2015-06-11 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / cse.c
blob6af1cf338c752e2e7af124b6112c7907595519a0
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "predict.h"
29 #include "input.h"
30 #include "function.h"
31 #include "dominance.h"
32 #include "cfg.h"
33 #include "cfgrtl.h"
34 #include "cfganal.h"
35 #include "cfgcleanup.h"
36 #include "basic-block.h"
37 #include "flags.h"
38 #include "insn-config.h"
39 #include "recog.h"
40 #include "symtab.h"
41 #include "alias.h"
42 #include "tree.h"
43 #include "expmed.h"
44 #include "dojump.h"
45 #include "explow.h"
46 #include "calls.h"
47 #include "emit-rtl.h"
48 #include "varasm.h"
49 #include "stmt.h"
50 #include "expr.h"
51 #include "diagnostic-core.h"
52 #include "toplev.h"
53 #include "except.h"
54 #include "target.h"
55 #include "params.h"
56 #include "rtlhooks-def.h"
57 #include "tree-pass.h"
58 #include "df.h"
59 #include "dbgcnt.h"
60 #include "rtl-iter.h"
62 /* The basic idea of common subexpression elimination is to go
63 through the code, keeping a record of expressions that would
64 have the same value at the current scan point, and replacing
65 expressions encountered with the cheapest equivalent expression.
67 It is too complicated to keep track of the different possibilities
68 when control paths merge in this code; so, at each label, we forget all
69 that is known and start fresh. This can be described as processing each
70 extended basic block separately. We have a separate pass to perform
71 global CSE.
73 Note CSE can turn a conditional or computed jump into a nop or
74 an unconditional jump. When this occurs we arrange to run the jump
75 optimizer after CSE to delete the unreachable code.
77 We use two data structures to record the equivalent expressions:
78 a hash table for most expressions, and a vector of "quantity
79 numbers" to record equivalent (pseudo) registers.
81 The use of the special data structure for registers is desirable
82 because it is faster. It is possible because registers references
83 contain a fairly small number, the register number, taken from
84 a contiguously allocated series, and two register references are
85 identical if they have the same number. General expressions
86 do not have any such thing, so the only way to retrieve the
87 information recorded on an expression other than a register
88 is to keep it in a hash table.
90 Registers and "quantity numbers":
92 At the start of each basic block, all of the (hardware and pseudo)
93 registers used in the function are given distinct quantity
94 numbers to indicate their contents. During scan, when the code
95 copies one register into another, we copy the quantity number.
96 When a register is loaded in any other way, we allocate a new
97 quantity number to describe the value generated by this operation.
98 `REG_QTY (N)' records what quantity register N is currently thought
99 of as containing.
101 All real quantity numbers are greater than or equal to zero.
102 If register N has not been assigned a quantity, `REG_QTY (N)' will
103 equal -N - 1, which is always negative.
105 Quantity numbers below zero do not exist and none of the `qty_table'
106 entries should be referenced with a negative index.
108 We also maintain a bidirectional chain of registers for each
109 quantity number. The `qty_table` members `first_reg' and `last_reg',
110 and `reg_eqv_table' members `next' and `prev' hold these chains.
112 The first register in a chain is the one whose lifespan is least local.
113 Among equals, it is the one that was seen first.
114 We replace any equivalent register with that one.
116 If two registers have the same quantity number, it must be true that
117 REG expressions with qty_table `mode' must be in the hash table for both
118 registers and must be in the same class.
120 The converse is not true. Since hard registers may be referenced in
121 any mode, two REG expressions might be equivalent in the hash table
122 but not have the same quantity number if the quantity number of one
123 of the registers is not the same mode as those expressions.
125 Constants and quantity numbers
127 When a quantity has a known constant value, that value is stored
128 in the appropriate qty_table `const_rtx'. This is in addition to
129 putting the constant in the hash table as is usual for non-regs.
131 Whether a reg or a constant is preferred is determined by the configuration
132 macro CONST_COSTS and will often depend on the constant value. In any
133 event, expressions containing constants can be simplified, by fold_rtx.
135 When a quantity has a known nearly constant value (such as an address
136 of a stack slot), that value is stored in the appropriate qty_table
137 `const_rtx'.
139 Integer constants don't have a machine mode. However, cse
140 determines the intended machine mode from the destination
141 of the instruction that moves the constant. The machine mode
142 is recorded in the hash table along with the actual RTL
143 constant expression so that different modes are kept separate.
145 Other expressions:
147 To record known equivalences among expressions in general
148 we use a hash table called `table'. It has a fixed number of buckets
149 that contain chains of `struct table_elt' elements for expressions.
150 These chains connect the elements whose expressions have the same
151 hash codes.
153 Other chains through the same elements connect the elements which
154 currently have equivalent values.
156 Register references in an expression are canonicalized before hashing
157 the expression. This is done using `reg_qty' and qty_table `first_reg'.
158 The hash code of a register reference is computed using the quantity
159 number, not the register number.
161 When the value of an expression changes, it is necessary to remove from the
162 hash table not just that expression but all expressions whose values
163 could be different as a result.
165 1. If the value changing is in memory, except in special cases
166 ANYTHING referring to memory could be changed. That is because
167 nobody knows where a pointer does not point.
168 The function `invalidate_memory' removes what is necessary.
170 The special cases are when the address is constant or is
171 a constant plus a fixed register such as the frame pointer
172 or a static chain pointer. When such addresses are stored in,
173 we can tell exactly which other such addresses must be invalidated
174 due to overlap. `invalidate' does this.
175 All expressions that refer to non-constant
176 memory addresses are also invalidated. `invalidate_memory' does this.
178 2. If the value changing is a register, all expressions
179 containing references to that register, and only those,
180 must be removed.
182 Because searching the entire hash table for expressions that contain
183 a register is very slow, we try to figure out when it isn't necessary.
184 Precisely, this is necessary only when expressions have been
185 entered in the hash table using this register, and then the value has
186 changed, and then another expression wants to be added to refer to
187 the register's new value. This sequence of circumstances is rare
188 within any one basic block.
190 `REG_TICK' and `REG_IN_TABLE', accessors for members of
191 cse_reg_info, are used to detect this case. REG_TICK (i) is
192 incremented whenever a value is stored in register i.
193 REG_IN_TABLE (i) holds -1 if no references to register i have been
194 entered in the table; otherwise, it contains the value REG_TICK (i)
195 had when the references were entered. If we want to enter a
196 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
197 remove old references. Until we want to enter a new entry, the
198 mere fact that the two vectors don't match makes the entries be
199 ignored if anyone tries to match them.
201 Registers themselves are entered in the hash table as well as in
202 the equivalent-register chains. However, `REG_TICK' and
203 `REG_IN_TABLE' do not apply to expressions which are simple
204 register references. These expressions are removed from the table
205 immediately when they become invalid, and this can be done even if
206 we do not immediately search for all the expressions that refer to
207 the register.
209 A CLOBBER rtx in an instruction invalidates its operand for further
210 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
211 invalidates everything that resides in memory.
213 Related expressions:
215 Constant expressions that differ only by an additive integer
216 are called related. When a constant expression is put in
217 the table, the related expression with no constant term
218 is also entered. These are made to point at each other
219 so that it is possible to find out if there exists any
220 register equivalent to an expression related to a given expression. */
222 /* Length of qty_table vector. We know in advance we will not need
223 a quantity number this big. */
225 static int max_qty;
227 /* Next quantity number to be allocated.
228 This is 1 + the largest number needed so far. */
230 static int next_qty;
232 /* Per-qty information tracking.
234 `first_reg' and `last_reg' track the head and tail of the
235 chain of registers which currently contain this quantity.
237 `mode' contains the machine mode of this quantity.
239 `const_rtx' holds the rtx of the constant value of this
240 quantity, if known. A summations of the frame/arg pointer
241 and a constant can also be entered here. When this holds
242 a known value, `const_insn' is the insn which stored the
243 constant value.
245 `comparison_{code,const,qty}' are used to track when a
246 comparison between a quantity and some constant or register has
247 been passed. In such a case, we know the results of the comparison
248 in case we see it again. These members record a comparison that
249 is known to be true. `comparison_code' holds the rtx code of such
250 a comparison, else it is set to UNKNOWN and the other two
251 comparison members are undefined. `comparison_const' holds
252 the constant being compared against, or zero if the comparison
253 is not against a constant. `comparison_qty' holds the quantity
254 being compared against when the result is known. If the comparison
255 is not with a register, `comparison_qty' is -1. */
257 struct qty_table_elem
259 rtx const_rtx;
260 rtx_insn *const_insn;
261 rtx comparison_const;
262 int comparison_qty;
263 unsigned int first_reg, last_reg;
264 /* The sizes of these fields should match the sizes of the
265 code and mode fields of struct rtx_def (see rtl.h). */
266 ENUM_BITFIELD(rtx_code) comparison_code : 16;
267 ENUM_BITFIELD(machine_mode) mode : 8;
270 /* The table of all qtys, indexed by qty number. */
271 static struct qty_table_elem *qty_table;
273 /* For machines that have a CC0, we do not record its value in the hash
274 table since its use is guaranteed to be the insn immediately following
275 its definition and any other insn is presumed to invalidate it.
277 Instead, we store below the current and last value assigned to CC0.
278 If it should happen to be a constant, it is stored in preference
279 to the actual assigned value. In case it is a constant, we store
280 the mode in which the constant should be interpreted. */
282 static rtx this_insn_cc0, prev_insn_cc0;
283 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
285 /* Insn being scanned. */
287 static rtx_insn *this_insn;
288 static bool optimize_this_for_speed_p;
290 /* Index by register number, gives the number of the next (or
291 previous) register in the chain of registers sharing the same
292 value.
294 Or -1 if this register is at the end of the chain.
296 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
298 /* Per-register equivalence chain. */
299 struct reg_eqv_elem
301 int next, prev;
304 /* The table of all register equivalence chains. */
305 static struct reg_eqv_elem *reg_eqv_table;
307 struct cse_reg_info
309 /* The timestamp at which this register is initialized. */
310 unsigned int timestamp;
312 /* The quantity number of the register's current contents. */
313 int reg_qty;
315 /* The number of times the register has been altered in the current
316 basic block. */
317 int reg_tick;
319 /* The REG_TICK value at which rtx's containing this register are
320 valid in the hash table. If this does not equal the current
321 reg_tick value, such expressions existing in the hash table are
322 invalid. */
323 int reg_in_table;
325 /* The SUBREG that was set when REG_TICK was last incremented. Set
326 to -1 if the last store was to the whole register, not a subreg. */
327 unsigned int subreg_ticked;
330 /* A table of cse_reg_info indexed by register numbers. */
331 static struct cse_reg_info *cse_reg_info_table;
333 /* The size of the above table. */
334 static unsigned int cse_reg_info_table_size;
336 /* The index of the first entry that has not been initialized. */
337 static unsigned int cse_reg_info_table_first_uninitialized;
339 /* The timestamp at the beginning of the current run of
340 cse_extended_basic_block. We increment this variable at the beginning of
341 the current run of cse_extended_basic_block. The timestamp field of a
342 cse_reg_info entry matches the value of this variable if and only
343 if the entry has been initialized during the current run of
344 cse_extended_basic_block. */
345 static unsigned int cse_reg_info_timestamp;
347 /* A HARD_REG_SET containing all the hard registers for which there is
348 currently a REG expression in the hash table. Note the difference
349 from the above variables, which indicate if the REG is mentioned in some
350 expression in the table. */
352 static HARD_REG_SET hard_regs_in_table;
354 /* True if CSE has altered the CFG. */
355 static bool cse_cfg_altered;
357 /* True if CSE has altered conditional jump insns in such a way
358 that jump optimization should be redone. */
359 static bool cse_jumps_altered;
361 /* True if we put a LABEL_REF into the hash table for an INSN
362 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
363 to put in the note. */
364 static bool recorded_label_ref;
366 /* canon_hash stores 1 in do_not_record
367 if it notices a reference to CC0, PC, or some other volatile
368 subexpression. */
370 static int do_not_record;
372 /* canon_hash stores 1 in hash_arg_in_memory
373 if it notices a reference to memory within the expression being hashed. */
375 static int hash_arg_in_memory;
377 /* The hash table contains buckets which are chains of `struct table_elt's,
378 each recording one expression's information.
379 That expression is in the `exp' field.
381 The canon_exp field contains a canonical (from the point of view of
382 alias analysis) version of the `exp' field.
384 Those elements with the same hash code are chained in both directions
385 through the `next_same_hash' and `prev_same_hash' fields.
387 Each set of expressions with equivalent values
388 are on a two-way chain through the `next_same_value'
389 and `prev_same_value' fields, and all point with
390 the `first_same_value' field at the first element in
391 that chain. The chain is in order of increasing cost.
392 Each element's cost value is in its `cost' field.
394 The `in_memory' field is nonzero for elements that
395 involve any reference to memory. These elements are removed
396 whenever a write is done to an unidentified location in memory.
397 To be safe, we assume that a memory address is unidentified unless
398 the address is either a symbol constant or a constant plus
399 the frame pointer or argument pointer.
401 The `related_value' field is used to connect related expressions
402 (that differ by adding an integer).
403 The related expressions are chained in a circular fashion.
404 `related_value' is zero for expressions for which this
405 chain is not useful.
407 The `cost' field stores the cost of this element's expression.
408 The `regcost' field stores the value returned by approx_reg_cost for
409 this element's expression.
411 The `is_const' flag is set if the element is a constant (including
412 a fixed address).
414 The `flag' field is used as a temporary during some search routines.
416 The `mode' field is usually the same as GET_MODE (`exp'), but
417 if `exp' is a CONST_INT and has no machine mode then the `mode'
418 field is the mode it was being used as. Each constant is
419 recorded separately for each mode it is used with. */
421 struct table_elt
423 rtx exp;
424 rtx canon_exp;
425 struct table_elt *next_same_hash;
426 struct table_elt *prev_same_hash;
427 struct table_elt *next_same_value;
428 struct table_elt *prev_same_value;
429 struct table_elt *first_same_value;
430 struct table_elt *related_value;
431 int cost;
432 int regcost;
433 /* The size of this field should match the size
434 of the mode field of struct rtx_def (see rtl.h). */
435 ENUM_BITFIELD(machine_mode) mode : 8;
436 char in_memory;
437 char is_const;
438 char flag;
441 /* We don't want a lot of buckets, because we rarely have very many
442 things stored in the hash table, and a lot of buckets slows
443 down a lot of loops that happen frequently. */
444 #define HASH_SHIFT 5
445 #define HASH_SIZE (1 << HASH_SHIFT)
446 #define HASH_MASK (HASH_SIZE - 1)
448 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
449 register (hard registers may require `do_not_record' to be set). */
451 #define HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : canon_hash (X, M)) & HASH_MASK)
456 /* Like HASH, but without side-effects. */
457 #define SAFE_HASH(X, M) \
458 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
459 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
460 : safe_hash (X, M)) & HASH_MASK)
462 /* Determine whether register number N is considered a fixed register for the
463 purpose of approximating register costs.
464 It is desirable to replace other regs with fixed regs, to reduce need for
465 non-fixed hard regs.
466 A reg wins if it is either the frame pointer or designated as fixed. */
467 #define FIXED_REGNO_P(N) \
468 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
469 || fixed_regs[N] || global_regs[N])
471 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
472 hard registers and pointers into the frame are the cheapest with a cost
473 of 0. Next come pseudos with a cost of one and other hard registers with
474 a cost of 2. Aside from these special cases, call `rtx_cost'. */
476 #define CHEAP_REGNO(N) \
477 (REGNO_PTR_FRAME_P (N) \
478 || (HARD_REGISTER_NUM_P (N) \
479 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
481 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
482 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
484 /* Get the number of times this register has been updated in this
485 basic block. */
487 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
489 /* Get the point at which REG was recorded in the table. */
491 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
493 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
494 SUBREG). */
496 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
498 /* Get the quantity number for REG. */
500 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
502 /* Determine if the quantity number for register X represents a valid index
503 into the qty_table. */
505 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
507 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
509 #define CHEAPER(X, Y) \
510 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
512 static struct table_elt *table[HASH_SIZE];
514 /* Chain of `struct table_elt's made so far for this function
515 but currently removed from the table. */
517 static struct table_elt *free_element_chain;
519 /* Set to the cost of a constant pool reference if one was found for a
520 symbolic constant. If this was found, it means we should try to
521 convert constants into constant pool entries if they don't fit in
522 the insn. */
524 static int constant_pool_entries_cost;
525 static int constant_pool_entries_regcost;
527 /* Trace a patch through the CFG. */
529 struct branch_path
531 /* The basic block for this path entry. */
532 basic_block bb;
535 /* This data describes a block that will be processed by
536 cse_extended_basic_block. */
538 struct cse_basic_block_data
540 /* Total number of SETs in block. */
541 int nsets;
542 /* Size of current branch path, if any. */
543 int path_size;
544 /* Current path, indicating which basic_blocks will be processed. */
545 struct branch_path *path;
549 /* Pointers to the live in/live out bitmaps for the boundaries of the
550 current EBB. */
551 static bitmap cse_ebb_live_in, cse_ebb_live_out;
553 /* A simple bitmap to track which basic blocks have been visited
554 already as part of an already processed extended basic block. */
555 static sbitmap cse_visited_basic_blocks;
557 static bool fixed_base_plus_p (rtx x);
558 static int notreg_cost (rtx, enum rtx_code, int);
559 static int preferable (int, int, int, int);
560 static void new_basic_block (void);
561 static void make_new_qty (unsigned int, machine_mode);
562 static void make_regs_eqv (unsigned int, unsigned int);
563 static void delete_reg_equiv (unsigned int);
564 static int mention_regs (rtx);
565 static int insert_regs (rtx, struct table_elt *, int);
566 static void remove_from_table (struct table_elt *, unsigned);
567 static void remove_pseudo_from_table (rtx, unsigned);
568 static struct table_elt *lookup (rtx, unsigned, machine_mode);
569 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
570 static rtx lookup_as_function (rtx, enum rtx_code);
571 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
572 machine_mode, int, int);
573 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
574 machine_mode);
575 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
576 static void invalidate (rtx, machine_mode);
577 static void remove_invalid_refs (unsigned int);
578 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
579 machine_mode);
580 static void rehash_using_reg (rtx);
581 static void invalidate_memory (void);
582 static void invalidate_for_call (void);
583 static rtx use_related_value (rtx, struct table_elt *);
585 static inline unsigned canon_hash (rtx, machine_mode);
586 static inline unsigned safe_hash (rtx, machine_mode);
587 static inline unsigned hash_rtx_string (const char *);
589 static rtx canon_reg (rtx, rtx_insn *);
590 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
591 machine_mode *,
592 machine_mode *);
593 static rtx fold_rtx (rtx, rtx_insn *);
594 static rtx equiv_constant (rtx);
595 static void record_jump_equiv (rtx_insn *, bool);
596 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
597 int);
598 static void cse_insn (rtx_insn *);
599 static void cse_prescan_path (struct cse_basic_block_data *);
600 static void invalidate_from_clobbers (rtx_insn *);
601 static void invalidate_from_sets_and_clobbers (rtx_insn *);
602 static rtx cse_process_notes (rtx, rtx, bool *);
603 static void cse_extended_basic_block (struct cse_basic_block_data *);
604 extern void dump_class (struct table_elt*);
605 static void get_cse_reg_info_1 (unsigned int regno);
606 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
608 static void flush_hash_table (void);
609 static bool insn_live_p (rtx_insn *, int *);
610 static bool set_live_p (rtx, rtx_insn *, int *);
611 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
612 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
613 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
614 bool);
617 #undef RTL_HOOKS_GEN_LOWPART
618 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
620 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
622 /* Nonzero if X has the form (PLUS frame-pointer integer). */
624 static bool
625 fixed_base_plus_p (rtx x)
627 switch (GET_CODE (x))
629 case REG:
630 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
631 return true;
632 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
633 return true;
634 return false;
636 case PLUS:
637 if (!CONST_INT_P (XEXP (x, 1)))
638 return false;
639 return fixed_base_plus_p (XEXP (x, 0));
641 default:
642 return false;
646 /* Dump the expressions in the equivalence class indicated by CLASSP.
647 This function is used only for debugging. */
648 DEBUG_FUNCTION void
649 dump_class (struct table_elt *classp)
651 struct table_elt *elt;
653 fprintf (stderr, "Equivalence chain for ");
654 print_rtl (stderr, classp->exp);
655 fprintf (stderr, ": \n");
657 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
659 print_rtl (stderr, elt->exp);
660 fprintf (stderr, "\n");
664 /* Return an estimate of the cost of the registers used in an rtx.
665 This is mostly the number of different REG expressions in the rtx;
666 however for some exceptions like fixed registers we use a cost of
667 0. If any other hard register reference occurs, return MAX_COST. */
669 static int
670 approx_reg_cost (const_rtx x)
672 int cost = 0;
673 subrtx_iterator::array_type array;
674 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
676 const_rtx x = *iter;
677 if (REG_P (x))
679 unsigned int regno = REGNO (x);
680 if (!CHEAP_REGNO (regno))
682 if (regno < FIRST_PSEUDO_REGISTER)
684 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
685 return MAX_COST;
686 cost += 2;
688 else
689 cost += 1;
693 return cost;
696 /* Return a negative value if an rtx A, whose costs are given by COST_A
697 and REGCOST_A, is more desirable than an rtx B.
698 Return a positive value if A is less desirable, or 0 if the two are
699 equally good. */
700 static int
701 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
703 /* First, get rid of cases involving expressions that are entirely
704 unwanted. */
705 if (cost_a != cost_b)
707 if (cost_a == MAX_COST)
708 return 1;
709 if (cost_b == MAX_COST)
710 return -1;
713 /* Avoid extending lifetimes of hardregs. */
714 if (regcost_a != regcost_b)
716 if (regcost_a == MAX_COST)
717 return 1;
718 if (regcost_b == MAX_COST)
719 return -1;
722 /* Normal operation costs take precedence. */
723 if (cost_a != cost_b)
724 return cost_a - cost_b;
725 /* Only if these are identical consider effects on register pressure. */
726 if (regcost_a != regcost_b)
727 return regcost_a - regcost_b;
728 return 0;
731 /* Internal function, to compute cost when X is not a register; called
732 from COST macro to keep it simple. */
734 static int
735 notreg_cost (rtx x, enum rtx_code outer, int opno)
737 return ((GET_CODE (x) == SUBREG
738 && REG_P (SUBREG_REG (x))
739 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
740 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
741 && (GET_MODE_SIZE (GET_MODE (x))
742 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
743 && subreg_lowpart_p (x)
744 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
745 GET_MODE (SUBREG_REG (x))))
747 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
751 /* Initialize CSE_REG_INFO_TABLE. */
753 static void
754 init_cse_reg_info (unsigned int nregs)
756 /* Do we need to grow the table? */
757 if (nregs > cse_reg_info_table_size)
759 unsigned int new_size;
761 if (cse_reg_info_table_size < 2048)
763 /* Compute a new size that is a power of 2 and no smaller
764 than the large of NREGS and 64. */
765 new_size = (cse_reg_info_table_size
766 ? cse_reg_info_table_size : 64);
768 while (new_size < nregs)
769 new_size *= 2;
771 else
773 /* If we need a big table, allocate just enough to hold
774 NREGS registers. */
775 new_size = nregs;
778 /* Reallocate the table with NEW_SIZE entries. */
779 free (cse_reg_info_table);
780 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
781 cse_reg_info_table_size = new_size;
782 cse_reg_info_table_first_uninitialized = 0;
785 /* Do we have all of the first NREGS entries initialized? */
786 if (cse_reg_info_table_first_uninitialized < nregs)
788 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
789 unsigned int i;
791 /* Put the old timestamp on newly allocated entries so that they
792 will all be considered out of date. We do not touch those
793 entries beyond the first NREGS entries to be nice to the
794 virtual memory. */
795 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
796 cse_reg_info_table[i].timestamp = old_timestamp;
798 cse_reg_info_table_first_uninitialized = nregs;
802 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
804 static void
805 get_cse_reg_info_1 (unsigned int regno)
807 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
808 entry will be considered to have been initialized. */
809 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
811 /* Initialize the rest of the entry. */
812 cse_reg_info_table[regno].reg_tick = 1;
813 cse_reg_info_table[regno].reg_in_table = -1;
814 cse_reg_info_table[regno].subreg_ticked = -1;
815 cse_reg_info_table[regno].reg_qty = -regno - 1;
818 /* Find a cse_reg_info entry for REGNO. */
820 static inline struct cse_reg_info *
821 get_cse_reg_info (unsigned int regno)
823 struct cse_reg_info *p = &cse_reg_info_table[regno];
825 /* If this entry has not been initialized, go ahead and initialize
826 it. */
827 if (p->timestamp != cse_reg_info_timestamp)
828 get_cse_reg_info_1 (regno);
830 return p;
833 /* Clear the hash table and initialize each register with its own quantity,
834 for a new basic block. */
836 static void
837 new_basic_block (void)
839 int i;
841 next_qty = 0;
843 /* Invalidate cse_reg_info_table. */
844 cse_reg_info_timestamp++;
846 /* Clear out hash table state for this pass. */
847 CLEAR_HARD_REG_SET (hard_regs_in_table);
849 /* The per-quantity values used to be initialized here, but it is
850 much faster to initialize each as it is made in `make_new_qty'. */
852 for (i = 0; i < HASH_SIZE; i++)
854 struct table_elt *first;
856 first = table[i];
857 if (first != NULL)
859 struct table_elt *last = first;
861 table[i] = NULL;
863 while (last->next_same_hash != NULL)
864 last = last->next_same_hash;
866 /* Now relink this hash entire chain into
867 the free element list. */
869 last->next_same_hash = free_element_chain;
870 free_element_chain = first;
874 prev_insn_cc0 = 0;
877 /* Say that register REG contains a quantity in mode MODE not in any
878 register before and initialize that quantity. */
880 static void
881 make_new_qty (unsigned int reg, machine_mode mode)
883 int q;
884 struct qty_table_elem *ent;
885 struct reg_eqv_elem *eqv;
887 gcc_assert (next_qty < max_qty);
889 q = REG_QTY (reg) = next_qty++;
890 ent = &qty_table[q];
891 ent->first_reg = reg;
892 ent->last_reg = reg;
893 ent->mode = mode;
894 ent->const_rtx = ent->const_insn = NULL;
895 ent->comparison_code = UNKNOWN;
897 eqv = &reg_eqv_table[reg];
898 eqv->next = eqv->prev = -1;
901 /* Make reg NEW equivalent to reg OLD.
902 OLD is not changing; NEW is. */
904 static void
905 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
907 unsigned int lastr, firstr;
908 int q = REG_QTY (old_reg);
909 struct qty_table_elem *ent;
911 ent = &qty_table[q];
913 /* Nothing should become eqv until it has a "non-invalid" qty number. */
914 gcc_assert (REGNO_QTY_VALID_P (old_reg));
916 REG_QTY (new_reg) = q;
917 firstr = ent->first_reg;
918 lastr = ent->last_reg;
920 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
921 hard regs. Among pseudos, if NEW will live longer than any other reg
922 of the same qty, and that is beyond the current basic block,
923 make it the new canonical replacement for this qty. */
924 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
925 /* Certain fixed registers might be of the class NO_REGS. This means
926 that not only can they not be allocated by the compiler, but
927 they cannot be used in substitutions or canonicalizations
928 either. */
929 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
930 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
931 || (new_reg >= FIRST_PSEUDO_REGISTER
932 && (firstr < FIRST_PSEUDO_REGISTER
933 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
934 && !bitmap_bit_p (cse_ebb_live_out, firstr))
935 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
936 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
938 reg_eqv_table[firstr].prev = new_reg;
939 reg_eqv_table[new_reg].next = firstr;
940 reg_eqv_table[new_reg].prev = -1;
941 ent->first_reg = new_reg;
943 else
945 /* If NEW is a hard reg (known to be non-fixed), insert at end.
946 Otherwise, insert before any non-fixed hard regs that are at the
947 end. Registers of class NO_REGS cannot be used as an
948 equivalent for anything. */
949 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
950 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
951 && new_reg >= FIRST_PSEUDO_REGISTER)
952 lastr = reg_eqv_table[lastr].prev;
953 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
954 if (reg_eqv_table[lastr].next >= 0)
955 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
956 else
957 qty_table[q].last_reg = new_reg;
958 reg_eqv_table[lastr].next = new_reg;
959 reg_eqv_table[new_reg].prev = lastr;
963 /* Remove REG from its equivalence class. */
965 static void
966 delete_reg_equiv (unsigned int reg)
968 struct qty_table_elem *ent;
969 int q = REG_QTY (reg);
970 int p, n;
972 /* If invalid, do nothing. */
973 if (! REGNO_QTY_VALID_P (reg))
974 return;
976 ent = &qty_table[q];
978 p = reg_eqv_table[reg].prev;
979 n = reg_eqv_table[reg].next;
981 if (n != -1)
982 reg_eqv_table[n].prev = p;
983 else
984 ent->last_reg = p;
985 if (p != -1)
986 reg_eqv_table[p].next = n;
987 else
988 ent->first_reg = n;
990 REG_QTY (reg) = -reg - 1;
993 /* Remove any invalid expressions from the hash table
994 that refer to any of the registers contained in expression X.
996 Make sure that newly inserted references to those registers
997 as subexpressions will be considered valid.
999 mention_regs is not called when a register itself
1000 is being stored in the table.
1002 Return 1 if we have done something that may have changed the hash code
1003 of X. */
1005 static int
1006 mention_regs (rtx x)
1008 enum rtx_code code;
1009 int i, j;
1010 const char *fmt;
1011 int changed = 0;
1013 if (x == 0)
1014 return 0;
1016 code = GET_CODE (x);
1017 if (code == REG)
1019 unsigned int regno = REGNO (x);
1020 unsigned int endregno = END_REGNO (x);
1021 unsigned int i;
1023 for (i = regno; i < endregno; i++)
1025 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1026 remove_invalid_refs (i);
1028 REG_IN_TABLE (i) = REG_TICK (i);
1029 SUBREG_TICKED (i) = -1;
1032 return 0;
1035 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1036 pseudo if they don't use overlapping words. We handle only pseudos
1037 here for simplicity. */
1038 if (code == SUBREG && REG_P (SUBREG_REG (x))
1039 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1041 unsigned int i = REGNO (SUBREG_REG (x));
1043 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1045 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1046 the last store to this register really stored into this
1047 subreg, then remove the memory of this subreg.
1048 Otherwise, remove any memory of the entire register and
1049 all its subregs from the table. */
1050 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1051 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1052 remove_invalid_refs (i);
1053 else
1054 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1057 REG_IN_TABLE (i) = REG_TICK (i);
1058 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1059 return 0;
1062 /* If X is a comparison or a COMPARE and either operand is a register
1063 that does not have a quantity, give it one. This is so that a later
1064 call to record_jump_equiv won't cause X to be assigned a different
1065 hash code and not found in the table after that call.
1067 It is not necessary to do this here, since rehash_using_reg can
1068 fix up the table later, but doing this here eliminates the need to
1069 call that expensive function in the most common case where the only
1070 use of the register is in the comparison. */
1072 if (code == COMPARE || COMPARISON_P (x))
1074 if (REG_P (XEXP (x, 0))
1075 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1076 if (insert_regs (XEXP (x, 0), NULL, 0))
1078 rehash_using_reg (XEXP (x, 0));
1079 changed = 1;
1082 if (REG_P (XEXP (x, 1))
1083 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1084 if (insert_regs (XEXP (x, 1), NULL, 0))
1086 rehash_using_reg (XEXP (x, 1));
1087 changed = 1;
1091 fmt = GET_RTX_FORMAT (code);
1092 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1093 if (fmt[i] == 'e')
1094 changed |= mention_regs (XEXP (x, i));
1095 else if (fmt[i] == 'E')
1096 for (j = 0; j < XVECLEN (x, i); j++)
1097 changed |= mention_regs (XVECEXP (x, i, j));
1099 return changed;
1102 /* Update the register quantities for inserting X into the hash table
1103 with a value equivalent to CLASSP.
1104 (If the class does not contain a REG, it is irrelevant.)
1105 If MODIFIED is nonzero, X is a destination; it is being modified.
1106 Note that delete_reg_equiv should be called on a register
1107 before insert_regs is done on that register with MODIFIED != 0.
1109 Nonzero value means that elements of reg_qty have changed
1110 so X's hash code may be different. */
1112 static int
1113 insert_regs (rtx x, struct table_elt *classp, int modified)
1115 if (REG_P (x))
1117 unsigned int regno = REGNO (x);
1118 int qty_valid;
1120 /* If REGNO is in the equivalence table already but is of the
1121 wrong mode for that equivalence, don't do anything here. */
1123 qty_valid = REGNO_QTY_VALID_P (regno);
1124 if (qty_valid)
1126 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1128 if (ent->mode != GET_MODE (x))
1129 return 0;
1132 if (modified || ! qty_valid)
1134 if (classp)
1135 for (classp = classp->first_same_value;
1136 classp != 0;
1137 classp = classp->next_same_value)
1138 if (REG_P (classp->exp)
1139 && GET_MODE (classp->exp) == GET_MODE (x))
1141 unsigned c_regno = REGNO (classp->exp);
1143 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1145 /* Suppose that 5 is hard reg and 100 and 101 are
1146 pseudos. Consider
1148 (set (reg:si 100) (reg:si 5))
1149 (set (reg:si 5) (reg:si 100))
1150 (set (reg:di 101) (reg:di 5))
1152 We would now set REG_QTY (101) = REG_QTY (5), but the
1153 entry for 5 is in SImode. When we use this later in
1154 copy propagation, we get the register in wrong mode. */
1155 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1156 continue;
1158 make_regs_eqv (regno, c_regno);
1159 return 1;
1162 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1163 than REG_IN_TABLE to find out if there was only a single preceding
1164 invalidation - for the SUBREG - or another one, which would be
1165 for the full register. However, if we find here that REG_TICK
1166 indicates that the register is invalid, it means that it has
1167 been invalidated in a separate operation. The SUBREG might be used
1168 now (then this is a recursive call), or we might use the full REG
1169 now and a SUBREG of it later. So bump up REG_TICK so that
1170 mention_regs will do the right thing. */
1171 if (! modified
1172 && REG_IN_TABLE (regno) >= 0
1173 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1174 REG_TICK (regno)++;
1175 make_new_qty (regno, GET_MODE (x));
1176 return 1;
1179 return 0;
1182 /* If X is a SUBREG, we will likely be inserting the inner register in the
1183 table. If that register doesn't have an assigned quantity number at
1184 this point but does later, the insertion that we will be doing now will
1185 not be accessible because its hash code will have changed. So assign
1186 a quantity number now. */
1188 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1189 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1191 insert_regs (SUBREG_REG (x), NULL, 0);
1192 mention_regs (x);
1193 return 1;
1195 else
1196 return mention_regs (x);
1200 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1201 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1202 CST is equal to an anchor. */
1204 static bool
1205 compute_const_anchors (rtx cst,
1206 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1207 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1209 HOST_WIDE_INT n = INTVAL (cst);
1211 *lower_base = n & ~(targetm.const_anchor - 1);
1212 if (*lower_base == n)
1213 return false;
1215 *upper_base =
1216 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1217 *upper_offs = n - *upper_base;
1218 *lower_offs = n - *lower_base;
1219 return true;
1222 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1224 static void
1225 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1226 machine_mode mode)
1228 struct table_elt *elt;
1229 unsigned hash;
1230 rtx anchor_exp;
1231 rtx exp;
1233 anchor_exp = GEN_INT (anchor);
1234 hash = HASH (anchor_exp, mode);
1235 elt = lookup (anchor_exp, hash, mode);
1236 if (!elt)
1237 elt = insert (anchor_exp, NULL, hash, mode);
1239 exp = plus_constant (mode, reg, offs);
1240 /* REG has just been inserted and the hash codes recomputed. */
1241 mention_regs (exp);
1242 hash = HASH (exp, mode);
1244 /* Use the cost of the register rather than the whole expression. When
1245 looking up constant anchors we will further offset the corresponding
1246 expression therefore it does not make sense to prefer REGs over
1247 reg-immediate additions. Prefer instead the oldest expression. Also
1248 don't prefer pseudos over hard regs so that we derive constants in
1249 argument registers from other argument registers rather than from the
1250 original pseudo that was used to synthesize the constant. */
1251 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1254 /* The constant CST is equivalent to the register REG. Create
1255 equivalences between the two anchors of CST and the corresponding
1256 register-offset expressions using REG. */
1258 static void
1259 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1261 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1263 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1264 &upper_base, &upper_offs))
1265 return;
1267 /* Ignore anchors of value 0. Constants accessible from zero are
1268 simple. */
1269 if (lower_base != 0)
1270 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1272 if (upper_base != 0)
1273 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1276 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1277 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1278 valid expression. Return the cheapest and oldest of such expressions. In
1279 *OLD, return how old the resulting expression is compared to the other
1280 equivalent expressions. */
1282 static rtx
1283 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1284 unsigned *old)
1286 struct table_elt *elt;
1287 unsigned idx;
1288 struct table_elt *match_elt;
1289 rtx match;
1291 /* Find the cheapest and *oldest* expression to maximize the chance of
1292 reusing the same pseudo. */
1294 match_elt = NULL;
1295 match = NULL_RTX;
1296 for (elt = anchor_elt->first_same_value, idx = 0;
1297 elt;
1298 elt = elt->next_same_value, idx++)
1300 if (match_elt && CHEAPER (match_elt, elt))
1301 return match;
1303 if (REG_P (elt->exp)
1304 || (GET_CODE (elt->exp) == PLUS
1305 && REG_P (XEXP (elt->exp, 0))
1306 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1308 rtx x;
1310 /* Ignore expressions that are no longer valid. */
1311 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1312 continue;
1314 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1315 if (REG_P (x)
1316 || (GET_CODE (x) == PLUS
1317 && IN_RANGE (INTVAL (XEXP (x, 1)),
1318 -targetm.const_anchor,
1319 targetm.const_anchor - 1)))
1321 match = x;
1322 match_elt = elt;
1323 *old = idx;
1328 return match;
1331 /* Try to express the constant SRC_CONST using a register+offset expression
1332 derived from a constant anchor. Return it if successful or NULL_RTX,
1333 otherwise. */
1335 static rtx
1336 try_const_anchors (rtx src_const, machine_mode mode)
1338 struct table_elt *lower_elt, *upper_elt;
1339 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1340 rtx lower_anchor_rtx, upper_anchor_rtx;
1341 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1342 unsigned lower_old, upper_old;
1344 /* CONST_INT is used for CC modes, but we should leave those alone. */
1345 if (GET_MODE_CLASS (mode) == MODE_CC)
1346 return NULL_RTX;
1348 gcc_assert (SCALAR_INT_MODE_P (mode));
1349 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1350 &upper_base, &upper_offs))
1351 return NULL_RTX;
1353 lower_anchor_rtx = GEN_INT (lower_base);
1354 upper_anchor_rtx = GEN_INT (upper_base);
1355 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1356 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1358 if (lower_elt)
1359 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1360 if (upper_elt)
1361 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1363 if (!lower_exp)
1364 return upper_exp;
1365 if (!upper_exp)
1366 return lower_exp;
1368 /* Return the older expression. */
1369 return (upper_old > lower_old ? upper_exp : lower_exp);
1372 /* Look in or update the hash table. */
1374 /* Remove table element ELT from use in the table.
1375 HASH is its hash code, made using the HASH macro.
1376 It's an argument because often that is known in advance
1377 and we save much time not recomputing it. */
1379 static void
1380 remove_from_table (struct table_elt *elt, unsigned int hash)
1382 if (elt == 0)
1383 return;
1385 /* Mark this element as removed. See cse_insn. */
1386 elt->first_same_value = 0;
1388 /* Remove the table element from its equivalence class. */
1391 struct table_elt *prev = elt->prev_same_value;
1392 struct table_elt *next = elt->next_same_value;
1394 if (next)
1395 next->prev_same_value = prev;
1397 if (prev)
1398 prev->next_same_value = next;
1399 else
1401 struct table_elt *newfirst = next;
1402 while (next)
1404 next->first_same_value = newfirst;
1405 next = next->next_same_value;
1410 /* Remove the table element from its hash bucket. */
1413 struct table_elt *prev = elt->prev_same_hash;
1414 struct table_elt *next = elt->next_same_hash;
1416 if (next)
1417 next->prev_same_hash = prev;
1419 if (prev)
1420 prev->next_same_hash = next;
1421 else if (table[hash] == elt)
1422 table[hash] = next;
1423 else
1425 /* This entry is not in the proper hash bucket. This can happen
1426 when two classes were merged by `merge_equiv_classes'. Search
1427 for the hash bucket that it heads. This happens only very
1428 rarely, so the cost is acceptable. */
1429 for (hash = 0; hash < HASH_SIZE; hash++)
1430 if (table[hash] == elt)
1431 table[hash] = next;
1435 /* Remove the table element from its related-value circular chain. */
1437 if (elt->related_value != 0 && elt->related_value != elt)
1439 struct table_elt *p = elt->related_value;
1441 while (p->related_value != elt)
1442 p = p->related_value;
1443 p->related_value = elt->related_value;
1444 if (p->related_value == p)
1445 p->related_value = 0;
1448 /* Now add it to the free element chain. */
1449 elt->next_same_hash = free_element_chain;
1450 free_element_chain = elt;
1453 /* Same as above, but X is a pseudo-register. */
1455 static void
1456 remove_pseudo_from_table (rtx x, unsigned int hash)
1458 struct table_elt *elt;
1460 /* Because a pseudo-register can be referenced in more than one
1461 mode, we might have to remove more than one table entry. */
1462 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1463 remove_from_table (elt, hash);
1466 /* Look up X in the hash table and return its table element,
1467 or 0 if X is not in the table.
1469 MODE is the machine-mode of X, or if X is an integer constant
1470 with VOIDmode then MODE is the mode with which X will be used.
1472 Here we are satisfied to find an expression whose tree structure
1473 looks like X. */
1475 static struct table_elt *
1476 lookup (rtx x, unsigned int hash, machine_mode mode)
1478 struct table_elt *p;
1480 for (p = table[hash]; p; p = p->next_same_hash)
1481 if (mode == p->mode && ((x == p->exp && REG_P (x))
1482 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1483 return p;
1485 return 0;
1488 /* Like `lookup' but don't care whether the table element uses invalid regs.
1489 Also ignore discrepancies in the machine mode of a register. */
1491 static struct table_elt *
1492 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1494 struct table_elt *p;
1496 if (REG_P (x))
1498 unsigned int regno = REGNO (x);
1500 /* Don't check the machine mode when comparing registers;
1501 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1502 for (p = table[hash]; p; p = p->next_same_hash)
1503 if (REG_P (p->exp)
1504 && REGNO (p->exp) == regno)
1505 return p;
1507 else
1509 for (p = table[hash]; p; p = p->next_same_hash)
1510 if (mode == p->mode
1511 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1512 return p;
1515 return 0;
1518 /* Look for an expression equivalent to X and with code CODE.
1519 If one is found, return that expression. */
1521 static rtx
1522 lookup_as_function (rtx x, enum rtx_code code)
1524 struct table_elt *p
1525 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1527 if (p == 0)
1528 return 0;
1530 for (p = p->first_same_value; p; p = p->next_same_value)
1531 if (GET_CODE (p->exp) == code
1532 /* Make sure this is a valid entry in the table. */
1533 && exp_equiv_p (p->exp, p->exp, 1, false))
1534 return p->exp;
1536 return 0;
1539 /* Insert X in the hash table, assuming HASH is its hash code and
1540 CLASSP is an element of the class it should go in (or 0 if a new
1541 class should be made). COST is the code of X and reg_cost is the
1542 cost of registers in X. It is inserted at the proper position to
1543 keep the class in the order cheapest first.
1545 MODE is the machine-mode of X, or if X is an integer constant
1546 with VOIDmode then MODE is the mode with which X will be used.
1548 For elements of equal cheapness, the most recent one
1549 goes in front, except that the first element in the list
1550 remains first unless a cheaper element is added. The order of
1551 pseudo-registers does not matter, as canon_reg will be called to
1552 find the cheapest when a register is retrieved from the table.
1554 The in_memory field in the hash table element is set to 0.
1555 The caller must set it nonzero if appropriate.
1557 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1558 and if insert_regs returns a nonzero value
1559 you must then recompute its hash code before calling here.
1561 If necessary, update table showing constant values of quantities. */
1563 static struct table_elt *
1564 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1565 machine_mode mode, int cost, int reg_cost)
1567 struct table_elt *elt;
1569 /* If X is a register and we haven't made a quantity for it,
1570 something is wrong. */
1571 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1573 /* If X is a hard register, show it is being put in the table. */
1574 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1575 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1577 /* Put an element for X into the right hash bucket. */
1579 elt = free_element_chain;
1580 if (elt)
1581 free_element_chain = elt->next_same_hash;
1582 else
1583 elt = XNEW (struct table_elt);
1585 elt->exp = x;
1586 elt->canon_exp = NULL_RTX;
1587 elt->cost = cost;
1588 elt->regcost = reg_cost;
1589 elt->next_same_value = 0;
1590 elt->prev_same_value = 0;
1591 elt->next_same_hash = table[hash];
1592 elt->prev_same_hash = 0;
1593 elt->related_value = 0;
1594 elt->in_memory = 0;
1595 elt->mode = mode;
1596 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1598 if (table[hash])
1599 table[hash]->prev_same_hash = elt;
1600 table[hash] = elt;
1602 /* Put it into the proper value-class. */
1603 if (classp)
1605 classp = classp->first_same_value;
1606 if (CHEAPER (elt, classp))
1607 /* Insert at the head of the class. */
1609 struct table_elt *p;
1610 elt->next_same_value = classp;
1611 classp->prev_same_value = elt;
1612 elt->first_same_value = elt;
1614 for (p = classp; p; p = p->next_same_value)
1615 p->first_same_value = elt;
1617 else
1619 /* Insert not at head of the class. */
1620 /* Put it after the last element cheaper than X. */
1621 struct table_elt *p, *next;
1623 for (p = classp;
1624 (next = p->next_same_value) && CHEAPER (next, elt);
1625 p = next)
1628 /* Put it after P and before NEXT. */
1629 elt->next_same_value = next;
1630 if (next)
1631 next->prev_same_value = elt;
1633 elt->prev_same_value = p;
1634 p->next_same_value = elt;
1635 elt->first_same_value = classp;
1638 else
1639 elt->first_same_value = elt;
1641 /* If this is a constant being set equivalent to a register or a register
1642 being set equivalent to a constant, note the constant equivalence.
1644 If this is a constant, it cannot be equivalent to a different constant,
1645 and a constant is the only thing that can be cheaper than a register. So
1646 we know the register is the head of the class (before the constant was
1647 inserted).
1649 If this is a register that is not already known equivalent to a
1650 constant, we must check the entire class.
1652 If this is a register that is already known equivalent to an insn,
1653 update the qtys `const_insn' to show that `this_insn' is the latest
1654 insn making that quantity equivalent to the constant. */
1656 if (elt->is_const && classp && REG_P (classp->exp)
1657 && !REG_P (x))
1659 int exp_q = REG_QTY (REGNO (classp->exp));
1660 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1662 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1663 exp_ent->const_insn = this_insn;
1666 else if (REG_P (x)
1667 && classp
1668 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1669 && ! elt->is_const)
1671 struct table_elt *p;
1673 for (p = classp; p != 0; p = p->next_same_value)
1675 if (p->is_const && !REG_P (p->exp))
1677 int x_q = REG_QTY (REGNO (x));
1678 struct qty_table_elem *x_ent = &qty_table[x_q];
1680 x_ent->const_rtx
1681 = gen_lowpart (GET_MODE (x), p->exp);
1682 x_ent->const_insn = this_insn;
1683 break;
1688 else if (REG_P (x)
1689 && qty_table[REG_QTY (REGNO (x))].const_rtx
1690 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1691 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1693 /* If this is a constant with symbolic value,
1694 and it has a term with an explicit integer value,
1695 link it up with related expressions. */
1696 if (GET_CODE (x) == CONST)
1698 rtx subexp = get_related_value (x);
1699 unsigned subhash;
1700 struct table_elt *subelt, *subelt_prev;
1702 if (subexp != 0)
1704 /* Get the integer-free subexpression in the hash table. */
1705 subhash = SAFE_HASH (subexp, mode);
1706 subelt = lookup (subexp, subhash, mode);
1707 if (subelt == 0)
1708 subelt = insert (subexp, NULL, subhash, mode);
1709 /* Initialize SUBELT's circular chain if it has none. */
1710 if (subelt->related_value == 0)
1711 subelt->related_value = subelt;
1712 /* Find the element in the circular chain that precedes SUBELT. */
1713 subelt_prev = subelt;
1714 while (subelt_prev->related_value != subelt)
1715 subelt_prev = subelt_prev->related_value;
1716 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1717 This way the element that follows SUBELT is the oldest one. */
1718 elt->related_value = subelt_prev->related_value;
1719 subelt_prev->related_value = elt;
1723 return elt;
1726 /* Wrap insert_with_costs by passing the default costs. */
1728 static struct table_elt *
1729 insert (rtx x, struct table_elt *classp, unsigned int hash,
1730 machine_mode mode)
1732 return
1733 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1737 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1738 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1739 the two classes equivalent.
1741 CLASS1 will be the surviving class; CLASS2 should not be used after this
1742 call.
1744 Any invalid entries in CLASS2 will not be copied. */
1746 static void
1747 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1749 struct table_elt *elt, *next, *new_elt;
1751 /* Ensure we start with the head of the classes. */
1752 class1 = class1->first_same_value;
1753 class2 = class2->first_same_value;
1755 /* If they were already equal, forget it. */
1756 if (class1 == class2)
1757 return;
1759 for (elt = class2; elt; elt = next)
1761 unsigned int hash;
1762 rtx exp = elt->exp;
1763 machine_mode mode = elt->mode;
1765 next = elt->next_same_value;
1767 /* Remove old entry, make a new one in CLASS1's class.
1768 Don't do this for invalid entries as we cannot find their
1769 hash code (it also isn't necessary). */
1770 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1772 bool need_rehash = false;
1774 hash_arg_in_memory = 0;
1775 hash = HASH (exp, mode);
1777 if (REG_P (exp))
1779 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1780 delete_reg_equiv (REGNO (exp));
1783 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1784 remove_pseudo_from_table (exp, hash);
1785 else
1786 remove_from_table (elt, hash);
1788 if (insert_regs (exp, class1, 0) || need_rehash)
1790 rehash_using_reg (exp);
1791 hash = HASH (exp, mode);
1793 new_elt = insert (exp, class1, hash, mode);
1794 new_elt->in_memory = hash_arg_in_memory;
1795 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1796 new_elt->cost = MAX_COST;
1801 /* Flush the entire hash table. */
1803 static void
1804 flush_hash_table (void)
1806 int i;
1807 struct table_elt *p;
1809 for (i = 0; i < HASH_SIZE; i++)
1810 for (p = table[i]; p; p = table[i])
1812 /* Note that invalidate can remove elements
1813 after P in the current hash chain. */
1814 if (REG_P (p->exp))
1815 invalidate (p->exp, VOIDmode);
1816 else
1817 remove_from_table (p, i);
1821 /* Check whether an anti dependence exists between X and EXP. MODE and
1822 ADDR are as for canon_anti_dependence. */
1824 static bool
1825 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1827 subrtx_iterator::array_type array;
1828 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1830 const_rtx x = *iter;
1831 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1832 return true;
1834 return false;
1837 /* Remove from the hash table, or mark as invalid, all expressions whose
1838 values could be altered by storing in X. X is a register, a subreg, or
1839 a memory reference with nonvarying address (because, when a memory
1840 reference with a varying address is stored in, all memory references are
1841 removed by invalidate_memory so specific invalidation is superfluous).
1842 FULL_MODE, if not VOIDmode, indicates that this much should be
1843 invalidated instead of just the amount indicated by the mode of X. This
1844 is only used for bitfield stores into memory.
1846 A nonvarying address may be just a register or just a symbol reference,
1847 or it may be either of those plus a numeric offset. */
1849 static void
1850 invalidate (rtx x, machine_mode full_mode)
1852 int i;
1853 struct table_elt *p;
1854 rtx addr;
1856 switch (GET_CODE (x))
1858 case REG:
1860 /* If X is a register, dependencies on its contents are recorded
1861 through the qty number mechanism. Just change the qty number of
1862 the register, mark it as invalid for expressions that refer to it,
1863 and remove it itself. */
1864 unsigned int regno = REGNO (x);
1865 unsigned int hash = HASH (x, GET_MODE (x));
1867 /* Remove REGNO from any quantity list it might be on and indicate
1868 that its value might have changed. If it is a pseudo, remove its
1869 entry from the hash table.
1871 For a hard register, we do the first two actions above for any
1872 additional hard registers corresponding to X. Then, if any of these
1873 registers are in the table, we must remove any REG entries that
1874 overlap these registers. */
1876 delete_reg_equiv (regno);
1877 REG_TICK (regno)++;
1878 SUBREG_TICKED (regno) = -1;
1880 if (regno >= FIRST_PSEUDO_REGISTER)
1881 remove_pseudo_from_table (x, hash);
1882 else
1884 HOST_WIDE_INT in_table
1885 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1886 unsigned int endregno = END_REGNO (x);
1887 unsigned int tregno, tendregno, rn;
1888 struct table_elt *p, *next;
1890 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1892 for (rn = regno + 1; rn < endregno; rn++)
1894 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1895 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1896 delete_reg_equiv (rn);
1897 REG_TICK (rn)++;
1898 SUBREG_TICKED (rn) = -1;
1901 if (in_table)
1902 for (hash = 0; hash < HASH_SIZE; hash++)
1903 for (p = table[hash]; p; p = next)
1905 next = p->next_same_hash;
1907 if (!REG_P (p->exp)
1908 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1909 continue;
1911 tregno = REGNO (p->exp);
1912 tendregno = END_REGNO (p->exp);
1913 if (tendregno > regno && tregno < endregno)
1914 remove_from_table (p, hash);
1918 return;
1920 case SUBREG:
1921 invalidate (SUBREG_REG (x), VOIDmode);
1922 return;
1924 case PARALLEL:
1925 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1926 invalidate (XVECEXP (x, 0, i), VOIDmode);
1927 return;
1929 case EXPR_LIST:
1930 /* This is part of a disjoint return value; extract the location in
1931 question ignoring the offset. */
1932 invalidate (XEXP (x, 0), VOIDmode);
1933 return;
1935 case MEM:
1936 addr = canon_rtx (get_addr (XEXP (x, 0)));
1937 /* Calculate the canonical version of X here so that
1938 true_dependence doesn't generate new RTL for X on each call. */
1939 x = canon_rtx (x);
1941 /* Remove all hash table elements that refer to overlapping pieces of
1942 memory. */
1943 if (full_mode == VOIDmode)
1944 full_mode = GET_MODE (x);
1946 for (i = 0; i < HASH_SIZE; i++)
1948 struct table_elt *next;
1950 for (p = table[i]; p; p = next)
1952 next = p->next_same_hash;
1953 if (p->in_memory)
1955 /* Just canonicalize the expression once;
1956 otherwise each time we call invalidate
1957 true_dependence will canonicalize the
1958 expression again. */
1959 if (!p->canon_exp)
1960 p->canon_exp = canon_rtx (p->exp);
1961 if (check_dependence (p->canon_exp, x, full_mode, addr))
1962 remove_from_table (p, i);
1966 return;
1968 default:
1969 gcc_unreachable ();
1973 /* Invalidate DEST. Used when DEST is not going to be added
1974 into the hash table for some reason, e.g. do_not_record
1975 flagged on it. */
1977 static void
1978 invalidate_dest (rtx dest)
1980 if (REG_P (dest)
1981 || GET_CODE (dest) == SUBREG
1982 || MEM_P (dest))
1983 invalidate (dest, VOIDmode);
1984 else if (GET_CODE (dest) == STRICT_LOW_PART
1985 || GET_CODE (dest) == ZERO_EXTRACT)
1986 invalidate (XEXP (dest, 0), GET_MODE (dest));
1989 /* Remove all expressions that refer to register REGNO,
1990 since they are already invalid, and we are about to
1991 mark that register valid again and don't want the old
1992 expressions to reappear as valid. */
1994 static void
1995 remove_invalid_refs (unsigned int regno)
1997 unsigned int i;
1998 struct table_elt *p, *next;
2000 for (i = 0; i < HASH_SIZE; i++)
2001 for (p = table[i]; p; p = next)
2003 next = p->next_same_hash;
2004 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
2005 remove_from_table (p, i);
2009 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2010 and mode MODE. */
2011 static void
2012 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2013 machine_mode mode)
2015 unsigned int i;
2016 struct table_elt *p, *next;
2017 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2019 for (i = 0; i < HASH_SIZE; i++)
2020 for (p = table[i]; p; p = next)
2022 rtx exp = p->exp;
2023 next = p->next_same_hash;
2025 if (!REG_P (exp)
2026 && (GET_CODE (exp) != SUBREG
2027 || !REG_P (SUBREG_REG (exp))
2028 || REGNO (SUBREG_REG (exp)) != regno
2029 || (((SUBREG_BYTE (exp)
2030 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2031 && SUBREG_BYTE (exp) <= end))
2032 && refers_to_regno_p (regno, p->exp))
2033 remove_from_table (p, i);
2037 /* Recompute the hash codes of any valid entries in the hash table that
2038 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2040 This is called when we make a jump equivalence. */
2042 static void
2043 rehash_using_reg (rtx x)
2045 unsigned int i;
2046 struct table_elt *p, *next;
2047 unsigned hash;
2049 if (GET_CODE (x) == SUBREG)
2050 x = SUBREG_REG (x);
2052 /* If X is not a register or if the register is known not to be in any
2053 valid entries in the table, we have no work to do. */
2055 if (!REG_P (x)
2056 || REG_IN_TABLE (REGNO (x)) < 0
2057 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2058 return;
2060 /* Scan all hash chains looking for valid entries that mention X.
2061 If we find one and it is in the wrong hash chain, move it. */
2063 for (i = 0; i < HASH_SIZE; i++)
2064 for (p = table[i]; p; p = next)
2066 next = p->next_same_hash;
2067 if (reg_mentioned_p (x, p->exp)
2068 && exp_equiv_p (p->exp, p->exp, 1, false)
2069 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2071 if (p->next_same_hash)
2072 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2074 if (p->prev_same_hash)
2075 p->prev_same_hash->next_same_hash = p->next_same_hash;
2076 else
2077 table[i] = p->next_same_hash;
2079 p->next_same_hash = table[hash];
2080 p->prev_same_hash = 0;
2081 if (table[hash])
2082 table[hash]->prev_same_hash = p;
2083 table[hash] = p;
2088 /* Remove from the hash table any expression that is a call-clobbered
2089 register. Also update their TICK values. */
2091 static void
2092 invalidate_for_call (void)
2094 unsigned int regno, endregno;
2095 unsigned int i;
2096 unsigned hash;
2097 struct table_elt *p, *next;
2098 int in_table = 0;
2099 hard_reg_set_iterator hrsi;
2101 /* Go through all the hard registers. For each that is clobbered in
2102 a CALL_INSN, remove the register from quantity chains and update
2103 reg_tick if defined. Also see if any of these registers is currently
2104 in the table. */
2105 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2107 delete_reg_equiv (regno);
2108 if (REG_TICK (regno) >= 0)
2110 REG_TICK (regno)++;
2111 SUBREG_TICKED (regno) = -1;
2113 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2116 /* In the case where we have no call-clobbered hard registers in the
2117 table, we are done. Otherwise, scan the table and remove any
2118 entry that overlaps a call-clobbered register. */
2120 if (in_table)
2121 for (hash = 0; hash < HASH_SIZE; hash++)
2122 for (p = table[hash]; p; p = next)
2124 next = p->next_same_hash;
2126 if (!REG_P (p->exp)
2127 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2128 continue;
2130 regno = REGNO (p->exp);
2131 endregno = END_REGNO (p->exp);
2133 for (i = regno; i < endregno; i++)
2134 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2136 remove_from_table (p, hash);
2137 break;
2142 /* Given an expression X of type CONST,
2143 and ELT which is its table entry (or 0 if it
2144 is not in the hash table),
2145 return an alternate expression for X as a register plus integer.
2146 If none can be found, return 0. */
2148 static rtx
2149 use_related_value (rtx x, struct table_elt *elt)
2151 struct table_elt *relt = 0;
2152 struct table_elt *p, *q;
2153 HOST_WIDE_INT offset;
2155 /* First, is there anything related known?
2156 If we have a table element, we can tell from that.
2157 Otherwise, must look it up. */
2159 if (elt != 0 && elt->related_value != 0)
2160 relt = elt;
2161 else if (elt == 0 && GET_CODE (x) == CONST)
2163 rtx subexp = get_related_value (x);
2164 if (subexp != 0)
2165 relt = lookup (subexp,
2166 SAFE_HASH (subexp, GET_MODE (subexp)),
2167 GET_MODE (subexp));
2170 if (relt == 0)
2171 return 0;
2173 /* Search all related table entries for one that has an
2174 equivalent register. */
2176 p = relt;
2177 while (1)
2179 /* This loop is strange in that it is executed in two different cases.
2180 The first is when X is already in the table. Then it is searching
2181 the RELATED_VALUE list of X's class (RELT). The second case is when
2182 X is not in the table. Then RELT points to a class for the related
2183 value.
2185 Ensure that, whatever case we are in, that we ignore classes that have
2186 the same value as X. */
2188 if (rtx_equal_p (x, p->exp))
2189 q = 0;
2190 else
2191 for (q = p->first_same_value; q; q = q->next_same_value)
2192 if (REG_P (q->exp))
2193 break;
2195 if (q)
2196 break;
2198 p = p->related_value;
2200 /* We went all the way around, so there is nothing to be found.
2201 Alternatively, perhaps RELT was in the table for some other reason
2202 and it has no related values recorded. */
2203 if (p == relt || p == 0)
2204 break;
2207 if (q == 0)
2208 return 0;
2210 offset = (get_integer_term (x) - get_integer_term (p->exp));
2211 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2212 return plus_constant (q->mode, q->exp, offset);
2216 /* Hash a string. Just add its bytes up. */
2217 static inline unsigned
2218 hash_rtx_string (const char *ps)
2220 unsigned hash = 0;
2221 const unsigned char *p = (const unsigned char *) ps;
2223 if (p)
2224 while (*p)
2225 hash += *p++;
2227 return hash;
2230 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2231 When the callback returns true, we continue with the new rtx. */
2233 unsigned
2234 hash_rtx_cb (const_rtx x, machine_mode mode,
2235 int *do_not_record_p, int *hash_arg_in_memory_p,
2236 bool have_reg_qty, hash_rtx_callback_function cb)
2238 int i, j;
2239 unsigned hash = 0;
2240 enum rtx_code code;
2241 const char *fmt;
2242 machine_mode newmode;
2243 rtx newx;
2245 /* Used to turn recursion into iteration. We can't rely on GCC's
2246 tail-recursion elimination since we need to keep accumulating values
2247 in HASH. */
2248 repeat:
2249 if (x == 0)
2250 return hash;
2252 /* Invoke the callback first. */
2253 if (cb != NULL
2254 && ((*cb) (x, mode, &newx, &newmode)))
2256 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2257 hash_arg_in_memory_p, have_reg_qty, cb);
2258 return hash;
2261 code = GET_CODE (x);
2262 switch (code)
2264 case REG:
2266 unsigned int regno = REGNO (x);
2268 if (do_not_record_p && !reload_completed)
2270 /* On some machines, we can't record any non-fixed hard register,
2271 because extending its life will cause reload problems. We
2272 consider ap, fp, sp, gp to be fixed for this purpose.
2274 We also consider CCmode registers to be fixed for this purpose;
2275 failure to do so leads to failure to simplify 0<100 type of
2276 conditionals.
2278 On all machines, we can't record any global registers.
2279 Nor should we record any register that is in a small
2280 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2281 bool record;
2283 if (regno >= FIRST_PSEUDO_REGISTER)
2284 record = true;
2285 else if (x == frame_pointer_rtx
2286 || x == hard_frame_pointer_rtx
2287 || x == arg_pointer_rtx
2288 || x == stack_pointer_rtx
2289 || x == pic_offset_table_rtx)
2290 record = true;
2291 else if (global_regs[regno])
2292 record = false;
2293 else if (fixed_regs[regno])
2294 record = true;
2295 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2296 record = true;
2297 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2298 record = false;
2299 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2300 record = false;
2301 else
2302 record = true;
2304 if (!record)
2306 *do_not_record_p = 1;
2307 return 0;
2311 hash += ((unsigned int) REG << 7);
2312 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2313 return hash;
2316 /* We handle SUBREG of a REG specially because the underlying
2317 reg changes its hash value with every value change; we don't
2318 want to have to forget unrelated subregs when one subreg changes. */
2319 case SUBREG:
2321 if (REG_P (SUBREG_REG (x)))
2323 hash += (((unsigned int) SUBREG << 7)
2324 + REGNO (SUBREG_REG (x))
2325 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2326 return hash;
2328 break;
2331 case CONST_INT:
2332 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2333 + (unsigned int) INTVAL (x));
2334 return hash;
2336 case CONST_WIDE_INT:
2337 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2338 hash += CONST_WIDE_INT_ELT (x, i);
2339 return hash;
2341 case CONST_DOUBLE:
2342 /* This is like the general case, except that it only counts
2343 the integers representing the constant. */
2344 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2345 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2346 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2347 + (unsigned int) CONST_DOUBLE_HIGH (x));
2348 else
2349 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2350 return hash;
2352 case CONST_FIXED:
2353 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2354 hash += fixed_hash (CONST_FIXED_VALUE (x));
2355 return hash;
2357 case CONST_VECTOR:
2359 int units;
2360 rtx elt;
2362 units = CONST_VECTOR_NUNITS (x);
2364 for (i = 0; i < units; ++i)
2366 elt = CONST_VECTOR_ELT (x, i);
2367 hash += hash_rtx_cb (elt, GET_MODE (elt),
2368 do_not_record_p, hash_arg_in_memory_p,
2369 have_reg_qty, cb);
2372 return hash;
2375 /* Assume there is only one rtx object for any given label. */
2376 case LABEL_REF:
2377 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2378 differences and differences between each stage's debugging dumps. */
2379 hash += (((unsigned int) LABEL_REF << 7)
2380 + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
2381 return hash;
2383 case SYMBOL_REF:
2385 /* Don't hash on the symbol's address to avoid bootstrap differences.
2386 Different hash values may cause expressions to be recorded in
2387 different orders and thus different registers to be used in the
2388 final assembler. This also avoids differences in the dump files
2389 between various stages. */
2390 unsigned int h = 0;
2391 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2393 while (*p)
2394 h += (h << 7) + *p++; /* ??? revisit */
2396 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2397 return hash;
2400 case MEM:
2401 /* We don't record if marked volatile or if BLKmode since we don't
2402 know the size of the move. */
2403 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2405 *do_not_record_p = 1;
2406 return 0;
2408 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2409 *hash_arg_in_memory_p = 1;
2411 /* Now that we have already found this special case,
2412 might as well speed it up as much as possible. */
2413 hash += (unsigned) MEM;
2414 x = XEXP (x, 0);
2415 goto repeat;
2417 case USE:
2418 /* A USE that mentions non-volatile memory needs special
2419 handling since the MEM may be BLKmode which normally
2420 prevents an entry from being made. Pure calls are
2421 marked by a USE which mentions BLKmode memory.
2422 See calls.c:emit_call_1. */
2423 if (MEM_P (XEXP (x, 0))
2424 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2426 hash += (unsigned) USE;
2427 x = XEXP (x, 0);
2429 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2430 *hash_arg_in_memory_p = 1;
2432 /* Now that we have already found this special case,
2433 might as well speed it up as much as possible. */
2434 hash += (unsigned) MEM;
2435 x = XEXP (x, 0);
2436 goto repeat;
2438 break;
2440 case PRE_DEC:
2441 case PRE_INC:
2442 case POST_DEC:
2443 case POST_INC:
2444 case PRE_MODIFY:
2445 case POST_MODIFY:
2446 case PC:
2447 case CC0:
2448 case CALL:
2449 case UNSPEC_VOLATILE:
2450 if (do_not_record_p) {
2451 *do_not_record_p = 1;
2452 return 0;
2454 else
2455 return hash;
2456 break;
2458 case ASM_OPERANDS:
2459 if (do_not_record_p && MEM_VOLATILE_P (x))
2461 *do_not_record_p = 1;
2462 return 0;
2464 else
2466 /* We don't want to take the filename and line into account. */
2467 hash += (unsigned) code + (unsigned) GET_MODE (x)
2468 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2469 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2470 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2472 if (ASM_OPERANDS_INPUT_LENGTH (x))
2474 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2476 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2477 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2478 do_not_record_p, hash_arg_in_memory_p,
2479 have_reg_qty, cb)
2480 + hash_rtx_string
2481 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2484 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2485 x = ASM_OPERANDS_INPUT (x, 0);
2486 mode = GET_MODE (x);
2487 goto repeat;
2490 return hash;
2492 break;
2494 default:
2495 break;
2498 i = GET_RTX_LENGTH (code) - 1;
2499 hash += (unsigned) code + (unsigned) GET_MODE (x);
2500 fmt = GET_RTX_FORMAT (code);
2501 for (; i >= 0; i--)
2503 switch (fmt[i])
2505 case 'e':
2506 /* If we are about to do the last recursive call
2507 needed at this level, change it into iteration.
2508 This function is called enough to be worth it. */
2509 if (i == 0)
2511 x = XEXP (x, i);
2512 goto repeat;
2515 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2516 hash_arg_in_memory_p,
2517 have_reg_qty, cb);
2518 break;
2520 case 'E':
2521 for (j = 0; j < XVECLEN (x, i); j++)
2522 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2523 hash_arg_in_memory_p,
2524 have_reg_qty, cb);
2525 break;
2527 case 's':
2528 hash += hash_rtx_string (XSTR (x, i));
2529 break;
2531 case 'i':
2532 hash += (unsigned int) XINT (x, i);
2533 break;
2535 case '0': case 't':
2536 /* Unused. */
2537 break;
2539 default:
2540 gcc_unreachable ();
2544 return hash;
2547 /* Hash an rtx. We are careful to make sure the value is never negative.
2548 Equivalent registers hash identically.
2549 MODE is used in hashing for CONST_INTs only;
2550 otherwise the mode of X is used.
2552 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2554 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2555 a MEM rtx which does not have the MEM_READONLY_P flag set.
2557 Note that cse_insn knows that the hash code of a MEM expression
2558 is just (int) MEM plus the hash code of the address. */
2560 unsigned
2561 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2562 int *hash_arg_in_memory_p, bool have_reg_qty)
2564 return hash_rtx_cb (x, mode, do_not_record_p,
2565 hash_arg_in_memory_p, have_reg_qty, NULL);
2568 /* Hash an rtx X for cse via hash_rtx.
2569 Stores 1 in do_not_record if any subexpression is volatile.
2570 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2571 does not have the MEM_READONLY_P flag set. */
2573 static inline unsigned
2574 canon_hash (rtx x, machine_mode mode)
2576 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2579 /* Like canon_hash but with no side effects, i.e. do_not_record
2580 and hash_arg_in_memory are not changed. */
2582 static inline unsigned
2583 safe_hash (rtx x, machine_mode mode)
2585 int dummy_do_not_record;
2586 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2589 /* Return 1 iff X and Y would canonicalize into the same thing,
2590 without actually constructing the canonicalization of either one.
2591 If VALIDATE is nonzero,
2592 we assume X is an expression being processed from the rtl
2593 and Y was found in the hash table. We check register refs
2594 in Y for being marked as valid.
2596 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2599 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2601 int i, j;
2602 enum rtx_code code;
2603 const char *fmt;
2605 /* Note: it is incorrect to assume an expression is equivalent to itself
2606 if VALIDATE is nonzero. */
2607 if (x == y && !validate)
2608 return 1;
2610 if (x == 0 || y == 0)
2611 return x == y;
2613 code = GET_CODE (x);
2614 if (code != GET_CODE (y))
2615 return 0;
2617 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2618 if (GET_MODE (x) != GET_MODE (y))
2619 return 0;
2621 /* MEMs referring to different address space are not equivalent. */
2622 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2623 return 0;
2625 switch (code)
2627 case PC:
2628 case CC0:
2629 CASE_CONST_UNIQUE:
2630 return x == y;
2632 case LABEL_REF:
2633 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2635 case SYMBOL_REF:
2636 return XSTR (x, 0) == XSTR (y, 0);
2638 case REG:
2639 if (for_gcse)
2640 return REGNO (x) == REGNO (y);
2641 else
2643 unsigned int regno = REGNO (y);
2644 unsigned int i;
2645 unsigned int endregno = END_REGNO (y);
2647 /* If the quantities are not the same, the expressions are not
2648 equivalent. If there are and we are not to validate, they
2649 are equivalent. Otherwise, ensure all regs are up-to-date. */
2651 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2652 return 0;
2654 if (! validate)
2655 return 1;
2657 for (i = regno; i < endregno; i++)
2658 if (REG_IN_TABLE (i) != REG_TICK (i))
2659 return 0;
2661 return 1;
2664 case MEM:
2665 if (for_gcse)
2667 /* A volatile mem should not be considered equivalent to any
2668 other. */
2669 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2670 return 0;
2672 /* Can't merge two expressions in different alias sets, since we
2673 can decide that the expression is transparent in a block when
2674 it isn't, due to it being set with the different alias set.
2676 Also, can't merge two expressions with different MEM_ATTRS.
2677 They could e.g. be two different entities allocated into the
2678 same space on the stack (see e.g. PR25130). In that case, the
2679 MEM addresses can be the same, even though the two MEMs are
2680 absolutely not equivalent.
2682 But because really all MEM attributes should be the same for
2683 equivalent MEMs, we just use the invariant that MEMs that have
2684 the same attributes share the same mem_attrs data structure. */
2685 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2686 return 0;
2688 /* If we are handling exceptions, we cannot consider two expressions
2689 with different trapping status as equivalent, because simple_mem
2690 might accept one and reject the other. */
2691 if (cfun->can_throw_non_call_exceptions
2692 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2693 return 0;
2695 break;
2697 /* For commutative operations, check both orders. */
2698 case PLUS:
2699 case MULT:
2700 case AND:
2701 case IOR:
2702 case XOR:
2703 case NE:
2704 case EQ:
2705 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2706 validate, for_gcse)
2707 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2708 validate, for_gcse))
2709 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2710 validate, for_gcse)
2711 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2712 validate, for_gcse)));
2714 case ASM_OPERANDS:
2715 /* We don't use the generic code below because we want to
2716 disregard filename and line numbers. */
2718 /* A volatile asm isn't equivalent to any other. */
2719 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2720 return 0;
2722 if (GET_MODE (x) != GET_MODE (y)
2723 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2724 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2725 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2726 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2727 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2728 return 0;
2730 if (ASM_OPERANDS_INPUT_LENGTH (x))
2732 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2733 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2734 ASM_OPERANDS_INPUT (y, i),
2735 validate, for_gcse)
2736 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2737 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2738 return 0;
2741 return 1;
2743 default:
2744 break;
2747 /* Compare the elements. If any pair of corresponding elements
2748 fail to match, return 0 for the whole thing. */
2750 fmt = GET_RTX_FORMAT (code);
2751 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2753 switch (fmt[i])
2755 case 'e':
2756 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2757 validate, for_gcse))
2758 return 0;
2759 break;
2761 case 'E':
2762 if (XVECLEN (x, i) != XVECLEN (y, i))
2763 return 0;
2764 for (j = 0; j < XVECLEN (x, i); j++)
2765 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2766 validate, for_gcse))
2767 return 0;
2768 break;
2770 case 's':
2771 if (strcmp (XSTR (x, i), XSTR (y, i)))
2772 return 0;
2773 break;
2775 case 'i':
2776 if (XINT (x, i) != XINT (y, i))
2777 return 0;
2778 break;
2780 case 'w':
2781 if (XWINT (x, i) != XWINT (y, i))
2782 return 0;
2783 break;
2785 case '0':
2786 case 't':
2787 break;
2789 default:
2790 gcc_unreachable ();
2794 return 1;
2797 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2798 the result if necessary. INSN is as for canon_reg. */
2800 static void
2801 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2803 if (*xloc)
2805 rtx new_rtx = canon_reg (*xloc, insn);
2807 /* If replacing pseudo with hard reg or vice versa, ensure the
2808 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2809 gcc_assert (insn && new_rtx);
2810 validate_change (insn, xloc, new_rtx, 1);
2814 /* Canonicalize an expression:
2815 replace each register reference inside it
2816 with the "oldest" equivalent register.
2818 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2819 after we make our substitution. The calls are made with IN_GROUP nonzero
2820 so apply_change_group must be called upon the outermost return from this
2821 function (unless INSN is zero). The result of apply_change_group can
2822 generally be discarded since the changes we are making are optional. */
2824 static rtx
2825 canon_reg (rtx x, rtx_insn *insn)
2827 int i;
2828 enum rtx_code code;
2829 const char *fmt;
2831 if (x == 0)
2832 return x;
2834 code = GET_CODE (x);
2835 switch (code)
2837 case PC:
2838 case CC0:
2839 case CONST:
2840 CASE_CONST_ANY:
2841 case SYMBOL_REF:
2842 case LABEL_REF:
2843 case ADDR_VEC:
2844 case ADDR_DIFF_VEC:
2845 return x;
2847 case REG:
2849 int first;
2850 int q;
2851 struct qty_table_elem *ent;
2853 /* Never replace a hard reg, because hard regs can appear
2854 in more than one machine mode, and we must preserve the mode
2855 of each occurrence. Also, some hard regs appear in
2856 MEMs that are shared and mustn't be altered. Don't try to
2857 replace any reg that maps to a reg of class NO_REGS. */
2858 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2859 || ! REGNO_QTY_VALID_P (REGNO (x)))
2860 return x;
2862 q = REG_QTY (REGNO (x));
2863 ent = &qty_table[q];
2864 first = ent->first_reg;
2865 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2866 : REGNO_REG_CLASS (first) == NO_REGS ? x
2867 : gen_rtx_REG (ent->mode, first));
2870 default:
2871 break;
2874 fmt = GET_RTX_FORMAT (code);
2875 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2877 int j;
2879 if (fmt[i] == 'e')
2880 validate_canon_reg (&XEXP (x, i), insn);
2881 else if (fmt[i] == 'E')
2882 for (j = 0; j < XVECLEN (x, i); j++)
2883 validate_canon_reg (&XVECEXP (x, i, j), insn);
2886 return x;
2889 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2890 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2891 what values are being compared.
2893 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2894 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2895 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2896 compared to produce cc0.
2898 The return value is the comparison operator and is either the code of
2899 A or the code corresponding to the inverse of the comparison. */
2901 static enum rtx_code
2902 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2903 machine_mode *pmode1, machine_mode *pmode2)
2905 rtx arg1, arg2;
2906 hash_set<rtx> *visited = NULL;
2907 /* Set nonzero when we find something of interest. */
2908 rtx x = NULL;
2910 arg1 = *parg1, arg2 = *parg2;
2912 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2914 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2916 int reverse_code = 0;
2917 struct table_elt *p = 0;
2919 /* Remember state from previous iteration. */
2920 if (x)
2922 if (!visited)
2923 visited = new hash_set<rtx>;
2924 visited->add (x);
2925 x = 0;
2928 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2929 On machines with CC0, this is the only case that can occur, since
2930 fold_rtx will return the COMPARE or item being compared with zero
2931 when given CC0. */
2933 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2934 x = arg1;
2936 /* If ARG1 is a comparison operator and CODE is testing for
2937 STORE_FLAG_VALUE, get the inner arguments. */
2939 else if (COMPARISON_P (arg1))
2941 #ifdef FLOAT_STORE_FLAG_VALUE
2942 REAL_VALUE_TYPE fsfv;
2943 #endif
2945 if (code == NE
2946 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2947 && code == LT && STORE_FLAG_VALUE == -1)
2948 #ifdef FLOAT_STORE_FLAG_VALUE
2949 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2950 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2951 REAL_VALUE_NEGATIVE (fsfv)))
2952 #endif
2954 x = arg1;
2955 else if (code == EQ
2956 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2957 && code == GE && STORE_FLAG_VALUE == -1)
2958 #ifdef FLOAT_STORE_FLAG_VALUE
2959 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2960 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2961 REAL_VALUE_NEGATIVE (fsfv)))
2962 #endif
2964 x = arg1, reverse_code = 1;
2967 /* ??? We could also check for
2969 (ne (and (eq (...) (const_int 1))) (const_int 0))
2971 and related forms, but let's wait until we see them occurring. */
2973 if (x == 0)
2974 /* Look up ARG1 in the hash table and see if it has an equivalence
2975 that lets us see what is being compared. */
2976 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2977 if (p)
2979 p = p->first_same_value;
2981 /* If what we compare is already known to be constant, that is as
2982 good as it gets.
2983 We need to break the loop in this case, because otherwise we
2984 can have an infinite loop when looking at a reg that is known
2985 to be a constant which is the same as a comparison of a reg
2986 against zero which appears later in the insn stream, which in
2987 turn is constant and the same as the comparison of the first reg
2988 against zero... */
2989 if (p->is_const)
2990 break;
2993 for (; p; p = p->next_same_value)
2995 machine_mode inner_mode = GET_MODE (p->exp);
2996 #ifdef FLOAT_STORE_FLAG_VALUE
2997 REAL_VALUE_TYPE fsfv;
2998 #endif
3000 /* If the entry isn't valid, skip it. */
3001 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3002 continue;
3004 /* If it's a comparison we've used before, skip it. */
3005 if (visited && visited->contains (p->exp))
3006 continue;
3008 if (GET_CODE (p->exp) == COMPARE
3009 /* Another possibility is that this machine has a compare insn
3010 that includes the comparison code. In that case, ARG1 would
3011 be equivalent to a comparison operation that would set ARG1 to
3012 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3013 ORIG_CODE is the actual comparison being done; if it is an EQ,
3014 we must reverse ORIG_CODE. On machine with a negative value
3015 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3016 || ((code == NE
3017 || (code == LT
3018 && val_signbit_known_set_p (inner_mode,
3019 STORE_FLAG_VALUE))
3020 #ifdef FLOAT_STORE_FLAG_VALUE
3021 || (code == LT
3022 && SCALAR_FLOAT_MODE_P (inner_mode)
3023 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3024 REAL_VALUE_NEGATIVE (fsfv)))
3025 #endif
3027 && COMPARISON_P (p->exp)))
3029 x = p->exp;
3030 break;
3032 else if ((code == EQ
3033 || (code == GE
3034 && val_signbit_known_set_p (inner_mode,
3035 STORE_FLAG_VALUE))
3036 #ifdef FLOAT_STORE_FLAG_VALUE
3037 || (code == GE
3038 && SCALAR_FLOAT_MODE_P (inner_mode)
3039 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3040 REAL_VALUE_NEGATIVE (fsfv)))
3041 #endif
3043 && COMPARISON_P (p->exp))
3045 reverse_code = 1;
3046 x = p->exp;
3047 break;
3050 /* If this non-trapping address, e.g. fp + constant, the
3051 equivalent is a better operand since it may let us predict
3052 the value of the comparison. */
3053 else if (!rtx_addr_can_trap_p (p->exp))
3055 arg1 = p->exp;
3056 continue;
3060 /* If we didn't find a useful equivalence for ARG1, we are done.
3061 Otherwise, set up for the next iteration. */
3062 if (x == 0)
3063 break;
3065 /* If we need to reverse the comparison, make sure that that is
3066 possible -- we can't necessarily infer the value of GE from LT
3067 with floating-point operands. */
3068 if (reverse_code)
3070 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3071 if (reversed == UNKNOWN)
3072 break;
3073 else
3074 code = reversed;
3076 else if (COMPARISON_P (x))
3077 code = GET_CODE (x);
3078 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3081 /* Return our results. Return the modes from before fold_rtx
3082 because fold_rtx might produce const_int, and then it's too late. */
3083 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3084 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3086 if (visited)
3087 delete visited;
3088 return code;
3091 /* If X is a nontrivial arithmetic operation on an argument for which
3092 a constant value can be determined, return the result of operating
3093 on that value, as a constant. Otherwise, return X, possibly with
3094 one or more operands changed to a forward-propagated constant.
3096 If X is a register whose contents are known, we do NOT return
3097 those contents here; equiv_constant is called to perform that task.
3098 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3100 INSN is the insn that we may be modifying. If it is 0, make a copy
3101 of X before modifying it. */
3103 static rtx
3104 fold_rtx (rtx x, rtx_insn *insn)
3106 enum rtx_code code;
3107 machine_mode mode;
3108 const char *fmt;
3109 int i;
3110 rtx new_rtx = 0;
3111 int changed = 0;
3113 /* Operands of X. */
3114 /* Workaround -Wmaybe-uninitialized false positive during
3115 profiledbootstrap by initializing them. */
3116 rtx folded_arg0 = NULL_RTX;
3117 rtx folded_arg1 = NULL_RTX;
3119 /* Constant equivalents of first three operands of X;
3120 0 when no such equivalent is known. */
3121 rtx const_arg0;
3122 rtx const_arg1;
3123 rtx const_arg2;
3125 /* The mode of the first operand of X. We need this for sign and zero
3126 extends. */
3127 machine_mode mode_arg0;
3129 if (x == 0)
3130 return x;
3132 /* Try to perform some initial simplifications on X. */
3133 code = GET_CODE (x);
3134 switch (code)
3136 case MEM:
3137 case SUBREG:
3138 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3139 than it would in other contexts. Basically its mode does not
3140 signify the size of the object read. That information is carried
3141 by size operand. If we happen to have a MEM of the appropriate
3142 mode in our tables with a constant value we could simplify the
3143 extraction incorrectly if we allowed substitution of that value
3144 for the MEM. */
3145 case ZERO_EXTRACT:
3146 case SIGN_EXTRACT:
3147 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3148 return new_rtx;
3149 return x;
3151 case CONST:
3152 CASE_CONST_ANY:
3153 case SYMBOL_REF:
3154 case LABEL_REF:
3155 case REG:
3156 case PC:
3157 /* No use simplifying an EXPR_LIST
3158 since they are used only for lists of args
3159 in a function call's REG_EQUAL note. */
3160 case EXPR_LIST:
3161 return x;
3163 case CC0:
3164 return prev_insn_cc0;
3166 case ASM_OPERANDS:
3167 if (insn)
3169 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3170 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3171 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3173 return x;
3175 case CALL:
3176 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3177 return x;
3178 break;
3180 /* Anything else goes through the loop below. */
3181 default:
3182 break;
3185 mode = GET_MODE (x);
3186 const_arg0 = 0;
3187 const_arg1 = 0;
3188 const_arg2 = 0;
3189 mode_arg0 = VOIDmode;
3191 /* Try folding our operands.
3192 Then see which ones have constant values known. */
3194 fmt = GET_RTX_FORMAT (code);
3195 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3196 if (fmt[i] == 'e')
3198 rtx folded_arg = XEXP (x, i), const_arg;
3199 machine_mode mode_arg = GET_MODE (folded_arg);
3201 switch (GET_CODE (folded_arg))
3203 case MEM:
3204 case REG:
3205 case SUBREG:
3206 const_arg = equiv_constant (folded_arg);
3207 break;
3209 case CONST:
3210 CASE_CONST_ANY:
3211 case SYMBOL_REF:
3212 case LABEL_REF:
3213 const_arg = folded_arg;
3214 break;
3216 case CC0:
3217 /* The cc0-user and cc0-setter may be in different blocks if
3218 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3219 will have been cleared as we exited the block with the
3220 setter.
3222 While we could potentially track cc0 in this case, it just
3223 doesn't seem to be worth it given that cc0 targets are not
3224 terribly common or important these days and trapping math
3225 is rarely used. The combination of those two conditions
3226 necessary to trip this situation is exceedingly rare in the
3227 real world. */
3228 if (!prev_insn_cc0)
3230 const_arg = NULL_RTX;
3232 else
3234 folded_arg = prev_insn_cc0;
3235 mode_arg = prev_insn_cc0_mode;
3236 const_arg = equiv_constant (folded_arg);
3238 break;
3240 default:
3241 folded_arg = fold_rtx (folded_arg, insn);
3242 const_arg = equiv_constant (folded_arg);
3243 break;
3246 /* For the first three operands, see if the operand
3247 is constant or equivalent to a constant. */
3248 switch (i)
3250 case 0:
3251 folded_arg0 = folded_arg;
3252 const_arg0 = const_arg;
3253 mode_arg0 = mode_arg;
3254 break;
3255 case 1:
3256 folded_arg1 = folded_arg;
3257 const_arg1 = const_arg;
3258 break;
3259 case 2:
3260 const_arg2 = const_arg;
3261 break;
3264 /* Pick the least expensive of the argument and an equivalent constant
3265 argument. */
3266 if (const_arg != 0
3267 && const_arg != folded_arg
3268 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3270 /* It's not safe to substitute the operand of a conversion
3271 operator with a constant, as the conversion's identity
3272 depends upon the mode of its operand. This optimization
3273 is handled by the call to simplify_unary_operation. */
3274 && (GET_RTX_CLASS (code) != RTX_UNARY
3275 || GET_MODE (const_arg) == mode_arg0
3276 || (code != ZERO_EXTEND
3277 && code != SIGN_EXTEND
3278 && code != TRUNCATE
3279 && code != FLOAT_TRUNCATE
3280 && code != FLOAT_EXTEND
3281 && code != FLOAT
3282 && code != FIX
3283 && code != UNSIGNED_FLOAT
3284 && code != UNSIGNED_FIX)))
3285 folded_arg = const_arg;
3287 if (folded_arg == XEXP (x, i))
3288 continue;
3290 if (insn == NULL_RTX && !changed)
3291 x = copy_rtx (x);
3292 changed = 1;
3293 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3296 if (changed)
3298 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3299 consistent with the order in X. */
3300 if (canonicalize_change_group (insn, x))
3302 rtx tem;
3303 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3304 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3307 apply_change_group ();
3310 /* If X is an arithmetic operation, see if we can simplify it. */
3312 switch (GET_RTX_CLASS (code))
3314 case RTX_UNARY:
3316 /* We can't simplify extension ops unless we know the
3317 original mode. */
3318 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3319 && mode_arg0 == VOIDmode)
3320 break;
3322 new_rtx = simplify_unary_operation (code, mode,
3323 const_arg0 ? const_arg0 : folded_arg0,
3324 mode_arg0);
3326 break;
3328 case RTX_COMPARE:
3329 case RTX_COMM_COMPARE:
3330 /* See what items are actually being compared and set FOLDED_ARG[01]
3331 to those values and CODE to the actual comparison code. If any are
3332 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3333 do anything if both operands are already known to be constant. */
3335 /* ??? Vector mode comparisons are not supported yet. */
3336 if (VECTOR_MODE_P (mode))
3337 break;
3339 if (const_arg0 == 0 || const_arg1 == 0)
3341 struct table_elt *p0, *p1;
3342 rtx true_rtx, false_rtx;
3343 machine_mode mode_arg1;
3345 if (SCALAR_FLOAT_MODE_P (mode))
3347 #ifdef FLOAT_STORE_FLAG_VALUE
3348 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3349 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3350 #else
3351 true_rtx = NULL_RTX;
3352 #endif
3353 false_rtx = CONST0_RTX (mode);
3355 else
3357 true_rtx = const_true_rtx;
3358 false_rtx = const0_rtx;
3361 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3362 &mode_arg0, &mode_arg1);
3364 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3365 what kinds of things are being compared, so we can't do
3366 anything with this comparison. */
3368 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3369 break;
3371 const_arg0 = equiv_constant (folded_arg0);
3372 const_arg1 = equiv_constant (folded_arg1);
3374 /* If we do not now have two constants being compared, see
3375 if we can nevertheless deduce some things about the
3376 comparison. */
3377 if (const_arg0 == 0 || const_arg1 == 0)
3379 if (const_arg1 != NULL)
3381 rtx cheapest_simplification;
3382 int cheapest_cost;
3383 rtx simp_result;
3384 struct table_elt *p;
3386 /* See if we can find an equivalent of folded_arg0
3387 that gets us a cheaper expression, possibly a
3388 constant through simplifications. */
3389 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3390 mode_arg0);
3392 if (p != NULL)
3394 cheapest_simplification = x;
3395 cheapest_cost = COST (x);
3397 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3399 int cost;
3401 /* If the entry isn't valid, skip it. */
3402 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3403 continue;
3405 /* Try to simplify using this equivalence. */
3406 simp_result
3407 = simplify_relational_operation (code, mode,
3408 mode_arg0,
3409 p->exp,
3410 const_arg1);
3412 if (simp_result == NULL)
3413 continue;
3415 cost = COST (simp_result);
3416 if (cost < cheapest_cost)
3418 cheapest_cost = cost;
3419 cheapest_simplification = simp_result;
3423 /* If we have a cheaper expression now, use that
3424 and try folding it further, from the top. */
3425 if (cheapest_simplification != x)
3426 return fold_rtx (copy_rtx (cheapest_simplification),
3427 insn);
3431 /* See if the two operands are the same. */
3433 if ((REG_P (folded_arg0)
3434 && REG_P (folded_arg1)
3435 && (REG_QTY (REGNO (folded_arg0))
3436 == REG_QTY (REGNO (folded_arg1))))
3437 || ((p0 = lookup (folded_arg0,
3438 SAFE_HASH (folded_arg0, mode_arg0),
3439 mode_arg0))
3440 && (p1 = lookup (folded_arg1,
3441 SAFE_HASH (folded_arg1, mode_arg0),
3442 mode_arg0))
3443 && p0->first_same_value == p1->first_same_value))
3444 folded_arg1 = folded_arg0;
3446 /* If FOLDED_ARG0 is a register, see if the comparison we are
3447 doing now is either the same as we did before or the reverse
3448 (we only check the reverse if not floating-point). */
3449 else if (REG_P (folded_arg0))
3451 int qty = REG_QTY (REGNO (folded_arg0));
3453 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3455 struct qty_table_elem *ent = &qty_table[qty];
3457 if ((comparison_dominates_p (ent->comparison_code, code)
3458 || (! FLOAT_MODE_P (mode_arg0)
3459 && comparison_dominates_p (ent->comparison_code,
3460 reverse_condition (code))))
3461 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3462 || (const_arg1
3463 && rtx_equal_p (ent->comparison_const,
3464 const_arg1))
3465 || (REG_P (folded_arg1)
3466 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3468 if (comparison_dominates_p (ent->comparison_code, code))
3470 if (true_rtx)
3471 return true_rtx;
3472 else
3473 break;
3475 else
3476 return false_rtx;
3483 /* If we are comparing against zero, see if the first operand is
3484 equivalent to an IOR with a constant. If so, we may be able to
3485 determine the result of this comparison. */
3486 if (const_arg1 == const0_rtx && !const_arg0)
3488 rtx y = lookup_as_function (folded_arg0, IOR);
3489 rtx inner_const;
3491 if (y != 0
3492 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3493 && CONST_INT_P (inner_const)
3494 && INTVAL (inner_const) != 0)
3495 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3499 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3500 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3501 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3502 op0, op1);
3504 break;
3506 case RTX_BIN_ARITH:
3507 case RTX_COMM_ARITH:
3508 switch (code)
3510 case PLUS:
3511 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3512 with that LABEL_REF as its second operand. If so, the result is
3513 the first operand of that MINUS. This handles switches with an
3514 ADDR_DIFF_VEC table. */
3515 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3517 rtx y
3518 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3519 : lookup_as_function (folded_arg0, MINUS);
3521 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3522 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg1))
3523 return XEXP (y, 0);
3525 /* Now try for a CONST of a MINUS like the above. */
3526 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3527 : lookup_as_function (folded_arg0, CONST))) != 0
3528 && GET_CODE (XEXP (y, 0)) == MINUS
3529 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3530 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg1))
3531 return XEXP (XEXP (y, 0), 0);
3534 /* Likewise if the operands are in the other order. */
3535 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3537 rtx y
3538 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3539 : lookup_as_function (folded_arg1, MINUS);
3541 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3542 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg0))
3543 return XEXP (y, 0);
3545 /* Now try for a CONST of a MINUS like the above. */
3546 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3547 : lookup_as_function (folded_arg1, CONST))) != 0
3548 && GET_CODE (XEXP (y, 0)) == MINUS
3549 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3550 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg0))
3551 return XEXP (XEXP (y, 0), 0);
3554 /* If second operand is a register equivalent to a negative
3555 CONST_INT, see if we can find a register equivalent to the
3556 positive constant. Make a MINUS if so. Don't do this for
3557 a non-negative constant since we might then alternate between
3558 choosing positive and negative constants. Having the positive
3559 constant previously-used is the more common case. Be sure
3560 the resulting constant is non-negative; if const_arg1 were
3561 the smallest negative number this would overflow: depending
3562 on the mode, this would either just be the same value (and
3563 hence not save anything) or be incorrect. */
3564 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3565 && INTVAL (const_arg1) < 0
3566 /* This used to test
3568 -INTVAL (const_arg1) >= 0
3570 But The Sun V5.0 compilers mis-compiled that test. So
3571 instead we test for the problematic value in a more direct
3572 manner and hope the Sun compilers get it correct. */
3573 && INTVAL (const_arg1) !=
3574 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3575 && REG_P (folded_arg1))
3577 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3578 struct table_elt *p
3579 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3581 if (p)
3582 for (p = p->first_same_value; p; p = p->next_same_value)
3583 if (REG_P (p->exp))
3584 return simplify_gen_binary (MINUS, mode, folded_arg0,
3585 canon_reg (p->exp, NULL));
3587 goto from_plus;
3589 case MINUS:
3590 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3591 If so, produce (PLUS Z C2-C). */
3592 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3594 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3595 if (y && CONST_INT_P (XEXP (y, 1)))
3596 return fold_rtx (plus_constant (mode, copy_rtx (y),
3597 -INTVAL (const_arg1)),
3598 NULL);
3601 /* Fall through. */
3603 from_plus:
3604 case SMIN: case SMAX: case UMIN: case UMAX:
3605 case IOR: case AND: case XOR:
3606 case MULT:
3607 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3608 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3609 is known to be of similar form, we may be able to replace the
3610 operation with a combined operation. This may eliminate the
3611 intermediate operation if every use is simplified in this way.
3612 Note that the similar optimization done by combine.c only works
3613 if the intermediate operation's result has only one reference. */
3615 if (REG_P (folded_arg0)
3616 && const_arg1 && CONST_INT_P (const_arg1))
3618 int is_shift
3619 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3620 rtx y, inner_const, new_const;
3621 rtx canon_const_arg1 = const_arg1;
3622 enum rtx_code associate_code;
3624 if (is_shift
3625 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3626 || INTVAL (const_arg1) < 0))
3628 if (SHIFT_COUNT_TRUNCATED)
3629 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3630 & (GET_MODE_BITSIZE (mode)
3631 - 1));
3632 else
3633 break;
3636 y = lookup_as_function (folded_arg0, code);
3637 if (y == 0)
3638 break;
3640 /* If we have compiled a statement like
3641 "if (x == (x & mask1))", and now are looking at
3642 "x & mask2", we will have a case where the first operand
3643 of Y is the same as our first operand. Unless we detect
3644 this case, an infinite loop will result. */
3645 if (XEXP (y, 0) == folded_arg0)
3646 break;
3648 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3649 if (!inner_const || !CONST_INT_P (inner_const))
3650 break;
3652 /* Don't associate these operations if they are a PLUS with the
3653 same constant and it is a power of two. These might be doable
3654 with a pre- or post-increment. Similarly for two subtracts of
3655 identical powers of two with post decrement. */
3657 if (code == PLUS && const_arg1 == inner_const
3658 && ((HAVE_PRE_INCREMENT
3659 && exact_log2 (INTVAL (const_arg1)) >= 0)
3660 || (HAVE_POST_INCREMENT
3661 && exact_log2 (INTVAL (const_arg1)) >= 0)
3662 || (HAVE_PRE_DECREMENT
3663 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3664 || (HAVE_POST_DECREMENT
3665 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3666 break;
3668 /* ??? Vector mode shifts by scalar
3669 shift operand are not supported yet. */
3670 if (is_shift && VECTOR_MODE_P (mode))
3671 break;
3673 if (is_shift
3674 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3675 || INTVAL (inner_const) < 0))
3677 if (SHIFT_COUNT_TRUNCATED)
3678 inner_const = GEN_INT (INTVAL (inner_const)
3679 & (GET_MODE_BITSIZE (mode) - 1));
3680 else
3681 break;
3684 /* Compute the code used to compose the constants. For example,
3685 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3687 associate_code = (is_shift || code == MINUS ? PLUS : code);
3689 new_const = simplify_binary_operation (associate_code, mode,
3690 canon_const_arg1,
3691 inner_const);
3693 if (new_const == 0)
3694 break;
3696 /* If we are associating shift operations, don't let this
3697 produce a shift of the size of the object or larger.
3698 This could occur when we follow a sign-extend by a right
3699 shift on a machine that does a sign-extend as a pair
3700 of shifts. */
3702 if (is_shift
3703 && CONST_INT_P (new_const)
3704 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3706 /* As an exception, we can turn an ASHIFTRT of this
3707 form into a shift of the number of bits - 1. */
3708 if (code == ASHIFTRT)
3709 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3710 else if (!side_effects_p (XEXP (y, 0)))
3711 return CONST0_RTX (mode);
3712 else
3713 break;
3716 y = copy_rtx (XEXP (y, 0));
3718 /* If Y contains our first operand (the most common way this
3719 can happen is if Y is a MEM), we would do into an infinite
3720 loop if we tried to fold it. So don't in that case. */
3722 if (! reg_mentioned_p (folded_arg0, y))
3723 y = fold_rtx (y, insn);
3725 return simplify_gen_binary (code, mode, y, new_const);
3727 break;
3729 case DIV: case UDIV:
3730 /* ??? The associative optimization performed immediately above is
3731 also possible for DIV and UDIV using associate_code of MULT.
3732 However, we would need extra code to verify that the
3733 multiplication does not overflow, that is, there is no overflow
3734 in the calculation of new_const. */
3735 break;
3737 default:
3738 break;
3741 new_rtx = simplify_binary_operation (code, mode,
3742 const_arg0 ? const_arg0 : folded_arg0,
3743 const_arg1 ? const_arg1 : folded_arg1);
3744 break;
3746 case RTX_OBJ:
3747 /* (lo_sum (high X) X) is simply X. */
3748 if (code == LO_SUM && const_arg0 != 0
3749 && GET_CODE (const_arg0) == HIGH
3750 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3751 return const_arg1;
3752 break;
3754 case RTX_TERNARY:
3755 case RTX_BITFIELD_OPS:
3756 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3757 const_arg0 ? const_arg0 : folded_arg0,
3758 const_arg1 ? const_arg1 : folded_arg1,
3759 const_arg2 ? const_arg2 : XEXP (x, 2));
3760 break;
3762 default:
3763 break;
3766 return new_rtx ? new_rtx : x;
3769 /* Return a constant value currently equivalent to X.
3770 Return 0 if we don't know one. */
3772 static rtx
3773 equiv_constant (rtx x)
3775 if (REG_P (x)
3776 && REGNO_QTY_VALID_P (REGNO (x)))
3778 int x_q = REG_QTY (REGNO (x));
3779 struct qty_table_elem *x_ent = &qty_table[x_q];
3781 if (x_ent->const_rtx)
3782 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3785 if (x == 0 || CONSTANT_P (x))
3786 return x;
3788 if (GET_CODE (x) == SUBREG)
3790 machine_mode mode = GET_MODE (x);
3791 machine_mode imode = GET_MODE (SUBREG_REG (x));
3792 rtx new_rtx;
3794 /* See if we previously assigned a constant value to this SUBREG. */
3795 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3796 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3797 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3798 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3799 return new_rtx;
3801 /* If we didn't and if doing so makes sense, see if we previously
3802 assigned a constant value to the enclosing word mode SUBREG. */
3803 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3804 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3806 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3807 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3809 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3810 new_rtx = lookup_as_function (y, CONST_INT);
3811 if (new_rtx)
3812 return gen_lowpart (mode, new_rtx);
3816 /* Otherwise see if we already have a constant for the inner REG,
3817 and if that is enough to calculate an equivalent constant for
3818 the subreg. Note that the upper bits of paradoxical subregs
3819 are undefined, so they cannot be said to equal anything. */
3820 if (REG_P (SUBREG_REG (x))
3821 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3822 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3823 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3825 return 0;
3828 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3829 the hash table in case its value was seen before. */
3831 if (MEM_P (x))
3833 struct table_elt *elt;
3835 x = avoid_constant_pool_reference (x);
3836 if (CONSTANT_P (x))
3837 return x;
3839 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3840 if (elt == 0)
3841 return 0;
3843 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3844 if (elt->is_const && CONSTANT_P (elt->exp))
3845 return elt->exp;
3848 return 0;
3851 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3852 "taken" branch.
3854 In certain cases, this can cause us to add an equivalence. For example,
3855 if we are following the taken case of
3856 if (i == 2)
3857 we can add the fact that `i' and '2' are now equivalent.
3859 In any case, we can record that this comparison was passed. If the same
3860 comparison is seen later, we will know its value. */
3862 static void
3863 record_jump_equiv (rtx_insn *insn, bool taken)
3865 int cond_known_true;
3866 rtx op0, op1;
3867 rtx set;
3868 machine_mode mode, mode0, mode1;
3869 int reversed_nonequality = 0;
3870 enum rtx_code code;
3872 /* Ensure this is the right kind of insn. */
3873 gcc_assert (any_condjump_p (insn));
3875 set = pc_set (insn);
3877 /* See if this jump condition is known true or false. */
3878 if (taken)
3879 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3880 else
3881 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3883 /* Get the type of comparison being done and the operands being compared.
3884 If we had to reverse a non-equality condition, record that fact so we
3885 know that it isn't valid for floating-point. */
3886 code = GET_CODE (XEXP (SET_SRC (set), 0));
3887 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3888 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3890 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3891 if (! cond_known_true)
3893 code = reversed_comparison_code_parts (code, op0, op1, insn);
3895 /* Don't remember if we can't find the inverse. */
3896 if (code == UNKNOWN)
3897 return;
3900 /* The mode is the mode of the non-constant. */
3901 mode = mode0;
3902 if (mode1 != VOIDmode)
3903 mode = mode1;
3905 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3908 /* Yet another form of subreg creation. In this case, we want something in
3909 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3911 static rtx
3912 record_jump_cond_subreg (machine_mode mode, rtx op)
3914 machine_mode op_mode = GET_MODE (op);
3915 if (op_mode == mode || op_mode == VOIDmode)
3916 return op;
3917 return lowpart_subreg (mode, op, op_mode);
3920 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3921 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3922 Make any useful entries we can with that information. Called from
3923 above function and called recursively. */
3925 static void
3926 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3927 rtx op1, int reversed_nonequality)
3929 unsigned op0_hash, op1_hash;
3930 int op0_in_memory, op1_in_memory;
3931 struct table_elt *op0_elt, *op1_elt;
3933 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3934 we know that they are also equal in the smaller mode (this is also
3935 true for all smaller modes whether or not there is a SUBREG, but
3936 is not worth testing for with no SUBREG). */
3938 /* Note that GET_MODE (op0) may not equal MODE. */
3939 if (code == EQ && paradoxical_subreg_p (op0))
3941 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3942 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3943 if (tem)
3944 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3945 reversed_nonequality);
3948 if (code == EQ && paradoxical_subreg_p (op1))
3950 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3951 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3952 if (tem)
3953 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3954 reversed_nonequality);
3957 /* Similarly, if this is an NE comparison, and either is a SUBREG
3958 making a smaller mode, we know the whole thing is also NE. */
3960 /* Note that GET_MODE (op0) may not equal MODE;
3961 if we test MODE instead, we can get an infinite recursion
3962 alternating between two modes each wider than MODE. */
3964 if (code == NE && GET_CODE (op0) == SUBREG
3965 && subreg_lowpart_p (op0)
3966 && (GET_MODE_SIZE (GET_MODE (op0))
3967 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3969 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3970 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3971 if (tem)
3972 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3973 reversed_nonequality);
3976 if (code == NE && GET_CODE (op1) == SUBREG
3977 && subreg_lowpart_p (op1)
3978 && (GET_MODE_SIZE (GET_MODE (op1))
3979 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3981 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3982 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3983 if (tem)
3984 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3985 reversed_nonequality);
3988 /* Hash both operands. */
3990 do_not_record = 0;
3991 hash_arg_in_memory = 0;
3992 op0_hash = HASH (op0, mode);
3993 op0_in_memory = hash_arg_in_memory;
3995 if (do_not_record)
3996 return;
3998 do_not_record = 0;
3999 hash_arg_in_memory = 0;
4000 op1_hash = HASH (op1, mode);
4001 op1_in_memory = hash_arg_in_memory;
4003 if (do_not_record)
4004 return;
4006 /* Look up both operands. */
4007 op0_elt = lookup (op0, op0_hash, mode);
4008 op1_elt = lookup (op1, op1_hash, mode);
4010 /* If both operands are already equivalent or if they are not in the
4011 table but are identical, do nothing. */
4012 if ((op0_elt != 0 && op1_elt != 0
4013 && op0_elt->first_same_value == op1_elt->first_same_value)
4014 || op0 == op1 || rtx_equal_p (op0, op1))
4015 return;
4017 /* If we aren't setting two things equal all we can do is save this
4018 comparison. Similarly if this is floating-point. In the latter
4019 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4020 If we record the equality, we might inadvertently delete code
4021 whose intent was to change -0 to +0. */
4023 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4025 struct qty_table_elem *ent;
4026 int qty;
4028 /* If we reversed a floating-point comparison, if OP0 is not a
4029 register, or if OP1 is neither a register or constant, we can't
4030 do anything. */
4032 if (!REG_P (op1))
4033 op1 = equiv_constant (op1);
4035 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4036 || !REG_P (op0) || op1 == 0)
4037 return;
4039 /* Put OP0 in the hash table if it isn't already. This gives it a
4040 new quantity number. */
4041 if (op0_elt == 0)
4043 if (insert_regs (op0, NULL, 0))
4045 rehash_using_reg (op0);
4046 op0_hash = HASH (op0, mode);
4048 /* If OP0 is contained in OP1, this changes its hash code
4049 as well. Faster to rehash than to check, except
4050 for the simple case of a constant. */
4051 if (! CONSTANT_P (op1))
4052 op1_hash = HASH (op1,mode);
4055 op0_elt = insert (op0, NULL, op0_hash, mode);
4056 op0_elt->in_memory = op0_in_memory;
4059 qty = REG_QTY (REGNO (op0));
4060 ent = &qty_table[qty];
4062 ent->comparison_code = code;
4063 if (REG_P (op1))
4065 /* Look it up again--in case op0 and op1 are the same. */
4066 op1_elt = lookup (op1, op1_hash, mode);
4068 /* Put OP1 in the hash table so it gets a new quantity number. */
4069 if (op1_elt == 0)
4071 if (insert_regs (op1, NULL, 0))
4073 rehash_using_reg (op1);
4074 op1_hash = HASH (op1, mode);
4077 op1_elt = insert (op1, NULL, op1_hash, mode);
4078 op1_elt->in_memory = op1_in_memory;
4081 ent->comparison_const = NULL_RTX;
4082 ent->comparison_qty = REG_QTY (REGNO (op1));
4084 else
4086 ent->comparison_const = op1;
4087 ent->comparison_qty = -1;
4090 return;
4093 /* If either side is still missing an equivalence, make it now,
4094 then merge the equivalences. */
4096 if (op0_elt == 0)
4098 if (insert_regs (op0, NULL, 0))
4100 rehash_using_reg (op0);
4101 op0_hash = HASH (op0, mode);
4104 op0_elt = insert (op0, NULL, op0_hash, mode);
4105 op0_elt->in_memory = op0_in_memory;
4108 if (op1_elt == 0)
4110 if (insert_regs (op1, NULL, 0))
4112 rehash_using_reg (op1);
4113 op1_hash = HASH (op1, mode);
4116 op1_elt = insert (op1, NULL, op1_hash, mode);
4117 op1_elt->in_memory = op1_in_memory;
4120 merge_equiv_classes (op0_elt, op1_elt);
4123 /* CSE processing for one instruction.
4125 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4126 but the few that "leak through" are cleaned up by cse_insn, and complex
4127 addressing modes are often formed here.
4129 The main function is cse_insn, and between here and that function
4130 a couple of helper functions is defined to keep the size of cse_insn
4131 within reasonable proportions.
4133 Data is shared between the main and helper functions via STRUCT SET,
4134 that contains all data related for every set in the instruction that
4135 is being processed.
4137 Note that cse_main processes all sets in the instruction. Most
4138 passes in GCC only process simple SET insns or single_set insns, but
4139 CSE processes insns with multiple sets as well. */
4141 /* Data on one SET contained in the instruction. */
4143 struct set
4145 /* The SET rtx itself. */
4146 rtx rtl;
4147 /* The SET_SRC of the rtx (the original value, if it is changing). */
4148 rtx src;
4149 /* The hash-table element for the SET_SRC of the SET. */
4150 struct table_elt *src_elt;
4151 /* Hash value for the SET_SRC. */
4152 unsigned src_hash;
4153 /* Hash value for the SET_DEST. */
4154 unsigned dest_hash;
4155 /* The SET_DEST, with SUBREG, etc., stripped. */
4156 rtx inner_dest;
4157 /* Nonzero if the SET_SRC is in memory. */
4158 char src_in_memory;
4159 /* Nonzero if the SET_SRC contains something
4160 whose value cannot be predicted and understood. */
4161 char src_volatile;
4162 /* Original machine mode, in case it becomes a CONST_INT.
4163 The size of this field should match the size of the mode
4164 field of struct rtx_def (see rtl.h). */
4165 ENUM_BITFIELD(machine_mode) mode : 8;
4166 /* A constant equivalent for SET_SRC, if any. */
4167 rtx src_const;
4168 /* Hash value of constant equivalent for SET_SRC. */
4169 unsigned src_const_hash;
4170 /* Table entry for constant equivalent for SET_SRC, if any. */
4171 struct table_elt *src_const_elt;
4172 /* Table entry for the destination address. */
4173 struct table_elt *dest_addr_elt;
4176 /* Special handling for (set REG0 REG1) where REG0 is the
4177 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4178 be used in the sequel, so (if easily done) change this insn to
4179 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4180 that computed their value. Then REG1 will become a dead store
4181 and won't cloud the situation for later optimizations.
4183 Do not make this change if REG1 is a hard register, because it will
4184 then be used in the sequel and we may be changing a two-operand insn
4185 into a three-operand insn.
4187 This is the last transformation that cse_insn will try to do. */
4189 static void
4190 try_back_substitute_reg (rtx set, rtx_insn *insn)
4192 rtx dest = SET_DEST (set);
4193 rtx src = SET_SRC (set);
4195 if (REG_P (dest)
4196 && REG_P (src) && ! HARD_REGISTER_P (src)
4197 && REGNO_QTY_VALID_P (REGNO (src)))
4199 int src_q = REG_QTY (REGNO (src));
4200 struct qty_table_elem *src_ent = &qty_table[src_q];
4202 if (src_ent->first_reg == REGNO (dest))
4204 /* Scan for the previous nonnote insn, but stop at a basic
4205 block boundary. */
4206 rtx_insn *prev = insn;
4207 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4210 prev = PREV_INSN (prev);
4212 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4214 /* Do not swap the registers around if the previous instruction
4215 attaches a REG_EQUIV note to REG1.
4217 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4218 from the pseudo that originally shadowed an incoming argument
4219 to another register. Some uses of REG_EQUIV might rely on it
4220 being attached to REG1 rather than REG2.
4222 This section previously turned the REG_EQUIV into a REG_EQUAL
4223 note. We cannot do that because REG_EQUIV may provide an
4224 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4225 if (NONJUMP_INSN_P (prev)
4226 && GET_CODE (PATTERN (prev)) == SET
4227 && SET_DEST (PATTERN (prev)) == src
4228 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4230 rtx note;
4232 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4233 validate_change (insn, &SET_DEST (set), src, 1);
4234 validate_change (insn, &SET_SRC (set), dest, 1);
4235 apply_change_group ();
4237 /* If INSN has a REG_EQUAL note, and this note mentions
4238 REG0, then we must delete it, because the value in
4239 REG0 has changed. If the note's value is REG1, we must
4240 also delete it because that is now this insn's dest. */
4241 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4242 if (note != 0
4243 && (reg_mentioned_p (dest, XEXP (note, 0))
4244 || rtx_equal_p (src, XEXP (note, 0))))
4245 remove_note (insn, note);
4251 /* Record all the SETs in this instruction into SETS_PTR,
4252 and return the number of recorded sets. */
4253 static int
4254 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4256 struct set *sets = *psets;
4257 int n_sets = 0;
4258 rtx x = PATTERN (insn);
4260 if (GET_CODE (x) == SET)
4262 /* Ignore SETs that are unconditional jumps.
4263 They never need cse processing, so this does not hurt.
4264 The reason is not efficiency but rather
4265 so that we can test at the end for instructions
4266 that have been simplified to unconditional jumps
4267 and not be misled by unchanged instructions
4268 that were unconditional jumps to begin with. */
4269 if (SET_DEST (x) == pc_rtx
4270 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4272 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4273 The hard function value register is used only once, to copy to
4274 someplace else, so it isn't worth cse'ing. */
4275 else if (GET_CODE (SET_SRC (x)) == CALL)
4277 else
4278 sets[n_sets++].rtl = x;
4280 else if (GET_CODE (x) == PARALLEL)
4282 int i, lim = XVECLEN (x, 0);
4284 /* Go over the expressions of the PARALLEL in forward order, to
4285 put them in the same order in the SETS array. */
4286 for (i = 0; i < lim; i++)
4288 rtx y = XVECEXP (x, 0, i);
4289 if (GET_CODE (y) == SET)
4291 /* As above, we ignore unconditional jumps and call-insns and
4292 ignore the result of apply_change_group. */
4293 if (SET_DEST (y) == pc_rtx
4294 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4296 else if (GET_CODE (SET_SRC (y)) == CALL)
4298 else
4299 sets[n_sets++].rtl = y;
4304 return n_sets;
4307 /* Where possible, substitute every register reference in the N_SETS
4308 number of SETS in INSN with the the canonical register.
4310 Register canonicalization propagatest the earliest register (i.e.
4311 one that is set before INSN) with the same value. This is a very
4312 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4313 to RTL. For instance, a CONST for an address is usually expanded
4314 multiple times to loads into different registers, thus creating many
4315 subexpressions of the form:
4317 (set (reg1) (some_const))
4318 (set (mem (... reg1 ...) (thing)))
4319 (set (reg2) (some_const))
4320 (set (mem (... reg2 ...) (thing)))
4322 After canonicalizing, the code takes the following form:
4324 (set (reg1) (some_const))
4325 (set (mem (... reg1 ...) (thing)))
4326 (set (reg2) (some_const))
4327 (set (mem (... reg1 ...) (thing)))
4329 The set to reg2 is now trivially dead, and the memory reference (or
4330 address, or whatever) may be a candidate for further CSEing.
4332 In this function, the result of apply_change_group can be ignored;
4333 see canon_reg. */
4335 static void
4336 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4338 struct set *sets = *psets;
4339 rtx tem;
4340 rtx x = PATTERN (insn);
4341 int i;
4343 if (CALL_P (insn))
4345 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4346 if (GET_CODE (XEXP (tem, 0)) != SET)
4347 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4350 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4352 canon_reg (SET_SRC (x), insn);
4353 apply_change_group ();
4354 fold_rtx (SET_SRC (x), insn);
4356 else if (GET_CODE (x) == CLOBBER)
4358 /* If we clobber memory, canon the address.
4359 This does nothing when a register is clobbered
4360 because we have already invalidated the reg. */
4361 if (MEM_P (XEXP (x, 0)))
4362 canon_reg (XEXP (x, 0), insn);
4364 else if (GET_CODE (x) == USE
4365 && ! (REG_P (XEXP (x, 0))
4366 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4367 /* Canonicalize a USE of a pseudo register or memory location. */
4368 canon_reg (x, insn);
4369 else if (GET_CODE (x) == ASM_OPERANDS)
4371 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4373 rtx input = ASM_OPERANDS_INPUT (x, i);
4374 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4376 input = canon_reg (input, insn);
4377 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4381 else if (GET_CODE (x) == CALL)
4383 canon_reg (x, insn);
4384 apply_change_group ();
4385 fold_rtx (x, insn);
4387 else if (DEBUG_INSN_P (insn))
4388 canon_reg (PATTERN (insn), insn);
4389 else if (GET_CODE (x) == PARALLEL)
4391 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4393 rtx y = XVECEXP (x, 0, i);
4394 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4396 canon_reg (SET_SRC (y), insn);
4397 apply_change_group ();
4398 fold_rtx (SET_SRC (y), insn);
4400 else if (GET_CODE (y) == CLOBBER)
4402 if (MEM_P (XEXP (y, 0)))
4403 canon_reg (XEXP (y, 0), insn);
4405 else if (GET_CODE (y) == USE
4406 && ! (REG_P (XEXP (y, 0))
4407 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4408 canon_reg (y, insn);
4409 else if (GET_CODE (y) == CALL)
4411 canon_reg (y, insn);
4412 apply_change_group ();
4413 fold_rtx (y, insn);
4418 if (n_sets == 1 && REG_NOTES (insn) != 0
4419 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4421 /* We potentially will process this insn many times. Therefore,
4422 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4423 unique set in INSN.
4425 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4426 because cse_insn handles those specially. */
4427 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4428 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4429 remove_note (insn, tem);
4430 else
4432 canon_reg (XEXP (tem, 0), insn);
4433 apply_change_group ();
4434 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4435 df_notes_rescan (insn);
4439 /* Canonicalize sources and addresses of destinations.
4440 We do this in a separate pass to avoid problems when a MATCH_DUP is
4441 present in the insn pattern. In that case, we want to ensure that
4442 we don't break the duplicate nature of the pattern. So we will replace
4443 both operands at the same time. Otherwise, we would fail to find an
4444 equivalent substitution in the loop calling validate_change below.
4446 We used to suppress canonicalization of DEST if it appears in SRC,
4447 but we don't do this any more. */
4449 for (i = 0; i < n_sets; i++)
4451 rtx dest = SET_DEST (sets[i].rtl);
4452 rtx src = SET_SRC (sets[i].rtl);
4453 rtx new_rtx = canon_reg (src, insn);
4455 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4457 if (GET_CODE (dest) == ZERO_EXTRACT)
4459 validate_change (insn, &XEXP (dest, 1),
4460 canon_reg (XEXP (dest, 1), insn), 1);
4461 validate_change (insn, &XEXP (dest, 2),
4462 canon_reg (XEXP (dest, 2), insn), 1);
4465 while (GET_CODE (dest) == SUBREG
4466 || GET_CODE (dest) == ZERO_EXTRACT
4467 || GET_CODE (dest) == STRICT_LOW_PART)
4468 dest = XEXP (dest, 0);
4470 if (MEM_P (dest))
4471 canon_reg (dest, insn);
4474 /* Now that we have done all the replacements, we can apply the change
4475 group and see if they all work. Note that this will cause some
4476 canonicalizations that would have worked individually not to be applied
4477 because some other canonicalization didn't work, but this should not
4478 occur often.
4480 The result of apply_change_group can be ignored; see canon_reg. */
4482 apply_change_group ();
4485 /* Main function of CSE.
4486 First simplify sources and addresses of all assignments
4487 in the instruction, using previously-computed equivalents values.
4488 Then install the new sources and destinations in the table
4489 of available values. */
4491 static void
4492 cse_insn (rtx_insn *insn)
4494 rtx x = PATTERN (insn);
4495 int i;
4496 rtx tem;
4497 int n_sets = 0;
4499 rtx src_eqv = 0;
4500 struct table_elt *src_eqv_elt = 0;
4501 int src_eqv_volatile = 0;
4502 int src_eqv_in_memory = 0;
4503 unsigned src_eqv_hash = 0;
4505 struct set *sets = (struct set *) 0;
4507 if (GET_CODE (x) == SET)
4508 sets = XALLOCA (struct set);
4509 else if (GET_CODE (x) == PARALLEL)
4510 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4512 this_insn = insn;
4513 /* Records what this insn does to set CC0. */
4514 this_insn_cc0 = 0;
4515 this_insn_cc0_mode = VOIDmode;
4517 /* Find all regs explicitly clobbered in this insn,
4518 to ensure they are not replaced with any other regs
4519 elsewhere in this insn. */
4520 invalidate_from_sets_and_clobbers (insn);
4522 /* Record all the SETs in this instruction. */
4523 n_sets = find_sets_in_insn (insn, &sets);
4525 /* Substitute the canonical register where possible. */
4526 canonicalize_insn (insn, &sets, n_sets);
4528 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4529 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4530 is necessary because SRC_EQV is handled specially for this case, and if
4531 it isn't set, then there will be no equivalence for the destination. */
4532 if (n_sets == 1 && REG_NOTES (insn) != 0
4533 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4534 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4535 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4536 src_eqv = copy_rtx (XEXP (tem, 0));
4538 /* Set sets[i].src_elt to the class each source belongs to.
4539 Detect assignments from or to volatile things
4540 and set set[i] to zero so they will be ignored
4541 in the rest of this function.
4543 Nothing in this loop changes the hash table or the register chains. */
4545 for (i = 0; i < n_sets; i++)
4547 bool repeat = false;
4548 rtx src, dest;
4549 rtx src_folded;
4550 struct table_elt *elt = 0, *p;
4551 machine_mode mode;
4552 rtx src_eqv_here;
4553 rtx src_const = 0;
4554 rtx src_related = 0;
4555 bool src_related_is_const_anchor = false;
4556 struct table_elt *src_const_elt = 0;
4557 int src_cost = MAX_COST;
4558 int src_eqv_cost = MAX_COST;
4559 int src_folded_cost = MAX_COST;
4560 int src_related_cost = MAX_COST;
4561 int src_elt_cost = MAX_COST;
4562 int src_regcost = MAX_COST;
4563 int src_eqv_regcost = MAX_COST;
4564 int src_folded_regcost = MAX_COST;
4565 int src_related_regcost = MAX_COST;
4566 int src_elt_regcost = MAX_COST;
4567 /* Set nonzero if we need to call force_const_mem on with the
4568 contents of src_folded before using it. */
4569 int src_folded_force_flag = 0;
4571 dest = SET_DEST (sets[i].rtl);
4572 src = SET_SRC (sets[i].rtl);
4574 /* If SRC is a constant that has no machine mode,
4575 hash it with the destination's machine mode.
4576 This way we can keep different modes separate. */
4578 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4579 sets[i].mode = mode;
4581 if (src_eqv)
4583 machine_mode eqvmode = mode;
4584 if (GET_CODE (dest) == STRICT_LOW_PART)
4585 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4586 do_not_record = 0;
4587 hash_arg_in_memory = 0;
4588 src_eqv_hash = HASH (src_eqv, eqvmode);
4590 /* Find the equivalence class for the equivalent expression. */
4592 if (!do_not_record)
4593 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4595 src_eqv_volatile = do_not_record;
4596 src_eqv_in_memory = hash_arg_in_memory;
4599 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4600 value of the INNER register, not the destination. So it is not
4601 a valid substitution for the source. But save it for later. */
4602 if (GET_CODE (dest) == STRICT_LOW_PART)
4603 src_eqv_here = 0;
4604 else
4605 src_eqv_here = src_eqv;
4607 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4608 simplified result, which may not necessarily be valid. */
4609 src_folded = fold_rtx (src, insn);
4611 #if 0
4612 /* ??? This caused bad code to be generated for the m68k port with -O2.
4613 Suppose src is (CONST_INT -1), and that after truncation src_folded
4614 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4615 At the end we will add src and src_const to the same equivalence
4616 class. We now have 3 and -1 on the same equivalence class. This
4617 causes later instructions to be mis-optimized. */
4618 /* If storing a constant in a bitfield, pre-truncate the constant
4619 so we will be able to record it later. */
4620 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4622 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4624 if (CONST_INT_P (src)
4625 && CONST_INT_P (width)
4626 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4627 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4628 src_folded
4629 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4630 << INTVAL (width)) - 1));
4632 #endif
4634 /* Compute SRC's hash code, and also notice if it
4635 should not be recorded at all. In that case,
4636 prevent any further processing of this assignment. */
4637 do_not_record = 0;
4638 hash_arg_in_memory = 0;
4640 sets[i].src = src;
4641 sets[i].src_hash = HASH (src, mode);
4642 sets[i].src_volatile = do_not_record;
4643 sets[i].src_in_memory = hash_arg_in_memory;
4645 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4646 a pseudo, do not record SRC. Using SRC as a replacement for
4647 anything else will be incorrect in that situation. Note that
4648 this usually occurs only for stack slots, in which case all the
4649 RTL would be referring to SRC, so we don't lose any optimization
4650 opportunities by not having SRC in the hash table. */
4652 if (MEM_P (src)
4653 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4654 && REG_P (dest)
4655 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4656 sets[i].src_volatile = 1;
4658 else if (GET_CODE (src) == ASM_OPERANDS
4659 && GET_CODE (x) == PARALLEL)
4661 /* Do not record result of a non-volatile inline asm with
4662 more than one result. */
4663 if (n_sets > 1)
4664 sets[i].src_volatile = 1;
4666 int j, lim = XVECLEN (x, 0);
4667 for (j = 0; j < lim; j++)
4669 rtx y = XVECEXP (x, 0, j);
4670 /* And do not record result of a non-volatile inline asm
4671 with "memory" clobber. */
4672 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4674 sets[i].src_volatile = 1;
4675 break;
4680 #if 0
4681 /* It is no longer clear why we used to do this, but it doesn't
4682 appear to still be needed. So let's try without it since this
4683 code hurts cse'ing widened ops. */
4684 /* If source is a paradoxical subreg (such as QI treated as an SI),
4685 treat it as volatile. It may do the work of an SI in one context
4686 where the extra bits are not being used, but cannot replace an SI
4687 in general. */
4688 if (paradoxical_subreg_p (src))
4689 sets[i].src_volatile = 1;
4690 #endif
4692 /* Locate all possible equivalent forms for SRC. Try to replace
4693 SRC in the insn with each cheaper equivalent.
4695 We have the following types of equivalents: SRC itself, a folded
4696 version, a value given in a REG_EQUAL note, or a value related
4697 to a constant.
4699 Each of these equivalents may be part of an additional class
4700 of equivalents (if more than one is in the table, they must be in
4701 the same class; we check for this).
4703 If the source is volatile, we don't do any table lookups.
4705 We note any constant equivalent for possible later use in a
4706 REG_NOTE. */
4708 if (!sets[i].src_volatile)
4709 elt = lookup (src, sets[i].src_hash, mode);
4711 sets[i].src_elt = elt;
4713 if (elt && src_eqv_here && src_eqv_elt)
4715 if (elt->first_same_value != src_eqv_elt->first_same_value)
4717 /* The REG_EQUAL is indicating that two formerly distinct
4718 classes are now equivalent. So merge them. */
4719 merge_equiv_classes (elt, src_eqv_elt);
4720 src_eqv_hash = HASH (src_eqv, elt->mode);
4721 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4724 src_eqv_here = 0;
4727 else if (src_eqv_elt)
4728 elt = src_eqv_elt;
4730 /* Try to find a constant somewhere and record it in `src_const'.
4731 Record its table element, if any, in `src_const_elt'. Look in
4732 any known equivalences first. (If the constant is not in the
4733 table, also set `sets[i].src_const_hash'). */
4734 if (elt)
4735 for (p = elt->first_same_value; p; p = p->next_same_value)
4736 if (p->is_const)
4738 src_const = p->exp;
4739 src_const_elt = elt;
4740 break;
4743 if (src_const == 0
4744 && (CONSTANT_P (src_folded)
4745 /* Consider (minus (label_ref L1) (label_ref L2)) as
4746 "constant" here so we will record it. This allows us
4747 to fold switch statements when an ADDR_DIFF_VEC is used. */
4748 || (GET_CODE (src_folded) == MINUS
4749 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4750 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4751 src_const = src_folded, src_const_elt = elt;
4752 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4753 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4755 /* If we don't know if the constant is in the table, get its
4756 hash code and look it up. */
4757 if (src_const && src_const_elt == 0)
4759 sets[i].src_const_hash = HASH (src_const, mode);
4760 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4763 sets[i].src_const = src_const;
4764 sets[i].src_const_elt = src_const_elt;
4766 /* If the constant and our source are both in the table, mark them as
4767 equivalent. Otherwise, if a constant is in the table but the source
4768 isn't, set ELT to it. */
4769 if (src_const_elt && elt
4770 && src_const_elt->first_same_value != elt->first_same_value)
4771 merge_equiv_classes (elt, src_const_elt);
4772 else if (src_const_elt && elt == 0)
4773 elt = src_const_elt;
4775 /* See if there is a register linearly related to a constant
4776 equivalent of SRC. */
4777 if (src_const
4778 && (GET_CODE (src_const) == CONST
4779 || (src_const_elt && src_const_elt->related_value != 0)))
4781 src_related = use_related_value (src_const, src_const_elt);
4782 if (src_related)
4784 struct table_elt *src_related_elt
4785 = lookup (src_related, HASH (src_related, mode), mode);
4786 if (src_related_elt && elt)
4788 if (elt->first_same_value
4789 != src_related_elt->first_same_value)
4790 /* This can occur when we previously saw a CONST
4791 involving a SYMBOL_REF and then see the SYMBOL_REF
4792 twice. Merge the involved classes. */
4793 merge_equiv_classes (elt, src_related_elt);
4795 src_related = 0;
4796 src_related_elt = 0;
4798 else if (src_related_elt && elt == 0)
4799 elt = src_related_elt;
4803 /* See if we have a CONST_INT that is already in a register in a
4804 wider mode. */
4806 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4807 && GET_MODE_CLASS (mode) == MODE_INT
4808 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4810 machine_mode wider_mode;
4812 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4813 wider_mode != VOIDmode
4814 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4815 && src_related == 0;
4816 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4818 struct table_elt *const_elt
4819 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4821 if (const_elt == 0)
4822 continue;
4824 for (const_elt = const_elt->first_same_value;
4825 const_elt; const_elt = const_elt->next_same_value)
4826 if (REG_P (const_elt->exp))
4828 src_related = gen_lowpart (mode, const_elt->exp);
4829 break;
4834 /* Another possibility is that we have an AND with a constant in
4835 a mode narrower than a word. If so, it might have been generated
4836 as part of an "if" which would narrow the AND. If we already
4837 have done the AND in a wider mode, we can use a SUBREG of that
4838 value. */
4840 if (flag_expensive_optimizations && ! src_related
4841 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4842 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4844 machine_mode tmode;
4845 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4847 for (tmode = GET_MODE_WIDER_MODE (mode);
4848 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4849 tmode = GET_MODE_WIDER_MODE (tmode))
4851 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4852 struct table_elt *larger_elt;
4854 if (inner)
4856 PUT_MODE (new_and, tmode);
4857 XEXP (new_and, 0) = inner;
4858 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4859 if (larger_elt == 0)
4860 continue;
4862 for (larger_elt = larger_elt->first_same_value;
4863 larger_elt; larger_elt = larger_elt->next_same_value)
4864 if (REG_P (larger_elt->exp))
4866 src_related
4867 = gen_lowpart (mode, larger_elt->exp);
4868 break;
4871 if (src_related)
4872 break;
4877 #ifdef LOAD_EXTEND_OP
4878 /* See if a MEM has already been loaded with a widening operation;
4879 if it has, we can use a subreg of that. Many CISC machines
4880 also have such operations, but this is only likely to be
4881 beneficial on these machines. */
4883 if (flag_expensive_optimizations && src_related == 0
4884 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4885 && GET_MODE_CLASS (mode) == MODE_INT
4886 && MEM_P (src) && ! do_not_record
4887 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4889 struct rtx_def memory_extend_buf;
4890 rtx memory_extend_rtx = &memory_extend_buf;
4891 machine_mode tmode;
4893 /* Set what we are trying to extend and the operation it might
4894 have been extended with. */
4895 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4896 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4897 XEXP (memory_extend_rtx, 0) = src;
4899 for (tmode = GET_MODE_WIDER_MODE (mode);
4900 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4901 tmode = GET_MODE_WIDER_MODE (tmode))
4903 struct table_elt *larger_elt;
4905 PUT_MODE (memory_extend_rtx, tmode);
4906 larger_elt = lookup (memory_extend_rtx,
4907 HASH (memory_extend_rtx, tmode), tmode);
4908 if (larger_elt == 0)
4909 continue;
4911 for (larger_elt = larger_elt->first_same_value;
4912 larger_elt; larger_elt = larger_elt->next_same_value)
4913 if (REG_P (larger_elt->exp))
4915 src_related = gen_lowpart (mode, larger_elt->exp);
4916 break;
4919 if (src_related)
4920 break;
4923 #endif /* LOAD_EXTEND_OP */
4925 /* Try to express the constant using a register+offset expression
4926 derived from a constant anchor. */
4928 if (targetm.const_anchor
4929 && !src_related
4930 && src_const
4931 && GET_CODE (src_const) == CONST_INT)
4933 src_related = try_const_anchors (src_const, mode);
4934 src_related_is_const_anchor = src_related != NULL_RTX;
4938 if (src == src_folded)
4939 src_folded = 0;
4941 /* At this point, ELT, if nonzero, points to a class of expressions
4942 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4943 and SRC_RELATED, if nonzero, each contain additional equivalent
4944 expressions. Prune these latter expressions by deleting expressions
4945 already in the equivalence class.
4947 Check for an equivalent identical to the destination. If found,
4948 this is the preferred equivalent since it will likely lead to
4949 elimination of the insn. Indicate this by placing it in
4950 `src_related'. */
4952 if (elt)
4953 elt = elt->first_same_value;
4954 for (p = elt; p; p = p->next_same_value)
4956 enum rtx_code code = GET_CODE (p->exp);
4958 /* If the expression is not valid, ignore it. Then we do not
4959 have to check for validity below. In most cases, we can use
4960 `rtx_equal_p', since canonicalization has already been done. */
4961 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4962 continue;
4964 /* Also skip paradoxical subregs, unless that's what we're
4965 looking for. */
4966 if (paradoxical_subreg_p (p->exp)
4967 && ! (src != 0
4968 && GET_CODE (src) == SUBREG
4969 && GET_MODE (src) == GET_MODE (p->exp)
4970 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4971 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4972 continue;
4974 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4975 src = 0;
4976 else if (src_folded && GET_CODE (src_folded) == code
4977 && rtx_equal_p (src_folded, p->exp))
4978 src_folded = 0;
4979 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4980 && rtx_equal_p (src_eqv_here, p->exp))
4981 src_eqv_here = 0;
4982 else if (src_related && GET_CODE (src_related) == code
4983 && rtx_equal_p (src_related, p->exp))
4984 src_related = 0;
4986 /* This is the same as the destination of the insns, we want
4987 to prefer it. Copy it to src_related. The code below will
4988 then give it a negative cost. */
4989 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4990 src_related = dest;
4993 /* Find the cheapest valid equivalent, trying all the available
4994 possibilities. Prefer items not in the hash table to ones
4995 that are when they are equal cost. Note that we can never
4996 worsen an insn as the current contents will also succeed.
4997 If we find an equivalent identical to the destination, use it as best,
4998 since this insn will probably be eliminated in that case. */
4999 if (src)
5001 if (rtx_equal_p (src, dest))
5002 src_cost = src_regcost = -1;
5003 else
5005 src_cost = COST (src);
5006 src_regcost = approx_reg_cost (src);
5010 if (src_eqv_here)
5012 if (rtx_equal_p (src_eqv_here, dest))
5013 src_eqv_cost = src_eqv_regcost = -1;
5014 else
5016 src_eqv_cost = COST (src_eqv_here);
5017 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5021 if (src_folded)
5023 if (rtx_equal_p (src_folded, dest))
5024 src_folded_cost = src_folded_regcost = -1;
5025 else
5027 src_folded_cost = COST (src_folded);
5028 src_folded_regcost = approx_reg_cost (src_folded);
5032 if (src_related)
5034 if (rtx_equal_p (src_related, dest))
5035 src_related_cost = src_related_regcost = -1;
5036 else
5038 src_related_cost = COST (src_related);
5039 src_related_regcost = approx_reg_cost (src_related);
5041 /* If a const-anchor is used to synthesize a constant that
5042 normally requires multiple instructions then slightly prefer
5043 it over the original sequence. These instructions are likely
5044 to become redundant now. We can't compare against the cost
5045 of src_eqv_here because, on MIPS for example, multi-insn
5046 constants have zero cost; they are assumed to be hoisted from
5047 loops. */
5048 if (src_related_is_const_anchor
5049 && src_related_cost == src_cost
5050 && src_eqv_here)
5051 src_related_cost--;
5055 /* If this was an indirect jump insn, a known label will really be
5056 cheaper even though it looks more expensive. */
5057 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5058 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5060 /* Terminate loop when replacement made. This must terminate since
5061 the current contents will be tested and will always be valid. */
5062 while (1)
5064 rtx trial;
5066 /* Skip invalid entries. */
5067 while (elt && !REG_P (elt->exp)
5068 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5069 elt = elt->next_same_value;
5071 /* A paradoxical subreg would be bad here: it'll be the right
5072 size, but later may be adjusted so that the upper bits aren't
5073 what we want. So reject it. */
5074 if (elt != 0
5075 && paradoxical_subreg_p (elt->exp)
5076 /* It is okay, though, if the rtx we're trying to match
5077 will ignore any of the bits we can't predict. */
5078 && ! (src != 0
5079 && GET_CODE (src) == SUBREG
5080 && GET_MODE (src) == GET_MODE (elt->exp)
5081 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5082 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5084 elt = elt->next_same_value;
5085 continue;
5088 if (elt)
5090 src_elt_cost = elt->cost;
5091 src_elt_regcost = elt->regcost;
5094 /* Find cheapest and skip it for the next time. For items
5095 of equal cost, use this order:
5096 src_folded, src, src_eqv, src_related and hash table entry. */
5097 if (src_folded
5098 && preferable (src_folded_cost, src_folded_regcost,
5099 src_cost, src_regcost) <= 0
5100 && preferable (src_folded_cost, src_folded_regcost,
5101 src_eqv_cost, src_eqv_regcost) <= 0
5102 && preferable (src_folded_cost, src_folded_regcost,
5103 src_related_cost, src_related_regcost) <= 0
5104 && preferable (src_folded_cost, src_folded_regcost,
5105 src_elt_cost, src_elt_regcost) <= 0)
5107 trial = src_folded, src_folded_cost = MAX_COST;
5108 if (src_folded_force_flag)
5110 rtx forced = force_const_mem (mode, trial);
5111 if (forced)
5112 trial = forced;
5115 else if (src
5116 && preferable (src_cost, src_regcost,
5117 src_eqv_cost, src_eqv_regcost) <= 0
5118 && preferable (src_cost, src_regcost,
5119 src_related_cost, src_related_regcost) <= 0
5120 && preferable (src_cost, src_regcost,
5121 src_elt_cost, src_elt_regcost) <= 0)
5122 trial = src, src_cost = MAX_COST;
5123 else if (src_eqv_here
5124 && preferable (src_eqv_cost, src_eqv_regcost,
5125 src_related_cost, src_related_regcost) <= 0
5126 && preferable (src_eqv_cost, src_eqv_regcost,
5127 src_elt_cost, src_elt_regcost) <= 0)
5128 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5129 else if (src_related
5130 && preferable (src_related_cost, src_related_regcost,
5131 src_elt_cost, src_elt_regcost) <= 0)
5132 trial = src_related, src_related_cost = MAX_COST;
5133 else
5135 trial = elt->exp;
5136 elt = elt->next_same_value;
5137 src_elt_cost = MAX_COST;
5140 /* Avoid creation of overlapping memory moves. */
5141 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5143 rtx src, dest;
5145 /* BLKmode moves are not handled by cse anyway. */
5146 if (GET_MODE (trial) == BLKmode)
5147 break;
5149 src = canon_rtx (trial);
5150 dest = canon_rtx (SET_DEST (sets[i].rtl));
5152 if (!MEM_P (src) || !MEM_P (dest)
5153 || !nonoverlapping_memrefs_p (src, dest, false))
5154 break;
5157 /* Try to optimize
5158 (set (reg:M N) (const_int A))
5159 (set (reg:M2 O) (const_int B))
5160 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5161 (reg:M2 O)). */
5162 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5163 && CONST_INT_P (trial)
5164 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5165 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5166 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5167 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5168 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5169 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5170 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5171 <= HOST_BITS_PER_WIDE_INT))
5173 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5174 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5175 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5176 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5177 struct table_elt *dest_elt
5178 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5179 rtx dest_cst = NULL;
5181 if (dest_elt)
5182 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5183 if (p->is_const && CONST_INT_P (p->exp))
5185 dest_cst = p->exp;
5186 break;
5188 if (dest_cst)
5190 HOST_WIDE_INT val = INTVAL (dest_cst);
5191 HOST_WIDE_INT mask;
5192 unsigned int shift;
5193 if (BITS_BIG_ENDIAN)
5194 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5195 - INTVAL (pos) - INTVAL (width);
5196 else
5197 shift = INTVAL (pos);
5198 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5199 mask = ~(HOST_WIDE_INT) 0;
5200 else
5201 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5202 val &= ~(mask << shift);
5203 val |= (INTVAL (trial) & mask) << shift;
5204 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5205 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5206 dest_reg, 1);
5207 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5208 GEN_INT (val), 1);
5209 if (apply_change_group ())
5211 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5212 if (note)
5214 remove_note (insn, note);
5215 df_notes_rescan (insn);
5217 src_eqv = NULL_RTX;
5218 src_eqv_elt = NULL;
5219 src_eqv_volatile = 0;
5220 src_eqv_in_memory = 0;
5221 src_eqv_hash = 0;
5222 repeat = true;
5223 break;
5228 /* We don't normally have an insn matching (set (pc) (pc)), so
5229 check for this separately here. We will delete such an
5230 insn below.
5232 For other cases such as a table jump or conditional jump
5233 where we know the ultimate target, go ahead and replace the
5234 operand. While that may not make a valid insn, we will
5235 reemit the jump below (and also insert any necessary
5236 barriers). */
5237 if (n_sets == 1 && dest == pc_rtx
5238 && (trial == pc_rtx
5239 || (GET_CODE (trial) == LABEL_REF
5240 && ! condjump_p (insn))))
5242 /* Don't substitute non-local labels, this confuses CFG. */
5243 if (GET_CODE (trial) == LABEL_REF
5244 && LABEL_REF_NONLOCAL_P (trial))
5245 continue;
5247 SET_SRC (sets[i].rtl) = trial;
5248 cse_jumps_altered = true;
5249 break;
5252 /* Reject certain invalid forms of CONST that we create. */
5253 else if (CONSTANT_P (trial)
5254 && GET_CODE (trial) == CONST
5255 /* Reject cases that will cause decode_rtx_const to
5256 die. On the alpha when simplifying a switch, we
5257 get (const (truncate (minus (label_ref)
5258 (label_ref)))). */
5259 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5260 /* Likewise on IA-64, except without the
5261 truncate. */
5262 || (GET_CODE (XEXP (trial, 0)) == MINUS
5263 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5264 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5265 /* Do nothing for this case. */
5268 /* Look for a substitution that makes a valid insn. */
5269 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5270 trial, 0))
5272 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5274 /* The result of apply_change_group can be ignored; see
5275 canon_reg. */
5277 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5278 apply_change_group ();
5280 break;
5283 /* If we previously found constant pool entries for
5284 constants and this is a constant, try making a
5285 pool entry. Put it in src_folded unless we already have done
5286 this since that is where it likely came from. */
5288 else if (constant_pool_entries_cost
5289 && CONSTANT_P (trial)
5290 && (src_folded == 0
5291 || (!MEM_P (src_folded)
5292 && ! src_folded_force_flag))
5293 && GET_MODE_CLASS (mode) != MODE_CC
5294 && mode != VOIDmode)
5296 src_folded_force_flag = 1;
5297 src_folded = trial;
5298 src_folded_cost = constant_pool_entries_cost;
5299 src_folded_regcost = constant_pool_entries_regcost;
5303 /* If we changed the insn too much, handle this set from scratch. */
5304 if (repeat)
5306 i--;
5307 continue;
5310 src = SET_SRC (sets[i].rtl);
5312 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5313 However, there is an important exception: If both are registers
5314 that are not the head of their equivalence class, replace SET_SRC
5315 with the head of the class. If we do not do this, we will have
5316 both registers live over a portion of the basic block. This way,
5317 their lifetimes will likely abut instead of overlapping. */
5318 if (REG_P (dest)
5319 && REGNO_QTY_VALID_P (REGNO (dest)))
5321 int dest_q = REG_QTY (REGNO (dest));
5322 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5324 if (dest_ent->mode == GET_MODE (dest)
5325 && dest_ent->first_reg != REGNO (dest)
5326 && REG_P (src) && REGNO (src) == REGNO (dest)
5327 /* Don't do this if the original insn had a hard reg as
5328 SET_SRC or SET_DEST. */
5329 && (!REG_P (sets[i].src)
5330 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5331 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5332 /* We can't call canon_reg here because it won't do anything if
5333 SRC is a hard register. */
5335 int src_q = REG_QTY (REGNO (src));
5336 struct qty_table_elem *src_ent = &qty_table[src_q];
5337 int first = src_ent->first_reg;
5338 rtx new_src
5339 = (first >= FIRST_PSEUDO_REGISTER
5340 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5342 /* We must use validate-change even for this, because this
5343 might be a special no-op instruction, suitable only to
5344 tag notes onto. */
5345 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5347 src = new_src;
5348 /* If we had a constant that is cheaper than what we are now
5349 setting SRC to, use that constant. We ignored it when we
5350 thought we could make this into a no-op. */
5351 if (src_const && COST (src_const) < COST (src)
5352 && validate_change (insn, &SET_SRC (sets[i].rtl),
5353 src_const, 0))
5354 src = src_const;
5359 /* If we made a change, recompute SRC values. */
5360 if (src != sets[i].src)
5362 do_not_record = 0;
5363 hash_arg_in_memory = 0;
5364 sets[i].src = src;
5365 sets[i].src_hash = HASH (src, mode);
5366 sets[i].src_volatile = do_not_record;
5367 sets[i].src_in_memory = hash_arg_in_memory;
5368 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5371 /* If this is a single SET, we are setting a register, and we have an
5372 equivalent constant, we want to add a REG_EQUAL note if the constant
5373 is different from the source. We don't want to do it for a constant
5374 pseudo since verifying that this pseudo hasn't been eliminated is a
5375 pain; moreover such a note won't help anything.
5377 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5378 which can be created for a reference to a compile time computable
5379 entry in a jump table. */
5380 if (n_sets == 1
5381 && REG_P (dest)
5382 && src_const
5383 && !REG_P (src_const)
5384 && !(GET_CODE (src_const) == SUBREG
5385 && REG_P (SUBREG_REG (src_const)))
5386 && !(GET_CODE (src_const) == CONST
5387 && GET_CODE (XEXP (src_const, 0)) == MINUS
5388 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5389 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5390 && !rtx_equal_p (src, src_const))
5392 /* Make sure that the rtx is not shared. */
5393 src_const = copy_rtx (src_const);
5395 /* Record the actual constant value in a REG_EQUAL note,
5396 making a new one if one does not already exist. */
5397 set_unique_reg_note (insn, REG_EQUAL, src_const);
5398 df_notes_rescan (insn);
5401 /* Now deal with the destination. */
5402 do_not_record = 0;
5404 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5405 while (GET_CODE (dest) == SUBREG
5406 || GET_CODE (dest) == ZERO_EXTRACT
5407 || GET_CODE (dest) == STRICT_LOW_PART)
5408 dest = XEXP (dest, 0);
5410 sets[i].inner_dest = dest;
5412 if (MEM_P (dest))
5414 #ifdef PUSH_ROUNDING
5415 /* Stack pushes invalidate the stack pointer. */
5416 rtx addr = XEXP (dest, 0);
5417 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5418 && XEXP (addr, 0) == stack_pointer_rtx)
5419 invalidate (stack_pointer_rtx, VOIDmode);
5420 #endif
5421 dest = fold_rtx (dest, insn);
5424 /* Compute the hash code of the destination now,
5425 before the effects of this instruction are recorded,
5426 since the register values used in the address computation
5427 are those before this instruction. */
5428 sets[i].dest_hash = HASH (dest, mode);
5430 /* Don't enter a bit-field in the hash table
5431 because the value in it after the store
5432 may not equal what was stored, due to truncation. */
5434 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5436 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5438 if (src_const != 0 && CONST_INT_P (src_const)
5439 && CONST_INT_P (width)
5440 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5441 && ! (INTVAL (src_const)
5442 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5443 /* Exception: if the value is constant,
5444 and it won't be truncated, record it. */
5446 else
5448 /* This is chosen so that the destination will be invalidated
5449 but no new value will be recorded.
5450 We must invalidate because sometimes constant
5451 values can be recorded for bitfields. */
5452 sets[i].src_elt = 0;
5453 sets[i].src_volatile = 1;
5454 src_eqv = 0;
5455 src_eqv_elt = 0;
5459 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5460 the insn. */
5461 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5463 /* One less use of the label this insn used to jump to. */
5464 delete_insn_and_edges (insn);
5465 cse_jumps_altered = true;
5466 /* No more processing for this set. */
5467 sets[i].rtl = 0;
5470 /* If this SET is now setting PC to a label, we know it used to
5471 be a conditional or computed branch. */
5472 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5473 && !LABEL_REF_NONLOCAL_P (src))
5475 /* We reemit the jump in as many cases as possible just in
5476 case the form of an unconditional jump is significantly
5477 different than a computed jump or conditional jump.
5479 If this insn has multiple sets, then reemitting the
5480 jump is nontrivial. So instead we just force rerecognition
5481 and hope for the best. */
5482 if (n_sets == 1)
5484 rtx_jump_insn *new_rtx;
5485 rtx note;
5487 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5488 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5489 LABEL_NUSES (XEXP (src, 0))++;
5491 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5492 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5493 if (note)
5495 XEXP (note, 1) = NULL_RTX;
5496 REG_NOTES (new_rtx) = note;
5499 delete_insn_and_edges (insn);
5500 insn = new_rtx;
5502 else
5503 INSN_CODE (insn) = -1;
5505 /* Do not bother deleting any unreachable code, let jump do it. */
5506 cse_jumps_altered = true;
5507 sets[i].rtl = 0;
5510 /* If destination is volatile, invalidate it and then do no further
5511 processing for this assignment. */
5513 else if (do_not_record)
5515 invalidate_dest (dest);
5516 sets[i].rtl = 0;
5519 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5521 do_not_record = 0;
5522 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5523 if (do_not_record)
5525 invalidate_dest (SET_DEST (sets[i].rtl));
5526 sets[i].rtl = 0;
5530 /* If setting CC0, record what it was set to, or a constant, if it
5531 is equivalent to a constant. If it is being set to a floating-point
5532 value, make a COMPARE with the appropriate constant of 0. If we
5533 don't do this, later code can interpret this as a test against
5534 const0_rtx, which can cause problems if we try to put it into an
5535 insn as a floating-point operand. */
5536 if (dest == cc0_rtx)
5538 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5539 this_insn_cc0_mode = mode;
5540 if (FLOAT_MODE_P (mode))
5541 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5542 CONST0_RTX (mode));
5546 /* Now enter all non-volatile source expressions in the hash table
5547 if they are not already present.
5548 Record their equivalence classes in src_elt.
5549 This way we can insert the corresponding destinations into
5550 the same classes even if the actual sources are no longer in them
5551 (having been invalidated). */
5553 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5554 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5556 struct table_elt *elt;
5557 struct table_elt *classp = sets[0].src_elt;
5558 rtx dest = SET_DEST (sets[0].rtl);
5559 machine_mode eqvmode = GET_MODE (dest);
5561 if (GET_CODE (dest) == STRICT_LOW_PART)
5563 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5564 classp = 0;
5566 if (insert_regs (src_eqv, classp, 0))
5568 rehash_using_reg (src_eqv);
5569 src_eqv_hash = HASH (src_eqv, eqvmode);
5571 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5572 elt->in_memory = src_eqv_in_memory;
5573 src_eqv_elt = elt;
5575 /* Check to see if src_eqv_elt is the same as a set source which
5576 does not yet have an elt, and if so set the elt of the set source
5577 to src_eqv_elt. */
5578 for (i = 0; i < n_sets; i++)
5579 if (sets[i].rtl && sets[i].src_elt == 0
5580 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5581 sets[i].src_elt = src_eqv_elt;
5584 for (i = 0; i < n_sets; i++)
5585 if (sets[i].rtl && ! sets[i].src_volatile
5586 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5588 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5590 /* REG_EQUAL in setting a STRICT_LOW_PART
5591 gives an equivalent for the entire destination register,
5592 not just for the subreg being stored in now.
5593 This is a more interesting equivalence, so we arrange later
5594 to treat the entire reg as the destination. */
5595 sets[i].src_elt = src_eqv_elt;
5596 sets[i].src_hash = src_eqv_hash;
5598 else
5600 /* Insert source and constant equivalent into hash table, if not
5601 already present. */
5602 struct table_elt *classp = src_eqv_elt;
5603 rtx src = sets[i].src;
5604 rtx dest = SET_DEST (sets[i].rtl);
5605 machine_mode mode
5606 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5608 /* It's possible that we have a source value known to be
5609 constant but don't have a REG_EQUAL note on the insn.
5610 Lack of a note will mean src_eqv_elt will be NULL. This
5611 can happen where we've generated a SUBREG to access a
5612 CONST_INT that is already in a register in a wider mode.
5613 Ensure that the source expression is put in the proper
5614 constant class. */
5615 if (!classp)
5616 classp = sets[i].src_const_elt;
5618 if (sets[i].src_elt == 0)
5620 struct table_elt *elt;
5622 /* Note that these insert_regs calls cannot remove
5623 any of the src_elt's, because they would have failed to
5624 match if not still valid. */
5625 if (insert_regs (src, classp, 0))
5627 rehash_using_reg (src);
5628 sets[i].src_hash = HASH (src, mode);
5630 elt = insert (src, classp, sets[i].src_hash, mode);
5631 elt->in_memory = sets[i].src_in_memory;
5632 /* If inline asm has any clobbers, ensure we only reuse
5633 existing inline asms and never try to put the ASM_OPERANDS
5634 into an insn that isn't inline asm. */
5635 if (GET_CODE (src) == ASM_OPERANDS
5636 && GET_CODE (x) == PARALLEL)
5637 elt->cost = MAX_COST;
5638 sets[i].src_elt = classp = elt;
5640 if (sets[i].src_const && sets[i].src_const_elt == 0
5641 && src != sets[i].src_const
5642 && ! rtx_equal_p (sets[i].src_const, src))
5643 sets[i].src_elt = insert (sets[i].src_const, classp,
5644 sets[i].src_const_hash, mode);
5647 else if (sets[i].src_elt == 0)
5648 /* If we did not insert the source into the hash table (e.g., it was
5649 volatile), note the equivalence class for the REG_EQUAL value, if any,
5650 so that the destination goes into that class. */
5651 sets[i].src_elt = src_eqv_elt;
5653 /* Record destination addresses in the hash table. This allows us to
5654 check if they are invalidated by other sets. */
5655 for (i = 0; i < n_sets; i++)
5657 if (sets[i].rtl)
5659 rtx x = sets[i].inner_dest;
5660 struct table_elt *elt;
5661 machine_mode mode;
5662 unsigned hash;
5664 if (MEM_P (x))
5666 x = XEXP (x, 0);
5667 mode = GET_MODE (x);
5668 hash = HASH (x, mode);
5669 elt = lookup (x, hash, mode);
5670 if (!elt)
5672 if (insert_regs (x, NULL, 0))
5674 rtx dest = SET_DEST (sets[i].rtl);
5676 rehash_using_reg (x);
5677 hash = HASH (x, mode);
5678 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5680 elt = insert (x, NULL, hash, mode);
5683 sets[i].dest_addr_elt = elt;
5685 else
5686 sets[i].dest_addr_elt = NULL;
5690 invalidate_from_clobbers (insn);
5692 /* Some registers are invalidated by subroutine calls. Memory is
5693 invalidated by non-constant calls. */
5695 if (CALL_P (insn))
5697 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5698 invalidate_memory ();
5699 invalidate_for_call ();
5702 /* Now invalidate everything set by this instruction.
5703 If a SUBREG or other funny destination is being set,
5704 sets[i].rtl is still nonzero, so here we invalidate the reg
5705 a part of which is being set. */
5707 for (i = 0; i < n_sets; i++)
5708 if (sets[i].rtl)
5710 /* We can't use the inner dest, because the mode associated with
5711 a ZERO_EXTRACT is significant. */
5712 rtx dest = SET_DEST (sets[i].rtl);
5714 /* Needed for registers to remove the register from its
5715 previous quantity's chain.
5716 Needed for memory if this is a nonvarying address, unless
5717 we have just done an invalidate_memory that covers even those. */
5718 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5719 invalidate (dest, VOIDmode);
5720 else if (MEM_P (dest))
5721 invalidate (dest, VOIDmode);
5722 else if (GET_CODE (dest) == STRICT_LOW_PART
5723 || GET_CODE (dest) == ZERO_EXTRACT)
5724 invalidate (XEXP (dest, 0), GET_MODE (dest));
5727 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5728 the regs restored by the longjmp come from a later time
5729 than the setjmp. */
5730 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5732 flush_hash_table ();
5733 goto done;
5736 /* Make sure registers mentioned in destinations
5737 are safe for use in an expression to be inserted.
5738 This removes from the hash table
5739 any invalid entry that refers to one of these registers.
5741 We don't care about the return value from mention_regs because
5742 we are going to hash the SET_DEST values unconditionally. */
5744 for (i = 0; i < n_sets; i++)
5746 if (sets[i].rtl)
5748 rtx x = SET_DEST (sets[i].rtl);
5750 if (!REG_P (x))
5751 mention_regs (x);
5752 else
5754 /* We used to rely on all references to a register becoming
5755 inaccessible when a register changes to a new quantity,
5756 since that changes the hash code. However, that is not
5757 safe, since after HASH_SIZE new quantities we get a
5758 hash 'collision' of a register with its own invalid
5759 entries. And since SUBREGs have been changed not to
5760 change their hash code with the hash code of the register,
5761 it wouldn't work any longer at all. So we have to check
5762 for any invalid references lying around now.
5763 This code is similar to the REG case in mention_regs,
5764 but it knows that reg_tick has been incremented, and
5765 it leaves reg_in_table as -1 . */
5766 unsigned int regno = REGNO (x);
5767 unsigned int endregno = END_REGNO (x);
5768 unsigned int i;
5770 for (i = regno; i < endregno; i++)
5772 if (REG_IN_TABLE (i) >= 0)
5774 remove_invalid_refs (i);
5775 REG_IN_TABLE (i) = -1;
5782 /* We may have just removed some of the src_elt's from the hash table.
5783 So replace each one with the current head of the same class.
5784 Also check if destination addresses have been removed. */
5786 for (i = 0; i < n_sets; i++)
5787 if (sets[i].rtl)
5789 if (sets[i].dest_addr_elt
5790 && sets[i].dest_addr_elt->first_same_value == 0)
5792 /* The elt was removed, which means this destination is not
5793 valid after this instruction. */
5794 sets[i].rtl = NULL_RTX;
5796 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5797 /* If elt was removed, find current head of same class,
5798 or 0 if nothing remains of that class. */
5800 struct table_elt *elt = sets[i].src_elt;
5802 while (elt && elt->prev_same_value)
5803 elt = elt->prev_same_value;
5805 while (elt && elt->first_same_value == 0)
5806 elt = elt->next_same_value;
5807 sets[i].src_elt = elt ? elt->first_same_value : 0;
5811 /* Now insert the destinations into their equivalence classes. */
5813 for (i = 0; i < n_sets; i++)
5814 if (sets[i].rtl)
5816 rtx dest = SET_DEST (sets[i].rtl);
5817 struct table_elt *elt;
5819 /* Don't record value if we are not supposed to risk allocating
5820 floating-point values in registers that might be wider than
5821 memory. */
5822 if ((flag_float_store
5823 && MEM_P (dest)
5824 && FLOAT_MODE_P (GET_MODE (dest)))
5825 /* Don't record BLKmode values, because we don't know the
5826 size of it, and can't be sure that other BLKmode values
5827 have the same or smaller size. */
5828 || GET_MODE (dest) == BLKmode
5829 /* If we didn't put a REG_EQUAL value or a source into the hash
5830 table, there is no point is recording DEST. */
5831 || sets[i].src_elt == 0
5832 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5833 or SIGN_EXTEND, don't record DEST since it can cause
5834 some tracking to be wrong.
5836 ??? Think about this more later. */
5837 || (paradoxical_subreg_p (dest)
5838 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5839 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5840 continue;
5842 /* STRICT_LOW_PART isn't part of the value BEING set,
5843 and neither is the SUBREG inside it.
5844 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5845 if (GET_CODE (dest) == STRICT_LOW_PART)
5846 dest = SUBREG_REG (XEXP (dest, 0));
5848 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5849 /* Registers must also be inserted into chains for quantities. */
5850 if (insert_regs (dest, sets[i].src_elt, 1))
5852 /* If `insert_regs' changes something, the hash code must be
5853 recalculated. */
5854 rehash_using_reg (dest);
5855 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5858 elt = insert (dest, sets[i].src_elt,
5859 sets[i].dest_hash, GET_MODE (dest));
5861 /* If this is a constant, insert the constant anchors with the
5862 equivalent register-offset expressions using register DEST. */
5863 if (targetm.const_anchor
5864 && REG_P (dest)
5865 && SCALAR_INT_MODE_P (GET_MODE (dest))
5866 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5867 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5869 elt->in_memory = (MEM_P (sets[i].inner_dest)
5870 && !MEM_READONLY_P (sets[i].inner_dest));
5872 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5873 narrower than M2, and both M1 and M2 are the same number of words,
5874 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5875 make that equivalence as well.
5877 However, BAR may have equivalences for which gen_lowpart
5878 will produce a simpler value than gen_lowpart applied to
5879 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5880 BAR's equivalences. If we don't get a simplified form, make
5881 the SUBREG. It will not be used in an equivalence, but will
5882 cause two similar assignments to be detected.
5884 Note the loop below will find SUBREG_REG (DEST) since we have
5885 already entered SRC and DEST of the SET in the table. */
5887 if (GET_CODE (dest) == SUBREG
5888 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5889 / UNITS_PER_WORD)
5890 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5891 && (GET_MODE_SIZE (GET_MODE (dest))
5892 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5893 && sets[i].src_elt != 0)
5895 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5896 struct table_elt *elt, *classp = 0;
5898 for (elt = sets[i].src_elt->first_same_value; elt;
5899 elt = elt->next_same_value)
5901 rtx new_src = 0;
5902 unsigned src_hash;
5903 struct table_elt *src_elt;
5904 int byte = 0;
5906 /* Ignore invalid entries. */
5907 if (!REG_P (elt->exp)
5908 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5909 continue;
5911 /* We may have already been playing subreg games. If the
5912 mode is already correct for the destination, use it. */
5913 if (GET_MODE (elt->exp) == new_mode)
5914 new_src = elt->exp;
5915 else
5917 /* Calculate big endian correction for the SUBREG_BYTE.
5918 We have already checked that M1 (GET_MODE (dest))
5919 is not narrower than M2 (new_mode). */
5920 if (BYTES_BIG_ENDIAN)
5921 byte = (GET_MODE_SIZE (GET_MODE (dest))
5922 - GET_MODE_SIZE (new_mode));
5924 new_src = simplify_gen_subreg (new_mode, elt->exp,
5925 GET_MODE (dest), byte);
5928 /* The call to simplify_gen_subreg fails if the value
5929 is VOIDmode, yet we can't do any simplification, e.g.
5930 for EXPR_LISTs denoting function call results.
5931 It is invalid to construct a SUBREG with a VOIDmode
5932 SUBREG_REG, hence a zero new_src means we can't do
5933 this substitution. */
5934 if (! new_src)
5935 continue;
5937 src_hash = HASH (new_src, new_mode);
5938 src_elt = lookup (new_src, src_hash, new_mode);
5940 /* Put the new source in the hash table is if isn't
5941 already. */
5942 if (src_elt == 0)
5944 if (insert_regs (new_src, classp, 0))
5946 rehash_using_reg (new_src);
5947 src_hash = HASH (new_src, new_mode);
5949 src_elt = insert (new_src, classp, src_hash, new_mode);
5950 src_elt->in_memory = elt->in_memory;
5951 if (GET_CODE (new_src) == ASM_OPERANDS
5952 && elt->cost == MAX_COST)
5953 src_elt->cost = MAX_COST;
5955 else if (classp && classp != src_elt->first_same_value)
5956 /* Show that two things that we've seen before are
5957 actually the same. */
5958 merge_equiv_classes (src_elt, classp);
5960 classp = src_elt->first_same_value;
5961 /* Ignore invalid entries. */
5962 while (classp
5963 && !REG_P (classp->exp)
5964 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5965 classp = classp->next_same_value;
5970 /* Special handling for (set REG0 REG1) where REG0 is the
5971 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5972 be used in the sequel, so (if easily done) change this insn to
5973 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5974 that computed their value. Then REG1 will become a dead store
5975 and won't cloud the situation for later optimizations.
5977 Do not make this change if REG1 is a hard register, because it will
5978 then be used in the sequel and we may be changing a two-operand insn
5979 into a three-operand insn.
5981 Also do not do this if we are operating on a copy of INSN. */
5983 if (n_sets == 1 && sets[0].rtl)
5984 try_back_substitute_reg (sets[0].rtl, insn);
5986 done:;
5989 /* Remove from the hash table all expressions that reference memory. */
5991 static void
5992 invalidate_memory (void)
5994 int i;
5995 struct table_elt *p, *next;
5997 for (i = 0; i < HASH_SIZE; i++)
5998 for (p = table[i]; p; p = next)
6000 next = p->next_same_hash;
6001 if (p->in_memory)
6002 remove_from_table (p, i);
6006 /* Perform invalidation on the basis of everything about INSN,
6007 except for invalidating the actual places that are SET in it.
6008 This includes the places CLOBBERed, and anything that might
6009 alias with something that is SET or CLOBBERed. */
6011 static void
6012 invalidate_from_clobbers (rtx_insn *insn)
6014 rtx x = PATTERN (insn);
6016 if (GET_CODE (x) == CLOBBER)
6018 rtx ref = XEXP (x, 0);
6019 if (ref)
6021 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6022 || MEM_P (ref))
6023 invalidate (ref, VOIDmode);
6024 else if (GET_CODE (ref) == STRICT_LOW_PART
6025 || GET_CODE (ref) == ZERO_EXTRACT)
6026 invalidate (XEXP (ref, 0), GET_MODE (ref));
6029 else if (GET_CODE (x) == PARALLEL)
6031 int i;
6032 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6034 rtx y = XVECEXP (x, 0, i);
6035 if (GET_CODE (y) == CLOBBER)
6037 rtx ref = XEXP (y, 0);
6038 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6039 || MEM_P (ref))
6040 invalidate (ref, VOIDmode);
6041 else if (GET_CODE (ref) == STRICT_LOW_PART
6042 || GET_CODE (ref) == ZERO_EXTRACT)
6043 invalidate (XEXP (ref, 0), GET_MODE (ref));
6049 /* Perform invalidation on the basis of everything about INSN.
6050 This includes the places CLOBBERed, and anything that might
6051 alias with something that is SET or CLOBBERed. */
6053 static void
6054 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6056 rtx tem;
6057 rtx x = PATTERN (insn);
6059 if (CALL_P (insn))
6061 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6062 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6063 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6066 /* Ensure we invalidate the destination register of a CALL insn.
6067 This is necessary for machines where this register is a fixed_reg,
6068 because no other code would invalidate it. */
6069 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6070 invalidate (SET_DEST (x), VOIDmode);
6072 else if (GET_CODE (x) == PARALLEL)
6074 int i;
6076 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6078 rtx y = XVECEXP (x, 0, i);
6079 if (GET_CODE (y) == CLOBBER)
6081 rtx clobbered = XEXP (y, 0);
6083 if (REG_P (clobbered)
6084 || GET_CODE (clobbered) == SUBREG)
6085 invalidate (clobbered, VOIDmode);
6086 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6087 || GET_CODE (clobbered) == ZERO_EXTRACT)
6088 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6090 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6091 invalidate (SET_DEST (y), VOIDmode);
6096 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6097 and replace any registers in them with either an equivalent constant
6098 or the canonical form of the register. If we are inside an address,
6099 only do this if the address remains valid.
6101 OBJECT is 0 except when within a MEM in which case it is the MEM.
6103 Return the replacement for X. */
6105 static rtx
6106 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6108 enum rtx_code code = GET_CODE (x);
6109 const char *fmt = GET_RTX_FORMAT (code);
6110 int i;
6112 switch (code)
6114 case CONST:
6115 case SYMBOL_REF:
6116 case LABEL_REF:
6117 CASE_CONST_ANY:
6118 case PC:
6119 case CC0:
6120 case LO_SUM:
6121 return x;
6123 case MEM:
6124 validate_change (x, &XEXP (x, 0),
6125 cse_process_notes (XEXP (x, 0), x, changed), 0);
6126 return x;
6128 case EXPR_LIST:
6129 if (REG_NOTE_KIND (x) == REG_EQUAL)
6130 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6131 /* Fall through. */
6133 case INSN_LIST:
6134 case INT_LIST:
6135 if (XEXP (x, 1))
6136 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6137 return x;
6139 case SIGN_EXTEND:
6140 case ZERO_EXTEND:
6141 case SUBREG:
6143 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6144 /* We don't substitute VOIDmode constants into these rtx,
6145 since they would impede folding. */
6146 if (GET_MODE (new_rtx) != VOIDmode)
6147 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6148 return x;
6151 case UNSIGNED_FLOAT:
6153 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6154 /* We don't substitute negative VOIDmode constants into these rtx,
6155 since they would impede folding. */
6156 if (GET_MODE (new_rtx) != VOIDmode
6157 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6158 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6159 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6160 return x;
6163 case REG:
6164 i = REG_QTY (REGNO (x));
6166 /* Return a constant or a constant register. */
6167 if (REGNO_QTY_VALID_P (REGNO (x)))
6169 struct qty_table_elem *ent = &qty_table[i];
6171 if (ent->const_rtx != NULL_RTX
6172 && (CONSTANT_P (ent->const_rtx)
6173 || REG_P (ent->const_rtx)))
6175 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6176 if (new_rtx)
6177 return copy_rtx (new_rtx);
6181 /* Otherwise, canonicalize this register. */
6182 return canon_reg (x, NULL);
6184 default:
6185 break;
6188 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6189 if (fmt[i] == 'e')
6190 validate_change (object, &XEXP (x, i),
6191 cse_process_notes (XEXP (x, i), object, changed), 0);
6193 return x;
6196 static rtx
6197 cse_process_notes (rtx x, rtx object, bool *changed)
6199 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6200 if (new_rtx != x)
6201 *changed = true;
6202 return new_rtx;
6206 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6208 DATA is a pointer to a struct cse_basic_block_data, that is used to
6209 describe the path.
6210 It is filled with a queue of basic blocks, starting with FIRST_BB
6211 and following a trace through the CFG.
6213 If all paths starting at FIRST_BB have been followed, or no new path
6214 starting at FIRST_BB can be constructed, this function returns FALSE.
6215 Otherwise, DATA->path is filled and the function returns TRUE indicating
6216 that a path to follow was found.
6218 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6219 block in the path will be FIRST_BB. */
6221 static bool
6222 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6223 int follow_jumps)
6225 basic_block bb;
6226 edge e;
6227 int path_size;
6229 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6231 /* See if there is a previous path. */
6232 path_size = data->path_size;
6234 /* There is a previous path. Make sure it started with FIRST_BB. */
6235 if (path_size)
6236 gcc_assert (data->path[0].bb == first_bb);
6238 /* There was only one basic block in the last path. Clear the path and
6239 return, so that paths starting at another basic block can be tried. */
6240 if (path_size == 1)
6242 path_size = 0;
6243 goto done;
6246 /* If the path was empty from the beginning, construct a new path. */
6247 if (path_size == 0)
6248 data->path[path_size++].bb = first_bb;
6249 else
6251 /* Otherwise, path_size must be equal to or greater than 2, because
6252 a previous path exists that is at least two basic blocks long.
6254 Update the previous branch path, if any. If the last branch was
6255 previously along the branch edge, take the fallthrough edge now. */
6256 while (path_size >= 2)
6258 basic_block last_bb_in_path, previous_bb_in_path;
6259 edge e;
6261 --path_size;
6262 last_bb_in_path = data->path[path_size].bb;
6263 previous_bb_in_path = data->path[path_size - 1].bb;
6265 /* If we previously followed a path along the branch edge, try
6266 the fallthru edge now. */
6267 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6268 && any_condjump_p (BB_END (previous_bb_in_path))
6269 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6270 && e == BRANCH_EDGE (previous_bb_in_path))
6272 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6273 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6274 && single_pred_p (bb)
6275 /* We used to assert here that we would only see blocks
6276 that we have not visited yet. But we may end up
6277 visiting basic blocks twice if the CFG has changed
6278 in this run of cse_main, because when the CFG changes
6279 the topological sort of the CFG also changes. A basic
6280 blocks that previously had more than two predecessors
6281 may now have a single predecessor, and become part of
6282 a path that starts at another basic block.
6284 We still want to visit each basic block only once, so
6285 halt the path here if we have already visited BB. */
6286 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6288 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6289 data->path[path_size++].bb = bb;
6290 break;
6294 data->path[path_size].bb = NULL;
6297 /* If only one block remains in the path, bail. */
6298 if (path_size == 1)
6300 path_size = 0;
6301 goto done;
6305 /* Extend the path if possible. */
6306 if (follow_jumps)
6308 bb = data->path[path_size - 1].bb;
6309 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6311 if (single_succ_p (bb))
6312 e = single_succ_edge (bb);
6313 else if (EDGE_COUNT (bb->succs) == 2
6314 && any_condjump_p (BB_END (bb)))
6316 /* First try to follow the branch. If that doesn't lead
6317 to a useful path, follow the fallthru edge. */
6318 e = BRANCH_EDGE (bb);
6319 if (!single_pred_p (e->dest))
6320 e = FALLTHRU_EDGE (bb);
6322 else
6323 e = NULL;
6325 if (e
6326 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6327 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6328 && single_pred_p (e->dest)
6329 /* Avoid visiting basic blocks twice. The large comment
6330 above explains why this can happen. */
6331 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6333 basic_block bb2 = e->dest;
6334 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6335 data->path[path_size++].bb = bb2;
6336 bb = bb2;
6338 else
6339 bb = NULL;
6343 done:
6344 data->path_size = path_size;
6345 return path_size != 0;
6348 /* Dump the path in DATA to file F. NSETS is the number of sets
6349 in the path. */
6351 static void
6352 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6354 int path_entry;
6356 fprintf (f, ";; Following path with %d sets: ", nsets);
6357 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6358 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6359 fputc ('\n', dump_file);
6360 fflush (f);
6364 /* Return true if BB has exception handling successor edges. */
6366 static bool
6367 have_eh_succ_edges (basic_block bb)
6369 edge e;
6370 edge_iterator ei;
6372 FOR_EACH_EDGE (e, ei, bb->succs)
6373 if (e->flags & EDGE_EH)
6374 return true;
6376 return false;
6380 /* Scan to the end of the path described by DATA. Return an estimate of
6381 the total number of SETs of all insns in the path. */
6383 static void
6384 cse_prescan_path (struct cse_basic_block_data *data)
6386 int nsets = 0;
6387 int path_size = data->path_size;
6388 int path_entry;
6390 /* Scan to end of each basic block in the path. */
6391 for (path_entry = 0; path_entry < path_size; path_entry++)
6393 basic_block bb;
6394 rtx_insn *insn;
6396 bb = data->path[path_entry].bb;
6398 FOR_BB_INSNS (bb, insn)
6400 if (!INSN_P (insn))
6401 continue;
6403 /* A PARALLEL can have lots of SETs in it,
6404 especially if it is really an ASM_OPERANDS. */
6405 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6406 nsets += XVECLEN (PATTERN (insn), 0);
6407 else
6408 nsets += 1;
6412 data->nsets = nsets;
6415 /* Return true if the pattern of INSN uses a LABEL_REF for which
6416 there isn't a REG_LABEL_OPERAND note. */
6418 static bool
6419 check_for_label_ref (rtx_insn *insn)
6421 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6422 note for it, we must rerun jump since it needs to place the note. If
6423 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6424 don't do this since no REG_LABEL_OPERAND will be added. */
6425 subrtx_iterator::array_type array;
6426 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6428 const_rtx x = *iter;
6429 if (GET_CODE (x) == LABEL_REF
6430 && !LABEL_REF_NONLOCAL_P (x)
6431 && (!JUMP_P (insn)
6432 || !label_is_jump_target_p (LABEL_REF_LABEL (x), insn))
6433 && LABEL_P (LABEL_REF_LABEL (x))
6434 && INSN_UID (LABEL_REF_LABEL (x)) != 0
6435 && !find_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x)))
6436 return true;
6438 return false;
6441 /* Process a single extended basic block described by EBB_DATA. */
6443 static void
6444 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6446 int path_size = ebb_data->path_size;
6447 int path_entry;
6448 int num_insns = 0;
6450 /* Allocate the space needed by qty_table. */
6451 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6453 new_basic_block ();
6454 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6455 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6456 for (path_entry = 0; path_entry < path_size; path_entry++)
6458 basic_block bb;
6459 rtx_insn *insn;
6461 bb = ebb_data->path[path_entry].bb;
6463 /* Invalidate recorded information for eh regs if there is an EH
6464 edge pointing to that bb. */
6465 if (bb_has_eh_pred (bb))
6467 df_ref def;
6469 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6470 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6471 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6474 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6475 FOR_BB_INSNS (bb, insn)
6477 /* If we have processed 1,000 insns, flush the hash table to
6478 avoid extreme quadratic behavior. We must not include NOTEs
6479 in the count since there may be more of them when generating
6480 debugging information. If we clear the table at different
6481 times, code generated with -g -O might be different than code
6482 generated with -O but not -g.
6484 FIXME: This is a real kludge and needs to be done some other
6485 way. */
6486 if (NONDEBUG_INSN_P (insn)
6487 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6489 flush_hash_table ();
6490 num_insns = 0;
6493 if (INSN_P (insn))
6495 /* Process notes first so we have all notes in canonical forms
6496 when looking for duplicate operations. */
6497 if (REG_NOTES (insn))
6499 bool changed = false;
6500 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6501 NULL_RTX, &changed);
6502 if (changed)
6503 df_notes_rescan (insn);
6506 cse_insn (insn);
6508 /* If we haven't already found an insn where we added a LABEL_REF,
6509 check this one. */
6510 if (INSN_P (insn) && !recorded_label_ref
6511 && check_for_label_ref (insn))
6512 recorded_label_ref = true;
6514 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6516 /* If the previous insn sets CC0 and this insn no
6517 longer references CC0, delete the previous insn.
6518 Here we use fact that nothing expects CC0 to be
6519 valid over an insn, which is true until the final
6520 pass. */
6521 rtx_insn *prev_insn;
6522 rtx tem;
6524 prev_insn = prev_nonnote_nondebug_insn (insn);
6525 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6526 && (tem = single_set (prev_insn)) != NULL_RTX
6527 && SET_DEST (tem) == cc0_rtx
6528 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6529 delete_insn (prev_insn);
6531 /* If this insn is not the last insn in the basic
6532 block, it will be PREV_INSN(insn) in the next
6533 iteration. If we recorded any CC0-related
6534 information for this insn, remember it. */
6535 if (insn != BB_END (bb))
6537 prev_insn_cc0 = this_insn_cc0;
6538 prev_insn_cc0_mode = this_insn_cc0_mode;
6544 /* With non-call exceptions, we are not always able to update
6545 the CFG properly inside cse_insn. So clean up possibly
6546 redundant EH edges here. */
6547 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6548 cse_cfg_altered |= purge_dead_edges (bb);
6550 /* If we changed a conditional jump, we may have terminated
6551 the path we are following. Check that by verifying that
6552 the edge we would take still exists. If the edge does
6553 not exist anymore, purge the remainder of the path.
6554 Note that this will cause us to return to the caller. */
6555 if (path_entry < path_size - 1)
6557 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6558 if (!find_edge (bb, next_bb))
6562 path_size--;
6564 /* If we truncate the path, we must also reset the
6565 visited bit on the remaining blocks in the path,
6566 or we will never visit them at all. */
6567 bitmap_clear_bit (cse_visited_basic_blocks,
6568 ebb_data->path[path_size].bb->index);
6569 ebb_data->path[path_size].bb = NULL;
6571 while (path_size - 1 != path_entry);
6572 ebb_data->path_size = path_size;
6576 /* If this is a conditional jump insn, record any known
6577 equivalences due to the condition being tested. */
6578 insn = BB_END (bb);
6579 if (path_entry < path_size - 1
6580 && JUMP_P (insn)
6581 && single_set (insn)
6582 && any_condjump_p (insn))
6584 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6585 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6586 record_jump_equiv (insn, taken);
6589 /* Clear the CC0-tracking related insns, they can't provide
6590 useful information across basic block boundaries. */
6591 prev_insn_cc0 = 0;
6594 gcc_assert (next_qty <= max_qty);
6596 free (qty_table);
6600 /* Perform cse on the instructions of a function.
6601 F is the first instruction.
6602 NREGS is one plus the highest pseudo-reg number used in the instruction.
6604 Return 2 if jump optimizations should be redone due to simplifications
6605 in conditional jump instructions.
6606 Return 1 if the CFG should be cleaned up because it has been modified.
6607 Return 0 otherwise. */
6609 static int
6610 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6612 struct cse_basic_block_data ebb_data;
6613 basic_block bb;
6614 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6615 int i, n_blocks;
6617 df_set_flags (DF_LR_RUN_DCE);
6618 df_note_add_problem ();
6619 df_analyze ();
6620 df_set_flags (DF_DEFER_INSN_RESCAN);
6622 reg_scan (get_insns (), max_reg_num ());
6623 init_cse_reg_info (nregs);
6625 ebb_data.path = XNEWVEC (struct branch_path,
6626 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6628 cse_cfg_altered = false;
6629 cse_jumps_altered = false;
6630 recorded_label_ref = false;
6631 constant_pool_entries_cost = 0;
6632 constant_pool_entries_regcost = 0;
6633 ebb_data.path_size = 0;
6634 ebb_data.nsets = 0;
6635 rtl_hooks = cse_rtl_hooks;
6637 init_recog ();
6638 init_alias_analysis ();
6640 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6642 /* Set up the table of already visited basic blocks. */
6643 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6644 bitmap_clear (cse_visited_basic_blocks);
6646 /* Loop over basic blocks in reverse completion order (RPO),
6647 excluding the ENTRY and EXIT blocks. */
6648 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6649 i = 0;
6650 while (i < n_blocks)
6652 /* Find the first block in the RPO queue that we have not yet
6653 processed before. */
6656 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6658 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6659 && i < n_blocks);
6661 /* Find all paths starting with BB, and process them. */
6662 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6664 /* Pre-scan the path. */
6665 cse_prescan_path (&ebb_data);
6667 /* If this basic block has no sets, skip it. */
6668 if (ebb_data.nsets == 0)
6669 continue;
6671 /* Get a reasonable estimate for the maximum number of qty's
6672 needed for this path. For this, we take the number of sets
6673 and multiply that by MAX_RECOG_OPERANDS. */
6674 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6676 /* Dump the path we're about to process. */
6677 if (dump_file)
6678 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6680 cse_extended_basic_block (&ebb_data);
6684 /* Clean up. */
6685 end_alias_analysis ();
6686 free (reg_eqv_table);
6687 free (ebb_data.path);
6688 sbitmap_free (cse_visited_basic_blocks);
6689 free (rc_order);
6690 rtl_hooks = general_rtl_hooks;
6692 if (cse_jumps_altered || recorded_label_ref)
6693 return 2;
6694 else if (cse_cfg_altered)
6695 return 1;
6696 else
6697 return 0;
6700 /* Count the number of times registers are used (not set) in X.
6701 COUNTS is an array in which we accumulate the count, INCR is how much
6702 we count each register usage.
6704 Don't count a usage of DEST, which is the SET_DEST of a SET which
6705 contains X in its SET_SRC. This is because such a SET does not
6706 modify the liveness of DEST.
6707 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6708 We must then count uses of a SET_DEST regardless, because the insn can't be
6709 deleted here. */
6711 static void
6712 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6714 enum rtx_code code;
6715 rtx note;
6716 const char *fmt;
6717 int i, j;
6719 if (x == 0)
6720 return;
6722 switch (code = GET_CODE (x))
6724 case REG:
6725 if (x != dest)
6726 counts[REGNO (x)] += incr;
6727 return;
6729 case PC:
6730 case CC0:
6731 case CONST:
6732 CASE_CONST_ANY:
6733 case SYMBOL_REF:
6734 case LABEL_REF:
6735 return;
6737 case CLOBBER:
6738 /* If we are clobbering a MEM, mark any registers inside the address
6739 as being used. */
6740 if (MEM_P (XEXP (x, 0)))
6741 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6742 return;
6744 case SET:
6745 /* Unless we are setting a REG, count everything in SET_DEST. */
6746 if (!REG_P (SET_DEST (x)))
6747 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6748 count_reg_usage (SET_SRC (x), counts,
6749 dest ? dest : SET_DEST (x),
6750 incr);
6751 return;
6753 case DEBUG_INSN:
6754 return;
6756 case CALL_INSN:
6757 case INSN:
6758 case JUMP_INSN:
6759 /* We expect dest to be NULL_RTX here. If the insn may throw,
6760 or if it cannot be deleted due to side-effects, mark this fact
6761 by setting DEST to pc_rtx. */
6762 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6763 || side_effects_p (PATTERN (x)))
6764 dest = pc_rtx;
6765 if (code == CALL_INSN)
6766 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6767 count_reg_usage (PATTERN (x), counts, dest, incr);
6769 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6770 use them. */
6772 note = find_reg_equal_equiv_note (x);
6773 if (note)
6775 rtx eqv = XEXP (note, 0);
6777 if (GET_CODE (eqv) == EXPR_LIST)
6778 /* This REG_EQUAL note describes the result of a function call.
6779 Process all the arguments. */
6782 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6783 eqv = XEXP (eqv, 1);
6785 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6786 else
6787 count_reg_usage (eqv, counts, dest, incr);
6789 return;
6791 case EXPR_LIST:
6792 if (REG_NOTE_KIND (x) == REG_EQUAL
6793 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6794 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6795 involving registers in the address. */
6796 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6797 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6799 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6800 return;
6802 case ASM_OPERANDS:
6803 /* Iterate over just the inputs, not the constraints as well. */
6804 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6805 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6806 return;
6808 case INSN_LIST:
6809 case INT_LIST:
6810 gcc_unreachable ();
6812 default:
6813 break;
6816 fmt = GET_RTX_FORMAT (code);
6817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6819 if (fmt[i] == 'e')
6820 count_reg_usage (XEXP (x, i), counts, dest, incr);
6821 else if (fmt[i] == 'E')
6822 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6823 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6827 /* Return true if X is a dead register. */
6829 static inline int
6830 is_dead_reg (const_rtx x, int *counts)
6832 return (REG_P (x)
6833 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6834 && counts[REGNO (x)] == 0);
6837 /* Return true if set is live. */
6838 static bool
6839 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6840 int *counts)
6842 rtx_insn *tem;
6844 if (set_noop_p (set))
6847 else if (GET_CODE (SET_DEST (set)) == CC0
6848 && !side_effects_p (SET_SRC (set))
6849 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6850 || !INSN_P (tem)
6851 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6852 return false;
6853 else if (!is_dead_reg (SET_DEST (set), counts)
6854 || side_effects_p (SET_SRC (set)))
6855 return true;
6856 return false;
6859 /* Return true if insn is live. */
6861 static bool
6862 insn_live_p (rtx_insn *insn, int *counts)
6864 int i;
6865 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6866 return true;
6867 else if (GET_CODE (PATTERN (insn)) == SET)
6868 return set_live_p (PATTERN (insn), insn, counts);
6869 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6871 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6873 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6875 if (GET_CODE (elt) == SET)
6877 if (set_live_p (elt, insn, counts))
6878 return true;
6880 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6881 return true;
6883 return false;
6885 else if (DEBUG_INSN_P (insn))
6887 rtx_insn *next;
6889 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6890 if (NOTE_P (next))
6891 continue;
6892 else if (!DEBUG_INSN_P (next))
6893 return true;
6894 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6895 return false;
6897 return true;
6899 else
6900 return true;
6903 /* Count the number of stores into pseudo. Callback for note_stores. */
6905 static void
6906 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6908 int *counts = (int *) data;
6909 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6910 counts[REGNO (x)]++;
6913 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6914 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6915 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6916 Set *SEEN_REPL to true if we see a dead register that does have
6917 a replacement. */
6919 static bool
6920 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6921 bool *seen_repl)
6923 subrtx_iterator::array_type array;
6924 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6926 const_rtx x = *iter;
6927 if (is_dead_reg (x, counts))
6929 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6930 *seen_repl = true;
6931 else
6932 return true;
6935 return false;
6938 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6939 Callback for simplify_replace_fn_rtx. */
6941 static rtx
6942 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6944 rtx *replacements = (rtx *) data;
6946 if (REG_P (x)
6947 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6948 && replacements[REGNO (x)] != NULL_RTX)
6950 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6951 return replacements[REGNO (x)];
6952 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6953 GET_MODE (replacements[REGNO (x)]));
6955 return NULL_RTX;
6958 /* Scan all the insns and delete any that are dead; i.e., they store a register
6959 that is never used or they copy a register to itself.
6961 This is used to remove insns made obviously dead by cse, loop or other
6962 optimizations. It improves the heuristics in loop since it won't try to
6963 move dead invariants out of loops or make givs for dead quantities. The
6964 remaining passes of the compilation are also sped up. */
6967 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6969 int *counts;
6970 rtx_insn *insn, *prev;
6971 rtx *replacements = NULL;
6972 int ndead = 0;
6974 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6975 /* First count the number of times each register is used. */
6976 if (MAY_HAVE_DEBUG_INSNS)
6978 counts = XCNEWVEC (int, nreg * 3);
6979 for (insn = insns; insn; insn = NEXT_INSN (insn))
6980 if (DEBUG_INSN_P (insn))
6981 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6982 NULL_RTX, 1);
6983 else if (INSN_P (insn))
6985 count_reg_usage (insn, counts, NULL_RTX, 1);
6986 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6988 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6989 First one counts how many times each pseudo is used outside
6990 of debug insns, second counts how many times each pseudo is
6991 used in debug insns and third counts how many times a pseudo
6992 is stored. */
6994 else
6996 counts = XCNEWVEC (int, nreg);
6997 for (insn = insns; insn; insn = NEXT_INSN (insn))
6998 if (INSN_P (insn))
6999 count_reg_usage (insn, counts, NULL_RTX, 1);
7000 /* If no debug insns can be present, COUNTS is just an array
7001 which counts how many times each pseudo is used. */
7003 /* Pseudo PIC register should be considered as used due to possible
7004 new usages generated. */
7005 if (!reload_completed
7006 && pic_offset_table_rtx
7007 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7008 counts[REGNO (pic_offset_table_rtx)]++;
7009 /* Go from the last insn to the first and delete insns that only set unused
7010 registers or copy a register to itself. As we delete an insn, remove
7011 usage counts for registers it uses.
7013 The first jump optimization pass may leave a real insn as the last
7014 insn in the function. We must not skip that insn or we may end
7015 up deleting code that is not really dead.
7017 If some otherwise unused register is only used in DEBUG_INSNs,
7018 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7019 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7020 has been created for the unused register, replace it with
7021 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7022 for (insn = get_last_insn (); insn; insn = prev)
7024 int live_insn = 0;
7026 prev = PREV_INSN (insn);
7027 if (!INSN_P (insn))
7028 continue;
7030 live_insn = insn_live_p (insn, counts);
7032 /* If this is a dead insn, delete it and show registers in it aren't
7033 being used. */
7035 if (! live_insn && dbg_cnt (delete_trivial_dead))
7037 if (DEBUG_INSN_P (insn))
7038 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7039 NULL_RTX, -1);
7040 else
7042 rtx set;
7043 if (MAY_HAVE_DEBUG_INSNS
7044 && (set = single_set (insn)) != NULL_RTX
7045 && is_dead_reg (SET_DEST (set), counts)
7046 /* Used at least once in some DEBUG_INSN. */
7047 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7048 /* And set exactly once. */
7049 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7050 && !side_effects_p (SET_SRC (set))
7051 && asm_noperands (PATTERN (insn)) < 0)
7053 rtx dval, bind_var_loc;
7054 rtx_insn *bind;
7056 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7057 dval = make_debug_expr_from_rtl (SET_DEST (set));
7059 /* Emit a debug bind insn before the insn in which
7060 reg dies. */
7061 bind_var_loc =
7062 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7063 DEBUG_EXPR_TREE_DECL (dval),
7064 SET_SRC (set),
7065 VAR_INIT_STATUS_INITIALIZED);
7066 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7068 bind = emit_debug_insn_before (bind_var_loc, insn);
7069 df_insn_rescan (bind);
7071 if (replacements == NULL)
7072 replacements = XCNEWVEC (rtx, nreg);
7073 replacements[REGNO (SET_DEST (set))] = dval;
7076 count_reg_usage (insn, counts, NULL_RTX, -1);
7077 ndead++;
7079 delete_insn_and_edges (insn);
7083 if (MAY_HAVE_DEBUG_INSNS)
7085 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7086 if (DEBUG_INSN_P (insn))
7088 /* If this debug insn references a dead register that wasn't replaced
7089 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7090 bool seen_repl = false;
7091 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7092 counts, replacements, &seen_repl))
7094 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7095 df_insn_rescan (insn);
7097 else if (seen_repl)
7099 INSN_VAR_LOCATION_LOC (insn)
7100 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7101 NULL_RTX, replace_dead_reg,
7102 replacements);
7103 df_insn_rescan (insn);
7106 free (replacements);
7109 if (dump_file && ndead)
7110 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7111 ndead);
7112 /* Clean up. */
7113 free (counts);
7114 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7115 return ndead;
7118 /* If LOC contains references to NEWREG in a different mode, change them
7119 to use NEWREG instead. */
7121 static void
7122 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7123 rtx *loc, rtx_insn *insn, rtx newreg)
7125 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7127 rtx *loc = *iter;
7128 rtx x = *loc;
7129 if (x
7130 && REG_P (x)
7131 && REGNO (x) == REGNO (newreg)
7132 && GET_MODE (x) != GET_MODE (newreg))
7134 validate_change (insn, loc, newreg, 1);
7135 iter.skip_subrtxes ();
7140 /* Change the mode of any reference to the register REGNO (NEWREG) to
7141 GET_MODE (NEWREG) in INSN. */
7143 static void
7144 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7146 int success;
7148 if (!INSN_P (insn))
7149 return;
7151 subrtx_ptr_iterator::array_type array;
7152 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7153 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7155 /* If the following assertion was triggered, there is most probably
7156 something wrong with the cc_modes_compatible back end function.
7157 CC modes only can be considered compatible if the insn - with the mode
7158 replaced by any of the compatible modes - can still be recognized. */
7159 success = apply_change_group ();
7160 gcc_assert (success);
7163 /* Change the mode of any reference to the register REGNO (NEWREG) to
7164 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7165 any instruction which modifies NEWREG. */
7167 static void
7168 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7170 rtx_insn *insn;
7172 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7174 if (! INSN_P (insn))
7175 continue;
7177 if (reg_set_p (newreg, insn))
7178 return;
7180 cse_change_cc_mode_insn (insn, newreg);
7184 /* BB is a basic block which finishes with CC_REG as a condition code
7185 register which is set to CC_SRC. Look through the successors of BB
7186 to find blocks which have a single predecessor (i.e., this one),
7187 and look through those blocks for an assignment to CC_REG which is
7188 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7189 permitted to change the mode of CC_SRC to a compatible mode. This
7190 returns VOIDmode if no equivalent assignments were found.
7191 Otherwise it returns the mode which CC_SRC should wind up with.
7192 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7193 but is passed unmodified down to recursive calls in order to prevent
7194 endless recursion.
7196 The main complexity in this function is handling the mode issues.
7197 We may have more than one duplicate which we can eliminate, and we
7198 try to find a mode which will work for multiple duplicates. */
7200 static machine_mode
7201 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7202 bool can_change_mode)
7204 bool found_equiv;
7205 machine_mode mode;
7206 unsigned int insn_count;
7207 edge e;
7208 rtx_insn *insns[2];
7209 machine_mode modes[2];
7210 rtx_insn *last_insns[2];
7211 unsigned int i;
7212 rtx newreg;
7213 edge_iterator ei;
7215 /* We expect to have two successors. Look at both before picking
7216 the final mode for the comparison. If we have more successors
7217 (i.e., some sort of table jump, although that seems unlikely),
7218 then we require all beyond the first two to use the same
7219 mode. */
7221 found_equiv = false;
7222 mode = GET_MODE (cc_src);
7223 insn_count = 0;
7224 FOR_EACH_EDGE (e, ei, bb->succs)
7226 rtx_insn *insn;
7227 rtx_insn *end;
7229 if (e->flags & EDGE_COMPLEX)
7230 continue;
7232 if (EDGE_COUNT (e->dest->preds) != 1
7233 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7234 /* Avoid endless recursion on unreachable blocks. */
7235 || e->dest == orig_bb)
7236 continue;
7238 end = NEXT_INSN (BB_END (e->dest));
7239 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7241 rtx set;
7243 if (! INSN_P (insn))
7244 continue;
7246 /* If CC_SRC is modified, we have to stop looking for
7247 something which uses it. */
7248 if (modified_in_p (cc_src, insn))
7249 break;
7251 /* Check whether INSN sets CC_REG to CC_SRC. */
7252 set = single_set (insn);
7253 if (set
7254 && REG_P (SET_DEST (set))
7255 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7257 bool found;
7258 machine_mode set_mode;
7259 machine_mode comp_mode;
7261 found = false;
7262 set_mode = GET_MODE (SET_SRC (set));
7263 comp_mode = set_mode;
7264 if (rtx_equal_p (cc_src, SET_SRC (set)))
7265 found = true;
7266 else if (GET_CODE (cc_src) == COMPARE
7267 && GET_CODE (SET_SRC (set)) == COMPARE
7268 && mode != set_mode
7269 && rtx_equal_p (XEXP (cc_src, 0),
7270 XEXP (SET_SRC (set), 0))
7271 && rtx_equal_p (XEXP (cc_src, 1),
7272 XEXP (SET_SRC (set), 1)))
7275 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7276 if (comp_mode != VOIDmode
7277 && (can_change_mode || comp_mode == mode))
7278 found = true;
7281 if (found)
7283 found_equiv = true;
7284 if (insn_count < ARRAY_SIZE (insns))
7286 insns[insn_count] = insn;
7287 modes[insn_count] = set_mode;
7288 last_insns[insn_count] = end;
7289 ++insn_count;
7291 if (mode != comp_mode)
7293 gcc_assert (can_change_mode);
7294 mode = comp_mode;
7296 /* The modified insn will be re-recognized later. */
7297 PUT_MODE (cc_src, mode);
7300 else
7302 if (set_mode != mode)
7304 /* We found a matching expression in the
7305 wrong mode, but we don't have room to
7306 store it in the array. Punt. This case
7307 should be rare. */
7308 break;
7310 /* INSN sets CC_REG to a value equal to CC_SRC
7311 with the right mode. We can simply delete
7312 it. */
7313 delete_insn (insn);
7316 /* We found an instruction to delete. Keep looking,
7317 in the hopes of finding a three-way jump. */
7318 continue;
7321 /* We found an instruction which sets the condition
7322 code, so don't look any farther. */
7323 break;
7326 /* If INSN sets CC_REG in some other way, don't look any
7327 farther. */
7328 if (reg_set_p (cc_reg, insn))
7329 break;
7332 /* If we fell off the bottom of the block, we can keep looking
7333 through successors. We pass CAN_CHANGE_MODE as false because
7334 we aren't prepared to handle compatibility between the
7335 further blocks and this block. */
7336 if (insn == end)
7338 machine_mode submode;
7340 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7341 if (submode != VOIDmode)
7343 gcc_assert (submode == mode);
7344 found_equiv = true;
7345 can_change_mode = false;
7350 if (! found_equiv)
7351 return VOIDmode;
7353 /* Now INSN_COUNT is the number of instructions we found which set
7354 CC_REG to a value equivalent to CC_SRC. The instructions are in
7355 INSNS. The modes used by those instructions are in MODES. */
7357 newreg = NULL_RTX;
7358 for (i = 0; i < insn_count; ++i)
7360 if (modes[i] != mode)
7362 /* We need to change the mode of CC_REG in INSNS[i] and
7363 subsequent instructions. */
7364 if (! newreg)
7366 if (GET_MODE (cc_reg) == mode)
7367 newreg = cc_reg;
7368 else
7369 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7371 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7372 newreg);
7375 delete_insn_and_edges (insns[i]);
7378 return mode;
7381 /* If we have a fixed condition code register (or two), walk through
7382 the instructions and try to eliminate duplicate assignments. */
7384 static void
7385 cse_condition_code_reg (void)
7387 unsigned int cc_regno_1;
7388 unsigned int cc_regno_2;
7389 rtx cc_reg_1;
7390 rtx cc_reg_2;
7391 basic_block bb;
7393 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7394 return;
7396 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7397 if (cc_regno_2 != INVALID_REGNUM)
7398 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7399 else
7400 cc_reg_2 = NULL_RTX;
7402 FOR_EACH_BB_FN (bb, cfun)
7404 rtx_insn *last_insn;
7405 rtx cc_reg;
7406 rtx_insn *insn;
7407 rtx_insn *cc_src_insn;
7408 rtx cc_src;
7409 machine_mode mode;
7410 machine_mode orig_mode;
7412 /* Look for blocks which end with a conditional jump based on a
7413 condition code register. Then look for the instruction which
7414 sets the condition code register. Then look through the
7415 successor blocks for instructions which set the condition
7416 code register to the same value. There are other possible
7417 uses of the condition code register, but these are by far the
7418 most common and the ones which we are most likely to be able
7419 to optimize. */
7421 last_insn = BB_END (bb);
7422 if (!JUMP_P (last_insn))
7423 continue;
7425 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7426 cc_reg = cc_reg_1;
7427 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7428 cc_reg = cc_reg_2;
7429 else
7430 continue;
7432 cc_src_insn = NULL;
7433 cc_src = NULL_RTX;
7434 for (insn = PREV_INSN (last_insn);
7435 insn && insn != PREV_INSN (BB_HEAD (bb));
7436 insn = PREV_INSN (insn))
7438 rtx set;
7440 if (! INSN_P (insn))
7441 continue;
7442 set = single_set (insn);
7443 if (set
7444 && REG_P (SET_DEST (set))
7445 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7447 cc_src_insn = insn;
7448 cc_src = SET_SRC (set);
7449 break;
7451 else if (reg_set_p (cc_reg, insn))
7452 break;
7455 if (! cc_src_insn)
7456 continue;
7458 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7459 continue;
7461 /* Now CC_REG is a condition code register used for a
7462 conditional jump at the end of the block, and CC_SRC, in
7463 CC_SRC_INSN, is the value to which that condition code
7464 register is set, and CC_SRC is still meaningful at the end of
7465 the basic block. */
7467 orig_mode = GET_MODE (cc_src);
7468 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7469 if (mode != VOIDmode)
7471 gcc_assert (mode == GET_MODE (cc_src));
7472 if (mode != orig_mode)
7474 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7476 cse_change_cc_mode_insn (cc_src_insn, newreg);
7478 /* Do the same in the following insns that use the
7479 current value of CC_REG within BB. */
7480 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7481 NEXT_INSN (last_insn),
7482 newreg);
7489 /* Perform common subexpression elimination. Nonzero value from
7490 `cse_main' means that jumps were simplified and some code may now
7491 be unreachable, so do jump optimization again. */
7492 static unsigned int
7493 rest_of_handle_cse (void)
7495 int tem;
7497 if (dump_file)
7498 dump_flow_info (dump_file, dump_flags);
7500 tem = cse_main (get_insns (), max_reg_num ());
7502 /* If we are not running more CSE passes, then we are no longer
7503 expecting CSE to be run. But always rerun it in a cheap mode. */
7504 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7506 if (tem == 2)
7508 timevar_push (TV_JUMP);
7509 rebuild_jump_labels (get_insns ());
7510 cleanup_cfg (CLEANUP_CFG_CHANGED);
7511 timevar_pop (TV_JUMP);
7513 else if (tem == 1 || optimize > 1)
7514 cleanup_cfg (0);
7516 return 0;
7519 namespace {
7521 const pass_data pass_data_cse =
7523 RTL_PASS, /* type */
7524 "cse1", /* name */
7525 OPTGROUP_NONE, /* optinfo_flags */
7526 TV_CSE, /* tv_id */
7527 0, /* properties_required */
7528 0, /* properties_provided */
7529 0, /* properties_destroyed */
7530 0, /* todo_flags_start */
7531 TODO_df_finish, /* todo_flags_finish */
7534 class pass_cse : public rtl_opt_pass
7536 public:
7537 pass_cse (gcc::context *ctxt)
7538 : rtl_opt_pass (pass_data_cse, ctxt)
7541 /* opt_pass methods: */
7542 virtual bool gate (function *) { return optimize > 0; }
7543 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7545 }; // class pass_cse
7547 } // anon namespace
7549 rtl_opt_pass *
7550 make_pass_cse (gcc::context *ctxt)
7552 return new pass_cse (ctxt);
7556 /* Run second CSE pass after loop optimizations. */
7557 static unsigned int
7558 rest_of_handle_cse2 (void)
7560 int tem;
7562 if (dump_file)
7563 dump_flow_info (dump_file, dump_flags);
7565 tem = cse_main (get_insns (), max_reg_num ());
7567 /* Run a pass to eliminate duplicated assignments to condition code
7568 registers. We have to run this after bypass_jumps, because it
7569 makes it harder for that pass to determine whether a jump can be
7570 bypassed safely. */
7571 cse_condition_code_reg ();
7573 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7575 if (tem == 2)
7577 timevar_push (TV_JUMP);
7578 rebuild_jump_labels (get_insns ());
7579 cleanup_cfg (CLEANUP_CFG_CHANGED);
7580 timevar_pop (TV_JUMP);
7582 else if (tem == 1)
7583 cleanup_cfg (0);
7585 cse_not_expected = 1;
7586 return 0;
7590 namespace {
7592 const pass_data pass_data_cse2 =
7594 RTL_PASS, /* type */
7595 "cse2", /* name */
7596 OPTGROUP_NONE, /* optinfo_flags */
7597 TV_CSE2, /* tv_id */
7598 0, /* properties_required */
7599 0, /* properties_provided */
7600 0, /* properties_destroyed */
7601 0, /* todo_flags_start */
7602 TODO_df_finish, /* todo_flags_finish */
7605 class pass_cse2 : public rtl_opt_pass
7607 public:
7608 pass_cse2 (gcc::context *ctxt)
7609 : rtl_opt_pass (pass_data_cse2, ctxt)
7612 /* opt_pass methods: */
7613 virtual bool gate (function *)
7615 return optimize > 0 && flag_rerun_cse_after_loop;
7618 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7620 }; // class pass_cse2
7622 } // anon namespace
7624 rtl_opt_pass *
7625 make_pass_cse2 (gcc::context *ctxt)
7627 return new pass_cse2 (ctxt);
7630 /* Run second CSE pass after loop optimizations. */
7631 static unsigned int
7632 rest_of_handle_cse_after_global_opts (void)
7634 int save_cfj;
7635 int tem;
7637 /* We only want to do local CSE, so don't follow jumps. */
7638 save_cfj = flag_cse_follow_jumps;
7639 flag_cse_follow_jumps = 0;
7641 rebuild_jump_labels (get_insns ());
7642 tem = cse_main (get_insns (), max_reg_num ());
7643 purge_all_dead_edges ();
7644 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7646 cse_not_expected = !flag_rerun_cse_after_loop;
7648 /* If cse altered any jumps, rerun jump opts to clean things up. */
7649 if (tem == 2)
7651 timevar_push (TV_JUMP);
7652 rebuild_jump_labels (get_insns ());
7653 cleanup_cfg (CLEANUP_CFG_CHANGED);
7654 timevar_pop (TV_JUMP);
7656 else if (tem == 1)
7657 cleanup_cfg (0);
7659 flag_cse_follow_jumps = save_cfj;
7660 return 0;
7663 namespace {
7665 const pass_data pass_data_cse_after_global_opts =
7667 RTL_PASS, /* type */
7668 "cse_local", /* name */
7669 OPTGROUP_NONE, /* optinfo_flags */
7670 TV_CSE, /* tv_id */
7671 0, /* properties_required */
7672 0, /* properties_provided */
7673 0, /* properties_destroyed */
7674 0, /* todo_flags_start */
7675 TODO_df_finish, /* todo_flags_finish */
7678 class pass_cse_after_global_opts : public rtl_opt_pass
7680 public:
7681 pass_cse_after_global_opts (gcc::context *ctxt)
7682 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7685 /* opt_pass methods: */
7686 virtual bool gate (function *)
7688 return optimize > 0 && flag_rerun_cse_after_global_opts;
7691 virtual unsigned int execute (function *)
7693 return rest_of_handle_cse_after_global_opts ();
7696 }; // class pass_cse_after_global_opts
7698 } // anon namespace
7700 rtl_opt_pass *
7701 make_pass_cse_after_global_opts (gcc::context *ctxt)
7703 return new pass_cse_after_global_opts (ctxt);