802 G.by_depth_max = INITIAL_PTE_COUNT;
1803 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1804 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1807 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1808 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1810 static void
1811 ggc_recalculate_in_use_p (page_entry *p)
1813 unsigned int i;
1814 size_t num_objects;
1816 /* Because the past-the-end bit in in_use_p is always set, we
1817 pretend there is one additional object. */
1818 num_objects = OBJECTS_IN_PAGE (p) + 1;
1820 /* Reset the free object count. */
1821 p->num_free_objects = num_objects;
1823 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1824 for (i = 0;
1825 i < CEIL (BITMAP_SIZE (num_objects),
1826 sizeof (*p->in_use_p));
1827 ++i)
1829 unsigned long j;
1831 /* Something is in use if it is marked, or if it was in use in a
1832 context further down the context stack. */
1833 p->in_use_p[i] |= save_in_use_p (p)[i];
1835 /* Decrement the free object count for every object allocated. */
1836 for (j = p->in_use_p[i]; j; j >>= 1)
1837 p->num_free_objects -= (j & 1);
1840 gcc_assert (p->num_free_objects < num_objects);
1843 /* Unmark all objects. */
1845 static void
1846 clear_marks (void)
1848 unsigned order;
1850 for (order = 2; order < NUM_ORDERS; order++)
1852 page_entry *p;
1854 for (p = G.pages[order]; p != NULL; p = p->next)
1856 size_t num_objects = OBJECTS_IN_PAGE (p);
1857 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1859 /* The data should be page-aligned. */
1860 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1862 /* Pages that aren't in the topmost context are not collected;
1863 nevertheless, we need their in-use bit vectors to store GC
1864 marks. So, back them up first. */
1865 if (p->context_depth < G.context_depth)
1867 if (! save_in_use_p (p))
1868 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1869 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1872 /* Reset reset the number of free objects and clear the
1873 in-use bits. These will be adjusted by mark_obj. */
1874 p->num_free_objects = num_objects;
1875 memset (p->in_use_p, 0, bitmap_size);
1877 /* Make sure the one-past-the-end bit is always set. */
1878 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1879 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1884 /* Check if any blocks with a registered finalizer have become unmarked. If so
1885 run the finalizer and unregister it because the block is about to be freed.
1886 Note that no garantee is made about what order finalizers will run in so
1887 touching other objects in gc memory is extremely unwise. */
1889 static void
1890 ggc_handle_finalizers ()
1892 if (G.context_depth != 0)
1893 return;
1895 unsigned length = G.finalizers.length ();
1896 for (unsigned int i = 0; i < length;)
1898 finalizer &f = G.finalizers[i];
1899 if (!ggc_marked_p (f.addr ()))
1901 f.call ();
1902 G.finalizers.unordered_remove (i);
1903 length--;
1905 else
1906 i++;
1910 length = G.vec_finalizers.length ();
1911 for (unsigned int i = 0; i < length;)
1913 vec_finalizer &f = G.vec_finalizers[i];
1914 if (!ggc_marked_p (f.addr ()))
1916 f.call ();
1917 G.vec_finalizers.unordered_remove (i);
1918 length--;
1920 else
1921 i++;
1925 /* Free all empty pages. Partially empty pages need no attention
1926 because the `mark' bit doubles as an `unused' bit. */
1928 static void
1929 sweep_pages (void)
1931 unsigned order;
1933 for (order = 2; order < NUM_ORDERS; order++)
1935 /* The last page-entry to consider, regardless of entries
1936 placed at the end of the list. */
1937 page_entry * const last = G.page_tails[order];
1939 size_t num_objects;
1940 size_t live_objects;
1941 page_entry *p, *previous;
1942 int done;
1944 p = G.pages[order];
1945 if (p == NULL)
1946 continue;
1948 previous = NULL;
1951 page_entry *next = p->next;
1953 /* Loop until all entries have been examined. */
1954 done = (p == last);
1956 num_objects = OBJECTS_IN_PAGE (p);
1958 /* Add all live objects on this page to the count of
1959 allocated memory. */
1960 live_objects = num_objects - p->num_free_objects;
1962 G.allocated += OBJECT_SIZE (order) * live_objects;
1964 /* Only objects on pages in the topmost context should get
1965 collected. */
1966 if (p->context_depth < G.context_depth)
1969 /* Remove the page if it's empty. */
1970 else if (live_objects == 0)
1972 /* If P was the first page in the list, then NEXT
1973 becomes the new first page in the list, otherwise
1974 splice P out of the forward pointers. */
1975 if (! previous)
1976 G.pages[order] = next;
1977 else
1978 previous->next = next;
1980 /* Splice P out of the back pointers too. */
1981 if (next)
1982 next->prev = previous;
1984 /* Are we removing the last element? */
1985 if (p == G.page_tails[order])
1986 G.page_tails[order] = previous;
1987 free_page (p);
1988 p = previous;
1991 /* If the page is full, move it to the end. */
1992 else if (p->num_free_objects == 0)
1994 /* Don't move it if it's already at the end. */
1995 if (p != G.page_tails[order])
1997 /* Move p to the end of the list. */
1998 p->next = NULL;
1999 p->prev = G.page_tails[order];
2000 G.page_tails[order]->next = p;
2002 /* Update the tail pointer... */
2003 G.page_tails[order] = p;
2005 /* ... and the head pointer, if necessary. */
2006 if (! previous)
2007 G.pages[order] = next;
2008 else
2009 previous->next = next;
2011 /* And update the backpointer in NEXT if necessary. */
2012 if (next)
2013 next->prev = previous;
2015 p = previous;
2019 /* If we've fallen through to here, it's a page in the
2020 topmost context that is neither full nor empty. Such a
2021 page must precede pages at lesser context depth in the
2022 list, so move it to the head. */
2023 else if (p != G.pages[order])
2025 previous->next = p->next;
2027 /* Update the backchain in the next node if it exists. */
2028 if (p->next)
2029 p->next->prev = previous;
2031 /* Move P to the head of the list. */
2032 p->next = G.pages[order];
2033 p->prev = NULL;
2034 G.pages[order]->prev = p;
2036 /* Update the head pointer. */
2037 G.pages[order] = p;
2039 /* Are we moving the last element? */
2040 if (G.page_tails[order] == p)
2041 G.page_tails[order] = previous;
2042 p = previous;
2045 previous = p;
2046 p = next;
2048 while (! done);
2050 /* Now, restore the in_use_p vectors for any pages from contexts
2051 other than the current one. */
2052 for (p = G.pages[order]; p; p = p->next)
2053 if (p->context_depth != G.context_depth)
2054 ggc_recalculate_in_use_p (p);
2058 #ifdef ENABLE_GC_CHECKING
2059 /* Clobber all free objects. */
2061 static void
2062 poison_pages (void)
2064 unsigned order;
2066 for (order = 2; order < NUM_ORDERS; order++)
2068 size_t size = OBJECT_SIZE (order);
2069 page_entry *p;
2071 for (p = G.pages[order]; p != NULL; p = p->next)
2073 size_t num_objects;
2074 size_t i;
2076 if (p->context_depth != G.context_depth)
2077 /* Since we don't do any collection for pages in pushed
2078 contexts, there's no need to do any poisoning. And
2079 besides, the IN_USE_P array isn't valid until we pop
2080 contexts. */
2081 continue;
2083 num_objects = OBJECTS_IN_PAGE (p);
2084 for (i = 0; i < num_objects; i++)
2086 size_t word, bit;
2087 word = i / HOST_BITS_PER_LONG;
2088 bit = i % HOST_BITS_PER_LONG;
2089 if (((p->in_use_p[word] >> bit) & 1) == 0)
2091 char *object = p->page + i * size;
2093 /* Keep poison-by-write when we expect to use Valgrind,
2094 so the exact same memory semantics is kept, in case
2095 there are memory errors. We override this request
2096 below. */
2097 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2098 size));
2099 memset (object, 0xa5, size);
2101 /* Drop the handle to avoid handle leak. */
2102 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2108 #else
2109 #define poison_pages()
2110 #endif
2112 #ifdef ENABLE_GC_ALWAYS_COLLECT
2113 /* Validate that the reportedly free objects actually are. */
2115 static void
2116 validate_free_objects (void)
2118 struct free_object *f, *next, *still_free = NULL;
2120 for (f = G.free_object_list; f ; f = next)
2122 page_entry *pe = lookup_page_table_entry (f->object);
2123 size_t bit, word;
2125 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2126 word = bit / HOST_BITS_PER_LONG;
2127 bit = bit % HOST_BITS_PER_LONG;
2128 next = f->next;
2130 /* Make certain it isn't visible from any root. Notice that we
2131 do this check before sweep_pages merges save_in_use_p. */
2132 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2134 /* If the object comes from an outer context, then retain the
2135 free_object entry, so that we can verify that the address
2136 isn't live on the stack in some outer context. */
2137 if (pe->context_depth != G.context_depth)
2139 f->next = still_free;
2140 still_free = f;
2142 else
2143 free (f);
2146 G.free_object_list = still_free;
2148 #else
2149 #define validate_free_objects()
2150 #endif
2152 /* Top level mark-and-sweep routine. */
2154 void
2155 ggc_collect (void)
2157 /* Avoid frequent unnecessary work by skipping collection if the
2158 total allocations haven't expanded much since the last
2159 collection. */
2160 float allocated_last_gc =
2161 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2163 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2164 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2165 return;
2167 timevar_push (TV_GC);
2168 if (!quiet_flag)
2169 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2170 if (GGC_DEBUG_LEVEL >= 2)
2171 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2173 /* Zero the total allocated bytes. This will be recalculated in the
2174 sweep phase. */
2175 G.allocated = 0;
2177 /* Release the pages we freed the last time we collected, but didn't
2178 reuse in the interim. */
2179 release_pages ();
2181 /* Indicate that we've seen collections at this context depth. */
2182 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2184 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2186 in_gc = true;
2187 clear_marks ();
2188 ggc_mark_roots ();
2189 ggc_handle_finalizers ();
2191 if (GATHER_STATISTICS)
2192 ggc_prune_overhead_list ();
2194 poison_pages ();
2195 validate_free_objects ();
2196 sweep_pages ();
2198 in_gc = false;
2199 G.allocated_last_gc = G.allocated;
2201 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2203 timevar_pop (TV_GC);
2205 if (!quiet_flag)
2206 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2207 if (GGC_DEBUG_LEVEL >= 2)
2208 fprintf (G.debug_file, "END COLLECTING\n");
2211 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2212 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2213 reachable. */
2215 void
2216 ggc_grow (void)
2218 #ifndef ENABLE_CHECKING
2219 G.allocated_last_gc = MAX (G.allocated_last_gc,
2220 G.allocated);
2221 #else
2222 ggc_collect ();
2223 #endif
2224 if (!quiet_flag)
2225 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2228 /* Print allocation statistics. */
2229 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2230 ? (x) \
2231 : ((x) < 1024*1024*10 \
2232 ? (x) / 1024 \
2233 : (x) / (1024*1024))))
2234 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2236 void
2237 ggc_print_statistics (void)
2239 struct ggc_statistics stats;
2240 unsigned int i;
2241 size_t total_overhead = 0;
2243 /* Clear the statistics. */
2244 memset (&stats, 0, sizeof (stats));
2246 /* Make sure collection will really occur. */
2247 G.allocated_last_gc = 0;
2249 /* Collect and print the statistics common across collectors. */
2250 ggc_print_common_statistics (stderr, &stats);
2252 /* Release free pages so that we will not count the bytes allocated
2253 there as part of the total allocated memory. */
2254 release_pages ();
2256 /* Collect some information about the various sizes of
2257 allocation. */
2258 fprintf (stderr,
2259 "Memory still allocated at the end of the compilation process\n");
2260 fprintf (stderr, "%-8s %10s %10s %10s\n",
2261 "Size", "Allocated", "Used", "Overhead");
2262 for (i = 0; i < NUM_ORDERS; ++i)
2264 page_entry *p;
2265 size_t allocated;
2266 size_t in_use;
2267 size_t overhead;
2269 /* Skip empty entries. */
2270 if (!G.pages[i])
2271 continue;
2273 overhead = allocated = in_use = 0;
2275 /* Figure out the total number of bytes allocated for objects of
2276 this size, and how many of them are actually in use. Also figure
2277 out how much memory the page table is using. */
2278 for (p = G.pages[i]; p; p = p->next)
2280 allocated += p->bytes;
2281 in_use +=
2282 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2284 overhead += (sizeof (page_entry) - sizeof (long)
2285 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2287 fprintf (stderr, "%-8lu %10lu%c %10lu%c %10lu%c\n",
2288 (unsigned long) OBJECT_SIZE (i),
2289 SCALE (allocated), STAT_LABEL (allocated),
2290 SCALE (in_use), STAT_LABEL (in_use),
2291 SCALE (overhead), STAT_LABEL (overhead));
2292 total_overhead += overhead;
2294 fprintf (stderr, "%-8s %10lu%c %10lu%c %10lu%c\n", "Total",
2295 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2296 SCALE (G.allocated), STAT_LABEL (G.allocated),
2297 SCALE (total_overhead), STAT_LABEL (total_overhead));
2299 if (GATHER_STATISTICS)
2301 fprintf (stderr, "\nTotal allocations and overheads during "
2302 "the compilation process\n");
2304 fprintf (stderr, "Total Overhead: %10"
2305 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead);
2306 fprintf (stderr, "Total Allocated: %10"
2307 HOST_LONG_LONG_FORMAT "d\n",
2308 G.stats.total_allocated);
2310 fprintf (stderr, "Total Overhead under 32B: %10"
2311 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under32);
2312 fprintf (stderr, "Total Allocated under 32B: %10"
2313 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under32);
2314 fprintf (stderr, "Total Overhead under 64B: %10"
2315 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under64);
2316 fprintf (stderr, "Total Allocated under 64B: %10"
2317 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under64);
2318 fprintf (stderr, "Total Overhead under 128B: %10"
2319 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under128);
2320 fprintf (stderr, "Total Allocated under 128B: %10"
2321 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under128);
2323 for (i = 0; i < NUM_ORDERS; i++)
2324 if (G.stats.total_allocated_per_order[i])
2326 fprintf (stderr, "Total Overhead page size %9lu: %10"
2327 HOST_LONG_LONG_FORMAT "d\n",
2328 (unsigned long) OBJECT_SIZE (i),
2329 G.stats.total_overhead_per_order[i]);
2330 fprintf (stderr, "Total Allocated page size %9lu: %10"
2331 HOST_LONG_LONG_FORMAT "d\n",
2332 (unsigned long) OBJECT_SIZE (i),
2333 G.stats.total_allocated_per_order[i]);
2338 struct ggc_pch_ondisk
2340 unsigned totals[NUM_ORDERS];
2343 struct ggc_pch_data
2345 struct ggc_pch_ondisk d;
2346 uintptr_t base[NUM_ORDERS];
2347 size_t written[NUM_ORDERS];
2350 struct ggc_pch_data *
2351 init_ggc_pch (void)
2353 return XCNEW (struct ggc_pch_data);
2356 void
2357 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2358 size_t size, bool is_string ATTRIBUTE_UNUSED)
2360 unsigned order;
2362 if (size < NUM_SIZE_LOOKUP)
2363 order = size_lookup[size];
2364 else
2366 order = 10;
2367 while (size > OBJECT_SIZE (order))
2368 order++;
2371 d->d.totals[order]++;
2374 size_t
2375 ggc_pch_total_size (struct ggc_pch_data *d)
2377 size_t a = 0;
2378 unsigned i;
2380 for (i = 0; i < NUM_ORDERS; i++)
2381 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2382 return a;
2385 void
2386 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2388 uintptr_t a = (uintptr_t) base;
2389 unsigned i;
2391 for (i = 0; i < NUM_ORDERS; i++)
2393 d->base[i] = a;
2394 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2399 char *
2400 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2401 size_t size, bool is_string ATTRIBUTE_UNUSED)
2403 unsigned order;
2404 char *result;
2406 if (size < NUM_SIZE_LOOKUP)
2407 order = size_lookup[size];
2408 else
2410 order = 10;
2411 while (size > OBJECT_SIZE (order))
2412 order++;
2415 result = (char *) d->base[order];
2416 d->base[order] += OBJECT_SIZE (order);
2417 return result;
2420 void
2421 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2422 FILE *f ATTRIBUTE_UNUSED)
2424 /* Nothing to do. */
2427 void
2428 ggc_pch_write_object (struct ggc_pch_data *d,
2429 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2430 size_t size, bool is_string ATTRIBUTE_UNUSED)
2432 unsigned order;
2433 static const char emptyBytes[256] = { 0 };
2435 if (size < NUM_SIZE_LOOKUP)
2436 order = size_lookup[size];
2437 else
2439 order = 10;
2440 while (size > OBJECT_SIZE (order))
2441 order++;
2444 if (fwrite (x, size, 1, f) != 1)
2445 fatal_error (input_location, "can%'t write PCH file: %m");
2447 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2448 object out to OBJECT_SIZE(order). This happens for strings. */
2450 if (size != OBJECT_SIZE (order))
2452 unsigned padding = OBJECT_SIZE (order) - size;
2454 /* To speed small writes, we use a nulled-out array that's larger
2455 than most padding requests as the source for our null bytes. This
2456 permits us to do the padding with fwrite() rather than fseek(), and
2457 limits the chance the OS may try to flush any outstanding writes. */
2458 if (padding <= sizeof (emptyBytes))
2460 if (fwrite (emptyBytes, 1, padding, f) != padding)
2461 fatal_error (input_location, "can%'t write PCH file");
2463 else
2465 /* Larger than our buffer? Just default to fseek. */
2466 if (fseek (f, padding, SEEK_CUR) != 0)
2467 fatal_error (input_location, "can%'t write PCH file");
2471 d->written[order]++;
2472 if (d->written[order] == d->d.totals[order]
2473 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2474 G.pagesize),
2475 SEEK_CUR) != 0)
2476 fatal_error (input_location, "can%'t write PCH file: %m");
2479 void
2480 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2482 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2483 fatal_error (input_location, "can%'t write PCH file: %m");
2484 free (d);
2487 /* Move the PCH PTE entries just added to the end of by_depth, to the
2488 front. */
2490 static void
2491 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2493 unsigned i;
2495 /* First, we swap the new entries to the front of the varrays. */
2496 page_entry **new_by_depth;
2497 unsigned long **new_save_in_use;
2499 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2500 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2502 memcpy (&new_by_depth[0],
2503 &G.by_depth[count_old_page_tables],
2504 count_new_page_tables * sizeof (void *));
2505 memcpy (&new_by_depth[count_new_page_tables],
2506 &G.by_depth[0],
2507 count_old_page_tables * sizeof (void *));
2508 memcpy (&new_save_in_use[0],
2509 &G.save_in_use[count_old_page_tables],
2510 count_new_page_tables * sizeof (void *));
2511 memcpy (&new_save_in_use[count_new_page_tables],
2512 &G.save_in_use[0],
2513 count_old_page_tables * sizeof (void *));
2515 free (G.by_depth);
2516 free (G.save_in_use);
2518 G.by_depth = new_by_depth;
2519 G.save_in_use = new_save_in_use;
2521 /* Now update all the index_by_depth fields. */
2522 for (i = G.by_depth_in_use; i > 0; --i)
2524 page_entry *p = G.by_depth[i-1];
2525 p->index_by_depth = i-1;
2528 /* And last, we update the depth pointers in G.depth. The first
2529 entry is already 0, and context 0 entries always start at index
2530 0, so there is nothing to update in the first slot. We need a
2531 second slot, only if we have old ptes, and if we do, they start
2532 at index count_new_page_tables. */
2533 if (count_old_page_tables)
2534 push_depth (count_new_page_tables);
2537 void
2538 ggc_pch_read (FILE *f, void *addr)
2540 struct ggc_pch_ondisk d;
2541 unsigned i;
2542 char *offs = (char *) addr;
2543 unsigned long count_old_page_tables;
2544 unsigned long count_new_page_tables;
2546 count_old_page_tables = G.by_depth_in_use;
2548 /* We've just read in a PCH file. So, every object that used to be
2549 allocated is now free. */
2550 clear_marks ();
2551 #ifdef ENABLE_GC_CHECKING
2552 poison_pages ();
2553 #endif
2554 /* Since we free all the allocated objects, the free list becomes
2555 useless. Validate it now, which will also clear it. */
2556 validate_free_objects ();
2558 /* No object read from a PCH file should ever be freed. So, set the
2559 context depth to 1, and set the depth of all the currently-allocated
2560 pages to be 1 too. PCH pages will have depth 0. */
2561 gcc_assert (!G.context_depth);
2562 G.context_depth = 1;
2563 for (i = 0; i < NUM_ORDERS; i++)
2565 page_entry *p;
2566 for (p = G.pages[i]; p != NULL; p = p->next)
2567 p->context_depth = G.context_depth;
2570 /* Allocate the appropriate page-table entries for the pages read from
2571 the PCH file. */
2572 if (fread (&d, sizeof (d), 1, f) != 1)
2573 fatal_error (input_location, "can%'t read PCH file: %m");
2575 for (i = 0; i < NUM_ORDERS; i++)
2577 struct page_entry *entry;
2578 char *pte;
2579 size_t bytes;
2580 size_t num_objs;
2581 size_t j;
2583 if (d.totals[i] == 0)
2584 continue;
2586 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2587 num_objs = bytes / OBJECT_SIZE (i);
2588 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2589 - sizeof (long)
2590 + BITMAP_SIZE (num_objs + 1)));
2591 entry->bytes = bytes;
2592 entry->page = offs;
2593 entry->context_depth = 0;
2594 offs += bytes;
2595 entry->num_free_objects = 0;
2596 entry->order = i;
2598 for (j = 0;
2599 j + HOST_BITS_PER_LONG <= num_objs + 1;
2600 j += HOST_BITS_PER_LONG)
2601 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2602 for (; j < num_objs + 1; j++)
2603 entry->in_use_p[j / HOST_BITS_PER_LONG]
2604 |= 1L << (j % HOST_BITS_PER_LONG);
2606 for (pte = entry->page;
2607 pte < entry->page + entry->bytes;
2608 pte += G.pagesize)
2609 set_page_table_entry (pte, entry);
2611 if (G.page_tails[i] != NULL)
2612 G.page_tails[i]->next = entry;
2613 else
2614 G.pages[i] = entry;
2615 G.page_tails[i] = entry;
2617 /* We start off by just adding all the new information to the
2618 end of the varrays, later, we will move the new information
2619 to the front of the varrays, as the PCH page tables are at
2620 context 0. */
2621 push_by_depth (entry, 0);
2624 /* Now, we update the various data structures that speed page table
2625 handling. */
2626 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2628 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2630 /* Update the statistics. */
2631 G.allocated = G.allocated_last_gc = offs - (char *)addr;