2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / gcse.c
blobe4b8a2fd24c7ca43af75c8d978825ee185cbc2fd
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "input.h"
144 #include "alias.h"
145 #include "symtab.h"
146 #include "tree.h"
147 #include "tm_p.h"
148 #include "regs.h"
149 #include "ira.h"
150 #include "flags.h"
151 #include "insn-config.h"
152 #include "recog.h"
153 #include "predict.h"
154 #include "function.h"
155 #include "dominance.h"
156 #include "cfg.h"
157 #include "cfgrtl.h"
158 #include "cfganal.h"
159 #include "lcm.h"
160 #include "cfgcleanup.h"
161 #include "basic-block.h"
162 #include "expmed.h"
163 #include "dojump.h"
164 #include "explow.h"
165 #include "calls.h"
166 #include "emit-rtl.h"
167 #include "varasm.h"
168 #include "stmt.h"
169 #include "expr.h"
170 #include "except.h"
171 #include "params.h"
172 #include "alloc-pool.h"
173 #include "cselib.h"
174 #include "intl.h"
175 #include "obstack.h"
176 #include "tree-pass.h"
177 #include "df.h"
178 #include "dbgcnt.h"
179 #include "target.h"
180 #include "gcse.h"
181 #include "gcse-common.h"
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by classic GCSE.
186 Two passes of copy/constant propagation are done around PRE or hoisting
187 because the first one enables more GCSE and the second one helps to clean
188 up the copies that PRE and HOIST create. This is needed more for PRE than
189 for HOIST because code hoisting will try to use an existing register
190 containing the common subexpression rather than create a new one. This is
191 harder to do for PRE because of the code motion (which HOIST doesn't do).
193 Expressions we are interested in GCSE-ing are of the form
194 (set (pseudo-reg) (expression)).
195 Function want_to_gcse_p says what these are.
197 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
198 This allows PRE to hoist expressions that are expressed in multiple insns,
199 such as complex address calculations (e.g. for PIC code, or loads with a
200 high part and a low part).
202 PRE handles moving invariant expressions out of loops (by treating them as
203 partially redundant).
205 **********************
207 We used to support multiple passes but there are diminishing returns in
208 doing so. The first pass usually makes 90% of the changes that are doable.
209 A second pass can make a few more changes made possible by the first pass.
210 Experiments show any further passes don't make enough changes to justify
211 the expense.
213 A study of spec92 using an unlimited number of passes:
214 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
215 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
216 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
218 It was found doing copy propagation between each pass enables further
219 substitutions.
221 This study was done before expressions in REG_EQUAL notes were added as
222 candidate expressions for optimization, and before the GIMPLE optimizers
223 were added. Probably, multiple passes is even less efficient now than
224 at the time when the study was conducted.
226 PRE is quite expensive in complicated functions because the DFA can take
227 a while to converge. Hence we only perform one pass.
229 **********************
231 The steps for PRE are:
233 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
235 2) Perform the data flow analysis for PRE.
237 3) Delete the redundant instructions
239 4) Insert the required copies [if any] that make the partially
240 redundant instructions fully redundant.
242 5) For other reaching expressions, insert an instruction to copy the value
243 to a newly created pseudo that will reach the redundant instruction.
245 The deletion is done first so that when we do insertions we
246 know which pseudo reg to use.
248 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
249 argue it is not. The number of iterations for the algorithm to converge
250 is typically 2-4 so I don't view it as that expensive (relatively speaking).
252 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
253 we create. To make an expression reach the place where it's redundant,
254 the result of the expression is copied to a new register, and the redundant
255 expression is deleted by replacing it with this new register. Classic GCSE
256 doesn't have this problem as much as it computes the reaching defs of
257 each register in each block and thus can try to use an existing
258 register. */
260 /* GCSE global vars. */
262 struct target_gcse default_target_gcse;
263 #if SWITCHABLE_TARGET
264 struct target_gcse *this_target_gcse = &default_target_gcse;
265 #endif
267 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
268 int flag_rerun_cse_after_global_opts;
270 /* An obstack for our working variables. */
271 static struct obstack gcse_obstack;
273 /* Hash table of expressions. */
275 struct gcse_expr
277 /* The expression. */
278 rtx expr;
279 /* Index in the available expression bitmaps. */
280 int bitmap_index;
281 /* Next entry with the same hash. */
282 struct gcse_expr *next_same_hash;
283 /* List of anticipatable occurrences in basic blocks in the function.
284 An "anticipatable occurrence" is one that is the first occurrence in the
285 basic block, the operands are not modified in the basic block prior
286 to the occurrence and the output is not used between the start of
287 the block and the occurrence. */
288 struct gcse_occr *antic_occr;
289 /* List of available occurrence in basic blocks in the function.
290 An "available occurrence" is one that is the last occurrence in the
291 basic block and the operands are not modified by following statements in
292 the basic block [including this insn]. */
293 struct gcse_occr *avail_occr;
294 /* Non-null if the computation is PRE redundant.
295 The value is the newly created pseudo-reg to record a copy of the
296 expression in all the places that reach the redundant copy. */
297 rtx reaching_reg;
298 /* Maximum distance in instructions this expression can travel.
299 We avoid moving simple expressions for more than a few instructions
300 to keep register pressure under control.
301 A value of "0" removes restrictions on how far the expression can
302 travel. */
303 int max_distance;
306 /* Occurrence of an expression.
307 There is one per basic block. If a pattern appears more than once the
308 last appearance is used [or first for anticipatable expressions]. */
310 struct gcse_occr
312 /* Next occurrence of this expression. */
313 struct gcse_occr *next;
314 /* The insn that computes the expression. */
315 rtx_insn *insn;
316 /* Nonzero if this [anticipatable] occurrence has been deleted. */
317 char deleted_p;
318 /* Nonzero if this [available] occurrence has been copied to
319 reaching_reg. */
320 /* ??? This is mutually exclusive with deleted_p, so they could share
321 the same byte. */
322 char copied_p;
325 typedef struct gcse_occr *occr_t;
327 /* Expression hash tables.
328 Each hash table is an array of buckets.
329 ??? It is known that if it were an array of entries, structure elements
330 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
331 not clear whether in the final analysis a sufficient amount of memory would
332 be saved as the size of the available expression bitmaps would be larger
333 [one could build a mapping table without holes afterwards though].
334 Someday I'll perform the computation and figure it out. */
336 struct gcse_hash_table_d
338 /* The table itself.
339 This is an array of `expr_hash_table_size' elements. */
340 struct gcse_expr **table;
342 /* Size of the hash table, in elements. */
343 unsigned int size;
345 /* Number of hash table elements. */
346 unsigned int n_elems;
349 /* Expression hash table. */
350 static struct gcse_hash_table_d expr_hash_table;
352 /* This is a list of expressions which are MEMs and will be used by load
353 or store motion.
354 Load motion tracks MEMs which aren't killed by anything except itself,
355 i.e. loads and stores to a single location.
356 We can then allow movement of these MEM refs with a little special
357 allowance. (all stores copy the same value to the reaching reg used
358 for the loads). This means all values used to store into memory must have
359 no side effects so we can re-issue the setter value. */
361 struct ls_expr
363 struct gcse_expr * expr; /* Gcse expression reference for LM. */
364 rtx pattern; /* Pattern of this mem. */
365 rtx pattern_regs; /* List of registers mentioned by the mem. */
366 rtx_insn_list *loads; /* INSN list of loads seen. */
367 rtx_insn_list *stores; /* INSN list of stores seen. */
368 struct ls_expr * next; /* Next in the list. */
369 int invalid; /* Invalid for some reason. */
370 int index; /* If it maps to a bitmap index. */
371 unsigned int hash_index; /* Index when in a hash table. */
372 rtx reaching_reg; /* Register to use when re-writing. */
375 /* Head of the list of load/store memory refs. */
376 static struct ls_expr * pre_ldst_mems = NULL;
378 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
380 typedef ls_expr *value_type;
381 typedef value_type compare_type;
382 static inline hashval_t hash (const ls_expr *);
383 static inline bool equal (const ls_expr *, const ls_expr *);
386 /* Hashtable helpers. */
387 inline hashval_t
388 pre_ldst_expr_hasher::hash (const ls_expr *x)
390 int do_not_record_p = 0;
391 return
392 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
395 static int expr_equiv_p (const_rtx, const_rtx);
397 inline bool
398 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
399 const ls_expr *ptr2)
401 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
404 /* Hashtable for the load/store memory refs. */
405 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
407 /* Bitmap containing one bit for each register in the program.
408 Used when performing GCSE to track which registers have been set since
409 the start of the basic block. */
410 static regset reg_set_bitmap;
412 /* Array, indexed by basic block number for a list of insns which modify
413 memory within that block. */
414 static vec<rtx_insn *> *modify_mem_list;
415 static bitmap modify_mem_list_set;
417 /* This array parallels modify_mem_list, except that it stores MEMs
418 being set and their canonicalized memory addresses. */
419 static vec<modify_pair> *canon_modify_mem_list;
421 /* Bitmap indexed by block numbers to record which blocks contain
422 function calls. */
423 static bitmap blocks_with_calls;
425 /* Various variables for statistics gathering. */
427 /* Memory used in a pass.
428 This isn't intended to be absolutely precise. Its intent is only
429 to keep an eye on memory usage. */
430 static int bytes_used;
432 /* GCSE substitutions made. */
433 static int gcse_subst_count;
434 /* Number of copy instructions created. */
435 static int gcse_create_count;
437 /* Doing code hoisting. */
438 static bool doing_code_hoisting_p = false;
440 /* For available exprs */
441 static sbitmap *ae_kill;
443 /* Data stored for each basic block. */
444 struct bb_data
446 /* Maximal register pressure inside basic block for given register class
447 (defined only for the pressure classes). */
448 int max_reg_pressure[N_REG_CLASSES];
449 /* Recorded register pressure of basic block before trying to hoist
450 an expression. Will be used to restore the register pressure
451 if the expression should not be hoisted. */
452 int old_pressure;
453 /* Recorded register live_in info of basic block during code hoisting
454 process. BACKUP is used to record live_in info before trying to
455 hoist an expression, and will be used to restore LIVE_IN if the
456 expression should not be hoisted. */
457 bitmap live_in, backup;
460 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
462 static basic_block curr_bb;
464 /* Current register pressure for each pressure class. */
465 static int curr_reg_pressure[N_REG_CLASSES];
468 static void compute_can_copy (void);
469 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
470 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
471 static void *gcse_alloc (unsigned long);
472 static void alloc_gcse_mem (void);
473 static void free_gcse_mem (void);
474 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
475 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
476 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
477 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
478 static int want_to_gcse_p (rtx, int *);
479 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
480 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
481 static int oprs_available_p (const_rtx, const rtx_insn *);
482 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
483 int, struct gcse_hash_table_d *);
484 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
485 static void record_last_reg_set_info (rtx_insn *, int);
486 static void record_last_mem_set_info (rtx_insn *);
487 static void record_last_set_info (rtx, const_rtx, void *);
488 static void compute_hash_table (struct gcse_hash_table_d *);
489 static void alloc_hash_table (struct gcse_hash_table_d *);
490 static void free_hash_table (struct gcse_hash_table_d *);
491 static void compute_hash_table_work (struct gcse_hash_table_d *);
492 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
493 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
494 struct gcse_hash_table_d *);
495 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
496 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
497 static void alloc_pre_mem (int, int);
498 static void free_pre_mem (void);
499 static struct edge_list *compute_pre_data (void);
500 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
501 basic_block);
502 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
503 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
504 static void pre_insert_copies (void);
505 static int pre_delete (void);
506 static int pre_gcse (struct edge_list *);
507 static int one_pre_gcse_pass (void);
508 static void add_label_notes (rtx, rtx_insn *);
509 static void alloc_code_hoist_mem (int, int);
510 static void free_code_hoist_mem (void);
511 static void compute_code_hoist_vbeinout (void);
512 static void compute_code_hoist_data (void);
513 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
514 sbitmap, int, int *, enum reg_class,
515 int *, bitmap, rtx_insn *);
516 static int hoist_code (void);
517 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
518 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
519 static int one_code_hoisting_pass (void);
520 static rtx_insn *process_insert_insn (struct gcse_expr *);
521 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
522 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
523 basic_block, char *);
524 static struct ls_expr * ldst_entry (rtx);
525 static void free_ldst_entry (struct ls_expr *);
526 static void free_ld_motion_mems (void);
527 static void print_ldst_list (FILE *);
528 static struct ls_expr * find_rtx_in_ldst (rtx);
529 static int simple_mem (const_rtx);
530 static void invalidate_any_buried_refs (rtx);
531 static void compute_ld_motion_mems (void);
532 static void trim_ld_motion_mems (void);
533 static void update_ld_motion_stores (struct gcse_expr *);
534 static void clear_modify_mem_tables (void);
535 static void free_modify_mem_tables (void);
536 static bool is_too_expensive (const char *);
538 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
539 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
541 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
542 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
544 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
545 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
547 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
548 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
550 /* Misc. utilities. */
552 #define can_copy \
553 (this_target_gcse->x_can_copy)
554 #define can_copy_init_p \
555 (this_target_gcse->x_can_copy_init_p)
557 /* Compute which modes support reg/reg copy operations. */
559 static void
560 compute_can_copy (void)
562 int i;
563 #ifndef AVOID_CCMODE_COPIES
564 rtx reg;
565 rtx_insn *insn;
566 #endif
567 memset (can_copy, 0, NUM_MACHINE_MODES);
569 start_sequence ();
570 for (i = 0; i < NUM_MACHINE_MODES; i++)
571 if (GET_MODE_CLASS (i) == MODE_CC)
573 #ifdef AVOID_CCMODE_COPIES
574 can_copy[i] = 0;
575 #else
576 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
577 insn = emit_insn (gen_rtx_SET (reg, reg));
578 if (recog (PATTERN (insn), insn, NULL) >= 0)
579 can_copy[i] = 1;
580 #endif
582 else
583 can_copy[i] = 1;
585 end_sequence ();
588 /* Returns whether the mode supports reg/reg copy operations. */
590 bool
591 can_copy_p (machine_mode mode)
593 if (! can_copy_init_p)
595 compute_can_copy ();
596 can_copy_init_p = true;
599 return can_copy[mode] != 0;
602 /* Cover function to xmalloc to record bytes allocated. */
604 static void *
605 gmalloc (size_t size)
607 bytes_used += size;
608 return xmalloc (size);
611 /* Cover function to xcalloc to record bytes allocated. */
613 static void *
614 gcalloc (size_t nelem, size_t elsize)
616 bytes_used += nelem * elsize;
617 return xcalloc (nelem, elsize);
620 /* Cover function to obstack_alloc. */
622 static void *
623 gcse_alloc (unsigned long size)
625 bytes_used += size;
626 return obstack_alloc (&gcse_obstack, size);
629 /* Allocate memory for the reg/memory set tracking tables.
630 This is called at the start of each pass. */
632 static void
633 alloc_gcse_mem (void)
635 /* Allocate vars to track sets of regs. */
636 reg_set_bitmap = ALLOC_REG_SET (NULL);
638 /* Allocate array to keep a list of insns which modify memory in each
639 basic block. The two typedefs are needed to work around the
640 pre-processor limitation with template types in macro arguments. */
641 typedef vec<rtx_insn *> vec_rtx_heap;
642 typedef vec<modify_pair> vec_modify_pair_heap;
643 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
644 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
645 last_basic_block_for_fn (cfun));
646 modify_mem_list_set = BITMAP_ALLOC (NULL);
647 blocks_with_calls = BITMAP_ALLOC (NULL);
650 /* Free memory allocated by alloc_gcse_mem. */
652 static void
653 free_gcse_mem (void)
655 FREE_REG_SET (reg_set_bitmap);
657 free_modify_mem_tables ();
658 BITMAP_FREE (modify_mem_list_set);
659 BITMAP_FREE (blocks_with_calls);
662 /* Compute the local properties of each recorded expression.
664 Local properties are those that are defined by the block, irrespective of
665 other blocks.
667 An expression is transparent in a block if its operands are not modified
668 in the block.
670 An expression is computed (locally available) in a block if it is computed
671 at least once and expression would contain the same value if the
672 computation was moved to the end of the block.
674 An expression is locally anticipatable in a block if it is computed at
675 least once and expression would contain the same value if the computation
676 was moved to the beginning of the block.
678 We call this routine for pre and code hoisting. They all compute
679 basically the same information and thus can easily share this code.
681 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
682 properties. If NULL, then it is not necessary to compute or record that
683 particular property.
685 TABLE controls which hash table to look at. */
687 static void
688 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
689 struct gcse_hash_table_d *table)
691 unsigned int i;
693 /* Initialize any bitmaps that were passed in. */
694 if (transp)
696 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
699 if (comp)
700 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
701 if (antloc)
702 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
704 for (i = 0; i < table->size; i++)
706 struct gcse_expr *expr;
708 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
710 int indx = expr->bitmap_index;
711 struct gcse_occr *occr;
713 /* The expression is transparent in this block if it is not killed.
714 We start by assuming all are transparent [none are killed], and
715 then reset the bits for those that are. */
716 if (transp)
717 compute_transp (expr->expr, indx, transp,
718 blocks_with_calls,
719 modify_mem_list_set,
720 canon_modify_mem_list);
722 /* The occurrences recorded in antic_occr are exactly those that
723 we want to set to nonzero in ANTLOC. */
724 if (antloc)
725 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
727 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
729 /* While we're scanning the table, this is a good place to
730 initialize this. */
731 occr->deleted_p = 0;
734 /* The occurrences recorded in avail_occr are exactly those that
735 we want to set to nonzero in COMP. */
736 if (comp)
737 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
739 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
741 /* While we're scanning the table, this is a good place to
742 initialize this. */
743 occr->copied_p = 0;
746 /* While we're scanning the table, this is a good place to
747 initialize this. */
748 expr->reaching_reg = 0;
753 /* Hash table support. */
755 struct reg_avail_info
757 basic_block last_bb;
758 int first_set;
759 int last_set;
762 static struct reg_avail_info *reg_avail_info;
763 static basic_block current_bb;
765 /* See whether X, the source of a set, is something we want to consider for
766 GCSE. */
768 static int
769 want_to_gcse_p (rtx x, int *max_distance_ptr)
771 #ifdef STACK_REGS
772 /* On register stack architectures, don't GCSE constants from the
773 constant pool, as the benefits are often swamped by the overhead
774 of shuffling the register stack between basic blocks. */
775 if (IS_STACK_MODE (GET_MODE (x)))
776 x = avoid_constant_pool_reference (x);
777 #endif
779 /* GCSE'ing constants:
781 We do not specifically distinguish between constant and non-constant
782 expressions in PRE and Hoist. We use set_src_cost below to limit
783 the maximum distance simple expressions can travel.
785 Nevertheless, constants are much easier to GCSE, and, hence,
786 it is easy to overdo the optimizations. Usually, excessive PRE and
787 Hoisting of constant leads to increased register pressure.
789 RA can deal with this by rematerialing some of the constants.
790 Therefore, it is important that the back-end generates sets of constants
791 in a way that allows reload rematerialize them under high register
792 pressure, i.e., a pseudo register with REG_EQUAL to constant
793 is set only once. Failing to do so will result in IRA/reload
794 spilling such constants under high register pressure instead of
795 rematerializing them. */
797 switch (GET_CODE (x))
799 case REG:
800 case SUBREG:
801 case CALL:
802 return 0;
804 CASE_CONST_ANY:
805 if (!doing_code_hoisting_p)
806 /* Do not PRE constants. */
807 return 0;
809 /* FALLTHRU */
811 default:
812 if (doing_code_hoisting_p)
813 /* PRE doesn't implement max_distance restriction. */
815 int cost;
816 int max_distance;
818 gcc_assert (!optimize_function_for_speed_p (cfun)
819 && optimize_function_for_size_p (cfun));
820 cost = set_src_cost (x, 0);
822 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
824 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
825 if (max_distance == 0)
826 return 0;
828 gcc_assert (max_distance > 0);
830 else
831 max_distance = 0;
833 if (max_distance_ptr)
834 *max_distance_ptr = max_distance;
837 return can_assign_to_reg_without_clobbers_p (x);
841 /* Used internally by can_assign_to_reg_without_clobbers_p. */
843 static GTY(()) rtx_insn *test_insn;
845 /* Return true if we can assign X to a pseudo register such that the
846 resulting insn does not result in clobbering a hard register as a
847 side-effect.
849 Additionally, if the target requires it, check that the resulting insn
850 can be copied. If it cannot, this means that X is special and probably
851 has hidden side-effects we don't want to mess with.
853 This function is typically used by code motion passes, to verify
854 that it is safe to insert an insn without worrying about clobbering
855 maybe live hard regs. */
857 bool
858 can_assign_to_reg_without_clobbers_p (rtx x)
860 int num_clobbers = 0;
861 int icode;
862 bool can_assign = false;
864 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
865 if (general_operand (x, GET_MODE (x)))
866 return 1;
867 else if (GET_MODE (x) == VOIDmode)
868 return 0;
870 /* Otherwise, check if we can make a valid insn from it. First initialize
871 our test insn if we haven't already. */
872 if (test_insn == 0)
874 test_insn
875 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
876 FIRST_PSEUDO_REGISTER * 2),
877 const0_rtx));
878 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
879 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
882 /* Now make an insn like the one we would make when GCSE'ing and see if
883 valid. */
884 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
885 SET_SRC (PATTERN (test_insn)) = x;
887 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
889 /* If the test insn is valid and doesn't need clobbers, and the target also
890 has no objections, we're good. */
891 if (icode >= 0
892 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
893 && ! (targetm.cannot_copy_insn_p
894 && targetm.cannot_copy_insn_p (test_insn)))
895 can_assign = true;
897 /* Make sure test_insn doesn't have any pointers into GC space. */
898 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
900 return can_assign;
903 /* Return nonzero if the operands of expression X are unchanged from the
904 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
905 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
907 static int
908 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
910 int i, j;
911 enum rtx_code code;
912 const char *fmt;
914 if (x == 0)
915 return 1;
917 code = GET_CODE (x);
918 switch (code)
920 case REG:
922 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
924 if (info->last_bb != current_bb)
925 return 1;
926 if (avail_p)
927 return info->last_set < DF_INSN_LUID (insn);
928 else
929 return info->first_set >= DF_INSN_LUID (insn);
932 case MEM:
933 if (! flag_gcse_lm
934 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
935 x, avail_p))
936 return 0;
937 else
938 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
940 case PRE_DEC:
941 case PRE_INC:
942 case POST_DEC:
943 case POST_INC:
944 case PRE_MODIFY:
945 case POST_MODIFY:
946 return 0;
948 case PC:
949 case CC0: /*FIXME*/
950 case CONST:
951 CASE_CONST_ANY:
952 case SYMBOL_REF:
953 case LABEL_REF:
954 case ADDR_VEC:
955 case ADDR_DIFF_VEC:
956 return 1;
958 default:
959 break;
962 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
964 if (fmt[i] == 'e')
966 /* If we are about to do the last recursive call needed at this
967 level, change it into iteration. This function is called enough
968 to be worth it. */
969 if (i == 0)
970 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
972 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
973 return 0;
975 else if (fmt[i] == 'E')
976 for (j = 0; j < XVECLEN (x, i); j++)
977 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
978 return 0;
981 return 1;
984 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
986 struct mem_conflict_info
988 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
989 see if a memory store conflicts with this memory load. */
990 const_rtx mem;
992 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
993 references. */
994 bool conflict;
997 /* DEST is the output of an instruction. If it is a memory reference and
998 possibly conflicts with the load found in DATA, then communicate this
999 information back through DATA. */
1001 static void
1002 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1003 void *data)
1005 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1007 while (GET_CODE (dest) == SUBREG
1008 || GET_CODE (dest) == ZERO_EXTRACT
1009 || GET_CODE (dest) == STRICT_LOW_PART)
1010 dest = XEXP (dest, 0);
1012 /* If DEST is not a MEM, then it will not conflict with the load. Note
1013 that function calls are assumed to clobber memory, but are handled
1014 elsewhere. */
1015 if (! MEM_P (dest))
1016 return;
1018 /* If we are setting a MEM in our list of specially recognized MEMs,
1019 don't mark as killed this time. */
1020 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1022 if (!find_rtx_in_ldst (dest))
1023 mci->conflict = true;
1024 return;
1027 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1028 mci->conflict = true;
1031 /* Return nonzero if the expression in X (a memory reference) is killed
1032 in block BB before or after the insn with the LUID in UID_LIMIT.
1033 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1034 before UID_LIMIT.
1036 To check the entire block, set UID_LIMIT to max_uid + 1 and
1037 AVAIL_P to 0. */
1039 static int
1040 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1041 int avail_p)
1043 vec<rtx_insn *> list = modify_mem_list[bb->index];
1044 rtx_insn *setter;
1045 unsigned ix;
1047 /* If this is a readonly then we aren't going to be changing it. */
1048 if (MEM_READONLY_P (x))
1049 return 0;
1051 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1053 struct mem_conflict_info mci;
1055 /* Ignore entries in the list that do not apply. */
1056 if ((avail_p
1057 && DF_INSN_LUID (setter) < uid_limit)
1058 || (! avail_p
1059 && DF_INSN_LUID (setter) > uid_limit))
1060 continue;
1062 /* If SETTER is a call everything is clobbered. Note that calls
1063 to pure functions are never put on the list, so we need not
1064 worry about them. */
1065 if (CALL_P (setter))
1066 return 1;
1068 /* SETTER must be an INSN of some kind that sets memory. Call
1069 note_stores to examine each hunk of memory that is modified. */
1070 mci.mem = x;
1071 mci.conflict = false;
1072 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1073 if (mci.conflict)
1074 return 1;
1076 return 0;
1079 /* Return nonzero if the operands of expression X are unchanged from
1080 the start of INSN's basic block up to but not including INSN. */
1082 static int
1083 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1085 return oprs_unchanged_p (x, insn, 0);
1088 /* Return nonzero if the operands of expression X are unchanged from
1089 INSN to the end of INSN's basic block. */
1091 static int
1092 oprs_available_p (const_rtx x, const rtx_insn *insn)
1094 return oprs_unchanged_p (x, insn, 1);
1097 /* Hash expression X.
1099 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1100 indicating if a volatile operand is found or if the expression contains
1101 something we don't want to insert in the table. HASH_TABLE_SIZE is
1102 the current size of the hash table to be probed. */
1104 static unsigned int
1105 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1106 int hash_table_size)
1108 unsigned int hash;
1110 *do_not_record_p = 0;
1112 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1113 return hash % hash_table_size;
1116 /* Return nonzero if exp1 is equivalent to exp2. */
1118 static int
1119 expr_equiv_p (const_rtx x, const_rtx y)
1121 return exp_equiv_p (x, y, 0, true);
1124 /* Insert expression X in INSN in the hash TABLE.
1125 If it is already present, record it as the last occurrence in INSN's
1126 basic block.
1128 MODE is the mode of the value X is being stored into.
1129 It is only used if X is a CONST_INT.
1131 ANTIC_P is nonzero if X is an anticipatable expression.
1132 AVAIL_P is nonzero if X is an available expression.
1134 MAX_DISTANCE is the maximum distance in instructions this expression can
1135 be moved. */
1137 static void
1138 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1139 int antic_p,
1140 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1142 int found, do_not_record_p;
1143 unsigned int hash;
1144 struct gcse_expr *cur_expr, *last_expr = NULL;
1145 struct gcse_occr *antic_occr, *avail_occr;
1147 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1149 /* Do not insert expression in table if it contains volatile operands,
1150 or if hash_expr determines the expression is something we don't want
1151 to or can't handle. */
1152 if (do_not_record_p)
1153 return;
1155 cur_expr = table->table[hash];
1156 found = 0;
1158 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1160 /* If the expression isn't found, save a pointer to the end of
1161 the list. */
1162 last_expr = cur_expr;
1163 cur_expr = cur_expr->next_same_hash;
1166 if (! found)
1168 cur_expr = GOBNEW (struct gcse_expr);
1169 bytes_used += sizeof (struct gcse_expr);
1170 if (table->table[hash] == NULL)
1171 /* This is the first pattern that hashed to this index. */
1172 table->table[hash] = cur_expr;
1173 else
1174 /* Add EXPR to end of this hash chain. */
1175 last_expr->next_same_hash = cur_expr;
1177 /* Set the fields of the expr element. */
1178 cur_expr->expr = x;
1179 cur_expr->bitmap_index = table->n_elems++;
1180 cur_expr->next_same_hash = NULL;
1181 cur_expr->antic_occr = NULL;
1182 cur_expr->avail_occr = NULL;
1183 gcc_assert (max_distance >= 0);
1184 cur_expr->max_distance = max_distance;
1186 else
1187 gcc_assert (cur_expr->max_distance == max_distance);
1189 /* Now record the occurrence(s). */
1190 if (antic_p)
1192 antic_occr = cur_expr->antic_occr;
1194 if (antic_occr
1195 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1196 antic_occr = NULL;
1198 if (antic_occr)
1199 /* Found another instance of the expression in the same basic block.
1200 Prefer the currently recorded one. We want the first one in the
1201 block and the block is scanned from start to end. */
1202 ; /* nothing to do */
1203 else
1205 /* First occurrence of this expression in this basic block. */
1206 antic_occr = GOBNEW (struct gcse_occr);
1207 bytes_used += sizeof (struct gcse_occr);
1208 antic_occr->insn = insn;
1209 antic_occr->next = cur_expr->antic_occr;
1210 antic_occr->deleted_p = 0;
1211 cur_expr->antic_occr = antic_occr;
1215 if (avail_p)
1217 avail_occr = cur_expr->avail_occr;
1219 if (avail_occr
1220 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1222 /* Found another instance of the expression in the same basic block.
1223 Prefer this occurrence to the currently recorded one. We want
1224 the last one in the block and the block is scanned from start
1225 to end. */
1226 avail_occr->insn = insn;
1228 else
1230 /* First occurrence of this expression in this basic block. */
1231 avail_occr = GOBNEW (struct gcse_occr);
1232 bytes_used += sizeof (struct gcse_occr);
1233 avail_occr->insn = insn;
1234 avail_occr->next = cur_expr->avail_occr;
1235 avail_occr->deleted_p = 0;
1236 cur_expr->avail_occr = avail_occr;
1241 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1243 static void
1244 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1246 rtx src = SET_SRC (set);
1247 rtx dest = SET_DEST (set);
1248 rtx note;
1250 if (GET_CODE (src) == CALL)
1251 hash_scan_call (src, insn, table);
1253 else if (REG_P (dest))
1255 unsigned int regno = REGNO (dest);
1256 int max_distance = 0;
1258 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1260 This allows us to do a single GCSE pass and still eliminate
1261 redundant constants, addresses or other expressions that are
1262 constructed with multiple instructions.
1264 However, keep the original SRC if INSN is a simple reg-reg move.
1265 In this case, there will almost always be a REG_EQUAL note on the
1266 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1267 for INSN, we miss copy propagation opportunities and we perform the
1268 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1269 do more than one PRE GCSE pass.
1271 Note that this does not impede profitable constant propagations. We
1272 "look through" reg-reg sets in lookup_avail_set. */
1273 note = find_reg_equal_equiv_note (insn);
1274 if (note != 0
1275 && REG_NOTE_KIND (note) == REG_EQUAL
1276 && !REG_P (src)
1277 && want_to_gcse_p (XEXP (note, 0), NULL))
1278 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1280 /* Only record sets of pseudo-regs in the hash table. */
1281 if (regno >= FIRST_PSEUDO_REGISTER
1282 /* Don't GCSE something if we can't do a reg/reg copy. */
1283 && can_copy_p (GET_MODE (dest))
1284 /* GCSE commonly inserts instruction after the insn. We can't
1285 do that easily for EH edges so disable GCSE on these for now. */
1286 /* ??? We can now easily create new EH landing pads at the
1287 gimple level, for splitting edges; there's no reason we
1288 can't do the same thing at the rtl level. */
1289 && !can_throw_internal (insn)
1290 /* Is SET_SRC something we want to gcse? */
1291 && want_to_gcse_p (src, &max_distance)
1292 /* Don't CSE a nop. */
1293 && ! set_noop_p (set)
1294 /* Don't GCSE if it has attached REG_EQUIV note.
1295 At this point this only function parameters should have
1296 REG_EQUIV notes and if the argument slot is used somewhere
1297 explicitly, it means address of parameter has been taken,
1298 so we should not extend the lifetime of the pseudo. */
1299 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1301 /* An expression is not anticipatable if its operands are
1302 modified before this insn or if this is not the only SET in
1303 this insn. The latter condition does not have to mean that
1304 SRC itself is not anticipatable, but we just will not be
1305 able to handle code motion of insns with multiple sets. */
1306 int antic_p = oprs_anticipatable_p (src, insn)
1307 && !multiple_sets (insn);
1308 /* An expression is not available if its operands are
1309 subsequently modified, including this insn. It's also not
1310 available if this is a branch, because we can't insert
1311 a set after the branch. */
1312 int avail_p = (oprs_available_p (src, insn)
1313 && ! JUMP_P (insn));
1315 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1316 max_distance, table);
1319 /* In case of store we want to consider the memory value as available in
1320 the REG stored in that memory. This makes it possible to remove
1321 redundant loads from due to stores to the same location. */
1322 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1324 unsigned int regno = REGNO (src);
1325 int max_distance = 0;
1327 /* Only record sets of pseudo-regs in the hash table. */
1328 if (regno >= FIRST_PSEUDO_REGISTER
1329 /* Don't GCSE something if we can't do a reg/reg copy. */
1330 && can_copy_p (GET_MODE (src))
1331 /* GCSE commonly inserts instruction after the insn. We can't
1332 do that easily for EH edges so disable GCSE on these for now. */
1333 && !can_throw_internal (insn)
1334 /* Is SET_DEST something we want to gcse? */
1335 && want_to_gcse_p (dest, &max_distance)
1336 /* Don't CSE a nop. */
1337 && ! set_noop_p (set)
1338 /* Don't GCSE if it has attached REG_EQUIV note.
1339 At this point this only function parameters should have
1340 REG_EQUIV notes and if the argument slot is used somewhere
1341 explicitly, it means address of parameter has been taken,
1342 so we should not extend the lifetime of the pseudo. */
1343 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1344 || ! MEM_P (XEXP (note, 0))))
1346 /* Stores are never anticipatable. */
1347 int antic_p = 0;
1348 /* An expression is not available if its operands are
1349 subsequently modified, including this insn. It's also not
1350 available if this is a branch, because we can't insert
1351 a set after the branch. */
1352 int avail_p = oprs_available_p (dest, insn)
1353 && ! JUMP_P (insn);
1355 /* Record the memory expression (DEST) in the hash table. */
1356 insert_expr_in_table (dest, GET_MODE (dest), insn,
1357 antic_p, avail_p, max_distance, table);
1362 static void
1363 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1364 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1366 /* Currently nothing to do. */
1369 static void
1370 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1371 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1373 /* Currently nothing to do. */
1376 /* Process INSN and add hash table entries as appropriate. */
1378 static void
1379 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1381 rtx pat = PATTERN (insn);
1382 int i;
1384 /* Pick out the sets of INSN and for other forms of instructions record
1385 what's been modified. */
1387 if (GET_CODE (pat) == SET)
1388 hash_scan_set (pat, insn, table);
1390 else if (GET_CODE (pat) == CLOBBER)
1391 hash_scan_clobber (pat, insn, table);
1393 else if (GET_CODE (pat) == CALL)
1394 hash_scan_call (pat, insn, table);
1396 else if (GET_CODE (pat) == PARALLEL)
1397 for (i = 0; i < XVECLEN (pat, 0); i++)
1399 rtx x = XVECEXP (pat, 0, i);
1401 if (GET_CODE (x) == SET)
1402 hash_scan_set (x, insn, table);
1403 else if (GET_CODE (x) == CLOBBER)
1404 hash_scan_clobber (x, insn, table);
1405 else if (GET_CODE (x) == CALL)
1406 hash_scan_call (x, insn, table);
1410 /* Dump the hash table TABLE to file FILE under the name NAME. */
1412 static void
1413 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1415 int i;
1416 /* Flattened out table, so it's printed in proper order. */
1417 struct gcse_expr **flat_table;
1418 unsigned int *hash_val;
1419 struct gcse_expr *expr;
1421 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1422 hash_val = XNEWVEC (unsigned int, table->n_elems);
1424 for (i = 0; i < (int) table->size; i++)
1425 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1427 flat_table[expr->bitmap_index] = expr;
1428 hash_val[expr->bitmap_index] = i;
1431 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1432 name, table->size, table->n_elems);
1434 for (i = 0; i < (int) table->n_elems; i++)
1435 if (flat_table[i] != 0)
1437 expr = flat_table[i];
1438 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1439 expr->bitmap_index, hash_val[i], expr->max_distance);
1440 print_rtl (file, expr->expr);
1441 fprintf (file, "\n");
1444 fprintf (file, "\n");
1446 free (flat_table);
1447 free (hash_val);
1450 /* Record register first/last/block set information for REGNO in INSN.
1452 first_set records the first place in the block where the register
1453 is set and is used to compute "anticipatability".
1455 last_set records the last place in the block where the register
1456 is set and is used to compute "availability".
1458 last_bb records the block for which first_set and last_set are
1459 valid, as a quick test to invalidate them. */
1461 static void
1462 record_last_reg_set_info (rtx_insn *insn, int regno)
1464 struct reg_avail_info *info = &reg_avail_info[regno];
1465 int luid = DF_INSN_LUID (insn);
1467 info->last_set = luid;
1468 if (info->last_bb != current_bb)
1470 info->last_bb = current_bb;
1471 info->first_set = luid;
1475 /* Record memory modification information for INSN. We do not actually care
1476 about the memory location(s) that are set, or even how they are set (consider
1477 a CALL_INSN). We merely need to record which insns modify memory. */
1479 static void
1480 record_last_mem_set_info (rtx_insn *insn)
1482 if (! flag_gcse_lm)
1483 return;
1485 record_last_mem_set_info_common (insn, modify_mem_list,
1486 canon_modify_mem_list,
1487 modify_mem_list_set,
1488 blocks_with_calls);
1491 /* Called from compute_hash_table via note_stores to handle one
1492 SET or CLOBBER in an insn. DATA is really the instruction in which
1493 the SET is taking place. */
1495 static void
1496 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1498 rtx_insn *last_set_insn = (rtx_insn *) data;
1500 if (GET_CODE (dest) == SUBREG)
1501 dest = SUBREG_REG (dest);
1503 if (REG_P (dest))
1504 record_last_reg_set_info (last_set_insn, REGNO (dest));
1505 else if (MEM_P (dest)
1506 /* Ignore pushes, they clobber nothing. */
1507 && ! push_operand (dest, GET_MODE (dest)))
1508 record_last_mem_set_info (last_set_insn);
1511 /* Top level function to create an expression hash table.
1513 Expression entries are placed in the hash table if
1514 - they are of the form (set (pseudo-reg) src),
1515 - src is something we want to perform GCSE on,
1516 - none of the operands are subsequently modified in the block
1518 Currently src must be a pseudo-reg or a const_int.
1520 TABLE is the table computed. */
1522 static void
1523 compute_hash_table_work (struct gcse_hash_table_d *table)
1525 int i;
1527 /* re-Cache any INSN_LIST nodes we have allocated. */
1528 clear_modify_mem_tables ();
1529 /* Some working arrays used to track first and last set in each block. */
1530 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1532 for (i = 0; i < max_reg_num (); ++i)
1533 reg_avail_info[i].last_bb = NULL;
1535 FOR_EACH_BB_FN (current_bb, cfun)
1537 rtx_insn *insn;
1538 unsigned int regno;
1540 /* First pass over the instructions records information used to
1541 determine when registers and memory are first and last set. */
1542 FOR_BB_INSNS (current_bb, insn)
1544 if (!NONDEBUG_INSN_P (insn))
1545 continue;
1547 if (CALL_P (insn))
1549 hard_reg_set_iterator hrsi;
1550 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1551 0, regno, hrsi)
1552 record_last_reg_set_info (insn, regno);
1554 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1555 record_last_mem_set_info (insn);
1558 note_stores (PATTERN (insn), record_last_set_info, insn);
1561 /* The next pass builds the hash table. */
1562 FOR_BB_INSNS (current_bb, insn)
1563 if (NONDEBUG_INSN_P (insn))
1564 hash_scan_insn (insn, table);
1567 free (reg_avail_info);
1568 reg_avail_info = NULL;
1571 /* Allocate space for the set/expr hash TABLE.
1572 It is used to determine the number of buckets to use. */
1574 static void
1575 alloc_hash_table (struct gcse_hash_table_d *table)
1577 int n;
1579 n = get_max_insn_count ();
1581 table->size = n / 4;
1582 if (table->size < 11)
1583 table->size = 11;
1585 /* Attempt to maintain efficient use of hash table.
1586 Making it an odd number is simplest for now.
1587 ??? Later take some measurements. */
1588 table->size |= 1;
1589 n = table->size * sizeof (struct gcse_expr *);
1590 table->table = GNEWVAR (struct gcse_expr *, n);
1593 /* Free things allocated by alloc_hash_table. */
1595 static void
1596 free_hash_table (struct gcse_hash_table_d *table)
1598 free (table->table);
1601 /* Compute the expression hash table TABLE. */
1603 static void
1604 compute_hash_table (struct gcse_hash_table_d *table)
1606 /* Initialize count of number of entries in hash table. */
1607 table->n_elems = 0;
1608 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1610 compute_hash_table_work (table);
1613 /* Expression tracking support. */
1615 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1616 static void
1617 clear_modify_mem_tables (void)
1619 unsigned i;
1620 bitmap_iterator bi;
1622 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1624 modify_mem_list[i].release ();
1625 canon_modify_mem_list[i].release ();
1627 bitmap_clear (modify_mem_list_set);
1628 bitmap_clear (blocks_with_calls);
1631 /* Release memory used by modify_mem_list_set. */
1633 static void
1634 free_modify_mem_tables (void)
1636 clear_modify_mem_tables ();
1637 free (modify_mem_list);
1638 free (canon_modify_mem_list);
1639 modify_mem_list = 0;
1640 canon_modify_mem_list = 0;
1643 /* Compute PRE+LCM working variables. */
1645 /* Local properties of expressions. */
1647 /* Nonzero for expressions that are transparent in the block. */
1648 static sbitmap *transp;
1650 /* Nonzero for expressions that are computed (available) in the block. */
1651 static sbitmap *comp;
1653 /* Nonzero for expressions that are locally anticipatable in the block. */
1654 static sbitmap *antloc;
1656 /* Nonzero for expressions where this block is an optimal computation
1657 point. */
1658 static sbitmap *pre_optimal;
1660 /* Nonzero for expressions which are redundant in a particular block. */
1661 static sbitmap *pre_redundant;
1663 /* Nonzero for expressions which should be inserted on a specific edge. */
1664 static sbitmap *pre_insert_map;
1666 /* Nonzero for expressions which should be deleted in a specific block. */
1667 static sbitmap *pre_delete_map;
1669 /* Allocate vars used for PRE analysis. */
1671 static void
1672 alloc_pre_mem (int n_blocks, int n_exprs)
1674 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1675 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1676 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1678 pre_optimal = NULL;
1679 pre_redundant = NULL;
1680 pre_insert_map = NULL;
1681 pre_delete_map = NULL;
1682 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1684 /* pre_insert and pre_delete are allocated later. */
1687 /* Free vars used for PRE analysis. */
1689 static void
1690 free_pre_mem (void)
1692 sbitmap_vector_free (transp);
1693 sbitmap_vector_free (comp);
1695 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1697 if (pre_optimal)
1698 sbitmap_vector_free (pre_optimal);
1699 if (pre_redundant)
1700 sbitmap_vector_free (pre_redundant);
1701 if (pre_insert_map)
1702 sbitmap_vector_free (pre_insert_map);
1703 if (pre_delete_map)
1704 sbitmap_vector_free (pre_delete_map);
1706 transp = comp = NULL;
1707 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1710 /* Remove certain expressions from anticipatable and transparent
1711 sets of basic blocks that have incoming abnormal edge.
1712 For PRE remove potentially trapping expressions to avoid placing
1713 them on abnormal edges. For hoisting remove memory references that
1714 can be clobbered by calls. */
1716 static void
1717 prune_expressions (bool pre_p)
1719 sbitmap prune_exprs;
1720 struct gcse_expr *expr;
1721 unsigned int ui;
1722 basic_block bb;
1724 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1725 bitmap_clear (prune_exprs);
1726 for (ui = 0; ui < expr_hash_table.size; ui++)
1728 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1730 /* Note potentially trapping expressions. */
1731 if (may_trap_p (expr->expr))
1733 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1734 continue;
1737 if (!pre_p && MEM_P (expr->expr))
1738 /* Note memory references that can be clobbered by a call.
1739 We do not split abnormal edges in hoisting, so would
1740 a memory reference get hoisted along an abnormal edge,
1741 it would be placed /before/ the call. Therefore, only
1742 constant memory references can be hoisted along abnormal
1743 edges. */
1745 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1746 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1747 continue;
1749 if (MEM_READONLY_P (expr->expr)
1750 && !MEM_VOLATILE_P (expr->expr)
1751 && MEM_NOTRAP_P (expr->expr))
1752 /* Constant memory reference, e.g., a PIC address. */
1753 continue;
1755 /* ??? Optimally, we would use interprocedural alias
1756 analysis to determine if this mem is actually killed
1757 by this call. */
1759 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1764 FOR_EACH_BB_FN (bb, cfun)
1766 edge e;
1767 edge_iterator ei;
1769 /* If the current block is the destination of an abnormal edge, we
1770 kill all trapping (for PRE) and memory (for hoist) expressions
1771 because we won't be able to properly place the instruction on
1772 the edge. So make them neither anticipatable nor transparent.
1773 This is fairly conservative.
1775 ??? For hoisting it may be necessary to check for set-and-jump
1776 instructions here, not just for abnormal edges. The general problem
1777 is that when an expression cannot not be placed right at the end of
1778 a basic block we should account for any side-effects of a subsequent
1779 jump instructions that could clobber the expression. It would
1780 be best to implement this check along the lines of
1781 should_hoist_expr_to_dom where the target block is already known
1782 and, hence, there's no need to conservatively prune expressions on
1783 "intermediate" set-and-jump instructions. */
1784 FOR_EACH_EDGE (e, ei, bb->preds)
1785 if ((e->flags & EDGE_ABNORMAL)
1786 && (pre_p || CALL_P (BB_END (e->src))))
1788 bitmap_and_compl (antloc[bb->index],
1789 antloc[bb->index], prune_exprs);
1790 bitmap_and_compl (transp[bb->index],
1791 transp[bb->index], prune_exprs);
1792 break;
1796 sbitmap_free (prune_exprs);
1799 /* It may be necessary to insert a large number of insns on edges to
1800 make the existing occurrences of expressions fully redundant. This
1801 routine examines the set of insertions and deletions and if the ratio
1802 of insertions to deletions is too high for a particular expression, then
1803 the expression is removed from the insertion/deletion sets.
1805 N_ELEMS is the number of elements in the hash table. */
1807 static void
1808 prune_insertions_deletions (int n_elems)
1810 sbitmap_iterator sbi;
1811 sbitmap prune_exprs;
1813 /* We always use I to iterate over blocks/edges and J to iterate over
1814 expressions. */
1815 unsigned int i, j;
1817 /* Counts for the number of times an expression needs to be inserted and
1818 number of times an expression can be removed as a result. */
1819 int *insertions = GCNEWVEC (int, n_elems);
1820 int *deletions = GCNEWVEC (int, n_elems);
1822 /* Set of expressions which require too many insertions relative to
1823 the number of deletions achieved. We will prune these out of the
1824 insertion/deletion sets. */
1825 prune_exprs = sbitmap_alloc (n_elems);
1826 bitmap_clear (prune_exprs);
1828 /* Iterate over the edges counting the number of times each expression
1829 needs to be inserted. */
1830 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1832 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1833 insertions[j]++;
1836 /* Similarly for deletions, but those occur in blocks rather than on
1837 edges. */
1838 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1840 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1841 deletions[j]++;
1844 /* Now that we have accurate counts, iterate over the elements in the
1845 hash table and see if any need too many insertions relative to the
1846 number of evaluations that can be removed. If so, mark them in
1847 PRUNE_EXPRS. */
1848 for (j = 0; j < (unsigned) n_elems; j++)
1849 if (deletions[j]
1850 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1851 bitmap_set_bit (prune_exprs, j);
1853 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1854 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1856 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1857 bitmap_clear_bit (pre_insert_map[i], j);
1859 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1860 bitmap_clear_bit (pre_delete_map[i], j);
1863 sbitmap_free (prune_exprs);
1864 free (insertions);
1865 free (deletions);
1868 /* Top level routine to do the dataflow analysis needed by PRE. */
1870 static struct edge_list *
1871 compute_pre_data (void)
1873 struct edge_list *edge_list;
1874 basic_block bb;
1876 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1877 prune_expressions (true);
1878 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1880 /* Compute ae_kill for each basic block using:
1882 ~(TRANSP | COMP)
1885 FOR_EACH_BB_FN (bb, cfun)
1887 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1888 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1891 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1892 ae_kill, &pre_insert_map, &pre_delete_map);
1893 sbitmap_vector_free (antloc);
1894 antloc = NULL;
1895 sbitmap_vector_free (ae_kill);
1896 ae_kill = NULL;
1898 prune_insertions_deletions (expr_hash_table.n_elems);
1900 return edge_list;
1903 /* PRE utilities */
1905 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1906 block BB.
1908 VISITED is a pointer to a working buffer for tracking which BB's have
1909 been visited. It is NULL for the top-level call.
1911 We treat reaching expressions that go through blocks containing the same
1912 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1913 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1914 2 as not reaching. The intent is to improve the probability of finding
1915 only one reaching expression and to reduce register lifetimes by picking
1916 the closest such expression. */
1918 static int
1919 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1920 basic_block bb, char *visited)
1922 edge pred;
1923 edge_iterator ei;
1925 FOR_EACH_EDGE (pred, ei, bb->preds)
1927 basic_block pred_bb = pred->src;
1929 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1930 /* Has predecessor has already been visited? */
1931 || visited[pred_bb->index])
1932 ;/* Nothing to do. */
1934 /* Does this predecessor generate this expression? */
1935 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1937 /* Is this the occurrence we're looking for?
1938 Note that there's only one generating occurrence per block
1939 so we just need to check the block number. */
1940 if (occr_bb == pred_bb)
1941 return 1;
1943 visited[pred_bb->index] = 1;
1945 /* Ignore this predecessor if it kills the expression. */
1946 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1947 visited[pred_bb->index] = 1;
1949 /* Neither gen nor kill. */
1950 else
1952 visited[pred_bb->index] = 1;
1953 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1954 return 1;
1958 /* All paths have been checked. */
1959 return 0;
1962 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1963 memory allocated for that function is returned. */
1965 static int
1966 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1968 int rval;
1969 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1971 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1973 free (visited);
1974 return rval;
1977 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1979 static rtx_insn *
1980 process_insert_insn (struct gcse_expr *expr)
1982 rtx reg = expr->reaching_reg;
1983 /* Copy the expression to make sure we don't have any sharing issues. */
1984 rtx exp = copy_rtx (expr->expr);
1985 rtx_insn *pat;
1987 start_sequence ();
1989 /* If the expression is something that's an operand, like a constant,
1990 just copy it to a register. */
1991 if (general_operand (exp, GET_MODE (reg)))
1992 emit_move_insn (reg, exp);
1994 /* Otherwise, make a new insn to compute this expression and make sure the
1995 insn will be recognized (this also adds any needed CLOBBERs). */
1996 else
1998 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
2000 if (insn_invalid_p (insn, false))
2001 gcc_unreachable ();
2004 pat = get_insns ();
2005 end_sequence ();
2007 return pat;
2010 /* Add EXPR to the end of basic block BB.
2012 This is used by both the PRE and code hoisting. */
2014 static void
2015 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2017 rtx_insn *insn = BB_END (bb);
2018 rtx_insn *new_insn;
2019 rtx reg = expr->reaching_reg;
2020 int regno = REGNO (reg);
2021 rtx_insn *pat, *pat_end;
2023 pat = process_insert_insn (expr);
2024 gcc_assert (pat && INSN_P (pat));
2026 pat_end = pat;
2027 while (NEXT_INSN (pat_end) != NULL_RTX)
2028 pat_end = NEXT_INSN (pat_end);
2030 /* If the last insn is a jump, insert EXPR in front [taking care to
2031 handle cc0, etc. properly]. Similarly we need to care trapping
2032 instructions in presence of non-call exceptions. */
2034 if (JUMP_P (insn)
2035 || (NONJUMP_INSN_P (insn)
2036 && (!single_succ_p (bb)
2037 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2039 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2040 if cc0 isn't set. */
2041 if (HAVE_cc0)
2043 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2044 if (note)
2045 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2046 else
2048 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2049 if (maybe_cc0_setter
2050 && INSN_P (maybe_cc0_setter)
2051 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2052 insn = maybe_cc0_setter;
2056 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2057 new_insn = emit_insn_before_noloc (pat, insn, bb);
2060 /* Likewise if the last insn is a call, as will happen in the presence
2061 of exception handling. */
2062 else if (CALL_P (insn)
2063 && (!single_succ_p (bb)
2064 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2066 /* Keeping in mind targets with small register classes and parameters
2067 in registers, we search backward and place the instructions before
2068 the first parameter is loaded. Do this for everyone for consistency
2069 and a presumption that we'll get better code elsewhere as well. */
2071 /* Since different machines initialize their parameter registers
2072 in different orders, assume nothing. Collect the set of all
2073 parameter registers. */
2074 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2076 /* If we found all the parameter loads, then we want to insert
2077 before the first parameter load.
2079 If we did not find all the parameter loads, then we might have
2080 stopped on the head of the block, which could be a CODE_LABEL.
2081 If we inserted before the CODE_LABEL, then we would be putting
2082 the insn in the wrong basic block. In that case, put the insn
2083 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2084 while (LABEL_P (insn)
2085 || NOTE_INSN_BASIC_BLOCK_P (insn))
2086 insn = NEXT_INSN (insn);
2088 new_insn = emit_insn_before_noloc (pat, insn, bb);
2090 else
2091 new_insn = emit_insn_after_noloc (pat, insn, bb);
2093 while (1)
2095 if (INSN_P (pat))
2096 add_label_notes (PATTERN (pat), new_insn);
2097 if (pat == pat_end)
2098 break;
2099 pat = NEXT_INSN (pat);
2102 gcse_create_count++;
2104 if (dump_file)
2106 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2107 bb->index, INSN_UID (new_insn));
2108 fprintf (dump_file, "copying expression %d to reg %d\n",
2109 expr->bitmap_index, regno);
2113 /* Insert partially redundant expressions on edges in the CFG to make
2114 the expressions fully redundant. */
2116 static int
2117 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2119 int e, i, j, num_edges, set_size, did_insert = 0;
2120 sbitmap *inserted;
2122 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2123 if it reaches any of the deleted expressions. */
2125 set_size = pre_insert_map[0]->size;
2126 num_edges = NUM_EDGES (edge_list);
2127 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2128 bitmap_vector_clear (inserted, num_edges);
2130 for (e = 0; e < num_edges; e++)
2132 int indx;
2133 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2135 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2137 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2139 for (j = indx;
2140 insert && j < (int) expr_hash_table.n_elems;
2141 j++, insert >>= 1)
2142 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2144 struct gcse_expr *expr = index_map[j];
2145 struct gcse_occr *occr;
2147 /* Now look at each deleted occurrence of this expression. */
2148 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2150 if (! occr->deleted_p)
2151 continue;
2153 /* Insert this expression on this edge if it would
2154 reach the deleted occurrence in BB. */
2155 if (!bitmap_bit_p (inserted[e], j))
2157 rtx_insn *insn;
2158 edge eg = INDEX_EDGE (edge_list, e);
2160 /* We can't insert anything on an abnormal and
2161 critical edge, so we insert the insn at the end of
2162 the previous block. There are several alternatives
2163 detailed in Morgans book P277 (sec 10.5) for
2164 handling this situation. This one is easiest for
2165 now. */
2167 if (eg->flags & EDGE_ABNORMAL)
2168 insert_insn_end_basic_block (index_map[j], bb);
2169 else
2171 insn = process_insert_insn (index_map[j]);
2172 insert_insn_on_edge (insn, eg);
2175 if (dump_file)
2177 fprintf (dump_file, "PRE: edge (%d,%d), ",
2178 bb->index,
2179 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2180 fprintf (dump_file, "copy expression %d\n",
2181 expr->bitmap_index);
2184 update_ld_motion_stores (expr);
2185 bitmap_set_bit (inserted[e], j);
2186 did_insert = 1;
2187 gcse_create_count++;
2194 sbitmap_vector_free (inserted);
2195 return did_insert;
2198 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2199 Given "old_reg <- expr" (INSN), instead of adding after it
2200 reaching_reg <- old_reg
2201 it's better to do the following:
2202 reaching_reg <- expr
2203 old_reg <- reaching_reg
2204 because this way copy propagation can discover additional PRE
2205 opportunities. But if this fails, we try the old way.
2206 When "expr" is a store, i.e.
2207 given "MEM <- old_reg", instead of adding after it
2208 reaching_reg <- old_reg
2209 it's better to add it before as follows:
2210 reaching_reg <- old_reg
2211 MEM <- reaching_reg. */
2213 static void
2214 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2216 rtx reg = expr->reaching_reg;
2217 int regno = REGNO (reg);
2218 int indx = expr->bitmap_index;
2219 rtx pat = PATTERN (insn);
2220 rtx set, first_set;
2221 rtx_insn *new_insn;
2222 rtx old_reg;
2223 int i;
2225 /* This block matches the logic in hash_scan_insn. */
2226 switch (GET_CODE (pat))
2228 case SET:
2229 set = pat;
2230 break;
2232 case PARALLEL:
2233 /* Search through the parallel looking for the set whose
2234 source was the expression that we're interested in. */
2235 first_set = NULL_RTX;
2236 set = NULL_RTX;
2237 for (i = 0; i < XVECLEN (pat, 0); i++)
2239 rtx x = XVECEXP (pat, 0, i);
2240 if (GET_CODE (x) == SET)
2242 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2243 may not find an equivalent expression, but in this
2244 case the PARALLEL will have a single set. */
2245 if (first_set == NULL_RTX)
2246 first_set = x;
2247 if (expr_equiv_p (SET_SRC (x), expr->expr))
2249 set = x;
2250 break;
2255 gcc_assert (first_set);
2256 if (set == NULL_RTX)
2257 set = first_set;
2258 break;
2260 default:
2261 gcc_unreachable ();
2264 if (REG_P (SET_DEST (set)))
2266 old_reg = SET_DEST (set);
2267 /* Check if we can modify the set destination in the original insn. */
2268 if (validate_change (insn, &SET_DEST (set), reg, 0))
2270 new_insn = gen_move_insn (old_reg, reg);
2271 new_insn = emit_insn_after (new_insn, insn);
2273 else
2275 new_insn = gen_move_insn (reg, old_reg);
2276 new_insn = emit_insn_after (new_insn, insn);
2279 else /* This is possible only in case of a store to memory. */
2281 old_reg = SET_SRC (set);
2282 new_insn = gen_move_insn (reg, old_reg);
2284 /* Check if we can modify the set source in the original insn. */
2285 if (validate_change (insn, &SET_SRC (set), reg, 0))
2286 new_insn = emit_insn_before (new_insn, insn);
2287 else
2288 new_insn = emit_insn_after (new_insn, insn);
2291 gcse_create_count++;
2293 if (dump_file)
2294 fprintf (dump_file,
2295 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2296 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2297 INSN_UID (insn), regno);
2300 /* Copy available expressions that reach the redundant expression
2301 to `reaching_reg'. */
2303 static void
2304 pre_insert_copies (void)
2306 unsigned int i, added_copy;
2307 struct gcse_expr *expr;
2308 struct gcse_occr *occr;
2309 struct gcse_occr *avail;
2311 /* For each available expression in the table, copy the result to
2312 `reaching_reg' if the expression reaches a deleted one.
2314 ??? The current algorithm is rather brute force.
2315 Need to do some profiling. */
2317 for (i = 0; i < expr_hash_table.size; i++)
2318 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2320 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2321 we don't want to insert a copy here because the expression may not
2322 really be redundant. So only insert an insn if the expression was
2323 deleted. This test also avoids further processing if the
2324 expression wasn't deleted anywhere. */
2325 if (expr->reaching_reg == NULL)
2326 continue;
2328 /* Set when we add a copy for that expression. */
2329 added_copy = 0;
2331 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2333 if (! occr->deleted_p)
2334 continue;
2336 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2338 rtx_insn *insn = avail->insn;
2340 /* No need to handle this one if handled already. */
2341 if (avail->copied_p)
2342 continue;
2344 /* Don't handle this one if it's a redundant one. */
2345 if (insn->deleted ())
2346 continue;
2348 /* Or if the expression doesn't reach the deleted one. */
2349 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2350 expr,
2351 BLOCK_FOR_INSN (occr->insn)))
2352 continue;
2354 added_copy = 1;
2356 /* Copy the result of avail to reaching_reg. */
2357 pre_insert_copy_insn (expr, insn);
2358 avail->copied_p = 1;
2362 if (added_copy)
2363 update_ld_motion_stores (expr);
2367 struct set_data
2369 rtx_insn *insn;
2370 const_rtx set;
2371 int nsets;
2374 /* Increment number of sets and record set in DATA. */
2376 static void
2377 record_set_data (rtx dest, const_rtx set, void *data)
2379 struct set_data *s = (struct set_data *)data;
2381 if (GET_CODE (set) == SET)
2383 /* We allow insns having multiple sets, where all but one are
2384 dead as single set insns. In the common case only a single
2385 set is present, so we want to avoid checking for REG_UNUSED
2386 notes unless necessary. */
2387 if (s->nsets == 1
2388 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2389 && !side_effects_p (s->set))
2390 s->nsets = 0;
2392 if (!s->nsets)
2394 /* Record this set. */
2395 s->nsets += 1;
2396 s->set = set;
2398 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2399 || side_effects_p (set))
2400 s->nsets += 1;
2404 static const_rtx
2405 single_set_gcse (rtx_insn *insn)
2407 struct set_data s;
2408 rtx pattern;
2410 gcc_assert (INSN_P (insn));
2412 /* Optimize common case. */
2413 pattern = PATTERN (insn);
2414 if (GET_CODE (pattern) == SET)
2415 return pattern;
2417 s.insn = insn;
2418 s.nsets = 0;
2419 note_stores (pattern, record_set_data, &s);
2421 /* Considered invariant insns have exactly one set. */
2422 gcc_assert (s.nsets == 1);
2423 return s.set;
2426 /* Emit move from SRC to DEST noting the equivalence with expression computed
2427 in INSN. */
2429 static rtx_insn *
2430 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2432 rtx_insn *new_rtx;
2433 const_rtx set = single_set_gcse (insn);
2434 rtx set2;
2435 rtx note;
2436 rtx eqv = NULL_RTX;
2438 /* This should never fail since we're creating a reg->reg copy
2439 we've verified to be valid. */
2441 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2443 /* Note the equivalence for local CSE pass. Take the note from the old
2444 set if there was one. Otherwise record the SET_SRC from the old set
2445 unless DEST is also an operand of the SET_SRC. */
2446 set2 = single_set (new_rtx);
2447 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2448 return new_rtx;
2449 if ((note = find_reg_equal_equiv_note (insn)))
2450 eqv = XEXP (note, 0);
2451 else if (! REG_P (dest)
2452 || ! reg_mentioned_p (dest, SET_SRC (set)))
2453 eqv = SET_SRC (set);
2455 if (eqv != NULL_RTX)
2456 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2458 return new_rtx;
2461 /* Delete redundant computations.
2462 Deletion is done by changing the insn to copy the `reaching_reg' of
2463 the expression into the result of the SET. It is left to later passes
2464 to propagate the copy or eliminate it.
2466 Return nonzero if a change is made. */
2468 static int
2469 pre_delete (void)
2471 unsigned int i;
2472 int changed;
2473 struct gcse_expr *expr;
2474 struct gcse_occr *occr;
2476 changed = 0;
2477 for (i = 0; i < expr_hash_table.size; i++)
2478 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2480 int indx = expr->bitmap_index;
2482 /* We only need to search antic_occr since we require ANTLOC != 0. */
2483 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2485 rtx_insn *insn = occr->insn;
2486 rtx set;
2487 basic_block bb = BLOCK_FOR_INSN (insn);
2489 /* We only delete insns that have a single_set. */
2490 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2491 && (set = single_set (insn)) != 0
2492 && dbg_cnt (pre_insn))
2494 /* Create a pseudo-reg to store the result of reaching
2495 expressions into. Get the mode for the new pseudo from
2496 the mode of the original destination pseudo. */
2497 if (expr->reaching_reg == NULL)
2498 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2500 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2501 delete_insn (insn);
2502 occr->deleted_p = 1;
2503 changed = 1;
2504 gcse_subst_count++;
2506 if (dump_file)
2508 fprintf (dump_file,
2509 "PRE: redundant insn %d (expression %d) in ",
2510 INSN_UID (insn), indx);
2511 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2512 bb->index, REGNO (expr->reaching_reg));
2518 return changed;
2521 /* Perform GCSE optimizations using PRE.
2522 This is called by one_pre_gcse_pass after all the dataflow analysis
2523 has been done.
2525 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2526 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2527 Compiler Design and Implementation.
2529 ??? A new pseudo reg is created to hold the reaching expression. The nice
2530 thing about the classical approach is that it would try to use an existing
2531 reg. If the register can't be adequately optimized [i.e. we introduce
2532 reload problems], one could add a pass here to propagate the new register
2533 through the block.
2535 ??? We don't handle single sets in PARALLELs because we're [currently] not
2536 able to copy the rest of the parallel when we insert copies to create full
2537 redundancies from partial redundancies. However, there's no reason why we
2538 can't handle PARALLELs in the cases where there are no partial
2539 redundancies. */
2541 static int
2542 pre_gcse (struct edge_list *edge_list)
2544 unsigned int i;
2545 int did_insert, changed;
2546 struct gcse_expr **index_map;
2547 struct gcse_expr *expr;
2549 /* Compute a mapping from expression number (`bitmap_index') to
2550 hash table entry. */
2552 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2553 for (i = 0; i < expr_hash_table.size; i++)
2554 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2555 index_map[expr->bitmap_index] = expr;
2557 /* Delete the redundant insns first so that
2558 - we know what register to use for the new insns and for the other
2559 ones with reaching expressions
2560 - we know which insns are redundant when we go to create copies */
2562 changed = pre_delete ();
2563 did_insert = pre_edge_insert (edge_list, index_map);
2565 /* In other places with reaching expressions, copy the expression to the
2566 specially allocated pseudo-reg that reaches the redundant expr. */
2567 pre_insert_copies ();
2568 if (did_insert)
2570 commit_edge_insertions ();
2571 changed = 1;
2574 free (index_map);
2575 return changed;
2578 /* Top level routine to perform one PRE GCSE pass.
2580 Return nonzero if a change was made. */
2582 static int
2583 one_pre_gcse_pass (void)
2585 int changed = 0;
2587 gcse_subst_count = 0;
2588 gcse_create_count = 0;
2590 /* Return if there's nothing to do, or it is too expensive. */
2591 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2592 || is_too_expensive (_("PRE disabled")))
2593 return 0;
2595 /* We need alias. */
2596 init_alias_analysis ();
2598 bytes_used = 0;
2599 gcc_obstack_init (&gcse_obstack);
2600 alloc_gcse_mem ();
2602 alloc_hash_table (&expr_hash_table);
2603 add_noreturn_fake_exit_edges ();
2604 if (flag_gcse_lm)
2605 compute_ld_motion_mems ();
2607 compute_hash_table (&expr_hash_table);
2608 if (flag_gcse_lm)
2609 trim_ld_motion_mems ();
2610 if (dump_file)
2611 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2613 if (expr_hash_table.n_elems > 0)
2615 struct edge_list *edge_list;
2616 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2617 edge_list = compute_pre_data ();
2618 changed |= pre_gcse (edge_list);
2619 free_edge_list (edge_list);
2620 free_pre_mem ();
2623 if (flag_gcse_lm)
2624 free_ld_motion_mems ();
2625 remove_fake_exit_edges ();
2626 free_hash_table (&expr_hash_table);
2628 free_gcse_mem ();
2629 obstack_free (&gcse_obstack, NULL);
2631 /* We are finished with alias. */
2632 end_alias_analysis ();
2634 if (dump_file)
2636 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2637 current_function_name (), n_basic_blocks_for_fn (cfun),
2638 bytes_used);
2639 fprintf (dump_file, "%d substs, %d insns created\n",
2640 gcse_subst_count, gcse_create_count);
2643 return changed;
2646 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2647 to INSN. If such notes are added to an insn which references a
2648 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2649 that note, because the following loop optimization pass requires
2650 them. */
2652 /* ??? If there was a jump optimization pass after gcse and before loop,
2653 then we would not need to do this here, because jump would add the
2654 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2656 static void
2657 add_label_notes (rtx x, rtx_insn *insn)
2659 enum rtx_code code = GET_CODE (x);
2660 int i, j;
2661 const char *fmt;
2663 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2665 /* This code used to ignore labels that referred to dispatch tables to
2666 avoid flow generating (slightly) worse code.
2668 We no longer ignore such label references (see LABEL_REF handling in
2669 mark_jump_label for additional information). */
2671 /* There's no reason for current users to emit jump-insns with
2672 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2673 notes. */
2674 gcc_assert (!JUMP_P (insn));
2675 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2677 if (LABEL_P (LABEL_REF_LABEL (x)))
2678 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2680 return;
2683 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2685 if (fmt[i] == 'e')
2686 add_label_notes (XEXP (x, i), insn);
2687 else if (fmt[i] == 'E')
2688 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2689 add_label_notes (XVECEXP (x, i, j), insn);
2693 /* Code Hoisting variables and subroutines. */
2695 /* Very busy expressions. */
2696 static sbitmap *hoist_vbein;
2697 static sbitmap *hoist_vbeout;
2699 /* ??? We could compute post dominators and run this algorithm in
2700 reverse to perform tail merging, doing so would probably be
2701 more effective than the tail merging code in jump.c.
2703 It's unclear if tail merging could be run in parallel with
2704 code hoisting. It would be nice. */
2706 /* Allocate vars used for code hoisting analysis. */
2708 static void
2709 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2711 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2712 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2713 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2715 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2716 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2719 /* Free vars used for code hoisting analysis. */
2721 static void
2722 free_code_hoist_mem (void)
2724 sbitmap_vector_free (antloc);
2725 sbitmap_vector_free (transp);
2726 sbitmap_vector_free (comp);
2728 sbitmap_vector_free (hoist_vbein);
2729 sbitmap_vector_free (hoist_vbeout);
2731 free_dominance_info (CDI_DOMINATORS);
2734 /* Compute the very busy expressions at entry/exit from each block.
2736 An expression is very busy if all paths from a given point
2737 compute the expression. */
2739 static void
2740 compute_code_hoist_vbeinout (void)
2742 int changed, passes;
2743 basic_block bb;
2745 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2746 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2748 passes = 0;
2749 changed = 1;
2751 while (changed)
2753 changed = 0;
2755 /* We scan the blocks in the reverse order to speed up
2756 the convergence. */
2757 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2759 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2761 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2762 hoist_vbein, bb);
2764 /* Include expressions in VBEout that are calculated
2765 in BB and available at its end. */
2766 bitmap_ior (hoist_vbeout[bb->index],
2767 hoist_vbeout[bb->index], comp[bb->index]);
2770 changed |= bitmap_or_and (hoist_vbein[bb->index],
2771 antloc[bb->index],
2772 hoist_vbeout[bb->index],
2773 transp[bb->index]);
2776 passes++;
2779 if (dump_file)
2781 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2783 FOR_EACH_BB_FN (bb, cfun)
2785 fprintf (dump_file, "vbein (%d): ", bb->index);
2786 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2787 fprintf (dump_file, "vbeout(%d): ", bb->index);
2788 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2793 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2795 static void
2796 compute_code_hoist_data (void)
2798 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2799 prune_expressions (false);
2800 compute_code_hoist_vbeinout ();
2801 calculate_dominance_info (CDI_DOMINATORS);
2802 if (dump_file)
2803 fprintf (dump_file, "\n");
2806 /* Update register pressure for BB when hoisting an expression from
2807 instruction FROM, if live ranges of inputs are shrunk. Also
2808 maintain live_in information if live range of register referred
2809 in FROM is shrunk.
2811 Return 0 if register pressure doesn't change, otherwise return
2812 the number by which register pressure is decreased.
2814 NOTE: Register pressure won't be increased in this function. */
2816 static int
2817 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2819 rtx dreg;
2820 rtx_insn *insn;
2821 basic_block succ_bb;
2822 df_ref use, op_ref;
2823 edge succ;
2824 edge_iterator ei;
2825 int decreased_pressure = 0;
2826 int nregs;
2827 enum reg_class pressure_class;
2829 FOR_EACH_INSN_USE (use, from)
2831 dreg = DF_REF_REAL_REG (use);
2832 /* The live range of register is shrunk only if it isn't:
2833 1. referred on any path from the end of this block to EXIT, or
2834 2. referred by insns other than FROM in this block. */
2835 FOR_EACH_EDGE (succ, ei, bb->succs)
2837 succ_bb = succ->dest;
2838 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2839 continue;
2841 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2842 break;
2844 if (succ != NULL)
2845 continue;
2847 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2848 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2850 if (!DF_REF_INSN_INFO (op_ref))
2851 continue;
2853 insn = DF_REF_INSN (op_ref);
2854 if (BLOCK_FOR_INSN (insn) == bb
2855 && NONDEBUG_INSN_P (insn) && insn != from)
2856 break;
2859 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2860 /* Decrease register pressure and update live_in information for
2861 this block. */
2862 if (!op_ref && pressure_class != NO_REGS)
2864 decreased_pressure += nregs;
2865 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2866 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2869 return decreased_pressure;
2872 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2873 flow graph, if it can reach BB unimpared. Stop the search if the
2874 expression would need to be moved more than DISTANCE instructions.
2876 DISTANCE is the number of instructions through which EXPR can be
2877 hoisted up in flow graph.
2879 BB_SIZE points to an array which contains the number of instructions
2880 for each basic block.
2882 PRESSURE_CLASS and NREGS are register class and number of hard registers
2883 for storing EXPR.
2885 HOISTED_BBS points to a bitmap indicating basic blocks through which
2886 EXPR is hoisted.
2888 FROM is the instruction from which EXPR is hoisted.
2890 It's unclear exactly what Muchnick meant by "unimpared". It seems
2891 to me that the expression must either be computed or transparent in
2892 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2893 would allow the expression to be hoisted out of loops, even if
2894 the expression wasn't a loop invariant.
2896 Contrast this to reachability for PRE where an expression is
2897 considered reachable if *any* path reaches instead of *all*
2898 paths. */
2900 static int
2901 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2902 basic_block bb, sbitmap visited, int distance,
2903 int *bb_size, enum reg_class pressure_class,
2904 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2906 unsigned int i;
2907 edge pred;
2908 edge_iterator ei;
2909 sbitmap_iterator sbi;
2910 int visited_allocated_locally = 0;
2911 int decreased_pressure = 0;
2913 if (flag_ira_hoist_pressure)
2915 /* Record old information of basic block BB when it is visited
2916 at the first time. */
2917 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2919 struct bb_data *data = BB_DATA (bb);
2920 bitmap_copy (data->backup, data->live_in);
2921 data->old_pressure = data->max_reg_pressure[pressure_class];
2923 decreased_pressure = update_bb_reg_pressure (bb, from);
2925 /* Terminate the search if distance, for which EXPR is allowed to move,
2926 is exhausted. */
2927 if (distance > 0)
2929 if (flag_ira_hoist_pressure)
2931 /* Prefer to hoist EXPR if register pressure is decreased. */
2932 if (decreased_pressure > *nregs)
2933 distance += bb_size[bb->index];
2934 /* Let EXPR be hoisted through basic block at no cost if one
2935 of following conditions is satisfied:
2937 1. The basic block has low register pressure.
2938 2. Register pressure won't be increases after hoisting EXPR.
2940 Constant expressions is handled conservatively, because
2941 hoisting constant expression aggressively results in worse
2942 code. This decision is made by the observation of CSiBE
2943 on ARM target, while it has no obvious effect on other
2944 targets like x86, x86_64, mips and powerpc. */
2945 else if (CONST_INT_P (expr->expr)
2946 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2947 >= ira_class_hard_regs_num[pressure_class]
2948 && decreased_pressure < *nregs))
2949 distance -= bb_size[bb->index];
2951 else
2952 distance -= bb_size[bb->index];
2954 if (distance <= 0)
2955 return 0;
2957 else
2958 gcc_assert (distance == 0);
2960 if (visited == NULL)
2962 visited_allocated_locally = 1;
2963 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2964 bitmap_clear (visited);
2967 FOR_EACH_EDGE (pred, ei, bb->preds)
2969 basic_block pred_bb = pred->src;
2971 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2972 break;
2973 else if (pred_bb == expr_bb)
2974 continue;
2975 else if (bitmap_bit_p (visited, pred_bb->index))
2976 continue;
2977 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2978 break;
2979 /* Not killed. */
2980 else
2982 bitmap_set_bit (visited, pred_bb->index);
2983 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2984 visited, distance, bb_size,
2985 pressure_class, nregs,
2986 hoisted_bbs, from))
2987 break;
2990 if (visited_allocated_locally)
2992 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2993 which EXPR is hoisted in hoisted_bbs. */
2994 if (flag_ira_hoist_pressure && !pred)
2996 /* Record the basic block from which EXPR is hoisted. */
2997 bitmap_set_bit (visited, bb->index);
2998 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2999 bitmap_set_bit (hoisted_bbs, i);
3001 sbitmap_free (visited);
3004 return (pred == NULL);
3007 /* Find occurrence in BB. */
3009 static struct gcse_occr *
3010 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3012 /* Find the right occurrence of this expression. */
3013 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3014 occr = occr->next;
3016 return occr;
3019 /* Actually perform code hoisting.
3021 The code hoisting pass can hoist multiple computations of the same
3022 expression along dominated path to a dominating basic block, like
3023 from b2/b3 to b1 as depicted below:
3025 b1 ------
3026 /\ |
3027 / \ |
3028 bx by distance
3029 / \ |
3030 / \ |
3031 b2 b3 ------
3033 Unfortunately code hoisting generally extends the live range of an
3034 output pseudo register, which increases register pressure and hurts
3035 register allocation. To address this issue, an attribute MAX_DISTANCE
3036 is computed and attached to each expression. The attribute is computed
3037 from rtx cost of the corresponding expression and it's used to control
3038 how long the expression can be hoisted up in flow graph. As the
3039 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3040 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3041 register pressure if live ranges of inputs are shrunk.
3043 Option "-fira-hoist-pressure" implements register pressure directed
3044 hoist based on upper method. The rationale is:
3045 1. Calculate register pressure for each basic block by reusing IRA
3046 facility.
3047 2. When expression is hoisted through one basic block, GCC checks
3048 the change of live ranges for inputs/output. The basic block's
3049 register pressure will be increased because of extended live
3050 range of output. However, register pressure will be decreased
3051 if the live ranges of inputs are shrunk.
3052 3. After knowing how hoisting affects register pressure, GCC prefers
3053 to hoist the expression if it can decrease register pressure, by
3054 increasing DISTANCE of the corresponding expression.
3055 4. If hoisting the expression increases register pressure, GCC checks
3056 register pressure of the basic block and decrease DISTANCE only if
3057 the register pressure is high. In other words, expression will be
3058 hoisted through at no cost if the basic block has low register
3059 pressure.
3060 5. Update register pressure information for basic blocks through
3061 which expression is hoisted. */
3063 static int
3064 hoist_code (void)
3066 basic_block bb, dominated;
3067 vec<basic_block> dom_tree_walk;
3068 unsigned int dom_tree_walk_index;
3069 vec<basic_block> domby;
3070 unsigned int i, j, k;
3071 struct gcse_expr **index_map;
3072 struct gcse_expr *expr;
3073 int *to_bb_head;
3074 int *bb_size;
3075 int changed = 0;
3076 struct bb_data *data;
3077 /* Basic blocks that have occurrences reachable from BB. */
3078 bitmap from_bbs;
3079 /* Basic blocks through which expr is hoisted. */
3080 bitmap hoisted_bbs = NULL;
3081 bitmap_iterator bi;
3083 /* Compute a mapping from expression number (`bitmap_index') to
3084 hash table entry. */
3086 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3087 for (i = 0; i < expr_hash_table.size; i++)
3088 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3089 index_map[expr->bitmap_index] = expr;
3091 /* Calculate sizes of basic blocks and note how far
3092 each instruction is from the start of its block. We then use this
3093 data to restrict distance an expression can travel. */
3095 to_bb_head = XCNEWVEC (int, get_max_uid ());
3096 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3098 FOR_EACH_BB_FN (bb, cfun)
3100 rtx_insn *insn;
3101 int to_head;
3103 to_head = 0;
3104 FOR_BB_INSNS (bb, insn)
3106 /* Don't count debug instructions to avoid them affecting
3107 decision choices. */
3108 if (NONDEBUG_INSN_P (insn))
3109 to_bb_head[INSN_UID (insn)] = to_head++;
3112 bb_size[bb->index] = to_head;
3115 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3116 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3117 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3119 from_bbs = BITMAP_ALLOC (NULL);
3120 if (flag_ira_hoist_pressure)
3121 hoisted_bbs = BITMAP_ALLOC (NULL);
3123 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3124 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3126 /* Walk over each basic block looking for potentially hoistable
3127 expressions, nothing gets hoisted from the entry block. */
3128 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3130 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3132 if (domby.length () == 0)
3133 continue;
3135 /* Examine each expression that is very busy at the exit of this
3136 block. These are the potentially hoistable expressions. */
3137 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3139 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3141 int nregs = 0;
3142 enum reg_class pressure_class = NO_REGS;
3143 /* Current expression. */
3144 struct gcse_expr *expr = index_map[i];
3145 /* Number of occurrences of EXPR that can be hoisted to BB. */
3146 int hoistable = 0;
3147 /* Occurrences reachable from BB. */
3148 vec<occr_t> occrs_to_hoist = vNULL;
3149 /* We want to insert the expression into BB only once, so
3150 note when we've inserted it. */
3151 int insn_inserted_p;
3152 occr_t occr;
3154 /* If an expression is computed in BB and is available at end of
3155 BB, hoist all occurrences dominated by BB to BB. */
3156 if (bitmap_bit_p (comp[bb->index], i))
3158 occr = find_occr_in_bb (expr->antic_occr, bb);
3160 if (occr)
3162 /* An occurrence might've been already deleted
3163 while processing a dominator of BB. */
3164 if (!occr->deleted_p)
3166 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3167 hoistable++;
3170 else
3171 hoistable++;
3174 /* We've found a potentially hoistable expression, now
3175 we look at every block BB dominates to see if it
3176 computes the expression. */
3177 FOR_EACH_VEC_ELT (domby, j, dominated)
3179 int max_distance;
3181 /* Ignore self dominance. */
3182 if (bb == dominated)
3183 continue;
3184 /* We've found a dominated block, now see if it computes
3185 the busy expression and whether or not moving that
3186 expression to the "beginning" of that block is safe. */
3187 if (!bitmap_bit_p (antloc[dominated->index], i))
3188 continue;
3190 occr = find_occr_in_bb (expr->antic_occr, dominated);
3191 gcc_assert (occr);
3193 /* An occurrence might've been already deleted
3194 while processing a dominator of BB. */
3195 if (occr->deleted_p)
3196 continue;
3197 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3199 max_distance = expr->max_distance;
3200 if (max_distance > 0)
3201 /* Adjust MAX_DISTANCE to account for the fact that
3202 OCCR won't have to travel all of DOMINATED, but
3203 only part of it. */
3204 max_distance += (bb_size[dominated->index]
3205 - to_bb_head[INSN_UID (occr->insn)]);
3207 pressure_class = get_pressure_class_and_nregs (occr->insn,
3208 &nregs);
3210 /* Note if the expression should be hoisted from the dominated
3211 block to BB if it can reach DOMINATED unimpared.
3213 Keep track of how many times this expression is hoistable
3214 from a dominated block into BB. */
3215 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3216 max_distance, bb_size,
3217 pressure_class, &nregs,
3218 hoisted_bbs, occr->insn))
3220 hoistable++;
3221 occrs_to_hoist.safe_push (occr);
3222 bitmap_set_bit (from_bbs, dominated->index);
3226 /* If we found more than one hoistable occurrence of this
3227 expression, then note it in the vector of expressions to
3228 hoist. It makes no sense to hoist things which are computed
3229 in only one BB, and doing so tends to pessimize register
3230 allocation. One could increase this value to try harder
3231 to avoid any possible code expansion due to register
3232 allocation issues; however experiments have shown that
3233 the vast majority of hoistable expressions are only movable
3234 from two successors, so raising this threshold is likely
3235 to nullify any benefit we get from code hoisting. */
3236 if (hoistable > 1 && dbg_cnt (hoist_insn))
3238 /* If (hoistable != vec::length), then there is
3239 an occurrence of EXPR in BB itself. Don't waste
3240 time looking for LCA in this case. */
3241 if ((unsigned) hoistable == occrs_to_hoist.length ())
3243 basic_block lca;
3245 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3246 from_bbs);
3247 if (lca != bb)
3248 /* Punt, it's better to hoist these occurrences to
3249 LCA. */
3250 occrs_to_hoist.release ();
3253 else
3254 /* Punt, no point hoisting a single occurrence. */
3255 occrs_to_hoist.release ();
3257 if (flag_ira_hoist_pressure
3258 && !occrs_to_hoist.is_empty ())
3260 /* Increase register pressure of basic blocks to which
3261 expr is hoisted because of extended live range of
3262 output. */
3263 data = BB_DATA (bb);
3264 data->max_reg_pressure[pressure_class] += nregs;
3265 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3267 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3268 data->max_reg_pressure[pressure_class] += nregs;
3271 else if (flag_ira_hoist_pressure)
3273 /* Restore register pressure and live_in info for basic
3274 blocks recorded in hoisted_bbs when expr will not be
3275 hoisted. */
3276 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3278 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3279 bitmap_copy (data->live_in, data->backup);
3280 data->max_reg_pressure[pressure_class]
3281 = data->old_pressure;
3285 if (flag_ira_hoist_pressure)
3286 bitmap_clear (hoisted_bbs);
3288 insn_inserted_p = 0;
3290 /* Walk through occurrences of I'th expressions we want
3291 to hoist to BB and make the transformations. */
3292 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3294 rtx_insn *insn;
3295 const_rtx set;
3297 gcc_assert (!occr->deleted_p);
3299 insn = occr->insn;
3300 set = single_set_gcse (insn);
3302 /* Create a pseudo-reg to store the result of reaching
3303 expressions into. Get the mode for the new pseudo
3304 from the mode of the original destination pseudo.
3306 It is important to use new pseudos whenever we
3307 emit a set. This will allow reload to use
3308 rematerialization for such registers. */
3309 if (!insn_inserted_p)
3310 expr->reaching_reg
3311 = gen_reg_rtx_and_attrs (SET_DEST (set));
3313 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3314 insn);
3315 delete_insn (insn);
3316 occr->deleted_p = 1;
3317 changed = 1;
3318 gcse_subst_count++;
3320 if (!insn_inserted_p)
3322 insert_insn_end_basic_block (expr, bb);
3323 insn_inserted_p = 1;
3327 occrs_to_hoist.release ();
3328 bitmap_clear (from_bbs);
3331 domby.release ();
3334 dom_tree_walk.release ();
3335 BITMAP_FREE (from_bbs);
3336 if (flag_ira_hoist_pressure)
3337 BITMAP_FREE (hoisted_bbs);
3339 free (bb_size);
3340 free (to_bb_head);
3341 free (index_map);
3343 return changed;
3346 /* Return pressure class and number of needed hard registers (through
3347 *NREGS) of register REGNO. */
3348 static enum reg_class
3349 get_regno_pressure_class (int regno, int *nregs)
3351 if (regno >= FIRST_PSEUDO_REGISTER)
3353 enum reg_class pressure_class;
3355 pressure_class = reg_allocno_class (regno);
3356 pressure_class = ira_pressure_class_translate[pressure_class];
3357 *nregs
3358 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3359 return pressure_class;
3361 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3362 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3364 *nregs = 1;
3365 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3367 else
3369 *nregs = 0;
3370 return NO_REGS;
3374 /* Return pressure class and number of hard registers (through *NREGS)
3375 for destination of INSN. */
3376 static enum reg_class
3377 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3379 rtx reg;
3380 enum reg_class pressure_class;
3381 const_rtx set = single_set_gcse (insn);
3383 reg = SET_DEST (set);
3384 if (GET_CODE (reg) == SUBREG)
3385 reg = SUBREG_REG (reg);
3386 if (MEM_P (reg))
3388 *nregs = 0;
3389 pressure_class = NO_REGS;
3391 else
3393 gcc_assert (REG_P (reg));
3394 pressure_class = reg_allocno_class (REGNO (reg));
3395 pressure_class = ira_pressure_class_translate[pressure_class];
3396 *nregs
3397 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3399 return pressure_class;
3402 /* Increase (if INCR_P) or decrease current register pressure for
3403 register REGNO. */
3404 static void
3405 change_pressure (int regno, bool incr_p)
3407 int nregs;
3408 enum reg_class pressure_class;
3410 pressure_class = get_regno_pressure_class (regno, &nregs);
3411 if (! incr_p)
3412 curr_reg_pressure[pressure_class] -= nregs;
3413 else
3415 curr_reg_pressure[pressure_class] += nregs;
3416 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3417 < curr_reg_pressure[pressure_class])
3418 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3419 = curr_reg_pressure[pressure_class];
3423 /* Calculate register pressure for each basic block by walking insns
3424 from last to first. */
3425 static void
3426 calculate_bb_reg_pressure (void)
3428 int i;
3429 unsigned int j;
3430 rtx_insn *insn;
3431 basic_block bb;
3432 bitmap curr_regs_live;
3433 bitmap_iterator bi;
3436 ira_setup_eliminable_regset ();
3437 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3438 FOR_EACH_BB_FN (bb, cfun)
3440 curr_bb = bb;
3441 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3442 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3443 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3444 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3445 for (i = 0; i < ira_pressure_classes_num; i++)
3446 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3447 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3448 change_pressure (j, true);
3450 FOR_BB_INSNS_REVERSE (bb, insn)
3452 rtx dreg;
3453 int regno;
3454 df_ref def, use;
3456 if (! NONDEBUG_INSN_P (insn))
3457 continue;
3459 FOR_EACH_INSN_DEF (def, insn)
3461 dreg = DF_REF_REAL_REG (def);
3462 gcc_assert (REG_P (dreg));
3463 regno = REGNO (dreg);
3464 if (!(DF_REF_FLAGS (def)
3465 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3467 if (bitmap_clear_bit (curr_regs_live, regno))
3468 change_pressure (regno, false);
3472 FOR_EACH_INSN_USE (use, insn)
3474 dreg = DF_REF_REAL_REG (use);
3475 gcc_assert (REG_P (dreg));
3476 regno = REGNO (dreg);
3477 if (bitmap_set_bit (curr_regs_live, regno))
3478 change_pressure (regno, true);
3482 BITMAP_FREE (curr_regs_live);
3484 if (dump_file == NULL)
3485 return;
3487 fprintf (dump_file, "\nRegister Pressure: \n");
3488 FOR_EACH_BB_FN (bb, cfun)
3490 fprintf (dump_file, " Basic block %d: \n", bb->index);
3491 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3493 enum reg_class pressure_class;
3495 pressure_class = ira_pressure_classes[i];
3496 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3497 continue;
3499 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3500 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3503 fprintf (dump_file, "\n");
3506 /* Top level routine to perform one code hoisting (aka unification) pass
3508 Return nonzero if a change was made. */
3510 static int
3511 one_code_hoisting_pass (void)
3513 int changed = 0;
3515 gcse_subst_count = 0;
3516 gcse_create_count = 0;
3518 /* Return if there's nothing to do, or it is too expensive. */
3519 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3520 || is_too_expensive (_("GCSE disabled")))
3521 return 0;
3523 doing_code_hoisting_p = true;
3525 /* Calculate register pressure for each basic block. */
3526 if (flag_ira_hoist_pressure)
3528 regstat_init_n_sets_and_refs ();
3529 ira_set_pseudo_classes (false, dump_file);
3530 alloc_aux_for_blocks (sizeof (struct bb_data));
3531 calculate_bb_reg_pressure ();
3532 regstat_free_n_sets_and_refs ();
3535 /* We need alias. */
3536 init_alias_analysis ();
3538 bytes_used = 0;
3539 gcc_obstack_init (&gcse_obstack);
3540 alloc_gcse_mem ();
3542 alloc_hash_table (&expr_hash_table);
3543 compute_hash_table (&expr_hash_table);
3544 if (dump_file)
3545 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3547 if (expr_hash_table.n_elems > 0)
3549 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3550 expr_hash_table.n_elems);
3551 compute_code_hoist_data ();
3552 changed = hoist_code ();
3553 free_code_hoist_mem ();
3556 if (flag_ira_hoist_pressure)
3558 free_aux_for_blocks ();
3559 free_reg_info ();
3561 free_hash_table (&expr_hash_table);
3562 free_gcse_mem ();
3563 obstack_free (&gcse_obstack, NULL);
3565 /* We are finished with alias. */
3566 end_alias_analysis ();
3568 if (dump_file)
3570 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3571 current_function_name (), n_basic_blocks_for_fn (cfun),
3572 bytes_used);
3573 fprintf (dump_file, "%d substs, %d insns created\n",
3574 gcse_subst_count, gcse_create_count);
3577 doing_code_hoisting_p = false;
3579 return changed;
3582 /* Here we provide the things required to do store motion towards the exit.
3583 In order for this to be effective, gcse also needed to be taught how to
3584 move a load when it is killed only by a store to itself.
3586 int i;
3587 float a[10];
3589 void foo(float scale)
3591 for (i=0; i<10; i++)
3592 a[i] *= scale;
3595 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3596 the load out since its live around the loop, and stored at the bottom
3597 of the loop.
3599 The 'Load Motion' referred to and implemented in this file is
3600 an enhancement to gcse which when using edge based LCM, recognizes
3601 this situation and allows gcse to move the load out of the loop.
3603 Once gcse has hoisted the load, store motion can then push this
3604 load towards the exit, and we end up with no loads or stores of 'i'
3605 in the loop. */
3607 /* This will search the ldst list for a matching expression. If it
3608 doesn't find one, we create one and initialize it. */
3610 static struct ls_expr *
3611 ldst_entry (rtx x)
3613 int do_not_record_p = 0;
3614 struct ls_expr * ptr;
3615 unsigned int hash;
3616 ls_expr **slot;
3617 struct ls_expr e;
3619 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3620 NULL, /*have_reg_qty=*/false);
3622 e.pattern = x;
3623 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3624 if (*slot)
3625 return *slot;
3627 ptr = XNEW (struct ls_expr);
3629 ptr->next = pre_ldst_mems;
3630 ptr->expr = NULL;
3631 ptr->pattern = x;
3632 ptr->pattern_regs = NULL_RTX;
3633 ptr->loads = NULL;
3634 ptr->stores = NULL;
3635 ptr->reaching_reg = NULL_RTX;
3636 ptr->invalid = 0;
3637 ptr->index = 0;
3638 ptr->hash_index = hash;
3639 pre_ldst_mems = ptr;
3640 *slot = ptr;
3642 return ptr;
3645 /* Free up an individual ldst entry. */
3647 static void
3648 free_ldst_entry (struct ls_expr * ptr)
3650 free_INSN_LIST_list (& ptr->loads);
3651 free_INSN_LIST_list (& ptr->stores);
3653 free (ptr);
3656 /* Free up all memory associated with the ldst list. */
3658 static void
3659 free_ld_motion_mems (void)
3661 delete pre_ldst_table;
3662 pre_ldst_table = NULL;
3664 while (pre_ldst_mems)
3666 struct ls_expr * tmp = pre_ldst_mems;
3668 pre_ldst_mems = pre_ldst_mems->next;
3670 free_ldst_entry (tmp);
3673 pre_ldst_mems = NULL;
3676 /* Dump debugging info about the ldst list. */
3678 static void
3679 print_ldst_list (FILE * file)
3681 struct ls_expr * ptr;
3683 fprintf (file, "LDST list: \n");
3685 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3687 fprintf (file, " Pattern (%3d): ", ptr->index);
3689 print_rtl (file, ptr->pattern);
3691 fprintf (file, "\n Loads : ");
3693 if (ptr->loads)
3694 print_rtl (file, ptr->loads);
3695 else
3696 fprintf (file, "(nil)");
3698 fprintf (file, "\n Stores : ");
3700 if (ptr->stores)
3701 print_rtl (file, ptr->stores);
3702 else
3703 fprintf (file, "(nil)");
3705 fprintf (file, "\n\n");
3708 fprintf (file, "\n");
3711 /* Returns 1 if X is in the list of ldst only expressions. */
3713 static struct ls_expr *
3714 find_rtx_in_ldst (rtx x)
3716 struct ls_expr e;
3717 ls_expr **slot;
3718 if (!pre_ldst_table)
3719 return NULL;
3720 e.pattern = x;
3721 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3722 if (!slot || (*slot)->invalid)
3723 return NULL;
3724 return *slot;
3727 /* Load Motion for loads which only kill themselves. */
3729 /* Return true if x, a MEM, is a simple access with no side effects.
3730 These are the types of loads we consider for the ld_motion list,
3731 otherwise we let the usual aliasing take care of it. */
3733 static int
3734 simple_mem (const_rtx x)
3736 if (MEM_VOLATILE_P (x))
3737 return 0;
3739 if (GET_MODE (x) == BLKmode)
3740 return 0;
3742 /* If we are handling exceptions, we must be careful with memory references
3743 that may trap. If we are not, the behavior is undefined, so we may just
3744 continue. */
3745 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3746 return 0;
3748 if (side_effects_p (x))
3749 return 0;
3751 /* Do not consider function arguments passed on stack. */
3752 if (reg_mentioned_p (stack_pointer_rtx, x))
3753 return 0;
3755 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3756 return 0;
3758 return 1;
3761 /* Make sure there isn't a buried reference in this pattern anywhere.
3762 If there is, invalidate the entry for it since we're not capable
3763 of fixing it up just yet.. We have to be sure we know about ALL
3764 loads since the aliasing code will allow all entries in the
3765 ld_motion list to not-alias itself. If we miss a load, we will get
3766 the wrong value since gcse might common it and we won't know to
3767 fix it up. */
3769 static void
3770 invalidate_any_buried_refs (rtx x)
3772 const char * fmt;
3773 int i, j;
3774 struct ls_expr * ptr;
3776 /* Invalidate it in the list. */
3777 if (MEM_P (x) && simple_mem (x))
3779 ptr = ldst_entry (x);
3780 ptr->invalid = 1;
3783 /* Recursively process the insn. */
3784 fmt = GET_RTX_FORMAT (GET_CODE (x));
3786 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3788 if (fmt[i] == 'e')
3789 invalidate_any_buried_refs (XEXP (x, i));
3790 else if (fmt[i] == 'E')
3791 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3792 invalidate_any_buried_refs (XVECEXP (x, i, j));
3796 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3797 being defined as MEM loads and stores to symbols, with no side effects
3798 and no registers in the expression. For a MEM destination, we also
3799 check that the insn is still valid if we replace the destination with a
3800 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3801 which don't match this criteria, they are invalidated and trimmed out
3802 later. */
3804 static void
3805 compute_ld_motion_mems (void)
3807 struct ls_expr * ptr;
3808 basic_block bb;
3809 rtx_insn *insn;
3811 pre_ldst_mems = NULL;
3812 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3814 FOR_EACH_BB_FN (bb, cfun)
3816 FOR_BB_INSNS (bb, insn)
3818 if (NONDEBUG_INSN_P (insn))
3820 if (GET_CODE (PATTERN (insn)) == SET)
3822 rtx src = SET_SRC (PATTERN (insn));
3823 rtx dest = SET_DEST (PATTERN (insn));
3824 rtx note = find_reg_equal_equiv_note (insn);
3825 rtx src_eq;
3827 /* Check for a simple LOAD... */
3828 if (MEM_P (src) && simple_mem (src))
3830 ptr = ldst_entry (src);
3831 if (REG_P (dest))
3832 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3833 else
3834 ptr->invalid = 1;
3836 else
3838 /* Make sure there isn't a buried load somewhere. */
3839 invalidate_any_buried_refs (src);
3842 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3843 src_eq = XEXP (note, 0);
3844 else
3845 src_eq = NULL_RTX;
3847 if (src_eq != NULL_RTX
3848 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3849 invalidate_any_buried_refs (src_eq);
3851 /* Check for stores. Don't worry about aliased ones, they
3852 will block any movement we might do later. We only care
3853 about this exact pattern since those are the only
3854 circumstance that we will ignore the aliasing info. */
3855 if (MEM_P (dest) && simple_mem (dest))
3857 ptr = ldst_entry (dest);
3859 if (! MEM_P (src)
3860 && GET_CODE (src) != ASM_OPERANDS
3861 /* Check for REG manually since want_to_gcse_p
3862 returns 0 for all REGs. */
3863 && can_assign_to_reg_without_clobbers_p (src))
3864 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3865 else
3866 ptr->invalid = 1;
3869 else
3870 invalidate_any_buried_refs (PATTERN (insn));
3876 /* Remove any references that have been either invalidated or are not in the
3877 expression list for pre gcse. */
3879 static void
3880 trim_ld_motion_mems (void)
3882 struct ls_expr * * last = & pre_ldst_mems;
3883 struct ls_expr * ptr = pre_ldst_mems;
3885 while (ptr != NULL)
3887 struct gcse_expr * expr;
3889 /* Delete if entry has been made invalid. */
3890 if (! ptr->invalid)
3892 /* Delete if we cannot find this mem in the expression list. */
3893 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3895 for (expr = expr_hash_table.table[hash];
3896 expr != NULL;
3897 expr = expr->next_same_hash)
3898 if (expr_equiv_p (expr->expr, ptr->pattern))
3899 break;
3901 else
3902 expr = (struct gcse_expr *) 0;
3904 if (expr)
3906 /* Set the expression field if we are keeping it. */
3907 ptr->expr = expr;
3908 last = & ptr->next;
3909 ptr = ptr->next;
3911 else
3913 *last = ptr->next;
3914 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3915 free_ldst_entry (ptr);
3916 ptr = * last;
3920 /* Show the world what we've found. */
3921 if (dump_file && pre_ldst_mems != NULL)
3922 print_ldst_list (dump_file);
3925 /* This routine will take an expression which we are replacing with
3926 a reaching register, and update any stores that are needed if
3927 that expression is in the ld_motion list. Stores are updated by
3928 copying their SRC to the reaching register, and then storing
3929 the reaching register into the store location. These keeps the
3930 correct value in the reaching register for the loads. */
3932 static void
3933 update_ld_motion_stores (struct gcse_expr * expr)
3935 struct ls_expr * mem_ptr;
3937 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3939 /* We can try to find just the REACHED stores, but is shouldn't
3940 matter to set the reaching reg everywhere... some might be
3941 dead and should be eliminated later. */
3943 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3944 where reg is the reaching reg used in the load. We checked in
3945 compute_ld_motion_mems that we can replace (set mem expr) with
3946 (set reg expr) in that insn. */
3947 rtx list = mem_ptr->stores;
3949 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3951 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3952 rtx pat = PATTERN (insn);
3953 rtx src = SET_SRC (pat);
3954 rtx reg = expr->reaching_reg;
3956 /* If we've already copied it, continue. */
3957 if (expr->reaching_reg == src)
3958 continue;
3960 if (dump_file)
3962 fprintf (dump_file, "PRE: store updated with reaching reg ");
3963 print_rtl (dump_file, reg);
3964 fprintf (dump_file, ":\n ");
3965 print_inline_rtx (dump_file, insn, 8);
3966 fprintf (dump_file, "\n");
3969 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3970 emit_insn_before (copy, insn);
3971 SET_SRC (pat) = reg;
3972 df_insn_rescan (insn);
3974 /* un-recognize this pattern since it's probably different now. */
3975 INSN_CODE (insn) = -1;
3976 gcse_create_count++;
3981 /* Return true if the graph is too expensive to optimize. PASS is the
3982 optimization about to be performed. */
3984 static bool
3985 is_too_expensive (const char *pass)
3987 /* Trying to perform global optimizations on flow graphs which have
3988 a high connectivity will take a long time and is unlikely to be
3989 particularly useful.
3991 In normal circumstances a cfg should have about twice as many
3992 edges as blocks. But we do not want to punish small functions
3993 which have a couple switch statements. Rather than simply
3994 threshold the number of blocks, uses something with a more
3995 graceful degradation. */
3996 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3998 warning (OPT_Wdisabled_optimization,
3999 "%s: %d basic blocks and %d edges/basic block",
4000 pass, n_basic_blocks_for_fn (cfun),
4001 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4003 return true;
4006 /* If allocating memory for the dataflow bitmaps would take up too much
4007 storage it's better just to disable the optimization. */
4008 if ((n_basic_blocks_for_fn (cfun)
4009 * SBITMAP_SET_SIZE (max_reg_num ())
4010 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4012 warning (OPT_Wdisabled_optimization,
4013 "%s: %d basic blocks and %d registers",
4014 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4016 return true;
4019 return false;
4022 static unsigned int
4023 execute_rtl_pre (void)
4025 int changed;
4026 delete_unreachable_blocks ();
4027 df_analyze ();
4028 changed = one_pre_gcse_pass ();
4029 flag_rerun_cse_after_global_opts |= changed;
4030 if (changed)
4031 cleanup_cfg (0);
4032 return 0;
4035 static unsigned int
4036 execute_rtl_hoist (void)
4038 int changed;
4039 delete_unreachable_blocks ();
4040 df_analyze ();
4041 changed = one_code_hoisting_pass ();
4042 flag_rerun_cse_after_global_opts |= changed;
4043 if (changed)
4044 cleanup_cfg (0);
4045 return 0;
4048 namespace {
4050 const pass_data pass_data_rtl_pre =
4052 RTL_PASS, /* type */
4053 "rtl pre", /* name */
4054 OPTGROUP_NONE, /* optinfo_flags */
4055 TV_PRE, /* tv_id */
4056 PROP_cfglayout, /* properties_required */
4057 0, /* properties_provided */
4058 0, /* properties_destroyed */
4059 0, /* todo_flags_start */
4060 TODO_df_finish, /* todo_flags_finish */
4063 class pass_rtl_pre : public rtl_opt_pass
4065 public:
4066 pass_rtl_pre (gcc::context *ctxt)
4067 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4070 /* opt_pass methods: */
4071 virtual bool gate (function *);
4072 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4074 }; // class pass_rtl_pre
4076 /* We do not construct an accurate cfg in functions which call
4077 setjmp, so none of these passes runs if the function calls
4078 setjmp.
4079 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4081 bool
4082 pass_rtl_pre::gate (function *fun)
4084 return optimize > 0 && flag_gcse
4085 && !fun->calls_setjmp
4086 && optimize_function_for_speed_p (fun)
4087 && dbg_cnt (pre);
4090 } // anon namespace
4092 rtl_opt_pass *
4093 make_pass_rtl_pre (gcc::context *ctxt)
4095 return new pass_rtl_pre (ctxt);
4098 namespace {
4100 const pass_data pass_data_rtl_hoist =
4102 RTL_PASS, /* type */
4103 "hoist", /* name */
4104 OPTGROUP_NONE, /* optinfo_flags */
4105 TV_HOIST, /* tv_id */
4106 PROP_cfglayout, /* properties_required */
4107 0, /* properties_provided */
4108 0, /* properties_destroyed */
4109 0, /* todo_flags_start */
4110 TODO_df_finish, /* todo_flags_finish */
4113 class pass_rtl_hoist : public rtl_opt_pass
4115 public:
4116 pass_rtl_hoist (gcc::context *ctxt)
4117 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4120 /* opt_pass methods: */
4121 virtual bool gate (function *);
4122 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4124 }; // class pass_rtl_hoist
4126 bool
4127 pass_rtl_hoist::gate (function *)
4129 return optimize > 0 && flag_gcse
4130 && !cfun->calls_setjmp
4131 /* It does not make sense to run code hoisting unless we are optimizing
4132 for code size -- it rarely makes programs faster, and can make then
4133 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4134 && optimize_function_for_size_p (cfun)
4135 && dbg_cnt (hoist);
4138 } // anon namespace
4140 rtl_opt_pass *
4141 make_pass_rtl_hoist (gcc::context *ctxt)
4143 return new pass_rtl_hoist (ctxt);
4146 /* Reset all state within gcse.c so that we can rerun the compiler
4147 within the same process. For use by toplev::finalize. */
4149 void
4150 gcse_c_finalize (void)
4152 test_insn = NULL;
4155 #include "gt-gcse.h"