1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity
= 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map
<edge
, tree
> *edge_to_cases
;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs
;
98 long num_merged_labels
;
101 static struct cfg_stats_d cfg_stats
;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map
<tree
, tree
> *vars_map
;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
121 static inline hashval_t
hash (const locus_discrim_map
*);
122 static inline bool equal (const locus_discrim_map
*,
123 const locus_discrim_map
*);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
130 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
132 return LOCATION_LINE (item
->locus
);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
139 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
140 const locus_discrim_map
*b
)
142 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
145 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq
);
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block
);
154 static void make_gimple_switch_edges (gswitch
*, basic_block
);
155 static bool make_goto_expr_edges (basic_block
);
156 static void make_gimple_asm_edges (basic_block
);
157 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
158 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge
);
164 static gimple
*first_non_label_stmt (basic_block
);
165 static bool verify_gimple_transaction (gtransaction
*);
166 static bool call_can_make_abnormal_goto (gimple
*);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block
, basic_block
);
170 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
171 static void remove_bb (basic_block
);
172 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
173 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
174 static edge
find_taken_edge_switch_expr (const gswitch
*, tree
);
175 static tree
find_case_label_for_value (const gswitch
*, tree
);
176 static void lower_phi_internal_fn ();
179 init_empty_tree_cfg_for_function (struct function
*fn
)
181 /* Initialize the basic block array. */
183 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
184 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
185 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
186 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
188 initial_cfg_capacity
);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
193 initial_cfg_capacity
);
195 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
196 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
198 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn
);
200 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun
);
210 /*---------------------------------------------------------------------------
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
218 build_gimple_cfg (gimple_seq seq
)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
225 init_empty_tree_cfg ();
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun
)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun
))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
237 n_basic_blocks_for_fn (cfun
));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus
;
254 discriminator_per_locus
= NULL
;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
262 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
264 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
265 gimple
*stmt
= gsi_stmt (gsi
);
267 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
270 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
272 stmt
= gsi_stmt (gsi
);
273 if (gimple_code (stmt
) != GIMPLE_CALL
)
275 if (!gimple_call_internal_p (stmt
)
276 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
279 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
281 case annot_expr_ivdep_kind
:
282 loop
->safelen
= INT_MAX
;
284 case annot_expr_unroll_kind
:
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
287 cfun
->has_unroll
= true;
289 case annot_expr_no_vector_kind
:
290 loop
->dont_vectorize
= true;
292 case annot_expr_vector_kind
:
293 loop
->force_vectorize
= true;
294 cfun
->has_force_vectorize_loops
= true;
296 case annot_expr_parallel_kind
:
297 loop
->can_be_parallel
= true;
298 loop
->safelen
= INT_MAX
;
304 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
305 gimple_call_arg (stmt
, 0));
306 gsi_replace (&gsi
, stmt
, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
315 replace_loop_annotate (void)
319 gimple_stmt_iterator gsi
;
322 FOR_EACH_LOOP (loop
, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop
->header
, loop
);
327 /* Then look into the latch, if any. */
329 replace_loop_annotate_in_block (loop
->latch
, loop
);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb
, cfun
)
335 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
337 stmt
= gsi_stmt (gsi
);
338 if (gimple_code (stmt
) != GIMPLE_CALL
)
340 if (!gimple_call_internal_p (stmt
)
341 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
344 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
346 case annot_expr_ivdep_kind
:
347 case annot_expr_unroll_kind
:
348 case annot_expr_no_vector_kind
:
349 case annot_expr_vector_kind
:
350 case annot_expr_parallel_kind
:
356 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
357 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
358 gimple_call_arg (stmt
, 0));
359 gsi_replace (&gsi
, stmt
, true);
364 /* Lower internal PHI function from GIMPLE FE. */
367 lower_phi_internal_fn ()
369 basic_block bb
, pred
= NULL
;
370 gimple_stmt_iterator gsi
;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb
, cfun
)
378 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
380 stmt
= gsi_stmt (gsi
);
381 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
384 lhs
= gimple_call_lhs (stmt
);
385 phi_node
= create_phi_node (lhs
, bb
);
387 /* Add arguments to the PHI node. */
388 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
390 tree arg
= gimple_call_arg (stmt
, i
);
391 if (TREE_CODE (arg
) == LABEL_DECL
)
392 pred
= label_to_block (arg
);
395 edge e
= find_edge (pred
, bb
);
396 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
400 gsi_remove (&gsi
, true);
406 execute_build_cfg (void)
408 gimple_seq body
= gimple_body (current_function_decl
);
410 build_gimple_cfg (body
);
411 gimple_set_body (current_function_decl
, NULL
);
412 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
414 fprintf (dump_file
, "Scope blocks:\n");
415 dump_scope_blocks (dump_file
, dump_flags
);
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
419 replace_loop_annotate ();
425 const pass_data pass_data_build_cfg
=
427 GIMPLE_PASS
, /* type */
429 OPTGROUP_NONE
, /* optinfo_flags */
430 TV_TREE_CFG
, /* tv_id */
431 PROP_gimple_leh
, /* properties_required */
432 ( PROP_cfg
| PROP_loops
), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg
: public gimple_opt_pass
441 pass_build_cfg (gcc::context
*ctxt
)
442 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
453 make_pass_build_cfg (gcc::context
*ctxt
)
455 return new pass_build_cfg (ctxt
);
459 /* Return true if T is a computed goto. */
462 computed_goto_p (gimple
*t
)
464 return (gimple_code (t
) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
472 gimple_seq_unreachable_p (gimple_seq stmts
)
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
479 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
482 gimple_stmt_iterator gsi
= gsi_last (stmts
);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
487 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
489 gimple
*stmt
= gsi_stmt (gsi
);
490 if (gimple_code (stmt
) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt
)
492 && !gimple_clobber_p (stmt
))
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
508 __builtin_unreachable ();
512 assert_unreachable_fallthru_edge_p (edge e
)
514 basic_block pred_bb
= e
->src
;
515 gimple
*last
= last_stmt (pred_bb
);
516 if (last
&& gimple_code (last
) == GIMPLE_COND
)
518 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
519 if (other_bb
== e
->dest
)
520 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
521 if (EDGE_COUNT (other_bb
->succs
) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb
));
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
533 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
535 int flags
= gimple_call_flags (stmt
);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt
)
539 /* A call also alters control flow if it does not return. */
540 || flags
& ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags
& ECF_TM_BUILTIN
)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt
)
551 && gimple_call_internal_unique_p (stmt
)))
552 gimple_call_set_ctrl_altering (stmt
, true);
554 gimple_call_set_ctrl_altering (stmt
, false);
558 /* Insert SEQ after BB and build a flowgraph. */
561 make_blocks_1 (gimple_seq seq
, basic_block bb
)
563 gimple_stmt_iterator i
= gsi_start (seq
);
565 gimple
*prev_stmt
= NULL
;
566 bool start_new_block
= true;
567 bool first_stmt_of_seq
= true;
569 while (!gsi_end_p (i
))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
583 if (stmt
&& is_gimple_call (stmt
))
584 gimple_call_initialize_ctrl_altering (stmt
);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
589 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
591 if (!first_stmt_of_seq
)
592 gsi_split_seq_before (&i
, &seq
);
593 bb
= create_basic_block (seq
, bb
);
594 start_new_block
= false;
598 /* Now add STMT to BB and create the subgraphs for special statement
600 gimple_set_bb (stmt
, bb
);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
604 if (stmt_ends_bb_p (stmt
))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
611 if (gimple_has_lhs (stmt
)
612 && stmt_can_make_abnormal_goto (stmt
)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
615 tree lhs
= gimple_get_lhs (stmt
);
616 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
617 gimple
*s
= gimple_build_assign (lhs
, tmp
);
618 gimple_set_location (s
, gimple_location (stmt
));
619 gimple_set_block (s
, gimple_block (stmt
));
620 gimple_set_lhs (stmt
, tmp
);
621 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
623 DECL_GIMPLE_REG_P (tmp
) = 1;
624 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
626 start_new_block
= true;
630 first_stmt_of_seq
= false;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
638 make_blocks (gimple_seq seq
)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
657 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
659 gimple_stmt_iterator label
= gsi_none ();
661 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
663 gimple
*stmt
= gsi_stmt (i
);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a
<glabel
*> (stmt
))
669 if (gsi_end_p (label
))
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label
))
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt
))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
690 gimple_stmt_iterator copy
= label
;
691 gsi_move_after (&i
, ©
);
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
701 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
704 /* Create and return a new empty basic block after bb AFTER. */
707 create_bb (void *h
, void *e
, basic_block after
)
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
718 bb
->index
= last_basic_block_for_fn (cfun
);
720 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb
, after
);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun
)
727 == basic_block_info_for_fn (cfun
)->length ())
730 (last_basic_block_for_fn (cfun
)
731 + (last_basic_block_for_fn (cfun
) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
738 n_basic_blocks_for_fn (cfun
)++;
739 last_basic_block_for_fn (cfun
)++;
745 /*---------------------------------------------------------------------------
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
754 get_abnormal_succ_dispatcher (basic_block bb
)
759 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
760 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e
->dest
);
764 gimple
*g
= gsi_stmt (gsi
);
765 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
777 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
778 basic_block for_bb
, int *bb_to_omp_idx
,
779 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
781 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
782 unsigned int idx
= 0;
788 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
789 if (bb_to_omp_idx
[for_bb
->index
] != 0)
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
796 if (*dispatcher
== NULL
)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
801 if (bb_to_omp_idx
== NULL
)
803 if (bbs
->is_empty ())
808 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
809 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
815 /* Create the dispatcher bb. */
816 *dispatcher
= create_basic_block (NULL
, for_bb
);
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION
);
833 gimple
*factored_computed_goto_label
834 = gimple_build_label (factored_label_decl
);
835 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
837 /* Build our new computed goto. */
838 gimple
*factored_computed_goto
= gimple_build_goto (var
);
839 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
841 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
844 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
847 gsi
= gsi_last_bb (bb
);
848 gimple
*last
= gsi_stmt (gsi
);
850 gcc_assert (computed_goto_p (last
));
852 /* Copy the original computed goto's destination into VAR. */
854 = gimple_build_assign (var
, gimple_goto_dest (last
));
855 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
857 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
858 e
->goto_locus
= gimple_location (last
);
859 gsi_remove (&gsi
, true);
864 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
865 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
867 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
868 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
874 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
876 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
881 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
890 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
892 gimple
*last
= last_stmt (bb
);
893 bool fallthru
= false;
899 switch (gimple_code (last
))
902 if (make_goto_expr_edges (bb
))
908 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
909 e
->goto_locus
= gimple_location (last
);
914 make_cond_expr_edges (bb
);
918 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
922 make_eh_edges (last
);
925 case GIMPLE_EH_DISPATCH
:
926 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
933 if (stmt_can_make_abnormal_goto (last
))
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last
);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
943 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
946 /* Some calls are known not to return. */
948 fallthru
= !gimple_call_noreturn_p (last
);
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
954 if (is_ctrl_altering_stmt (last
))
955 make_eh_edges (last
);
960 make_gimple_asm_edges (bb
);
965 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
968 case GIMPLE_TRANSACTION
:
970 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
971 tree label1
= gimple_transaction_label_norm (txn
);
972 tree label2
= gimple_transaction_label_uninst (txn
);
975 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
977 make_edge (bb
, label_to_block (label2
),
978 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
980 tree label3
= gimple_transaction_label_over (txn
);
981 if (gimple_transaction_subcode (txn
)
982 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
983 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
990 gcc_assert (!stmt_ends_bb_p (last
));
996 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
1001 /* Join all the blocks in the flowgraph. */
1007 struct omp_region
*cur_region
= NULL
;
1008 auto_vec
<basic_block
> ab_edge_goto
;
1009 auto_vec
<basic_block
> ab_edge_call
;
1010 int *bb_to_omp_idx
= NULL
;
1011 int cur_omp_region_idx
= 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
1016 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb
, cfun
)
1025 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
1027 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1029 ab_edge_goto
.safe_push (bb
);
1031 ab_edge_call
.safe_push (bb
);
1033 if (cur_region
&& bb_to_omp_idx
== NULL
)
1034 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1054 gimple_stmt_iterator gsi
;
1055 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1056 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1057 int count
= n_basic_blocks_for_fn (cfun
);
1060 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1062 FOR_EACH_BB_FN (bb
, cfun
)
1064 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1066 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1072 target
= gimple_label_label (label_stmt
);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target
))
1077 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1078 &ab_edge_goto
, true);
1079 if (DECL_NONLOCAL (target
))
1081 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1082 &ab_edge_call
, false);
1087 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1088 gsi_next_nondebug (&gsi
);
1089 if (!gsi_end_p (gsi
))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple
*call_stmt
= gsi_stmt (gsi
);
1093 if (is_gimple_call (call_stmt
)
1094 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1095 || gimple_call_builtin_p (call_stmt
,
1096 BUILT_IN_SETJMP_RECEIVER
)))
1097 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1098 &ab_edge_call
, false);
1103 XDELETE (dispatcher_bbs
);
1106 XDELETE (bb_to_omp_idx
);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1119 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1121 gimple
*stmt
= gsi_stmt (*gsi
);
1122 basic_block bb
= gimple_bb (stmt
);
1123 basic_block lastbb
, afterbb
;
1124 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1126 lastbb
= make_blocks_1 (seq
, bb
);
1127 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1129 e
= split_block (bb
, stmt
);
1130 /* Move e->dest to come after the new basic blocks. */
1132 unlink_block (afterbb
);
1133 link_block (afterbb
, lastbb
);
1134 redirect_edge_succ (e
, bb
->next_bb
);
1136 while (bb
!= afterbb
)
1138 struct omp_region
*cur_region
= NULL
;
1139 profile_count cnt
= profile_count::zero ();
1142 int cur_omp_region_idx
= 0;
1143 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1144 gcc_assert (!mer
&& !cur_region
);
1145 add_bb_to_loop (bb
, afterbb
->loop_father
);
1149 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1151 if (e
->count ().initialized_p ())
1156 tree_guess_outgoing_edge_probabilities (bb
);
1157 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1171 next_discriminator_for_locus (location_t locus
)
1173 struct locus_discrim_map item
;
1174 struct locus_discrim_map
**slot
;
1177 item
.discriminator
= 0;
1178 slot
= discriminator_per_locus
->find_slot_with_hash (
1179 &item
, LOCATION_LINE (locus
), INSERT
);
1181 if (*slot
== HTAB_EMPTY_ENTRY
)
1183 *slot
= XNEW (struct locus_discrim_map
);
1185 (*slot
)->locus
= locus
;
1186 (*slot
)->discriminator
= 0;
1188 (*slot
)->discriminator
++;
1189 return (*slot
)->discriminator
;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1195 same_line_p (location_t locus1
, location_t locus2
)
1197 expanded_location from
, to
;
1199 if (locus1
== locus2
)
1202 from
= expand_location (locus1
);
1203 to
= expand_location (locus2
);
1205 if (from
.line
!= to
.line
)
1207 if (from
.file
== to
.file
)
1209 return (from
.file
!= NULL
1211 && filename_cmp (from
.file
, to
.file
) == 0);
1214 /* Assign discriminators to each basic block. */
1217 assign_discriminators (void)
1221 FOR_EACH_BB_FN (bb
, cfun
)
1225 gimple
*last
= last_stmt (bb
);
1226 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1228 if (locus
== UNKNOWN_LOCATION
)
1231 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1233 gimple
*first
= first_non_label_stmt (e
->dest
);
1234 gimple
*last
= last_stmt (e
->dest
);
1235 if ((first
&& same_line_p (locus
, gimple_location (first
)))
1236 || (last
&& same_line_p (locus
, gimple_location (last
))))
1238 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1239 bb
->discriminator
= next_discriminator_for_locus (locus
);
1241 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1250 make_cond_expr_edges (basic_block bb
)
1252 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1253 gimple
*then_stmt
, *else_stmt
;
1254 basic_block then_bb
, else_bb
;
1255 tree then_label
, else_label
;
1259 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1261 /* Entry basic blocks for each component. */
1262 then_label
= gimple_cond_true_label (entry
);
1263 else_label
= gimple_cond_false_label (entry
);
1264 then_bb
= label_to_block (then_label
);
1265 else_bb
= label_to_block (else_label
);
1266 then_stmt
= first_stmt (then_bb
);
1267 else_stmt
= first_stmt (else_bb
);
1269 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1270 e
->goto_locus
= gimple_location (then_stmt
);
1271 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1273 e
->goto_locus
= gimple_location (else_stmt
);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry
, NULL_TREE
);
1277 gimple_cond_set_false_label (entry
, NULL_TREE
);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1289 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1293 for (t
= value
; t
; t
= next
)
1295 next
= CASE_CHAIN (t
);
1296 CASE_CHAIN (t
) = NULL
;
1302 /* Start recording information mapping edges to case labels. */
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases
== NULL
);
1308 edge_to_cases
= new hash_map
<edge
, tree
>;
1309 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1312 /* Return nonzero if we are recording information for case labels. */
1315 recording_case_labels_p (void)
1317 return (edge_to_cases
!= NULL
);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1323 end_recording_case_labels (void)
1327 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1328 delete edge_to_cases
;
1329 edge_to_cases
= NULL
;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1332 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1335 gimple
*stmt
= last_stmt (bb
);
1336 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1337 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1340 BITMAP_FREE (touched_switch_bbs
);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1349 get_cases_for_edge (edge e
, gswitch
*t
)
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1359 slot
= edge_to_cases
->get (e
);
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n
= gimple_switch_num_labels (t
);
1368 for (i
= 0; i
< n
; i
++)
1370 tree elt
= gimple_switch_label (t
, i
);
1371 tree lab
= CASE_LABEL (elt
);
1372 basic_block label_bb
= label_to_block (lab
);
1373 edge this_edge
= find_edge (e
->src
, label_bb
);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1377 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1378 CASE_CHAIN (elt
) = s
;
1382 return *edge_to_cases
->get (e
);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1388 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1392 n
= gimple_switch_num_labels (entry
);
1394 for (i
= 0; i
< n
; ++i
)
1396 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1397 basic_block label_bb
= label_to_block (lab
);
1398 make_edge (bb
, label_bb
, 0);
1403 /* Return the basic block holding label DEST. */
1406 label_to_block_fn (struct function
*ifun
, tree dest
)
1408 int uid
= LABEL_DECL_UID (dest
);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid
< 0)
1415 gimple_stmt_iterator gsi
=
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1419 stmt
= gimple_build_label (dest
);
1420 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1421 uid
= LABEL_DECL_UID (dest
);
1423 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1425 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1432 make_goto_expr_edges (basic_block bb
)
1434 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1435 gimple
*goto_t
= gsi_stmt (last
);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t
))
1440 tree dest
= gimple_goto_dest (goto_t
);
1441 basic_block label_bb
= label_to_block (dest
);
1442 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1443 e
->goto_locus
= gimple_location (goto_t
);
1444 gsi_remove (&last
, true);
1448 /* A computed GOTO creates abnormal edges. */
1452 /* Create edges for an asm statement with labels at block BB. */
1455 make_gimple_asm_edges (basic_block bb
)
1457 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1458 int i
, n
= gimple_asm_nlabels (stmt
);
1460 for (i
= 0; i
< n
; ++i
)
1462 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1463 basic_block label_bb
= label_to_block (label
);
1464 make_edge (bb
, label_bb
, 0);
1468 /*---------------------------------------------------------------------------
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1486 /* True if the label is referenced from somewhere. */
1490 /* Given LABEL return the first label in the same basic block. */
1493 main_block_label (tree label
)
1495 basic_block bb
= label_to_block (label
);
1496 tree main_label
= label_for_bb
[bb
->index
].label
;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1501 label_for_bb
[bb
->index
].label
= label
;
1505 label_for_bb
[bb
->index
].used
= true;
1509 /* Clean up redundant labels within the exception tree. */
1512 cleanup_dead_labels_eh (void)
1519 if (cfun
->eh
== NULL
)
1522 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1523 if (lp
&& lp
->post_landing_pad
)
1525 lab
= main_block_label (lp
->post_landing_pad
);
1526 if (lab
!= lp
->post_landing_pad
)
1528 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1529 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1533 FOR_ALL_EH_REGION (r
)
1537 case ERT_MUST_NOT_THROW
:
1543 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1547 c
->label
= main_block_label (lab
);
1552 case ERT_ALLOWED_EXCEPTIONS
:
1553 lab
= r
->u
.allowed
.label
;
1555 r
->u
.allowed
.label
= main_block_label (lab
);
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1567 cleanup_dead_labels (void)
1570 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb
, cfun
)
1576 gimple_stmt_iterator i
;
1578 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1581 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1586 label
= gimple_label_label (label_stmt
);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb
[bb
->index
].label
)
1592 label_for_bb
[bb
->index
].label
= label
;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label
)
1600 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1602 label_for_bb
[bb
->index
].label
= label
;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb
, cfun
)
1612 gimple
*stmt
= last_stmt (bb
);
1613 tree label
, new_label
;
1618 switch (gimple_code (stmt
))
1622 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1623 label
= gimple_cond_true_label (cond_stmt
);
1626 new_label
= main_block_label (label
);
1627 if (new_label
!= label
)
1628 gimple_cond_set_true_label (cond_stmt
, new_label
);
1631 label
= gimple_cond_false_label (cond_stmt
);
1634 new_label
= main_block_label (label
);
1635 if (new_label
!= label
)
1636 gimple_cond_set_false_label (cond_stmt
, new_label
);
1643 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1644 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1646 /* Replace all destination labels. */
1647 for (i
= 0; i
< n
; ++i
)
1649 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1650 label
= CASE_LABEL (case_label
);
1651 new_label
= main_block_label (label
);
1652 if (new_label
!= label
)
1653 CASE_LABEL (case_label
) = new_label
;
1660 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1661 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1663 for (i
= 0; i
< n
; ++i
)
1665 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1666 tree label
= main_block_label (TREE_VALUE (cons
));
1667 TREE_VALUE (cons
) = label
;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1675 if (!computed_goto_p (stmt
))
1677 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1678 label
= gimple_goto_dest (goto_stmt
);
1679 new_label
= main_block_label (label
);
1680 if (new_label
!= label
)
1681 gimple_goto_set_dest (goto_stmt
, new_label
);
1685 case GIMPLE_TRANSACTION
:
1687 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1689 label
= gimple_transaction_label_norm (txn
);
1692 new_label
= main_block_label (label
);
1693 if (new_label
!= label
)
1694 gimple_transaction_set_label_norm (txn
, new_label
);
1697 label
= gimple_transaction_label_uninst (txn
);
1700 new_label
= main_block_label (label
);
1701 if (new_label
!= label
)
1702 gimple_transaction_set_label_uninst (txn
, new_label
);
1705 label
= gimple_transaction_label_over (txn
);
1708 new_label
= main_block_label (label
);
1709 if (new_label
!= label
)
1710 gimple_transaction_set_label_over (txn
, new_label
);
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb
, cfun
)
1728 gimple_stmt_iterator i
;
1729 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1731 if (!label_for_this_bb
)
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb
[bb
->index
].used
)
1736 label_for_this_bb
= NULL
;
1738 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1741 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1746 label
= gimple_label_label (label_stmt
);
1748 if (label
== label_for_this_bb
1749 || !DECL_ARTIFICIAL (label
)
1750 || DECL_NONLOCAL (label
)
1751 || FORCED_LABEL (label
))
1754 gsi_remove (&i
, true);
1758 free (label_for_bb
);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1766 group_case_labels_stmt (gswitch
*stmt
)
1768 int old_size
= gimple_switch_num_labels (stmt
);
1769 int i
, next_index
, new_size
;
1770 basic_block default_bb
= NULL
;
1772 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1774 /* Look for possible opportunities to merge cases. */
1776 while (i
< old_size
)
1778 tree base_case
, base_high
;
1779 basic_block base_bb
;
1781 base_case
= gimple_switch_label (stmt
, i
);
1783 gcc_assert (base_case
);
1784 base_bb
= label_to_block (CASE_LABEL (base_case
));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb
== NULL
|| base_bb
== default_bb
)
1794 base_high
= CASE_HIGH (base_case
)
1795 ? CASE_HIGH (base_case
)
1796 : CASE_LOW (base_case
);
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index
< old_size
)
1804 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1805 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1806 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb
== base_bb
1811 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1813 base_high
= CASE_HIGH (merge_case
) ?
1814 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1815 CASE_HIGH (base_case
) = base_high
;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb
->succs
) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun
)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb
)))
1831 != BUILTINS_LOCATION
)))
1833 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1834 if (base_edge
!= NULL
)
1835 remove_edge_and_dominated_blocks (base_edge
);
1841 gimple_switch_set_label (stmt
, new_size
,
1842 gimple_switch_label (stmt
, i
));
1847 gcc_assert (new_size
<= old_size
);
1849 if (new_size
< old_size
)
1850 gimple_switch_set_num_labels (stmt
, new_size
);
1852 return new_size
< old_size
;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1860 group_case_labels (void)
1863 bool changed
= false;
1865 FOR_EACH_BB_FN (bb
, cfun
)
1867 gimple
*stmt
= last_stmt (bb
);
1868 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1869 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1875 /* Checks whether we can merge block B into block A. */
1878 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1882 if (!single_succ_p (a
))
1885 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1888 if (single_succ (a
) != b
)
1891 if (!single_pred_p (b
))
1894 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1895 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt
= last_stmt (a
);
1901 if (stmt
&& stmt_ends_bb_p (stmt
))
1904 /* Do not allow a block with only a non-local label to be merged. */
1906 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1915 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1918 lab
= gimple_label_label (label_stmt
);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1929 && b
->loop_father
->latch
== b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1931 && (b
->loop_father
->header
== a
1932 || b
->loop_father
!= a
->loop_father
))
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1941 gphi
*phi
= gsi
.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1949 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1951 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1952 gimple_stmt_iterator prev
, next
;
1953 prev
= gsi_last_nondebug_bb (a
);
1954 next
= gsi_after_labels (b
);
1955 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1956 gsi_next_nondebug (&next
);
1957 if ((gsi_end_p (prev
)
1958 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1959 && (gsi_end_p (next
)
1960 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1967 /* Replaces all uses of NAME by VAL. */
1970 replace_uses_by (tree name
, tree val
)
1972 imm_use_iterator imm_iter
;
1977 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt
))
1982 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1984 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1986 replace_exp (use
, val
);
1988 if (gimple_code (stmt
) == GIMPLE_PHI
)
1990 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1991 PHI_ARG_INDEX_FROM_USE (use
));
1992 if (e
->flags
& EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name
));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
2004 if (gimple_code (stmt
) != GIMPLE_PHI
)
2006 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2007 gimple
*orig_stmt
= stmt
;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val
))
2015 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2017 tree op
= gimple_op (stmt
, i
);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
2022 recompute_tree_invariant_for_addr_expr (op
);
2025 if (fold_stmt (&gsi
))
2026 stmt
= gsi_stmt (gsi
);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
2035 gcc_checking_assert (has_zero_uses (name
));
2037 /* Also update the trees stored in loop structures. */
2042 FOR_EACH_LOOP (loop
, 0)
2044 substitute_in_loop_info (loop
, name
, val
);
2049 /* Merge block B into block A. */
2052 gimple_merge_blocks (basic_block a
, basic_block b
)
2054 gimple_stmt_iterator last
, gsi
;
2058 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi
= gsi_last_bb (a
);
2063 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2065 gimple
*phi
= gsi_stmt (psi
);
2066 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2068 bool may_replace_uses
= (virtual_operand_p (def
)
2069 || may_propagate_copy (def
, use
));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2075 && !virtual_operand_p (def
)
2076 && TREE_CODE (use
) == SSA_NAME
2077 && a
->loop_father
!= b
->loop_father
)
2078 may_replace_uses
= false;
2080 if (!may_replace_uses
)
2082 gcc_assert (!virtual_operand_p (def
));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy
= gimple_build_assign (def
, use
);
2089 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2090 remove_phi_node (&psi
, false);
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2097 if (virtual_operand_p (def
))
2099 imm_use_iterator iter
;
2100 use_operand_p use_p
;
2103 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2105 SET_USE (use_p
, use
);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2111 replace_uses_by (def
, use
);
2113 remove_phi_node (&psi
, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b
, a
);
2120 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2121 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2126 gimple
*stmt
= gsi_stmt (gsi
);
2127 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2129 tree label
= gimple_label_label (label_stmt
);
2132 gsi_remove (&gsi
, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label
))
2142 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2143 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2148 gimple
*dbg
= gimple_build_debug_bind (label
,
2151 gimple_debug_bind_reset_value (dbg
);
2152 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2155 lp_nr
= EH_LANDING_PAD_NR (label
);
2158 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2159 lp
->post_landing_pad
= NULL
;
2164 gimple_set_bb (stmt
, a
);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2172 if (a
->loop_father
== b
->loop_father
)
2174 a
->count
= a
->count
.merge (b
->count
);
2177 /* Merge the sequences. */
2178 last
= gsi_last_bb (a
);
2179 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2180 set_bb_seq (b
, NULL
);
2182 if (cfgcleanup_altered_bbs
)
2183 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2193 single_noncomplex_succ (basic_block bb
)
2196 if (EDGE_COUNT (bb
->succs
) != 2)
2199 e0
= EDGE_SUCC (bb
, 0);
2200 e1
= EDGE_SUCC (bb
, 1);
2201 if (e0
->flags
& EDGE_COMPLEX
)
2203 if (e1
->flags
& EDGE_COMPLEX
)
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2212 notice_special_calls (gcall
*call
)
2214 int flags
= gimple_call_flags (call
);
2216 if (flags
& ECF_MAY_BE_ALLOCA
)
2217 cfun
->calls_alloca
= true;
2218 if (flags
& ECF_RETURNS_TWICE
)
2219 cfun
->calls_setjmp
= true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2227 clear_special_calls (void)
2229 cfun
->calls_alloca
= false;
2230 cfun
->calls_setjmp
= false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb
);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb
->succs
) > 0)
2244 remove_edge (EDGE_SUCC (bb
, 0));
2248 /* Remove statements of basic block BB. */
2251 remove_bb (basic_block bb
)
2253 gimple_stmt_iterator i
;
2257 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2258 if (dump_flags
& TDF_DETAILS
)
2260 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2261 fprintf (dump_file
, "\n");
2267 struct loop
*loop
= bb
->loop_father
;
2269 /* If a loop gets removed, clean up the information associated
2271 if (loop
->latch
== bb
2272 || loop
->header
== bb
)
2273 free_numbers_of_iterations_estimates (loop
);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb
) != NULL
)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2283 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2285 gimple
*stmt
= gsi_stmt (i
);
2286 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2288 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2292 gimple_stmt_iterator new_gsi
;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2303 new_bb
= bb
->prev_bb
;
2304 /* Don't move any labels into ENTRY block. */
2305 if (new_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2307 new_bb
= single_succ (new_bb
);
2308 gcc_assert (new_bb
!= bb
);
2310 new_gsi
= gsi_start_bb (new_bb
);
2311 gsi_remove (&i
, false);
2312 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2316 /* Release SSA definitions. */
2317 release_defs (stmt
);
2318 gsi_remove (&i
, true);
2322 i
= gsi_last_bb (bb
);
2328 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2329 bb
->il
.gimple
.seq
= NULL
;
2330 bb
->il
.gimple
.phi_nodes
= NULL
;
2334 /* Given a basic block BB and a value VAL for use in the final statement
2335 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2336 the edge that will be taken out of the block.
2337 If VAL is NULL_TREE, then the current value of the final statement's
2338 predicate or index is used.
2339 If the value does not match a unique edge, NULL is returned. */
2342 find_taken_edge (basic_block bb
, tree val
)
2346 stmt
= last_stmt (bb
);
2348 /* Handle ENTRY and EXIT. */
2352 if (gimple_code (stmt
) == GIMPLE_COND
)
2353 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2355 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2356 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2358 if (computed_goto_p (stmt
))
2360 /* Only optimize if the argument is a label, if the argument is
2361 not a label then we can not construct a proper CFG.
2363 It may be the case that we only need to allow the LABEL_REF to
2364 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2365 appear inside a LABEL_EXPR just to be safe. */
2367 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2368 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2369 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2372 /* Otherwise we only know the taken successor edge if it's unique. */
2373 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2376 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2377 statement, determine which of the outgoing edges will be taken out of the
2378 block. Return NULL if either edge may be taken. */
2381 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2386 dest
= label_to_block (val
);
2388 e
= find_edge (bb
, dest
);
2390 /* It's possible for find_edge to return NULL here on invalid code
2391 that abuses the labels-as-values extension (e.g. code that attempts to
2392 jump *between* functions via stored labels-as-values; PR 84136).
2393 If so, then we simply return that NULL for the edge.
2394 We don't currently have a way of detecting such invalid code, so we
2395 can't assert that it was the case when a NULL edge occurs here. */
2400 /* Given COND_STMT and a constant value VAL for use as the predicate,
2401 determine which of the two edges will be taken out of
2402 the statement's block. Return NULL if either edge may be taken.
2403 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2407 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2409 edge true_edge
, false_edge
;
2411 if (val
== NULL_TREE
)
2413 /* Use the current value of the predicate. */
2414 if (gimple_cond_true_p (cond_stmt
))
2415 val
= integer_one_node
;
2416 else if (gimple_cond_false_p (cond_stmt
))
2417 val
= integer_zero_node
;
2421 else if (TREE_CODE (val
) != INTEGER_CST
)
2424 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2425 &true_edge
, &false_edge
);
2427 return (integer_zerop (val
) ? false_edge
: true_edge
);
2430 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2431 which edge will be taken out of the statement's block. Return NULL if any
2433 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2437 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2439 basic_block dest_bb
;
2443 if (gimple_switch_num_labels (switch_stmt
) == 1)
2444 taken_case
= gimple_switch_default_label (switch_stmt
);
2447 if (val
== NULL_TREE
)
2448 val
= gimple_switch_index (switch_stmt
);
2449 if (TREE_CODE (val
) != INTEGER_CST
)
2452 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2454 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2456 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2462 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2463 We can make optimal use here of the fact that the case labels are
2464 sorted: We can do a binary search for a case matching VAL. */
2467 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2469 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2470 tree default_case
= gimple_switch_default_label (switch_stmt
);
2472 for (low
= 0, high
= n
; high
- low
> 1; )
2474 size_t i
= (high
+ low
) / 2;
2475 tree t
= gimple_switch_label (switch_stmt
, i
);
2478 /* Cache the result of comparing CASE_LOW and val. */
2479 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2486 if (CASE_HIGH (t
) == NULL
)
2488 /* A singe-valued case label. */
2494 /* A case range. We can only handle integer ranges. */
2495 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2500 return default_case
;
2504 /* Dump a basic block on stderr. */
2507 gimple_debug_bb (basic_block bb
)
2509 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2513 /* Dump basic block with index N on stderr. */
2516 gimple_debug_bb_n (int n
)
2518 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2519 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2523 /* Dump the CFG on stderr.
2525 FLAGS are the same used by the tree dumping functions
2526 (see TDF_* in dumpfile.h). */
2529 gimple_debug_cfg (dump_flags_t flags
)
2531 gimple_dump_cfg (stderr
, flags
);
2535 /* Dump the program showing basic block boundaries on the given FILE.
2537 FLAGS are the same used by the tree dumping functions (see TDF_* in
2541 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2543 if (flags
& TDF_DETAILS
)
2545 dump_function_header (file
, current_function_decl
, flags
);
2546 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2547 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2548 last_basic_block_for_fn (cfun
));
2550 brief_dump_cfg (file
, flags
);
2551 fprintf (file
, "\n");
2554 if (flags
& TDF_STATS
)
2555 dump_cfg_stats (file
);
2557 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2561 /* Dump CFG statistics on FILE. */
2564 dump_cfg_stats (FILE *file
)
2566 static long max_num_merged_labels
= 0;
2567 unsigned long size
, total
= 0;
2570 const char * const fmt_str
= "%-30s%-13s%12s\n";
2571 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2572 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2573 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2574 const char *funcname
= current_function_name ();
2576 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2578 fprintf (file
, "---------------------------------------------------------\n");
2579 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2580 fprintf (file
, fmt_str
, "", " instances ", "used ");
2581 fprintf (file
, "---------------------------------------------------------\n");
2583 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2585 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2586 SCALE (size
), LABEL (size
));
2589 FOR_EACH_BB_FN (bb
, cfun
)
2590 num_edges
+= EDGE_COUNT (bb
->succs
);
2591 size
= num_edges
* sizeof (struct edge_def
);
2593 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2595 fprintf (file
, "---------------------------------------------------------\n");
2596 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2598 fprintf (file
, "---------------------------------------------------------\n");
2599 fprintf (file
, "\n");
2601 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2602 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2604 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2605 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2607 fprintf (file
, "\n");
2611 /* Dump CFG statistics on stderr. Keep extern so that it's always
2612 linked in the final executable. */
2615 debug_cfg_stats (void)
2617 dump_cfg_stats (stderr
);
2620 /*---------------------------------------------------------------------------
2621 Miscellaneous helpers
2622 ---------------------------------------------------------------------------*/
2624 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2625 flow. Transfers of control flow associated with EH are excluded. */
2628 call_can_make_abnormal_goto (gimple
*t
)
2630 /* If the function has no non-local labels, then a call cannot make an
2631 abnormal transfer of control. */
2632 if (!cfun
->has_nonlocal_label
2633 && !cfun
->calls_setjmp
)
2636 /* Likewise if the call has no side effects. */
2637 if (!gimple_has_side_effects (t
))
2640 /* Likewise if the called function is leaf. */
2641 if (gimple_call_flags (t
) & ECF_LEAF
)
2648 /* Return true if T can make an abnormal transfer of control flow.
2649 Transfers of control flow associated with EH are excluded. */
2652 stmt_can_make_abnormal_goto (gimple
*t
)
2654 if (computed_goto_p (t
))
2656 if (is_gimple_call (t
))
2657 return call_can_make_abnormal_goto (t
);
2662 /* Return true if T represents a stmt that always transfers control. */
2665 is_ctrl_stmt (gimple
*t
)
2667 switch (gimple_code (t
))
2681 /* Return true if T is a statement that may alter the flow of control
2682 (e.g., a call to a non-returning function). */
2685 is_ctrl_altering_stmt (gimple
*t
)
2689 switch (gimple_code (t
))
2692 /* Per stmt call flag indicates whether the call could alter
2694 if (gimple_call_ctrl_altering_p (t
))
2698 case GIMPLE_EH_DISPATCH
:
2699 /* EH_DISPATCH branches to the individual catch handlers at
2700 this level of a try or allowed-exceptions region. It can
2701 fallthru to the next statement as well. */
2705 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2710 /* OpenMP directives alter control flow. */
2713 case GIMPLE_TRANSACTION
:
2714 /* A transaction start alters control flow. */
2721 /* If a statement can throw, it alters control flow. */
2722 return stmt_can_throw_internal (t
);
2726 /* Return true if T is a simple local goto. */
2729 simple_goto_p (gimple
*t
)
2731 return (gimple_code (t
) == GIMPLE_GOTO
2732 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2736 /* Return true if STMT should start a new basic block. PREV_STMT is
2737 the statement preceding STMT. It is used when STMT is a label or a
2738 case label. Labels should only start a new basic block if their
2739 previous statement wasn't a label. Otherwise, sequence of labels
2740 would generate unnecessary basic blocks that only contain a single
2744 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2749 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2750 any nondebug stmts in the block. We don't want to start another
2751 block in this case: the debug stmt will already have started the
2752 one STMT would start if we weren't outputting debug stmts. */
2753 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2756 /* Labels start a new basic block only if the preceding statement
2757 wasn't a label of the same type. This prevents the creation of
2758 consecutive blocks that have nothing but a single label. */
2759 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2761 /* Nonlocal and computed GOTO targets always start a new block. */
2762 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2763 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2766 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2768 if (DECL_NONLOCAL (gimple_label_label (
2769 as_a
<glabel
*> (prev_stmt
))))
2772 cfg_stats
.num_merged_labels
++;
2778 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2780 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2781 /* setjmp acts similar to a nonlocal GOTO target and thus should
2782 start a new block. */
2784 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2786 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2787 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2788 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2789 /* PHI nodes start a new block unless preceeded by a label
2798 /* Return true if T should end a basic block. */
2801 stmt_ends_bb_p (gimple
*t
)
2803 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2806 /* Remove block annotations and other data structures. */
2809 delete_tree_cfg_annotations (struct function
*fn
)
2811 vec_free (label_to_block_map_for_fn (fn
));
2814 /* Return the virtual phi in BB. */
2817 get_virtual_phi (basic_block bb
)
2819 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2823 gphi
*phi
= gsi
.phi ();
2825 if (virtual_operand_p (PHI_RESULT (phi
)))
2832 /* Return the first statement in basic block BB. */
2835 first_stmt (basic_block bb
)
2837 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2838 gimple
*stmt
= NULL
;
2840 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2848 /* Return the first non-label statement in basic block BB. */
2851 first_non_label_stmt (basic_block bb
)
2853 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2854 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2856 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2859 /* Return the last statement in basic block BB. */
2862 last_stmt (basic_block bb
)
2864 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2865 gimple
*stmt
= NULL
;
2867 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2875 /* Return the last statement of an otherwise empty block. Return NULL
2876 if the block is totally empty, or if it contains more than one
2880 last_and_only_stmt (basic_block bb
)
2882 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2883 gimple
*last
, *prev
;
2888 last
= gsi_stmt (i
);
2889 gsi_prev_nondebug (&i
);
2893 /* Empty statements should no longer appear in the instruction stream.
2894 Everything that might have appeared before should be deleted by
2895 remove_useless_stmts, and the optimizers should just gsi_remove
2896 instead of smashing with build_empty_stmt.
2898 Thus the only thing that should appear here in a block containing
2899 one executable statement is a label. */
2900 prev
= gsi_stmt (i
);
2901 if (gimple_code (prev
) == GIMPLE_LABEL
)
2907 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2910 reinstall_phi_args (edge new_edge
, edge old_edge
)
2916 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2920 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2921 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2922 i
++, gsi_next (&phis
))
2924 gphi
*phi
= phis
.phi ();
2925 tree result
= redirect_edge_var_map_result (vm
);
2926 tree arg
= redirect_edge_var_map_def (vm
);
2928 gcc_assert (result
== gimple_phi_result (phi
));
2930 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2933 redirect_edge_var_map_clear (old_edge
);
2936 /* Returns the basic block after which the new basic block created
2937 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2938 near its "logical" location. This is of most help to humans looking
2939 at debugging dumps. */
2942 split_edge_bb_loc (edge edge_in
)
2944 basic_block dest
= edge_in
->dest
;
2945 basic_block dest_prev
= dest
->prev_bb
;
2949 edge e
= find_edge (dest_prev
, dest
);
2950 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2951 return edge_in
->src
;
2956 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2957 Abort on abnormal edges. */
2960 gimple_split_edge (edge edge_in
)
2962 basic_block new_bb
, after_bb
, dest
;
2965 /* Abnormal edges cannot be split. */
2966 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2968 dest
= edge_in
->dest
;
2970 after_bb
= split_edge_bb_loc (edge_in
);
2972 new_bb
= create_empty_bb (after_bb
);
2973 new_bb
->count
= edge_in
->count ();
2975 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2976 gcc_assert (e
== edge_in
);
2978 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2979 reinstall_phi_args (new_edge
, e
);
2985 /* Verify properties of the address expression T whose base should be
2986 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2989 verify_address (tree t
, bool verify_addressable
)
2992 bool old_side_effects
;
2994 bool new_side_effects
;
2996 old_constant
= TREE_CONSTANT (t
);
2997 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2999 recompute_tree_invariant_for_addr_expr (t
);
3000 new_side_effects
= TREE_SIDE_EFFECTS (t
);
3001 new_constant
= TREE_CONSTANT (t
);
3003 if (old_constant
!= new_constant
)
3005 error ("constant not recomputed when ADDR_EXPR changed");
3008 if (old_side_effects
!= new_side_effects
)
3010 error ("side effects not recomputed when ADDR_EXPR changed");
3014 tree base
= TREE_OPERAND (t
, 0);
3015 while (handled_component_p (base
))
3016 base
= TREE_OPERAND (base
, 0);
3019 || TREE_CODE (base
) == PARM_DECL
3020 || TREE_CODE (base
) == RESULT_DECL
))
3023 if (DECL_GIMPLE_REG_P (base
))
3025 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3029 if (verify_addressable
&& !TREE_ADDRESSABLE (base
))
3031 error ("address taken, but ADDRESSABLE bit not set");
3039 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3040 Returns true if there is an error, otherwise false. */
3043 verify_types_in_gimple_min_lval (tree expr
)
3047 if (is_gimple_id (expr
))
3050 if (TREE_CODE (expr
) != TARGET_MEM_REF
3051 && TREE_CODE (expr
) != MEM_REF
)
3053 error ("invalid expression for min lvalue");
3057 /* TARGET_MEM_REFs are strange beasts. */
3058 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3061 op
= TREE_OPERAND (expr
, 0);
3062 if (!is_gimple_val (op
))
3064 error ("invalid operand in indirect reference");
3065 debug_generic_stmt (op
);
3068 /* Memory references now generally can involve a value conversion. */
3073 /* Verify if EXPR is a valid GIMPLE reference expression. If
3074 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3075 if there is an error, otherwise false. */
3078 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3080 if (TREE_CODE (expr
) == REALPART_EXPR
3081 || TREE_CODE (expr
) == IMAGPART_EXPR
3082 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3084 tree op
= TREE_OPERAND (expr
, 0);
3085 if (!is_gimple_reg_type (TREE_TYPE (expr
)))
3087 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3091 if (TREE_CODE (expr
) == BIT_FIELD_REF
)
3093 tree t1
= TREE_OPERAND (expr
, 1);
3094 tree t2
= TREE_OPERAND (expr
, 2);
3095 poly_uint64 size
, bitpos
;
3096 if (!poly_int_tree_p (t1
, &size
)
3097 || !poly_int_tree_p (t2
, &bitpos
)
3098 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3099 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3101 error ("invalid position or size operand to BIT_FIELD_REF");
3104 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3105 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr
)), size
))
3107 error ("integral result type precision does not match "
3108 "field size of BIT_FIELD_REF");
3111 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3112 && TYPE_MODE (TREE_TYPE (expr
)) != BLKmode
3113 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
))),
3116 error ("mode size of non-integral result does not "
3117 "match field size of BIT_FIELD_REF");
3120 if (!AGGREGATE_TYPE_P (TREE_TYPE (op
))
3121 && maybe_gt (size
+ bitpos
,
3122 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op
)))))
3124 error ("position plus size exceeds size of referenced object in "
3130 if ((TREE_CODE (expr
) == REALPART_EXPR
3131 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3132 && !useless_type_conversion_p (TREE_TYPE (expr
),
3133 TREE_TYPE (TREE_TYPE (op
))))
3135 error ("type mismatch in real/imagpart reference");
3136 debug_generic_stmt (TREE_TYPE (expr
));
3137 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3143 while (handled_component_p (expr
))
3145 if (TREE_CODE (expr
) == REALPART_EXPR
3146 || TREE_CODE (expr
) == IMAGPART_EXPR
3147 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3149 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3153 tree op
= TREE_OPERAND (expr
, 0);
3155 if (TREE_CODE (expr
) == ARRAY_REF
3156 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3158 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3159 || (TREE_OPERAND (expr
, 2)
3160 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3161 || (TREE_OPERAND (expr
, 3)
3162 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3164 error ("invalid operands to array reference");
3165 debug_generic_stmt (expr
);
3170 /* Verify if the reference array element types are compatible. */
3171 if (TREE_CODE (expr
) == ARRAY_REF
3172 && !useless_type_conversion_p (TREE_TYPE (expr
),
3173 TREE_TYPE (TREE_TYPE (op
))))
3175 error ("type mismatch in array reference");
3176 debug_generic_stmt (TREE_TYPE (expr
));
3177 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3180 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3181 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3182 TREE_TYPE (TREE_TYPE (op
))))
3184 error ("type mismatch in array range reference");
3185 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3186 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3190 if (TREE_CODE (expr
) == COMPONENT_REF
)
3192 if (TREE_OPERAND (expr
, 2)
3193 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3195 error ("invalid COMPONENT_REF offset operator");
3198 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3199 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3201 error ("type mismatch in component reference");
3202 debug_generic_stmt (TREE_TYPE (expr
));
3203 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3208 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3210 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3211 that their operand is not an SSA name or an invariant when
3212 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3213 bug). Otherwise there is nothing to verify, gross mismatches at
3214 most invoke undefined behavior. */
3216 && (TREE_CODE (op
) == SSA_NAME
3217 || is_gimple_min_invariant (op
)))
3219 error ("conversion of an SSA_NAME on the left hand side");
3220 debug_generic_stmt (expr
);
3223 else if (TREE_CODE (op
) == SSA_NAME
3224 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3226 error ("conversion of register to a different size");
3227 debug_generic_stmt (expr
);
3230 else if (!handled_component_p (op
))
3237 if (TREE_CODE (expr
) == MEM_REF
)
3239 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0))
3240 || (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
3241 && verify_address (TREE_OPERAND (expr
, 0), false)))
3243 error ("invalid address operand in MEM_REF");
3244 debug_generic_stmt (expr
);
3247 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3248 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3250 error ("invalid offset operand in MEM_REF");
3251 debug_generic_stmt (expr
);
3255 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3257 if (!TMR_BASE (expr
)
3258 || !is_gimple_mem_ref_addr (TMR_BASE (expr
))
3259 || (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
3260 && verify_address (TMR_BASE (expr
), false)))
3262 error ("invalid address operand in TARGET_MEM_REF");
3265 if (!TMR_OFFSET (expr
)
3266 || !poly_int_tree_p (TMR_OFFSET (expr
))
3267 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3269 error ("invalid offset operand in TARGET_MEM_REF");
3270 debug_generic_stmt (expr
);
3274 else if (TREE_CODE (expr
) == INDIRECT_REF
)
3276 error ("INDIRECT_REF in gimple IL");
3277 debug_generic_stmt (expr
);
3281 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3282 && verify_types_in_gimple_min_lval (expr
));
3285 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3286 list of pointer-to types that is trivially convertible to DEST. */
3289 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3293 if (!TYPE_POINTER_TO (src_obj
))
3296 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3297 if (useless_type_conversion_p (dest
, src
))
3303 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3304 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3307 valid_fixed_convert_types_p (tree type1
, tree type2
)
3309 return (FIXED_POINT_TYPE_P (type1
)
3310 && (INTEGRAL_TYPE_P (type2
)
3311 || SCALAR_FLOAT_TYPE_P (type2
)
3312 || FIXED_POINT_TYPE_P (type2
)));
3315 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3316 is a problem, otherwise false. */
3319 verify_gimple_call (gcall
*stmt
)
3321 tree fn
= gimple_call_fn (stmt
);
3322 tree fntype
, fndecl
;
3325 if (gimple_call_internal_p (stmt
))
3329 error ("gimple call has two targets");
3330 debug_generic_stmt (fn
);
3333 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3334 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3343 error ("gimple call has no target");
3348 if (fn
&& !is_gimple_call_addr (fn
))
3350 error ("invalid function in gimple call");
3351 debug_generic_stmt (fn
);
3356 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3357 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3358 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3360 error ("non-function in gimple call");
3364 fndecl
= gimple_call_fndecl (stmt
);
3366 && TREE_CODE (fndecl
) == FUNCTION_DECL
3367 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3368 && !DECL_PURE_P (fndecl
)
3369 && !TREE_READONLY (fndecl
))
3371 error ("invalid pure const state for function");
3375 tree lhs
= gimple_call_lhs (stmt
);
3377 && (!is_gimple_lvalue (lhs
)
3378 || verify_types_in_gimple_reference (lhs
, true)))
3380 error ("invalid LHS in gimple call");
3384 if (gimple_call_ctrl_altering_p (stmt
)
3385 && gimple_call_noreturn_p (stmt
)
3386 && should_remove_lhs_p (lhs
))
3388 error ("LHS in noreturn call");
3392 fntype
= gimple_call_fntype (stmt
);
3395 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3396 /* ??? At least C++ misses conversions at assignments from
3397 void * call results.
3398 For now simply allow arbitrary pointer type conversions. */
3399 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3400 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3402 error ("invalid conversion in gimple call");
3403 debug_generic_stmt (TREE_TYPE (lhs
));
3404 debug_generic_stmt (TREE_TYPE (fntype
));
3408 if (gimple_call_chain (stmt
)
3409 && !is_gimple_val (gimple_call_chain (stmt
)))
3411 error ("invalid static chain in gimple call");
3412 debug_generic_stmt (gimple_call_chain (stmt
));
3416 /* If there is a static chain argument, the call should either be
3417 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3418 if (gimple_call_chain (stmt
)
3420 && !DECL_STATIC_CHAIN (fndecl
))
3422 error ("static chain with function that doesn%'t use one");
3426 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3428 switch (DECL_FUNCTION_CODE (fndecl
))
3430 case BUILT_IN_UNREACHABLE
:
3432 if (gimple_call_num_args (stmt
) > 0)
3434 /* Built-in unreachable with parameters might not be caught by
3435 undefined behavior sanitizer. Front-ends do check users do not
3436 call them that way but we also produce calls to
3437 __builtin_unreachable internally, for example when IPA figures
3438 out a call cannot happen in a legal program. In such cases,
3439 we must make sure arguments are stripped off. */
3440 error ("__builtin_unreachable or __builtin_trap call with "
3450 /* ??? The C frontend passes unpromoted arguments in case it
3451 didn't see a function declaration before the call. So for now
3452 leave the call arguments mostly unverified. Once we gimplify
3453 unit-at-a-time we have a chance to fix this. */
3455 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3457 tree arg
= gimple_call_arg (stmt
, i
);
3458 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3459 && !is_gimple_val (arg
))
3460 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3461 && !is_gimple_lvalue (arg
)))
3463 error ("invalid argument to gimple call");
3464 debug_generic_expr (arg
);
3472 /* Verifies the gimple comparison with the result type TYPE and
3473 the operands OP0 and OP1, comparison code is CODE. */
3476 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3478 tree op0_type
= TREE_TYPE (op0
);
3479 tree op1_type
= TREE_TYPE (op1
);
3481 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3483 error ("invalid operands in gimple comparison");
3487 /* For comparisons we do not have the operations type as the
3488 effective type the comparison is carried out in. Instead
3489 we require that either the first operand is trivially
3490 convertible into the second, or the other way around.
3491 Because we special-case pointers to void we allow
3492 comparisons of pointers with the same mode as well. */
3493 if (!useless_type_conversion_p (op0_type
, op1_type
)
3494 && !useless_type_conversion_p (op1_type
, op0_type
)
3495 && (!POINTER_TYPE_P (op0_type
)
3496 || !POINTER_TYPE_P (op1_type
)
3497 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3499 error ("mismatching comparison operand types");
3500 debug_generic_expr (op0_type
);
3501 debug_generic_expr (op1_type
);
3505 /* The resulting type of a comparison may be an effective boolean type. */
3506 if (INTEGRAL_TYPE_P (type
)
3507 && (TREE_CODE (type
) == BOOLEAN_TYPE
3508 || TYPE_PRECISION (type
) == 1))
3510 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3511 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3512 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3513 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3514 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3516 error ("unsupported operation or type for vector comparison"
3517 " returning a boolean");
3518 debug_generic_expr (op0_type
);
3519 debug_generic_expr (op1_type
);
3523 /* Or a boolean vector type with the same element count
3524 as the comparison operand types. */
3525 else if (TREE_CODE (type
) == VECTOR_TYPE
3526 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3528 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3529 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3531 error ("non-vector operands in vector comparison");
3532 debug_generic_expr (op0_type
);
3533 debug_generic_expr (op1_type
);
3537 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type
),
3538 TYPE_VECTOR_SUBPARTS (op0_type
)))
3540 error ("invalid vector comparison resulting type");
3541 debug_generic_expr (type
);
3547 error ("bogus comparison result type");
3548 debug_generic_expr (type
);
3555 /* Verify a gimple assignment statement STMT with an unary rhs.
3556 Returns true if anything is wrong. */
3559 verify_gimple_assign_unary (gassign
*stmt
)
3561 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3562 tree lhs
= gimple_assign_lhs (stmt
);
3563 tree lhs_type
= TREE_TYPE (lhs
);
3564 tree rhs1
= gimple_assign_rhs1 (stmt
);
3565 tree rhs1_type
= TREE_TYPE (rhs1
);
3567 if (!is_gimple_reg (lhs
))
3569 error ("non-register as LHS of unary operation");
3573 if (!is_gimple_val (rhs1
))
3575 error ("invalid operand in unary operation");
3579 /* First handle conversions. */
3584 /* Allow conversions from pointer type to integral type only if
3585 there is no sign or zero extension involved.
3586 For targets were the precision of ptrofftype doesn't match that
3587 of pointers we need to allow arbitrary conversions to ptrofftype. */
3588 if ((POINTER_TYPE_P (lhs_type
)
3589 && INTEGRAL_TYPE_P (rhs1_type
))
3590 || (POINTER_TYPE_P (rhs1_type
)
3591 && INTEGRAL_TYPE_P (lhs_type
)
3592 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3593 || ptrofftype_p (lhs_type
))))
3596 /* Allow conversion from integral to offset type and vice versa. */
3597 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3598 && INTEGRAL_TYPE_P (rhs1_type
))
3599 || (INTEGRAL_TYPE_P (lhs_type
)
3600 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3603 /* Otherwise assert we are converting between types of the
3605 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3607 error ("invalid types in nop conversion");
3608 debug_generic_expr (lhs_type
);
3609 debug_generic_expr (rhs1_type
);
3616 case ADDR_SPACE_CONVERT_EXPR
:
3618 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3619 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3620 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3622 error ("invalid types in address space conversion");
3623 debug_generic_expr (lhs_type
);
3624 debug_generic_expr (rhs1_type
);
3631 case FIXED_CONVERT_EXPR
:
3633 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3634 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3636 error ("invalid types in fixed-point conversion");
3637 debug_generic_expr (lhs_type
);
3638 debug_generic_expr (rhs1_type
);
3647 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3648 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3649 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3651 error ("invalid types in conversion to floating point");
3652 debug_generic_expr (lhs_type
);
3653 debug_generic_expr (rhs1_type
);
3660 case FIX_TRUNC_EXPR
:
3662 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3663 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3664 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3666 error ("invalid types in conversion to integer");
3667 debug_generic_expr (lhs_type
);
3668 debug_generic_expr (rhs1_type
);
3675 case VEC_UNPACK_HI_EXPR
:
3676 case VEC_UNPACK_LO_EXPR
:
3677 case VEC_UNPACK_FLOAT_HI_EXPR
:
3678 case VEC_UNPACK_FLOAT_LO_EXPR
:
3689 case VEC_DUPLICATE_EXPR
:
3690 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3691 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3693 error ("vec_duplicate should be from a scalar to a like vector");
3694 debug_generic_expr (lhs_type
);
3695 debug_generic_expr (rhs1_type
);
3704 /* For the remaining codes assert there is no conversion involved. */
3705 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3707 error ("non-trivial conversion in unary operation");
3708 debug_generic_expr (lhs_type
);
3709 debug_generic_expr (rhs1_type
);
3716 /* Verify a gimple assignment statement STMT with a binary rhs.
3717 Returns true if anything is wrong. */
3720 verify_gimple_assign_binary (gassign
*stmt
)
3722 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3723 tree lhs
= gimple_assign_lhs (stmt
);
3724 tree lhs_type
= TREE_TYPE (lhs
);
3725 tree rhs1
= gimple_assign_rhs1 (stmt
);
3726 tree rhs1_type
= TREE_TYPE (rhs1
);
3727 tree rhs2
= gimple_assign_rhs2 (stmt
);
3728 tree rhs2_type
= TREE_TYPE (rhs2
);
3730 if (!is_gimple_reg (lhs
))
3732 error ("non-register as LHS of binary operation");
3736 if (!is_gimple_val (rhs1
)
3737 || !is_gimple_val (rhs2
))
3739 error ("invalid operands in binary operation");
3743 /* First handle operations that involve different types. */
3748 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3749 || !(INTEGRAL_TYPE_P (rhs1_type
)
3750 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3751 || !(INTEGRAL_TYPE_P (rhs2_type
)
3752 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3754 error ("type mismatch in complex expression");
3755 debug_generic_expr (lhs_type
);
3756 debug_generic_expr (rhs1_type
);
3757 debug_generic_expr (rhs2_type
);
3769 /* Shifts and rotates are ok on integral types, fixed point
3770 types and integer vector types. */
3771 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3772 && !FIXED_POINT_TYPE_P (rhs1_type
)
3773 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3774 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3775 || (!INTEGRAL_TYPE_P (rhs2_type
)
3776 /* Vector shifts of vectors are also ok. */
3777 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3778 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3779 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3780 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3781 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3783 error ("type mismatch in shift expression");
3784 debug_generic_expr (lhs_type
);
3785 debug_generic_expr (rhs1_type
);
3786 debug_generic_expr (rhs2_type
);
3793 case WIDEN_LSHIFT_EXPR
:
3795 if (!INTEGRAL_TYPE_P (lhs_type
)
3796 || !INTEGRAL_TYPE_P (rhs1_type
)
3797 || TREE_CODE (rhs2
) != INTEGER_CST
3798 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3800 error ("type mismatch in widening vector shift expression");
3801 debug_generic_expr (lhs_type
);
3802 debug_generic_expr (rhs1_type
);
3803 debug_generic_expr (rhs2_type
);
3810 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3811 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3813 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3814 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3815 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3816 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3817 || TREE_CODE (rhs2
) != INTEGER_CST
3818 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3819 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3821 error ("type mismatch in widening vector shift expression");
3822 debug_generic_expr (lhs_type
);
3823 debug_generic_expr (rhs1_type
);
3824 debug_generic_expr (rhs2_type
);
3834 tree lhs_etype
= lhs_type
;
3835 tree rhs1_etype
= rhs1_type
;
3836 tree rhs2_etype
= rhs2_type
;
3837 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3839 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3840 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3842 error ("invalid non-vector operands to vector valued plus");
3845 lhs_etype
= TREE_TYPE (lhs_type
);
3846 rhs1_etype
= TREE_TYPE (rhs1_type
);
3847 rhs2_etype
= TREE_TYPE (rhs2_type
);
3849 if (POINTER_TYPE_P (lhs_etype
)
3850 || POINTER_TYPE_P (rhs1_etype
)
3851 || POINTER_TYPE_P (rhs2_etype
))
3853 error ("invalid (pointer) operands to plus/minus");
3857 /* Continue with generic binary expression handling. */
3861 case POINTER_PLUS_EXPR
:
3863 if (!POINTER_TYPE_P (rhs1_type
)
3864 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3865 || !ptrofftype_p (rhs2_type
))
3867 error ("type mismatch in pointer plus expression");
3868 debug_generic_stmt (lhs_type
);
3869 debug_generic_stmt (rhs1_type
);
3870 debug_generic_stmt (rhs2_type
);
3877 case POINTER_DIFF_EXPR
:
3879 if (!POINTER_TYPE_P (rhs1_type
)
3880 || !POINTER_TYPE_P (rhs2_type
)
3881 /* Because we special-case pointers to void we allow difference
3882 of arbitrary pointers with the same mode. */
3883 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
3884 || TREE_CODE (lhs_type
) != INTEGER_TYPE
3885 || TYPE_UNSIGNED (lhs_type
)
3886 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
3888 error ("type mismatch in pointer diff expression");
3889 debug_generic_stmt (lhs_type
);
3890 debug_generic_stmt (rhs1_type
);
3891 debug_generic_stmt (rhs2_type
);
3898 case TRUTH_ANDIF_EXPR
:
3899 case TRUTH_ORIF_EXPR
:
3900 case TRUTH_AND_EXPR
:
3902 case TRUTH_XOR_EXPR
:
3912 case UNORDERED_EXPR
:
3920 /* Comparisons are also binary, but the result type is not
3921 connected to the operand types. */
3922 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
3924 case WIDEN_MULT_EXPR
:
3925 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3927 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3928 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3930 case WIDEN_SUM_EXPR
:
3932 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
3933 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
3934 && ((!INTEGRAL_TYPE_P (rhs1_type
)
3935 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3936 || (!INTEGRAL_TYPE_P (lhs_type
)
3937 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
3938 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3939 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type
)),
3940 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
3942 error ("type mismatch in widening sum reduction");
3943 debug_generic_expr (lhs_type
);
3944 debug_generic_expr (rhs1_type
);
3945 debug_generic_expr (rhs2_type
);
3951 case VEC_WIDEN_MULT_HI_EXPR
:
3952 case VEC_WIDEN_MULT_LO_EXPR
:
3953 case VEC_WIDEN_MULT_EVEN_EXPR
:
3954 case VEC_WIDEN_MULT_ODD_EXPR
:
3956 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3957 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3958 || !types_compatible_p (rhs1_type
, rhs2_type
)
3959 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
3960 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
3962 error ("type mismatch in vector widening multiplication");
3963 debug_generic_expr (lhs_type
);
3964 debug_generic_expr (rhs1_type
);
3965 debug_generic_expr (rhs2_type
);
3971 case VEC_PACK_TRUNC_EXPR
:
3972 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
3973 vector boolean types. */
3974 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
3975 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
3976 && types_compatible_p (rhs1_type
, rhs2_type
)
3977 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
3978 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3982 case VEC_PACK_SAT_EXPR
:
3983 case VEC_PACK_FIX_TRUNC_EXPR
:
3985 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3986 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3987 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
3988 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
3989 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
3990 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3991 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
3992 || !types_compatible_p (rhs1_type
, rhs2_type
)
3993 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
3994 2 * GET_MODE_SIZE (element_mode (lhs_type
))))
3996 error ("type mismatch in vector pack expression");
3997 debug_generic_expr (lhs_type
);
3998 debug_generic_expr (rhs1_type
);
3999 debug_generic_expr (rhs2_type
);
4007 case MULT_HIGHPART_EXPR
:
4008 case TRUNC_DIV_EXPR
:
4010 case FLOOR_DIV_EXPR
:
4011 case ROUND_DIV_EXPR
:
4012 case TRUNC_MOD_EXPR
:
4014 case FLOOR_MOD_EXPR
:
4015 case ROUND_MOD_EXPR
:
4017 case EXACT_DIV_EXPR
:
4023 /* Continue with generic binary expression handling. */
4026 case VEC_SERIES_EXPR
:
4027 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4029 error ("type mismatch in series expression");
4030 debug_generic_expr (rhs1_type
);
4031 debug_generic_expr (rhs2_type
);
4034 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4035 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4037 error ("vector type expected in series expression");
4038 debug_generic_expr (lhs_type
);
4047 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4048 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4050 error ("type mismatch in binary expression");
4051 debug_generic_stmt (lhs_type
);
4052 debug_generic_stmt (rhs1_type
);
4053 debug_generic_stmt (rhs2_type
);
4060 /* Verify a gimple assignment statement STMT with a ternary rhs.
4061 Returns true if anything is wrong. */
4064 verify_gimple_assign_ternary (gassign
*stmt
)
4066 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4067 tree lhs
= gimple_assign_lhs (stmt
);
4068 tree lhs_type
= TREE_TYPE (lhs
);
4069 tree rhs1
= gimple_assign_rhs1 (stmt
);
4070 tree rhs1_type
= TREE_TYPE (rhs1
);
4071 tree rhs2
= gimple_assign_rhs2 (stmt
);
4072 tree rhs2_type
= TREE_TYPE (rhs2
);
4073 tree rhs3
= gimple_assign_rhs3 (stmt
);
4074 tree rhs3_type
= TREE_TYPE (rhs3
);
4076 if (!is_gimple_reg (lhs
))
4078 error ("non-register as LHS of ternary operation");
4082 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4083 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4084 || !is_gimple_val (rhs2
)
4085 || !is_gimple_val (rhs3
))
4087 error ("invalid operands in ternary operation");
4091 /* First handle operations that involve different types. */
4094 case WIDEN_MULT_PLUS_EXPR
:
4095 case WIDEN_MULT_MINUS_EXPR
:
4096 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4097 && !FIXED_POINT_TYPE_P (rhs1_type
))
4098 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4099 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4100 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4101 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4103 error ("type mismatch in widening multiply-accumulate expression");
4104 debug_generic_expr (lhs_type
);
4105 debug_generic_expr (rhs1_type
);
4106 debug_generic_expr (rhs2_type
);
4107 debug_generic_expr (rhs3_type
);
4113 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4114 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4115 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4117 error ("the first argument of a VEC_COND_EXPR must be of a "
4118 "boolean vector type of the same number of elements "
4120 debug_generic_expr (lhs_type
);
4121 debug_generic_expr (rhs1_type
);
4126 if (!is_gimple_val (rhs1
)
4127 && verify_gimple_comparison (TREE_TYPE (rhs1
),
4128 TREE_OPERAND (rhs1
, 0),
4129 TREE_OPERAND (rhs1
, 1),
4132 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4133 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4135 error ("type mismatch in conditional expression");
4136 debug_generic_expr (lhs_type
);
4137 debug_generic_expr (rhs2_type
);
4138 debug_generic_expr (rhs3_type
);
4144 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4145 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4147 error ("type mismatch in vector permute expression");
4148 debug_generic_expr (lhs_type
);
4149 debug_generic_expr (rhs1_type
);
4150 debug_generic_expr (rhs2_type
);
4151 debug_generic_expr (rhs3_type
);
4155 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4156 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4157 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4159 error ("vector types expected in vector permute expression");
4160 debug_generic_expr (lhs_type
);
4161 debug_generic_expr (rhs1_type
);
4162 debug_generic_expr (rhs2_type
);
4163 debug_generic_expr (rhs3_type
);
4167 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4168 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4169 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type
),
4170 TYPE_VECTOR_SUBPARTS (rhs3_type
))
4171 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type
),
4172 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4174 error ("vectors with different element number found "
4175 "in vector permute expression");
4176 debug_generic_expr (lhs_type
);
4177 debug_generic_expr (rhs1_type
);
4178 debug_generic_expr (rhs2_type
);
4179 debug_generic_expr (rhs3_type
);
4183 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4184 || (TREE_CODE (rhs3
) != VECTOR_CST
4185 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4186 (TREE_TYPE (rhs3_type
)))
4187 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4188 (TREE_TYPE (rhs1_type
))))))
4190 error ("invalid mask type in vector permute expression");
4191 debug_generic_expr (lhs_type
);
4192 debug_generic_expr (rhs1_type
);
4193 debug_generic_expr (rhs2_type
);
4194 debug_generic_expr (rhs3_type
);
4201 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4202 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4203 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4204 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4206 error ("type mismatch in sad expression");
4207 debug_generic_expr (lhs_type
);
4208 debug_generic_expr (rhs1_type
);
4209 debug_generic_expr (rhs2_type
);
4210 debug_generic_expr (rhs3_type
);
4214 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4215 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4216 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4218 error ("vector types expected in sad expression");
4219 debug_generic_expr (lhs_type
);
4220 debug_generic_expr (rhs1_type
);
4221 debug_generic_expr (rhs2_type
);
4222 debug_generic_expr (rhs3_type
);
4228 case BIT_INSERT_EXPR
:
4229 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4231 error ("type mismatch in BIT_INSERT_EXPR");
4232 debug_generic_expr (lhs_type
);
4233 debug_generic_expr (rhs1_type
);
4236 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4237 && INTEGRAL_TYPE_P (rhs2_type
))
4238 || (VECTOR_TYPE_P (rhs1_type
)
4239 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4241 error ("not allowed type combination in BIT_INSERT_EXPR");
4242 debug_generic_expr (rhs1_type
);
4243 debug_generic_expr (rhs2_type
);
4246 if (! tree_fits_uhwi_p (rhs3
)
4247 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4248 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4250 error ("invalid position or size in BIT_INSERT_EXPR");
4253 if (INTEGRAL_TYPE_P (rhs1_type
))
4255 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4256 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4257 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4258 > TYPE_PRECISION (rhs1_type
)))
4260 error ("insertion out of range in BIT_INSERT_EXPR");
4264 else if (VECTOR_TYPE_P (rhs1_type
))
4266 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4267 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4268 if (bitpos
% bitsize
!= 0)
4270 error ("vector insertion not at element boundary");
4278 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4279 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4280 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4281 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4282 || (!INTEGRAL_TYPE_P (lhs_type
)
4283 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4284 || !types_compatible_p (rhs1_type
, rhs2_type
)
4285 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4286 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type
)),
4287 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4289 error ("type mismatch in dot product reduction");
4290 debug_generic_expr (lhs_type
);
4291 debug_generic_expr (rhs1_type
);
4292 debug_generic_expr (rhs2_type
);
4298 case REALIGN_LOAD_EXPR
:
4308 /* Verify a gimple assignment statement STMT with a single rhs.
4309 Returns true if anything is wrong. */
4312 verify_gimple_assign_single (gassign
*stmt
)
4314 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4315 tree lhs
= gimple_assign_lhs (stmt
);
4316 tree lhs_type
= TREE_TYPE (lhs
);
4317 tree rhs1
= gimple_assign_rhs1 (stmt
);
4318 tree rhs1_type
= TREE_TYPE (rhs1
);
4321 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4323 error ("non-trivial conversion at assignment");
4324 debug_generic_expr (lhs_type
);
4325 debug_generic_expr (rhs1_type
);
4329 if (gimple_clobber_p (stmt
)
4330 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4332 error ("non-decl/MEM_REF LHS in clobber statement");
4333 debug_generic_expr (lhs
);
4337 if (handled_component_p (lhs
)
4338 || TREE_CODE (lhs
) == MEM_REF
4339 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4340 res
|= verify_types_in_gimple_reference (lhs
, true);
4342 /* Special codes we cannot handle via their class. */
4347 tree op
= TREE_OPERAND (rhs1
, 0);
4348 if (!is_gimple_addressable (op
))
4350 error ("invalid operand in unary expression");
4354 /* Technically there is no longer a need for matching types, but
4355 gimple hygiene asks for this check. In LTO we can end up
4356 combining incompatible units and thus end up with addresses
4357 of globals that change their type to a common one. */
4359 && !types_compatible_p (TREE_TYPE (op
),
4360 TREE_TYPE (TREE_TYPE (rhs1
)))
4361 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4364 error ("type mismatch in address expression");
4365 debug_generic_stmt (TREE_TYPE (rhs1
));
4366 debug_generic_stmt (TREE_TYPE (op
));
4370 return (verify_address (rhs1
, true)
4371 || verify_types_in_gimple_reference (op
, true));
4376 error ("INDIRECT_REF in gimple IL");
4382 case ARRAY_RANGE_REF
:
4383 case VIEW_CONVERT_EXPR
:
4386 case TARGET_MEM_REF
:
4388 if (!is_gimple_reg (lhs
)
4389 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4391 error ("invalid rhs for gimple memory store");
4392 debug_generic_stmt (lhs
);
4393 debug_generic_stmt (rhs1
);
4396 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4408 /* tcc_declaration */
4413 if (!is_gimple_reg (lhs
)
4414 && !is_gimple_reg (rhs1
)
4415 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4417 error ("invalid rhs for gimple memory store");
4418 debug_generic_stmt (lhs
);
4419 debug_generic_stmt (rhs1
);
4425 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4428 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4430 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4432 /* For vector CONSTRUCTORs we require that either it is empty
4433 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4434 (then the element count must be correct to cover the whole
4435 outer vector and index must be NULL on all elements, or it is
4436 a CONSTRUCTOR of scalar elements, where we as an exception allow
4437 smaller number of elements (assuming zero filling) and
4438 consecutive indexes as compared to NULL indexes (such
4439 CONSTRUCTORs can appear in the IL from FEs). */
4440 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4442 if (elt_t
== NULL_TREE
)
4444 elt_t
= TREE_TYPE (elt_v
);
4445 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4447 tree elt_t
= TREE_TYPE (elt_v
);
4448 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4451 error ("incorrect type of vector CONSTRUCTOR"
4453 debug_generic_stmt (rhs1
);
4456 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1
)
4457 * TYPE_VECTOR_SUBPARTS (elt_t
),
4458 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4460 error ("incorrect number of vector CONSTRUCTOR"
4462 debug_generic_stmt (rhs1
);
4466 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4469 error ("incorrect type of vector CONSTRUCTOR elements");
4470 debug_generic_stmt (rhs1
);
4473 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1
),
4474 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4476 error ("incorrect number of vector CONSTRUCTOR elements");
4477 debug_generic_stmt (rhs1
);
4481 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4483 error ("incorrect type of vector CONSTRUCTOR elements");
4484 debug_generic_stmt (rhs1
);
4487 if (elt_i
!= NULL_TREE
4488 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4489 || TREE_CODE (elt_i
) != INTEGER_CST
4490 || compare_tree_int (elt_i
, i
) != 0))
4492 error ("vector CONSTRUCTOR with non-NULL element index");
4493 debug_generic_stmt (rhs1
);
4496 if (!is_gimple_val (elt_v
))
4498 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4499 debug_generic_stmt (rhs1
);
4504 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4506 error ("non-vector CONSTRUCTOR with elements");
4507 debug_generic_stmt (rhs1
);
4514 rhs1
= fold (ASSERT_EXPR_COND (rhs1
));
4515 if (rhs1
== boolean_false_node
)
4517 error ("ASSERT_EXPR with an always-false condition");
4518 debug_generic_stmt (rhs1
);
4524 case WITH_SIZE_EXPR
:
4534 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4535 is a problem, otherwise false. */
4538 verify_gimple_assign (gassign
*stmt
)
4540 switch (gimple_assign_rhs_class (stmt
))
4542 case GIMPLE_SINGLE_RHS
:
4543 return verify_gimple_assign_single (stmt
);
4545 case GIMPLE_UNARY_RHS
:
4546 return verify_gimple_assign_unary (stmt
);
4548 case GIMPLE_BINARY_RHS
:
4549 return verify_gimple_assign_binary (stmt
);
4551 case GIMPLE_TERNARY_RHS
:
4552 return verify_gimple_assign_ternary (stmt
);
4559 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4560 is a problem, otherwise false. */
4563 verify_gimple_return (greturn
*stmt
)
4565 tree op
= gimple_return_retval (stmt
);
4566 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4568 /* We cannot test for present return values as we do not fix up missing
4569 return values from the original source. */
4573 if (!is_gimple_val (op
)
4574 && TREE_CODE (op
) != RESULT_DECL
)
4576 error ("invalid operand in return statement");
4577 debug_generic_stmt (op
);
4581 if ((TREE_CODE (op
) == RESULT_DECL
4582 && DECL_BY_REFERENCE (op
))
4583 || (TREE_CODE (op
) == SSA_NAME
4584 && SSA_NAME_VAR (op
)
4585 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4586 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4587 op
= TREE_TYPE (op
);
4589 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4591 error ("invalid conversion in return statement");
4592 debug_generic_stmt (restype
);
4593 debug_generic_stmt (TREE_TYPE (op
));
4601 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4602 is a problem, otherwise false. */
4605 verify_gimple_goto (ggoto
*stmt
)
4607 tree dest
= gimple_goto_dest (stmt
);
4609 /* ??? We have two canonical forms of direct goto destinations, a
4610 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4611 if (TREE_CODE (dest
) != LABEL_DECL
4612 && (!is_gimple_val (dest
)
4613 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4615 error ("goto destination is neither a label nor a pointer");
4622 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4623 is a problem, otherwise false. */
4626 verify_gimple_switch (gswitch
*stmt
)
4629 tree elt
, prev_upper_bound
= NULL_TREE
;
4630 tree index_type
, elt_type
= NULL_TREE
;
4632 if (!is_gimple_val (gimple_switch_index (stmt
)))
4634 error ("invalid operand to switch statement");
4635 debug_generic_stmt (gimple_switch_index (stmt
));
4639 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4640 if (! INTEGRAL_TYPE_P (index_type
))
4642 error ("non-integral type switch statement");
4643 debug_generic_expr (index_type
);
4647 elt
= gimple_switch_label (stmt
, 0);
4648 if (CASE_LOW (elt
) != NULL_TREE
4649 || CASE_HIGH (elt
) != NULL_TREE
4650 || CASE_CHAIN (elt
) != NULL_TREE
)
4652 error ("invalid default case label in switch statement");
4653 debug_generic_expr (elt
);
4657 n
= gimple_switch_num_labels (stmt
);
4658 for (i
= 1; i
< n
; i
++)
4660 elt
= gimple_switch_label (stmt
, i
);
4662 if (CASE_CHAIN (elt
))
4664 error ("invalid CASE_CHAIN");
4665 debug_generic_expr (elt
);
4668 if (! CASE_LOW (elt
))
4670 error ("invalid case label in switch statement");
4671 debug_generic_expr (elt
);
4675 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4677 error ("invalid case range in switch statement");
4678 debug_generic_expr (elt
);
4684 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4685 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4687 error ("type mismatch for case label in switch statement");
4688 debug_generic_expr (elt
);
4694 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4695 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4697 error ("type precision mismatch in switch statement");
4702 if (prev_upper_bound
)
4704 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4706 error ("case labels not sorted in switch statement");
4711 prev_upper_bound
= CASE_HIGH (elt
);
4712 if (! prev_upper_bound
)
4713 prev_upper_bound
= CASE_LOW (elt
);
4719 /* Verify a gimple debug statement STMT.
4720 Returns true if anything is wrong. */
4723 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4725 /* There isn't much that could be wrong in a gimple debug stmt. A
4726 gimple debug bind stmt, for example, maps a tree, that's usually
4727 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4728 component or member of an aggregate type, to another tree, that
4729 can be an arbitrary expression. These stmts expand into debug
4730 insns, and are converted to debug notes by var-tracking.c. */
4734 /* Verify a gimple label statement STMT.
4735 Returns true if anything is wrong. */
4738 verify_gimple_label (glabel
*stmt
)
4740 tree decl
= gimple_label_label (stmt
);
4744 if (TREE_CODE (decl
) != LABEL_DECL
)
4746 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4747 && DECL_CONTEXT (decl
) != current_function_decl
)
4749 error ("label's context is not the current function decl");
4753 uid
= LABEL_DECL_UID (decl
);
4756 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4758 error ("incorrect entry in label_to_block_map");
4762 uid
= EH_LANDING_PAD_NR (decl
);
4765 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4766 if (decl
!= lp
->post_landing_pad
)
4768 error ("incorrect setting of landing pad number");
4776 /* Verify a gimple cond statement STMT.
4777 Returns true if anything is wrong. */
4780 verify_gimple_cond (gcond
*stmt
)
4782 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4784 error ("invalid comparison code in gimple cond");
4787 if (!(!gimple_cond_true_label (stmt
)
4788 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4789 || !(!gimple_cond_false_label (stmt
)
4790 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4792 error ("invalid labels in gimple cond");
4796 return verify_gimple_comparison (boolean_type_node
,
4797 gimple_cond_lhs (stmt
),
4798 gimple_cond_rhs (stmt
),
4799 gimple_cond_code (stmt
));
4802 /* Verify the GIMPLE statement STMT. Returns true if there is an
4803 error, otherwise false. */
4806 verify_gimple_stmt (gimple
*stmt
)
4808 switch (gimple_code (stmt
))
4811 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4814 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4817 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4820 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4823 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4826 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4829 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4834 case GIMPLE_TRANSACTION
:
4835 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4837 /* Tuples that do not have tree operands. */
4839 case GIMPLE_PREDICT
:
4841 case GIMPLE_EH_DISPATCH
:
4842 case GIMPLE_EH_MUST_NOT_THROW
:
4846 /* OpenMP directives are validated by the FE and never operated
4847 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4848 non-gimple expressions when the main index variable has had
4849 its address taken. This does not affect the loop itself
4850 because the header of an GIMPLE_OMP_FOR is merely used to determine
4851 how to setup the parallel iteration. */
4855 return verify_gimple_debug (stmt
);
4862 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4863 and false otherwise. */
4866 verify_gimple_phi (gphi
*phi
)
4870 tree phi_result
= gimple_phi_result (phi
);
4875 error ("invalid PHI result");
4879 virtual_p
= virtual_operand_p (phi_result
);
4880 if (TREE_CODE (phi_result
) != SSA_NAME
4882 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4884 error ("invalid PHI result");
4888 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4890 tree t
= gimple_phi_arg_def (phi
, i
);
4894 error ("missing PHI def");
4898 /* Addressable variables do have SSA_NAMEs but they
4899 are not considered gimple values. */
4900 else if ((TREE_CODE (t
) == SSA_NAME
4901 && virtual_p
!= virtual_operand_p (t
))
4903 && (TREE_CODE (t
) != SSA_NAME
4904 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4906 && !is_gimple_val (t
)))
4908 error ("invalid PHI argument");
4909 debug_generic_expr (t
);
4912 #ifdef ENABLE_TYPES_CHECKING
4913 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4915 error ("incompatible types in PHI argument %u", i
);
4916 debug_generic_stmt (TREE_TYPE (phi_result
));
4917 debug_generic_stmt (TREE_TYPE (t
));
4926 /* Verify the GIMPLE statements inside the sequence STMTS. */
4929 verify_gimple_in_seq_2 (gimple_seq stmts
)
4931 gimple_stmt_iterator ittr
;
4934 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4936 gimple
*stmt
= gsi_stmt (ittr
);
4938 switch (gimple_code (stmt
))
4941 err
|= verify_gimple_in_seq_2 (
4942 gimple_bind_body (as_a
<gbind
*> (stmt
)));
4946 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4947 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4950 case GIMPLE_EH_FILTER
:
4951 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4954 case GIMPLE_EH_ELSE
:
4956 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
4957 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
4958 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
4963 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
4964 as_a
<gcatch
*> (stmt
)));
4967 case GIMPLE_TRANSACTION
:
4968 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4973 bool err2
= verify_gimple_stmt (stmt
);
4975 debug_gimple_stmt (stmt
);
4984 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4985 is a problem, otherwise false. */
4988 verify_gimple_transaction (gtransaction
*stmt
)
4992 lab
= gimple_transaction_label_norm (stmt
);
4993 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4995 lab
= gimple_transaction_label_uninst (stmt
);
4996 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4998 lab
= gimple_transaction_label_over (stmt
);
4999 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5002 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5006 /* Verify the GIMPLE statements inside the statement list STMTS. */
5009 verify_gimple_in_seq (gimple_seq stmts
)
5011 timevar_push (TV_TREE_STMT_VERIFY
);
5012 if (verify_gimple_in_seq_2 (stmts
))
5013 internal_error ("verify_gimple failed");
5014 timevar_pop (TV_TREE_STMT_VERIFY
);
5017 /* Return true when the T can be shared. */
5020 tree_node_can_be_shared (tree t
)
5022 if (IS_TYPE_OR_DECL_P (t
)
5023 || TREE_CODE (t
) == SSA_NAME
5024 || TREE_CODE (t
) == IDENTIFIER_NODE
5025 || TREE_CODE (t
) == CASE_LABEL_EXPR
5026 || is_gimple_min_invariant (t
))
5029 if (t
== error_mark_node
)
5035 /* Called via walk_tree. Verify tree sharing. */
5038 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5040 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5042 if (tree_node_can_be_shared (*tp
))
5044 *walk_subtrees
= false;
5048 if (visited
->add (*tp
))
5054 /* Called via walk_gimple_stmt. Verify tree sharing. */
5057 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5059 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5060 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5063 static bool eh_error_found
;
5065 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5066 hash_set
<gimple
*> *visited
)
5068 if (!visited
->contains (stmt
))
5070 error ("dead STMT in EH table");
5071 debug_gimple_stmt (stmt
);
5072 eh_error_found
= true;
5077 /* Verify if the location LOCs block is in BLOCKS. */
5080 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5082 tree block
= LOCATION_BLOCK (loc
);
5083 if (block
!= NULL_TREE
5084 && !blocks
->contains (block
))
5086 error ("location references block not in block tree");
5089 if (block
!= NULL_TREE
)
5090 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5094 /* Called via walk_tree. Verify that expressions have no blocks. */
5097 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5101 *walk_subtrees
= false;
5105 location_t loc
= EXPR_LOCATION (*tp
);
5106 if (LOCATION_BLOCK (loc
) != NULL
)
5112 /* Called via walk_tree. Verify locations of expressions. */
5115 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5117 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5120 /* ??? This doesn't really belong here but there's no good place to
5121 stick this remainder of old verify_expr. */
5122 /* ??? This barfs on debug stmts which contain binds to vars with
5123 different function context. */
5126 || TREE_CODE (t
) == PARM_DECL
5127 || TREE_CODE (t
) == RESULT_DECL
)
5129 tree context
= decl_function_context (t
);
5130 if (context
!= cfun
->decl
5131 && !SCOPE_FILE_SCOPE_P (context
)
5133 && !DECL_EXTERNAL (t
))
5135 error ("local declaration from a different function");
5141 if (VAR_P (t
) && DECL_HAS_DEBUG_EXPR_P (t
))
5143 tree x
= DECL_DEBUG_EXPR (t
);
5144 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5149 || TREE_CODE (t
) == PARM_DECL
5150 || TREE_CODE (t
) == RESULT_DECL
)
5151 && DECL_HAS_VALUE_EXPR_P (t
))
5153 tree x
= DECL_VALUE_EXPR (t
);
5154 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5161 *walk_subtrees
= false;
5165 location_t loc
= EXPR_LOCATION (t
);
5166 if (verify_location (blocks
, loc
))
5172 /* Called via walk_gimple_op. Verify locations of expressions. */
5175 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5177 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5178 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5181 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5184 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5187 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5190 collect_subblocks (blocks
, t
);
5194 /* Verify the GIMPLE statements in the CFG of FN. */
5197 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5202 timevar_push (TV_TREE_STMT_VERIFY
);
5203 hash_set
<void *> visited
;
5204 hash_set
<gimple
*> visited_throwing_stmts
;
5206 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5207 hash_set
<tree
> blocks
;
5208 if (DECL_INITIAL (fn
->decl
))
5210 blocks
.add (DECL_INITIAL (fn
->decl
));
5211 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5214 FOR_EACH_BB_FN (bb
, fn
)
5216 gimple_stmt_iterator gsi
;
5218 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5222 gphi
*phi
= gpi
.phi ();
5226 if (gimple_bb (phi
) != bb
)
5228 error ("gimple_bb (phi) is set to a wrong basic block");
5232 err2
|= verify_gimple_phi (phi
);
5234 /* Only PHI arguments have locations. */
5235 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5237 error ("PHI node with location");
5241 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5243 tree arg
= gimple_phi_arg_def (phi
, i
);
5244 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5248 error ("incorrect sharing of tree nodes");
5249 debug_generic_expr (addr
);
5252 location_t loc
= gimple_phi_arg_location (phi
, i
);
5253 if (virtual_operand_p (gimple_phi_result (phi
))
5254 && loc
!= UNKNOWN_LOCATION
)
5256 error ("virtual PHI with argument locations");
5259 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5262 debug_generic_expr (addr
);
5265 err2
|= verify_location (&blocks
, loc
);
5269 debug_gimple_stmt (phi
);
5273 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5275 gimple
*stmt
= gsi_stmt (gsi
);
5277 struct walk_stmt_info wi
;
5281 if (gimple_bb (stmt
) != bb
)
5283 error ("gimple_bb (stmt) is set to a wrong basic block");
5287 err2
|= verify_gimple_stmt (stmt
);
5288 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5290 memset (&wi
, 0, sizeof (wi
));
5291 wi
.info
= (void *) &visited
;
5292 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5295 error ("incorrect sharing of tree nodes");
5296 debug_generic_expr (addr
);
5300 memset (&wi
, 0, sizeof (wi
));
5301 wi
.info
= (void *) &blocks
;
5302 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5305 debug_generic_expr (addr
);
5309 /* If the statement is marked as part of an EH region, then it is
5310 expected that the statement could throw. Verify that when we
5311 have optimizations that simplify statements such that we prove
5312 that they cannot throw, that we update other data structures
5314 lp_nr
= lookup_stmt_eh_lp (stmt
);
5316 visited_throwing_stmts
.add (stmt
);
5319 if (!stmt_could_throw_p (stmt
))
5323 error ("statement marked for throw, but doesn%'t");
5327 else if (!gsi_one_before_end_p (gsi
))
5329 error ("statement marked for throw in middle of block");
5335 debug_gimple_stmt (stmt
);
5340 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5341 eh_error_found
= false;
5343 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5344 (&visited_throwing_stmts
);
5346 if (err
|| eh_error_found
)
5347 internal_error ("verify_gimple failed");
5349 verify_histograms ();
5350 timevar_pop (TV_TREE_STMT_VERIFY
);
5354 /* Verifies that the flow information is OK. */
5357 gimple_verify_flow_info (void)
5361 gimple_stmt_iterator gsi
;
5366 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5367 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5369 error ("ENTRY_BLOCK has IL associated with it");
5373 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5374 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5376 error ("EXIT_BLOCK has IL associated with it");
5380 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5381 if (e
->flags
& EDGE_FALLTHRU
)
5383 error ("fallthru to exit from bb %d", e
->src
->index
);
5387 FOR_EACH_BB_FN (bb
, cfun
)
5389 bool found_ctrl_stmt
= false;
5393 /* Skip labels on the start of basic block. */
5394 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5397 gimple
*prev_stmt
= stmt
;
5399 stmt
= gsi_stmt (gsi
);
5401 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5404 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5405 if (prev_stmt
&& DECL_NONLOCAL (label
))
5407 error ("nonlocal label ");
5408 print_generic_expr (stderr
, label
);
5409 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5414 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5416 error ("EH landing pad label ");
5417 print_generic_expr (stderr
, label
);
5418 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5423 if (label_to_block (label
) != bb
)
5426 print_generic_expr (stderr
, label
);
5427 fprintf (stderr
, " to block does not match in bb %d",
5432 if (decl_function_context (label
) != current_function_decl
)
5435 print_generic_expr (stderr
, label
);
5436 fprintf (stderr
, " has incorrect context in bb %d",
5442 /* Verify that body of basic block BB is free of control flow. */
5443 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5445 gimple
*stmt
= gsi_stmt (gsi
);
5447 if (found_ctrl_stmt
)
5449 error ("control flow in the middle of basic block %d",
5454 if (stmt_ends_bb_p (stmt
))
5455 found_ctrl_stmt
= true;
5457 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5460 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5461 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5466 gsi
= gsi_last_nondebug_bb (bb
);
5467 if (gsi_end_p (gsi
))
5470 stmt
= gsi_stmt (gsi
);
5472 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5475 err
|= verify_eh_edges (stmt
);
5477 if (is_ctrl_stmt (stmt
))
5479 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5480 if (e
->flags
& EDGE_FALLTHRU
)
5482 error ("fallthru edge after a control statement in bb %d",
5488 if (gimple_code (stmt
) != GIMPLE_COND
)
5490 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5491 after anything else but if statement. */
5492 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5493 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5495 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5501 switch (gimple_code (stmt
))
5508 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5512 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5513 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5514 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5515 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5516 || EDGE_COUNT (bb
->succs
) >= 3)
5518 error ("wrong outgoing edge flags at end of bb %d",
5526 if (simple_goto_p (stmt
))
5528 error ("explicit goto at end of bb %d", bb
->index
);
5533 /* FIXME. We should double check that the labels in the
5534 destination blocks have their address taken. */
5535 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5536 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5537 | EDGE_FALSE_VALUE
))
5538 || !(e
->flags
& EDGE_ABNORMAL
))
5540 error ("wrong outgoing edge flags at end of bb %d",
5548 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5552 if (!single_succ_p (bb
)
5553 || (single_succ_edge (bb
)->flags
5554 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5555 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5557 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5560 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5562 error ("return edge does not point to exit in bb %d",
5570 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5575 n
= gimple_switch_num_labels (switch_stmt
);
5577 /* Mark all the destination basic blocks. */
5578 for (i
= 0; i
< n
; ++i
)
5580 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5581 basic_block label_bb
= label_to_block (lab
);
5582 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5583 label_bb
->aux
= (void *)1;
5586 /* Verify that the case labels are sorted. */
5587 prev
= gimple_switch_label (switch_stmt
, 0);
5588 for (i
= 1; i
< n
; ++i
)
5590 tree c
= gimple_switch_label (switch_stmt
, i
);
5593 error ("found default case not at the start of "
5599 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5601 error ("case labels not sorted: ");
5602 print_generic_expr (stderr
, prev
);
5603 fprintf (stderr
," is greater than ");
5604 print_generic_expr (stderr
, c
);
5605 fprintf (stderr
," but comes before it.\n");
5610 /* VRP will remove the default case if it can prove it will
5611 never be executed. So do not verify there always exists
5612 a default case here. */
5614 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5618 error ("extra outgoing edge %d->%d",
5619 bb
->index
, e
->dest
->index
);
5623 e
->dest
->aux
= (void *)2;
5624 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5625 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5627 error ("wrong outgoing edge flags at end of bb %d",
5633 /* Check that we have all of them. */
5634 for (i
= 0; i
< n
; ++i
)
5636 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5637 basic_block label_bb
= label_to_block (lab
);
5639 if (label_bb
->aux
!= (void *)2)
5641 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5646 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5647 e
->dest
->aux
= (void *)0;
5651 case GIMPLE_EH_DISPATCH
:
5652 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5660 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5661 verify_dominators (CDI_DOMINATORS
);
5667 /* Updates phi nodes after creating a forwarder block joined
5668 by edge FALLTHRU. */
5671 gimple_make_forwarder_block (edge fallthru
)
5675 basic_block dummy
, bb
;
5679 dummy
= fallthru
->src
;
5680 bb
= fallthru
->dest
;
5682 if (single_pred_p (bb
))
5685 /* If we redirected a branch we must create new PHI nodes at the
5687 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5689 gphi
*phi
, *new_phi
;
5692 var
= gimple_phi_result (phi
);
5693 new_phi
= create_phi_node (var
, bb
);
5694 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5695 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5699 /* Add the arguments we have stored on edges. */
5700 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5705 flush_pending_stmts (e
);
5710 /* Return a non-special label in the head of basic block BLOCK.
5711 Create one if it doesn't exist. */
5714 gimple_block_label (basic_block bb
)
5716 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5721 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5723 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5726 label
= gimple_label_label (stmt
);
5727 if (!DECL_NONLOCAL (label
))
5730 gsi_move_before (&i
, &s
);
5735 label
= create_artificial_label (UNKNOWN_LOCATION
);
5736 stmt
= gimple_build_label (label
);
5737 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5742 /* Attempt to perform edge redirection by replacing a possibly complex
5743 jump instruction by a goto or by removing the jump completely.
5744 This can apply only if all edges now point to the same block. The
5745 parameters and return values are equivalent to
5746 redirect_edge_and_branch. */
5749 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5751 basic_block src
= e
->src
;
5752 gimple_stmt_iterator i
;
5755 /* We can replace or remove a complex jump only when we have exactly
5757 if (EDGE_COUNT (src
->succs
) != 2
5758 /* Verify that all targets will be TARGET. Specifically, the
5759 edge that is not E must also go to TARGET. */
5760 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5763 i
= gsi_last_bb (src
);
5767 stmt
= gsi_stmt (i
);
5769 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5771 gsi_remove (&i
, true);
5772 e
= ssa_redirect_edge (e
, target
);
5773 e
->flags
= EDGE_FALLTHRU
;
5781 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5782 edge representing the redirected branch. */
5785 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5787 basic_block bb
= e
->src
;
5788 gimple_stmt_iterator gsi
;
5792 if (e
->flags
& EDGE_ABNORMAL
)
5795 if (e
->dest
== dest
)
5798 if (e
->flags
& EDGE_EH
)
5799 return redirect_eh_edge (e
, dest
);
5801 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5803 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5808 gsi
= gsi_last_nondebug_bb (bb
);
5809 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5811 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5814 /* For COND_EXPR, we only need to redirect the edge. */
5818 /* No non-abnormal edges should lead from a non-simple goto, and
5819 simple ones should be represented implicitly. */
5824 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5825 tree label
= gimple_block_label (dest
);
5826 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5828 /* If we have a list of cases associated with E, then use it
5829 as it's a lot faster than walking the entire case vector. */
5832 edge e2
= find_edge (e
->src
, dest
);
5839 CASE_LABEL (cases
) = label
;
5840 cases
= CASE_CHAIN (cases
);
5843 /* If there was already an edge in the CFG, then we need
5844 to move all the cases associated with E to E2. */
5847 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5849 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5850 CASE_CHAIN (cases2
) = first
;
5852 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5856 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5858 for (i
= 0; i
< n
; i
++)
5860 tree elt
= gimple_switch_label (switch_stmt
, i
);
5861 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5862 CASE_LABEL (elt
) = label
;
5870 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5871 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5874 for (i
= 0; i
< n
; ++i
)
5876 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5877 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5880 label
= gimple_block_label (dest
);
5881 TREE_VALUE (cons
) = label
;
5885 /* If we didn't find any label matching the former edge in the
5886 asm labels, we must be redirecting the fallthrough
5888 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5893 gsi_remove (&gsi
, true);
5894 e
->flags
|= EDGE_FALLTHRU
;
5897 case GIMPLE_OMP_RETURN
:
5898 case GIMPLE_OMP_CONTINUE
:
5899 case GIMPLE_OMP_SECTIONS_SWITCH
:
5900 case GIMPLE_OMP_FOR
:
5901 /* The edges from OMP constructs can be simply redirected. */
5904 case GIMPLE_EH_DISPATCH
:
5905 if (!(e
->flags
& EDGE_FALLTHRU
))
5906 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
5909 case GIMPLE_TRANSACTION
:
5910 if (e
->flags
& EDGE_TM_ABORT
)
5911 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
5912 gimple_block_label (dest
));
5913 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
5914 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
5915 gimple_block_label (dest
));
5917 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
5918 gimple_block_label (dest
));
5922 /* Otherwise it must be a fallthru edge, and we don't need to
5923 do anything besides redirecting it. */
5924 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5928 /* Update/insert PHI nodes as necessary. */
5930 /* Now update the edges in the CFG. */
5931 e
= ssa_redirect_edge (e
, dest
);
5936 /* Returns true if it is possible to remove edge E by redirecting
5937 it to the destination of the other edge from E->src. */
5940 gimple_can_remove_branch_p (const_edge e
)
5942 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5948 /* Simple wrapper, as we can always redirect fallthru edges. */
5951 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5953 e
= gimple_redirect_edge_and_branch (e
, dest
);
5960 /* Splits basic block BB after statement STMT (but at least after the
5961 labels). If STMT is NULL, BB is split just after the labels. */
5964 gimple_split_block (basic_block bb
, void *stmt
)
5966 gimple_stmt_iterator gsi
;
5967 gimple_stmt_iterator gsi_tgt
;
5973 new_bb
= create_empty_bb (bb
);
5975 /* Redirect the outgoing edges. */
5976 new_bb
->succs
= bb
->succs
;
5978 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5981 /* Get a stmt iterator pointing to the first stmt to move. */
5982 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
5983 gsi
= gsi_after_labels (bb
);
5986 gsi
= gsi_for_stmt ((gimple
*) stmt
);
5990 /* Move everything from GSI to the new basic block. */
5991 if (gsi_end_p (gsi
))
5994 /* Split the statement list - avoid re-creating new containers as this
5995 brings ugly quadratic memory consumption in the inliner.
5996 (We are still quadratic since we need to update stmt BB pointers,
5998 gsi_split_seq_before (&gsi
, &list
);
5999 set_bb_seq (new_bb
, list
);
6000 for (gsi_tgt
= gsi_start (list
);
6001 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6002 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6008 /* Moves basic block BB after block AFTER. */
6011 gimple_move_block_after (basic_block bb
, basic_block after
)
6013 if (bb
->prev_bb
== after
)
6017 link_block (bb
, after
);
6023 /* Return TRUE if block BB has no executable statements, otherwise return
6027 gimple_empty_block_p (basic_block bb
)
6029 /* BB must have no executable statements. */
6030 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6033 if (gsi_end_p (gsi
))
6035 if (is_gimple_debug (gsi_stmt (gsi
)))
6036 gsi_next_nondebug (&gsi
);
6037 return gsi_end_p (gsi
);
6041 /* Split a basic block if it ends with a conditional branch and if the
6042 other part of the block is not empty. */
6045 gimple_split_block_before_cond_jump (basic_block bb
)
6047 gimple
*last
, *split_point
;
6048 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6049 if (gsi_end_p (gsi
))
6051 last
= gsi_stmt (gsi
);
6052 if (gimple_code (last
) != GIMPLE_COND
6053 && gimple_code (last
) != GIMPLE_SWITCH
)
6056 split_point
= gsi_stmt (gsi
);
6057 return split_block (bb
, split_point
)->dest
;
6061 /* Return true if basic_block can be duplicated. */
6064 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6069 /* Create a duplicate of the basic block BB. NOTE: This does not
6070 preserve SSA form. */
6073 gimple_duplicate_bb (basic_block bb
)
6076 gimple_stmt_iterator gsi_tgt
;
6078 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6080 /* Copy the PHI nodes. We ignore PHI node arguments here because
6081 the incoming edges have not been setup yet. */
6082 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6088 copy
= create_phi_node (NULL_TREE
, new_bb
);
6089 create_new_def_for (gimple_phi_result (phi
), copy
,
6090 gimple_phi_result_ptr (copy
));
6091 gimple_set_uid (copy
, gimple_uid (phi
));
6094 gsi_tgt
= gsi_start_bb (new_bb
);
6095 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6099 def_operand_p def_p
;
6100 ssa_op_iter op_iter
;
6102 gimple
*stmt
, *copy
;
6104 stmt
= gsi_stmt (gsi
);
6105 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6108 /* Don't duplicate label debug stmts. */
6109 if (gimple_debug_bind_p (stmt
)
6110 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6114 /* Create a new copy of STMT and duplicate STMT's virtual
6116 copy
= gimple_copy (stmt
);
6117 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6119 maybe_duplicate_eh_stmt (copy
, stmt
);
6120 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6122 /* When copying around a stmt writing into a local non-user
6123 aggregate, make sure it won't share stack slot with other
6125 lhs
= gimple_get_lhs (stmt
);
6126 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6128 tree base
= get_base_address (lhs
);
6130 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6131 && DECL_IGNORED_P (base
)
6132 && !TREE_STATIC (base
)
6133 && !DECL_EXTERNAL (base
)
6134 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6135 DECL_NONSHAREABLE (base
) = 1;
6138 /* Create new names for all the definitions created by COPY and
6139 add replacement mappings for each new name. */
6140 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6141 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6147 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6150 add_phi_args_after_copy_edge (edge e_copy
)
6152 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6155 gphi
*phi
, *phi_copy
;
6157 gphi_iterator psi
, psi_copy
;
6159 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6162 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6164 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6165 dest
= get_bb_original (e_copy
->dest
);
6167 dest
= e_copy
->dest
;
6169 e
= find_edge (bb
, dest
);
6172 /* During loop unrolling the target of the latch edge is copied.
6173 In this case we are not looking for edge to dest, but to
6174 duplicated block whose original was dest. */
6175 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6177 if ((e
->dest
->flags
& BB_DUPLICATED
)
6178 && get_bb_original (e
->dest
) == dest
)
6182 gcc_assert (e
!= NULL
);
6185 for (psi
= gsi_start_phis (e
->dest
),
6186 psi_copy
= gsi_start_phis (e_copy
->dest
);
6188 gsi_next (&psi
), gsi_next (&psi_copy
))
6191 phi_copy
= psi_copy
.phi ();
6192 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6193 add_phi_arg (phi_copy
, def
, e_copy
,
6194 gimple_phi_arg_location_from_edge (phi
, e
));
6199 /* Basic block BB_COPY was created by code duplication. Add phi node
6200 arguments for edges going out of BB_COPY. The blocks that were
6201 duplicated have BB_DUPLICATED set. */
6204 add_phi_args_after_copy_bb (basic_block bb_copy
)
6209 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6211 add_phi_args_after_copy_edge (e_copy
);
6215 /* Blocks in REGION_COPY array of length N_REGION were created by
6216 duplication of basic blocks. Add phi node arguments for edges
6217 going from these blocks. If E_COPY is not NULL, also add
6218 phi node arguments for its destination.*/
6221 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6226 for (i
= 0; i
< n_region
; i
++)
6227 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6229 for (i
= 0; i
< n_region
; i
++)
6230 add_phi_args_after_copy_bb (region_copy
[i
]);
6232 add_phi_args_after_copy_edge (e_copy
);
6234 for (i
= 0; i
< n_region
; i
++)
6235 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6238 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6239 important exit edge EXIT. By important we mean that no SSA name defined
6240 inside region is live over the other exit edges of the region. All entry
6241 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6242 to the duplicate of the region. Dominance and loop information is
6243 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6244 UPDATE_DOMINANCE is false then we assume that the caller will update the
6245 dominance information after calling this function. The new basic
6246 blocks are stored to REGION_COPY in the same order as they had in REGION,
6247 provided that REGION_COPY is not NULL.
6248 The function returns false if it is unable to copy the region,
6252 gimple_duplicate_sese_region (edge entry
, edge exit
,
6253 basic_block
*region
, unsigned n_region
,
6254 basic_block
*region_copy
,
6255 bool update_dominance
)
6258 bool free_region_copy
= false, copying_header
= false;
6259 struct loop
*loop
= entry
->dest
->loop_father
;
6261 vec
<basic_block
> doms
= vNULL
;
6263 profile_count total_count
= profile_count::uninitialized ();
6264 profile_count entry_count
= profile_count::uninitialized ();
6266 if (!can_copy_bbs_p (region
, n_region
))
6269 /* Some sanity checking. Note that we do not check for all possible
6270 missuses of the functions. I.e. if you ask to copy something weird,
6271 it will work, but the state of structures probably will not be
6273 for (i
= 0; i
< n_region
; i
++)
6275 /* We do not handle subloops, i.e. all the blocks must belong to the
6277 if (region
[i
]->loop_father
!= loop
)
6280 if (region
[i
] != entry
->dest
6281 && region
[i
] == loop
->header
)
6285 /* In case the function is used for loop header copying (which is the primary
6286 use), ensure that EXIT and its copy will be new latch and entry edges. */
6287 if (loop
->header
== entry
->dest
)
6289 copying_header
= true;
6291 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6294 for (i
= 0; i
< n_region
; i
++)
6295 if (region
[i
] != exit
->src
6296 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6300 initialize_original_copy_tables ();
6303 set_loop_copy (loop
, loop_outer (loop
));
6305 set_loop_copy (loop
, loop
);
6309 region_copy
= XNEWVEC (basic_block
, n_region
);
6310 free_region_copy
= true;
6313 /* Record blocks outside the region that are dominated by something
6315 if (update_dominance
)
6318 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6321 if (entry
->dest
->count
.initialized_p ())
6323 total_count
= entry
->dest
->count
;
6324 entry_count
= entry
->count ();
6325 /* Fix up corner cases, to avoid division by zero or creation of negative
6327 if (entry_count
> total_count
)
6328 entry_count
= total_count
;
6331 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6332 split_edge_bb_loc (entry
), update_dominance
);
6333 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6335 scale_bbs_frequencies_profile_count (region
, n_region
,
6336 total_count
- entry_count
,
6338 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6344 loop
->header
= exit
->dest
;
6345 loop
->latch
= exit
->src
;
6348 /* Redirect the entry and add the phi node arguments. */
6349 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6350 gcc_assert (redirected
!= NULL
);
6351 flush_pending_stmts (entry
);
6353 /* Concerning updating of dominators: We must recount dominators
6354 for entry block and its copy. Anything that is outside of the
6355 region, but was dominated by something inside needs recounting as
6357 if (update_dominance
)
6359 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6360 doms
.safe_push (get_bb_original (entry
->dest
));
6361 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6365 /* Add the other PHI node arguments. */
6366 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6368 if (free_region_copy
)
6371 free_original_copy_tables ();
6375 /* Checks if BB is part of the region defined by N_REGION BBS. */
6377 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6381 for (n
= 0; n
< n_region
; n
++)
6389 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6390 are stored to REGION_COPY in the same order in that they appear
6391 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6392 the region, EXIT an exit from it. The condition guarding EXIT
6393 is moved to ENTRY. Returns true if duplication succeeds, false
6419 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6420 basic_block
*region
, unsigned n_region
,
6421 basic_block
*region_copy
)
6424 bool free_region_copy
= false;
6425 struct loop
*loop
= exit
->dest
->loop_father
;
6426 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6427 basic_block switch_bb
, entry_bb
, nentry_bb
;
6428 vec
<basic_block
> doms
;
6429 profile_count total_count
= profile_count::uninitialized (),
6430 exit_count
= profile_count::uninitialized ();
6431 edge exits
[2], nexits
[2], e
;
6432 gimple_stmt_iterator gsi
;
6435 basic_block exit_bb
;
6439 struct loop
*target
, *aloop
, *cloop
;
6441 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6443 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6445 if (!can_copy_bbs_p (region
, n_region
))
6448 initialize_original_copy_tables ();
6449 set_loop_copy (orig_loop
, loop
);
6452 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6454 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6456 cloop
= duplicate_loop (aloop
, target
);
6457 duplicate_subloops (aloop
, cloop
);
6463 region_copy
= XNEWVEC (basic_block
, n_region
);
6464 free_region_copy
= true;
6467 gcc_assert (!need_ssa_update_p (cfun
));
6469 /* Record blocks outside the region that are dominated by something
6471 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6473 total_count
= exit
->src
->count
;
6474 exit_count
= exit
->count ();
6475 /* Fix up corner cases, to avoid division by zero or creation of negative
6477 if (exit_count
> total_count
)
6478 exit_count
= total_count
;
6480 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6481 split_edge_bb_loc (exit
), true);
6482 if (total_count
.initialized_p () && exit_count
.initialized_p ())
6484 scale_bbs_frequencies_profile_count (region
, n_region
,
6485 total_count
- exit_count
,
6487 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6491 /* Create the switch block, and put the exit condition to it. */
6492 entry_bb
= entry
->dest
;
6493 nentry_bb
= get_bb_copy (entry_bb
);
6494 if (!last_stmt (entry
->src
)
6495 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6496 switch_bb
= entry
->src
;
6498 switch_bb
= split_edge (entry
);
6499 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6501 gsi
= gsi_last_bb (switch_bb
);
6502 cond_stmt
= last_stmt (exit
->src
);
6503 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6504 cond_stmt
= gimple_copy (cond_stmt
);
6506 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6508 sorig
= single_succ_edge (switch_bb
);
6509 sorig
->flags
= exits
[1]->flags
;
6510 sorig
->probability
= exits
[1]->probability
;
6511 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6512 snew
->probability
= exits
[0]->probability
;
6515 /* Register the new edge from SWITCH_BB in loop exit lists. */
6516 rescan_loop_exit (snew
, true, false);
6518 /* Add the PHI node arguments. */
6519 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6521 /* Get rid of now superfluous conditions and associated edges (and phi node
6523 exit_bb
= exit
->dest
;
6525 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6526 PENDING_STMT (e
) = NULL
;
6528 /* The latch of ORIG_LOOP was copied, and so was the backedge
6529 to the original header. We redirect this backedge to EXIT_BB. */
6530 for (i
= 0; i
< n_region
; i
++)
6531 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6533 gcc_assert (single_succ_edge (region_copy
[i
]));
6534 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6535 PENDING_STMT (e
) = NULL
;
6536 for (psi
= gsi_start_phis (exit_bb
);
6541 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6542 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6545 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6546 PENDING_STMT (e
) = NULL
;
6548 /* Anything that is outside of the region, but was dominated by something
6549 inside needs to update dominance info. */
6550 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6552 /* Update the SSA web. */
6553 update_ssa (TODO_update_ssa
);
6555 if (free_region_copy
)
6558 free_original_copy_tables ();
6562 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6563 adding blocks when the dominator traversal reaches EXIT. This
6564 function silently assumes that ENTRY strictly dominates EXIT. */
6567 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6568 vec
<basic_block
> *bbs_p
)
6572 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6574 son
= next_dom_son (CDI_DOMINATORS
, son
))
6576 bbs_p
->safe_push (son
);
6578 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6582 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6583 The duplicates are recorded in VARS_MAP. */
6586 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6589 tree t
= *tp
, new_t
;
6590 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6592 if (DECL_CONTEXT (t
) == to_context
)
6596 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6602 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6603 add_local_decl (f
, new_t
);
6607 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6608 new_t
= copy_node (t
);
6610 DECL_CONTEXT (new_t
) = to_context
;
6621 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6622 VARS_MAP maps old ssa names and var_decls to the new ones. */
6625 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6630 gcc_assert (!virtual_operand_p (name
));
6632 tree
*loc
= vars_map
->get (name
);
6636 tree decl
= SSA_NAME_VAR (name
);
6639 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6640 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6641 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6642 decl
, SSA_NAME_DEF_STMT (name
));
6645 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6646 name
, SSA_NAME_DEF_STMT (name
));
6648 /* Now that we've used the def stmt to define new_name, make sure it
6649 doesn't define name anymore. */
6650 SSA_NAME_DEF_STMT (name
) = NULL
;
6652 vars_map
->put (name
, new_name
);
6666 hash_map
<tree
, tree
> *vars_map
;
6667 htab_t new_label_map
;
6668 hash_map
<void *, void *> *eh_map
;
6672 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6673 contained in *TP if it has been ORIG_BLOCK previously and change the
6674 DECL_CONTEXT of every local variable referenced in *TP. */
6677 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6679 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6680 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6685 tree block
= TREE_BLOCK (t
);
6686 if (block
== NULL_TREE
)
6688 else if (block
== p
->orig_block
6689 || p
->orig_block
== NULL_TREE
)
6690 TREE_SET_BLOCK (t
, p
->new_block
);
6691 else if (flag_checking
)
6693 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6694 block
= BLOCK_SUPERCONTEXT (block
);
6695 gcc_assert (block
== p
->orig_block
);
6698 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6700 if (TREE_CODE (t
) == SSA_NAME
)
6701 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6702 else if (TREE_CODE (t
) == PARM_DECL
6703 && gimple_in_ssa_p (cfun
))
6704 *tp
= *(p
->vars_map
->get (t
));
6705 else if (TREE_CODE (t
) == LABEL_DECL
)
6707 if (p
->new_label_map
)
6709 struct tree_map in
, *out
;
6711 out
= (struct tree_map
*)
6712 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6717 /* For FORCED_LABELs we can end up with references from other
6718 functions if some SESE regions are outlined. It is UB to
6719 jump in between them, but they could be used just for printing
6720 addresses etc. In that case, DECL_CONTEXT on the label should
6721 be the function containing the glabel stmt with that LABEL_DECL,
6722 rather than whatever function a reference to the label was seen
6724 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6725 DECL_CONTEXT (t
) = p
->to_context
;
6727 else if (p
->remap_decls_p
)
6729 /* Replace T with its duplicate. T should no longer appear in the
6730 parent function, so this looks wasteful; however, it may appear
6731 in referenced_vars, and more importantly, as virtual operands of
6732 statements, and in alias lists of other variables. It would be
6733 quite difficult to expunge it from all those places. ??? It might
6734 suffice to do this for addressable variables. */
6735 if ((VAR_P (t
) && !is_global_var (t
))
6736 || TREE_CODE (t
) == CONST_DECL
)
6737 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6741 else if (TYPE_P (t
))
6747 /* Helper for move_stmt_r. Given an EH region number for the source
6748 function, map that to the duplicate EH regio number in the dest. */
6751 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6753 eh_region old_r
, new_r
;
6755 old_r
= get_eh_region_from_number (old_nr
);
6756 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6758 return new_r
->index
;
6761 /* Similar, but operate on INTEGER_CSTs. */
6764 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6768 old_nr
= tree_to_shwi (old_t_nr
);
6769 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6771 return build_int_cst (integer_type_node
, new_nr
);
6774 /* Like move_stmt_op, but for gimple statements.
6776 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6777 contained in the current statement in *GSI_P and change the
6778 DECL_CONTEXT of every local variable referenced in the current
6782 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6783 struct walk_stmt_info
*wi
)
6785 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6786 gimple
*stmt
= gsi_stmt (*gsi_p
);
6787 tree block
= gimple_block (stmt
);
6789 if (block
== p
->orig_block
6790 || (p
->orig_block
== NULL_TREE
6791 && block
!= NULL_TREE
))
6792 gimple_set_block (stmt
, p
->new_block
);
6794 switch (gimple_code (stmt
))
6797 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6799 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6800 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6801 switch (DECL_FUNCTION_CODE (fndecl
))
6803 case BUILT_IN_EH_COPY_VALUES
:
6804 r
= gimple_call_arg (stmt
, 1);
6805 r
= move_stmt_eh_region_tree_nr (r
, p
);
6806 gimple_call_set_arg (stmt
, 1, r
);
6809 case BUILT_IN_EH_POINTER
:
6810 case BUILT_IN_EH_FILTER
:
6811 r
= gimple_call_arg (stmt
, 0);
6812 r
= move_stmt_eh_region_tree_nr (r
, p
);
6813 gimple_call_set_arg (stmt
, 0, r
);
6824 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6825 int r
= gimple_resx_region (resx_stmt
);
6826 r
= move_stmt_eh_region_nr (r
, p
);
6827 gimple_resx_set_region (resx_stmt
, r
);
6831 case GIMPLE_EH_DISPATCH
:
6833 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
6834 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
6835 r
= move_stmt_eh_region_nr (r
, p
);
6836 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
6840 case GIMPLE_OMP_RETURN
:
6841 case GIMPLE_OMP_CONTINUE
:
6846 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6847 so that such labels can be referenced from other regions.
6848 Make sure to update it when seeing a GIMPLE_LABEL though,
6849 that is the owner of the label. */
6850 walk_gimple_op (stmt
, move_stmt_op
, wi
);
6851 *handled_ops_p
= true;
6852 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
6853 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
6854 DECL_CONTEXT (label
) = p
->to_context
;
6859 if (is_gimple_omp (stmt
))
6861 /* Do not remap variables inside OMP directives. Variables
6862 referenced in clauses and directive header belong to the
6863 parent function and should not be moved into the child
6865 bool save_remap_decls_p
= p
->remap_decls_p
;
6866 p
->remap_decls_p
= false;
6867 *handled_ops_p
= true;
6869 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6872 p
->remap_decls_p
= save_remap_decls_p
;
6880 /* Move basic block BB from function CFUN to function DEST_FN. The
6881 block is moved out of the original linked list and placed after
6882 block AFTER in the new list. Also, the block is removed from the
6883 original array of blocks and placed in DEST_FN's array of blocks.
6884 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6885 updated to reflect the moved edges.
6887 The local variables are remapped to new instances, VARS_MAP is used
6888 to record the mapping. */
6891 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6892 basic_block after
, bool update_edge_count_p
,
6893 struct move_stmt_d
*d
)
6895 struct control_flow_graph
*cfg
;
6898 gimple_stmt_iterator si
;
6899 unsigned old_len
, new_len
;
6901 /* Remove BB from dominance structures. */
6902 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6904 /* Move BB from its current loop to the copy in the new function. */
6907 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6909 bb
->loop_father
= new_loop
;
6912 /* Link BB to the new linked list. */
6913 move_block_after (bb
, after
);
6915 /* Update the edge count in the corresponding flowgraphs. */
6916 if (update_edge_count_p
)
6917 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6919 cfun
->cfg
->x_n_edges
--;
6920 dest_cfun
->cfg
->x_n_edges
++;
6923 /* Remove BB from the original basic block array. */
6924 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6925 cfun
->cfg
->x_n_basic_blocks
--;
6927 /* Grow DEST_CFUN's basic block array if needed. */
6928 cfg
= dest_cfun
->cfg
;
6929 cfg
->x_n_basic_blocks
++;
6930 if (bb
->index
>= cfg
->x_last_basic_block
)
6931 cfg
->x_last_basic_block
= bb
->index
+ 1;
6933 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6934 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6936 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6937 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6940 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6942 /* Remap the variables in phi nodes. */
6943 for (gphi_iterator psi
= gsi_start_phis (bb
);
6946 gphi
*phi
= psi
.phi ();
6948 tree op
= PHI_RESULT (phi
);
6952 if (virtual_operand_p (op
))
6954 /* Remove the phi nodes for virtual operands (alias analysis will be
6955 run for the new function, anyway). */
6956 remove_phi_node (&psi
, true);
6960 SET_PHI_RESULT (phi
,
6961 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6962 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6964 op
= USE_FROM_PTR (use
);
6965 if (TREE_CODE (op
) == SSA_NAME
)
6966 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6969 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6971 location_t locus
= gimple_phi_arg_location (phi
, i
);
6972 tree block
= LOCATION_BLOCK (locus
);
6974 if (locus
== UNKNOWN_LOCATION
)
6976 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6978 locus
= set_block (locus
, d
->new_block
);
6979 gimple_phi_arg_set_location (phi
, i
, locus
);
6986 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6988 gimple
*stmt
= gsi_stmt (si
);
6989 struct walk_stmt_info wi
;
6991 memset (&wi
, 0, sizeof (wi
));
6993 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6995 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
6997 tree label
= gimple_label_label (label_stmt
);
6998 int uid
= LABEL_DECL_UID (label
);
7000 gcc_assert (uid
> -1);
7002 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7003 if (old_len
<= (unsigned) uid
)
7005 new_len
= 3 * uid
/ 2 + 1;
7006 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7009 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7010 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7012 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7014 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7015 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7018 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7019 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7021 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7022 gimple_remove_stmt_histograms (cfun
, stmt
);
7024 /* We cannot leave any operands allocated from the operand caches of
7025 the current function. */
7026 free_stmt_operands (cfun
, stmt
);
7027 push_cfun (dest_cfun
);
7032 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7033 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7035 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7036 if (d
->orig_block
== NULL_TREE
7037 || block
== d
->orig_block
)
7038 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7042 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7043 the outermost EH region. Use REGION as the incoming base EH region. */
7046 find_outermost_region_in_block (struct function
*src_cfun
,
7047 basic_block bb
, eh_region region
)
7049 gimple_stmt_iterator si
;
7051 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7053 gimple
*stmt
= gsi_stmt (si
);
7054 eh_region stmt_region
;
7057 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7058 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7062 region
= stmt_region
;
7063 else if (stmt_region
!= region
)
7065 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7066 gcc_assert (region
!= NULL
);
7075 new_label_mapper (tree decl
, void *data
)
7077 htab_t hash
= (htab_t
) data
;
7081 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7083 m
= XNEW (struct tree_map
);
7084 m
->hash
= DECL_UID (decl
);
7085 m
->base
.from
= decl
;
7086 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7087 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7088 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7089 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7091 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7092 gcc_assert (*slot
== NULL
);
7099 /* Tree walker to replace the decls used inside value expressions by
7103 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7105 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7107 switch (TREE_CODE (*tp
))
7112 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7118 if (IS_TYPE_OR_DECL_P (*tp
))
7119 *walk_subtrees
= false;
7124 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7128 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7133 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7136 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7138 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7141 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7143 tree x
= DECL_VALUE_EXPR (*tp
);
7144 struct replace_decls_d rd
= { vars_map
, to_context
};
7146 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7147 SET_DECL_VALUE_EXPR (t
, x
);
7148 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7150 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7155 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7156 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7159 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7163 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7166 /* Discard it from the old loop array. */
7167 (*get_loops (fn1
))[loop
->num
] = NULL
;
7169 /* Place it in the new loop array, assigning it a new number. */
7170 loop
->num
= number_of_loops (fn2
);
7171 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7173 /* Recurse to children. */
7174 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7175 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7178 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7179 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7182 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7187 bitmap bbs
= BITMAP_ALLOC (NULL
);
7190 gcc_assert (entry
!= NULL
);
7191 gcc_assert (entry
!= exit
);
7192 gcc_assert (bbs_p
!= NULL
);
7194 gcc_assert (bbs_p
->length () > 0);
7196 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7197 bitmap_set_bit (bbs
, bb
->index
);
7199 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7200 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7202 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7206 gcc_assert (single_pred_p (entry
));
7207 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7210 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7213 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7218 gcc_assert (single_succ_p (exit
));
7219 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7222 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7225 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7232 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7235 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7237 bitmap release_names
= (bitmap
)data
;
7239 if (TREE_CODE (from
) != SSA_NAME
)
7242 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7246 /* Return LOOP_DIST_ALIAS call if present in BB. */
7249 find_loop_dist_alias (basic_block bb
)
7251 gimple
*g
= last_stmt (bb
);
7252 if (g
== NULL
|| gimple_code (g
) != GIMPLE_COND
)
7255 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7257 if (gsi_end_p (gsi
))
7261 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7266 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7267 to VALUE and update any immediate uses of it's LHS. */
7270 fold_loop_internal_call (gimple
*g
, tree value
)
7272 tree lhs
= gimple_call_lhs (g
);
7273 use_operand_p use_p
;
7274 imm_use_iterator iter
;
7276 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7278 update_call_from_tree (&gsi
, value
);
7279 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7281 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7282 SET_USE (use_p
, value
);
7283 update_stmt (use_stmt
);
7287 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7288 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7289 single basic block in the original CFG and the new basic block is
7290 returned. DEST_CFUN must not have a CFG yet.
7292 Note that the region need not be a pure SESE region. Blocks inside
7293 the region may contain calls to abort/exit. The only restriction
7294 is that ENTRY_BB should be the only entry point and it must
7297 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7298 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7299 to the new function.
7301 All local variables referenced in the region are assumed to be in
7302 the corresponding BLOCK_VARS and unexpanded variable lists
7303 associated with DEST_CFUN.
7305 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7306 reimplement move_sese_region_to_fn by duplicating the region rather than
7310 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7311 basic_block exit_bb
, tree orig_block
)
7313 vec
<basic_block
> bbs
, dom_bbs
;
7314 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7315 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7316 struct function
*saved_cfun
= cfun
;
7317 int *entry_flag
, *exit_flag
;
7318 profile_probability
*entry_prob
, *exit_prob
;
7319 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7322 htab_t new_label_map
;
7323 hash_map
<void *, void *> *eh_map
;
7324 struct loop
*loop
= entry_bb
->loop_father
;
7325 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7326 struct move_stmt_d d
;
7328 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7330 gcc_assert (entry_bb
!= exit_bb
7332 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7334 /* Collect all the blocks in the region. Manually add ENTRY_BB
7335 because it won't be added by dfs_enumerate_from. */
7337 bbs
.safe_push (entry_bb
);
7338 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7341 verify_sese (entry_bb
, exit_bb
, &bbs
);
7343 /* The blocks that used to be dominated by something in BBS will now be
7344 dominated by the new block. */
7345 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7349 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7350 the predecessor edges to ENTRY_BB and the successor edges to
7351 EXIT_BB so that we can re-attach them to the new basic block that
7352 will replace the region. */
7353 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7354 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7355 entry_flag
= XNEWVEC (int, num_entry_edges
);
7356 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7358 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7360 entry_prob
[i
] = e
->probability
;
7361 entry_flag
[i
] = e
->flags
;
7362 entry_pred
[i
++] = e
->src
;
7368 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7369 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7370 exit_flag
= XNEWVEC (int, num_exit_edges
);
7371 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7373 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7375 exit_prob
[i
] = e
->probability
;
7376 exit_flag
[i
] = e
->flags
;
7377 exit_succ
[i
++] = e
->dest
;
7389 /* Switch context to the child function to initialize DEST_FN's CFG. */
7390 gcc_assert (dest_cfun
->cfg
== NULL
);
7391 push_cfun (dest_cfun
);
7393 init_empty_tree_cfg ();
7395 /* Initialize EH information for the new function. */
7397 new_label_map
= NULL
;
7400 eh_region region
= NULL
;
7402 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7403 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7405 init_eh_for_function ();
7408 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7409 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7410 new_label_mapper
, new_label_map
);
7414 /* Initialize an empty loop tree. */
7415 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7416 init_loops_structure (dest_cfun
, loops
, 1);
7417 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7418 set_loops_for_fn (dest_cfun
, loops
);
7420 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7422 /* Move the outlined loop tree part. */
7423 num_nodes
= bbs
.length ();
7424 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7426 if (bb
->loop_father
->header
== bb
)
7428 struct loop
*this_loop
= bb
->loop_father
;
7429 struct loop
*outer
= loop_outer (this_loop
);
7431 /* If the SESE region contains some bbs ending with
7432 a noreturn call, those are considered to belong
7433 to the outermost loop in saved_cfun, rather than
7434 the entry_bb's loop_father. */
7438 num_nodes
-= this_loop
->num_nodes
;
7439 flow_loop_tree_node_remove (bb
->loop_father
);
7440 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7441 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7444 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7447 /* Remove loop exits from the outlined region. */
7448 if (loops_for_fn (saved_cfun
)->exits
)
7449 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7451 struct loops
*l
= loops_for_fn (saved_cfun
);
7453 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7456 l
->exits
->clear_slot (slot
);
7460 /* Adjust the number of blocks in the tree root of the outlined part. */
7461 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7463 /* Setup a mapping to be used by move_block_to_fn. */
7464 loop
->aux
= current_loops
->tree_root
;
7465 loop0
->aux
= current_loops
->tree_root
;
7467 /* Fix up orig_loop_num. If the block referenced in it has been moved
7468 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7470 signed char *moved_orig_loop_num
= NULL
;
7471 FOR_EACH_LOOP_FN (dest_cfun
, dloop
, 0)
7472 if (dloop
->orig_loop_num
)
7474 if (moved_orig_loop_num
== NULL
)
7476 = XCNEWVEC (signed char, vec_safe_length (larray
));
7477 if ((*larray
)[dloop
->orig_loop_num
] != NULL
7478 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
7480 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
7481 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
7482 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
7483 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
7487 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
7488 dloop
->orig_loop_num
= 0;
7493 if (moved_orig_loop_num
)
7495 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7497 gimple
*g
= find_loop_dist_alias (bb
);
7501 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7502 gcc_assert (orig_loop_num
7503 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7504 if (moved_orig_loop_num
[orig_loop_num
] == 2)
7506 /* If we have moved both loops with this orig_loop_num into
7507 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7508 too, update the first argument. */
7509 gcc_assert ((*larray
)[dloop
->orig_loop_num
] != NULL
7510 && (get_loop (saved_cfun
, dloop
->orig_loop_num
)
7512 tree t
= build_int_cst (integer_type_node
,
7513 (*larray
)[dloop
->orig_loop_num
]->num
);
7514 gimple_call_set_arg (g
, 0, t
);
7516 /* Make sure the following loop will not update it. */
7517 moved_orig_loop_num
[orig_loop_num
] = 0;
7520 /* Otherwise at least one of the loops stayed in saved_cfun.
7521 Remove the LOOP_DIST_ALIAS call. */
7522 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7524 FOR_EACH_BB_FN (bb
, saved_cfun
)
7526 gimple
*g
= find_loop_dist_alias (bb
);
7529 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7530 gcc_assert (orig_loop_num
7531 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7532 if (moved_orig_loop_num
[orig_loop_num
])
7533 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7534 of the corresponding loops was moved, remove it. */
7535 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7537 XDELETEVEC (moved_orig_loop_num
);
7541 /* Move blocks from BBS into DEST_CFUN. */
7542 gcc_assert (bbs
.length () >= 2);
7543 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7544 hash_map
<tree
, tree
> vars_map
;
7546 memset (&d
, 0, sizeof (d
));
7547 d
.orig_block
= orig_block
;
7548 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7549 d
.from_context
= cfun
->decl
;
7550 d
.to_context
= dest_cfun
->decl
;
7551 d
.vars_map
= &vars_map
;
7552 d
.new_label_map
= new_label_map
;
7554 d
.remap_decls_p
= true;
7556 if (gimple_in_ssa_p (cfun
))
7557 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7559 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7560 set_ssa_default_def (dest_cfun
, arg
, narg
);
7561 vars_map
.put (arg
, narg
);
7564 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7566 /* No need to update edge counts on the last block. It has
7567 already been updated earlier when we detached the region from
7568 the original CFG. */
7569 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7575 /* Loop sizes are no longer correct, fix them up. */
7576 loop
->num_nodes
-= num_nodes
;
7577 for (struct loop
*outer
= loop_outer (loop
);
7578 outer
; outer
= loop_outer (outer
))
7579 outer
->num_nodes
-= num_nodes
;
7580 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7582 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7585 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7590 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7592 dest_cfun
->has_simduid_loops
= true;
7594 if (aloop
->force_vectorize
)
7595 dest_cfun
->has_force_vectorize_loops
= true;
7599 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7603 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7605 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7606 = BLOCK_SUBBLOCKS (orig_block
);
7607 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7608 block
; block
= BLOCK_CHAIN (block
))
7609 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7610 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7613 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7614 &vars_map
, dest_cfun
->decl
);
7617 htab_delete (new_label_map
);
7621 if (gimple_in_ssa_p (cfun
))
7623 /* We need to release ssa-names in a defined order, so first find them,
7624 and then iterate in ascending version order. */
7625 bitmap release_names
= BITMAP_ALLOC (NULL
);
7626 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7629 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7630 release_ssa_name (ssa_name (i
));
7631 BITMAP_FREE (release_names
);
7634 /* Rewire the entry and exit blocks. The successor to the entry
7635 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7636 the child function. Similarly, the predecessor of DEST_FN's
7637 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7638 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7639 various CFG manipulation function get to the right CFG.
7641 FIXME, this is silly. The CFG ought to become a parameter to
7643 push_cfun (dest_cfun
);
7644 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
7645 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7648 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7649 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
7652 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
7655 /* Back in the original function, the SESE region has disappeared,
7656 create a new basic block in its place. */
7657 bb
= create_empty_bb (entry_pred
[0]);
7659 add_bb_to_loop (bb
, loop
);
7660 for (i
= 0; i
< num_entry_edges
; i
++)
7662 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7663 e
->probability
= entry_prob
[i
];
7666 for (i
= 0; i
< num_exit_edges
; i
++)
7668 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7669 e
->probability
= exit_prob
[i
];
7672 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7673 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7674 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7691 /* Dump default def DEF to file FILE using FLAGS and indentation
7695 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7697 for (int i
= 0; i
< spc
; ++i
)
7698 fprintf (file
, " ");
7699 dump_ssaname_info_to_file (file
, def
, spc
);
7701 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7702 fprintf (file
, " ");
7703 print_generic_expr (file
, def
, flags
);
7704 fprintf (file
, " = ");
7705 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7706 fprintf (file
, ";\n");
7709 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7712 print_no_sanitize_attr_value (FILE *file
, tree value
)
7714 unsigned int flags
= tree_to_uhwi (value
);
7716 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7718 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7721 fprintf (file
, " | ");
7722 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7728 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7732 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7734 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7735 struct function
*dsf
;
7736 bool ignore_topmost_bind
= false, any_var
= false;
7739 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7740 && decl_is_tm_clone (fndecl
));
7741 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7743 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7745 fprintf (file
, "__attribute__((");
7749 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7750 first
= false, chain
= TREE_CHAIN (chain
))
7753 fprintf (file
, ", ");
7755 tree name
= get_attribute_name (chain
);
7756 print_generic_expr (file
, name
, dump_flags
);
7757 if (TREE_VALUE (chain
) != NULL_TREE
)
7759 fprintf (file
, " (");
7761 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7762 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7764 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7765 fprintf (file
, ")");
7769 fprintf (file
, "))\n");
7772 current_function_decl
= fndecl
;
7773 if (flags
& TDF_GIMPLE
)
7775 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7776 dump_flags
| TDF_SLIM
);
7777 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
7780 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7782 arg
= DECL_ARGUMENTS (fndecl
);
7785 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7786 fprintf (file
, " ");
7787 print_generic_expr (file
, arg
, dump_flags
);
7788 if (DECL_CHAIN (arg
))
7789 fprintf (file
, ", ");
7790 arg
= DECL_CHAIN (arg
);
7792 fprintf (file
, ")\n");
7794 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7795 if (dsf
&& (flags
& TDF_EH
))
7796 dump_eh_tree (file
, dsf
);
7798 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7800 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7801 current_function_decl
= old_current_fndecl
;
7805 /* When GIMPLE is lowered, the variables are no longer available in
7806 BIND_EXPRs, so display them separately. */
7807 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7810 ignore_topmost_bind
= true;
7812 fprintf (file
, "{\n");
7813 if (gimple_in_ssa_p (fun
)
7814 && (flags
& TDF_ALIAS
))
7816 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
7817 arg
= DECL_CHAIN (arg
))
7819 tree def
= ssa_default_def (fun
, arg
);
7821 dump_default_def (file
, def
, 2, flags
);
7824 tree res
= DECL_RESULT (fun
->decl
);
7825 if (res
!= NULL_TREE
7826 && DECL_BY_REFERENCE (res
))
7828 tree def
= ssa_default_def (fun
, res
);
7830 dump_default_def (file
, def
, 2, flags
);
7833 tree static_chain
= fun
->static_chain_decl
;
7834 if (static_chain
!= NULL_TREE
)
7836 tree def
= ssa_default_def (fun
, static_chain
);
7838 dump_default_def (file
, def
, 2, flags
);
7842 if (!vec_safe_is_empty (fun
->local_decls
))
7843 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7845 print_generic_decl (file
, var
, flags
);
7846 fprintf (file
, "\n");
7853 if (gimple_in_ssa_p (cfun
))
7854 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
7856 if (!SSA_NAME_VAR (name
))
7858 fprintf (file
, " ");
7859 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7860 fprintf (file
, " ");
7861 print_generic_expr (file
, name
, flags
);
7862 fprintf (file
, ";\n");
7869 if (fun
&& fun
->decl
== fndecl
7871 && basic_block_info_for_fn (fun
))
7873 /* If the CFG has been built, emit a CFG-based dump. */
7874 if (!ignore_topmost_bind
)
7875 fprintf (file
, "{\n");
7877 if (any_var
&& n_basic_blocks_for_fn (fun
))
7878 fprintf (file
, "\n");
7880 FOR_EACH_BB_FN (bb
, fun
)
7881 dump_bb (file
, bb
, 2, flags
);
7883 fprintf (file
, "}\n");
7885 else if (fun
->curr_properties
& PROP_gimple_any
)
7887 /* The function is now in GIMPLE form but the CFG has not been
7888 built yet. Emit the single sequence of GIMPLE statements
7889 that make up its body. */
7890 gimple_seq body
= gimple_body (fndecl
);
7892 if (gimple_seq_first_stmt (body
)
7893 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7894 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7895 print_gimple_seq (file
, body
, 0, flags
);
7898 if (!ignore_topmost_bind
)
7899 fprintf (file
, "{\n");
7902 fprintf (file
, "\n");
7904 print_gimple_seq (file
, body
, 2, flags
);
7905 fprintf (file
, "}\n");
7912 /* Make a tree based dump. */
7913 chain
= DECL_SAVED_TREE (fndecl
);
7914 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7916 if (ignore_topmost_bind
)
7918 chain
= BIND_EXPR_BODY (chain
);
7926 if (!ignore_topmost_bind
)
7928 fprintf (file
, "{\n");
7929 /* No topmost bind, pretend it's ignored for later. */
7930 ignore_topmost_bind
= true;
7936 fprintf (file
, "\n");
7938 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7939 if (ignore_topmost_bind
)
7940 fprintf (file
, "}\n");
7943 if (flags
& TDF_ENUMERATE_LOCALS
)
7944 dump_enumerated_decls (file
, flags
);
7945 fprintf (file
, "\n\n");
7947 current_function_decl
= old_current_fndecl
;
7950 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7953 debug_function (tree fn
, dump_flags_t flags
)
7955 dump_function_to_file (fn
, stderr
, flags
);
7959 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7962 print_pred_bbs (FILE *file
, basic_block bb
)
7967 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7968 fprintf (file
, "bb_%d ", e
->src
->index
);
7972 /* Print on FILE the indexes for the successors of basic_block BB. */
7975 print_succ_bbs (FILE *file
, basic_block bb
)
7980 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7981 fprintf (file
, "bb_%d ", e
->dest
->index
);
7984 /* Print to FILE the basic block BB following the VERBOSITY level. */
7987 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7989 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7990 memset ((void *) s_indent
, ' ', (size_t) indent
);
7991 s_indent
[indent
] = '\0';
7993 /* Print basic_block's header. */
7996 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7997 print_pred_bbs (file
, bb
);
7998 fprintf (file
, "}, succs = {");
7999 print_succ_bbs (file
, bb
);
8000 fprintf (file
, "})\n");
8003 /* Print basic_block's body. */
8006 fprintf (file
, "%s {\n", s_indent
);
8007 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8008 fprintf (file
, "%s }\n", s_indent
);
8012 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
8014 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8015 VERBOSITY level this outputs the contents of the loop, or just its
8019 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
8027 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8028 memset ((void *) s_indent
, ' ', (size_t) indent
);
8029 s_indent
[indent
] = '\0';
8031 /* Print loop's header. */
8032 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8034 fprintf (file
, "header = %d", loop
->header
->index
);
8037 fprintf (file
, "deleted)\n");
8041 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8043 fprintf (file
, ", multiple latches");
8044 fprintf (file
, ", niter = ");
8045 print_generic_expr (file
, loop
->nb_iterations
);
8047 if (loop
->any_upper_bound
)
8049 fprintf (file
, ", upper_bound = ");
8050 print_decu (loop
->nb_iterations_upper_bound
, file
);
8052 if (loop
->any_likely_upper_bound
)
8054 fprintf (file
, ", likely_upper_bound = ");
8055 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8058 if (loop
->any_estimate
)
8060 fprintf (file
, ", estimate = ");
8061 print_decu (loop
->nb_iterations_estimate
, file
);
8064 fprintf (file
, ", unroll = %d", loop
->unroll
);
8065 fprintf (file
, ")\n");
8067 /* Print loop's body. */
8070 fprintf (file
, "%s{\n", s_indent
);
8071 FOR_EACH_BB_FN (bb
, cfun
)
8072 if (bb
->loop_father
== loop
)
8073 print_loops_bb (file
, bb
, indent
, verbosity
);
8075 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8076 fprintf (file
, "%s}\n", s_indent
);
8080 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8081 spaces. Following VERBOSITY level this outputs the contents of the
8082 loop, or just its structure. */
8085 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
8091 print_loop (file
, loop
, indent
, verbosity
);
8092 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8095 /* Follow a CFG edge from the entry point of the program, and on entry
8096 of a loop, pretty print the loop structure on FILE. */
8099 print_loops (FILE *file
, int verbosity
)
8103 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8104 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8105 if (bb
&& bb
->loop_father
)
8106 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8112 debug (struct loop
&ref
)
8114 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8118 debug (struct loop
*ptr
)
8123 fprintf (stderr
, "<nil>\n");
8126 /* Dump a loop verbosely. */
8129 debug_verbose (struct loop
&ref
)
8131 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8135 debug_verbose (struct loop
*ptr
)
8140 fprintf (stderr
, "<nil>\n");
8144 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8147 debug_loops (int verbosity
)
8149 print_loops (stderr
, verbosity
);
8152 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8155 debug_loop (struct loop
*loop
, int verbosity
)
8157 print_loop (stderr
, loop
, 0, verbosity
);
8160 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8164 debug_loop_num (unsigned num
, int verbosity
)
8166 debug_loop (get_loop (cfun
, num
), verbosity
);
8169 /* Return true if BB ends with a call, possibly followed by some
8170 instructions that must stay with the call. Return false,
8174 gimple_block_ends_with_call_p (basic_block bb
)
8176 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8177 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8181 /* Return true if BB ends with a conditional branch. Return false,
8185 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8187 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8188 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8192 /* Return true if statement T may terminate execution of BB in ways not
8193 explicitly represtented in the CFG. */
8196 stmt_can_terminate_bb_p (gimple
*t
)
8198 tree fndecl
= NULL_TREE
;
8201 /* Eh exception not handled internally terminates execution of the whole
8203 if (stmt_can_throw_external (t
))
8206 /* NORETURN and LONGJMP calls already have an edge to exit.
8207 CONST and PURE calls do not need one.
8208 We don't currently check for CONST and PURE here, although
8209 it would be a good idea, because those attributes are
8210 figured out from the RTL in mark_constant_function, and
8211 the counter incrementation code from -fprofile-arcs
8212 leads to different results from -fbranch-probabilities. */
8213 if (is_gimple_call (t
))
8215 fndecl
= gimple_call_fndecl (t
);
8216 call_flags
= gimple_call_flags (t
);
8219 if (is_gimple_call (t
)
8221 && DECL_BUILT_IN (fndecl
)
8222 && (call_flags
& ECF_NOTHROW
)
8223 && !(call_flags
& ECF_RETURNS_TWICE
)
8224 /* fork() doesn't really return twice, but the effect of
8225 wrapping it in __gcov_fork() which calls __gcov_flush()
8226 and clears the counters before forking has the same
8227 effect as returning twice. Force a fake edge. */
8228 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
8229 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
8232 if (is_gimple_call (t
))
8238 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8239 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8242 /* Function call may do longjmp, terminate program or do other things.
8243 Special case noreturn that have non-abnormal edges out as in this case
8244 the fact is sufficiently represented by lack of edges out of T. */
8245 if (!(call_flags
& ECF_NORETURN
))
8249 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8250 if ((e
->flags
& EDGE_FAKE
) == 0)
8254 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8255 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8262 /* Add fake edges to the function exit for any non constant and non
8263 noreturn calls (or noreturn calls with EH/abnormal edges),
8264 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8265 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8268 The goal is to expose cases in which entering a basic block does
8269 not imply that all subsequent instructions must be executed. */
8272 gimple_flow_call_edges_add (sbitmap blocks
)
8275 int blocks_split
= 0;
8276 int last_bb
= last_basic_block_for_fn (cfun
);
8277 bool check_last_block
= false;
8279 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8283 check_last_block
= true;
8285 check_last_block
= bitmap_bit_p (blocks
,
8286 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8288 /* In the last basic block, before epilogue generation, there will be
8289 a fallthru edge to EXIT. Special care is required if the last insn
8290 of the last basic block is a call because make_edge folds duplicate
8291 edges, which would result in the fallthru edge also being marked
8292 fake, which would result in the fallthru edge being removed by
8293 remove_fake_edges, which would result in an invalid CFG.
8295 Moreover, we can't elide the outgoing fake edge, since the block
8296 profiler needs to take this into account in order to solve the minimal
8297 spanning tree in the case that the call doesn't return.
8299 Handle this by adding a dummy instruction in a new last basic block. */
8300 if (check_last_block
)
8302 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8303 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8306 if (!gsi_end_p (gsi
))
8309 if (t
&& stmt_can_terminate_bb_p (t
))
8313 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8316 gsi_insert_on_edge (e
, gimple_build_nop ());
8317 gsi_commit_edge_inserts ();
8322 /* Now add fake edges to the function exit for any non constant
8323 calls since there is no way that we can determine if they will
8325 for (i
= 0; i
< last_bb
; i
++)
8327 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8328 gimple_stmt_iterator gsi
;
8329 gimple
*stmt
, *last_stmt
;
8334 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8337 gsi
= gsi_last_nondebug_bb (bb
);
8338 if (!gsi_end_p (gsi
))
8340 last_stmt
= gsi_stmt (gsi
);
8343 stmt
= gsi_stmt (gsi
);
8344 if (stmt_can_terminate_bb_p (stmt
))
8348 /* The handling above of the final block before the
8349 epilogue should be enough to verify that there is
8350 no edge to the exit block in CFG already.
8351 Calling make_edge in such case would cause us to
8352 mark that edge as fake and remove it later. */
8353 if (flag_checking
&& stmt
== last_stmt
)
8355 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8356 gcc_assert (e
== NULL
);
8359 /* Note that the following may create a new basic block
8360 and renumber the existing basic blocks. */
8361 if (stmt
!= last_stmt
)
8363 e
= split_block (bb
, stmt
);
8367 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8368 e
->probability
= profile_probability::guessed_never ();
8372 while (!gsi_end_p (gsi
));
8377 checking_verify_flow_info ();
8379 return blocks_split
;
8382 /* Removes edge E and all the blocks dominated by it, and updates dominance
8383 information. The IL in E->src needs to be updated separately.
8384 If dominance info is not available, only the edge E is removed.*/
8387 remove_edge_and_dominated_blocks (edge e
)
8389 vec
<basic_block
> bbs_to_remove
= vNULL
;
8390 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8393 bool none_removed
= false;
8395 basic_block bb
, dbb
;
8398 /* If we are removing a path inside a non-root loop that may change
8399 loop ownership of blocks or remove loops. Mark loops for fixup. */
8401 && loop_outer (e
->src
->loop_father
) != NULL
8402 && e
->src
->loop_father
== e
->dest
->loop_father
)
8403 loops_state_set (LOOPS_NEED_FIXUP
);
8405 if (!dom_info_available_p (CDI_DOMINATORS
))
8411 /* No updating is needed for edges to exit. */
8412 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8414 if (cfgcleanup_altered_bbs
)
8415 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8420 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8421 that is not dominated by E->dest, then this set is empty. Otherwise,
8422 all the basic blocks dominated by E->dest are removed.
8424 Also, to DF_IDOM we store the immediate dominators of the blocks in
8425 the dominance frontier of E (i.e., of the successors of the
8426 removed blocks, if there are any, and of E->dest otherwise). */
8427 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8432 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8434 none_removed
= true;
8439 auto_bitmap df
, df_idom
;
8441 bitmap_set_bit (df_idom
,
8442 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8445 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8446 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8448 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8450 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8451 bitmap_set_bit (df
, f
->dest
->index
);
8454 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8455 bitmap_clear_bit (df
, bb
->index
);
8457 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8459 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8460 bitmap_set_bit (df_idom
,
8461 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8465 if (cfgcleanup_altered_bbs
)
8467 /* Record the set of the altered basic blocks. */
8468 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8469 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8472 /* Remove E and the cancelled blocks. */
8477 /* Walk backwards so as to get a chance to substitute all
8478 released DEFs into debug stmts. See
8479 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8481 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8482 delete_basic_block (bbs_to_remove
[i
]);
8485 /* Update the dominance information. The immediate dominator may change only
8486 for blocks whose immediate dominator belongs to DF_IDOM:
8488 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8489 removal. Let Z the arbitrary block such that idom(Z) = Y and
8490 Z dominates X after the removal. Before removal, there exists a path P
8491 from Y to X that avoids Z. Let F be the last edge on P that is
8492 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8493 dominates W, and because of P, Z does not dominate W), and W belongs to
8494 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8495 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8497 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8498 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8500 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8501 bbs_to_fix_dom
.safe_push (dbb
);
8504 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8506 bbs_to_remove
.release ();
8507 bbs_to_fix_dom
.release ();
8510 /* Purge dead EH edges from basic block BB. */
8513 gimple_purge_dead_eh_edges (basic_block bb
)
8515 bool changed
= false;
8518 gimple
*stmt
= last_stmt (bb
);
8520 if (stmt
&& stmt_can_throw_internal (stmt
))
8523 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8525 if (e
->flags
& EDGE_EH
)
8527 remove_edge_and_dominated_blocks (e
);
8537 /* Purge dead EH edges from basic block listed in BLOCKS. */
8540 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8542 bool changed
= false;
8546 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8548 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8550 /* Earlier gimple_purge_dead_eh_edges could have removed
8551 this basic block already. */
8552 gcc_assert (bb
|| changed
);
8554 changed
|= gimple_purge_dead_eh_edges (bb
);
8560 /* Purge dead abnormal call edges from basic block BB. */
8563 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8565 bool changed
= false;
8568 gimple
*stmt
= last_stmt (bb
);
8570 if (!cfun
->has_nonlocal_label
8571 && !cfun
->calls_setjmp
)
8574 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8577 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8579 if (e
->flags
& EDGE_ABNORMAL
)
8581 if (e
->flags
& EDGE_FALLTHRU
)
8582 e
->flags
&= ~EDGE_ABNORMAL
;
8584 remove_edge_and_dominated_blocks (e
);
8594 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8597 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8599 bool changed
= false;
8603 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8605 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8607 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8608 this basic block already. */
8609 gcc_assert (bb
|| changed
);
8611 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8617 /* This function is called whenever a new edge is created or
8621 gimple_execute_on_growing_pred (edge e
)
8623 basic_block bb
= e
->dest
;
8625 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8626 reserve_phi_args_for_new_edge (bb
);
8629 /* This function is called immediately before edge E is removed from
8630 the edge vector E->dest->preds. */
8633 gimple_execute_on_shrinking_pred (edge e
)
8635 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8636 remove_phi_args (e
);
8639 /*---------------------------------------------------------------------------
8640 Helper functions for Loop versioning
8641 ---------------------------------------------------------------------------*/
8643 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8644 of 'first'. Both of them are dominated by 'new_head' basic block. When
8645 'new_head' was created by 'second's incoming edge it received phi arguments
8646 on the edge by split_edge(). Later, additional edge 'e' was created to
8647 connect 'new_head' and 'first'. Now this routine adds phi args on this
8648 additional edge 'e' that new_head to second edge received as part of edge
8652 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8653 basic_block new_head
, edge e
)
8656 gphi_iterator psi1
, psi2
;
8658 edge e2
= find_edge (new_head
, second
);
8660 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8661 edge, we should always have an edge from NEW_HEAD to SECOND. */
8662 gcc_assert (e2
!= NULL
);
8664 /* Browse all 'second' basic block phi nodes and add phi args to
8665 edge 'e' for 'first' head. PHI args are always in correct order. */
8667 for (psi2
= gsi_start_phis (second
),
8668 psi1
= gsi_start_phis (first
);
8669 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8670 gsi_next (&psi2
), gsi_next (&psi1
))
8674 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8675 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8680 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8681 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8682 the destination of the ELSE part. */
8685 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8686 basic_block second_head ATTRIBUTE_UNUSED
,
8687 basic_block cond_bb
, void *cond_e
)
8689 gimple_stmt_iterator gsi
;
8690 gimple
*new_cond_expr
;
8691 tree cond_expr
= (tree
) cond_e
;
8694 /* Build new conditional expr */
8695 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8696 NULL_TREE
, NULL_TREE
);
8698 /* Add new cond in cond_bb. */
8699 gsi
= gsi_last_bb (cond_bb
);
8700 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8702 /* Adjust edges appropriately to connect new head with first head
8703 as well as second head. */
8704 e0
= single_succ_edge (cond_bb
);
8705 e0
->flags
&= ~EDGE_FALLTHRU
;
8706 e0
->flags
|= EDGE_FALSE_VALUE
;
8710 /* Do book-keeping of basic block BB for the profile consistency checker.
8711 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8712 then do post-pass accounting. Store the counting in RECORD. */
8714 gimple_account_profile_record (basic_block bb
, int after_pass
,
8715 struct profile_record
*record
)
8717 gimple_stmt_iterator i
;
8718 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8720 record
->size
[after_pass
]
8721 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8722 if (bb
->count
.initialized_p ())
8723 record
->time
[after_pass
]
8724 += estimate_num_insns (gsi_stmt (i
),
8725 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8726 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8727 record
->time
[after_pass
]
8728 += estimate_num_insns (gsi_stmt (i
),
8729 &eni_time_weights
) * bb
->count
.to_frequency (cfun
);
8733 struct cfg_hooks gimple_cfg_hooks
= {
8735 gimple_verify_flow_info
,
8736 gimple_dump_bb
, /* dump_bb */
8737 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8738 create_bb
, /* create_basic_block */
8739 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8740 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8741 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8742 remove_bb
, /* delete_basic_block */
8743 gimple_split_block
, /* split_block */
8744 gimple_move_block_after
, /* move_block_after */
8745 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8746 gimple_merge_blocks
, /* merge_blocks */
8747 gimple_predict_edge
, /* predict_edge */
8748 gimple_predicted_by_p
, /* predicted_by_p */
8749 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8750 gimple_duplicate_bb
, /* duplicate_block */
8751 gimple_split_edge
, /* split_edge */
8752 gimple_make_forwarder_block
, /* make_forward_block */
8753 NULL
, /* tidy_fallthru_edge */
8754 NULL
, /* force_nonfallthru */
8755 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8756 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8757 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8758 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8759 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8760 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8761 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8762 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8763 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8764 flush_pending_stmts
, /* flush_pending_stmts */
8765 gimple_empty_block_p
, /* block_empty_p */
8766 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8767 gimple_account_profile_record
,
8771 /* Split all critical edges. */
8774 split_critical_edges (void)
8780 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8781 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8782 mappings around the calls to split_edge. */
8783 start_recording_case_labels ();
8784 FOR_ALL_BB_FN (bb
, cfun
)
8786 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8788 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8790 /* PRE inserts statements to edges and expects that
8791 since split_critical_edges was done beforehand, committing edge
8792 insertions will not split more edges. In addition to critical
8793 edges we must split edges that have multiple successors and
8794 end by control flow statements, such as RESX.
8795 Go ahead and split them too. This matches the logic in
8796 gimple_find_edge_insert_loc. */
8797 else if ((!single_pred_p (e
->dest
)
8798 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8799 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8800 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8801 && !(e
->flags
& EDGE_ABNORMAL
))
8803 gimple_stmt_iterator gsi
;
8805 gsi
= gsi_last_bb (e
->src
);
8806 if (!gsi_end_p (gsi
)
8807 && stmt_ends_bb_p (gsi_stmt (gsi
))
8808 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8809 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8815 end_recording_case_labels ();
8821 const pass_data pass_data_split_crit_edges
=
8823 GIMPLE_PASS
, /* type */
8824 "crited", /* name */
8825 OPTGROUP_NONE
, /* optinfo_flags */
8826 TV_TREE_SPLIT_EDGES
, /* tv_id */
8827 PROP_cfg
, /* properties_required */
8828 PROP_no_crit_edges
, /* properties_provided */
8829 0, /* properties_destroyed */
8830 0, /* todo_flags_start */
8831 0, /* todo_flags_finish */
8834 class pass_split_crit_edges
: public gimple_opt_pass
8837 pass_split_crit_edges (gcc::context
*ctxt
)
8838 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8841 /* opt_pass methods: */
8842 virtual unsigned int execute (function
*) { return split_critical_edges (); }
8844 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8845 }; // class pass_split_crit_edges
8850 make_pass_split_crit_edges (gcc::context
*ctxt
)
8852 return new pass_split_crit_edges (ctxt
);
8856 /* Insert COND expression which is GIMPLE_COND after STMT
8857 in basic block BB with appropriate basic block split
8858 and creation of a new conditionally executed basic block.
8859 Update profile so the new bb is visited with probability PROB.
8860 Return created basic block. */
8862 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
8863 profile_probability prob
)
8865 edge fall
= split_block (bb
, stmt
);
8866 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
8869 /* Insert cond statement. */
8870 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
8871 if (gsi_end_p (iter
))
8872 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
8874 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
8876 /* Create conditionally executed block. */
8877 new_bb
= create_empty_bb (bb
);
8878 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
8879 e
->probability
= prob
;
8880 new_bb
->count
= e
->count ();
8881 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
8883 /* Fix edge for split bb. */
8884 fall
->flags
= EDGE_FALSE_VALUE
;
8885 fall
->probability
-= e
->probability
;
8887 /* Update dominance info. */
8888 if (dom_info_available_p (CDI_DOMINATORS
))
8890 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
8891 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
8894 /* Update loop info. */
8896 add_bb_to_loop (new_bb
, bb
->loop_father
);
8901 /* Build a ternary operation and gimplify it. Emit code before GSI.
8902 Return the gimple_val holding the result. */
8905 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8906 tree type
, tree a
, tree b
, tree c
)
8909 location_t loc
= gimple_location (gsi_stmt (*gsi
));
8911 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
8914 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8918 /* Build a binary operation and gimplify it. Emit code before GSI.
8919 Return the gimple_val holding the result. */
8922 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8923 tree type
, tree a
, tree b
)
8927 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
8930 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8934 /* Build a unary operation and gimplify it. Emit code before GSI.
8935 Return the gimple_val holding the result. */
8938 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
8943 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
8946 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8952 /* Given a basic block B which ends with a conditional and has
8953 precisely two successors, determine which of the edges is taken if
8954 the conditional is true and which is taken if the conditional is
8955 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8958 extract_true_false_edges_from_block (basic_block b
,
8962 edge e
= EDGE_SUCC (b
, 0);
8964 if (e
->flags
& EDGE_TRUE_VALUE
)
8967 *false_edge
= EDGE_SUCC (b
, 1);
8972 *true_edge
= EDGE_SUCC (b
, 1);
8977 /* From a controlling predicate in the immediate dominator DOM of
8978 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8979 predicate evaluates to true and false and store them to
8980 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8981 they are non-NULL. Returns true if the edges can be determined,
8982 else return false. */
8985 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
8986 edge
*true_controlled_edge
,
8987 edge
*false_controlled_edge
)
8989 basic_block bb
= phiblock
;
8990 edge true_edge
, false_edge
, tem
;
8991 edge e0
= NULL
, e1
= NULL
;
8993 /* We have to verify that one edge into the PHI node is dominated
8994 by the true edge of the predicate block and the other edge
8995 dominated by the false edge. This ensures that the PHI argument
8996 we are going to take is completely determined by the path we
8997 take from the predicate block.
8998 We can only use BB dominance checks below if the destination of
8999 the true/false edges are dominated by their edge, thus only
9000 have a single predecessor. */
9001 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9002 tem
= EDGE_PRED (bb
, 0);
9003 if (tem
== true_edge
9004 || (single_pred_p (true_edge
->dest
)
9005 && (tem
->src
== true_edge
->dest
9006 || dominated_by_p (CDI_DOMINATORS
,
9007 tem
->src
, true_edge
->dest
))))
9009 else if (tem
== false_edge
9010 || (single_pred_p (false_edge
->dest
)
9011 && (tem
->src
== false_edge
->dest
9012 || dominated_by_p (CDI_DOMINATORS
,
9013 tem
->src
, false_edge
->dest
))))
9017 tem
= EDGE_PRED (bb
, 1);
9018 if (tem
== true_edge
9019 || (single_pred_p (true_edge
->dest
)
9020 && (tem
->src
== true_edge
->dest
9021 || dominated_by_p (CDI_DOMINATORS
,
9022 tem
->src
, true_edge
->dest
))))
9024 else if (tem
== false_edge
9025 || (single_pred_p (false_edge
->dest
)
9026 && (tem
->src
== false_edge
->dest
9027 || dominated_by_p (CDI_DOMINATORS
,
9028 tem
->src
, false_edge
->dest
))))
9035 if (true_controlled_edge
)
9036 *true_controlled_edge
= e0
;
9037 if (false_controlled_edge
)
9038 *false_controlled_edge
= e1
;
9043 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9044 range [low, high]. Place associated stmts before *GSI. */
9047 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9048 tree
*lhs
, tree
*rhs
)
9050 tree type
= TREE_TYPE (index
);
9051 tree utype
= unsigned_type_for (type
);
9053 low
= fold_convert (type
, low
);
9054 high
= fold_convert (type
, high
);
9056 tree tmp
= make_ssa_name (type
);
9058 = gimple_build_assign (tmp
, MINUS_EXPR
, index
, low
);
9060 *lhs
= make_ssa_name (utype
);
9061 gassign
*a
= gimple_build_assign (*lhs
, NOP_EXPR
, tmp
);
9063 *rhs
= fold_build2 (MINUS_EXPR
, utype
, high
, low
);
9064 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9065 gsi_insert_before (&gsi
, sub1
, GSI_SAME_STMT
);
9066 gsi_insert_before (&gsi
, a
, GSI_SAME_STMT
);
9069 /* Emit return warnings. */
9073 const pass_data pass_data_warn_function_return
=
9075 GIMPLE_PASS
, /* type */
9076 "*warn_function_return", /* name */
9077 OPTGROUP_NONE
, /* optinfo_flags */
9078 TV_NONE
, /* tv_id */
9079 PROP_cfg
, /* properties_required */
9080 0, /* properties_provided */
9081 0, /* properties_destroyed */
9082 0, /* todo_flags_start */
9083 0, /* todo_flags_finish */
9086 class pass_warn_function_return
: public gimple_opt_pass
9089 pass_warn_function_return (gcc::context
*ctxt
)
9090 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9093 /* opt_pass methods: */
9094 virtual unsigned int execute (function
*);
9096 }; // class pass_warn_function_return
9099 pass_warn_function_return::execute (function
*fun
)
9101 source_location location
;
9106 if (!targetm
.warn_func_return (fun
->decl
))
9109 /* If we have a path to EXIT, then we do return. */
9110 if (TREE_THIS_VOLATILE (fun
->decl
)
9111 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9113 location
= UNKNOWN_LOCATION
;
9114 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9115 (e
= ei_safe_edge (ei
)); )
9117 last
= last_stmt (e
->src
);
9118 if ((gimple_code (last
) == GIMPLE_RETURN
9119 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9120 && location
== UNKNOWN_LOCATION
9121 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9122 != UNKNOWN_LOCATION
)
9125 /* When optimizing, replace return stmts in noreturn functions
9126 with __builtin_unreachable () call. */
9127 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9129 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9130 gimple
*new_stmt
= gimple_build_call (fndecl
, 0);
9131 gimple_set_location (new_stmt
, gimple_location (last
));
9132 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9133 gsi_replace (&gsi
, new_stmt
, true);
9139 if (location
== UNKNOWN_LOCATION
)
9140 location
= cfun
->function_end_locus
;
9141 warning_at (location
, 0, "%<noreturn%> function does return");
9144 /* If we see "return;" in some basic block, then we do reach the end
9145 without returning a value. */
9146 else if (warn_return_type
> 0
9147 && !TREE_NO_WARNING (fun
->decl
)
9148 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9150 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9152 gimple
*last
= last_stmt (e
->src
);
9153 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9155 && gimple_return_retval (return_stmt
) == NULL
9156 && !gimple_no_warning_p (last
))
9158 location
= gimple_location (last
);
9159 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9160 location
= fun
->function_end_locus
;
9161 warning_at (location
, OPT_Wreturn_type
,
9162 "control reaches end of non-void function");
9163 TREE_NO_WARNING (fun
->decl
) = 1;
9167 /* The C++ FE turns fallthrough from the end of non-void function
9168 into __builtin_unreachable () call with BUILTINS_LOCATION.
9169 Recognize those too. */
9171 if (!TREE_NO_WARNING (fun
->decl
))
9172 FOR_EACH_BB_FN (bb
, fun
)
9173 if (EDGE_COUNT (bb
->succs
) == 0)
9175 gimple
*last
= last_stmt (bb
);
9176 const enum built_in_function ubsan_missing_ret
9177 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9179 && ((LOCATION_LOCUS (gimple_location (last
))
9180 == BUILTINS_LOCATION
9181 && gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
))
9182 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9184 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9185 gsi_prev_nondebug (&gsi
);
9186 gimple
*prev
= gsi_stmt (gsi
);
9188 location
= UNKNOWN_LOCATION
;
9190 location
= gimple_location (prev
);
9191 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9192 location
= fun
->function_end_locus
;
9193 warning_at (location
, OPT_Wreturn_type
,
9194 "control reaches end of non-void function");
9195 TREE_NO_WARNING (fun
->decl
) = 1;
9206 make_pass_warn_function_return (gcc::context
*ctxt
)
9208 return new pass_warn_function_return (ctxt
);
9211 /* Walk a gimplified function and warn for functions whose return value is
9212 ignored and attribute((warn_unused_result)) is set. This is done before
9213 inlining, so we don't have to worry about that. */
9216 do_warn_unused_result (gimple_seq seq
)
9219 gimple_stmt_iterator i
;
9221 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9223 gimple
*g
= gsi_stmt (i
);
9225 switch (gimple_code (g
))
9228 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9231 do_warn_unused_result (gimple_try_eval (g
));
9232 do_warn_unused_result (gimple_try_cleanup (g
));
9235 do_warn_unused_result (gimple_catch_handler (
9236 as_a
<gcatch
*> (g
)));
9238 case GIMPLE_EH_FILTER
:
9239 do_warn_unused_result (gimple_eh_filter_failure (g
));
9243 if (gimple_call_lhs (g
))
9245 if (gimple_call_internal_p (g
))
9248 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9249 LHS. All calls whose value is ignored should be
9250 represented like this. Look for the attribute. */
9251 fdecl
= gimple_call_fndecl (g
);
9252 ftype
= gimple_call_fntype (g
);
9254 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9256 location_t loc
= gimple_location (g
);
9259 warning_at (loc
, OPT_Wunused_result
,
9260 "ignoring return value of %qD, "
9261 "declared with attribute warn_unused_result",
9264 warning_at (loc
, OPT_Wunused_result
,
9265 "ignoring return value of function "
9266 "declared with attribute warn_unused_result");
9271 /* Not a container, not a call, or a call whose value is used. */
9279 const pass_data pass_data_warn_unused_result
=
9281 GIMPLE_PASS
, /* type */
9282 "*warn_unused_result", /* name */
9283 OPTGROUP_NONE
, /* optinfo_flags */
9284 TV_NONE
, /* tv_id */
9285 PROP_gimple_any
, /* properties_required */
9286 0, /* properties_provided */
9287 0, /* properties_destroyed */
9288 0, /* todo_flags_start */
9289 0, /* todo_flags_finish */
9292 class pass_warn_unused_result
: public gimple_opt_pass
9295 pass_warn_unused_result (gcc::context
*ctxt
)
9296 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9299 /* opt_pass methods: */
9300 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9301 virtual unsigned int execute (function
*)
9303 do_warn_unused_result (gimple_body (current_function_decl
));
9307 }; // class pass_warn_unused_result
9312 make_pass_warn_unused_result (gcc::context
*ctxt
)
9314 return new pass_warn_unused_result (ctxt
);
9317 /* IPA passes, compilation of earlier functions or inlining
9318 might have changed some properties, such as marked functions nothrow,
9319 pure, const or noreturn.
9320 Remove redundant edges and basic blocks, and create new ones if necessary.
9322 This pass can't be executed as stand alone pass from pass manager, because
9323 in between inlining and this fixup the verify_flow_info would fail. */
9326 execute_fixup_cfg (void)
9329 gimple_stmt_iterator gsi
;
9331 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9332 profile_count num
= node
->count
;
9333 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9334 bool scale
= num
.initialized_p () && !(num
== den
);
9338 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9339 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9340 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9341 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9344 FOR_EACH_BB_FN (bb
, cfun
)
9347 bb
->count
= bb
->count
.apply_scale (num
, den
);
9348 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9350 gimple
*stmt
= gsi_stmt (gsi
);
9351 tree decl
= is_gimple_call (stmt
)
9352 ? gimple_call_fndecl (stmt
)
9356 int flags
= gimple_call_flags (stmt
);
9357 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9359 if (gimple_purge_dead_abnormal_call_edges (bb
))
9360 todo
|= TODO_cleanup_cfg
;
9362 if (gimple_in_ssa_p (cfun
))
9364 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9369 if (flags
& ECF_NORETURN
9370 && fixup_noreturn_call (stmt
))
9371 todo
|= TODO_cleanup_cfg
;
9374 /* Remove stores to variables we marked write-only.
9375 Keep access when store has side effect, i.e. in case when source
9377 if (gimple_store_p (stmt
)
9378 && !gimple_has_side_effects (stmt
))
9380 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9383 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9384 && varpool_node::get (lhs
)->writeonly
)
9386 unlink_stmt_vdef (stmt
);
9387 gsi_remove (&gsi
, true);
9388 release_defs (stmt
);
9389 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9393 /* For calls we can simply remove LHS when it is known
9394 to be write-only. */
9395 if (is_gimple_call (stmt
)
9396 && gimple_get_lhs (stmt
))
9398 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9401 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9402 && varpool_node::get (lhs
)->writeonly
)
9404 gimple_call_set_lhs (stmt
, NULL
);
9406 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9410 if (maybe_clean_eh_stmt (stmt
)
9411 && gimple_purge_dead_eh_edges (bb
))
9412 todo
|= TODO_cleanup_cfg
;
9416 /* If we have a basic block with no successors that does not
9417 end with a control statement or a noreturn call end it with
9418 a call to __builtin_unreachable. This situation can occur
9419 when inlining a noreturn call that does in fact return. */
9420 if (EDGE_COUNT (bb
->succs
) == 0)
9422 gimple
*stmt
= last_stmt (bb
);
9424 || (!is_ctrl_stmt (stmt
)
9425 && (!is_gimple_call (stmt
)
9426 || !gimple_call_noreturn_p (stmt
))))
9428 if (stmt
&& is_gimple_call (stmt
))
9429 gimple_call_set_ctrl_altering (stmt
, false);
9430 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9431 stmt
= gimple_build_call (fndecl
, 0);
9432 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9433 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9434 if (!cfun
->after_inlining
)
9436 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9437 node
->create_edge (cgraph_node::get_create (fndecl
),
9438 call_stmt
, bb
->count
);
9444 compute_function_frequency ();
9447 && (todo
& TODO_cleanup_cfg
))
9448 loops_state_set (LOOPS_NEED_FIXUP
);
9455 const pass_data pass_data_fixup_cfg
=
9457 GIMPLE_PASS
, /* type */
9458 "fixup_cfg", /* name */
9459 OPTGROUP_NONE
, /* optinfo_flags */
9460 TV_NONE
, /* tv_id */
9461 PROP_cfg
, /* properties_required */
9462 0, /* properties_provided */
9463 0, /* properties_destroyed */
9464 0, /* todo_flags_start */
9465 0, /* todo_flags_finish */
9468 class pass_fixup_cfg
: public gimple_opt_pass
9471 pass_fixup_cfg (gcc::context
*ctxt
)
9472 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9475 /* opt_pass methods: */
9476 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9477 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9479 }; // class pass_fixup_cfg
9484 make_pass_fixup_cfg (gcc::context
*ctxt
)
9486 return new pass_fixup_cfg (ctxt
);
9489 /* Garbage collection support for edge_def. */
9491 extern void gt_ggc_mx (tree
&);
9492 extern void gt_ggc_mx (gimple
*&);
9493 extern void gt_ggc_mx (rtx
&);
9494 extern void gt_ggc_mx (basic_block
&);
9497 gt_ggc_mx (rtx_insn
*& x
)
9500 gt_ggc_mx_rtx_def ((void *) x
);
9504 gt_ggc_mx (edge_def
*e
)
9506 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9508 gt_ggc_mx (e
->dest
);
9509 if (current_ir_type () == IR_GIMPLE
)
9510 gt_ggc_mx (e
->insns
.g
);
9512 gt_ggc_mx (e
->insns
.r
);
9516 /* PCH support for edge_def. */
9518 extern void gt_pch_nx (tree
&);
9519 extern void gt_pch_nx (gimple
*&);
9520 extern void gt_pch_nx (rtx
&);
9521 extern void gt_pch_nx (basic_block
&);
9524 gt_pch_nx (rtx_insn
*& x
)
9527 gt_pch_nx_rtx_def ((void *) x
);
9531 gt_pch_nx (edge_def
*e
)
9533 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9535 gt_pch_nx (e
->dest
);
9536 if (current_ir_type () == IR_GIMPLE
)
9537 gt_pch_nx (e
->insns
.g
);
9539 gt_pch_nx (e
->insns
.r
);
9544 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9546 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9547 op (&(e
->src
), cookie
);
9548 op (&(e
->dest
), cookie
);
9549 if (current_ir_type () == IR_GIMPLE
)
9550 op (&(e
->insns
.g
), cookie
);
9552 op (&(e
->insns
.r
), cookie
);
9553 op (&(block
), cookie
);
9558 namespace selftest
{
9560 /* Helper function for CFG selftests: create a dummy function decl
9561 and push it as cfun. */
9564 push_fndecl (const char *name
)
9566 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9567 /* FIXME: this uses input_location: */
9568 tree fndecl
= build_fn_decl (name
, fn_type
);
9569 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9570 NULL_TREE
, integer_type_node
);
9571 DECL_RESULT (fndecl
) = retval
;
9572 push_struct_function (fndecl
);
9573 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9574 ASSERT_TRUE (fun
!= NULL
);
9575 init_empty_tree_cfg_for_function (fun
);
9576 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9577 ASSERT_EQ (0, n_edges_for_fn (fun
));
9581 /* These tests directly create CFGs.
9582 Compare with the static fns within tree-cfg.c:
9584 - make_blocks: calls create_basic_block (seq, bb);
9587 /* Verify a simple cfg of the form:
9588 ENTRY -> A -> B -> C -> EXIT. */
9591 test_linear_chain ()
9593 gimple_register_cfg_hooks ();
9595 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9596 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9598 /* Create some empty blocks. */
9599 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9600 basic_block bb_b
= create_empty_bb (bb_a
);
9601 basic_block bb_c
= create_empty_bb (bb_b
);
9603 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9604 ASSERT_EQ (0, n_edges_for_fn (fun
));
9606 /* Create some edges: a simple linear chain of BBs. */
9607 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9608 make_edge (bb_a
, bb_b
, 0);
9609 make_edge (bb_b
, bb_c
, 0);
9610 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9612 /* Verify the edges. */
9613 ASSERT_EQ (4, n_edges_for_fn (fun
));
9614 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9615 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9616 ASSERT_EQ (1, bb_a
->preds
->length ());
9617 ASSERT_EQ (1, bb_a
->succs
->length ());
9618 ASSERT_EQ (1, bb_b
->preds
->length ());
9619 ASSERT_EQ (1, bb_b
->succs
->length ());
9620 ASSERT_EQ (1, bb_c
->preds
->length ());
9621 ASSERT_EQ (1, bb_c
->succs
->length ());
9622 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9623 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9625 /* Verify the dominance information
9626 Each BB in our simple chain should be dominated by the one before
9628 calculate_dominance_info (CDI_DOMINATORS
);
9629 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9630 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9631 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9632 ASSERT_EQ (1, dom_by_b
.length ());
9633 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9634 free_dominance_info (CDI_DOMINATORS
);
9635 dom_by_b
.release ();
9637 /* Similarly for post-dominance: each BB in our chain is post-dominated
9638 by the one after it. */
9639 calculate_dominance_info (CDI_POST_DOMINATORS
);
9640 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9641 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9642 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9643 ASSERT_EQ (1, postdom_by_b
.length ());
9644 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9645 free_dominance_info (CDI_POST_DOMINATORS
);
9646 postdom_by_b
.release ();
9651 /* Verify a simple CFG of the form:
9667 gimple_register_cfg_hooks ();
9669 tree fndecl
= push_fndecl ("cfg_test_diamond");
9670 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9672 /* Create some empty blocks. */
9673 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9674 basic_block bb_b
= create_empty_bb (bb_a
);
9675 basic_block bb_c
= create_empty_bb (bb_a
);
9676 basic_block bb_d
= create_empty_bb (bb_b
);
9678 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9679 ASSERT_EQ (0, n_edges_for_fn (fun
));
9681 /* Create the edges. */
9682 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9683 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9684 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9685 make_edge (bb_b
, bb_d
, 0);
9686 make_edge (bb_c
, bb_d
, 0);
9687 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9689 /* Verify the edges. */
9690 ASSERT_EQ (6, n_edges_for_fn (fun
));
9691 ASSERT_EQ (1, bb_a
->preds
->length ());
9692 ASSERT_EQ (2, bb_a
->succs
->length ());
9693 ASSERT_EQ (1, bb_b
->preds
->length ());
9694 ASSERT_EQ (1, bb_b
->succs
->length ());
9695 ASSERT_EQ (1, bb_c
->preds
->length ());
9696 ASSERT_EQ (1, bb_c
->succs
->length ());
9697 ASSERT_EQ (2, bb_d
->preds
->length ());
9698 ASSERT_EQ (1, bb_d
->succs
->length ());
9700 /* Verify the dominance information. */
9701 calculate_dominance_info (CDI_DOMINATORS
);
9702 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9703 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9704 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9705 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9706 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9707 dom_by_a
.release ();
9708 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9709 ASSERT_EQ (0, dom_by_b
.length ());
9710 dom_by_b
.release ();
9711 free_dominance_info (CDI_DOMINATORS
);
9713 /* Similarly for post-dominance. */
9714 calculate_dominance_info (CDI_POST_DOMINATORS
);
9715 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9716 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9717 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9718 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9719 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9720 postdom_by_d
.release ();
9721 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9722 ASSERT_EQ (0, postdom_by_b
.length ());
9723 postdom_by_b
.release ();
9724 free_dominance_info (CDI_POST_DOMINATORS
);
9729 /* Verify that we can handle a CFG containing a "complete" aka
9730 fully-connected subgraph (where A B C D below all have edges
9731 pointing to each other node, also to themselves).
9749 test_fully_connected ()
9751 gimple_register_cfg_hooks ();
9753 tree fndecl
= push_fndecl ("cfg_fully_connected");
9754 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9758 /* Create some empty blocks. */
9759 auto_vec
<basic_block
> subgraph_nodes
;
9760 for (int i
= 0; i
< n
; i
++)
9761 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
9763 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
9764 ASSERT_EQ (0, n_edges_for_fn (fun
));
9766 /* Create the edges. */
9767 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
9768 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9769 for (int i
= 0; i
< n
; i
++)
9770 for (int j
= 0; j
< n
; j
++)
9771 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
9773 /* Verify the edges. */
9774 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
9775 /* The first one is linked to ENTRY/EXIT as well as itself and
9777 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
9778 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
9779 /* The other ones in the subgraph are linked to everything in
9780 the subgraph (including themselves). */
9781 for (int i
= 1; i
< n
; i
++)
9783 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
9784 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
9787 /* Verify the dominance information. */
9788 calculate_dominance_info (CDI_DOMINATORS
);
9789 /* The initial block in the subgraph should be dominated by ENTRY. */
9790 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
9791 get_immediate_dominator (CDI_DOMINATORS
,
9792 subgraph_nodes
[0]));
9793 /* Every other block in the subgraph should be dominated by the
9795 for (int i
= 1; i
< n
; i
++)
9796 ASSERT_EQ (subgraph_nodes
[0],
9797 get_immediate_dominator (CDI_DOMINATORS
,
9798 subgraph_nodes
[i
]));
9799 free_dominance_info (CDI_DOMINATORS
);
9801 /* Similarly for post-dominance. */
9802 calculate_dominance_info (CDI_POST_DOMINATORS
);
9803 /* The initial block in the subgraph should be postdominated by EXIT. */
9804 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
9805 get_immediate_dominator (CDI_POST_DOMINATORS
,
9806 subgraph_nodes
[0]));
9807 /* Every other block in the subgraph should be postdominated by the
9808 initial block, since that leads to EXIT. */
9809 for (int i
= 1; i
< n
; i
++)
9810 ASSERT_EQ (subgraph_nodes
[0],
9811 get_immediate_dominator (CDI_POST_DOMINATORS
,
9812 subgraph_nodes
[i
]));
9813 free_dominance_info (CDI_POST_DOMINATORS
);
9818 /* Run all of the selftests within this file. */
9823 test_linear_chain ();
9825 test_fully_connected ();
9828 } // namespace selftest
9830 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9833 - switch statement (a block with many out-edges)
9834 - something that jumps to itself
9837 #endif /* CHECKING_P */