* ipa-polymorphic-call.c
[official-gcc.git] / gcc / tree-vect-loop.c
blob89202c425ed45308b0f02113ce49b417793c6c0e
1 /* Loop Vectorization
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "predict.h"
40 #include "hard-reg-set.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "cfganal.h"
45 #include "basic-block.h"
46 #include "gimple-pretty-print.h"
47 #include "tree-ssa-alias.h"
48 #include "internal-fn.h"
49 #include "gimple-expr.h"
50 #include "is-a.h"
51 #include "gimple.h"
52 #include "gimplify.h"
53 #include "gimple-iterator.h"
54 #include "gimplify-me.h"
55 #include "gimple-ssa.h"
56 #include "tree-phinodes.h"
57 #include "ssa-iterators.h"
58 #include "stringpool.h"
59 #include "tree-ssanames.h"
60 #include "tree-ssa-loop-ivopts.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-ssa-loop-niter.h"
63 #include "tree-pass.h"
64 #include "cfgloop.h"
65 #include "hashtab.h"
66 #include "rtl.h"
67 #include "flags.h"
68 #include "statistics.h"
69 #include "real.h"
70 #include "fixed-value.h"
71 #include "insn-config.h"
72 #include "expmed.h"
73 #include "dojump.h"
74 #include "explow.h"
75 #include "calls.h"
76 #include "emit-rtl.h"
77 #include "varasm.h"
78 #include "stmt.h"
79 #include "expr.h"
80 #include "recog.h"
81 #include "insn-codes.h"
82 #include "optabs.h"
83 #include "params.h"
84 #include "diagnostic-core.h"
85 #include "tree-chrec.h"
86 #include "tree-scalar-evolution.h"
87 #include "tree-vectorizer.h"
88 #include "target.h"
90 /* Loop Vectorization Pass.
92 This pass tries to vectorize loops.
94 For example, the vectorizer transforms the following simple loop:
96 short a[N]; short b[N]; short c[N]; int i;
98 for (i=0; i<N; i++){
99 a[i] = b[i] + c[i];
102 as if it was manually vectorized by rewriting the source code into:
104 typedef int __attribute__((mode(V8HI))) v8hi;
105 short a[N]; short b[N]; short c[N]; int i;
106 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
107 v8hi va, vb, vc;
109 for (i=0; i<N/8; i++){
110 vb = pb[i];
111 vc = pc[i];
112 va = vb + vc;
113 pa[i] = va;
116 The main entry to this pass is vectorize_loops(), in which
117 the vectorizer applies a set of analyses on a given set of loops,
118 followed by the actual vectorization transformation for the loops that
119 had successfully passed the analysis phase.
120 Throughout this pass we make a distinction between two types of
121 data: scalars (which are represented by SSA_NAMES), and memory references
122 ("data-refs"). These two types of data require different handling both
123 during analysis and transformation. The types of data-refs that the
124 vectorizer currently supports are ARRAY_REFS which base is an array DECL
125 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
126 accesses are required to have a simple (consecutive) access pattern.
128 Analysis phase:
129 ===============
130 The driver for the analysis phase is vect_analyze_loop().
131 It applies a set of analyses, some of which rely on the scalar evolution
132 analyzer (scev) developed by Sebastian Pop.
134 During the analysis phase the vectorizer records some information
135 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
136 loop, as well as general information about the loop as a whole, which is
137 recorded in a "loop_vec_info" struct attached to each loop.
139 Transformation phase:
140 =====================
141 The loop transformation phase scans all the stmts in the loop, and
142 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
143 the loop that needs to be vectorized. It inserts the vector code sequence
144 just before the scalar stmt S, and records a pointer to the vector code
145 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
146 attached to S). This pointer will be used for the vectorization of following
147 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
148 otherwise, we rely on dead code elimination for removing it.
150 For example, say stmt S1 was vectorized into stmt VS1:
152 VS1: vb = px[i];
153 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
154 S2: a = b;
156 To vectorize stmt S2, the vectorizer first finds the stmt that defines
157 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
158 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
159 resulting sequence would be:
161 VS1: vb = px[i];
162 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
163 VS2: va = vb;
164 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
166 Operands that are not SSA_NAMEs, are data-refs that appear in
167 load/store operations (like 'x[i]' in S1), and are handled differently.
169 Target modeling:
170 =================
171 Currently the only target specific information that is used is the
172 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
173 Targets that can support different sizes of vectors, for now will need
174 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
175 flexibility will be added in the future.
177 Since we only vectorize operations which vector form can be
178 expressed using existing tree codes, to verify that an operation is
179 supported, the vectorizer checks the relevant optab at the relevant
180 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
181 the value found is CODE_FOR_nothing, then there's no target support, and
182 we can't vectorize the stmt.
184 For additional information on this project see:
185 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
188 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
190 /* Function vect_determine_vectorization_factor
192 Determine the vectorization factor (VF). VF is the number of data elements
193 that are operated upon in parallel in a single iteration of the vectorized
194 loop. For example, when vectorizing a loop that operates on 4byte elements,
195 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
196 elements can fit in a single vector register.
198 We currently support vectorization of loops in which all types operated upon
199 are of the same size. Therefore this function currently sets VF according to
200 the size of the types operated upon, and fails if there are multiple sizes
201 in the loop.
203 VF is also the factor by which the loop iterations are strip-mined, e.g.:
204 original loop:
205 for (i=0; i<N; i++){
206 a[i] = b[i] + c[i];
209 vectorized loop:
210 for (i=0; i<N; i+=VF){
211 a[i:VF] = b[i:VF] + c[i:VF];
215 static bool
216 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
218 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
219 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
220 int nbbs = loop->num_nodes;
221 unsigned int vectorization_factor = 0;
222 tree scalar_type;
223 gphi *phi;
224 tree vectype;
225 unsigned int nunits;
226 stmt_vec_info stmt_info;
227 int i;
228 HOST_WIDE_INT dummy;
229 gimple stmt, pattern_stmt = NULL;
230 gimple_seq pattern_def_seq = NULL;
231 gimple_stmt_iterator pattern_def_si = gsi_none ();
232 bool analyze_pattern_stmt = false;
234 if (dump_enabled_p ())
235 dump_printf_loc (MSG_NOTE, vect_location,
236 "=== vect_determine_vectorization_factor ===\n");
238 for (i = 0; i < nbbs; i++)
240 basic_block bb = bbs[i];
242 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
243 gsi_next (&si))
245 phi = si.phi ();
246 stmt_info = vinfo_for_stmt (phi);
247 if (dump_enabled_p ())
249 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
250 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
251 dump_printf (MSG_NOTE, "\n");
254 gcc_assert (stmt_info);
256 if (STMT_VINFO_RELEVANT_P (stmt_info))
258 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
259 scalar_type = TREE_TYPE (PHI_RESULT (phi));
261 if (dump_enabled_p ())
263 dump_printf_loc (MSG_NOTE, vect_location,
264 "get vectype for scalar type: ");
265 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
266 dump_printf (MSG_NOTE, "\n");
269 vectype = get_vectype_for_scalar_type (scalar_type);
270 if (!vectype)
272 if (dump_enabled_p ())
274 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
275 "not vectorized: unsupported "
276 "data-type ");
277 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
278 scalar_type);
279 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
281 return false;
283 STMT_VINFO_VECTYPE (stmt_info) = vectype;
285 if (dump_enabled_p ())
287 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
288 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
289 dump_printf (MSG_NOTE, "\n");
292 nunits = TYPE_VECTOR_SUBPARTS (vectype);
293 if (dump_enabled_p ())
294 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
295 nunits);
297 if (!vectorization_factor
298 || (nunits > vectorization_factor))
299 vectorization_factor = nunits;
303 for (gimple_stmt_iterator si = gsi_start_bb (bb);
304 !gsi_end_p (si) || analyze_pattern_stmt;)
306 tree vf_vectype;
308 if (analyze_pattern_stmt)
309 stmt = pattern_stmt;
310 else
311 stmt = gsi_stmt (si);
313 stmt_info = vinfo_for_stmt (stmt);
315 if (dump_enabled_p ())
317 dump_printf_loc (MSG_NOTE, vect_location,
318 "==> examining statement: ");
319 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
320 dump_printf (MSG_NOTE, "\n");
323 gcc_assert (stmt_info);
325 /* Skip stmts which do not need to be vectorized. */
326 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
327 && !STMT_VINFO_LIVE_P (stmt_info))
328 || gimple_clobber_p (stmt))
330 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
331 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
332 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
333 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
335 stmt = pattern_stmt;
336 stmt_info = vinfo_for_stmt (pattern_stmt);
337 if (dump_enabled_p ())
339 dump_printf_loc (MSG_NOTE, vect_location,
340 "==> examining pattern statement: ");
341 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
342 dump_printf (MSG_NOTE, "\n");
345 else
347 if (dump_enabled_p ())
348 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
349 gsi_next (&si);
350 continue;
353 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
354 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
355 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
356 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
357 analyze_pattern_stmt = true;
359 /* If a pattern statement has def stmts, analyze them too. */
360 if (is_pattern_stmt_p (stmt_info))
362 if (pattern_def_seq == NULL)
364 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
365 pattern_def_si = gsi_start (pattern_def_seq);
367 else if (!gsi_end_p (pattern_def_si))
368 gsi_next (&pattern_def_si);
369 if (pattern_def_seq != NULL)
371 gimple pattern_def_stmt = NULL;
372 stmt_vec_info pattern_def_stmt_info = NULL;
374 while (!gsi_end_p (pattern_def_si))
376 pattern_def_stmt = gsi_stmt (pattern_def_si);
377 pattern_def_stmt_info
378 = vinfo_for_stmt (pattern_def_stmt);
379 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
380 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
381 break;
382 gsi_next (&pattern_def_si);
385 if (!gsi_end_p (pattern_def_si))
387 if (dump_enabled_p ())
389 dump_printf_loc (MSG_NOTE, vect_location,
390 "==> examining pattern def stmt: ");
391 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
392 pattern_def_stmt, 0);
393 dump_printf (MSG_NOTE, "\n");
396 stmt = pattern_def_stmt;
397 stmt_info = pattern_def_stmt_info;
399 else
401 pattern_def_si = gsi_none ();
402 analyze_pattern_stmt = false;
405 else
406 analyze_pattern_stmt = false;
409 if (gimple_get_lhs (stmt) == NULL_TREE
410 /* MASK_STORE has no lhs, but is ok. */
411 && (!is_gimple_call (stmt)
412 || !gimple_call_internal_p (stmt)
413 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
415 if (is_gimple_call (stmt))
417 /* Ignore calls with no lhs. These must be calls to
418 #pragma omp simd functions, and what vectorization factor
419 it really needs can't be determined until
420 vectorizable_simd_clone_call. */
421 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
423 pattern_def_seq = NULL;
424 gsi_next (&si);
426 continue;
428 if (dump_enabled_p ())
430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
431 "not vectorized: irregular stmt.");
432 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
434 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
436 return false;
439 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
441 if (dump_enabled_p ())
443 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
444 "not vectorized: vector stmt in loop:");
445 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
446 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
448 return false;
451 if (STMT_VINFO_VECTYPE (stmt_info))
453 /* The only case when a vectype had been already set is for stmts
454 that contain a dataref, or for "pattern-stmts" (stmts
455 generated by the vectorizer to represent/replace a certain
456 idiom). */
457 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
458 || is_pattern_stmt_p (stmt_info)
459 || !gsi_end_p (pattern_def_si));
460 vectype = STMT_VINFO_VECTYPE (stmt_info);
462 else
464 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
465 if (is_gimple_call (stmt)
466 && gimple_call_internal_p (stmt)
467 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
468 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
469 else
470 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_NOTE, vect_location,
474 "get vectype for scalar type: ");
475 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
476 dump_printf (MSG_NOTE, "\n");
478 vectype = get_vectype_for_scalar_type (scalar_type);
479 if (!vectype)
481 if (dump_enabled_p ())
483 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
484 "not vectorized: unsupported "
485 "data-type ");
486 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
487 scalar_type);
488 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
490 return false;
493 STMT_VINFO_VECTYPE (stmt_info) = vectype;
495 if (dump_enabled_p ())
497 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
498 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
499 dump_printf (MSG_NOTE, "\n");
503 /* The vectorization factor is according to the smallest
504 scalar type (or the largest vector size, but we only
505 support one vector size per loop). */
506 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
507 &dummy);
508 if (dump_enabled_p ())
510 dump_printf_loc (MSG_NOTE, vect_location,
511 "get vectype for scalar type: ");
512 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
513 dump_printf (MSG_NOTE, "\n");
515 vf_vectype = get_vectype_for_scalar_type (scalar_type);
516 if (!vf_vectype)
518 if (dump_enabled_p ())
520 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
521 "not vectorized: unsupported data-type ");
522 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
523 scalar_type);
524 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
526 return false;
529 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
530 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
532 if (dump_enabled_p ())
534 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
535 "not vectorized: different sized vector "
536 "types in statement, ");
537 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
538 vectype);
539 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
540 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
541 vf_vectype);
542 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
544 return false;
547 if (dump_enabled_p ())
549 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
550 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
551 dump_printf (MSG_NOTE, "\n");
554 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
555 if (dump_enabled_p ())
556 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
557 if (!vectorization_factor
558 || (nunits > vectorization_factor))
559 vectorization_factor = nunits;
561 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
563 pattern_def_seq = NULL;
564 gsi_next (&si);
569 /* TODO: Analyze cost. Decide if worth while to vectorize. */
570 if (dump_enabled_p ())
571 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
572 vectorization_factor);
573 if (vectorization_factor <= 1)
575 if (dump_enabled_p ())
576 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
577 "not vectorized: unsupported data-type\n");
578 return false;
580 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
582 return true;
586 /* Function vect_is_simple_iv_evolution.
588 FORNOW: A simple evolution of an induction variables in the loop is
589 considered a polynomial evolution. */
591 static bool
592 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
593 tree * step)
595 tree init_expr;
596 tree step_expr;
597 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
598 basic_block bb;
600 /* When there is no evolution in this loop, the evolution function
601 is not "simple". */
602 if (evolution_part == NULL_TREE)
603 return false;
605 /* When the evolution is a polynomial of degree >= 2
606 the evolution function is not "simple". */
607 if (tree_is_chrec (evolution_part))
608 return false;
610 step_expr = evolution_part;
611 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
613 if (dump_enabled_p ())
615 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
616 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
617 dump_printf (MSG_NOTE, ", init: ");
618 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
619 dump_printf (MSG_NOTE, "\n");
622 *init = init_expr;
623 *step = step_expr;
625 if (TREE_CODE (step_expr) != INTEGER_CST
626 && (TREE_CODE (step_expr) != SSA_NAME
627 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
628 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
629 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
630 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
631 || !flag_associative_math)))
632 && (TREE_CODE (step_expr) != REAL_CST
633 || !flag_associative_math))
635 if (dump_enabled_p ())
636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
637 "step unknown.\n");
638 return false;
641 return true;
644 /* Function vect_analyze_scalar_cycles_1.
646 Examine the cross iteration def-use cycles of scalar variables
647 in LOOP. LOOP_VINFO represents the loop that is now being
648 considered for vectorization (can be LOOP, or an outer-loop
649 enclosing LOOP). */
651 static void
652 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
654 basic_block bb = loop->header;
655 tree init, step;
656 auto_vec<gimple, 64> worklist;
657 gphi_iterator gsi;
658 bool double_reduc;
660 if (dump_enabled_p ())
661 dump_printf_loc (MSG_NOTE, vect_location,
662 "=== vect_analyze_scalar_cycles ===\n");
664 /* First - identify all inductions. Reduction detection assumes that all the
665 inductions have been identified, therefore, this order must not be
666 changed. */
667 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
669 gphi *phi = gsi.phi ();
670 tree access_fn = NULL;
671 tree def = PHI_RESULT (phi);
672 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
674 if (dump_enabled_p ())
676 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
677 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
678 dump_printf (MSG_NOTE, "\n");
681 /* Skip virtual phi's. The data dependences that are associated with
682 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
683 if (virtual_operand_p (def))
684 continue;
686 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
688 /* Analyze the evolution function. */
689 access_fn = analyze_scalar_evolution (loop, def);
690 if (access_fn)
692 STRIP_NOPS (access_fn);
693 if (dump_enabled_p ())
695 dump_printf_loc (MSG_NOTE, vect_location,
696 "Access function of PHI: ");
697 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
698 dump_printf (MSG_NOTE, "\n");
700 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
701 = evolution_part_in_loop_num (access_fn, loop->num);
704 if (!access_fn
705 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
706 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
707 && TREE_CODE (step) != INTEGER_CST))
709 worklist.safe_push (phi);
710 continue;
713 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
715 if (dump_enabled_p ())
716 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
717 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
721 /* Second - identify all reductions and nested cycles. */
722 while (worklist.length () > 0)
724 gimple phi = worklist.pop ();
725 tree def = PHI_RESULT (phi);
726 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
727 gimple reduc_stmt;
728 bool nested_cycle;
730 if (dump_enabled_p ())
732 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
733 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
734 dump_printf (MSG_NOTE, "\n");
737 gcc_assert (!virtual_operand_p (def)
738 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
740 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
741 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
742 &double_reduc);
743 if (reduc_stmt)
745 if (double_reduc)
747 if (dump_enabled_p ())
748 dump_printf_loc (MSG_NOTE, vect_location,
749 "Detected double reduction.\n");
751 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
752 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
753 vect_double_reduction_def;
755 else
757 if (nested_cycle)
759 if (dump_enabled_p ())
760 dump_printf_loc (MSG_NOTE, vect_location,
761 "Detected vectorizable nested cycle.\n");
763 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
764 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
765 vect_nested_cycle;
767 else
769 if (dump_enabled_p ())
770 dump_printf_loc (MSG_NOTE, vect_location,
771 "Detected reduction.\n");
773 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
774 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
775 vect_reduction_def;
776 /* Store the reduction cycles for possible vectorization in
777 loop-aware SLP. */
778 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
782 else
783 if (dump_enabled_p ())
784 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
785 "Unknown def-use cycle pattern.\n");
790 /* Function vect_analyze_scalar_cycles.
792 Examine the cross iteration def-use cycles of scalar variables, by
793 analyzing the loop-header PHIs of scalar variables. Classify each
794 cycle as one of the following: invariant, induction, reduction, unknown.
795 We do that for the loop represented by LOOP_VINFO, and also to its
796 inner-loop, if exists.
797 Examples for scalar cycles:
799 Example1: reduction:
801 loop1:
802 for (i=0; i<N; i++)
803 sum += a[i];
805 Example2: induction:
807 loop2:
808 for (i=0; i<N; i++)
809 a[i] = i; */
811 static void
812 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
814 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
816 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
818 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
819 Reductions in such inner-loop therefore have different properties than
820 the reductions in the nest that gets vectorized:
821 1. When vectorized, they are executed in the same order as in the original
822 scalar loop, so we can't change the order of computation when
823 vectorizing them.
824 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
825 current checks are too strict. */
827 if (loop->inner)
828 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
832 /* Function vect_get_loop_niters.
834 Determine how many iterations the loop is executed and place it
835 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
836 in NUMBER_OF_ITERATIONSM1.
838 Return the loop exit condition. */
841 static gcond *
842 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
843 tree *number_of_iterationsm1)
845 tree niters;
847 if (dump_enabled_p ())
848 dump_printf_loc (MSG_NOTE, vect_location,
849 "=== get_loop_niters ===\n");
851 niters = number_of_latch_executions (loop);
852 *number_of_iterationsm1 = niters;
854 /* We want the number of loop header executions which is the number
855 of latch executions plus one.
856 ??? For UINT_MAX latch executions this number overflows to zero
857 for loops like do { n++; } while (n != 0); */
858 if (niters && !chrec_contains_undetermined (niters))
859 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
860 build_int_cst (TREE_TYPE (niters), 1));
861 *number_of_iterations = niters;
863 return get_loop_exit_condition (loop);
867 /* Function bb_in_loop_p
869 Used as predicate for dfs order traversal of the loop bbs. */
871 static bool
872 bb_in_loop_p (const_basic_block bb, const void *data)
874 const struct loop *const loop = (const struct loop *)data;
875 if (flow_bb_inside_loop_p (loop, bb))
876 return true;
877 return false;
881 /* Function new_loop_vec_info.
883 Create and initialize a new loop_vec_info struct for LOOP, as well as
884 stmt_vec_info structs for all the stmts in LOOP. */
886 static loop_vec_info
887 new_loop_vec_info (struct loop *loop)
889 loop_vec_info res;
890 basic_block *bbs;
891 gimple_stmt_iterator si;
892 unsigned int i, nbbs;
894 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
895 LOOP_VINFO_LOOP (res) = loop;
897 bbs = get_loop_body (loop);
899 /* Create/Update stmt_info for all stmts in the loop. */
900 for (i = 0; i < loop->num_nodes; i++)
902 basic_block bb = bbs[i];
904 /* BBs in a nested inner-loop will have been already processed (because
905 we will have called vect_analyze_loop_form for any nested inner-loop).
906 Therefore, for stmts in an inner-loop we just want to update the
907 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
908 loop_info of the outer-loop we are currently considering to vectorize
909 (instead of the loop_info of the inner-loop).
910 For stmts in other BBs we need to create a stmt_info from scratch. */
911 if (bb->loop_father != loop)
913 /* Inner-loop bb. */
914 gcc_assert (loop->inner && bb->loop_father == loop->inner);
915 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
917 gimple phi = gsi_stmt (si);
918 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
919 loop_vec_info inner_loop_vinfo =
920 STMT_VINFO_LOOP_VINFO (stmt_info);
921 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
922 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
924 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
926 gimple stmt = gsi_stmt (si);
927 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
928 loop_vec_info inner_loop_vinfo =
929 STMT_VINFO_LOOP_VINFO (stmt_info);
930 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
931 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
934 else
936 /* bb in current nest. */
937 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
939 gimple phi = gsi_stmt (si);
940 gimple_set_uid (phi, 0);
941 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
944 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
946 gimple stmt = gsi_stmt (si);
947 gimple_set_uid (stmt, 0);
948 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
953 /* CHECKME: We want to visit all BBs before their successors (except for
954 latch blocks, for which this assertion wouldn't hold). In the simple
955 case of the loop forms we allow, a dfs order of the BBs would the same
956 as reversed postorder traversal, so we are safe. */
958 free (bbs);
959 bbs = XCNEWVEC (basic_block, loop->num_nodes);
960 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
961 bbs, loop->num_nodes, loop);
962 gcc_assert (nbbs == loop->num_nodes);
964 LOOP_VINFO_BBS (res) = bbs;
965 LOOP_VINFO_NITERSM1 (res) = NULL;
966 LOOP_VINFO_NITERS (res) = NULL;
967 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
968 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
969 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
970 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
971 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
972 LOOP_VINFO_VECT_FACTOR (res) = 0;
973 LOOP_VINFO_LOOP_NEST (res).create (3);
974 LOOP_VINFO_DATAREFS (res).create (10);
975 LOOP_VINFO_DDRS (res).create (10 * 10);
976 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
977 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
978 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
979 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
980 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
981 LOOP_VINFO_GROUPED_STORES (res).create (10);
982 LOOP_VINFO_REDUCTIONS (res).create (10);
983 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
984 LOOP_VINFO_SLP_INSTANCES (res).create (10);
985 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
986 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
987 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
988 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
989 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
991 return res;
995 /* Function destroy_loop_vec_info.
997 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
998 stmts in the loop. */
1000 void
1001 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1003 struct loop *loop;
1004 basic_block *bbs;
1005 int nbbs;
1006 gimple_stmt_iterator si;
1007 int j;
1008 vec<slp_instance> slp_instances;
1009 slp_instance instance;
1010 bool swapped;
1012 if (!loop_vinfo)
1013 return;
1015 loop = LOOP_VINFO_LOOP (loop_vinfo);
1017 bbs = LOOP_VINFO_BBS (loop_vinfo);
1018 nbbs = clean_stmts ? loop->num_nodes : 0;
1019 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1021 for (j = 0; j < nbbs; j++)
1023 basic_block bb = bbs[j];
1024 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1025 free_stmt_vec_info (gsi_stmt (si));
1027 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1029 gimple stmt = gsi_stmt (si);
1031 /* We may have broken canonical form by moving a constant
1032 into RHS1 of a commutative op. Fix such occurrences. */
1033 if (swapped && is_gimple_assign (stmt))
1035 enum tree_code code = gimple_assign_rhs_code (stmt);
1037 if ((code == PLUS_EXPR
1038 || code == POINTER_PLUS_EXPR
1039 || code == MULT_EXPR)
1040 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1041 swap_ssa_operands (stmt,
1042 gimple_assign_rhs1_ptr (stmt),
1043 gimple_assign_rhs2_ptr (stmt));
1046 /* Free stmt_vec_info. */
1047 free_stmt_vec_info (stmt);
1048 gsi_next (&si);
1052 free (LOOP_VINFO_BBS (loop_vinfo));
1053 vect_destroy_datarefs (loop_vinfo, NULL);
1054 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1055 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1056 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1057 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1058 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1059 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1060 vect_free_slp_instance (instance);
1062 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1063 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1064 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1065 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1067 delete LOOP_VINFO_PEELING_HTAB (loop_vinfo);
1068 LOOP_VINFO_PEELING_HTAB (loop_vinfo) = NULL;
1070 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1072 free (loop_vinfo);
1073 loop->aux = NULL;
1077 /* Function vect_analyze_loop_1.
1079 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1080 for it. The different analyses will record information in the
1081 loop_vec_info struct. This is a subset of the analyses applied in
1082 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1083 that is now considered for (outer-loop) vectorization. */
1085 static loop_vec_info
1086 vect_analyze_loop_1 (struct loop *loop)
1088 loop_vec_info loop_vinfo;
1090 if (dump_enabled_p ())
1091 dump_printf_loc (MSG_NOTE, vect_location,
1092 "===== analyze_loop_nest_1 =====\n");
1094 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1096 loop_vinfo = vect_analyze_loop_form (loop);
1097 if (!loop_vinfo)
1099 if (dump_enabled_p ())
1100 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1101 "bad inner-loop form.\n");
1102 return NULL;
1105 return loop_vinfo;
1109 /* Function vect_analyze_loop_form.
1111 Verify that certain CFG restrictions hold, including:
1112 - the loop has a pre-header
1113 - the loop has a single entry and exit
1114 - the loop exit condition is simple enough, and the number of iterations
1115 can be analyzed (a countable loop). */
1117 loop_vec_info
1118 vect_analyze_loop_form (struct loop *loop)
1120 loop_vec_info loop_vinfo;
1121 gcond *loop_cond;
1122 tree number_of_iterations = NULL, number_of_iterationsm1 = NULL;
1123 loop_vec_info inner_loop_vinfo = NULL;
1125 if (dump_enabled_p ())
1126 dump_printf_loc (MSG_NOTE, vect_location,
1127 "=== vect_analyze_loop_form ===\n");
1129 /* Different restrictions apply when we are considering an inner-most loop,
1130 vs. an outer (nested) loop.
1131 (FORNOW. May want to relax some of these restrictions in the future). */
1133 if (!loop->inner)
1135 /* Inner-most loop. We currently require that the number of BBs is
1136 exactly 2 (the header and latch). Vectorizable inner-most loops
1137 look like this:
1139 (pre-header)
1141 header <--------+
1142 | | |
1143 | +--> latch --+
1145 (exit-bb) */
1147 if (loop->num_nodes != 2)
1149 if (dump_enabled_p ())
1150 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1151 "not vectorized: control flow in loop.\n");
1152 return NULL;
1155 if (empty_block_p (loop->header))
1157 if (dump_enabled_p ())
1158 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1159 "not vectorized: empty loop.\n");
1160 return NULL;
1163 else
1165 struct loop *innerloop = loop->inner;
1166 edge entryedge;
1168 /* Nested loop. We currently require that the loop is doubly-nested,
1169 contains a single inner loop, and the number of BBs is exactly 5.
1170 Vectorizable outer-loops look like this:
1172 (pre-header)
1174 header <---+
1176 inner-loop |
1178 tail ------+
1180 (exit-bb)
1182 The inner-loop has the properties expected of inner-most loops
1183 as described above. */
1185 if ((loop->inner)->inner || (loop->inner)->next)
1187 if (dump_enabled_p ())
1188 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1189 "not vectorized: multiple nested loops.\n");
1190 return NULL;
1193 /* Analyze the inner-loop. */
1194 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1195 if (!inner_loop_vinfo)
1197 if (dump_enabled_p ())
1198 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1199 "not vectorized: Bad inner loop.\n");
1200 return NULL;
1203 if (!expr_invariant_in_loop_p (loop,
1204 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1206 if (dump_enabled_p ())
1207 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1208 "not vectorized: inner-loop count not"
1209 " invariant.\n");
1210 destroy_loop_vec_info (inner_loop_vinfo, true);
1211 return NULL;
1214 if (loop->num_nodes != 5)
1216 if (dump_enabled_p ())
1217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1218 "not vectorized: control flow in loop.\n");
1219 destroy_loop_vec_info (inner_loop_vinfo, true);
1220 return NULL;
1223 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1224 entryedge = EDGE_PRED (innerloop->header, 0);
1225 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1226 entryedge = EDGE_PRED (innerloop->header, 1);
1228 if (entryedge->src != loop->header
1229 || !single_exit (innerloop)
1230 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1232 if (dump_enabled_p ())
1233 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1234 "not vectorized: unsupported outerloop form.\n");
1235 destroy_loop_vec_info (inner_loop_vinfo, true);
1236 return NULL;
1239 if (dump_enabled_p ())
1240 dump_printf_loc (MSG_NOTE, vect_location,
1241 "Considering outer-loop vectorization.\n");
1244 if (!single_exit (loop)
1245 || EDGE_COUNT (loop->header->preds) != 2)
1247 if (dump_enabled_p ())
1249 if (!single_exit (loop))
1250 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1251 "not vectorized: multiple exits.\n");
1252 else if (EDGE_COUNT (loop->header->preds) != 2)
1253 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1254 "not vectorized: too many incoming edges.\n");
1256 if (inner_loop_vinfo)
1257 destroy_loop_vec_info (inner_loop_vinfo, true);
1258 return NULL;
1261 /* We assume that the loop exit condition is at the end of the loop. i.e,
1262 that the loop is represented as a do-while (with a proper if-guard
1263 before the loop if needed), where the loop header contains all the
1264 executable statements, and the latch is empty. */
1265 if (!empty_block_p (loop->latch)
1266 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1268 if (dump_enabled_p ())
1269 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1270 "not vectorized: latch block not empty.\n");
1271 if (inner_loop_vinfo)
1272 destroy_loop_vec_info (inner_loop_vinfo, true);
1273 return NULL;
1276 /* Make sure there exists a single-predecessor exit bb: */
1277 if (!single_pred_p (single_exit (loop)->dest))
1279 edge e = single_exit (loop);
1280 if (!(e->flags & EDGE_ABNORMAL))
1282 split_loop_exit_edge (e);
1283 if (dump_enabled_p ())
1284 dump_printf (MSG_NOTE, "split exit edge.\n");
1286 else
1288 if (dump_enabled_p ())
1289 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1290 "not vectorized: abnormal loop exit edge.\n");
1291 if (inner_loop_vinfo)
1292 destroy_loop_vec_info (inner_loop_vinfo, true);
1293 return NULL;
1297 loop_cond = vect_get_loop_niters (loop, &number_of_iterations,
1298 &number_of_iterationsm1);
1299 if (!loop_cond)
1301 if (dump_enabled_p ())
1302 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1303 "not vectorized: complicated exit condition.\n");
1304 if (inner_loop_vinfo)
1305 destroy_loop_vec_info (inner_loop_vinfo, true);
1306 return NULL;
1309 if (!number_of_iterations
1310 || chrec_contains_undetermined (number_of_iterations))
1312 if (dump_enabled_p ())
1313 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1314 "not vectorized: number of iterations cannot be "
1315 "computed.\n");
1316 if (inner_loop_vinfo)
1317 destroy_loop_vec_info (inner_loop_vinfo, true);
1318 return NULL;
1321 if (integer_zerop (number_of_iterations))
1323 if (dump_enabled_p ())
1324 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1325 "not vectorized: number of iterations = 0.\n");
1326 if (inner_loop_vinfo)
1327 destroy_loop_vec_info (inner_loop_vinfo, true);
1328 return NULL;
1331 loop_vinfo = new_loop_vec_info (loop);
1332 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1333 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1334 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1336 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1338 if (dump_enabled_p ())
1340 dump_printf_loc (MSG_NOTE, vect_location,
1341 "Symbolic number of iterations is ");
1342 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1343 dump_printf (MSG_NOTE, "\n");
1347 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1349 /* CHECKME: May want to keep it around it in the future. */
1350 if (inner_loop_vinfo)
1351 destroy_loop_vec_info (inner_loop_vinfo, false);
1353 gcc_assert (!loop->aux);
1354 loop->aux = loop_vinfo;
1355 return loop_vinfo;
1358 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1359 statements update the vectorization factor. */
1361 static void
1362 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1364 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1365 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1366 int nbbs = loop->num_nodes;
1367 unsigned int vectorization_factor;
1368 int i;
1370 if (dump_enabled_p ())
1371 dump_printf_loc (MSG_NOTE, vect_location,
1372 "=== vect_update_vf_for_slp ===\n");
1374 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1375 gcc_assert (vectorization_factor != 0);
1377 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1378 vectorization factor of the loop is the unrolling factor required by
1379 the SLP instances. If that unrolling factor is 1, we say, that we
1380 perform pure SLP on loop - cross iteration parallelism is not
1381 exploited. */
1382 bool only_slp_in_loop = true;
1383 for (i = 0; i < nbbs; i++)
1385 basic_block bb = bbs[i];
1386 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1387 gsi_next (&si))
1389 gimple stmt = gsi_stmt (si);
1390 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1391 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1392 && STMT_VINFO_RELATED_STMT (stmt_info))
1394 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1395 stmt_info = vinfo_for_stmt (stmt);
1397 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1398 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1399 && !PURE_SLP_STMT (stmt_info))
1400 /* STMT needs both SLP and loop-based vectorization. */
1401 only_slp_in_loop = false;
1405 if (only_slp_in_loop)
1406 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1407 else
1408 vectorization_factor
1409 = least_common_multiple (vectorization_factor,
1410 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1412 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1413 if (dump_enabled_p ())
1414 dump_printf_loc (MSG_NOTE, vect_location,
1415 "Updating vectorization factor to %d\n",
1416 vectorization_factor);
1419 /* Function vect_analyze_loop_operations.
1421 Scan the loop stmts and make sure they are all vectorizable. */
1423 static bool
1424 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1426 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1427 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1428 int nbbs = loop->num_nodes;
1429 unsigned int vectorization_factor;
1430 int i;
1431 stmt_vec_info stmt_info;
1432 bool need_to_vectorize = false;
1433 int min_profitable_iters;
1434 int min_scalar_loop_bound;
1435 unsigned int th;
1436 bool ok;
1437 HOST_WIDE_INT max_niter;
1438 HOST_WIDE_INT estimated_niter;
1439 int min_profitable_estimate;
1441 if (dump_enabled_p ())
1442 dump_printf_loc (MSG_NOTE, vect_location,
1443 "=== vect_analyze_loop_operations ===\n");
1445 for (i = 0; i < nbbs; i++)
1447 basic_block bb = bbs[i];
1449 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1450 gsi_next (&si))
1452 gphi *phi = si.phi ();
1453 ok = true;
1455 stmt_info = vinfo_for_stmt (phi);
1456 if (dump_enabled_p ())
1458 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1459 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1460 dump_printf (MSG_NOTE, "\n");
1463 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1464 (i.e., a phi in the tail of the outer-loop). */
1465 if (! is_loop_header_bb_p (bb))
1467 /* FORNOW: we currently don't support the case that these phis
1468 are not used in the outerloop (unless it is double reduction,
1469 i.e., this phi is vect_reduction_def), cause this case
1470 requires to actually do something here. */
1471 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1472 || STMT_VINFO_LIVE_P (stmt_info))
1473 && STMT_VINFO_DEF_TYPE (stmt_info)
1474 != vect_double_reduction_def)
1476 if (dump_enabled_p ())
1477 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1478 "Unsupported loop-closed phi in "
1479 "outer-loop.\n");
1480 return false;
1483 /* If PHI is used in the outer loop, we check that its operand
1484 is defined in the inner loop. */
1485 if (STMT_VINFO_RELEVANT_P (stmt_info))
1487 tree phi_op;
1488 gimple op_def_stmt;
1490 if (gimple_phi_num_args (phi) != 1)
1491 return false;
1493 phi_op = PHI_ARG_DEF (phi, 0);
1494 if (TREE_CODE (phi_op) != SSA_NAME)
1495 return false;
1497 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1498 if (gimple_nop_p (op_def_stmt)
1499 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1500 || !vinfo_for_stmt (op_def_stmt))
1501 return false;
1503 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1504 != vect_used_in_outer
1505 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1506 != vect_used_in_outer_by_reduction)
1507 return false;
1510 continue;
1513 gcc_assert (stmt_info);
1515 if (STMT_VINFO_LIVE_P (stmt_info))
1517 /* FORNOW: not yet supported. */
1518 if (dump_enabled_p ())
1519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1520 "not vectorized: value used after loop.\n");
1521 return false;
1524 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1525 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1527 /* A scalar-dependence cycle that we don't support. */
1528 if (dump_enabled_p ())
1529 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1530 "not vectorized: scalar dependence cycle.\n");
1531 return false;
1534 if (STMT_VINFO_RELEVANT_P (stmt_info))
1536 need_to_vectorize = true;
1537 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1538 ok = vectorizable_induction (phi, NULL, NULL);
1541 if (!ok)
1543 if (dump_enabled_p ())
1545 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1546 "not vectorized: relevant phi not "
1547 "supported: ");
1548 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1549 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1551 return false;
1555 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1556 gsi_next (&si))
1558 gimple stmt = gsi_stmt (si);
1559 if (STMT_SLP_TYPE (vinfo_for_stmt (stmt)))
1561 need_to_vectorize = true;
1562 continue;
1564 if (!gimple_clobber_p (stmt)
1565 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1566 return false;
1568 } /* bbs */
1570 /* All operations in the loop are either irrelevant (deal with loop
1571 control, or dead), or only used outside the loop and can be moved
1572 out of the loop (e.g. invariants, inductions). The loop can be
1573 optimized away by scalar optimizations. We're better off not
1574 touching this loop. */
1575 if (!need_to_vectorize)
1577 if (dump_enabled_p ())
1578 dump_printf_loc (MSG_NOTE, vect_location,
1579 "All the computation can be taken out of the loop.\n");
1580 if (dump_enabled_p ())
1581 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1582 "not vectorized: redundant loop. no profit to "
1583 "vectorize.\n");
1584 return false;
1587 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1588 gcc_assert (vectorization_factor != 0);
1590 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1591 dump_printf_loc (MSG_NOTE, vect_location,
1592 "vectorization_factor = %d, niters = "
1593 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1594 LOOP_VINFO_INT_NITERS (loop_vinfo));
1596 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1597 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1598 || ((max_niter = max_stmt_executions_int (loop)) != -1
1599 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1601 if (dump_enabled_p ())
1602 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1603 "not vectorized: iteration count too small.\n");
1604 if (dump_enabled_p ())
1605 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1606 "not vectorized: iteration count smaller than "
1607 "vectorization factor.\n");
1608 return false;
1611 /* Analyze cost. Decide if worth while to vectorize. */
1613 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1614 &min_profitable_estimate);
1615 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1617 if (min_profitable_iters < 0)
1619 if (dump_enabled_p ())
1620 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1621 "not vectorized: vectorization not profitable.\n");
1622 if (dump_enabled_p ())
1623 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1624 "not vectorized: vector version will never be "
1625 "profitable.\n");
1626 return false;
1629 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1630 * vectorization_factor) - 1);
1633 /* Use the cost model only if it is more conservative than user specified
1634 threshold. */
1636 th = (unsigned) min_scalar_loop_bound;
1637 if (min_profitable_iters
1638 && (!min_scalar_loop_bound
1639 || min_profitable_iters > min_scalar_loop_bound))
1640 th = (unsigned) min_profitable_iters;
1642 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
1644 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1645 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1647 if (dump_enabled_p ())
1648 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1649 "not vectorized: vectorization not profitable.\n");
1650 if (dump_enabled_p ())
1651 dump_printf_loc (MSG_NOTE, vect_location,
1652 "not vectorized: iteration count smaller than user "
1653 "specified loop bound parameter or minimum profitable "
1654 "iterations (whichever is more conservative).\n");
1655 return false;
1658 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1659 && ((unsigned HOST_WIDE_INT) estimated_niter
1660 <= MAX (th, (unsigned)min_profitable_estimate)))
1662 if (dump_enabled_p ())
1663 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1664 "not vectorized: estimated iteration count too "
1665 "small.\n");
1666 if (dump_enabled_p ())
1667 dump_printf_loc (MSG_NOTE, vect_location,
1668 "not vectorized: estimated iteration count smaller "
1669 "than specified loop bound parameter or minimum "
1670 "profitable iterations (whichever is more "
1671 "conservative).\n");
1672 return false;
1675 return true;
1679 /* Function vect_analyze_loop_2.
1681 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1682 for it. The different analyses will record information in the
1683 loop_vec_info struct. */
1684 static bool
1685 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1687 bool ok;
1688 int max_vf = MAX_VECTORIZATION_FACTOR;
1689 int min_vf = 2;
1690 unsigned int th;
1691 unsigned int n_stmts = 0;
1693 /* Find all data references in the loop (which correspond to vdefs/vuses)
1694 and analyze their evolution in the loop. Also adjust the minimal
1695 vectorization factor according to the loads and stores.
1697 FORNOW: Handle only simple, array references, which
1698 alignment can be forced, and aligned pointer-references. */
1700 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf, &n_stmts);
1701 if (!ok)
1703 if (dump_enabled_p ())
1704 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1705 "bad data references.\n");
1706 return false;
1709 /* Classify all cross-iteration scalar data-flow cycles.
1710 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1712 vect_analyze_scalar_cycles (loop_vinfo);
1714 vect_pattern_recog (loop_vinfo, NULL);
1716 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1717 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1719 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1720 if (!ok)
1722 if (dump_enabled_p ())
1723 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1724 "bad data access.\n");
1725 return false;
1728 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1730 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1731 if (!ok)
1733 if (dump_enabled_p ())
1734 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1735 "unexpected pattern.\n");
1736 return false;
1739 /* Analyze data dependences between the data-refs in the loop
1740 and adjust the maximum vectorization factor according to
1741 the dependences.
1742 FORNOW: fail at the first data dependence that we encounter. */
1744 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1745 if (!ok
1746 || max_vf < min_vf)
1748 if (dump_enabled_p ())
1749 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1750 "bad data dependence.\n");
1751 return false;
1754 ok = vect_determine_vectorization_factor (loop_vinfo);
1755 if (!ok)
1757 if (dump_enabled_p ())
1758 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1759 "can't determine vectorization factor.\n");
1760 return false;
1762 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1764 if (dump_enabled_p ())
1765 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1766 "bad data dependence.\n");
1767 return false;
1770 /* Analyze the alignment of the data-refs in the loop.
1771 Fail if a data reference is found that cannot be vectorized. */
1773 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1774 if (!ok)
1776 if (dump_enabled_p ())
1777 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1778 "bad data alignment.\n");
1779 return false;
1782 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1783 It is important to call pruning after vect_analyze_data_ref_accesses,
1784 since we use grouping information gathered by interleaving analysis. */
1785 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1786 if (!ok)
1788 if (dump_enabled_p ())
1789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1790 "number of versioning for alias "
1791 "run-time tests exceeds %d "
1792 "(--param vect-max-version-for-alias-checks)\n",
1793 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1794 return false;
1797 /* This pass will decide on using loop versioning and/or loop peeling in
1798 order to enhance the alignment of data references in the loop. */
1800 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1801 if (!ok)
1803 if (dump_enabled_p ())
1804 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1805 "bad data alignment.\n");
1806 return false;
1809 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1810 ok = vect_analyze_slp (loop_vinfo, NULL, n_stmts);
1811 if (ok)
1813 /* If there are any SLP instances mark them as pure_slp. */
1814 if (vect_make_slp_decision (loop_vinfo))
1816 /* Find stmts that need to be both vectorized and SLPed. */
1817 vect_detect_hybrid_slp (loop_vinfo);
1819 /* Update the vectorization factor based on the SLP decision. */
1820 vect_update_vf_for_slp (loop_vinfo);
1822 /* Once VF is set, SLP costs should be updated since the number of
1823 created vector stmts depends on VF. */
1824 vect_update_slp_costs_according_to_vf (loop_vinfo);
1826 /* Analyze operations in the SLP instances. Note this may
1827 remove unsupported SLP instances which makes the above
1828 SLP kind detection invalid. */
1829 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
1830 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
1831 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
1832 return false;
1835 else
1836 return false;
1838 /* Scan all the remaining operations in the loop that are not subject
1839 to SLP and make sure they are vectorizable. */
1840 ok = vect_analyze_loop_operations (loop_vinfo);
1841 if (!ok)
1843 if (dump_enabled_p ())
1844 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1845 "bad operation or unsupported loop bound.\n");
1846 return false;
1849 /* Decide whether we need to create an epilogue loop to handle
1850 remaining scalar iterations. */
1851 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
1852 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1853 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1855 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1856 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1858 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
1859 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
1860 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
1861 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1863 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1864 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
1865 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1866 /* In case of versioning, check if the maximum number of
1867 iterations is greater than th. If they are identical,
1868 the epilogue is unnecessary. */
1869 && ((!LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1870 && !LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1871 || (unsigned HOST_WIDE_INT)max_stmt_executions_int
1872 (LOOP_VINFO_LOOP (loop_vinfo)) > th)))
1873 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1875 /* If an epilogue loop is required make sure we can create one. */
1876 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1877 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
1879 if (dump_enabled_p ())
1880 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
1881 if (!vect_can_advance_ivs_p (loop_vinfo)
1882 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
1883 single_exit (LOOP_VINFO_LOOP
1884 (loop_vinfo))))
1886 if (dump_enabled_p ())
1887 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1888 "not vectorized: can't create required "
1889 "epilog loop\n");
1890 return false;
1894 return true;
1897 /* Function vect_analyze_loop.
1899 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1900 for it. The different analyses will record information in the
1901 loop_vec_info struct. */
1902 loop_vec_info
1903 vect_analyze_loop (struct loop *loop)
1905 loop_vec_info loop_vinfo;
1906 unsigned int vector_sizes;
1908 /* Autodetect first vector size we try. */
1909 current_vector_size = 0;
1910 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1912 if (dump_enabled_p ())
1913 dump_printf_loc (MSG_NOTE, vect_location,
1914 "===== analyze_loop_nest =====\n");
1916 if (loop_outer (loop)
1917 && loop_vec_info_for_loop (loop_outer (loop))
1918 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1920 if (dump_enabled_p ())
1921 dump_printf_loc (MSG_NOTE, vect_location,
1922 "outer-loop already vectorized.\n");
1923 return NULL;
1926 while (1)
1928 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1929 loop_vinfo = vect_analyze_loop_form (loop);
1930 if (!loop_vinfo)
1932 if (dump_enabled_p ())
1933 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1934 "bad loop form.\n");
1935 return NULL;
1938 if (vect_analyze_loop_2 (loop_vinfo))
1940 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1942 return loop_vinfo;
1945 destroy_loop_vec_info (loop_vinfo, true);
1947 vector_sizes &= ~current_vector_size;
1948 if (vector_sizes == 0
1949 || current_vector_size == 0)
1950 return NULL;
1952 /* Try the next biggest vector size. */
1953 current_vector_size = 1 << floor_log2 (vector_sizes);
1954 if (dump_enabled_p ())
1955 dump_printf_loc (MSG_NOTE, vect_location,
1956 "***** Re-trying analysis with "
1957 "vector size %d\n", current_vector_size);
1962 /* Function reduction_code_for_scalar_code
1964 Input:
1965 CODE - tree_code of a reduction operations.
1967 Output:
1968 REDUC_CODE - the corresponding tree-code to be used to reduce the
1969 vector of partial results into a single scalar result, or ERROR_MARK
1970 if the operation is a supported reduction operation, but does not have
1971 such a tree-code.
1973 Return FALSE if CODE currently cannot be vectorized as reduction. */
1975 static bool
1976 reduction_code_for_scalar_code (enum tree_code code,
1977 enum tree_code *reduc_code)
1979 switch (code)
1981 case MAX_EXPR:
1982 *reduc_code = REDUC_MAX_EXPR;
1983 return true;
1985 case MIN_EXPR:
1986 *reduc_code = REDUC_MIN_EXPR;
1987 return true;
1989 case PLUS_EXPR:
1990 *reduc_code = REDUC_PLUS_EXPR;
1991 return true;
1993 case MULT_EXPR:
1994 case MINUS_EXPR:
1995 case BIT_IOR_EXPR:
1996 case BIT_XOR_EXPR:
1997 case BIT_AND_EXPR:
1998 *reduc_code = ERROR_MARK;
1999 return true;
2001 default:
2002 return false;
2007 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2008 STMT is printed with a message MSG. */
2010 static void
2011 report_vect_op (int msg_type, gimple stmt, const char *msg)
2013 dump_printf_loc (msg_type, vect_location, "%s", msg);
2014 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2015 dump_printf (msg_type, "\n");
2019 /* Detect SLP reduction of the form:
2021 #a1 = phi <a5, a0>
2022 a2 = operation (a1)
2023 a3 = operation (a2)
2024 a4 = operation (a3)
2025 a5 = operation (a4)
2027 #a = phi <a5>
2029 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2030 FIRST_STMT is the first reduction stmt in the chain
2031 (a2 = operation (a1)).
2033 Return TRUE if a reduction chain was detected. */
2035 static bool
2036 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
2038 struct loop *loop = (gimple_bb (phi))->loop_father;
2039 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2040 enum tree_code code;
2041 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
2042 stmt_vec_info use_stmt_info, current_stmt_info;
2043 tree lhs;
2044 imm_use_iterator imm_iter;
2045 use_operand_p use_p;
2046 int nloop_uses, size = 0, n_out_of_loop_uses;
2047 bool found = false;
2049 if (loop != vect_loop)
2050 return false;
2052 lhs = PHI_RESULT (phi);
2053 code = gimple_assign_rhs_code (first_stmt);
2054 while (1)
2056 nloop_uses = 0;
2057 n_out_of_loop_uses = 0;
2058 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2060 gimple use_stmt = USE_STMT (use_p);
2061 if (is_gimple_debug (use_stmt))
2062 continue;
2064 /* Check if we got back to the reduction phi. */
2065 if (use_stmt == phi)
2067 loop_use_stmt = use_stmt;
2068 found = true;
2069 break;
2072 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2074 loop_use_stmt = use_stmt;
2075 nloop_uses++;
2077 else
2078 n_out_of_loop_uses++;
2080 /* There are can be either a single use in the loop or two uses in
2081 phi nodes. */
2082 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2083 return false;
2086 if (found)
2087 break;
2089 /* We reached a statement with no loop uses. */
2090 if (nloop_uses == 0)
2091 return false;
2093 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2094 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2095 return false;
2097 if (!is_gimple_assign (loop_use_stmt)
2098 || code != gimple_assign_rhs_code (loop_use_stmt)
2099 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2100 return false;
2102 /* Insert USE_STMT into reduction chain. */
2103 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2104 if (current_stmt)
2106 current_stmt_info = vinfo_for_stmt (current_stmt);
2107 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2108 GROUP_FIRST_ELEMENT (use_stmt_info)
2109 = GROUP_FIRST_ELEMENT (current_stmt_info);
2111 else
2112 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2114 lhs = gimple_assign_lhs (loop_use_stmt);
2115 current_stmt = loop_use_stmt;
2116 size++;
2119 if (!found || loop_use_stmt != phi || size < 2)
2120 return false;
2122 /* Swap the operands, if needed, to make the reduction operand be the second
2123 operand. */
2124 lhs = PHI_RESULT (phi);
2125 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2126 while (next_stmt)
2128 if (gimple_assign_rhs2 (next_stmt) == lhs)
2130 tree op = gimple_assign_rhs1 (next_stmt);
2131 gimple def_stmt = NULL;
2133 if (TREE_CODE (op) == SSA_NAME)
2134 def_stmt = SSA_NAME_DEF_STMT (op);
2136 /* Check that the other def is either defined in the loop
2137 ("vect_internal_def"), or it's an induction (defined by a
2138 loop-header phi-node). */
2139 if (def_stmt
2140 && gimple_bb (def_stmt)
2141 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2142 && (is_gimple_assign (def_stmt)
2143 || is_gimple_call (def_stmt)
2144 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2145 == vect_induction_def
2146 || (gimple_code (def_stmt) == GIMPLE_PHI
2147 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2148 == vect_internal_def
2149 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2151 lhs = gimple_assign_lhs (next_stmt);
2152 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2153 continue;
2156 return false;
2158 else
2160 tree op = gimple_assign_rhs2 (next_stmt);
2161 gimple def_stmt = NULL;
2163 if (TREE_CODE (op) == SSA_NAME)
2164 def_stmt = SSA_NAME_DEF_STMT (op);
2166 /* Check that the other def is either defined in the loop
2167 ("vect_internal_def"), or it's an induction (defined by a
2168 loop-header phi-node). */
2169 if (def_stmt
2170 && gimple_bb (def_stmt)
2171 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2172 && (is_gimple_assign (def_stmt)
2173 || is_gimple_call (def_stmt)
2174 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2175 == vect_induction_def
2176 || (gimple_code (def_stmt) == GIMPLE_PHI
2177 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2178 == vect_internal_def
2179 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2181 if (dump_enabled_p ())
2183 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2184 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2185 dump_printf (MSG_NOTE, "\n");
2188 swap_ssa_operands (next_stmt,
2189 gimple_assign_rhs1_ptr (next_stmt),
2190 gimple_assign_rhs2_ptr (next_stmt));
2191 update_stmt (next_stmt);
2193 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2194 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2196 else
2197 return false;
2200 lhs = gimple_assign_lhs (next_stmt);
2201 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2204 /* Save the chain for further analysis in SLP detection. */
2205 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2206 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2207 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2209 return true;
2213 /* Function vect_is_simple_reduction_1
2215 (1) Detect a cross-iteration def-use cycle that represents a simple
2216 reduction computation. We look for the following pattern:
2218 loop_header:
2219 a1 = phi < a0, a2 >
2220 a3 = ...
2221 a2 = operation (a3, a1)
2225 a3 = ...
2226 loop_header:
2227 a1 = phi < a0, a2 >
2228 a2 = operation (a3, a1)
2230 such that:
2231 1. operation is commutative and associative and it is safe to
2232 change the order of the computation (if CHECK_REDUCTION is true)
2233 2. no uses for a2 in the loop (a2 is used out of the loop)
2234 3. no uses of a1 in the loop besides the reduction operation
2235 4. no uses of a1 outside the loop.
2237 Conditions 1,4 are tested here.
2238 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2240 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2241 nested cycles, if CHECK_REDUCTION is false.
2243 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2244 reductions:
2246 a1 = phi < a0, a2 >
2247 inner loop (def of a3)
2248 a2 = phi < a3 >
2250 If MODIFY is true it tries also to rework the code in-place to enable
2251 detection of more reduction patterns. For the time being we rewrite
2252 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2255 static gimple
2256 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2257 bool check_reduction, bool *double_reduc,
2258 bool modify)
2260 struct loop *loop = (gimple_bb (phi))->loop_father;
2261 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2262 edge latch_e = loop_latch_edge (loop);
2263 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2264 gimple def_stmt, def1 = NULL, def2 = NULL;
2265 enum tree_code orig_code, code;
2266 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2267 tree type;
2268 int nloop_uses;
2269 tree name;
2270 imm_use_iterator imm_iter;
2271 use_operand_p use_p;
2272 bool phi_def;
2274 *double_reduc = false;
2276 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2277 otherwise, we assume outer loop vectorization. */
2278 gcc_assert ((check_reduction && loop == vect_loop)
2279 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2281 name = PHI_RESULT (phi);
2282 /* ??? If there are no uses of the PHI result the inner loop reduction
2283 won't be detected as possibly double-reduction by vectorizable_reduction
2284 because that tries to walk the PHI arg from the preheader edge which
2285 can be constant. See PR60382. */
2286 if (has_zero_uses (name))
2287 return NULL;
2288 nloop_uses = 0;
2289 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2291 gimple use_stmt = USE_STMT (use_p);
2292 if (is_gimple_debug (use_stmt))
2293 continue;
2295 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2297 if (dump_enabled_p ())
2298 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2299 "intermediate value used outside loop.\n");
2301 return NULL;
2304 nloop_uses++;
2305 if (nloop_uses > 1)
2307 if (dump_enabled_p ())
2308 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2309 "reduction used in loop.\n");
2310 return NULL;
2314 if (TREE_CODE (loop_arg) != SSA_NAME)
2316 if (dump_enabled_p ())
2318 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2319 "reduction: not ssa_name: ");
2320 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2321 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2323 return NULL;
2326 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2327 if (!def_stmt)
2329 if (dump_enabled_p ())
2330 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2331 "reduction: no def_stmt.\n");
2332 return NULL;
2335 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2337 if (dump_enabled_p ())
2339 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2340 dump_printf (MSG_NOTE, "\n");
2342 return NULL;
2345 if (is_gimple_assign (def_stmt))
2347 name = gimple_assign_lhs (def_stmt);
2348 phi_def = false;
2350 else
2352 name = PHI_RESULT (def_stmt);
2353 phi_def = true;
2356 nloop_uses = 0;
2357 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2359 gimple use_stmt = USE_STMT (use_p);
2360 if (is_gimple_debug (use_stmt))
2361 continue;
2362 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2363 nloop_uses++;
2364 if (nloop_uses > 1)
2366 if (dump_enabled_p ())
2367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2368 "reduction used in loop.\n");
2369 return NULL;
2373 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2374 defined in the inner loop. */
2375 if (phi_def)
2377 op1 = PHI_ARG_DEF (def_stmt, 0);
2379 if (gimple_phi_num_args (def_stmt) != 1
2380 || TREE_CODE (op1) != SSA_NAME)
2382 if (dump_enabled_p ())
2383 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2384 "unsupported phi node definition.\n");
2386 return NULL;
2389 def1 = SSA_NAME_DEF_STMT (op1);
2390 if (gimple_bb (def1)
2391 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2392 && loop->inner
2393 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2394 && is_gimple_assign (def1))
2396 if (dump_enabled_p ())
2397 report_vect_op (MSG_NOTE, def_stmt,
2398 "detected double reduction: ");
2400 *double_reduc = true;
2401 return def_stmt;
2404 return NULL;
2407 code = orig_code = gimple_assign_rhs_code (def_stmt);
2409 /* We can handle "res -= x[i]", which is non-associative by
2410 simply rewriting this into "res += -x[i]". Avoid changing
2411 gimple instruction for the first simple tests and only do this
2412 if we're allowed to change code at all. */
2413 if (code == MINUS_EXPR
2414 && modify
2415 && (op1 = gimple_assign_rhs1 (def_stmt))
2416 && TREE_CODE (op1) == SSA_NAME
2417 && SSA_NAME_DEF_STMT (op1) == phi)
2418 code = PLUS_EXPR;
2420 if (check_reduction
2421 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2423 if (dump_enabled_p ())
2424 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2425 "reduction: not commutative/associative: ");
2426 return NULL;
2429 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2431 if (code != COND_EXPR)
2433 if (dump_enabled_p ())
2434 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2435 "reduction: not binary operation: ");
2437 return NULL;
2440 op3 = gimple_assign_rhs1 (def_stmt);
2441 if (COMPARISON_CLASS_P (op3))
2443 op4 = TREE_OPERAND (op3, 1);
2444 op3 = TREE_OPERAND (op3, 0);
2447 op1 = gimple_assign_rhs2 (def_stmt);
2448 op2 = gimple_assign_rhs3 (def_stmt);
2450 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2452 if (dump_enabled_p ())
2453 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2454 "reduction: uses not ssa_names: ");
2456 return NULL;
2459 else
2461 op1 = gimple_assign_rhs1 (def_stmt);
2462 op2 = gimple_assign_rhs2 (def_stmt);
2464 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2466 if (dump_enabled_p ())
2467 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2468 "reduction: uses not ssa_names: ");
2470 return NULL;
2474 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2475 if ((TREE_CODE (op1) == SSA_NAME
2476 && !types_compatible_p (type,TREE_TYPE (op1)))
2477 || (TREE_CODE (op2) == SSA_NAME
2478 && !types_compatible_p (type, TREE_TYPE (op2)))
2479 || (op3 && TREE_CODE (op3) == SSA_NAME
2480 && !types_compatible_p (type, TREE_TYPE (op3)))
2481 || (op4 && TREE_CODE (op4) == SSA_NAME
2482 && !types_compatible_p (type, TREE_TYPE (op4))))
2484 if (dump_enabled_p ())
2486 dump_printf_loc (MSG_NOTE, vect_location,
2487 "reduction: multiple types: operation type: ");
2488 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2489 dump_printf (MSG_NOTE, ", operands types: ");
2490 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2491 TREE_TYPE (op1));
2492 dump_printf (MSG_NOTE, ",");
2493 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2494 TREE_TYPE (op2));
2495 if (op3)
2497 dump_printf (MSG_NOTE, ",");
2498 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2499 TREE_TYPE (op3));
2502 if (op4)
2504 dump_printf (MSG_NOTE, ",");
2505 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2506 TREE_TYPE (op4));
2508 dump_printf (MSG_NOTE, "\n");
2511 return NULL;
2514 /* Check that it's ok to change the order of the computation.
2515 Generally, when vectorizing a reduction we change the order of the
2516 computation. This may change the behavior of the program in some
2517 cases, so we need to check that this is ok. One exception is when
2518 vectorizing an outer-loop: the inner-loop is executed sequentially,
2519 and therefore vectorizing reductions in the inner-loop during
2520 outer-loop vectorization is safe. */
2522 /* CHECKME: check for !flag_finite_math_only too? */
2523 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2524 && check_reduction)
2526 /* Changing the order of operations changes the semantics. */
2527 if (dump_enabled_p ())
2528 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2529 "reduction: unsafe fp math optimization: ");
2530 return NULL;
2532 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2533 && check_reduction)
2535 /* Changing the order of operations changes the semantics. */
2536 if (dump_enabled_p ())
2537 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2538 "reduction: unsafe int math optimization: ");
2539 return NULL;
2541 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2543 /* Changing the order of operations changes the semantics. */
2544 if (dump_enabled_p ())
2545 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2546 "reduction: unsafe fixed-point math optimization: ");
2547 return NULL;
2550 /* If we detected "res -= x[i]" earlier, rewrite it into
2551 "res += -x[i]" now. If this turns out to be useless reassoc
2552 will clean it up again. */
2553 if (orig_code == MINUS_EXPR)
2555 tree rhs = gimple_assign_rhs2 (def_stmt);
2556 tree negrhs = make_ssa_name (TREE_TYPE (rhs));
2557 gimple negate_stmt = gimple_build_assign (negrhs, NEGATE_EXPR, rhs);
2558 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2559 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2560 loop_info, NULL));
2561 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2562 gimple_assign_set_rhs2 (def_stmt, negrhs);
2563 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2564 update_stmt (def_stmt);
2567 /* Reduction is safe. We're dealing with one of the following:
2568 1) integer arithmetic and no trapv
2569 2) floating point arithmetic, and special flags permit this optimization
2570 3) nested cycle (i.e., outer loop vectorization). */
2571 if (TREE_CODE (op1) == SSA_NAME)
2572 def1 = SSA_NAME_DEF_STMT (op1);
2574 if (TREE_CODE (op2) == SSA_NAME)
2575 def2 = SSA_NAME_DEF_STMT (op2);
2577 if (code != COND_EXPR
2578 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2580 if (dump_enabled_p ())
2581 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2582 return NULL;
2585 /* Check that one def is the reduction def, defined by PHI,
2586 the other def is either defined in the loop ("vect_internal_def"),
2587 or it's an induction (defined by a loop-header phi-node). */
2589 if (def2 && def2 == phi
2590 && (code == COND_EXPR
2591 || !def1 || gimple_nop_p (def1)
2592 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2593 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2594 && (is_gimple_assign (def1)
2595 || is_gimple_call (def1)
2596 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2597 == vect_induction_def
2598 || (gimple_code (def1) == GIMPLE_PHI
2599 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2600 == vect_internal_def
2601 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2603 if (dump_enabled_p ())
2604 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2605 return def_stmt;
2608 if (def1 && def1 == phi
2609 && (code == COND_EXPR
2610 || !def2 || gimple_nop_p (def2)
2611 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2612 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2613 && (is_gimple_assign (def2)
2614 || is_gimple_call (def2)
2615 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2616 == vect_induction_def
2617 || (gimple_code (def2) == GIMPLE_PHI
2618 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2619 == vect_internal_def
2620 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2622 if (check_reduction)
2624 /* Swap operands (just for simplicity - so that the rest of the code
2625 can assume that the reduction variable is always the last (second)
2626 argument). */
2627 if (dump_enabled_p ())
2628 report_vect_op (MSG_NOTE, def_stmt,
2629 "detected reduction: need to swap operands: ");
2631 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2632 gimple_assign_rhs2_ptr (def_stmt));
2634 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2635 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2637 else
2639 if (dump_enabled_p ())
2640 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2643 return def_stmt;
2646 /* Try to find SLP reduction chain. */
2647 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2649 if (dump_enabled_p ())
2650 report_vect_op (MSG_NOTE, def_stmt,
2651 "reduction: detected reduction chain: ");
2653 return def_stmt;
2656 if (dump_enabled_p ())
2657 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2658 "reduction: unknown pattern: ");
2660 return NULL;
2663 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2664 in-place. Arguments as there. */
2666 static gimple
2667 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2668 bool check_reduction, bool *double_reduc)
2670 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2671 double_reduc, false);
2674 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2675 in-place if it enables detection of more reductions. Arguments
2676 as there. */
2678 gimple
2679 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2680 bool check_reduction, bool *double_reduc)
2682 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2683 double_reduc, true);
2686 /* Calculate the cost of one scalar iteration of the loop. */
2688 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo,
2689 stmt_vector_for_cost *scalar_cost_vec)
2691 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2692 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2693 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2694 int innerloop_iters, i;
2696 /* Count statements in scalar loop. Using this as scalar cost for a single
2697 iteration for now.
2699 TODO: Add outer loop support.
2701 TODO: Consider assigning different costs to different scalar
2702 statements. */
2704 /* FORNOW. */
2705 innerloop_iters = 1;
2706 if (loop->inner)
2707 innerloop_iters = 50; /* FIXME */
2709 for (i = 0; i < nbbs; i++)
2711 gimple_stmt_iterator si;
2712 basic_block bb = bbs[i];
2714 if (bb->loop_father == loop->inner)
2715 factor = innerloop_iters;
2716 else
2717 factor = 1;
2719 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2721 gimple stmt = gsi_stmt (si);
2722 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2724 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2725 continue;
2727 /* Skip stmts that are not vectorized inside the loop. */
2728 if (stmt_info
2729 && !STMT_VINFO_RELEVANT_P (stmt_info)
2730 && (!STMT_VINFO_LIVE_P (stmt_info)
2731 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2732 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2733 continue;
2735 vect_cost_for_stmt kind;
2736 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2738 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2739 kind = scalar_load;
2740 else
2741 kind = scalar_store;
2743 else
2744 kind = scalar_stmt;
2746 scalar_single_iter_cost
2747 += record_stmt_cost (scalar_cost_vec, factor, kind,
2748 NULL, 0, vect_prologue);
2751 return scalar_single_iter_cost;
2754 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2756 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2757 int *peel_iters_epilogue,
2758 stmt_vector_for_cost *scalar_cost_vec,
2759 stmt_vector_for_cost *prologue_cost_vec,
2760 stmt_vector_for_cost *epilogue_cost_vec)
2762 int retval = 0;
2763 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2765 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2767 *peel_iters_epilogue = vf/2;
2768 if (dump_enabled_p ())
2769 dump_printf_loc (MSG_NOTE, vect_location,
2770 "cost model: epilogue peel iters set to vf/2 "
2771 "because loop iterations are unknown .\n");
2773 /* If peeled iterations are known but number of scalar loop
2774 iterations are unknown, count a taken branch per peeled loop. */
2775 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
2776 NULL, 0, vect_prologue);
2777 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
2778 NULL, 0, vect_epilogue);
2780 else
2782 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2783 peel_iters_prologue = niters < peel_iters_prologue ?
2784 niters : peel_iters_prologue;
2785 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2786 /* If we need to peel for gaps, but no peeling is required, we have to
2787 peel VF iterations. */
2788 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2789 *peel_iters_epilogue = vf;
2792 stmt_info_for_cost *si;
2793 int j;
2794 if (peel_iters_prologue)
2795 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
2796 retval += record_stmt_cost (prologue_cost_vec,
2797 si->count * peel_iters_prologue,
2798 si->kind, NULL, si->misalign,
2799 vect_prologue);
2800 if (*peel_iters_epilogue)
2801 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
2802 retval += record_stmt_cost (epilogue_cost_vec,
2803 si->count * *peel_iters_epilogue,
2804 si->kind, NULL, si->misalign,
2805 vect_epilogue);
2807 return retval;
2810 /* Function vect_estimate_min_profitable_iters
2812 Return the number of iterations required for the vector version of the
2813 loop to be profitable relative to the cost of the scalar version of the
2814 loop. */
2816 static void
2817 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2818 int *ret_min_profitable_niters,
2819 int *ret_min_profitable_estimate)
2821 int min_profitable_iters;
2822 int min_profitable_estimate;
2823 int peel_iters_prologue;
2824 int peel_iters_epilogue;
2825 unsigned vec_inside_cost = 0;
2826 int vec_outside_cost = 0;
2827 unsigned vec_prologue_cost = 0;
2828 unsigned vec_epilogue_cost = 0;
2829 int scalar_single_iter_cost = 0;
2830 int scalar_outside_cost = 0;
2831 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2832 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2833 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2835 /* Cost model disabled. */
2836 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
2838 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
2839 *ret_min_profitable_niters = 0;
2840 *ret_min_profitable_estimate = 0;
2841 return;
2844 /* Requires loop versioning tests to handle misalignment. */
2845 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2847 /* FIXME: Make cost depend on complexity of individual check. */
2848 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2849 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2850 vect_prologue);
2851 dump_printf (MSG_NOTE,
2852 "cost model: Adding cost of checks for loop "
2853 "versioning to treat misalignment.\n");
2856 /* Requires loop versioning with alias checks. */
2857 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2859 /* FIXME: Make cost depend on complexity of individual check. */
2860 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2861 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2862 vect_prologue);
2863 dump_printf (MSG_NOTE,
2864 "cost model: Adding cost of checks for loop "
2865 "versioning aliasing.\n");
2868 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2869 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2870 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2871 vect_prologue);
2873 /* Count statements in scalar loop. Using this as scalar cost for a single
2874 iteration for now.
2876 TODO: Add outer loop support.
2878 TODO: Consider assigning different costs to different scalar
2879 statements. */
2881 auto_vec<stmt_info_for_cost> scalar_cost_vec;
2882 scalar_single_iter_cost
2883 = vect_get_single_scalar_iteration_cost (loop_vinfo, &scalar_cost_vec);
2885 /* Add additional cost for the peeled instructions in prologue and epilogue
2886 loop.
2888 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2889 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2891 TODO: Build an expression that represents peel_iters for prologue and
2892 epilogue to be used in a run-time test. */
2894 if (npeel < 0)
2896 peel_iters_prologue = vf/2;
2897 dump_printf (MSG_NOTE, "cost model: "
2898 "prologue peel iters set to vf/2.\n");
2900 /* If peeling for alignment is unknown, loop bound of main loop becomes
2901 unknown. */
2902 peel_iters_epilogue = vf/2;
2903 dump_printf (MSG_NOTE, "cost model: "
2904 "epilogue peel iters set to vf/2 because "
2905 "peeling for alignment is unknown.\n");
2907 /* If peeled iterations are unknown, count a taken branch and a not taken
2908 branch per peeled loop. Even if scalar loop iterations are known,
2909 vector iterations are not known since peeled prologue iterations are
2910 not known. Hence guards remain the same. */
2911 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
2912 NULL, 0, vect_prologue);
2913 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
2914 NULL, 0, vect_prologue);
2915 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
2916 NULL, 0, vect_epilogue);
2917 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
2918 NULL, 0, vect_epilogue);
2919 stmt_info_for_cost *si;
2920 int j;
2921 FOR_EACH_VEC_ELT (scalar_cost_vec, j, si)
2923 struct _stmt_vec_info *stmt_info
2924 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2925 (void) add_stmt_cost (target_cost_data,
2926 si->count * peel_iters_prologue,
2927 si->kind, stmt_info, si->misalign,
2928 vect_prologue);
2929 (void) add_stmt_cost (target_cost_data,
2930 si->count * peel_iters_epilogue,
2931 si->kind, stmt_info, si->misalign,
2932 vect_epilogue);
2935 else
2937 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2938 stmt_info_for_cost *si;
2939 int j;
2940 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2942 prologue_cost_vec.create (2);
2943 epilogue_cost_vec.create (2);
2944 peel_iters_prologue = npeel;
2946 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2947 &peel_iters_epilogue,
2948 &scalar_cost_vec,
2949 &prologue_cost_vec,
2950 &epilogue_cost_vec);
2952 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2954 struct _stmt_vec_info *stmt_info
2955 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2956 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2957 si->misalign, vect_prologue);
2960 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2962 struct _stmt_vec_info *stmt_info
2963 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2964 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2965 si->misalign, vect_epilogue);
2968 prologue_cost_vec.release ();
2969 epilogue_cost_vec.release ();
2972 /* FORNOW: The scalar outside cost is incremented in one of the
2973 following ways:
2975 1. The vectorizer checks for alignment and aliasing and generates
2976 a condition that allows dynamic vectorization. A cost model
2977 check is ANDED with the versioning condition. Hence scalar code
2978 path now has the added cost of the versioning check.
2980 if (cost > th & versioning_check)
2981 jmp to vector code
2983 Hence run-time scalar is incremented by not-taken branch cost.
2985 2. The vectorizer then checks if a prologue is required. If the
2986 cost model check was not done before during versioning, it has to
2987 be done before the prologue check.
2989 if (cost <= th)
2990 prologue = scalar_iters
2991 if (prologue == 0)
2992 jmp to vector code
2993 else
2994 execute prologue
2995 if (prologue == num_iters)
2996 go to exit
2998 Hence the run-time scalar cost is incremented by a taken branch,
2999 plus a not-taken branch, plus a taken branch cost.
3001 3. The vectorizer then checks if an epilogue is required. If the
3002 cost model check was not done before during prologue check, it
3003 has to be done with the epilogue check.
3005 if (prologue == 0)
3006 jmp to vector code
3007 else
3008 execute prologue
3009 if (prologue == num_iters)
3010 go to exit
3011 vector code:
3012 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3013 jmp to epilogue
3015 Hence the run-time scalar cost should be incremented by 2 taken
3016 branches.
3018 TODO: The back end may reorder the BBS's differently and reverse
3019 conditions/branch directions. Change the estimates below to
3020 something more reasonable. */
3022 /* If the number of iterations is known and we do not do versioning, we can
3023 decide whether to vectorize at compile time. Hence the scalar version
3024 do not carry cost model guard costs. */
3025 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3026 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3027 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3029 /* Cost model check occurs at versioning. */
3030 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3031 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3032 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3033 else
3035 /* Cost model check occurs at prologue generation. */
3036 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3037 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3038 + vect_get_stmt_cost (cond_branch_not_taken);
3039 /* Cost model check occurs at epilogue generation. */
3040 else
3041 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3045 /* Complete the target-specific cost calculations. */
3046 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3047 &vec_inside_cost, &vec_epilogue_cost);
3049 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3051 if (dump_enabled_p ())
3053 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3054 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3055 vec_inside_cost);
3056 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3057 vec_prologue_cost);
3058 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3059 vec_epilogue_cost);
3060 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3061 scalar_single_iter_cost);
3062 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3063 scalar_outside_cost);
3064 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3065 vec_outside_cost);
3066 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3067 peel_iters_prologue);
3068 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3069 peel_iters_epilogue);
3072 /* Calculate number of iterations required to make the vector version
3073 profitable, relative to the loop bodies only. The following condition
3074 must hold true:
3075 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3076 where
3077 SIC = scalar iteration cost, VIC = vector iteration cost,
3078 VOC = vector outside cost, VF = vectorization factor,
3079 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3080 SOC = scalar outside cost for run time cost model check. */
3082 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3084 if (vec_outside_cost <= 0)
3085 min_profitable_iters = 1;
3086 else
3088 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3089 - vec_inside_cost * peel_iters_prologue
3090 - vec_inside_cost * peel_iters_epilogue)
3091 / ((scalar_single_iter_cost * vf)
3092 - vec_inside_cost);
3094 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3095 <= (((int) vec_inside_cost * min_profitable_iters)
3096 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3097 min_profitable_iters++;
3100 /* vector version will never be profitable. */
3101 else
3103 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3104 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3105 "did not happen for a simd loop");
3107 if (dump_enabled_p ())
3108 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3109 "cost model: the vector iteration cost = %d "
3110 "divided by the scalar iteration cost = %d "
3111 "is greater or equal to the vectorization factor = %d"
3112 ".\n",
3113 vec_inside_cost, scalar_single_iter_cost, vf);
3114 *ret_min_profitable_niters = -1;
3115 *ret_min_profitable_estimate = -1;
3116 return;
3119 dump_printf (MSG_NOTE,
3120 " Calculated minimum iters for profitability: %d\n",
3121 min_profitable_iters);
3123 min_profitable_iters =
3124 min_profitable_iters < vf ? vf : min_profitable_iters;
3126 /* Because the condition we create is:
3127 if (niters <= min_profitable_iters)
3128 then skip the vectorized loop. */
3129 min_profitable_iters--;
3131 if (dump_enabled_p ())
3132 dump_printf_loc (MSG_NOTE, vect_location,
3133 " Runtime profitability threshold = %d\n",
3134 min_profitable_iters);
3136 *ret_min_profitable_niters = min_profitable_iters;
3138 /* Calculate number of iterations required to make the vector version
3139 profitable, relative to the loop bodies only.
3141 Non-vectorized variant is SIC * niters and it must win over vector
3142 variant on the expected loop trip count. The following condition must hold true:
3143 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3145 if (vec_outside_cost <= 0)
3146 min_profitable_estimate = 1;
3147 else
3149 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3150 - vec_inside_cost * peel_iters_prologue
3151 - vec_inside_cost * peel_iters_epilogue)
3152 / ((scalar_single_iter_cost * vf)
3153 - vec_inside_cost);
3155 min_profitable_estimate --;
3156 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3157 if (dump_enabled_p ())
3158 dump_printf_loc (MSG_NOTE, vect_location,
3159 " Static estimate profitability threshold = %d\n",
3160 min_profitable_iters);
3162 *ret_min_profitable_estimate = min_profitable_estimate;
3165 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3166 vector elements (not bits) for a vector of mode MODE. */
3167 static void
3168 calc_vec_perm_mask_for_shift (enum machine_mode mode, unsigned int offset,
3169 unsigned char *sel)
3171 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3173 for (i = 0; i < nelt; i++)
3174 sel[i] = (i + offset) & (2*nelt - 1);
3177 /* Checks whether the target supports whole-vector shifts for vectors of mode
3178 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3179 it supports vec_perm_const with masks for all necessary shift amounts. */
3180 static bool
3181 have_whole_vector_shift (enum machine_mode mode)
3183 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3184 return true;
3186 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3187 return false;
3189 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3190 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3192 for (i = nelt/2; i >= 1; i/=2)
3194 calc_vec_perm_mask_for_shift (mode, i, sel);
3195 if (!can_vec_perm_p (mode, false, sel))
3196 return false;
3198 return true;
3201 /* Return the reduction operand (with index REDUC_INDEX) of STMT. */
3203 static tree
3204 get_reduction_op (gimple stmt, int reduc_index)
3206 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3208 case GIMPLE_SINGLE_RHS:
3209 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3210 == ternary_op);
3211 return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3212 case GIMPLE_UNARY_RHS:
3213 return gimple_assign_rhs1 (stmt);
3214 case GIMPLE_BINARY_RHS:
3215 return (reduc_index
3216 ? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
3217 case GIMPLE_TERNARY_RHS:
3218 return gimple_op (stmt, reduc_index + 1);
3219 default:
3220 gcc_unreachable ();
3224 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3225 functions. Design better to avoid maintenance issues. */
3227 /* Function vect_model_reduction_cost.
3229 Models cost for a reduction operation, including the vector ops
3230 generated within the strip-mine loop, the initial definition before
3231 the loop, and the epilogue code that must be generated. */
3233 static bool
3234 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3235 int ncopies, int reduc_index)
3237 int prologue_cost = 0, epilogue_cost = 0;
3238 enum tree_code code;
3239 optab optab;
3240 tree vectype;
3241 gimple stmt, orig_stmt;
3242 tree reduction_op;
3243 machine_mode mode;
3244 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3245 struct loop *loop = NULL;
3246 void *target_cost_data;
3248 if (loop_vinfo)
3250 loop = LOOP_VINFO_LOOP (loop_vinfo);
3251 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3253 else
3254 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3256 /* Cost of reduction op inside loop. */
3257 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3258 stmt_info, 0, vect_body);
3259 stmt = STMT_VINFO_STMT (stmt_info);
3261 reduction_op = get_reduction_op (stmt, reduc_index);
3263 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3264 if (!vectype)
3266 if (dump_enabled_p ())
3268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3269 "unsupported data-type ");
3270 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3271 TREE_TYPE (reduction_op));
3272 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3274 return false;
3277 mode = TYPE_MODE (vectype);
3278 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3280 if (!orig_stmt)
3281 orig_stmt = STMT_VINFO_STMT (stmt_info);
3283 code = gimple_assign_rhs_code (orig_stmt);
3285 /* Add in cost for initial definition. */
3286 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3287 stmt_info, 0, vect_prologue);
3289 /* Determine cost of epilogue code.
3291 We have a reduction operator that will reduce the vector in one statement.
3292 Also requires scalar extract. */
3294 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3296 if (reduc_code != ERROR_MARK)
3298 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3299 stmt_info, 0, vect_epilogue);
3300 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3301 stmt_info, 0, vect_epilogue);
3303 else
3305 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3306 tree bitsize =
3307 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3308 int element_bitsize = tree_to_uhwi (bitsize);
3309 int nelements = vec_size_in_bits / element_bitsize;
3311 optab = optab_for_tree_code (code, vectype, optab_default);
3313 /* We have a whole vector shift available. */
3314 if (VECTOR_MODE_P (mode)
3315 && optab_handler (optab, mode) != CODE_FOR_nothing
3316 && have_whole_vector_shift (mode))
3318 /* Final reduction via vector shifts and the reduction operator.
3319 Also requires scalar extract. */
3320 epilogue_cost += add_stmt_cost (target_cost_data,
3321 exact_log2 (nelements) * 2,
3322 vector_stmt, stmt_info, 0,
3323 vect_epilogue);
3324 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3325 vec_to_scalar, stmt_info, 0,
3326 vect_epilogue);
3328 else
3329 /* Use extracts and reduction op for final reduction. For N
3330 elements, we have N extracts and N-1 reduction ops. */
3331 epilogue_cost += add_stmt_cost (target_cost_data,
3332 nelements + nelements - 1,
3333 vector_stmt, stmt_info, 0,
3334 vect_epilogue);
3338 if (dump_enabled_p ())
3339 dump_printf (MSG_NOTE,
3340 "vect_model_reduction_cost: inside_cost = %d, "
3341 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3342 prologue_cost, epilogue_cost);
3344 return true;
3348 /* Function vect_model_induction_cost.
3350 Models cost for induction operations. */
3352 static void
3353 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3355 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3356 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3357 unsigned inside_cost, prologue_cost;
3359 /* loop cost for vec_loop. */
3360 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3361 stmt_info, 0, vect_body);
3363 /* prologue cost for vec_init and vec_step. */
3364 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3365 stmt_info, 0, vect_prologue);
3367 if (dump_enabled_p ())
3368 dump_printf_loc (MSG_NOTE, vect_location,
3369 "vect_model_induction_cost: inside_cost = %d, "
3370 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3374 /* Function get_initial_def_for_induction
3376 Input:
3377 STMT - a stmt that performs an induction operation in the loop.
3378 IV_PHI - the initial value of the induction variable
3380 Output:
3381 Return a vector variable, initialized with the first VF values of
3382 the induction variable. E.g., for an iv with IV_PHI='X' and
3383 evolution S, for a vector of 4 units, we want to return:
3384 [X, X + S, X + 2*S, X + 3*S]. */
3386 static tree
3387 get_initial_def_for_induction (gimple iv_phi)
3389 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3390 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3391 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3392 tree vectype;
3393 int nunits;
3394 edge pe = loop_preheader_edge (loop);
3395 struct loop *iv_loop;
3396 basic_block new_bb;
3397 tree new_vec, vec_init, vec_step, t;
3398 tree new_var;
3399 tree new_name;
3400 gimple init_stmt, new_stmt;
3401 gphi *induction_phi;
3402 tree induc_def, vec_def, vec_dest;
3403 tree init_expr, step_expr;
3404 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3405 int i;
3406 int ncopies;
3407 tree expr;
3408 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3409 bool nested_in_vect_loop = false;
3410 gimple_seq stmts = NULL;
3411 imm_use_iterator imm_iter;
3412 use_operand_p use_p;
3413 gimple exit_phi;
3414 edge latch_e;
3415 tree loop_arg;
3416 gimple_stmt_iterator si;
3417 basic_block bb = gimple_bb (iv_phi);
3418 tree stepvectype;
3419 tree resvectype;
3421 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3422 if (nested_in_vect_loop_p (loop, iv_phi))
3424 nested_in_vect_loop = true;
3425 iv_loop = loop->inner;
3427 else
3428 iv_loop = loop;
3429 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3431 latch_e = loop_latch_edge (iv_loop);
3432 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3434 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3435 gcc_assert (step_expr != NULL_TREE);
3437 pe = loop_preheader_edge (iv_loop);
3438 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3439 loop_preheader_edge (iv_loop));
3441 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3442 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3443 gcc_assert (vectype);
3444 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3445 ncopies = vf / nunits;
3447 gcc_assert (phi_info);
3448 gcc_assert (ncopies >= 1);
3450 /* Convert the step to the desired type. */
3451 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3452 step_expr),
3453 &stmts, true, NULL_TREE);
3454 if (stmts)
3456 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3457 gcc_assert (!new_bb);
3460 /* Find the first insertion point in the BB. */
3461 si = gsi_after_labels (bb);
3463 /* Create the vector that holds the initial_value of the induction. */
3464 if (nested_in_vect_loop)
3466 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3467 been created during vectorization of previous stmts. We obtain it
3468 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3469 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3470 /* If the initial value is not of proper type, convert it. */
3471 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3473 new_stmt
3474 = gimple_build_assign (vect_get_new_vect_var (vectype,
3475 vect_simple_var,
3476 "vec_iv_"),
3477 VIEW_CONVERT_EXPR,
3478 build1 (VIEW_CONVERT_EXPR, vectype,
3479 vec_init));
3480 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3481 gimple_assign_set_lhs (new_stmt, vec_init);
3482 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3483 new_stmt);
3484 gcc_assert (!new_bb);
3485 set_vinfo_for_stmt (new_stmt,
3486 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3489 else
3491 vec<constructor_elt, va_gc> *v;
3493 /* iv_loop is the loop to be vectorized. Create:
3494 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3495 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3496 vect_scalar_var, "var_");
3497 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3498 init_expr),
3499 &stmts, false, new_var);
3500 if (stmts)
3502 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3503 gcc_assert (!new_bb);
3506 vec_alloc (v, nunits);
3507 bool constant_p = is_gimple_min_invariant (new_name);
3508 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3509 for (i = 1; i < nunits; i++)
3511 /* Create: new_name_i = new_name + step_expr */
3512 new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
3513 new_name, step_expr);
3514 if (!is_gimple_min_invariant (new_name))
3516 init_stmt = gimple_build_assign (new_var, new_name);
3517 new_name = make_ssa_name (new_var, init_stmt);
3518 gimple_assign_set_lhs (init_stmt, new_name);
3519 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3520 gcc_assert (!new_bb);
3521 if (dump_enabled_p ())
3523 dump_printf_loc (MSG_NOTE, vect_location,
3524 "created new init_stmt: ");
3525 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3526 dump_printf (MSG_NOTE, "\n");
3528 constant_p = false;
3530 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3532 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3533 if (constant_p)
3534 new_vec = build_vector_from_ctor (vectype, v);
3535 else
3536 new_vec = build_constructor (vectype, v);
3537 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3541 /* Create the vector that holds the step of the induction. */
3542 if (nested_in_vect_loop)
3543 /* iv_loop is nested in the loop to be vectorized. Generate:
3544 vec_step = [S, S, S, S] */
3545 new_name = step_expr;
3546 else
3548 /* iv_loop is the loop to be vectorized. Generate:
3549 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3550 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3552 expr = build_int_cst (integer_type_node, vf);
3553 expr = fold_convert (TREE_TYPE (step_expr), expr);
3555 else
3556 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3557 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3558 expr, step_expr);
3559 if (TREE_CODE (step_expr) == SSA_NAME)
3560 new_name = vect_init_vector (iv_phi, new_name,
3561 TREE_TYPE (step_expr), NULL);
3564 t = unshare_expr (new_name);
3565 gcc_assert (CONSTANT_CLASS_P (new_name)
3566 || TREE_CODE (new_name) == SSA_NAME);
3567 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3568 gcc_assert (stepvectype);
3569 new_vec = build_vector_from_val (stepvectype, t);
3570 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3573 /* Create the following def-use cycle:
3574 loop prolog:
3575 vec_init = ...
3576 vec_step = ...
3577 loop:
3578 vec_iv = PHI <vec_init, vec_loop>
3580 STMT
3582 vec_loop = vec_iv + vec_step; */
3584 /* Create the induction-phi that defines the induction-operand. */
3585 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3586 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3587 set_vinfo_for_stmt (induction_phi,
3588 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3589 induc_def = PHI_RESULT (induction_phi);
3591 /* Create the iv update inside the loop */
3592 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR, induc_def, vec_step);
3593 vec_def = make_ssa_name (vec_dest, new_stmt);
3594 gimple_assign_set_lhs (new_stmt, vec_def);
3595 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3596 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3597 NULL));
3599 /* Set the arguments of the phi node: */
3600 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3601 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3602 UNKNOWN_LOCATION);
3605 /* In case that vectorization factor (VF) is bigger than the number
3606 of elements that we can fit in a vectype (nunits), we have to generate
3607 more than one vector stmt - i.e - we need to "unroll" the
3608 vector stmt by a factor VF/nunits. For more details see documentation
3609 in vectorizable_operation. */
3611 if (ncopies > 1)
3613 stmt_vec_info prev_stmt_vinfo;
3614 /* FORNOW. This restriction should be relaxed. */
3615 gcc_assert (!nested_in_vect_loop);
3617 /* Create the vector that holds the step of the induction. */
3618 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3620 expr = build_int_cst (integer_type_node, nunits);
3621 expr = fold_convert (TREE_TYPE (step_expr), expr);
3623 else
3624 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3625 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3626 expr, step_expr);
3627 if (TREE_CODE (step_expr) == SSA_NAME)
3628 new_name = vect_init_vector (iv_phi, new_name,
3629 TREE_TYPE (step_expr), NULL);
3630 t = unshare_expr (new_name);
3631 gcc_assert (CONSTANT_CLASS_P (new_name)
3632 || TREE_CODE (new_name) == SSA_NAME);
3633 new_vec = build_vector_from_val (stepvectype, t);
3634 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3636 vec_def = induc_def;
3637 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3638 for (i = 1; i < ncopies; i++)
3640 /* vec_i = vec_prev + vec_step */
3641 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
3642 vec_def, vec_step);
3643 vec_def = make_ssa_name (vec_dest, new_stmt);
3644 gimple_assign_set_lhs (new_stmt, vec_def);
3646 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3647 if (!useless_type_conversion_p (resvectype, vectype))
3649 new_stmt
3650 = gimple_build_assign
3651 (vect_get_new_vect_var (resvectype, vect_simple_var,
3652 "vec_iv_"),
3653 VIEW_CONVERT_EXPR,
3654 build1 (VIEW_CONVERT_EXPR, resvectype,
3655 gimple_assign_lhs (new_stmt)));
3656 gimple_assign_set_lhs (new_stmt,
3657 make_ssa_name
3658 (gimple_assign_lhs (new_stmt), new_stmt));
3659 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3661 set_vinfo_for_stmt (new_stmt,
3662 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3663 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3664 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3668 if (nested_in_vect_loop)
3670 /* Find the loop-closed exit-phi of the induction, and record
3671 the final vector of induction results: */
3672 exit_phi = NULL;
3673 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3675 gimple use_stmt = USE_STMT (use_p);
3676 if (is_gimple_debug (use_stmt))
3677 continue;
3679 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
3681 exit_phi = use_stmt;
3682 break;
3685 if (exit_phi)
3687 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3688 /* FORNOW. Currently not supporting the case that an inner-loop induction
3689 is not used in the outer-loop (i.e. only outside the outer-loop). */
3690 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3691 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3693 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3694 if (dump_enabled_p ())
3696 dump_printf_loc (MSG_NOTE, vect_location,
3697 "vector of inductions after inner-loop:");
3698 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3699 dump_printf (MSG_NOTE, "\n");
3705 if (dump_enabled_p ())
3707 dump_printf_loc (MSG_NOTE, vect_location,
3708 "transform induction: created def-use cycle: ");
3709 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3710 dump_printf (MSG_NOTE, "\n");
3711 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3712 SSA_NAME_DEF_STMT (vec_def), 0);
3713 dump_printf (MSG_NOTE, "\n");
3716 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3717 if (!useless_type_conversion_p (resvectype, vectype))
3719 new_stmt = gimple_build_assign (vect_get_new_vect_var (resvectype,
3720 vect_simple_var,
3721 "vec_iv_"),
3722 VIEW_CONVERT_EXPR,
3723 build1 (VIEW_CONVERT_EXPR, resvectype,
3724 induc_def));
3725 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3726 gimple_assign_set_lhs (new_stmt, induc_def);
3727 si = gsi_after_labels (bb);
3728 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3729 set_vinfo_for_stmt (new_stmt,
3730 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3731 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3732 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3735 return induc_def;
3739 /* Function get_initial_def_for_reduction
3741 Input:
3742 STMT - a stmt that performs a reduction operation in the loop.
3743 INIT_VAL - the initial value of the reduction variable
3745 Output:
3746 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3747 of the reduction (used for adjusting the epilog - see below).
3748 Return a vector variable, initialized according to the operation that STMT
3749 performs. This vector will be used as the initial value of the
3750 vector of partial results.
3752 Option1 (adjust in epilog): Initialize the vector as follows:
3753 add/bit or/xor: [0,0,...,0,0]
3754 mult/bit and: [1,1,...,1,1]
3755 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3756 and when necessary (e.g. add/mult case) let the caller know
3757 that it needs to adjust the result by init_val.
3759 Option2: Initialize the vector as follows:
3760 add/bit or/xor: [init_val,0,0,...,0]
3761 mult/bit and: [init_val,1,1,...,1]
3762 min/max/cond_expr: [init_val,init_val,...,init_val]
3763 and no adjustments are needed.
3765 For example, for the following code:
3767 s = init_val;
3768 for (i=0;i<n;i++)
3769 s = s + a[i];
3771 STMT is 's = s + a[i]', and the reduction variable is 's'.
3772 For a vector of 4 units, we want to return either [0,0,0,init_val],
3773 or [0,0,0,0] and let the caller know that it needs to adjust
3774 the result at the end by 'init_val'.
3776 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3777 initialization vector is simpler (same element in all entries), if
3778 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3780 A cost model should help decide between these two schemes. */
3782 tree
3783 get_initial_def_for_reduction (gimple stmt, tree init_val,
3784 tree *adjustment_def)
3786 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3787 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3788 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3789 tree scalar_type = TREE_TYPE (init_val);
3790 tree vectype = get_vectype_for_scalar_type (scalar_type);
3791 int nunits;
3792 enum tree_code code = gimple_assign_rhs_code (stmt);
3793 tree def_for_init;
3794 tree init_def;
3795 tree *elts;
3796 int i;
3797 bool nested_in_vect_loop = false;
3798 tree init_value;
3799 REAL_VALUE_TYPE real_init_val = dconst0;
3800 int int_init_val = 0;
3801 gimple def_stmt = NULL;
3803 gcc_assert (vectype);
3804 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3806 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3807 || SCALAR_FLOAT_TYPE_P (scalar_type));
3809 if (nested_in_vect_loop_p (loop, stmt))
3810 nested_in_vect_loop = true;
3811 else
3812 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3814 /* In case of double reduction we only create a vector variable to be put
3815 in the reduction phi node. The actual statement creation is done in
3816 vect_create_epilog_for_reduction. */
3817 if (adjustment_def && nested_in_vect_loop
3818 && TREE_CODE (init_val) == SSA_NAME
3819 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3820 && gimple_code (def_stmt) == GIMPLE_PHI
3821 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3822 && vinfo_for_stmt (def_stmt)
3823 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3824 == vect_double_reduction_def)
3826 *adjustment_def = NULL;
3827 return vect_create_destination_var (init_val, vectype);
3830 if (TREE_CONSTANT (init_val))
3832 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3833 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3834 else
3835 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3837 else
3838 init_value = init_val;
3840 switch (code)
3842 case WIDEN_SUM_EXPR:
3843 case DOT_PROD_EXPR:
3844 case SAD_EXPR:
3845 case PLUS_EXPR:
3846 case MINUS_EXPR:
3847 case BIT_IOR_EXPR:
3848 case BIT_XOR_EXPR:
3849 case MULT_EXPR:
3850 case BIT_AND_EXPR:
3851 /* ADJUSMENT_DEF is NULL when called from
3852 vect_create_epilog_for_reduction to vectorize double reduction. */
3853 if (adjustment_def)
3855 if (nested_in_vect_loop)
3856 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3857 NULL);
3858 else
3859 *adjustment_def = init_val;
3862 if (code == MULT_EXPR)
3864 real_init_val = dconst1;
3865 int_init_val = 1;
3868 if (code == BIT_AND_EXPR)
3869 int_init_val = -1;
3871 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3872 def_for_init = build_real (scalar_type, real_init_val);
3873 else
3874 def_for_init = build_int_cst (scalar_type, int_init_val);
3876 /* Create a vector of '0' or '1' except the first element. */
3877 elts = XALLOCAVEC (tree, nunits);
3878 for (i = nunits - 2; i >= 0; --i)
3879 elts[i + 1] = def_for_init;
3881 /* Option1: the first element is '0' or '1' as well. */
3882 if (adjustment_def)
3884 elts[0] = def_for_init;
3885 init_def = build_vector (vectype, elts);
3886 break;
3889 /* Option2: the first element is INIT_VAL. */
3890 elts[0] = init_val;
3891 if (TREE_CONSTANT (init_val))
3892 init_def = build_vector (vectype, elts);
3893 else
3895 vec<constructor_elt, va_gc> *v;
3896 vec_alloc (v, nunits);
3897 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3898 for (i = 1; i < nunits; ++i)
3899 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3900 init_def = build_constructor (vectype, v);
3903 break;
3905 case MIN_EXPR:
3906 case MAX_EXPR:
3907 case COND_EXPR:
3908 if (adjustment_def)
3910 *adjustment_def = NULL_TREE;
3911 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3912 break;
3915 init_def = build_vector_from_val (vectype, init_value);
3916 break;
3918 default:
3919 gcc_unreachable ();
3922 return init_def;
3925 /* Function vect_create_epilog_for_reduction
3927 Create code at the loop-epilog to finalize the result of a reduction
3928 computation.
3930 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3931 reduction statements.
3932 STMT is the scalar reduction stmt that is being vectorized.
3933 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3934 number of elements that we can fit in a vectype (nunits). In this case
3935 we have to generate more than one vector stmt - i.e - we need to "unroll"
3936 the vector stmt by a factor VF/nunits. For more details see documentation
3937 in vectorizable_operation.
3938 REDUC_CODE is the tree-code for the epilog reduction.
3939 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3940 computation.
3941 REDUC_INDEX is the index of the operand in the right hand side of the
3942 statement that is defined by REDUCTION_PHI.
3943 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3944 SLP_NODE is an SLP node containing a group of reduction statements. The
3945 first one in this group is STMT.
3947 This function:
3948 1. Creates the reduction def-use cycles: sets the arguments for
3949 REDUCTION_PHIS:
3950 The loop-entry argument is the vectorized initial-value of the reduction.
3951 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3952 sums.
3953 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3954 by applying the operation specified by REDUC_CODE if available, or by
3955 other means (whole-vector shifts or a scalar loop).
3956 The function also creates a new phi node at the loop exit to preserve
3957 loop-closed form, as illustrated below.
3959 The flow at the entry to this function:
3961 loop:
3962 vec_def = phi <null, null> # REDUCTION_PHI
3963 VECT_DEF = vector_stmt # vectorized form of STMT
3964 s_loop = scalar_stmt # (scalar) STMT
3965 loop_exit:
3966 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3967 use <s_out0>
3968 use <s_out0>
3970 The above is transformed by this function into:
3972 loop:
3973 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3974 VECT_DEF = vector_stmt # vectorized form of STMT
3975 s_loop = scalar_stmt # (scalar) STMT
3976 loop_exit:
3977 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3978 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3979 v_out2 = reduce <v_out1>
3980 s_out3 = extract_field <v_out2, 0>
3981 s_out4 = adjust_result <s_out3>
3982 use <s_out4>
3983 use <s_out4>
3986 static void
3987 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3988 int ncopies, enum tree_code reduc_code,
3989 vec<gimple> reduction_phis,
3990 int reduc_index, bool double_reduc,
3991 slp_tree slp_node)
3993 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3994 stmt_vec_info prev_phi_info;
3995 tree vectype;
3996 machine_mode mode;
3997 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3998 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3999 basic_block exit_bb;
4000 tree scalar_dest;
4001 tree scalar_type;
4002 gimple new_phi = NULL, phi;
4003 gimple_stmt_iterator exit_gsi;
4004 tree vec_dest;
4005 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4006 gimple epilog_stmt = NULL;
4007 enum tree_code code = gimple_assign_rhs_code (stmt);
4008 gimple exit_phi;
4009 tree bitsize;
4010 tree adjustment_def = NULL;
4011 tree vec_initial_def = NULL;
4012 tree reduction_op, expr, def;
4013 tree orig_name, scalar_result;
4014 imm_use_iterator imm_iter, phi_imm_iter;
4015 use_operand_p use_p, phi_use_p;
4016 gimple use_stmt, orig_stmt, reduction_phi = NULL;
4017 bool nested_in_vect_loop = false;
4018 auto_vec<gimple> new_phis;
4019 auto_vec<gimple> inner_phis;
4020 enum vect_def_type dt = vect_unknown_def_type;
4021 int j, i;
4022 auto_vec<tree> scalar_results;
4023 unsigned int group_size = 1, k, ratio;
4024 auto_vec<tree> vec_initial_defs;
4025 auto_vec<gimple> phis;
4026 bool slp_reduc = false;
4027 tree new_phi_result;
4028 gimple inner_phi = NULL;
4030 if (slp_node)
4031 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4033 if (nested_in_vect_loop_p (loop, stmt))
4035 outer_loop = loop;
4036 loop = loop->inner;
4037 nested_in_vect_loop = true;
4038 gcc_assert (!slp_node);
4041 reduction_op = get_reduction_op (stmt, reduc_index);
4043 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
4044 gcc_assert (vectype);
4045 mode = TYPE_MODE (vectype);
4047 /* 1. Create the reduction def-use cycle:
4048 Set the arguments of REDUCTION_PHIS, i.e., transform
4050 loop:
4051 vec_def = phi <null, null> # REDUCTION_PHI
4052 VECT_DEF = vector_stmt # vectorized form of STMT
4055 into:
4057 loop:
4058 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4059 VECT_DEF = vector_stmt # vectorized form of STMT
4062 (in case of SLP, do it for all the phis). */
4064 /* Get the loop-entry arguments. */
4065 if (slp_node)
4066 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
4067 NULL, slp_node, reduc_index);
4068 else
4070 vec_initial_defs.create (1);
4071 /* For the case of reduction, vect_get_vec_def_for_operand returns
4072 the scalar def before the loop, that defines the initial value
4073 of the reduction variable. */
4074 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
4075 &adjustment_def);
4076 vec_initial_defs.quick_push (vec_initial_def);
4079 /* Set phi nodes arguments. */
4080 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4082 tree vec_init_def, def;
4083 gimple_seq stmts;
4084 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4085 true, NULL_TREE);
4086 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4087 def = vect_defs[i];
4088 for (j = 0; j < ncopies; j++)
4090 /* Set the loop-entry arg of the reduction-phi. */
4091 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4092 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4094 /* Set the loop-latch arg for the reduction-phi. */
4095 if (j > 0)
4096 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4098 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4099 UNKNOWN_LOCATION);
4101 if (dump_enabled_p ())
4103 dump_printf_loc (MSG_NOTE, vect_location,
4104 "transform reduction: created def-use cycle: ");
4105 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4106 dump_printf (MSG_NOTE, "\n");
4107 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4108 dump_printf (MSG_NOTE, "\n");
4111 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4115 /* 2. Create epilog code.
4116 The reduction epilog code operates across the elements of the vector
4117 of partial results computed by the vectorized loop.
4118 The reduction epilog code consists of:
4120 step 1: compute the scalar result in a vector (v_out2)
4121 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4122 step 3: adjust the scalar result (s_out3) if needed.
4124 Step 1 can be accomplished using one the following three schemes:
4125 (scheme 1) using reduc_code, if available.
4126 (scheme 2) using whole-vector shifts, if available.
4127 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4128 combined.
4130 The overall epilog code looks like this:
4132 s_out0 = phi <s_loop> # original EXIT_PHI
4133 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4134 v_out2 = reduce <v_out1> # step 1
4135 s_out3 = extract_field <v_out2, 0> # step 2
4136 s_out4 = adjust_result <s_out3> # step 3
4138 (step 3 is optional, and steps 1 and 2 may be combined).
4139 Lastly, the uses of s_out0 are replaced by s_out4. */
4142 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4143 v_out1 = phi <VECT_DEF>
4144 Store them in NEW_PHIS. */
4146 exit_bb = single_exit (loop)->dest;
4147 prev_phi_info = NULL;
4148 new_phis.create (vect_defs.length ());
4149 FOR_EACH_VEC_ELT (vect_defs, i, def)
4151 for (j = 0; j < ncopies; j++)
4153 tree new_def = copy_ssa_name (def);
4154 phi = create_phi_node (new_def, exit_bb);
4155 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
4156 if (j == 0)
4157 new_phis.quick_push (phi);
4158 else
4160 def = vect_get_vec_def_for_stmt_copy (dt, def);
4161 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4164 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4165 prev_phi_info = vinfo_for_stmt (phi);
4169 /* The epilogue is created for the outer-loop, i.e., for the loop being
4170 vectorized. Create exit phis for the outer loop. */
4171 if (double_reduc)
4173 loop = outer_loop;
4174 exit_bb = single_exit (loop)->dest;
4175 inner_phis.create (vect_defs.length ());
4176 FOR_EACH_VEC_ELT (new_phis, i, phi)
4178 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4179 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4180 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4181 PHI_RESULT (phi));
4182 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4183 loop_vinfo, NULL));
4184 inner_phis.quick_push (phi);
4185 new_phis[i] = outer_phi;
4186 prev_phi_info = vinfo_for_stmt (outer_phi);
4187 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4189 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4190 new_result = copy_ssa_name (PHI_RESULT (phi));
4191 outer_phi = create_phi_node (new_result, exit_bb);
4192 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4193 PHI_RESULT (phi));
4194 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4195 loop_vinfo, NULL));
4196 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4197 prev_phi_info = vinfo_for_stmt (outer_phi);
4202 exit_gsi = gsi_after_labels (exit_bb);
4204 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4205 (i.e. when reduc_code is not available) and in the final adjustment
4206 code (if needed). Also get the original scalar reduction variable as
4207 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4208 represents a reduction pattern), the tree-code and scalar-def are
4209 taken from the original stmt that the pattern-stmt (STMT) replaces.
4210 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4211 are taken from STMT. */
4213 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4214 if (!orig_stmt)
4216 /* Regular reduction */
4217 orig_stmt = stmt;
4219 else
4221 /* Reduction pattern */
4222 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4223 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4224 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4227 code = gimple_assign_rhs_code (orig_stmt);
4228 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4229 partial results are added and not subtracted. */
4230 if (code == MINUS_EXPR)
4231 code = PLUS_EXPR;
4233 scalar_dest = gimple_assign_lhs (orig_stmt);
4234 scalar_type = TREE_TYPE (scalar_dest);
4235 scalar_results.create (group_size);
4236 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4237 bitsize = TYPE_SIZE (scalar_type);
4239 /* In case this is a reduction in an inner-loop while vectorizing an outer
4240 loop - we don't need to extract a single scalar result at the end of the
4241 inner-loop (unless it is double reduction, i.e., the use of reduction is
4242 outside the outer-loop). The final vector of partial results will be used
4243 in the vectorized outer-loop, or reduced to a scalar result at the end of
4244 the outer-loop. */
4245 if (nested_in_vect_loop && !double_reduc)
4246 goto vect_finalize_reduction;
4248 /* SLP reduction without reduction chain, e.g.,
4249 # a1 = phi <a2, a0>
4250 # b1 = phi <b2, b0>
4251 a2 = operation (a1)
4252 b2 = operation (b1) */
4253 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4255 /* In case of reduction chain, e.g.,
4256 # a1 = phi <a3, a0>
4257 a2 = operation (a1)
4258 a3 = operation (a2),
4260 we may end up with more than one vector result. Here we reduce them to
4261 one vector. */
4262 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4264 tree first_vect = PHI_RESULT (new_phis[0]);
4265 tree tmp;
4266 gassign *new_vec_stmt = NULL;
4268 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4269 for (k = 1; k < new_phis.length (); k++)
4271 gimple next_phi = new_phis[k];
4272 tree second_vect = PHI_RESULT (next_phi);
4274 tmp = build2 (code, vectype, first_vect, second_vect);
4275 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4276 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4277 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4278 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4281 new_phi_result = first_vect;
4282 if (new_vec_stmt)
4284 new_phis.truncate (0);
4285 new_phis.safe_push (new_vec_stmt);
4288 else
4289 new_phi_result = PHI_RESULT (new_phis[0]);
4291 /* 2.3 Create the reduction code, using one of the three schemes described
4292 above. In SLP we simply need to extract all the elements from the
4293 vector (without reducing them), so we use scalar shifts. */
4294 if (reduc_code != ERROR_MARK && !slp_reduc)
4296 tree tmp;
4297 tree vec_elem_type;
4299 /*** Case 1: Create:
4300 v_out2 = reduc_expr <v_out1> */
4302 if (dump_enabled_p ())
4303 dump_printf_loc (MSG_NOTE, vect_location,
4304 "Reduce using direct vector reduction.\n");
4306 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4307 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4309 tree tmp_dest =
4310 vect_create_destination_var (scalar_dest, vec_elem_type);
4311 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4312 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4313 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4314 gimple_assign_set_lhs (epilog_stmt, new_temp);
4315 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4317 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
4319 else
4320 tmp = build1 (reduc_code, scalar_type, new_phi_result);
4321 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
4322 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4323 gimple_assign_set_lhs (epilog_stmt, new_temp);
4324 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4325 scalar_results.safe_push (new_temp);
4327 else
4329 bool reduce_with_shift = have_whole_vector_shift (mode);
4330 int element_bitsize = tree_to_uhwi (bitsize);
4331 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4332 tree vec_temp;
4334 /* Regardless of whether we have a whole vector shift, if we're
4335 emulating the operation via tree-vect-generic, we don't want
4336 to use it. Only the first round of the reduction is likely
4337 to still be profitable via emulation. */
4338 /* ??? It might be better to emit a reduction tree code here, so that
4339 tree-vect-generic can expand the first round via bit tricks. */
4340 if (!VECTOR_MODE_P (mode))
4341 reduce_with_shift = false;
4342 else
4344 optab optab = optab_for_tree_code (code, vectype, optab_default);
4345 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4346 reduce_with_shift = false;
4349 if (reduce_with_shift && !slp_reduc)
4351 int nelements = vec_size_in_bits / element_bitsize;
4352 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
4354 int elt_offset;
4356 tree zero_vec = build_zero_cst (vectype);
4357 /*** Case 2: Create:
4358 for (offset = nelements/2; offset >= 1; offset/=2)
4360 Create: va' = vec_shift <va, offset>
4361 Create: va = vop <va, va'>
4362 } */
4364 tree rhs;
4366 if (dump_enabled_p ())
4367 dump_printf_loc (MSG_NOTE, vect_location,
4368 "Reduce using vector shifts\n");
4370 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4371 new_temp = new_phi_result;
4372 for (elt_offset = nelements / 2;
4373 elt_offset >= 1;
4374 elt_offset /= 2)
4376 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
4377 tree mask = vect_gen_perm_mask_any (vectype, sel);
4378 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
4379 new_temp, zero_vec, mask);
4380 new_name = make_ssa_name (vec_dest, epilog_stmt);
4381 gimple_assign_set_lhs (epilog_stmt, new_name);
4382 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4384 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
4385 new_temp);
4386 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4387 gimple_assign_set_lhs (epilog_stmt, new_temp);
4388 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4391 /* 2.4 Extract the final scalar result. Create:
4392 s_out3 = extract_field <v_out2, bitpos> */
4394 if (dump_enabled_p ())
4395 dump_printf_loc (MSG_NOTE, vect_location,
4396 "extract scalar result\n");
4398 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
4399 bitsize, bitsize_zero_node);
4400 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4401 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4402 gimple_assign_set_lhs (epilog_stmt, new_temp);
4403 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4404 scalar_results.safe_push (new_temp);
4406 else
4408 /*** Case 3: Create:
4409 s = extract_field <v_out2, 0>
4410 for (offset = element_size;
4411 offset < vector_size;
4412 offset += element_size;)
4414 Create: s' = extract_field <v_out2, offset>
4415 Create: s = op <s, s'> // For non SLP cases
4416 } */
4418 if (dump_enabled_p ())
4419 dump_printf_loc (MSG_NOTE, vect_location,
4420 "Reduce using scalar code.\n");
4422 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4423 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4425 int bit_offset;
4426 if (gimple_code (new_phi) == GIMPLE_PHI)
4427 vec_temp = PHI_RESULT (new_phi);
4428 else
4429 vec_temp = gimple_assign_lhs (new_phi);
4430 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4431 bitsize_zero_node);
4432 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4433 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4434 gimple_assign_set_lhs (epilog_stmt, new_temp);
4435 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4437 /* In SLP we don't need to apply reduction operation, so we just
4438 collect s' values in SCALAR_RESULTS. */
4439 if (slp_reduc)
4440 scalar_results.safe_push (new_temp);
4442 for (bit_offset = element_bitsize;
4443 bit_offset < vec_size_in_bits;
4444 bit_offset += element_bitsize)
4446 tree bitpos = bitsize_int (bit_offset);
4447 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4448 bitsize, bitpos);
4450 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4451 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4452 gimple_assign_set_lhs (epilog_stmt, new_name);
4453 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4455 if (slp_reduc)
4457 /* In SLP we don't need to apply reduction operation, so
4458 we just collect s' values in SCALAR_RESULTS. */
4459 new_temp = new_name;
4460 scalar_results.safe_push (new_name);
4462 else
4464 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
4465 new_name, new_temp);
4466 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4467 gimple_assign_set_lhs (epilog_stmt, new_temp);
4468 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4473 /* The only case where we need to reduce scalar results in SLP, is
4474 unrolling. If the size of SCALAR_RESULTS is greater than
4475 GROUP_SIZE, we reduce them combining elements modulo
4476 GROUP_SIZE. */
4477 if (slp_reduc)
4479 tree res, first_res, new_res;
4480 gimple new_stmt;
4482 /* Reduce multiple scalar results in case of SLP unrolling. */
4483 for (j = group_size; scalar_results.iterate (j, &res);
4484 j++)
4486 first_res = scalar_results[j % group_size];
4487 new_stmt = gimple_build_assign (new_scalar_dest, code,
4488 first_res, res);
4489 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4490 gimple_assign_set_lhs (new_stmt, new_res);
4491 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4492 scalar_results[j % group_size] = new_res;
4495 else
4496 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4497 scalar_results.safe_push (new_temp);
4501 vect_finalize_reduction:
4503 if (double_reduc)
4504 loop = loop->inner;
4506 /* 2.5 Adjust the final result by the initial value of the reduction
4507 variable. (When such adjustment is not needed, then
4508 'adjustment_def' is zero). For example, if code is PLUS we create:
4509 new_temp = loop_exit_def + adjustment_def */
4511 if (adjustment_def)
4513 gcc_assert (!slp_reduc);
4514 if (nested_in_vect_loop)
4516 new_phi = new_phis[0];
4517 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4518 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4519 new_dest = vect_create_destination_var (scalar_dest, vectype);
4521 else
4523 new_temp = scalar_results[0];
4524 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4525 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4526 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4529 epilog_stmt = gimple_build_assign (new_dest, expr);
4530 new_temp = make_ssa_name (new_dest, epilog_stmt);
4531 gimple_assign_set_lhs (epilog_stmt, new_temp);
4532 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4533 if (nested_in_vect_loop)
4535 set_vinfo_for_stmt (epilog_stmt,
4536 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4537 NULL));
4538 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4539 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4541 if (!double_reduc)
4542 scalar_results.quick_push (new_temp);
4543 else
4544 scalar_results[0] = new_temp;
4546 else
4547 scalar_results[0] = new_temp;
4549 new_phis[0] = epilog_stmt;
4552 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4553 phis with new adjusted scalar results, i.e., replace use <s_out0>
4554 with use <s_out4>.
4556 Transform:
4557 loop_exit:
4558 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4559 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4560 v_out2 = reduce <v_out1>
4561 s_out3 = extract_field <v_out2, 0>
4562 s_out4 = adjust_result <s_out3>
4563 use <s_out0>
4564 use <s_out0>
4566 into:
4568 loop_exit:
4569 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4570 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4571 v_out2 = reduce <v_out1>
4572 s_out3 = extract_field <v_out2, 0>
4573 s_out4 = adjust_result <s_out3>
4574 use <s_out4>
4575 use <s_out4> */
4578 /* In SLP reduction chain we reduce vector results into one vector if
4579 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4580 the last stmt in the reduction chain, since we are looking for the loop
4581 exit phi node. */
4582 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4584 scalar_dest = gimple_assign_lhs (
4585 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4586 group_size = 1;
4589 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4590 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4591 need to match SCALAR_RESULTS with corresponding statements. The first
4592 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4593 the first vector stmt, etc.
4594 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4595 if (group_size > new_phis.length ())
4597 ratio = group_size / new_phis.length ();
4598 gcc_assert (!(group_size % new_phis.length ()));
4600 else
4601 ratio = 1;
4603 for (k = 0; k < group_size; k++)
4605 if (k % ratio == 0)
4607 epilog_stmt = new_phis[k / ratio];
4608 reduction_phi = reduction_phis[k / ratio];
4609 if (double_reduc)
4610 inner_phi = inner_phis[k / ratio];
4613 if (slp_reduc)
4615 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4617 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4618 /* SLP statements can't participate in patterns. */
4619 gcc_assert (!orig_stmt);
4620 scalar_dest = gimple_assign_lhs (current_stmt);
4623 phis.create (3);
4624 /* Find the loop-closed-use at the loop exit of the original scalar
4625 result. (The reduction result is expected to have two immediate uses -
4626 one at the latch block, and one at the loop exit). */
4627 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4628 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4629 && !is_gimple_debug (USE_STMT (use_p)))
4630 phis.safe_push (USE_STMT (use_p));
4632 /* While we expect to have found an exit_phi because of loop-closed-ssa
4633 form we can end up without one if the scalar cycle is dead. */
4635 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4637 if (outer_loop)
4639 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4640 gphi *vect_phi;
4642 /* FORNOW. Currently not supporting the case that an inner-loop
4643 reduction is not used in the outer-loop (but only outside the
4644 outer-loop), unless it is double reduction. */
4645 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4646 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4647 || double_reduc);
4649 if (double_reduc)
4650 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
4651 else
4652 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4653 if (!double_reduc
4654 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4655 != vect_double_reduction_def)
4656 continue;
4658 /* Handle double reduction:
4660 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4661 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4662 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4663 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4665 At that point the regular reduction (stmt2 and stmt3) is
4666 already vectorized, as well as the exit phi node, stmt4.
4667 Here we vectorize the phi node of double reduction, stmt1, and
4668 update all relevant statements. */
4670 /* Go through all the uses of s2 to find double reduction phi
4671 node, i.e., stmt1 above. */
4672 orig_name = PHI_RESULT (exit_phi);
4673 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4675 stmt_vec_info use_stmt_vinfo;
4676 stmt_vec_info new_phi_vinfo;
4677 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4678 basic_block bb = gimple_bb (use_stmt);
4679 gimple use;
4681 /* Check that USE_STMT is really double reduction phi
4682 node. */
4683 if (gimple_code (use_stmt) != GIMPLE_PHI
4684 || gimple_phi_num_args (use_stmt) != 2
4685 || bb->loop_father != outer_loop)
4686 continue;
4687 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4688 if (!use_stmt_vinfo
4689 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4690 != vect_double_reduction_def)
4691 continue;
4693 /* Create vector phi node for double reduction:
4694 vs1 = phi <vs0, vs2>
4695 vs1 was created previously in this function by a call to
4696 vect_get_vec_def_for_operand and is stored in
4697 vec_initial_def;
4698 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4699 vs0 is created here. */
4701 /* Create vector phi node. */
4702 vect_phi = create_phi_node (vec_initial_def, bb);
4703 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4704 loop_vec_info_for_loop (outer_loop), NULL);
4705 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4707 /* Create vs0 - initial def of the double reduction phi. */
4708 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4709 loop_preheader_edge (outer_loop));
4710 init_def = get_initial_def_for_reduction (stmt,
4711 preheader_arg, NULL);
4712 vect_phi_init = vect_init_vector (use_stmt, init_def,
4713 vectype, NULL);
4715 /* Update phi node arguments with vs0 and vs2. */
4716 add_phi_arg (vect_phi, vect_phi_init,
4717 loop_preheader_edge (outer_loop),
4718 UNKNOWN_LOCATION);
4719 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4720 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4721 if (dump_enabled_p ())
4723 dump_printf_loc (MSG_NOTE, vect_location,
4724 "created double reduction phi node: ");
4725 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4726 dump_printf (MSG_NOTE, "\n");
4729 vect_phi_res = PHI_RESULT (vect_phi);
4731 /* Replace the use, i.e., set the correct vs1 in the regular
4732 reduction phi node. FORNOW, NCOPIES is always 1, so the
4733 loop is redundant. */
4734 use = reduction_phi;
4735 for (j = 0; j < ncopies; j++)
4737 edge pr_edge = loop_preheader_edge (loop);
4738 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4739 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4745 phis.release ();
4746 if (nested_in_vect_loop)
4748 if (double_reduc)
4749 loop = outer_loop;
4750 else
4751 continue;
4754 phis.create (3);
4755 /* Find the loop-closed-use at the loop exit of the original scalar
4756 result. (The reduction result is expected to have two immediate uses,
4757 one at the latch block, and one at the loop exit). For double
4758 reductions we are looking for exit phis of the outer loop. */
4759 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4761 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4763 if (!is_gimple_debug (USE_STMT (use_p)))
4764 phis.safe_push (USE_STMT (use_p));
4766 else
4768 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4770 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4772 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4774 if (!flow_bb_inside_loop_p (loop,
4775 gimple_bb (USE_STMT (phi_use_p)))
4776 && !is_gimple_debug (USE_STMT (phi_use_p)))
4777 phis.safe_push (USE_STMT (phi_use_p));
4783 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4785 /* Replace the uses: */
4786 orig_name = PHI_RESULT (exit_phi);
4787 scalar_result = scalar_results[k];
4788 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4789 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4790 SET_USE (use_p, scalar_result);
4793 phis.release ();
4798 /* Function vectorizable_reduction.
4800 Check if STMT performs a reduction operation that can be vectorized.
4801 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4802 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4803 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4805 This function also handles reduction idioms (patterns) that have been
4806 recognized in advance during vect_pattern_recog. In this case, STMT may be
4807 of this form:
4808 X = pattern_expr (arg0, arg1, ..., X)
4809 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4810 sequence that had been detected and replaced by the pattern-stmt (STMT).
4812 In some cases of reduction patterns, the type of the reduction variable X is
4813 different than the type of the other arguments of STMT.
4814 In such cases, the vectype that is used when transforming STMT into a vector
4815 stmt is different than the vectype that is used to determine the
4816 vectorization factor, because it consists of a different number of elements
4817 than the actual number of elements that are being operated upon in parallel.
4819 For example, consider an accumulation of shorts into an int accumulator.
4820 On some targets it's possible to vectorize this pattern operating on 8
4821 shorts at a time (hence, the vectype for purposes of determining the
4822 vectorization factor should be V8HI); on the other hand, the vectype that
4823 is used to create the vector form is actually V4SI (the type of the result).
4825 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4826 indicates what is the actual level of parallelism (V8HI in the example), so
4827 that the right vectorization factor would be derived. This vectype
4828 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4829 be used to create the vectorized stmt. The right vectype for the vectorized
4830 stmt is obtained from the type of the result X:
4831 get_vectype_for_scalar_type (TREE_TYPE (X))
4833 This means that, contrary to "regular" reductions (or "regular" stmts in
4834 general), the following equation:
4835 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4836 does *NOT* necessarily hold for reduction patterns. */
4838 bool
4839 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4840 gimple *vec_stmt, slp_tree slp_node)
4842 tree vec_dest;
4843 tree scalar_dest;
4844 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4845 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4846 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4847 tree vectype_in = NULL_TREE;
4848 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4849 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4850 enum tree_code code, orig_code, epilog_reduc_code;
4851 machine_mode vec_mode;
4852 int op_type;
4853 optab optab, reduc_optab;
4854 tree new_temp = NULL_TREE;
4855 tree def;
4856 gimple def_stmt;
4857 enum vect_def_type dt;
4858 gphi *new_phi = NULL;
4859 tree scalar_type;
4860 bool is_simple_use;
4861 gimple orig_stmt;
4862 stmt_vec_info orig_stmt_info;
4863 tree expr = NULL_TREE;
4864 int i;
4865 int ncopies;
4866 int epilog_copies;
4867 stmt_vec_info prev_stmt_info, prev_phi_info;
4868 bool single_defuse_cycle = false;
4869 tree reduc_def = NULL_TREE;
4870 gimple new_stmt = NULL;
4871 int j;
4872 tree ops[3];
4873 bool nested_cycle = false, found_nested_cycle_def = false;
4874 gimple reduc_def_stmt = NULL;
4875 bool double_reduc = false, dummy;
4876 basic_block def_bb;
4877 struct loop * def_stmt_loop, *outer_loop = NULL;
4878 tree def_arg;
4879 gimple def_arg_stmt;
4880 auto_vec<tree> vec_oprnds0;
4881 auto_vec<tree> vec_oprnds1;
4882 auto_vec<tree> vect_defs;
4883 auto_vec<gimple> phis;
4884 int vec_num;
4885 tree def0, def1, tem, op0, op1 = NULL_TREE;
4887 /* In case of reduction chain we switch to the first stmt in the chain, but
4888 we don't update STMT_INFO, since only the last stmt is marked as reduction
4889 and has reduction properties. */
4890 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4891 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4893 if (nested_in_vect_loop_p (loop, stmt))
4895 outer_loop = loop;
4896 loop = loop->inner;
4897 nested_cycle = true;
4900 /* 1. Is vectorizable reduction? */
4901 /* Not supportable if the reduction variable is used in the loop, unless
4902 it's a reduction chain. */
4903 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4904 && !GROUP_FIRST_ELEMENT (stmt_info))
4905 return false;
4907 /* Reductions that are not used even in an enclosing outer-loop,
4908 are expected to be "live" (used out of the loop). */
4909 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4910 && !STMT_VINFO_LIVE_P (stmt_info))
4911 return false;
4913 /* Make sure it was already recognized as a reduction computation. */
4914 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4915 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4916 return false;
4918 /* 2. Has this been recognized as a reduction pattern?
4920 Check if STMT represents a pattern that has been recognized
4921 in earlier analysis stages. For stmts that represent a pattern,
4922 the STMT_VINFO_RELATED_STMT field records the last stmt in
4923 the original sequence that constitutes the pattern. */
4925 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4926 if (orig_stmt)
4928 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4929 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4930 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4933 /* 3. Check the operands of the operation. The first operands are defined
4934 inside the loop body. The last operand is the reduction variable,
4935 which is defined by the loop-header-phi. */
4937 gcc_assert (is_gimple_assign (stmt));
4939 /* Flatten RHS. */
4940 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4942 case GIMPLE_SINGLE_RHS:
4943 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4944 if (op_type == ternary_op)
4946 tree rhs = gimple_assign_rhs1 (stmt);
4947 ops[0] = TREE_OPERAND (rhs, 0);
4948 ops[1] = TREE_OPERAND (rhs, 1);
4949 ops[2] = TREE_OPERAND (rhs, 2);
4950 code = TREE_CODE (rhs);
4952 else
4953 return false;
4954 break;
4956 case GIMPLE_BINARY_RHS:
4957 code = gimple_assign_rhs_code (stmt);
4958 op_type = TREE_CODE_LENGTH (code);
4959 gcc_assert (op_type == binary_op);
4960 ops[0] = gimple_assign_rhs1 (stmt);
4961 ops[1] = gimple_assign_rhs2 (stmt);
4962 break;
4964 case GIMPLE_TERNARY_RHS:
4965 code = gimple_assign_rhs_code (stmt);
4966 op_type = TREE_CODE_LENGTH (code);
4967 gcc_assert (op_type == ternary_op);
4968 ops[0] = gimple_assign_rhs1 (stmt);
4969 ops[1] = gimple_assign_rhs2 (stmt);
4970 ops[2] = gimple_assign_rhs3 (stmt);
4971 break;
4973 case GIMPLE_UNARY_RHS:
4974 return false;
4976 default:
4977 gcc_unreachable ();
4979 /* The default is that the reduction variable is the last in statement. */
4980 int reduc_index = op_type - 1;
4982 if (code == COND_EXPR && slp_node)
4983 return false;
4985 scalar_dest = gimple_assign_lhs (stmt);
4986 scalar_type = TREE_TYPE (scalar_dest);
4987 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4988 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4989 return false;
4991 /* Do not try to vectorize bit-precision reductions. */
4992 if ((TYPE_PRECISION (scalar_type)
4993 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4994 return false;
4996 /* All uses but the last are expected to be defined in the loop.
4997 The last use is the reduction variable. In case of nested cycle this
4998 assumption is not true: we use reduc_index to record the index of the
4999 reduction variable. */
5000 for (i = 0; i < op_type - 1; i++)
5002 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5003 if (i == 0 && code == COND_EXPR)
5004 continue;
5006 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
5007 &def_stmt, &def, &dt, &tem);
5008 if (!vectype_in)
5009 vectype_in = tem;
5010 gcc_assert (is_simple_use);
5012 if (dt != vect_internal_def
5013 && dt != vect_external_def
5014 && dt != vect_constant_def
5015 && dt != vect_induction_def
5016 && !(dt == vect_nested_cycle && nested_cycle))
5017 return false;
5019 if (dt == vect_nested_cycle)
5021 found_nested_cycle_def = true;
5022 reduc_def_stmt = def_stmt;
5023 reduc_index = i;
5027 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
5028 &def_stmt, &def, &dt, &tem);
5029 if (!vectype_in)
5030 vectype_in = tem;
5031 gcc_assert (is_simple_use);
5032 if (!found_nested_cycle_def)
5033 reduc_def_stmt = def_stmt;
5035 if (reduc_def_stmt && gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5036 return false;
5038 if (!(dt == vect_reduction_def
5039 || dt == vect_nested_cycle
5040 || ((dt == vect_internal_def || dt == vect_external_def
5041 || dt == vect_constant_def || dt == vect_induction_def)
5042 && nested_cycle && found_nested_cycle_def)))
5044 /* For pattern recognized stmts, orig_stmt might be a reduction,
5045 but some helper statements for the pattern might not, or
5046 might be COND_EXPRs with reduction uses in the condition. */
5047 gcc_assert (orig_stmt);
5048 return false;
5051 if (orig_stmt)
5052 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
5053 reduc_def_stmt,
5054 !nested_cycle,
5055 &dummy));
5056 else
5058 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
5059 !nested_cycle, &dummy);
5060 /* We changed STMT to be the first stmt in reduction chain, hence we
5061 check that in this case the first element in the chain is STMT. */
5062 gcc_assert (stmt == tmp
5063 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
5066 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
5067 return false;
5069 if (slp_node || PURE_SLP_STMT (stmt_info))
5070 ncopies = 1;
5071 else
5072 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5073 / TYPE_VECTOR_SUBPARTS (vectype_in));
5075 gcc_assert (ncopies >= 1);
5077 vec_mode = TYPE_MODE (vectype_in);
5079 if (code == COND_EXPR)
5081 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
5083 if (dump_enabled_p ())
5084 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5085 "unsupported condition in reduction\n");
5087 return false;
5090 else
5092 /* 4. Supportable by target? */
5094 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
5095 || code == LROTATE_EXPR || code == RROTATE_EXPR)
5097 /* Shifts and rotates are only supported by vectorizable_shifts,
5098 not vectorizable_reduction. */
5099 if (dump_enabled_p ())
5100 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5101 "unsupported shift or rotation.\n");
5102 return false;
5105 /* 4.1. check support for the operation in the loop */
5106 optab = optab_for_tree_code (code, vectype_in, optab_default);
5107 if (!optab)
5109 if (dump_enabled_p ())
5110 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5111 "no optab.\n");
5113 return false;
5116 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5118 if (dump_enabled_p ())
5119 dump_printf (MSG_NOTE, "op not supported by target.\n");
5121 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5122 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5123 < vect_min_worthwhile_factor (code))
5124 return false;
5126 if (dump_enabled_p ())
5127 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
5130 /* Worthwhile without SIMD support? */
5131 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
5132 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5133 < vect_min_worthwhile_factor (code))
5135 if (dump_enabled_p ())
5136 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5137 "not worthwhile without SIMD support.\n");
5139 return false;
5143 /* 4.2. Check support for the epilog operation.
5145 If STMT represents a reduction pattern, then the type of the
5146 reduction variable may be different than the type of the rest
5147 of the arguments. For example, consider the case of accumulation
5148 of shorts into an int accumulator; The original code:
5149 S1: int_a = (int) short_a;
5150 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5152 was replaced with:
5153 STMT: int_acc = widen_sum <short_a, int_acc>
5155 This means that:
5156 1. The tree-code that is used to create the vector operation in the
5157 epilog code (that reduces the partial results) is not the
5158 tree-code of STMT, but is rather the tree-code of the original
5159 stmt from the pattern that STMT is replacing. I.e, in the example
5160 above we want to use 'widen_sum' in the loop, but 'plus' in the
5161 epilog.
5162 2. The type (mode) we use to check available target support
5163 for the vector operation to be created in the *epilog*, is
5164 determined by the type of the reduction variable (in the example
5165 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5166 However the type (mode) we use to check available target support
5167 for the vector operation to be created *inside the loop*, is
5168 determined by the type of the other arguments to STMT (in the
5169 example we'd check this: optab_handler (widen_sum_optab,
5170 vect_short_mode)).
5172 This is contrary to "regular" reductions, in which the types of all
5173 the arguments are the same as the type of the reduction variable.
5174 For "regular" reductions we can therefore use the same vector type
5175 (and also the same tree-code) when generating the epilog code and
5176 when generating the code inside the loop. */
5178 if (orig_stmt)
5180 /* This is a reduction pattern: get the vectype from the type of the
5181 reduction variable, and get the tree-code from orig_stmt. */
5182 orig_code = gimple_assign_rhs_code (orig_stmt);
5183 gcc_assert (vectype_out);
5184 vec_mode = TYPE_MODE (vectype_out);
5186 else
5188 /* Regular reduction: use the same vectype and tree-code as used for
5189 the vector code inside the loop can be used for the epilog code. */
5190 orig_code = code;
5193 if (nested_cycle)
5195 def_bb = gimple_bb (reduc_def_stmt);
5196 def_stmt_loop = def_bb->loop_father;
5197 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5198 loop_preheader_edge (def_stmt_loop));
5199 if (TREE_CODE (def_arg) == SSA_NAME
5200 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5201 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5202 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5203 && vinfo_for_stmt (def_arg_stmt)
5204 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5205 == vect_double_reduction_def)
5206 double_reduc = true;
5209 epilog_reduc_code = ERROR_MARK;
5210 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5212 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5213 optab_default);
5214 if (!reduc_optab)
5216 if (dump_enabled_p ())
5217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5218 "no optab for reduction.\n");
5220 epilog_reduc_code = ERROR_MARK;
5222 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5224 optab = scalar_reduc_to_vector (reduc_optab, vectype_out);
5225 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5227 if (dump_enabled_p ())
5228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5229 "reduc op not supported by target.\n");
5231 epilog_reduc_code = ERROR_MARK;
5235 else
5237 if (!nested_cycle || double_reduc)
5239 if (dump_enabled_p ())
5240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5241 "no reduc code for scalar code.\n");
5243 return false;
5247 if (double_reduc && ncopies > 1)
5249 if (dump_enabled_p ())
5250 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5251 "multiple types in double reduction\n");
5253 return false;
5256 /* In case of widenning multiplication by a constant, we update the type
5257 of the constant to be the type of the other operand. We check that the
5258 constant fits the type in the pattern recognition pass. */
5259 if (code == DOT_PROD_EXPR
5260 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5262 if (TREE_CODE (ops[0]) == INTEGER_CST)
5263 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5264 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5265 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5266 else
5268 if (dump_enabled_p ())
5269 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5270 "invalid types in dot-prod\n");
5272 return false;
5276 if (!vec_stmt) /* transformation not required. */
5278 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies,
5279 reduc_index))
5280 return false;
5281 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5282 return true;
5285 /** Transform. **/
5287 if (dump_enabled_p ())
5288 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5290 /* FORNOW: Multiple types are not supported for condition. */
5291 if (code == COND_EXPR)
5292 gcc_assert (ncopies == 1);
5294 /* Create the destination vector */
5295 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5297 /* In case the vectorization factor (VF) is bigger than the number
5298 of elements that we can fit in a vectype (nunits), we have to generate
5299 more than one vector stmt - i.e - we need to "unroll" the
5300 vector stmt by a factor VF/nunits. For more details see documentation
5301 in vectorizable_operation. */
5303 /* If the reduction is used in an outer loop we need to generate
5304 VF intermediate results, like so (e.g. for ncopies=2):
5305 r0 = phi (init, r0)
5306 r1 = phi (init, r1)
5307 r0 = x0 + r0;
5308 r1 = x1 + r1;
5309 (i.e. we generate VF results in 2 registers).
5310 In this case we have a separate def-use cycle for each copy, and therefore
5311 for each copy we get the vector def for the reduction variable from the
5312 respective phi node created for this copy.
5314 Otherwise (the reduction is unused in the loop nest), we can combine
5315 together intermediate results, like so (e.g. for ncopies=2):
5316 r = phi (init, r)
5317 r = x0 + r;
5318 r = x1 + r;
5319 (i.e. we generate VF/2 results in a single register).
5320 In this case for each copy we get the vector def for the reduction variable
5321 from the vectorized reduction operation generated in the previous iteration.
5324 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5326 single_defuse_cycle = true;
5327 epilog_copies = 1;
5329 else
5330 epilog_copies = ncopies;
5332 prev_stmt_info = NULL;
5333 prev_phi_info = NULL;
5334 if (slp_node)
5336 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5337 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5338 == TYPE_VECTOR_SUBPARTS (vectype_in));
5340 else
5342 vec_num = 1;
5343 vec_oprnds0.create (1);
5344 if (op_type == ternary_op)
5345 vec_oprnds1.create (1);
5348 phis.create (vec_num);
5349 vect_defs.create (vec_num);
5350 if (!slp_node)
5351 vect_defs.quick_push (NULL_TREE);
5353 for (j = 0; j < ncopies; j++)
5355 if (j == 0 || !single_defuse_cycle)
5357 for (i = 0; i < vec_num; i++)
5359 /* Create the reduction-phi that defines the reduction
5360 operand. */
5361 new_phi = create_phi_node (vec_dest, loop->header);
5362 set_vinfo_for_stmt (new_phi,
5363 new_stmt_vec_info (new_phi, loop_vinfo,
5364 NULL));
5365 if (j == 0 || slp_node)
5366 phis.quick_push (new_phi);
5370 if (code == COND_EXPR)
5372 gcc_assert (!slp_node);
5373 vectorizable_condition (stmt, gsi, vec_stmt,
5374 PHI_RESULT (phis[0]),
5375 reduc_index, NULL);
5376 /* Multiple types are not supported for condition. */
5377 break;
5380 /* Handle uses. */
5381 if (j == 0)
5383 op0 = ops[!reduc_index];
5384 if (op_type == ternary_op)
5386 if (reduc_index == 0)
5387 op1 = ops[2];
5388 else
5389 op1 = ops[1];
5392 if (slp_node)
5393 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5394 slp_node, -1);
5395 else
5397 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5398 stmt, NULL);
5399 vec_oprnds0.quick_push (loop_vec_def0);
5400 if (op_type == ternary_op)
5402 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5403 NULL);
5404 vec_oprnds1.quick_push (loop_vec_def1);
5408 else
5410 if (!slp_node)
5412 enum vect_def_type dt;
5413 gimple dummy_stmt;
5414 tree dummy;
5416 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5417 &dummy_stmt, &dummy, &dt);
5418 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5419 loop_vec_def0);
5420 vec_oprnds0[0] = loop_vec_def0;
5421 if (op_type == ternary_op)
5423 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5424 &dummy, &dt);
5425 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5426 loop_vec_def1);
5427 vec_oprnds1[0] = loop_vec_def1;
5431 if (single_defuse_cycle)
5432 reduc_def = gimple_assign_lhs (new_stmt);
5434 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5437 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5439 if (slp_node)
5440 reduc_def = PHI_RESULT (phis[i]);
5441 else
5443 if (!single_defuse_cycle || j == 0)
5444 reduc_def = PHI_RESULT (new_phi);
5447 def1 = ((op_type == ternary_op)
5448 ? vec_oprnds1[i] : NULL);
5449 if (op_type == binary_op)
5451 if (reduc_index == 0)
5452 expr = build2 (code, vectype_out, reduc_def, def0);
5453 else
5454 expr = build2 (code, vectype_out, def0, reduc_def);
5456 else
5458 if (reduc_index == 0)
5459 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5460 else
5462 if (reduc_index == 1)
5463 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5464 else
5465 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5469 new_stmt = gimple_build_assign (vec_dest, expr);
5470 new_temp = make_ssa_name (vec_dest, new_stmt);
5471 gimple_assign_set_lhs (new_stmt, new_temp);
5472 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5474 if (slp_node)
5476 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5477 vect_defs.quick_push (new_temp);
5479 else
5480 vect_defs[0] = new_temp;
5483 if (slp_node)
5484 continue;
5486 if (j == 0)
5487 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5488 else
5489 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5491 prev_stmt_info = vinfo_for_stmt (new_stmt);
5492 prev_phi_info = vinfo_for_stmt (new_phi);
5495 /* Finalize the reduction-phi (set its arguments) and create the
5496 epilog reduction code. */
5497 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5499 new_temp = gimple_assign_lhs (*vec_stmt);
5500 vect_defs[0] = new_temp;
5503 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5504 epilog_reduc_code, phis, reduc_index,
5505 double_reduc, slp_node);
5507 return true;
5510 /* Function vect_min_worthwhile_factor.
5512 For a loop where we could vectorize the operation indicated by CODE,
5513 return the minimum vectorization factor that makes it worthwhile
5514 to use generic vectors. */
5516 vect_min_worthwhile_factor (enum tree_code code)
5518 switch (code)
5520 case PLUS_EXPR:
5521 case MINUS_EXPR:
5522 case NEGATE_EXPR:
5523 return 4;
5525 case BIT_AND_EXPR:
5526 case BIT_IOR_EXPR:
5527 case BIT_XOR_EXPR:
5528 case BIT_NOT_EXPR:
5529 return 2;
5531 default:
5532 return INT_MAX;
5537 /* Function vectorizable_induction
5539 Check if PHI performs an induction computation that can be vectorized.
5540 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5541 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5542 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5544 bool
5545 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5546 gimple *vec_stmt)
5548 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5549 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5550 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5551 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5552 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5553 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5554 tree vec_def;
5556 gcc_assert (ncopies >= 1);
5557 /* FORNOW. These restrictions should be relaxed. */
5558 if (nested_in_vect_loop_p (loop, phi))
5560 imm_use_iterator imm_iter;
5561 use_operand_p use_p;
5562 gimple exit_phi;
5563 edge latch_e;
5564 tree loop_arg;
5566 if (ncopies > 1)
5568 if (dump_enabled_p ())
5569 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5570 "multiple types in nested loop.\n");
5571 return false;
5574 exit_phi = NULL;
5575 latch_e = loop_latch_edge (loop->inner);
5576 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5577 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5579 gimple use_stmt = USE_STMT (use_p);
5580 if (is_gimple_debug (use_stmt))
5581 continue;
5583 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
5585 exit_phi = use_stmt;
5586 break;
5589 if (exit_phi)
5591 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5592 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5593 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5595 if (dump_enabled_p ())
5596 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5597 "inner-loop induction only used outside "
5598 "of the outer vectorized loop.\n");
5599 return false;
5604 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5605 return false;
5607 /* FORNOW: SLP not supported. */
5608 if (STMT_SLP_TYPE (stmt_info))
5609 return false;
5611 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5613 if (gimple_code (phi) != GIMPLE_PHI)
5614 return false;
5616 if (!vec_stmt) /* transformation not required. */
5618 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5619 if (dump_enabled_p ())
5620 dump_printf_loc (MSG_NOTE, vect_location,
5621 "=== vectorizable_induction ===\n");
5622 vect_model_induction_cost (stmt_info, ncopies);
5623 return true;
5626 /** Transform. **/
5628 if (dump_enabled_p ())
5629 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
5631 vec_def = get_initial_def_for_induction (phi);
5632 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5633 return true;
5636 /* Function vectorizable_live_operation.
5638 STMT computes a value that is used outside the loop. Check if
5639 it can be supported. */
5641 bool
5642 vectorizable_live_operation (gimple stmt,
5643 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5644 gimple *vec_stmt)
5646 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5647 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5648 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5649 int i;
5650 int op_type;
5651 tree op;
5652 tree def;
5653 gimple def_stmt;
5654 enum vect_def_type dt;
5655 enum tree_code code;
5656 enum gimple_rhs_class rhs_class;
5658 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5660 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5661 return false;
5663 if (!is_gimple_assign (stmt))
5665 if (gimple_call_internal_p (stmt)
5666 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
5667 && gimple_call_lhs (stmt)
5668 && loop->simduid
5669 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
5670 && loop->simduid
5671 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
5673 edge e = single_exit (loop);
5674 basic_block merge_bb = e->dest;
5675 imm_use_iterator imm_iter;
5676 use_operand_p use_p;
5677 tree lhs = gimple_call_lhs (stmt);
5679 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
5681 gimple use_stmt = USE_STMT (use_p);
5682 if (gimple_code (use_stmt) == GIMPLE_PHI
5683 && gimple_bb (use_stmt) == merge_bb)
5685 if (vec_stmt)
5687 tree vfm1
5688 = build_int_cst (unsigned_type_node,
5689 loop_vinfo->vectorization_factor - 1);
5690 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
5692 return true;
5697 return false;
5700 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5701 return false;
5703 /* FORNOW. CHECKME. */
5704 if (nested_in_vect_loop_p (loop, stmt))
5705 return false;
5707 code = gimple_assign_rhs_code (stmt);
5708 op_type = TREE_CODE_LENGTH (code);
5709 rhs_class = get_gimple_rhs_class (code);
5710 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5711 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5713 /* FORNOW: support only if all uses are invariant. This means
5714 that the scalar operations can remain in place, unvectorized.
5715 The original last scalar value that they compute will be used. */
5717 for (i = 0; i < op_type; i++)
5719 if (rhs_class == GIMPLE_SINGLE_RHS)
5720 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5721 else
5722 op = gimple_op (stmt, i + 1);
5723 if (op
5724 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5725 &dt))
5727 if (dump_enabled_p ())
5728 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5729 "use not simple.\n");
5730 return false;
5733 if (dt != vect_external_def && dt != vect_constant_def)
5734 return false;
5737 /* No transformation is required for the cases we currently support. */
5738 return true;
5741 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5743 static void
5744 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5746 ssa_op_iter op_iter;
5747 imm_use_iterator imm_iter;
5748 def_operand_p def_p;
5749 gimple ustmt;
5751 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5753 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5755 basic_block bb;
5757 if (!is_gimple_debug (ustmt))
5758 continue;
5760 bb = gimple_bb (ustmt);
5762 if (!flow_bb_inside_loop_p (loop, bb))
5764 if (gimple_debug_bind_p (ustmt))
5766 if (dump_enabled_p ())
5767 dump_printf_loc (MSG_NOTE, vect_location,
5768 "killing debug use\n");
5770 gimple_debug_bind_reset_value (ustmt);
5771 update_stmt (ustmt);
5773 else
5774 gcc_unreachable ();
5781 /* This function builds ni_name = number of iterations. Statements
5782 are emitted on the loop preheader edge. */
5784 static tree
5785 vect_build_loop_niters (loop_vec_info loop_vinfo)
5787 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
5788 if (TREE_CODE (ni) == INTEGER_CST)
5789 return ni;
5790 else
5792 tree ni_name, var;
5793 gimple_seq stmts = NULL;
5794 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5796 var = create_tmp_var (TREE_TYPE (ni), "niters");
5797 ni_name = force_gimple_operand (ni, &stmts, false, var);
5798 if (stmts)
5799 gsi_insert_seq_on_edge_immediate (pe, stmts);
5801 return ni_name;
5806 /* This function generates the following statements:
5808 ni_name = number of iterations loop executes
5809 ratio = ni_name / vf
5810 ratio_mult_vf_name = ratio * vf
5812 and places them on the loop preheader edge. */
5814 static void
5815 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
5816 tree ni_name,
5817 tree *ratio_mult_vf_name_ptr,
5818 tree *ratio_name_ptr)
5820 tree ni_minus_gap_name;
5821 tree var;
5822 tree ratio_name;
5823 tree ratio_mult_vf_name;
5824 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5825 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5826 tree log_vf;
5828 log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
5830 /* If epilogue loop is required because of data accesses with gaps, we
5831 subtract one iteration from the total number of iterations here for
5832 correct calculation of RATIO. */
5833 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5835 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5836 ni_name,
5837 build_one_cst (TREE_TYPE (ni_name)));
5838 if (!is_gimple_val (ni_minus_gap_name))
5840 var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
5841 gimple stmts = NULL;
5842 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
5843 true, var);
5844 gsi_insert_seq_on_edge_immediate (pe, stmts);
5847 else
5848 ni_minus_gap_name = ni_name;
5850 /* Create: ratio = ni >> log2(vf) */
5851 /* ??? As we have ni == number of latch executions + 1, ni could
5852 have overflown to zero. So avoid computing ratio based on ni
5853 but compute it using the fact that we know ratio will be at least
5854 one, thus via (ni - vf) >> log2(vf) + 1. */
5855 ratio_name
5856 = fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
5857 fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
5858 fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5859 ni_minus_gap_name,
5860 build_int_cst
5861 (TREE_TYPE (ni_name), vf)),
5862 log_vf),
5863 build_int_cst (TREE_TYPE (ni_name), 1));
5864 if (!is_gimple_val (ratio_name))
5866 var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
5867 gimple stmts = NULL;
5868 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
5869 gsi_insert_seq_on_edge_immediate (pe, stmts);
5871 *ratio_name_ptr = ratio_name;
5873 /* Create: ratio_mult_vf = ratio << log2 (vf). */
5875 if (ratio_mult_vf_name_ptr)
5877 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
5878 ratio_name, log_vf);
5879 if (!is_gimple_val (ratio_mult_vf_name))
5881 var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
5882 gimple stmts = NULL;
5883 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
5884 true, var);
5885 gsi_insert_seq_on_edge_immediate (pe, stmts);
5887 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
5890 return;
5894 /* Function vect_transform_loop.
5896 The analysis phase has determined that the loop is vectorizable.
5897 Vectorize the loop - created vectorized stmts to replace the scalar
5898 stmts in the loop, and update the loop exit condition. */
5900 void
5901 vect_transform_loop (loop_vec_info loop_vinfo)
5903 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5904 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5905 int nbbs = loop->num_nodes;
5906 int i;
5907 tree ratio = NULL;
5908 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5909 bool grouped_store;
5910 bool slp_scheduled = false;
5911 gimple stmt, pattern_stmt;
5912 gimple_seq pattern_def_seq = NULL;
5913 gimple_stmt_iterator pattern_def_si = gsi_none ();
5914 bool transform_pattern_stmt = false;
5915 bool check_profitability = false;
5916 int th;
5917 /* Record number of iterations before we started tampering with the profile. */
5918 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5920 if (dump_enabled_p ())
5921 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
5923 /* If profile is inprecise, we have chance to fix it up. */
5924 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5925 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5927 /* Use the more conservative vectorization threshold. If the number
5928 of iterations is constant assume the cost check has been performed
5929 by our caller. If the threshold makes all loops profitable that
5930 run at least the vectorization factor number of times checking
5931 is pointless, too. */
5932 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
5933 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5934 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5936 if (dump_enabled_p ())
5937 dump_printf_loc (MSG_NOTE, vect_location,
5938 "Profitability threshold is %d loop iterations.\n",
5939 th);
5940 check_profitability = true;
5943 /* Version the loop first, if required, so the profitability check
5944 comes first. */
5946 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5947 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5949 vect_loop_versioning (loop_vinfo, th, check_profitability);
5950 check_profitability = false;
5953 tree ni_name = vect_build_loop_niters (loop_vinfo);
5954 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
5956 /* Peel the loop if there are data refs with unknown alignment.
5957 Only one data ref with unknown store is allowed. */
5959 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
5961 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
5962 th, check_profitability);
5963 check_profitability = false;
5964 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
5965 be re-computed. */
5966 ni_name = NULL_TREE;
5969 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5970 compile time constant), or it is a constant that doesn't divide by the
5971 vectorization factor, then an epilog loop needs to be created.
5972 We therefore duplicate the loop: the original loop will be vectorized,
5973 and will compute the first (n/VF) iterations. The second copy of the loop
5974 will remain scalar and will compute the remaining (n%VF) iterations.
5975 (VF is the vectorization factor). */
5977 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
5978 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5980 tree ratio_mult_vf;
5981 if (!ni_name)
5982 ni_name = vect_build_loop_niters (loop_vinfo);
5983 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
5984 &ratio);
5985 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
5986 th, check_profitability);
5988 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5989 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5990 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5991 else
5993 if (!ni_name)
5994 ni_name = vect_build_loop_niters (loop_vinfo);
5995 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
5998 /* 1) Make sure the loop header has exactly two entries
5999 2) Make sure we have a preheader basic block. */
6001 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
6003 split_edge (loop_preheader_edge (loop));
6005 /* FORNOW: the vectorizer supports only loops which body consist
6006 of one basic block (header + empty latch). When the vectorizer will
6007 support more involved loop forms, the order by which the BBs are
6008 traversed need to be reconsidered. */
6010 for (i = 0; i < nbbs; i++)
6012 basic_block bb = bbs[i];
6013 stmt_vec_info stmt_info;
6015 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6016 gsi_next (&si))
6018 gphi *phi = si.phi ();
6019 if (dump_enabled_p ())
6021 dump_printf_loc (MSG_NOTE, vect_location,
6022 "------>vectorizing phi: ");
6023 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
6024 dump_printf (MSG_NOTE, "\n");
6026 stmt_info = vinfo_for_stmt (phi);
6027 if (!stmt_info)
6028 continue;
6030 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6031 vect_loop_kill_debug_uses (loop, phi);
6033 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6034 && !STMT_VINFO_LIVE_P (stmt_info))
6035 continue;
6037 if (STMT_VINFO_VECTYPE (stmt_info)
6038 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
6039 != (unsigned HOST_WIDE_INT) vectorization_factor)
6040 && dump_enabled_p ())
6041 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6043 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
6045 if (dump_enabled_p ())
6046 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
6047 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
6051 pattern_stmt = NULL;
6052 for (gimple_stmt_iterator si = gsi_start_bb (bb);
6053 !gsi_end_p (si) || transform_pattern_stmt;)
6055 bool is_store;
6057 if (transform_pattern_stmt)
6058 stmt = pattern_stmt;
6059 else
6061 stmt = gsi_stmt (si);
6062 /* During vectorization remove existing clobber stmts. */
6063 if (gimple_clobber_p (stmt))
6065 unlink_stmt_vdef (stmt);
6066 gsi_remove (&si, true);
6067 release_defs (stmt);
6068 continue;
6072 if (dump_enabled_p ())
6074 dump_printf_loc (MSG_NOTE, vect_location,
6075 "------>vectorizing statement: ");
6076 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
6077 dump_printf (MSG_NOTE, "\n");
6080 stmt_info = vinfo_for_stmt (stmt);
6082 /* vector stmts created in the outer-loop during vectorization of
6083 stmts in an inner-loop may not have a stmt_info, and do not
6084 need to be vectorized. */
6085 if (!stmt_info)
6087 gsi_next (&si);
6088 continue;
6091 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6092 vect_loop_kill_debug_uses (loop, stmt);
6094 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6095 && !STMT_VINFO_LIVE_P (stmt_info))
6097 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6098 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6099 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6100 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6102 stmt = pattern_stmt;
6103 stmt_info = vinfo_for_stmt (stmt);
6105 else
6107 gsi_next (&si);
6108 continue;
6111 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6112 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6113 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6114 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6115 transform_pattern_stmt = true;
6117 /* If pattern statement has def stmts, vectorize them too. */
6118 if (is_pattern_stmt_p (stmt_info))
6120 if (pattern_def_seq == NULL)
6122 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
6123 pattern_def_si = gsi_start (pattern_def_seq);
6125 else if (!gsi_end_p (pattern_def_si))
6126 gsi_next (&pattern_def_si);
6127 if (pattern_def_seq != NULL)
6129 gimple pattern_def_stmt = NULL;
6130 stmt_vec_info pattern_def_stmt_info = NULL;
6132 while (!gsi_end_p (pattern_def_si))
6134 pattern_def_stmt = gsi_stmt (pattern_def_si);
6135 pattern_def_stmt_info
6136 = vinfo_for_stmt (pattern_def_stmt);
6137 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
6138 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
6139 break;
6140 gsi_next (&pattern_def_si);
6143 if (!gsi_end_p (pattern_def_si))
6145 if (dump_enabled_p ())
6147 dump_printf_loc (MSG_NOTE, vect_location,
6148 "==> vectorizing pattern def "
6149 "stmt: ");
6150 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6151 pattern_def_stmt, 0);
6152 dump_printf (MSG_NOTE, "\n");
6155 stmt = pattern_def_stmt;
6156 stmt_info = pattern_def_stmt_info;
6158 else
6160 pattern_def_si = gsi_none ();
6161 transform_pattern_stmt = false;
6164 else
6165 transform_pattern_stmt = false;
6168 if (STMT_VINFO_VECTYPE (stmt_info))
6170 unsigned int nunits
6171 = (unsigned int)
6172 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
6173 if (!STMT_SLP_TYPE (stmt_info)
6174 && nunits != (unsigned int) vectorization_factor
6175 && dump_enabled_p ())
6176 /* For SLP VF is set according to unrolling factor, and not
6177 to vector size, hence for SLP this print is not valid. */
6178 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6181 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6182 reached. */
6183 if (STMT_SLP_TYPE (stmt_info))
6185 if (!slp_scheduled)
6187 slp_scheduled = true;
6189 if (dump_enabled_p ())
6190 dump_printf_loc (MSG_NOTE, vect_location,
6191 "=== scheduling SLP instances ===\n");
6193 vect_schedule_slp (loop_vinfo, NULL);
6196 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6197 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6199 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6201 pattern_def_seq = NULL;
6202 gsi_next (&si);
6204 continue;
6208 /* -------- vectorize statement ------------ */
6209 if (dump_enabled_p ())
6210 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6212 grouped_store = false;
6213 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6214 if (is_store)
6216 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6218 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6219 interleaving chain was completed - free all the stores in
6220 the chain. */
6221 gsi_next (&si);
6222 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6224 else
6226 /* Free the attached stmt_vec_info and remove the stmt. */
6227 gimple store = gsi_stmt (si);
6228 free_stmt_vec_info (store);
6229 unlink_stmt_vdef (store);
6230 gsi_remove (&si, true);
6231 release_defs (store);
6234 /* Stores can only appear at the end of pattern statements. */
6235 gcc_assert (!transform_pattern_stmt);
6236 pattern_def_seq = NULL;
6238 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6240 pattern_def_seq = NULL;
6241 gsi_next (&si);
6243 } /* stmts in BB */
6244 } /* BBs in loop */
6246 slpeel_make_loop_iterate_ntimes (loop, ratio);
6248 /* Reduce loop iterations by the vectorization factor. */
6249 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6250 expected_iterations / vectorization_factor);
6251 loop->nb_iterations_upper_bound
6252 = wi::udiv_floor (loop->nb_iterations_upper_bound, vectorization_factor);
6253 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6254 && loop->nb_iterations_upper_bound != 0)
6255 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - 1;
6256 if (loop->any_estimate)
6258 loop->nb_iterations_estimate
6259 = wi::udiv_floor (loop->nb_iterations_estimate, vectorization_factor);
6260 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6261 && loop->nb_iterations_estimate != 0)
6262 loop->nb_iterations_estimate = loop->nb_iterations_estimate - 1;
6265 if (dump_enabled_p ())
6267 dump_printf_loc (MSG_NOTE, vect_location,
6268 "LOOP VECTORIZED\n");
6269 if (loop->inner)
6270 dump_printf_loc (MSG_NOTE, vect_location,
6271 "OUTER LOOP VECTORIZED\n");
6272 dump_printf (MSG_NOTE, "\n");