2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / fwprop.c
blob75b7d5469e634a6ecf462b69083f1c5e821086a3
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 #include "sparseset.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "flags.h"
33 #include "obstack.h"
34 #include "predict.h"
35 #include "hard-reg-set.h"
36 #include "input.h"
37 #include "function.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "cfgrtl.h"
41 #include "cfgcleanup.h"
42 #include "basic-block.h"
43 #include "df.h"
44 #include "target.h"
45 #include "cfgloop.h"
46 #include "tree-pass.h"
47 #include "domwalk.h"
48 #include "emit-rtl.h"
49 #include "rtl-iter.h"
52 /* This pass does simple forward propagation and simplification when an
53 operand of an insn can only come from a single def. This pass uses
54 df.c, so it is global. However, we only do limited analysis of
55 available expressions.
57 1) The pass tries to propagate the source of the def into the use,
58 and checks if the result is independent of the substituted value.
59 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
60 zero, independent of the source register.
62 In particular, we propagate constants into the use site. Sometimes
63 RTL expansion did not put the constant in the same insn on purpose,
64 to satisfy a predicate, and the result will fail to be recognized;
65 but this happens rarely and in this case we can still create a
66 REG_EQUAL note. For multi-word operations, this
68 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
69 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
70 (set (subreg:SI (reg:DI 122) 0)
71 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
72 (set (subreg:SI (reg:DI 122) 4)
73 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
75 can be simplified to the much simpler
77 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
78 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
80 This particular propagation is also effective at putting together
81 complex addressing modes. We are more aggressive inside MEMs, in
82 that all definitions are propagated if the use is in a MEM; if the
83 result is a valid memory address we check address_cost to decide
84 whether the substitution is worthwhile.
86 2) The pass propagates register copies. This is not as effective as
87 the copy propagation done by CSE's canon_reg, which works by walking
88 the instruction chain, it can help the other transformations.
90 We should consider removing this optimization, and instead reorder the
91 RTL passes, because GCSE does this transformation too. With some luck,
92 the CSE pass at the end of rest_of_handle_gcse could also go away.
94 3) The pass looks for paradoxical subregs that are actually unnecessary.
95 Things like this:
97 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
98 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
99 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
100 (subreg:SI (reg:QI 121) 0)))
102 are very common on machines that can only do word-sized operations.
103 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
104 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
105 we can replace the paradoxical subreg with simply (reg:WIDE M). The
106 above will simplify this to
108 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
109 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
110 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
112 where the first two insns are now dead.
114 We used to use reaching definitions to find which uses have a
115 single reaching definition (sounds obvious...), but this is too
116 complex a problem in nasty testcases like PR33928. Now we use the
117 multiple definitions problem in df-problems.c. The similarity
118 between that problem and SSA form creation is taken further, in
119 that fwprop does a dominator walk to create its chains; however,
120 instead of creating a PHI function where multiple definitions meet
121 I just punt and record only singleton use-def chains, which is
122 all that is needed by fwprop. */
125 static int num_changes;
127 static vec<df_ref> use_def_ref;
128 static vec<df_ref> reg_defs;
129 static vec<df_ref> reg_defs_stack;
131 /* The MD bitmaps are trimmed to include only live registers to cut
132 memory usage on testcases like insn-recog.c. Track live registers
133 in the basic block and do not perform forward propagation if the
134 destination is a dead pseudo occurring in a note. */
135 static bitmap local_md;
136 static bitmap local_lr;
138 /* Return the only def in USE's use-def chain, or NULL if there is
139 more than one def in the chain. */
141 static inline df_ref
142 get_def_for_use (df_ref use)
144 return use_def_ref[DF_REF_ID (use)];
148 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
149 TOP_FLAG says which artificials uses should be used, when DEF_REC
150 is an artificial def vector. LOCAL_MD is modified as after a
151 df_md_simulate_* function; we do more or less the same processing
152 done there, so we do not use those functions. */
154 #define DF_MD_GEN_FLAGS \
155 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
157 static void
158 process_defs (df_ref def, int top_flag)
160 for (; def; def = DF_REF_NEXT_LOC (def))
162 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
163 unsigned int dregno;
165 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
166 continue;
168 dregno = DF_REF_REGNO (def);
169 if (curr_def)
170 reg_defs_stack.safe_push (curr_def);
171 else
173 /* Do not store anything if "transitioning" from NULL to NULL. But
174 otherwise, push a special entry on the stack to tell the
175 leave_block callback that the entry in reg_defs was NULL. */
176 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
178 else
179 reg_defs_stack.safe_push (def);
182 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
184 bitmap_set_bit (local_md, dregno);
185 reg_defs[dregno] = NULL;
187 else
189 bitmap_clear_bit (local_md, dregno);
190 reg_defs[dregno] = def;
196 /* Fill the use_def_ref vector with values for the uses in USE_REC,
197 taking reaching definitions info from LOCAL_MD and REG_DEFS.
198 TOP_FLAG says which artificials uses should be used, when USE_REC
199 is an artificial use vector. */
201 static void
202 process_uses (df_ref use, int top_flag)
204 for (; use; use = DF_REF_NEXT_LOC (use))
205 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
207 unsigned int uregno = DF_REF_REGNO (use);
208 if (reg_defs[uregno]
209 && !bitmap_bit_p (local_md, uregno)
210 && bitmap_bit_p (local_lr, uregno))
211 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
215 class single_def_use_dom_walker : public dom_walker
217 public:
218 single_def_use_dom_walker (cdi_direction direction)
219 : dom_walker (direction) {}
220 virtual void before_dom_children (basic_block);
221 virtual void after_dom_children (basic_block);
224 void
225 single_def_use_dom_walker::before_dom_children (basic_block bb)
227 int bb_index = bb->index;
228 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
229 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
230 rtx_insn *insn;
232 bitmap_copy (local_md, &md_bb_info->in);
233 bitmap_copy (local_lr, &lr_bb_info->in);
235 /* Push a marker for the leave_block callback. */
236 reg_defs_stack.safe_push (NULL);
238 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
239 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
241 /* We don't call df_simulate_initialize_forwards, as it may overestimate
242 the live registers if there are unused artificial defs. We prefer
243 liveness to be underestimated. */
245 FOR_BB_INSNS (bb, insn)
246 if (INSN_P (insn))
248 unsigned int uid = INSN_UID (insn);
249 process_uses (DF_INSN_UID_USES (uid), 0);
250 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
251 process_defs (DF_INSN_UID_DEFS (uid), 0);
252 df_simulate_one_insn_forwards (bb, insn, local_lr);
255 process_uses (df_get_artificial_uses (bb_index), 0);
256 process_defs (df_get_artificial_defs (bb_index), 0);
259 /* Pop the definitions created in this basic block when leaving its
260 dominated parts. */
262 void
263 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
265 df_ref saved_def;
266 while ((saved_def = reg_defs_stack.pop ()) != NULL)
268 unsigned int dregno = DF_REF_REGNO (saved_def);
270 /* See also process_defs. */
271 if (saved_def == reg_defs[dregno])
272 reg_defs[dregno] = NULL;
273 else
274 reg_defs[dregno] = saved_def;
279 /* Build a vector holding the reaching definitions of uses reached by a
280 single dominating definition. */
282 static void
283 build_single_def_use_links (void)
285 /* We use the multiple definitions problem to compute our restricted
286 use-def chains. */
287 df_set_flags (DF_EQ_NOTES);
288 df_md_add_problem ();
289 df_note_add_problem ();
290 df_analyze ();
291 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
293 use_def_ref.create (DF_USES_TABLE_SIZE ());
294 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
296 reg_defs.create (max_reg_num ());
297 reg_defs.safe_grow_cleared (max_reg_num ());
299 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
300 local_md = BITMAP_ALLOC (NULL);
301 local_lr = BITMAP_ALLOC (NULL);
303 /* Walk the dominator tree looking for single reaching definitions
304 dominating the uses. This is similar to how SSA form is built. */
305 single_def_use_dom_walker (CDI_DOMINATORS)
306 .walk (cfun->cfg->x_entry_block_ptr);
308 BITMAP_FREE (local_lr);
309 BITMAP_FREE (local_md);
310 reg_defs.release ();
311 reg_defs_stack.release ();
315 /* Do not try to replace constant addresses or addresses of local and
316 argument slots. These MEM expressions are made only once and inserted
317 in many instructions, as well as being used to control symbol table
318 output. It is not safe to clobber them.
320 There are some uncommon cases where the address is already in a register
321 for some reason, but we cannot take advantage of that because we have
322 no easy way to unshare the MEM. In addition, looking up all stack
323 addresses is costly. */
325 static bool
326 can_simplify_addr (rtx addr)
328 rtx reg;
330 if (CONSTANT_ADDRESS_P (addr))
331 return false;
333 if (GET_CODE (addr) == PLUS)
334 reg = XEXP (addr, 0);
335 else
336 reg = addr;
338 return (!REG_P (reg)
339 || (REGNO (reg) != FRAME_POINTER_REGNUM
340 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
341 && REGNO (reg) != ARG_POINTER_REGNUM));
344 /* Returns a canonical version of X for the address, from the point of view,
345 that all multiplications are represented as MULT instead of the multiply
346 by a power of 2 being represented as ASHIFT.
348 Every ASHIFT we find has been made by simplify_gen_binary and was not
349 there before, so it is not shared. So we can do this in place. */
351 static void
352 canonicalize_address (rtx x)
354 for (;;)
355 switch (GET_CODE (x))
357 case ASHIFT:
358 if (CONST_INT_P (XEXP (x, 1))
359 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
360 && INTVAL (XEXP (x, 1)) >= 0)
362 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
363 PUT_CODE (x, MULT);
364 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
365 GET_MODE (x));
368 x = XEXP (x, 0);
369 break;
371 case PLUS:
372 if (GET_CODE (XEXP (x, 0)) == PLUS
373 || GET_CODE (XEXP (x, 0)) == ASHIFT
374 || GET_CODE (XEXP (x, 0)) == CONST)
375 canonicalize_address (XEXP (x, 0));
377 x = XEXP (x, 1);
378 break;
380 case CONST:
381 x = XEXP (x, 0);
382 break;
384 default:
385 return;
389 /* OLD is a memory address. Return whether it is good to use NEW instead,
390 for a memory access in the given MODE. */
392 static bool
393 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
394 addr_space_t as, bool speed)
396 int gain;
398 if (rtx_equal_p (old_rtx, new_rtx)
399 || !memory_address_addr_space_p (mode, new_rtx, as))
400 return false;
402 /* Copy propagation is always ok. */
403 if (REG_P (old_rtx) && REG_P (new_rtx))
404 return true;
406 /* Prefer the new address if it is less expensive. */
407 gain = (address_cost (old_rtx, mode, as, speed)
408 - address_cost (new_rtx, mode, as, speed));
410 /* If the addresses have equivalent cost, prefer the new address
411 if it has the highest `set_src_cost'. That has the potential of
412 eliminating the most insns without additional costs, and it
413 is the same that cse.c used to do. */
414 if (gain == 0)
415 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
417 return (gain > 0);
421 /* Flags for the last parameter of propagate_rtx_1. */
423 enum {
424 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
425 if it is false, propagate_rtx_1 returns false if, for at least
426 one occurrence OLD, it failed to collapse the result to a constant.
427 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
428 collapse to zero if replacing (reg:M B) with (reg:M A).
430 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
431 propagate_rtx_1 just tries to make cheaper and valid memory
432 addresses. */
433 PR_CAN_APPEAR = 1,
435 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
436 outside memory addresses. This is needed because propagate_rtx_1 does
437 not do any analysis on memory; thus it is very conservative and in general
438 it will fail if non-read-only MEMs are found in the source expression.
440 PR_HANDLE_MEM is set when the source of the propagation was not
441 another MEM. Then, it is safe not to treat non-read-only MEMs as
442 ``opaque'' objects. */
443 PR_HANDLE_MEM = 2,
445 /* Set when costs should be optimized for speed. */
446 PR_OPTIMIZE_FOR_SPEED = 4
450 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
451 resulting expression. Replace *PX with a new RTL expression if an
452 occurrence of OLD was found.
454 This is only a wrapper around simplify-rtx.c: do not add any pattern
455 matching code here. (The sole exception is the handling of LO_SUM, but
456 that is because there is no simplify_gen_* function for LO_SUM). */
458 static bool
459 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
461 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
462 enum rtx_code code = GET_CODE (x);
463 machine_mode mode = GET_MODE (x);
464 machine_mode op_mode;
465 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
466 bool valid_ops = true;
468 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
470 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
471 they have side effects or not). */
472 *px = (side_effects_p (x)
473 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
474 : gen_rtx_SCRATCH (GET_MODE (x)));
475 return false;
478 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
479 address, and we are *not* inside one. */
480 if (x == old_rtx)
482 *px = new_rtx;
483 return can_appear;
486 /* If this is an expression, try recursive substitution. */
487 switch (GET_RTX_CLASS (code))
489 case RTX_UNARY:
490 op0 = XEXP (x, 0);
491 op_mode = GET_MODE (op0);
492 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
493 if (op0 == XEXP (x, 0))
494 return true;
495 tem = simplify_gen_unary (code, mode, op0, op_mode);
496 break;
498 case RTX_BIN_ARITH:
499 case RTX_COMM_ARITH:
500 op0 = XEXP (x, 0);
501 op1 = XEXP (x, 1);
502 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
503 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
504 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
505 return true;
506 tem = simplify_gen_binary (code, mode, op0, op1);
507 break;
509 case RTX_COMPARE:
510 case RTX_COMM_COMPARE:
511 op0 = XEXP (x, 0);
512 op1 = XEXP (x, 1);
513 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
514 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
515 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
516 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
517 return true;
518 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
519 break;
521 case RTX_TERNARY:
522 case RTX_BITFIELD_OPS:
523 op0 = XEXP (x, 0);
524 op1 = XEXP (x, 1);
525 op2 = XEXP (x, 2);
526 op_mode = GET_MODE (op0);
527 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
528 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
529 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
530 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
531 return true;
532 if (op_mode == VOIDmode)
533 op_mode = GET_MODE (op0);
534 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
535 break;
537 case RTX_EXTRA:
538 /* The only case we try to handle is a SUBREG. */
539 if (code == SUBREG)
541 op0 = XEXP (x, 0);
542 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
543 if (op0 == XEXP (x, 0))
544 return true;
545 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
546 SUBREG_BYTE (x));
548 break;
550 case RTX_OBJ:
551 if (code == MEM && x != new_rtx)
553 rtx new_op0;
554 op0 = XEXP (x, 0);
556 /* There are some addresses that we cannot work on. */
557 if (!can_simplify_addr (op0))
558 return true;
560 op0 = new_op0 = targetm.delegitimize_address (op0);
561 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
562 flags | PR_CAN_APPEAR);
564 /* Dismiss transformation that we do not want to carry on. */
565 if (!valid_ops
566 || new_op0 == op0
567 || !(GET_MODE (new_op0) == GET_MODE (op0)
568 || GET_MODE (new_op0) == VOIDmode))
569 return true;
571 canonicalize_address (new_op0);
573 /* Copy propagations are always ok. Otherwise check the costs. */
574 if (!(REG_P (old_rtx) && REG_P (new_rtx))
575 && !should_replace_address (op0, new_op0, GET_MODE (x),
576 MEM_ADDR_SPACE (x),
577 flags & PR_OPTIMIZE_FOR_SPEED))
578 return true;
580 tem = replace_equiv_address_nv (x, new_op0);
583 else if (code == LO_SUM)
585 op0 = XEXP (x, 0);
586 op1 = XEXP (x, 1);
588 /* The only simplification we do attempts to remove references to op0
589 or make it constant -- in both cases, op0's invalidity will not
590 make the result invalid. */
591 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
592 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
593 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
594 return true;
596 /* (lo_sum (high x) x) -> x */
597 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
598 tem = op1;
599 else
600 tem = gen_rtx_LO_SUM (mode, op0, op1);
602 /* OP1 is likely not a legitimate address, otherwise there would have
603 been no LO_SUM. We want it to disappear if it is invalid, return
604 false in that case. */
605 return memory_address_p (mode, tem);
608 else if (code == REG)
610 if (rtx_equal_p (x, old_rtx))
612 *px = new_rtx;
613 return can_appear;
616 break;
618 default:
619 break;
622 /* No change, no trouble. */
623 if (tem == NULL_RTX)
624 return true;
626 *px = tem;
628 /* The replacement we made so far is valid, if all of the recursive
629 replacements were valid, or we could simplify everything to
630 a constant. */
631 return valid_ops || can_appear || CONSTANT_P (tem);
635 /* Return true if X constains a non-constant mem. */
637 static bool
638 varying_mem_p (const_rtx x)
640 subrtx_iterator::array_type array;
641 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
642 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
643 return true;
644 return false;
648 /* Replace all occurrences of OLD in X with NEW and try to simplify the
649 resulting expression (in mode MODE). Return a new expression if it is
650 a constant, otherwise X.
652 Simplifications where occurrences of NEW collapse to a constant are always
653 accepted. All simplifications are accepted if NEW is a pseudo too.
654 Otherwise, we accept simplifications that have a lower or equal cost. */
656 static rtx
657 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
658 bool speed)
660 rtx tem;
661 bool collapsed;
662 int flags;
664 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
665 return NULL_RTX;
667 flags = 0;
668 if (REG_P (new_rtx)
669 || CONSTANT_P (new_rtx)
670 || (GET_CODE (new_rtx) == SUBREG
671 && REG_P (SUBREG_REG (new_rtx))
672 && (GET_MODE_SIZE (mode)
673 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
674 flags |= PR_CAN_APPEAR;
675 if (!varying_mem_p (new_rtx))
676 flags |= PR_HANDLE_MEM;
678 if (speed)
679 flags |= PR_OPTIMIZE_FOR_SPEED;
681 tem = x;
682 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
683 if (tem == x || !collapsed)
684 return NULL_RTX;
686 /* gen_lowpart_common will not be able to process VOIDmode entities other
687 than CONST_INTs. */
688 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
689 return NULL_RTX;
691 if (GET_MODE (tem) == VOIDmode)
692 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
693 else
694 gcc_assert (GET_MODE (tem) == mode);
696 return tem;
702 /* Return true if the register from reference REF is killed
703 between FROM to (but not including) TO. */
705 static bool
706 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
708 rtx_insn *insn;
710 for (insn = from; insn != to; insn = NEXT_INSN (insn))
712 df_ref def;
713 if (!INSN_P (insn))
714 continue;
716 FOR_EACH_INSN_DEF (def, insn)
717 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
718 return true;
720 return false;
724 /* Check if the given DEF is available in INSN. This would require full
725 computation of available expressions; we check only restricted conditions:
726 - if DEF is the sole definition of its register, go ahead;
727 - in the same basic block, we check for no definitions killing the
728 definition of DEF_INSN;
729 - if USE's basic block has DEF's basic block as the sole predecessor,
730 we check if the definition is killed after DEF_INSN or before
731 TARGET_INSN insn, in their respective basic blocks. */
732 static bool
733 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
735 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
736 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
737 int regno;
738 df_ref def;
740 /* We used to have a def reaching a use that is _before_ the def,
741 with the def not dominating the use even though the use and def
742 are in the same basic block, when a register may be used
743 uninitialized in a loop. This should not happen anymore since
744 we do not use reaching definitions, but still we test for such
745 cases and assume that DEF is not available. */
746 if (def_bb == target_bb
747 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
748 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
749 return true;
751 /* Check if the reg in USE has only one definition. We already
752 know that this definition reaches use, or we wouldn't be here.
753 However, this is invalid for hard registers because if they are
754 live at the beginning of the function it does not mean that we
755 have an uninitialized access. */
756 regno = DF_REF_REGNO (use);
757 def = DF_REG_DEF_CHAIN (regno);
758 if (def
759 && DF_REF_NEXT_REG (def) == NULL
760 && regno >= FIRST_PSEUDO_REGISTER)
761 return false;
763 /* Check locally if we are in the same basic block. */
764 if (def_bb == target_bb)
765 return local_ref_killed_between_p (use, def_insn, target_insn);
767 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
768 if (single_pred_p (target_bb)
769 && single_pred (target_bb) == def_bb)
771 df_ref x;
773 /* See if USE is killed between DEF_INSN and the last insn in the
774 basic block containing DEF_INSN. */
775 x = df_bb_regno_last_def_find (def_bb, regno);
776 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
777 return true;
779 /* See if USE is killed between TARGET_INSN and the first insn in the
780 basic block containing TARGET_INSN. */
781 x = df_bb_regno_first_def_find (target_bb, regno);
782 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
783 return true;
785 return false;
788 /* Otherwise assume the worst case. */
789 return true;
793 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
794 would require full computation of available expressions;
795 we check only restricted conditions, see use_killed_between. */
796 static bool
797 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
799 df_ref use;
800 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
801 rtx def_set = single_set (def_insn);
802 rtx_insn *next;
804 gcc_assert (def_set);
806 /* If target_insn comes right after def_insn, which is very common
807 for addresses, we can use a quicker test. Ignore debug insns
808 other than target insns for this. */
809 next = NEXT_INSN (def_insn);
810 while (next && next != target_insn && DEBUG_INSN_P (next))
811 next = NEXT_INSN (next);
812 if (next == target_insn && REG_P (SET_DEST (def_set)))
814 rtx def_reg = SET_DEST (def_set);
816 /* If the insn uses the reg that it defines, the substitution is
817 invalid. */
818 FOR_EACH_INSN_INFO_USE (use, insn_info)
819 if (rtx_equal_p (DF_REF_REG (use), def_reg))
820 return false;
821 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
822 if (rtx_equal_p (DF_REF_REG (use), def_reg))
823 return false;
825 else
827 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
829 /* Look at all the uses of DEF_INSN, and see if they are not
830 killed between DEF_INSN and TARGET_INSN. */
831 FOR_EACH_INSN_INFO_USE (use, insn_info)
833 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
834 return false;
835 if (use_killed_between (use, def_insn, target_insn))
836 return false;
838 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
840 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
841 return false;
842 if (use_killed_between (use, def_insn, target_insn))
843 return false;
847 return true;
851 static df_ref *active_defs;
852 #ifdef ENABLE_CHECKING
853 static sparseset active_defs_check;
854 #endif
856 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
857 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
858 too, for checking purposes. */
860 static void
861 register_active_defs (df_ref use)
863 for (; use; use = DF_REF_NEXT_LOC (use))
865 df_ref def = get_def_for_use (use);
866 int regno = DF_REF_REGNO (use);
868 #ifdef ENABLE_CHECKING
869 sparseset_set_bit (active_defs_check, regno);
870 #endif
871 active_defs[regno] = def;
876 /* Build the use->def links that we use to update the dataflow info
877 for new uses. Note that building the links is very cheap and if
878 it were done earlier, they could be used to rule out invalid
879 propagations (in addition to what is done in all_uses_available_at).
880 I'm not doing this yet, though. */
882 static void
883 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
885 #ifdef ENABLE_CHECKING
886 sparseset_clear (active_defs_check);
887 #endif
888 register_active_defs (DF_INSN_USES (def_insn));
889 register_active_defs (DF_INSN_USES (insn));
890 register_active_defs (DF_INSN_EQ_USES (insn));
894 /* Update the USE_DEF_REF array for the given use, using the active definitions
895 in the ACTIVE_DEFS array to match pseudos to their def. */
897 static inline void
898 update_uses (df_ref use)
900 for (; use; use = DF_REF_NEXT_LOC (use))
902 int regno = DF_REF_REGNO (use);
904 /* Set up the use-def chain. */
905 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
906 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
908 #ifdef ENABLE_CHECKING
909 gcc_assert (sparseset_bit_p (active_defs_check, regno));
910 #endif
911 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
916 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
917 uses if NOTES_ONLY is true. */
919 static void
920 update_df (rtx_insn *insn, rtx note)
922 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
924 if (note)
926 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
927 df_notes_rescan (insn);
929 else
931 df_uses_create (&PATTERN (insn), insn, 0);
932 df_insn_rescan (insn);
933 update_uses (DF_INSN_INFO_USES (insn_info));
936 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
940 /* Try substituting NEW into LOC, which originated from forward propagation
941 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
942 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
943 new insn is not recognized. Return whether the substitution was
944 performed. */
946 static bool
947 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
948 bool set_reg_equal)
950 rtx_insn *insn = DF_REF_INSN (use);
951 rtx set = single_set (insn);
952 rtx note = NULL_RTX;
953 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
954 int old_cost = 0;
955 bool ok;
957 update_df_init (def_insn, insn);
959 /* forward_propagate_subreg may be operating on an instruction with
960 multiple sets. If so, assume the cost of the new instruction is
961 not greater than the old one. */
962 if (set)
963 old_cost = set_src_cost (SET_SRC (set), speed);
964 if (dump_file)
966 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
967 print_inline_rtx (dump_file, *loc, 2);
968 fprintf (dump_file, "\n with ");
969 print_inline_rtx (dump_file, new_rtx, 2);
970 fprintf (dump_file, "\n");
973 validate_unshare_change (insn, loc, new_rtx, true);
974 if (!verify_changes (0))
976 if (dump_file)
977 fprintf (dump_file, "Changes to insn %d not recognized\n",
978 INSN_UID (insn));
979 ok = false;
982 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
983 && set
984 && set_src_cost (SET_SRC (set), speed) > old_cost)
986 if (dump_file)
987 fprintf (dump_file, "Changes to insn %d not profitable\n",
988 INSN_UID (insn));
989 ok = false;
992 else
994 if (dump_file)
995 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
996 ok = true;
999 if (ok)
1001 confirm_change_group ();
1002 num_changes++;
1004 else
1006 cancel_changes (0);
1008 /* Can also record a simplified value in a REG_EQUAL note,
1009 making a new one if one does not already exist. */
1010 if (set_reg_equal)
1012 if (dump_file)
1013 fprintf (dump_file, " Setting REG_EQUAL note\n");
1015 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1019 if ((ok || note) && !CONSTANT_P (new_rtx))
1020 update_df (insn, note);
1022 return ok;
1025 /* For the given single_set INSN, containing SRC known to be a
1026 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1027 is redundant due to the register being set by a LOAD_EXTEND_OP
1028 load from memory. */
1030 static bool
1031 free_load_extend (rtx src, rtx_insn *insn)
1033 rtx reg;
1034 df_ref def, use;
1036 reg = XEXP (src, 0);
1037 #ifdef LOAD_EXTEND_OP
1038 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1039 #endif
1040 return false;
1042 FOR_EACH_INSN_USE (use, insn)
1043 if (!DF_REF_IS_ARTIFICIAL (use)
1044 && DF_REF_TYPE (use) == DF_REF_REG_USE
1045 && DF_REF_REG (use) == reg)
1046 break;
1047 if (!use)
1048 return false;
1050 def = get_def_for_use (use);
1051 if (!def)
1052 return false;
1054 if (DF_REF_IS_ARTIFICIAL (def))
1055 return false;
1057 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1059 rtx patt = PATTERN (DF_REF_INSN (def));
1061 if (GET_CODE (patt) == SET
1062 && GET_CODE (SET_SRC (patt)) == MEM
1063 && rtx_equal_p (SET_DEST (patt), reg))
1064 return true;
1066 return false;
1069 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1071 static bool
1072 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1074 rtx use_reg = DF_REF_REG (use);
1075 rtx_insn *use_insn;
1076 rtx src;
1078 /* Only consider subregs... */
1079 machine_mode use_mode = GET_MODE (use_reg);
1080 if (GET_CODE (use_reg) != SUBREG
1081 || !REG_P (SET_DEST (def_set)))
1082 return false;
1084 /* If this is a paradoxical SUBREG... */
1085 if (GET_MODE_SIZE (use_mode)
1086 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1088 /* If this is a paradoxical SUBREG, we have no idea what value the
1089 extra bits would have. However, if the operand is equivalent to
1090 a SUBREG whose operand is the same as our mode, and all the modes
1091 are within a word, we can just use the inner operand because
1092 these SUBREGs just say how to treat the register. */
1093 use_insn = DF_REF_INSN (use);
1094 src = SET_SRC (def_set);
1095 if (GET_CODE (src) == SUBREG
1096 && REG_P (SUBREG_REG (src))
1097 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1098 && GET_MODE (SUBREG_REG (src)) == use_mode
1099 && subreg_lowpart_p (src)
1100 && all_uses_available_at (def_insn, use_insn))
1101 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1102 def_insn, false);
1105 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1106 is the low part of the reg being extended then just use the inner
1107 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1108 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1109 or due to the operation being a no-op when applied to registers.
1110 For example, if we have:
1112 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1113 B: (... (subreg:SI (reg:DI X)) ...)
1115 and mode_rep_extended says that Y is already sign-extended,
1116 the backend will typically allow A to be combined with the
1117 definition of Y or, failing that, allow A to be deleted after
1118 reload through register tying. Introducing more uses of Y
1119 prevents both optimisations. */
1120 else if (subreg_lowpart_p (use_reg))
1122 use_insn = DF_REF_INSN (use);
1123 src = SET_SRC (def_set);
1124 if ((GET_CODE (src) == ZERO_EXTEND
1125 || GET_CODE (src) == SIGN_EXTEND)
1126 && REG_P (XEXP (src, 0))
1127 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1128 && GET_MODE (XEXP (src, 0)) == use_mode
1129 && !free_load_extend (src, def_insn)
1130 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1131 != (int) GET_CODE (src))
1132 && all_uses_available_at (def_insn, use_insn))
1133 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1134 def_insn, false);
1137 return false;
1140 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1142 static bool
1143 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1145 rtx_insn *use_insn = DF_REF_INSN (use);
1146 rtx src, use_pat, asm_operands, new_rtx, *loc;
1147 int speed_p, i;
1148 df_ref uses;
1150 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1152 src = SET_SRC (def_set);
1153 use_pat = PATTERN (use_insn);
1155 /* In __asm don't replace if src might need more registers than
1156 reg, as that could increase register pressure on the __asm. */
1157 uses = DF_INSN_USES (def_insn);
1158 if (uses && DF_REF_NEXT_LOC (uses))
1159 return false;
1161 update_df_init (def_insn, use_insn);
1162 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1163 asm_operands = NULL_RTX;
1164 switch (GET_CODE (use_pat))
1166 case ASM_OPERANDS:
1167 asm_operands = use_pat;
1168 break;
1169 case SET:
1170 if (MEM_P (SET_DEST (use_pat)))
1172 loc = &SET_DEST (use_pat);
1173 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1174 if (new_rtx)
1175 validate_unshare_change (use_insn, loc, new_rtx, true);
1177 asm_operands = SET_SRC (use_pat);
1178 break;
1179 case PARALLEL:
1180 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1181 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1183 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1185 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1186 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1187 src, speed_p);
1188 if (new_rtx)
1189 validate_unshare_change (use_insn, loc, new_rtx, true);
1191 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1193 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1194 asm_operands = XVECEXP (use_pat, 0, i);
1195 break;
1196 default:
1197 gcc_unreachable ();
1200 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1201 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1203 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1204 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1205 if (new_rtx)
1206 validate_unshare_change (use_insn, loc, new_rtx, true);
1209 if (num_changes_pending () == 0 || !apply_change_group ())
1210 return false;
1212 update_df (use_insn, NULL);
1213 num_changes++;
1214 return true;
1217 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1218 result. */
1220 static bool
1221 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1223 rtx_insn *use_insn = DF_REF_INSN (use);
1224 rtx use_set = single_set (use_insn);
1225 rtx src, reg, new_rtx, *loc;
1226 bool set_reg_equal;
1227 machine_mode mode;
1228 int asm_use = -1;
1230 if (INSN_CODE (use_insn) < 0)
1231 asm_use = asm_noperands (PATTERN (use_insn));
1233 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1234 return false;
1236 /* Do not propagate into PC, CC0, etc. */
1237 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1238 return false;
1240 /* If def and use are subreg, check if they match. */
1241 reg = DF_REF_REG (use);
1242 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1244 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1245 return false;
1247 /* Check if the def had a subreg, but the use has the whole reg. */
1248 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1249 return false;
1250 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1251 previous case, the optimization is possible and often useful indeed. */
1252 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1253 reg = SUBREG_REG (reg);
1255 /* Make sure that we can treat REG as having the same mode as the
1256 source of DEF_SET. */
1257 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1258 return false;
1260 /* Check if the substitution is valid (last, because it's the most
1261 expensive check!). */
1262 src = SET_SRC (def_set);
1263 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1264 return false;
1266 /* Check if the def is loading something from the constant pool; in this
1267 case we would undo optimization such as compress_float_constant.
1268 Still, we can set a REG_EQUAL note. */
1269 if (MEM_P (src) && MEM_READONLY_P (src))
1271 rtx x = avoid_constant_pool_reference (src);
1272 if (x != src && use_set)
1274 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1275 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1276 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1277 if (old_rtx != new_rtx)
1278 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1280 return false;
1283 if (asm_use >= 0)
1284 return forward_propagate_asm (use, def_insn, def_set, reg);
1286 /* Else try simplifying. */
1288 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1290 loc = &SET_DEST (use_set);
1291 set_reg_equal = false;
1293 else if (!use_set)
1295 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1296 set_reg_equal = false;
1298 else
1300 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1301 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1302 loc = &XEXP (note, 0);
1303 else
1304 loc = &SET_SRC (use_set);
1306 /* Do not replace an existing REG_EQUAL note if the insn is not
1307 recognized. Either we're already replacing in the note, or we'll
1308 separately try plugging the definition in the note and simplifying.
1309 And only install a REQ_EQUAL note when the destination is a REG
1310 that isn't mentioned in USE_SET, as the note would be invalid
1311 otherwise. We also don't want to install a note if we are merely
1312 propagating a pseudo since verifying that this pseudo isn't dead
1313 is a pain; moreover such a note won't help anything. */
1314 set_reg_equal = (note == NULL_RTX
1315 && REG_P (SET_DEST (use_set))
1316 && !REG_P (src)
1317 && !(GET_CODE (src) == SUBREG
1318 && REG_P (SUBREG_REG (src)))
1319 && !reg_mentioned_p (SET_DEST (use_set),
1320 SET_SRC (use_set)));
1323 if (GET_MODE (*loc) == VOIDmode)
1324 mode = GET_MODE (SET_DEST (use_set));
1325 else
1326 mode = GET_MODE (*loc);
1328 new_rtx = propagate_rtx (*loc, mode, reg, src,
1329 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1331 if (!new_rtx)
1332 return false;
1334 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1338 /* Given a use USE of an insn, if it has a single reaching
1339 definition, try to forward propagate it into that insn.
1340 Return true if cfg cleanup will be needed. */
1342 static bool
1343 forward_propagate_into (df_ref use)
1345 df_ref def;
1346 rtx_insn *def_insn, *use_insn;
1347 rtx def_set;
1348 rtx parent;
1350 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1351 return false;
1352 if (DF_REF_IS_ARTIFICIAL (use))
1353 return false;
1355 /* Only consider uses that have a single definition. */
1356 def = get_def_for_use (use);
1357 if (!def)
1358 return false;
1359 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1360 return false;
1361 if (DF_REF_IS_ARTIFICIAL (def))
1362 return false;
1364 /* Do not propagate loop invariant definitions inside the loop. */
1365 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1366 return false;
1368 /* Check if the use is still present in the insn! */
1369 use_insn = DF_REF_INSN (use);
1370 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1371 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1372 else
1373 parent = PATTERN (use_insn);
1375 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1376 return false;
1378 def_insn = DF_REF_INSN (def);
1379 if (multiple_sets (def_insn))
1380 return false;
1381 def_set = single_set (def_insn);
1382 if (!def_set)
1383 return false;
1385 /* Only try one kind of propagation. If two are possible, we'll
1386 do it on the following iterations. */
1387 if (forward_propagate_and_simplify (use, def_insn, def_set)
1388 || forward_propagate_subreg (use, def_insn, def_set))
1390 if (cfun->can_throw_non_call_exceptions
1391 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1392 && purge_dead_edges (DF_REF_BB (use)))
1393 return true;
1395 return false;
1399 static void
1400 fwprop_init (void)
1402 num_changes = 0;
1403 calculate_dominance_info (CDI_DOMINATORS);
1405 /* We do not always want to propagate into loops, so we have to find
1406 loops and be careful about them. Avoid CFG modifications so that
1407 we don't have to update dominance information afterwards for
1408 build_single_def_use_links. */
1409 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1411 build_single_def_use_links ();
1412 df_set_flags (DF_DEFER_INSN_RESCAN);
1414 active_defs = XNEWVEC (df_ref, max_reg_num ());
1415 #ifdef ENABLE_CHECKING
1416 active_defs_check = sparseset_alloc (max_reg_num ());
1417 #endif
1420 static void
1421 fwprop_done (void)
1423 loop_optimizer_finalize ();
1425 use_def_ref.release ();
1426 free (active_defs);
1427 #ifdef ENABLE_CHECKING
1428 sparseset_free (active_defs_check);
1429 #endif
1431 free_dominance_info (CDI_DOMINATORS);
1432 cleanup_cfg (0);
1433 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1435 if (dump_file)
1436 fprintf (dump_file,
1437 "\nNumber of successful forward propagations: %d\n\n",
1438 num_changes);
1442 /* Main entry point. */
1444 static bool
1445 gate_fwprop (void)
1447 return optimize > 0 && flag_forward_propagate;
1450 static unsigned int
1451 fwprop (void)
1453 unsigned i;
1454 bool need_cleanup = false;
1456 fwprop_init ();
1458 /* Go through all the uses. df_uses_create will create new ones at the
1459 end, and we'll go through them as well.
1461 Do not forward propagate addresses into loops until after unrolling.
1462 CSE did so because it was able to fix its own mess, but we are not. */
1464 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1466 df_ref use = DF_USES_GET (i);
1467 if (use)
1468 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1469 || DF_REF_BB (use)->loop_father == NULL
1470 /* The outer most loop is not really a loop. */
1471 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1472 need_cleanup |= forward_propagate_into (use);
1475 fwprop_done ();
1476 if (need_cleanup)
1477 cleanup_cfg (0);
1478 return 0;
1481 namespace {
1483 const pass_data pass_data_rtl_fwprop =
1485 RTL_PASS, /* type */
1486 "fwprop1", /* name */
1487 OPTGROUP_NONE, /* optinfo_flags */
1488 TV_FWPROP, /* tv_id */
1489 0, /* properties_required */
1490 0, /* properties_provided */
1491 0, /* properties_destroyed */
1492 0, /* todo_flags_start */
1493 TODO_df_finish, /* todo_flags_finish */
1496 class pass_rtl_fwprop : public rtl_opt_pass
1498 public:
1499 pass_rtl_fwprop (gcc::context *ctxt)
1500 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1503 /* opt_pass methods: */
1504 virtual bool gate (function *) { return gate_fwprop (); }
1505 virtual unsigned int execute (function *) { return fwprop (); }
1507 }; // class pass_rtl_fwprop
1509 } // anon namespace
1511 rtl_opt_pass *
1512 make_pass_rtl_fwprop (gcc::context *ctxt)
1514 return new pass_rtl_fwprop (ctxt);
1517 static unsigned int
1518 fwprop_addr (void)
1520 unsigned i;
1521 bool need_cleanup = false;
1523 fwprop_init ();
1525 /* Go through all the uses. df_uses_create will create new ones at the
1526 end, and we'll go through them as well. */
1527 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1529 df_ref use = DF_USES_GET (i);
1530 if (use)
1531 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1532 && DF_REF_BB (use)->loop_father != NULL
1533 /* The outer most loop is not really a loop. */
1534 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1535 need_cleanup |= forward_propagate_into (use);
1538 fwprop_done ();
1540 if (need_cleanup)
1541 cleanup_cfg (0);
1542 return 0;
1545 namespace {
1547 const pass_data pass_data_rtl_fwprop_addr =
1549 RTL_PASS, /* type */
1550 "fwprop2", /* name */
1551 OPTGROUP_NONE, /* optinfo_flags */
1552 TV_FWPROP, /* tv_id */
1553 0, /* properties_required */
1554 0, /* properties_provided */
1555 0, /* properties_destroyed */
1556 0, /* todo_flags_start */
1557 TODO_df_finish, /* todo_flags_finish */
1560 class pass_rtl_fwprop_addr : public rtl_opt_pass
1562 public:
1563 pass_rtl_fwprop_addr (gcc::context *ctxt)
1564 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1567 /* opt_pass methods: */
1568 virtual bool gate (function *) { return gate_fwprop (); }
1569 virtual unsigned int execute (function *) { return fwprop_addr (); }
1571 }; // class pass_rtl_fwprop_addr
1573 } // anon namespace
1575 rtl_opt_pass *
1576 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1578 return new pass_rtl_fwprop_addr (ctxt);