* rtl.h (struct rtx_def): Update comments.
[official-gcc.git] / gcc / stmt.c
blob42a9659ade6970c1e1e2c691bee6f8f42e4f6065
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 It also creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 The functions whose names start with `expand_' are called by the
28 parser to generate RTL instructions for various kinds of constructs.
30 Some control and binding constructs require calling several such
31 functions at different times. For example, a simple if-then
32 is expanded by calling `expand_start_cond' (with the condition-expression
33 as argument) before parsing the then-clause and calling `expand_end_cond'
34 after parsing the then-clause. */
36 #include "config.h"
37 #include "system.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "insn-config.h"
46 #include "expr.h"
47 #include "libfuncs.h"
48 #include "hard-reg-set.h"
49 #include "obstack.h"
50 #include "loop.h"
51 #include "recog.h"
52 #include "machmode.h"
53 #include "toplev.h"
54 #include "output.h"
55 #include "ggc.h"
56 #include "langhooks.h"
58 #define obstack_chunk_alloc xmalloc
59 #define obstack_chunk_free free
60 struct obstack stmt_obstack;
62 /* Assume that case vectors are not pc-relative. */
63 #ifndef CASE_VECTOR_PC_RELATIVE
64 #define CASE_VECTOR_PC_RELATIVE 0
65 #endif
67 /* Functions and data structures for expanding case statements. */
69 /* Case label structure, used to hold info on labels within case
70 statements. We handle "range" labels; for a single-value label
71 as in C, the high and low limits are the same.
73 An AVL tree of case nodes is initially created, and later transformed
74 to a list linked via the RIGHT fields in the nodes. Nodes with
75 higher case values are later in the list.
77 Switch statements can be output in one of two forms. A branch table
78 is used if there are more than a few labels and the labels are dense
79 within the range between the smallest and largest case value. If a
80 branch table is used, no further manipulations are done with the case
81 node chain.
83 The alternative to the use of a branch table is to generate a series
84 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
85 and PARENT fields to hold a binary tree. Initially the tree is
86 totally unbalanced, with everything on the right. We balance the tree
87 with nodes on the left having lower case values than the parent
88 and nodes on the right having higher values. We then output the tree
89 in order. */
91 struct case_node
93 struct case_node *left; /* Left son in binary tree */
94 struct case_node *right; /* Right son in binary tree; also node chain */
95 struct case_node *parent; /* Parent of node in binary tree */
96 tree low; /* Lowest index value for this label */
97 tree high; /* Highest index value for this label */
98 tree code_label; /* Label to jump to when node matches */
99 int balance;
102 typedef struct case_node case_node;
103 typedef struct case_node *case_node_ptr;
105 /* These are used by estimate_case_costs and balance_case_nodes. */
107 /* This must be a signed type, and non-ANSI compilers lack signed char. */
108 static short cost_table_[129];
109 static int use_cost_table;
110 static int cost_table_initialized;
112 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
113 is unsigned. */
114 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT) ((I) + 1)]
116 /* Stack of control and binding constructs we are currently inside.
118 These constructs begin when you call `expand_start_WHATEVER'
119 and end when you call `expand_end_WHATEVER'. This stack records
120 info about how the construct began that tells the end-function
121 what to do. It also may provide information about the construct
122 to alter the behavior of other constructs within the body.
123 For example, they may affect the behavior of C `break' and `continue'.
125 Each construct gets one `struct nesting' object.
126 All of these objects are chained through the `all' field.
127 `nesting_stack' points to the first object (innermost construct).
128 The position of an entry on `nesting_stack' is in its `depth' field.
130 Each type of construct has its own individual stack.
131 For example, loops have `loop_stack'. Each object points to the
132 next object of the same type through the `next' field.
134 Some constructs are visible to `break' exit-statements and others
135 are not. Which constructs are visible depends on the language.
136 Therefore, the data structure allows each construct to be visible
137 or not, according to the args given when the construct is started.
138 The construct is visible if the `exit_label' field is non-null.
139 In that case, the value should be a CODE_LABEL rtx. */
141 struct nesting
143 struct nesting *all;
144 struct nesting *next;
145 int depth;
146 rtx exit_label;
147 union
149 /* For conds (if-then and if-then-else statements). */
150 struct
152 /* Label for the end of the if construct.
153 There is none if EXITFLAG was not set
154 and no `else' has been seen yet. */
155 rtx endif_label;
156 /* Label for the end of this alternative.
157 This may be the end of the if or the next else/elseif. */
158 rtx next_label;
159 } cond;
160 /* For loops. */
161 struct
163 /* Label at the top of the loop; place to loop back to. */
164 rtx start_label;
165 /* Label at the end of the whole construct. */
166 rtx end_label;
167 /* Label before a jump that branches to the end of the whole
168 construct. This is where destructors go if any. */
169 rtx alt_end_label;
170 /* Label for `continue' statement to jump to;
171 this is in front of the stepper of the loop. */
172 rtx continue_label;
173 } loop;
174 /* For variable binding contours. */
175 struct
177 /* Sequence number of this binding contour within the function,
178 in order of entry. */
179 int block_start_count;
180 /* Nonzero => value to restore stack to on exit. */
181 rtx stack_level;
182 /* The NOTE that starts this contour.
183 Used by expand_goto to check whether the destination
184 is within each contour or not. */
185 rtx first_insn;
186 /* Innermost containing binding contour that has a stack level. */
187 struct nesting *innermost_stack_block;
188 /* List of cleanups to be run on exit from this contour.
189 This is a list of expressions to be evaluated.
190 The TREE_PURPOSE of each link is the ..._DECL node
191 which the cleanup pertains to. */
192 tree cleanups;
193 /* List of cleanup-lists of blocks containing this block,
194 as they were at the locus where this block appears.
195 There is an element for each containing block,
196 ordered innermost containing block first.
197 The tail of this list can be 0,
198 if all remaining elements would be empty lists.
199 The element's TREE_VALUE is the cleanup-list of that block,
200 which may be null. */
201 tree outer_cleanups;
202 /* Chain of labels defined inside this binding contour.
203 For contours that have stack levels or cleanups. */
204 struct label_chain *label_chain;
205 /* Number of function calls seen, as of start of this block. */
206 int n_function_calls;
207 /* Nonzero if this is associated with an EH region. */
208 int exception_region;
209 /* The saved target_temp_slot_level from our outer block.
210 We may reset target_temp_slot_level to be the level of
211 this block, if that is done, target_temp_slot_level
212 reverts to the saved target_temp_slot_level at the very
213 end of the block. */
214 int block_target_temp_slot_level;
215 /* True if we are currently emitting insns in an area of
216 output code that is controlled by a conditional
217 expression. This is used by the cleanup handling code to
218 generate conditional cleanup actions. */
219 int conditional_code;
220 /* A place to move the start of the exception region for any
221 of the conditional cleanups, must be at the end or after
222 the start of the last unconditional cleanup, and before any
223 conditional branch points. */
224 rtx last_unconditional_cleanup;
225 /* When in a conditional context, this is the specific
226 cleanup list associated with last_unconditional_cleanup,
227 where we place the conditionalized cleanups. */
228 tree *cleanup_ptr;
229 } block;
230 /* For switch (C) or case (Pascal) statements,
231 and also for dummies (see `expand_start_case_dummy'). */
232 struct
234 /* The insn after which the case dispatch should finally
235 be emitted. Zero for a dummy. */
236 rtx start;
237 /* A list of case labels; it is first built as an AVL tree.
238 During expand_end_case, this is converted to a list, and may be
239 rearranged into a nearly balanced binary tree. */
240 struct case_node *case_list;
241 /* Label to jump to if no case matches. */
242 tree default_label;
243 /* The expression to be dispatched on. */
244 tree index_expr;
245 /* Type that INDEX_EXPR should be converted to. */
246 tree nominal_type;
247 /* Name of this kind of statement, for warnings. */
248 const char *printname;
249 /* Used to save no_line_numbers till we see the first case label.
250 We set this to -1 when we see the first case label in this
251 case statement. */
252 int line_number_status;
253 } case_stmt;
254 } data;
257 /* Allocate and return a new `struct nesting'. */
259 #define ALLOC_NESTING() \
260 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
262 /* Pop the nesting stack element by element until we pop off
263 the element which is at the top of STACK.
264 Update all the other stacks, popping off elements from them
265 as we pop them from nesting_stack. */
267 #define POPSTACK(STACK) \
268 do { struct nesting *target = STACK; \
269 struct nesting *this; \
270 do { this = nesting_stack; \
271 if (loop_stack == this) \
272 loop_stack = loop_stack->next; \
273 if (cond_stack == this) \
274 cond_stack = cond_stack->next; \
275 if (block_stack == this) \
276 block_stack = block_stack->next; \
277 if (stack_block_stack == this) \
278 stack_block_stack = stack_block_stack->next; \
279 if (case_stack == this) \
280 case_stack = case_stack->next; \
281 nesting_depth = nesting_stack->depth - 1; \
282 nesting_stack = this->all; \
283 obstack_free (&stmt_obstack, this); } \
284 while (this != target); } while (0)
286 /* In some cases it is impossible to generate code for a forward goto
287 until the label definition is seen. This happens when it may be necessary
288 for the goto to reset the stack pointer: we don't yet know how to do that.
289 So expand_goto puts an entry on this fixup list.
290 Each time a binding contour that resets the stack is exited,
291 we check each fixup.
292 If the target label has now been defined, we can insert the proper code. */
294 struct goto_fixup
296 /* Points to following fixup. */
297 struct goto_fixup *next;
298 /* Points to the insn before the jump insn.
299 If more code must be inserted, it goes after this insn. */
300 rtx before_jump;
301 /* The LABEL_DECL that this jump is jumping to, or 0
302 for break, continue or return. */
303 tree target;
304 /* The BLOCK for the place where this goto was found. */
305 tree context;
306 /* The CODE_LABEL rtx that this is jumping to. */
307 rtx target_rtl;
308 /* Number of binding contours started in current function
309 before the label reference. */
310 int block_start_count;
311 /* The outermost stack level that should be restored for this jump.
312 Each time a binding contour that resets the stack is exited,
313 if the target label is *not* yet defined, this slot is updated. */
314 rtx stack_level;
315 /* List of lists of cleanup expressions to be run by this goto.
316 There is one element for each block that this goto is within.
317 The tail of this list can be 0,
318 if all remaining elements would be empty.
319 The TREE_VALUE contains the cleanup list of that block as of the
320 time this goto was seen.
321 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
322 tree cleanup_list_list;
325 /* Within any binding contour that must restore a stack level,
326 all labels are recorded with a chain of these structures. */
328 struct label_chain
330 /* Points to following fixup. */
331 struct label_chain *next;
332 tree label;
335 struct stmt_status
337 /* Chain of all pending binding contours. */
338 struct nesting *x_block_stack;
340 /* If any new stacks are added here, add them to POPSTACKS too. */
342 /* Chain of all pending binding contours that restore stack levels
343 or have cleanups. */
344 struct nesting *x_stack_block_stack;
346 /* Chain of all pending conditional statements. */
347 struct nesting *x_cond_stack;
349 /* Chain of all pending loops. */
350 struct nesting *x_loop_stack;
352 /* Chain of all pending case or switch statements. */
353 struct nesting *x_case_stack;
355 /* Separate chain including all of the above,
356 chained through the `all' field. */
357 struct nesting *x_nesting_stack;
359 /* Number of entries on nesting_stack now. */
360 int x_nesting_depth;
362 /* Number of binding contours started so far in this function. */
363 int x_block_start_count;
365 /* Each time we expand an expression-statement,
366 record the expr's type and its RTL value here. */
367 tree x_last_expr_type;
368 rtx x_last_expr_value;
370 /* Nonzero if within a ({...}) grouping, in which case we must
371 always compute a value for each expr-stmt in case it is the last one. */
372 int x_expr_stmts_for_value;
374 /* Filename and line number of last line-number note,
375 whether we actually emitted it or not. */
376 const char *x_emit_filename;
377 int x_emit_lineno;
379 struct goto_fixup *x_goto_fixup_chain;
382 #define block_stack (cfun->stmt->x_block_stack)
383 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
384 #define cond_stack (cfun->stmt->x_cond_stack)
385 #define loop_stack (cfun->stmt->x_loop_stack)
386 #define case_stack (cfun->stmt->x_case_stack)
387 #define nesting_stack (cfun->stmt->x_nesting_stack)
388 #define nesting_depth (cfun->stmt->x_nesting_depth)
389 #define current_block_start_count (cfun->stmt->x_block_start_count)
390 #define last_expr_type (cfun->stmt->x_last_expr_type)
391 #define last_expr_value (cfun->stmt->x_last_expr_value)
392 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
393 #define emit_filename (cfun->stmt->x_emit_filename)
394 #define emit_lineno (cfun->stmt->x_emit_lineno)
395 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
397 /* Non-zero if we are using EH to handle cleanus. */
398 static int using_eh_for_cleanups_p = 0;
400 static int n_occurrences PARAMS ((int, const char *));
401 static bool parse_input_constraint PARAMS ((const char **, int, int, int,
402 int, const char * const *,
403 bool *, bool *));
404 static void expand_goto_internal PARAMS ((tree, rtx, rtx));
405 static int expand_fixup PARAMS ((tree, rtx, rtx));
406 static rtx expand_nl_handler_label PARAMS ((rtx, rtx));
407 static void expand_nl_goto_receiver PARAMS ((void));
408 static void expand_nl_goto_receivers PARAMS ((struct nesting *));
409 static void fixup_gotos PARAMS ((struct nesting *, rtx, tree,
410 rtx, int));
411 static bool check_operand_nalternatives PARAMS ((tree, tree));
412 static bool check_unique_operand_names PARAMS ((tree, tree));
413 static tree resolve_operand_names PARAMS ((tree, tree, tree,
414 const char **));
415 static char *resolve_operand_name_1 PARAMS ((char *, tree, tree));
416 static void expand_null_return_1 PARAMS ((rtx));
417 static void expand_value_return PARAMS ((rtx));
418 static int tail_recursion_args PARAMS ((tree, tree));
419 static void expand_cleanups PARAMS ((tree, tree, int, int));
420 static void check_seenlabel PARAMS ((void));
421 static void do_jump_if_equal PARAMS ((rtx, rtx, rtx, int));
422 static int estimate_case_costs PARAMS ((case_node_ptr));
423 static void group_case_nodes PARAMS ((case_node_ptr));
424 static void balance_case_nodes PARAMS ((case_node_ptr *,
425 case_node_ptr));
426 static int node_has_low_bound PARAMS ((case_node_ptr, tree));
427 static int node_has_high_bound PARAMS ((case_node_ptr, tree));
428 static int node_is_bounded PARAMS ((case_node_ptr, tree));
429 static void emit_jump_if_reachable PARAMS ((rtx));
430 static void emit_case_nodes PARAMS ((rtx, case_node_ptr, rtx, tree));
431 static struct case_node *case_tree2list PARAMS ((case_node *, case_node *));
432 static void mark_cond_nesting PARAMS ((struct nesting *));
433 static void mark_loop_nesting PARAMS ((struct nesting *));
434 static void mark_block_nesting PARAMS ((struct nesting *));
435 static void mark_case_nesting PARAMS ((struct nesting *));
436 static void mark_case_node PARAMS ((struct case_node *));
437 static void mark_goto_fixup PARAMS ((struct goto_fixup *));
438 static void free_case_nodes PARAMS ((case_node_ptr));
440 void
441 using_eh_for_cleanups ()
443 using_eh_for_cleanups_p = 1;
446 /* Mark N (known to be a cond-nesting) for GC. */
448 static void
449 mark_cond_nesting (n)
450 struct nesting *n;
452 while (n)
454 ggc_mark_rtx (n->exit_label);
455 ggc_mark_rtx (n->data.cond.endif_label);
456 ggc_mark_rtx (n->data.cond.next_label);
458 n = n->next;
462 /* Mark N (known to be a loop-nesting) for GC. */
464 static void
465 mark_loop_nesting (n)
466 struct nesting *n;
469 while (n)
471 ggc_mark_rtx (n->exit_label);
472 ggc_mark_rtx (n->data.loop.start_label);
473 ggc_mark_rtx (n->data.loop.end_label);
474 ggc_mark_rtx (n->data.loop.alt_end_label);
475 ggc_mark_rtx (n->data.loop.continue_label);
477 n = n->next;
481 /* Mark N (known to be a block-nesting) for GC. */
483 static void
484 mark_block_nesting (n)
485 struct nesting *n;
487 while (n)
489 struct label_chain *l;
491 ggc_mark_rtx (n->exit_label);
492 ggc_mark_rtx (n->data.block.stack_level);
493 ggc_mark_rtx (n->data.block.first_insn);
494 ggc_mark_tree (n->data.block.cleanups);
495 ggc_mark_tree (n->data.block.outer_cleanups);
497 for (l = n->data.block.label_chain; l != NULL; l = l->next)
499 ggc_mark (l);
500 ggc_mark_tree (l->label);
503 ggc_mark_rtx (n->data.block.last_unconditional_cleanup);
505 /* ??? cleanup_ptr never points outside the stack, does it? */
507 n = n->next;
511 /* Mark N (known to be a case-nesting) for GC. */
513 static void
514 mark_case_nesting (n)
515 struct nesting *n;
517 while (n)
519 ggc_mark_rtx (n->exit_label);
520 ggc_mark_rtx (n->data.case_stmt.start);
522 ggc_mark_tree (n->data.case_stmt.default_label);
523 ggc_mark_tree (n->data.case_stmt.index_expr);
524 ggc_mark_tree (n->data.case_stmt.nominal_type);
526 mark_case_node (n->data.case_stmt.case_list);
527 n = n->next;
531 /* Mark C for GC. */
533 static void
534 mark_case_node (c)
535 struct case_node *c;
537 if (c != 0)
539 ggc_mark_tree (c->low);
540 ggc_mark_tree (c->high);
541 ggc_mark_tree (c->code_label);
543 mark_case_node (c->right);
544 mark_case_node (c->left);
548 /* Mark G for GC. */
550 static void
551 mark_goto_fixup (g)
552 struct goto_fixup *g;
554 while (g)
556 ggc_mark (g);
557 ggc_mark_rtx (g->before_jump);
558 ggc_mark_tree (g->target);
559 ggc_mark_tree (g->context);
560 ggc_mark_rtx (g->target_rtl);
561 ggc_mark_rtx (g->stack_level);
562 ggc_mark_tree (g->cleanup_list_list);
564 g = g->next;
568 /* Clear out all parts of the state in F that can safely be discarded
569 after the function has been compiled, to let garbage collection
570 reclaim the memory. */
572 void
573 free_stmt_status (f)
574 struct function *f;
576 /* We're about to free the function obstack. If we hold pointers to
577 things allocated there, then we'll try to mark them when we do
578 GC. So, we clear them out here explicitly. */
579 if (f->stmt)
580 free (f->stmt);
581 f->stmt = NULL;
584 /* Mark P for GC. */
586 void
587 mark_stmt_status (p)
588 struct stmt_status *p;
590 if (p == 0)
591 return;
593 mark_block_nesting (p->x_block_stack);
594 mark_cond_nesting (p->x_cond_stack);
595 mark_loop_nesting (p->x_loop_stack);
596 mark_case_nesting (p->x_case_stack);
598 ggc_mark_tree (p->x_last_expr_type);
599 /* last_epxr_value is only valid if last_expr_type is nonzero. */
600 if (p->x_last_expr_type)
601 ggc_mark_rtx (p->x_last_expr_value);
603 mark_goto_fixup (p->x_goto_fixup_chain);
606 void
607 init_stmt ()
609 gcc_obstack_init (&stmt_obstack);
612 void
613 init_stmt_for_function ()
615 cfun->stmt = (struct stmt_status *) xmalloc (sizeof (struct stmt_status));
617 /* We are not currently within any block, conditional, loop or case. */
618 block_stack = 0;
619 stack_block_stack = 0;
620 loop_stack = 0;
621 case_stack = 0;
622 cond_stack = 0;
623 nesting_stack = 0;
624 nesting_depth = 0;
626 current_block_start_count = 0;
628 /* No gotos have been expanded yet. */
629 goto_fixup_chain = 0;
631 /* We are not processing a ({...}) grouping. */
632 expr_stmts_for_value = 0;
633 last_expr_type = 0;
634 last_expr_value = NULL_RTX;
637 /* Return nonzero if anything is pushed on the loop, condition, or case
638 stack. */
640 in_control_zone_p ()
642 return cond_stack || loop_stack || case_stack;
645 /* Record the current file and line. Called from emit_line_note. */
646 void
647 set_file_and_line_for_stmt (file, line)
648 const char *file;
649 int line;
651 /* If we're outputting an inline function, and we add a line note,
652 there may be no CFUN->STMT information. So, there's no need to
653 update it. */
654 if (cfun->stmt)
656 emit_filename = file;
657 emit_lineno = line;
661 /* Emit a no-op instruction. */
663 void
664 emit_nop ()
666 rtx last_insn;
668 last_insn = get_last_insn ();
669 if (!optimize
670 && (GET_CODE (last_insn) == CODE_LABEL
671 || (GET_CODE (last_insn) == NOTE
672 && prev_real_insn (last_insn) == 0)))
673 emit_insn (gen_nop ());
676 /* Return the rtx-label that corresponds to a LABEL_DECL,
677 creating it if necessary. */
680 label_rtx (label)
681 tree label;
683 if (TREE_CODE (label) != LABEL_DECL)
684 abort ();
686 if (!DECL_RTL_SET_P (label))
687 SET_DECL_RTL (label, gen_label_rtx ());
689 return DECL_RTL (label);
693 /* Add an unconditional jump to LABEL as the next sequential instruction. */
695 void
696 emit_jump (label)
697 rtx label;
699 do_pending_stack_adjust ();
700 emit_jump_insn (gen_jump (label));
701 emit_barrier ();
704 /* Emit code to jump to the address
705 specified by the pointer expression EXP. */
707 void
708 expand_computed_goto (exp)
709 tree exp;
711 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
713 #ifdef POINTERS_EXTEND_UNSIGNED
714 if (GET_MODE (x) != Pmode)
715 x = convert_memory_address (Pmode, x);
716 #endif
718 emit_queue ();
719 do_pending_stack_adjust ();
720 emit_indirect_jump (x);
722 current_function_has_computed_jump = 1;
725 /* Handle goto statements and the labels that they can go to. */
727 /* Specify the location in the RTL code of a label LABEL,
728 which is a LABEL_DECL tree node.
730 This is used for the kind of label that the user can jump to with a
731 goto statement, and for alternatives of a switch or case statement.
732 RTL labels generated for loops and conditionals don't go through here;
733 they are generated directly at the RTL level, by other functions below.
735 Note that this has nothing to do with defining label *names*.
736 Languages vary in how they do that and what that even means. */
738 void
739 expand_label (label)
740 tree label;
742 struct label_chain *p;
744 do_pending_stack_adjust ();
745 emit_label (label_rtx (label));
746 if (DECL_NAME (label))
747 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
749 if (stack_block_stack != 0)
751 p = (struct label_chain *) ggc_alloc (sizeof (struct label_chain));
752 p->next = stack_block_stack->data.block.label_chain;
753 stack_block_stack->data.block.label_chain = p;
754 p->label = label;
758 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
759 from nested functions. */
761 void
762 declare_nonlocal_label (label)
763 tree label;
765 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
767 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
768 LABEL_PRESERVE_P (label_rtx (label)) = 1;
769 if (nonlocal_goto_handler_slots == 0)
771 emit_stack_save (SAVE_NONLOCAL,
772 &nonlocal_goto_stack_level,
773 PREV_INSN (tail_recursion_reentry));
775 nonlocal_goto_handler_slots
776 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
779 /* Generate RTL code for a `goto' statement with target label LABEL.
780 LABEL should be a LABEL_DECL tree node that was or will later be
781 defined with `expand_label'. */
783 void
784 expand_goto (label)
785 tree label;
787 tree context;
789 /* Check for a nonlocal goto to a containing function. */
790 context = decl_function_context (label);
791 if (context != 0 && context != current_function_decl)
793 struct function *p = find_function_data (context);
794 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
795 rtx handler_slot, static_chain, save_area, insn;
796 tree link;
798 /* Find the corresponding handler slot for this label. */
799 handler_slot = p->x_nonlocal_goto_handler_slots;
800 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
801 link = TREE_CHAIN (link))
802 handler_slot = XEXP (handler_slot, 1);
803 handler_slot = XEXP (handler_slot, 0);
805 p->has_nonlocal_label = 1;
806 current_function_has_nonlocal_goto = 1;
807 LABEL_REF_NONLOCAL_P (label_ref) = 1;
809 /* Copy the rtl for the slots so that they won't be shared in
810 case the virtual stack vars register gets instantiated differently
811 in the parent than in the child. */
813 static_chain = copy_to_reg (lookup_static_chain (label));
815 /* Get addr of containing function's current nonlocal goto handler,
816 which will do any cleanups and then jump to the label. */
817 handler_slot = copy_to_reg (replace_rtx (copy_rtx (handler_slot),
818 virtual_stack_vars_rtx,
819 static_chain));
821 /* Get addr of containing function's nonlocal save area. */
822 save_area = p->x_nonlocal_goto_stack_level;
823 if (save_area)
824 save_area = replace_rtx (copy_rtx (save_area),
825 virtual_stack_vars_rtx, static_chain);
827 #if HAVE_nonlocal_goto
828 if (HAVE_nonlocal_goto)
829 emit_insn (gen_nonlocal_goto (static_chain, handler_slot,
830 save_area, label_ref));
831 else
832 #endif
834 /* Restore frame pointer for containing function.
835 This sets the actual hard register used for the frame pointer
836 to the location of the function's incoming static chain info.
837 The non-local goto handler will then adjust it to contain the
838 proper value and reload the argument pointer, if needed. */
839 emit_move_insn (hard_frame_pointer_rtx, static_chain);
840 emit_stack_restore (SAVE_NONLOCAL, save_area, NULL_RTX);
842 /* USE of hard_frame_pointer_rtx added for consistency;
843 not clear if really needed. */
844 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
845 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
846 emit_indirect_jump (handler_slot);
849 /* Search backwards to the jump insn and mark it as a
850 non-local goto. */
851 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
853 if (GET_CODE (insn) == JUMP_INSN)
855 REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO,
856 const0_rtx, REG_NOTES (insn));
857 break;
859 else if (GET_CODE (insn) == CALL_INSN)
860 break;
863 else
864 expand_goto_internal (label, label_rtx (label), NULL_RTX);
867 /* Generate RTL code for a `goto' statement with target label BODY.
868 LABEL should be a LABEL_REF.
869 LAST_INSN, if non-0, is the rtx we should consider as the last
870 insn emitted (for the purposes of cleaning up a return). */
872 static void
873 expand_goto_internal (body, label, last_insn)
874 tree body;
875 rtx label;
876 rtx last_insn;
878 struct nesting *block;
879 rtx stack_level = 0;
881 if (GET_CODE (label) != CODE_LABEL)
882 abort ();
884 /* If label has already been defined, we can tell now
885 whether and how we must alter the stack level. */
887 if (PREV_INSN (label) != 0)
889 /* Find the innermost pending block that contains the label.
890 (Check containment by comparing insn-uids.)
891 Then restore the outermost stack level within that block,
892 and do cleanups of all blocks contained in it. */
893 for (block = block_stack; block; block = block->next)
895 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
896 break;
897 if (block->data.block.stack_level != 0)
898 stack_level = block->data.block.stack_level;
899 /* Execute the cleanups for blocks we are exiting. */
900 if (block->data.block.cleanups != 0)
902 expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1);
903 do_pending_stack_adjust ();
907 if (stack_level)
909 /* Ensure stack adjust isn't done by emit_jump, as this
910 would clobber the stack pointer. This one should be
911 deleted as dead by flow. */
912 clear_pending_stack_adjust ();
913 do_pending_stack_adjust ();
915 /* Don't do this adjust if it's to the end label and this function
916 is to return with a depressed stack pointer. */
917 if (label == return_label
918 && (((TREE_CODE (TREE_TYPE (current_function_decl))
919 == FUNCTION_TYPE)
920 && (TYPE_RETURNS_STACK_DEPRESSED
921 (TREE_TYPE (current_function_decl))))))
923 else
924 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
927 if (body != 0 && DECL_TOO_LATE (body))
928 error ("jump to `%s' invalidly jumps into binding contour",
929 IDENTIFIER_POINTER (DECL_NAME (body)));
931 /* Label not yet defined: may need to put this goto
932 on the fixup list. */
933 else if (! expand_fixup (body, label, last_insn))
935 /* No fixup needed. Record that the label is the target
936 of at least one goto that has no fixup. */
937 if (body != 0)
938 TREE_ADDRESSABLE (body) = 1;
941 emit_jump (label);
944 /* Generate if necessary a fixup for a goto
945 whose target label in tree structure (if any) is TREE_LABEL
946 and whose target in rtl is RTL_LABEL.
948 If LAST_INSN is nonzero, we pretend that the jump appears
949 after insn LAST_INSN instead of at the current point in the insn stream.
951 The fixup will be used later to insert insns just before the goto.
952 Those insns will restore the stack level as appropriate for the
953 target label, and will (in the case of C++) also invoke any object
954 destructors which have to be invoked when we exit the scopes which
955 are exited by the goto.
957 Value is nonzero if a fixup is made. */
959 static int
960 expand_fixup (tree_label, rtl_label, last_insn)
961 tree tree_label;
962 rtx rtl_label;
963 rtx last_insn;
965 struct nesting *block, *end_block;
967 /* See if we can recognize which block the label will be output in.
968 This is possible in some very common cases.
969 If we succeed, set END_BLOCK to that block.
970 Otherwise, set it to 0. */
972 if (cond_stack
973 && (rtl_label == cond_stack->data.cond.endif_label
974 || rtl_label == cond_stack->data.cond.next_label))
975 end_block = cond_stack;
976 /* If we are in a loop, recognize certain labels which
977 are likely targets. This reduces the number of fixups
978 we need to create. */
979 else if (loop_stack
980 && (rtl_label == loop_stack->data.loop.start_label
981 || rtl_label == loop_stack->data.loop.end_label
982 || rtl_label == loop_stack->data.loop.continue_label))
983 end_block = loop_stack;
984 else
985 end_block = 0;
987 /* Now set END_BLOCK to the binding level to which we will return. */
989 if (end_block)
991 struct nesting *next_block = end_block->all;
992 block = block_stack;
994 /* First see if the END_BLOCK is inside the innermost binding level.
995 If so, then no cleanups or stack levels are relevant. */
996 while (next_block && next_block != block)
997 next_block = next_block->all;
999 if (next_block)
1000 return 0;
1002 /* Otherwise, set END_BLOCK to the innermost binding level
1003 which is outside the relevant control-structure nesting. */
1004 next_block = block_stack->next;
1005 for (block = block_stack; block != end_block; block = block->all)
1006 if (block == next_block)
1007 next_block = next_block->next;
1008 end_block = next_block;
1011 /* Does any containing block have a stack level or cleanups?
1012 If not, no fixup is needed, and that is the normal case
1013 (the only case, for standard C). */
1014 for (block = block_stack; block != end_block; block = block->next)
1015 if (block->data.block.stack_level != 0
1016 || block->data.block.cleanups != 0)
1017 break;
1019 if (block != end_block)
1021 /* Ok, a fixup is needed. Add a fixup to the list of such. */
1022 struct goto_fixup *fixup
1023 = (struct goto_fixup *) ggc_alloc (sizeof (struct goto_fixup));
1024 /* In case an old stack level is restored, make sure that comes
1025 after any pending stack adjust. */
1026 /* ?? If the fixup isn't to come at the present position,
1027 doing the stack adjust here isn't useful. Doing it with our
1028 settings at that location isn't useful either. Let's hope
1029 someone does it! */
1030 if (last_insn == 0)
1031 do_pending_stack_adjust ();
1032 fixup->target = tree_label;
1033 fixup->target_rtl = rtl_label;
1035 /* Create a BLOCK node and a corresponding matched set of
1036 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
1037 this point. The notes will encapsulate any and all fixup
1038 code which we might later insert at this point in the insn
1039 stream. Also, the BLOCK node will be the parent (i.e. the
1040 `SUPERBLOCK') of any other BLOCK nodes which we might create
1041 later on when we are expanding the fixup code.
1043 Note that optimization passes (including expand_end_loop)
1044 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
1045 as a placeholder. */
1048 rtx original_before_jump
1049 = last_insn ? last_insn : get_last_insn ();
1050 rtx start;
1051 rtx end;
1052 tree block;
1054 block = make_node (BLOCK);
1055 TREE_USED (block) = 1;
1057 if (!cfun->x_whole_function_mode_p)
1058 (*lang_hooks.decls.insert_block) (block);
1059 else
1061 BLOCK_CHAIN (block)
1062 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
1063 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
1064 = block;
1067 start_sequence ();
1068 start = emit_note (NULL, NOTE_INSN_BLOCK_BEG);
1069 if (cfun->x_whole_function_mode_p)
1070 NOTE_BLOCK (start) = block;
1071 fixup->before_jump = emit_note (NULL, NOTE_INSN_DELETED);
1072 end = emit_note (NULL, NOTE_INSN_BLOCK_END);
1073 if (cfun->x_whole_function_mode_p)
1074 NOTE_BLOCK (end) = block;
1075 fixup->context = block;
1076 end_sequence ();
1077 emit_insns_after (start, original_before_jump);
1080 fixup->block_start_count = current_block_start_count;
1081 fixup->stack_level = 0;
1082 fixup->cleanup_list_list
1083 = ((block->data.block.outer_cleanups
1084 || block->data.block.cleanups)
1085 ? tree_cons (NULL_TREE, block->data.block.cleanups,
1086 block->data.block.outer_cleanups)
1087 : 0);
1088 fixup->next = goto_fixup_chain;
1089 goto_fixup_chain = fixup;
1092 return block != 0;
1095 /* Expand any needed fixups in the outputmost binding level of the
1096 function. FIRST_INSN is the first insn in the function. */
1098 void
1099 expand_fixups (first_insn)
1100 rtx first_insn;
1102 fixup_gotos (NULL, NULL_RTX, NULL_TREE, first_insn, 0);
1105 /* When exiting a binding contour, process all pending gotos requiring fixups.
1106 THISBLOCK is the structure that describes the block being exited.
1107 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
1108 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
1109 FIRST_INSN is the insn that began this contour.
1111 Gotos that jump out of this contour must restore the
1112 stack level and do the cleanups before actually jumping.
1114 DONT_JUMP_IN nonzero means report error there is a jump into this
1115 contour from before the beginning of the contour.
1116 This is also done if STACK_LEVEL is nonzero. */
1118 static void
1119 fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
1120 struct nesting *thisblock;
1121 rtx stack_level;
1122 tree cleanup_list;
1123 rtx first_insn;
1124 int dont_jump_in;
1126 struct goto_fixup *f, *prev;
1128 /* F is the fixup we are considering; PREV is the previous one. */
1129 /* We run this loop in two passes so that cleanups of exited blocks
1130 are run first, and blocks that are exited are marked so
1131 afterwards. */
1133 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1135 /* Test for a fixup that is inactive because it is already handled. */
1136 if (f->before_jump == 0)
1138 /* Delete inactive fixup from the chain, if that is easy to do. */
1139 if (prev != 0)
1140 prev->next = f->next;
1142 /* Has this fixup's target label been defined?
1143 If so, we can finalize it. */
1144 else if (PREV_INSN (f->target_rtl) != 0)
1146 rtx cleanup_insns;
1148 /* If this fixup jumped into this contour from before the beginning
1149 of this contour, report an error. This code used to use
1150 the first non-label insn after f->target_rtl, but that's
1151 wrong since such can be added, by things like put_var_into_stack
1152 and have INSN_UIDs that are out of the range of the block. */
1153 /* ??? Bug: this does not detect jumping in through intermediate
1154 blocks that have stack levels or cleanups.
1155 It detects only a problem with the innermost block
1156 around the label. */
1157 if (f->target != 0
1158 && (dont_jump_in || stack_level || cleanup_list)
1159 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
1160 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
1161 && ! DECL_ERROR_ISSUED (f->target))
1163 error_with_decl (f->target,
1164 "label `%s' used before containing binding contour");
1165 /* Prevent multiple errors for one label. */
1166 DECL_ERROR_ISSUED (f->target) = 1;
1169 /* We will expand the cleanups into a sequence of their own and
1170 then later on we will attach this new sequence to the insn
1171 stream just ahead of the actual jump insn. */
1173 start_sequence ();
1175 /* Temporarily restore the lexical context where we will
1176 logically be inserting the fixup code. We do this for the
1177 sake of getting the debugging information right. */
1179 (*lang_hooks.decls.pushlevel) (0);
1180 (*lang_hooks.decls.set_block) (f->context);
1182 /* Expand the cleanups for blocks this jump exits. */
1183 if (f->cleanup_list_list)
1185 tree lists;
1186 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
1187 /* Marked elements correspond to blocks that have been closed.
1188 Do their cleanups. */
1189 if (TREE_ADDRESSABLE (lists)
1190 && TREE_VALUE (lists) != 0)
1192 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1193 /* Pop any pushes done in the cleanups,
1194 in case function is about to return. */
1195 do_pending_stack_adjust ();
1199 /* Restore stack level for the biggest contour that this
1200 jump jumps out of. */
1201 if (f->stack_level
1202 && ! (f->target_rtl == return_label
1203 && ((TREE_CODE (TREE_TYPE (current_function_decl))
1204 == FUNCTION_TYPE)
1205 && (TYPE_RETURNS_STACK_DEPRESSED
1206 (TREE_TYPE (current_function_decl))))))
1207 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1209 /* Finish up the sequence containing the insns which implement the
1210 necessary cleanups, and then attach that whole sequence to the
1211 insn stream just ahead of the actual jump insn. Attaching it
1212 at that point insures that any cleanups which are in fact
1213 implicit C++ object destructions (which must be executed upon
1214 leaving the block) appear (to the debugger) to be taking place
1215 in an area of the generated code where the object(s) being
1216 destructed are still "in scope". */
1218 cleanup_insns = get_insns ();
1219 (*lang_hooks.decls.poplevel) (1, 0, 0);
1221 end_sequence ();
1222 emit_insns_after (cleanup_insns, f->before_jump);
1224 f->before_jump = 0;
1228 /* For any still-undefined labels, do the cleanups for this block now.
1229 We must do this now since items in the cleanup list may go out
1230 of scope when the block ends. */
1231 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1232 if (f->before_jump != 0
1233 && PREV_INSN (f->target_rtl) == 0
1234 /* Label has still not appeared. If we are exiting a block with
1235 a stack level to restore, that started before the fixup,
1236 mark this stack level as needing restoration
1237 when the fixup is later finalized. */
1238 && thisblock != 0
1239 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1240 means the label is undefined. That's erroneous, but possible. */
1241 && (thisblock->data.block.block_start_count
1242 <= f->block_start_count))
1244 tree lists = f->cleanup_list_list;
1245 rtx cleanup_insns;
1247 for (; lists; lists = TREE_CHAIN (lists))
1248 /* If the following elt. corresponds to our containing block
1249 then the elt. must be for this block. */
1250 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1252 start_sequence ();
1253 (*lang_hooks.decls.pushlevel) (0);
1254 (*lang_hooks.decls.set_block) (f->context);
1255 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1256 do_pending_stack_adjust ();
1257 cleanup_insns = get_insns ();
1258 (*lang_hooks.decls.poplevel) (1, 0, 0);
1259 end_sequence ();
1260 if (cleanup_insns != 0)
1261 f->before_jump
1262 = emit_insns_after (cleanup_insns, f->before_jump);
1264 f->cleanup_list_list = TREE_CHAIN (lists);
1267 if (stack_level)
1268 f->stack_level = stack_level;
1272 /* Return the number of times character C occurs in string S. */
1273 static int
1274 n_occurrences (c, s)
1275 int c;
1276 const char *s;
1278 int n = 0;
1279 while (*s)
1280 n += (*s++ == c);
1281 return n;
1284 /* Generate RTL for an asm statement (explicit assembler code).
1285 BODY is a STRING_CST node containing the assembler code text,
1286 or an ADDR_EXPR containing a STRING_CST. */
1288 void
1289 expand_asm (body)
1290 tree body;
1292 if (TREE_CODE (body) == ADDR_EXPR)
1293 body = TREE_OPERAND (body, 0);
1295 emit_insn (gen_rtx_ASM_INPUT (VOIDmode,
1296 TREE_STRING_POINTER (body)));
1297 last_expr_type = 0;
1300 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
1301 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
1302 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
1303 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
1304 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
1305 constraint allows the use of a register operand. And, *IS_INOUT
1306 will be true if the operand is read-write, i.e., if it is used as
1307 an input as well as an output. If *CONSTRAINT_P is not in
1308 canonical form, it will be made canonical. (Note that `+' will be
1309 rpelaced with `=' as part of this process.)
1311 Returns TRUE if all went well; FALSE if an error occurred. */
1313 bool
1314 parse_output_constraint (constraint_p, operand_num, ninputs, noutputs,
1315 allows_mem, allows_reg, is_inout)
1316 const char **constraint_p;
1317 int operand_num;
1318 int ninputs;
1319 int noutputs;
1320 bool *allows_mem;
1321 bool *allows_reg;
1322 bool *is_inout;
1324 const char *constraint = *constraint_p;
1325 const char *p;
1327 /* Assume the constraint doesn't allow the use of either a register
1328 or memory. */
1329 *allows_mem = false;
1330 *allows_reg = false;
1332 /* Allow the `=' or `+' to not be at the beginning of the string,
1333 since it wasn't explicitly documented that way, and there is a
1334 large body of code that puts it last. Swap the character to
1335 the front, so as not to uglify any place else. */
1336 p = strchr (constraint, '=');
1337 if (!p)
1338 p = strchr (constraint, '+');
1340 /* If the string doesn't contain an `=', issue an error
1341 message. */
1342 if (!p)
1344 error ("output operand constraint lacks `='");
1345 return false;
1348 /* If the constraint begins with `+', then the operand is both read
1349 from and written to. */
1350 *is_inout = (*p == '+');
1352 /* Canonicalize the output constraint so that it begins with `='. */
1353 if (p != constraint || is_inout)
1355 char *buf;
1356 size_t c_len = strlen (constraint);
1358 if (p != constraint)
1359 warning ("output constraint `%c' for operand %d is not at the beginning",
1360 *p, operand_num);
1362 /* Make a copy of the constraint. */
1363 buf = alloca (c_len + 1);
1364 strcpy (buf, constraint);
1365 /* Swap the first character and the `=' or `+'. */
1366 buf[p - constraint] = buf[0];
1367 /* Make sure the first character is an `='. (Until we do this,
1368 it might be a `+'.) */
1369 buf[0] = '=';
1370 /* Replace the constraint with the canonicalized string. */
1371 *constraint_p = ggc_alloc_string (buf, c_len);
1372 constraint = *constraint_p;
1375 /* Loop through the constraint string. */
1376 for (p = constraint + 1; *p; ++p)
1377 switch (*p)
1379 case '+':
1380 case '=':
1381 error ("operand constraint contains incorrectly positioned '+' or '='");
1382 return false;
1384 case '%':
1385 if (operand_num + 1 == ninputs + noutputs)
1387 error ("`%%' constraint used with last operand");
1388 return false;
1390 break;
1392 case 'V': case 'm': case 'o':
1393 *allows_mem = true;
1394 break;
1396 case '?': case '!': case '*': case '&': case '#':
1397 case 'E': case 'F': case 'G': case 'H':
1398 case 's': case 'i': case 'n':
1399 case 'I': case 'J': case 'K': case 'L': case 'M':
1400 case 'N': case 'O': case 'P': case ',':
1401 break;
1403 case '0': case '1': case '2': case '3': case '4':
1404 case '5': case '6': case '7': case '8': case '9':
1405 case '[':
1406 error ("matching constraint not valid in output operand");
1407 return false;
1409 case '<': case '>':
1410 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1411 excepting those that expand_call created. So match memory
1412 and hope. */
1413 *allows_mem = true;
1414 break;
1416 case 'g': case 'X':
1417 *allows_reg = true;
1418 *allows_mem = true;
1419 break;
1421 case 'p': case 'r':
1422 *allows_reg = true;
1423 break;
1425 default:
1426 if (!ISALPHA (*p))
1427 break;
1428 if (REG_CLASS_FROM_LETTER (*p) != NO_REGS)
1429 *allows_reg = true;
1430 #ifdef EXTRA_CONSTRAINT
1431 else
1433 /* Otherwise we can't assume anything about the nature of
1434 the constraint except that it isn't purely registers.
1435 Treat it like "g" and hope for the best. */
1436 *allows_reg = true;
1437 *allows_mem = true;
1439 #endif
1440 break;
1443 return true;
1446 /* Similar, but for input constraints. */
1448 static bool
1449 parse_input_constraint (constraint_p, input_num, ninputs, noutputs, ninout,
1450 constraints, allows_mem, allows_reg)
1451 const char **constraint_p;
1452 int input_num;
1453 int ninputs;
1454 int noutputs;
1455 int ninout;
1456 const char * const * constraints;
1457 bool *allows_mem;
1458 bool *allows_reg;
1460 const char *constraint = *constraint_p;
1461 const char *orig_constraint = constraint;
1462 size_t c_len = strlen (constraint);
1463 size_t j;
1465 /* Assume the constraint doesn't allow the use of either
1466 a register or memory. */
1467 *allows_mem = false;
1468 *allows_reg = false;
1470 /* Make sure constraint has neither `=', `+', nor '&'. */
1472 for (j = 0; j < c_len; j++)
1473 switch (constraint[j])
1475 case '+': case '=': case '&':
1476 if (constraint == orig_constraint)
1478 error ("input operand constraint contains `%c'", constraint[j]);
1479 return false;
1481 break;
1483 case '%':
1484 if (constraint == orig_constraint
1485 && input_num + 1 == ninputs - ninout)
1487 error ("`%%' constraint used with last operand");
1488 return false;
1490 break;
1492 case 'V': case 'm': case 'o':
1493 *allows_mem = true;
1494 break;
1496 case '<': case '>':
1497 case '?': case '!': case '*': case '#':
1498 case 'E': case 'F': case 'G': case 'H':
1499 case 's': case 'i': case 'n':
1500 case 'I': case 'J': case 'K': case 'L': case 'M':
1501 case 'N': case 'O': case 'P': case ',':
1502 break;
1504 /* Whether or not a numeric constraint allows a register is
1505 decided by the matching constraint, and so there is no need
1506 to do anything special with them. We must handle them in
1507 the default case, so that we don't unnecessarily force
1508 operands to memory. */
1509 case '0': case '1': case '2': case '3': case '4':
1510 case '5': case '6': case '7': case '8': case '9':
1512 char *end;
1513 unsigned long match;
1515 match = strtoul (constraint + j, &end, 10);
1516 if (match >= (unsigned long) noutputs)
1518 error ("matching constraint references invalid operand number");
1519 return false;
1522 /* Try and find the real constraint for this dup. Only do this
1523 if the matching constraint is the only alternative. */
1524 if (*end == '\0'
1525 && (j == 0 || (j == 1 && constraint[0] == '%')))
1527 constraint = constraints[match];
1528 *constraint_p = constraint;
1529 c_len = strlen (constraint);
1530 j = 0;
1531 break;
1533 else
1534 j = end - constraint;
1536 /* Fall through. */
1538 case 'p': case 'r':
1539 *allows_reg = true;
1540 break;
1542 case 'g': case 'X':
1543 *allows_reg = true;
1544 *allows_mem = true;
1545 break;
1547 default:
1548 if (! ISALPHA (constraint[j]))
1550 error ("invalid punctuation `%c' in constraint", constraint[j]);
1551 return false;
1553 if (REG_CLASS_FROM_LETTER (constraint[j]) != NO_REGS)
1554 *allows_reg = true;
1555 #ifdef EXTRA_CONSTRAINT
1556 else
1558 /* Otherwise we can't assume anything about the nature of
1559 the constraint except that it isn't purely registers.
1560 Treat it like "g" and hope for the best. */
1561 *allows_reg = true;
1562 *allows_mem = true;
1564 #endif
1565 break;
1568 return true;
1571 /* Generate RTL for an asm statement with arguments.
1572 STRING is the instruction template.
1573 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1574 Each output or input has an expression in the TREE_VALUE and
1575 and a tree list in TREE_PURPOSE which in turn contains a constraint
1576 name in TREE_VALUE (or NULL_TREE) and a constraint string
1577 in TREE_PURPOSE.
1578 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1579 that is clobbered by this insn.
1581 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1582 Some elements of OUTPUTS may be replaced with trees representing temporary
1583 values. The caller should copy those temporary values to the originally
1584 specified lvalues.
1586 VOL nonzero means the insn is volatile; don't optimize it. */
1588 void
1589 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1590 tree string, outputs, inputs, clobbers;
1591 int vol;
1592 const char *filename;
1593 int line;
1595 rtvec argvec, constraintvec;
1596 rtx body;
1597 int ninputs = list_length (inputs);
1598 int noutputs = list_length (outputs);
1599 int ninout;
1600 int nclobbers;
1601 tree tail;
1602 int i;
1603 /* Vector of RTX's of evaluated output operands. */
1604 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1605 int *inout_opnum = (int *) alloca (noutputs * sizeof (int));
1606 rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1607 enum machine_mode *inout_mode
1608 = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode));
1609 const char **constraints
1610 = (const char **) alloca ((noutputs + ninputs) * sizeof (const char *));
1611 /* The insn we have emitted. */
1612 rtx insn;
1613 int old_generating_concat_p = generating_concat_p;
1615 /* An ASM with no outputs needs to be treated as volatile, for now. */
1616 if (noutputs == 0)
1617 vol = 1;
1619 if (! check_operand_nalternatives (outputs, inputs))
1620 return;
1622 if (! check_unique_operand_names (outputs, inputs))
1623 return;
1625 string = resolve_operand_names (string, outputs, inputs, constraints);
1627 #ifdef MD_ASM_CLOBBERS
1628 /* Sometimes we wish to automatically clobber registers across an asm.
1629 Case in point is when the i386 backend moved from cc0 to a hard reg --
1630 maintaining source-level compatibility means automatically clobbering
1631 the flags register. */
1632 MD_ASM_CLOBBERS (clobbers);
1633 #endif
1635 /* Count the number of meaningful clobbered registers, ignoring what
1636 we would ignore later. */
1637 nclobbers = 0;
1638 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1640 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1642 i = decode_reg_name (regname);
1643 if (i >= 0 || i == -4)
1644 ++nclobbers;
1645 else if (i == -2)
1646 error ("unknown register name `%s' in `asm'", regname);
1649 last_expr_type = 0;
1651 /* First pass over inputs and outputs checks validity and sets
1652 mark_addressable if needed. */
1654 ninout = 0;
1655 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1657 tree val = TREE_VALUE (tail);
1658 tree type = TREE_TYPE (val);
1659 const char *constraint;
1660 bool is_inout;
1661 bool allows_reg;
1662 bool allows_mem;
1664 /* If there's an erroneous arg, emit no insn. */
1665 if (type == error_mark_node)
1666 return;
1668 /* Try to parse the output constraint. If that fails, there's
1669 no point in going further. */
1670 constraint = constraints[i];
1671 if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
1672 &allows_mem, &allows_reg, &is_inout))
1673 return;
1675 if (! allows_reg
1676 && (allows_mem
1677 || is_inout
1678 || (DECL_P (val)
1679 && GET_CODE (DECL_RTL (val)) == REG
1680 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))))
1681 (*lang_hooks.mark_addressable) (val);
1683 if (is_inout)
1684 ninout++;
1687 ninputs += ninout;
1688 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1690 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1691 return;
1694 for (i = 0, tail = inputs; tail; i++, tail = TREE_CHAIN (tail))
1696 bool allows_reg, allows_mem;
1697 const char *constraint;
1699 /* If there's an erroneous arg, emit no insn, because the ASM_INPUT
1700 would get VOIDmode and that could cause a crash in reload. */
1701 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1702 return;
1704 constraint = constraints[i + noutputs];
1705 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
1706 constraints, &allows_mem, &allows_reg))
1707 return;
1709 if (! allows_reg && allows_mem)
1710 (*lang_hooks.mark_addressable) (TREE_VALUE (tail));
1713 /* Second pass evaluates arguments. */
1715 ninout = 0;
1716 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1718 tree val = TREE_VALUE (tail);
1719 tree type = TREE_TYPE (val);
1720 bool is_inout;
1721 bool allows_reg;
1722 bool allows_mem;
1724 if (!parse_output_constraint (&constraints[i], i, ninputs,
1725 noutputs, &allows_mem, &allows_reg,
1726 &is_inout))
1727 abort ();
1729 /* If an output operand is not a decl or indirect ref and our constraint
1730 allows a register, make a temporary to act as an intermediate.
1731 Make the asm insn write into that, then our caller will copy it to
1732 the real output operand. Likewise for promoted variables. */
1734 generating_concat_p = 0;
1736 real_output_rtx[i] = NULL_RTX;
1737 if ((TREE_CODE (val) == INDIRECT_REF
1738 && allows_mem)
1739 || (DECL_P (val)
1740 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1741 && ! (GET_CODE (DECL_RTL (val)) == REG
1742 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1743 || ! allows_reg
1744 || is_inout)
1746 output_rtx[i] = expand_expr (val, NULL_RTX, VOIDmode, EXPAND_WRITE);
1748 if (! allows_reg && GET_CODE (output_rtx[i]) != MEM)
1749 error ("output number %d not directly addressable", i);
1750 if ((! allows_mem && GET_CODE (output_rtx[i]) == MEM)
1751 || GET_CODE (output_rtx[i]) == CONCAT)
1753 real_output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1754 output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i]));
1755 if (is_inout)
1756 emit_move_insn (output_rtx[i], real_output_rtx[i]);
1759 else
1761 output_rtx[i] = assign_temp (type, 0, 0, 1);
1762 TREE_VALUE (tail) = make_tree (type, output_rtx[i]);
1765 generating_concat_p = old_generating_concat_p;
1767 if (is_inout)
1769 inout_mode[ninout] = TYPE_MODE (type);
1770 inout_opnum[ninout++] = i;
1774 /* Make vectors for the expression-rtx, constraint strings,
1775 and named operands. */
1777 argvec = rtvec_alloc (ninputs);
1778 constraintvec = rtvec_alloc (ninputs);
1780 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
1781 : GET_MODE (output_rtx[0])),
1782 TREE_STRING_POINTER (string),
1783 empty_string, 0, argvec, constraintvec,
1784 filename, line);
1786 MEM_VOLATILE_P (body) = vol;
1788 /* Eval the inputs and put them into ARGVEC.
1789 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1791 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
1793 bool allows_reg, allows_mem;
1794 const char *constraint;
1795 tree val, type;
1796 rtx op;
1798 constraint = constraints[i + noutputs];
1799 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
1800 constraints, &allows_mem, &allows_reg))
1801 abort ();
1803 generating_concat_p = 0;
1805 val = TREE_VALUE (tail);
1806 type = TREE_TYPE (val);
1807 op = expand_expr (val, NULL_RTX, VOIDmode, 0);
1809 /* Never pass a CONCAT to an ASM. */
1810 if (GET_CODE (op) == CONCAT)
1811 op = force_reg (GET_MODE (op), op);
1813 if (asm_operand_ok (op, constraint) <= 0)
1815 if (allows_reg)
1816 op = force_reg (TYPE_MODE (type), op);
1817 else if (!allows_mem)
1818 warning ("asm operand %d probably doesn't match constraints",
1819 i + noutputs);
1820 else if (CONSTANT_P (op))
1821 op = force_const_mem (TYPE_MODE (type), op);
1822 else if (GET_CODE (op) == REG
1823 || GET_CODE (op) == SUBREG
1824 || GET_CODE (op) == ADDRESSOF
1825 || GET_CODE (op) == CONCAT)
1827 tree qual_type = build_qualified_type (type,
1828 (TYPE_QUALS (type)
1829 | TYPE_QUAL_CONST));
1830 rtx memloc = assign_temp (qual_type, 1, 1, 1);
1832 emit_move_insn (memloc, op);
1833 op = memloc;
1836 else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op))
1838 /* We won't recognize volatile memory as available a
1839 memory_operand at this point. Ignore it. */
1841 else if (queued_subexp_p (op))
1843 else
1844 /* ??? Leave this only until we have experience with what
1845 happens in combine and elsewhere when constraints are
1846 not satisfied. */
1847 warning ("asm operand %d probably doesn't match constraints",
1848 i + noutputs);
1851 generating_concat_p = old_generating_concat_p;
1852 ASM_OPERANDS_INPUT (body, i) = op;
1854 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
1855 = gen_rtx_ASM_INPUT (TYPE_MODE (type), constraints[i + noutputs]);
1858 /* Protect all the operands from the queue now that they have all been
1859 evaluated. */
1861 generating_concat_p = 0;
1863 for (i = 0; i < ninputs - ninout; i++)
1864 ASM_OPERANDS_INPUT (body, i)
1865 = protect_from_queue (ASM_OPERANDS_INPUT (body, i), 0);
1867 for (i = 0; i < noutputs; i++)
1868 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1870 /* For in-out operands, copy output rtx to input rtx. */
1871 for (i = 0; i < ninout; i++)
1873 int j = inout_opnum[i];
1874 char buffer[16];
1876 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
1877 = output_rtx[j];
1879 sprintf (buffer, "%d", j);
1880 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
1881 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_alloc_string (buffer, -1));
1884 generating_concat_p = old_generating_concat_p;
1886 /* Now, for each output, construct an rtx
1887 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
1888 ARGVEC CONSTRAINTS OPNAMES))
1889 If there is more than one, put them inside a PARALLEL. */
1891 if (noutputs == 1 && nclobbers == 0)
1893 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = constraints[0];
1894 insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1897 else if (noutputs == 0 && nclobbers == 0)
1899 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1900 insn = emit_insn (body);
1903 else
1905 rtx obody = body;
1906 int num = noutputs;
1908 if (num == 0)
1909 num = 1;
1911 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1913 /* For each output operand, store a SET. */
1914 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1916 XVECEXP (body, 0, i)
1917 = gen_rtx_SET (VOIDmode,
1918 output_rtx[i],
1919 gen_rtx_ASM_OPERANDS
1920 (GET_MODE (output_rtx[i]),
1921 TREE_STRING_POINTER (string),
1922 constraints[i], i, argvec, constraintvec,
1923 filename, line));
1925 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1928 /* If there are no outputs (but there are some clobbers)
1929 store the bare ASM_OPERANDS into the PARALLEL. */
1931 if (i == 0)
1932 XVECEXP (body, 0, i++) = obody;
1934 /* Store (clobber REG) for each clobbered register specified. */
1936 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1938 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1939 int j = decode_reg_name (regname);
1941 if (j < 0)
1943 if (j == -3) /* `cc', which is not a register */
1944 continue;
1946 if (j == -4) /* `memory', don't cache memory across asm */
1948 XVECEXP (body, 0, i++)
1949 = gen_rtx_CLOBBER (VOIDmode,
1950 gen_rtx_MEM
1951 (BLKmode,
1952 gen_rtx_SCRATCH (VOIDmode)));
1953 continue;
1956 /* Ignore unknown register, error already signaled. */
1957 continue;
1960 /* Use QImode since that's guaranteed to clobber just one reg. */
1961 XVECEXP (body, 0, i++)
1962 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j));
1965 insn = emit_insn (body);
1968 /* For any outputs that needed reloading into registers, spill them
1969 back to where they belong. */
1970 for (i = 0; i < noutputs; ++i)
1971 if (real_output_rtx[i])
1972 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1974 free_temp_slots ();
1977 /* A subroutine of expand_asm_operands. Check that all operands have
1978 the same number of alternatives. Return true if so. */
1980 static bool
1981 check_operand_nalternatives (outputs, inputs)
1982 tree outputs, inputs;
1984 if (outputs || inputs)
1986 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1987 int nalternatives
1988 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1989 tree next = inputs;
1991 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1993 error ("too many alternatives in `asm'");
1994 return false;
1997 tmp = outputs;
1998 while (tmp)
2000 const char *constraint
2001 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
2003 if (n_occurrences (',', constraint) != nalternatives)
2005 error ("operand constraints for `asm' differ in number of alternatives");
2006 return false;
2009 if (TREE_CHAIN (tmp))
2010 tmp = TREE_CHAIN (tmp);
2011 else
2012 tmp = next, next = 0;
2016 return true;
2019 /* A subroutine of expand_asm_operands. Check that all operand names
2020 are unique. Return true if so. We rely on the fact that these names
2021 are identifiers, and so have been canonicalized by get_identifier,
2022 so all we need are pointer comparisons. */
2024 static bool
2025 check_unique_operand_names (outputs, inputs)
2026 tree outputs, inputs;
2028 tree i, j;
2030 for (i = outputs; i ; i = TREE_CHAIN (i))
2032 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
2033 if (! i_name)
2034 continue;
2036 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
2037 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
2038 goto failure;
2041 for (i = inputs; i ; i = TREE_CHAIN (i))
2043 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
2044 if (! i_name)
2045 continue;
2047 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
2048 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
2049 goto failure;
2050 for (j = outputs; j ; j = TREE_CHAIN (j))
2051 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
2052 goto failure;
2055 return true;
2057 failure:
2058 error ("duplicate asm operand name '%s'",
2059 TREE_STRING_POINTER (TREE_PURPOSE (TREE_PURPOSE (i))));
2060 return false;
2063 /* A subroutine of expand_asm_operands. Resolve the names of the operands
2064 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
2065 STRING and in the constraints to those numbers. */
2067 static tree
2068 resolve_operand_names (string, outputs, inputs, pconstraints)
2069 tree string;
2070 tree outputs, inputs;
2071 const char **pconstraints;
2073 char *buffer = xstrdup (TREE_STRING_POINTER (string));
2074 char *p;
2075 tree t;
2077 /* Assume that we will not need extra space to perform the substitution.
2078 This because we get to remove '[' and ']', which means we cannot have
2079 a problem until we have more than 999 operands. */
2081 p = buffer;
2082 while ((p = strchr (p, '%')) != NULL)
2084 if (p[1] == '[')
2085 p += 1;
2086 else if (ISALPHA (p[1]) && p[2] == '[')
2087 p += 2;
2088 else
2090 p += 1;
2091 continue;
2094 p = resolve_operand_name_1 (p, outputs, inputs);
2097 string = build_string (strlen (buffer), buffer);
2098 free (buffer);
2100 /* Collect output constraints here because it's convenient.
2101 There should be no named operands here; this is verified
2102 in expand_asm_operand. */
2103 for (t = outputs; t ; t = TREE_CHAIN (t), pconstraints++)
2104 *pconstraints = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
2106 /* Substitute [<name>] in input constraint strings. */
2107 for (t = inputs; t ; t = TREE_CHAIN (t), pconstraints++)
2109 const char *c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
2110 if (strchr (c, '[') == NULL)
2111 *pconstraints = c;
2112 else
2114 p = buffer = xstrdup (c);
2115 while ((p = strchr (p, '[')) != NULL)
2116 p = resolve_operand_name_1 (p, outputs, inputs);
2118 *pconstraints = ggc_alloc_string (buffer, -1);
2119 free (buffer);
2123 return string;
2126 /* A subroutine of resolve_operand_names. P points to the '[' for a
2127 potential named operand of the form [<name>]. In place, replace
2128 the name and brackets with a number. Return a pointer to the
2129 balance of the string after substitution. */
2131 static char *
2132 resolve_operand_name_1 (p, outputs, inputs)
2133 char *p;
2134 tree outputs, inputs;
2136 char *q;
2137 int op;
2138 tree t;
2139 size_t len;
2141 /* Collect the operand name. */
2142 q = strchr (p, ']');
2143 if (!q)
2145 error ("missing close brace for named operand");
2146 return strchr (p, '\0');
2148 len = q - p - 1;
2150 /* Resolve the name to a number. */
2151 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
2153 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
2154 if (name)
2156 const char *c = TREE_STRING_POINTER (name);
2157 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2158 goto found;
2161 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
2163 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
2164 if (name)
2166 const char *c = TREE_STRING_POINTER (name);
2167 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2168 goto found;
2172 *q = '\0';
2173 error ("undefined named operand '%s'", p + 1);
2174 op = 0;
2175 found:
2177 /* Replace the name with the number. Unfortunately, not all libraries
2178 get the return value of sprintf correct, so search for the end of the
2179 generated string by hand. */
2180 sprintf (p, "%d", op);
2181 p = strchr (p, '\0');
2183 /* Verify the no extra buffer space assumption. */
2184 if (p > q)
2185 abort ();
2187 /* Shift the rest of the buffer down to fill the gap. */
2188 memmove (p, q + 1, strlen (q + 1) + 1);
2190 return p;
2193 /* Generate RTL to evaluate the expression EXP
2194 and remember it in case this is the VALUE in a ({... VALUE; }) constr.
2195 Provided just for backward-compatibility. expand_expr_stmt_value()
2196 should be used for new code. */
2198 void
2199 expand_expr_stmt (exp)
2200 tree exp;
2202 expand_expr_stmt_value (exp, -1, 1);
2205 /* Generate RTL to evaluate the expression EXP. WANT_VALUE tells
2206 whether to (1) save the value of the expression, (0) discard it or
2207 (-1) use expr_stmts_for_value to tell. The use of -1 is
2208 deprecated, and retained only for backward compatibility. */
2210 void
2211 expand_expr_stmt_value (exp, want_value, maybe_last)
2212 tree exp;
2213 int want_value, maybe_last;
2215 rtx value;
2216 tree type;
2218 if (want_value == -1)
2219 want_value = expr_stmts_for_value != 0;
2221 /* If -W, warn about statements with no side effects,
2222 except for an explicit cast to void (e.g. for assert()), and
2223 except for last statement in ({...}) where they may be useful. */
2224 if (! want_value
2225 && (expr_stmts_for_value == 0 || ! maybe_last)
2226 && exp != error_mark_node)
2228 if (! TREE_SIDE_EFFECTS (exp))
2230 if ((extra_warnings || warn_unused_value)
2231 && !(TREE_CODE (exp) == CONVERT_EXPR
2232 && VOID_TYPE_P (TREE_TYPE (exp))))
2233 warning_with_file_and_line (emit_filename, emit_lineno,
2234 "statement with no effect");
2236 else if (warn_unused_value)
2237 warn_if_unused_value (exp);
2240 /* If EXP is of function type and we are expanding statements for
2241 value, convert it to pointer-to-function. */
2242 if (want_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
2243 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
2245 /* The call to `expand_expr' could cause last_expr_type and
2246 last_expr_value to get reset. Therefore, we set last_expr_value
2247 and last_expr_type *after* calling expand_expr. */
2248 value = expand_expr (exp, want_value ? NULL_RTX : const0_rtx,
2249 VOIDmode, 0);
2250 type = TREE_TYPE (exp);
2252 /* If all we do is reference a volatile value in memory,
2253 copy it to a register to be sure it is actually touched. */
2254 if (value && GET_CODE (value) == MEM && TREE_THIS_VOLATILE (exp))
2256 if (TYPE_MODE (type) == VOIDmode)
2258 else if (TYPE_MODE (type) != BLKmode)
2259 value = copy_to_reg (value);
2260 else
2262 rtx lab = gen_label_rtx ();
2264 /* Compare the value with itself to reference it. */
2265 emit_cmp_and_jump_insns (value, value, EQ,
2266 expand_expr (TYPE_SIZE (type),
2267 NULL_RTX, VOIDmode, 0),
2268 BLKmode, 0, lab);
2269 emit_label (lab);
2273 /* If this expression is part of a ({...}) and is in memory, we may have
2274 to preserve temporaries. */
2275 preserve_temp_slots (value);
2277 /* Free any temporaries used to evaluate this expression. Any temporary
2278 used as a result of this expression will already have been preserved
2279 above. */
2280 free_temp_slots ();
2282 if (want_value)
2284 last_expr_value = value;
2285 last_expr_type = type;
2288 emit_queue ();
2291 /* Warn if EXP contains any computations whose results are not used.
2292 Return 1 if a warning is printed; 0 otherwise. */
2295 warn_if_unused_value (exp)
2296 tree exp;
2298 if (TREE_USED (exp))
2299 return 0;
2301 /* Don't warn about void constructs. This includes casting to void,
2302 void function calls, and statement expressions with a final cast
2303 to void. */
2304 if (VOID_TYPE_P (TREE_TYPE (exp)))
2305 return 0;
2307 switch (TREE_CODE (exp))
2309 case PREINCREMENT_EXPR:
2310 case POSTINCREMENT_EXPR:
2311 case PREDECREMENT_EXPR:
2312 case POSTDECREMENT_EXPR:
2313 case MODIFY_EXPR:
2314 case INIT_EXPR:
2315 case TARGET_EXPR:
2316 case CALL_EXPR:
2317 case METHOD_CALL_EXPR:
2318 case RTL_EXPR:
2319 case TRY_CATCH_EXPR:
2320 case WITH_CLEANUP_EXPR:
2321 case EXIT_EXPR:
2322 return 0;
2324 case BIND_EXPR:
2325 /* For a binding, warn if no side effect within it. */
2326 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2328 case SAVE_EXPR:
2329 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2331 case TRUTH_ORIF_EXPR:
2332 case TRUTH_ANDIF_EXPR:
2333 /* In && or ||, warn if 2nd operand has no side effect. */
2334 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2336 case COMPOUND_EXPR:
2337 if (TREE_NO_UNUSED_WARNING (exp))
2338 return 0;
2339 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
2340 return 1;
2341 /* Let people do `(foo (), 0)' without a warning. */
2342 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
2343 return 0;
2344 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2346 case NOP_EXPR:
2347 case CONVERT_EXPR:
2348 case NON_LVALUE_EXPR:
2349 /* Don't warn about conversions not explicit in the user's program. */
2350 if (TREE_NO_UNUSED_WARNING (exp))
2351 return 0;
2352 /* Assignment to a cast usually results in a cast of a modify.
2353 Don't complain about that. There can be an arbitrary number of
2354 casts before the modify, so we must loop until we find the first
2355 non-cast expression and then test to see if that is a modify. */
2357 tree tem = TREE_OPERAND (exp, 0);
2359 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
2360 tem = TREE_OPERAND (tem, 0);
2362 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
2363 || TREE_CODE (tem) == CALL_EXPR)
2364 return 0;
2366 goto maybe_warn;
2368 case INDIRECT_REF:
2369 /* Don't warn about automatic dereferencing of references, since
2370 the user cannot control it. */
2371 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
2372 return warn_if_unused_value (TREE_OPERAND (exp, 0));
2373 /* Fall through. */
2375 default:
2376 /* Referencing a volatile value is a side effect, so don't warn. */
2377 if ((DECL_P (exp)
2378 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2379 && TREE_THIS_VOLATILE (exp))
2380 return 0;
2382 /* If this is an expression which has no operands, there is no value
2383 to be unused. There are no such language-independent codes,
2384 but front ends may define such. */
2385 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'e'
2386 && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
2387 return 0;
2389 maybe_warn:
2390 /* If this is an expression with side effects, don't warn. */
2391 if (TREE_SIDE_EFFECTS (exp))
2392 return 0;
2394 warning_with_file_and_line (emit_filename, emit_lineno,
2395 "value computed is not used");
2396 return 1;
2400 /* Clear out the memory of the last expression evaluated. */
2402 void
2403 clear_last_expr ()
2405 last_expr_type = 0;
2408 /* Begin a statement-expression, i.e., a series of statements which
2409 may return a value. Return the RTL_EXPR for this statement expr.
2410 The caller must save that value and pass it to
2411 expand_end_stmt_expr. If HAS_SCOPE is nonzero, temporaries created
2412 in the statement-expression are deallocated at the end of the
2413 expression. */
2415 tree
2416 expand_start_stmt_expr (has_scope)
2417 int has_scope;
2419 tree t;
2421 /* Make the RTL_EXPR node temporary, not momentary,
2422 so that rtl_expr_chain doesn't become garbage. */
2423 t = make_node (RTL_EXPR);
2424 do_pending_stack_adjust ();
2425 if (has_scope)
2426 start_sequence_for_rtl_expr (t);
2427 else
2428 start_sequence ();
2429 NO_DEFER_POP;
2430 expr_stmts_for_value++;
2431 last_expr_value = NULL_RTX;
2432 return t;
2435 /* Restore the previous state at the end of a statement that returns a value.
2436 Returns a tree node representing the statement's value and the
2437 insns to compute the value.
2439 The nodes of that expression have been freed by now, so we cannot use them.
2440 But we don't want to do that anyway; the expression has already been
2441 evaluated and now we just want to use the value. So generate a RTL_EXPR
2442 with the proper type and RTL value.
2444 If the last substatement was not an expression,
2445 return something with type `void'. */
2447 tree
2448 expand_end_stmt_expr (t)
2449 tree t;
2451 OK_DEFER_POP;
2453 if (! last_expr_value || ! last_expr_type)
2455 last_expr_value = const0_rtx;
2456 last_expr_type = void_type_node;
2458 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2459 /* Remove any possible QUEUED. */
2460 last_expr_value = protect_from_queue (last_expr_value, 0);
2462 emit_queue ();
2464 TREE_TYPE (t) = last_expr_type;
2465 RTL_EXPR_RTL (t) = last_expr_value;
2466 RTL_EXPR_SEQUENCE (t) = get_insns ();
2468 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2470 end_sequence ();
2472 /* Don't consider deleting this expr or containing exprs at tree level. */
2473 TREE_SIDE_EFFECTS (t) = 1;
2474 /* Propagate volatility of the actual RTL expr. */
2475 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2477 last_expr_type = 0;
2478 expr_stmts_for_value--;
2480 return t;
2483 /* Generate RTL for the start of an if-then. COND is the expression
2484 whose truth should be tested.
2486 If EXITFLAG is nonzero, this conditional is visible to
2487 `exit_something'. */
2489 void
2490 expand_start_cond (cond, exitflag)
2491 tree cond;
2492 int exitflag;
2494 struct nesting *thiscond = ALLOC_NESTING ();
2496 /* Make an entry on cond_stack for the cond we are entering. */
2498 thiscond->next = cond_stack;
2499 thiscond->all = nesting_stack;
2500 thiscond->depth = ++nesting_depth;
2501 thiscond->data.cond.next_label = gen_label_rtx ();
2502 /* Before we encounter an `else', we don't need a separate exit label
2503 unless there are supposed to be exit statements
2504 to exit this conditional. */
2505 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2506 thiscond->data.cond.endif_label = thiscond->exit_label;
2507 cond_stack = thiscond;
2508 nesting_stack = thiscond;
2510 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2513 /* Generate RTL between then-clause and the elseif-clause
2514 of an if-then-elseif-.... */
2516 void
2517 expand_start_elseif (cond)
2518 tree cond;
2520 if (cond_stack->data.cond.endif_label == 0)
2521 cond_stack->data.cond.endif_label = gen_label_rtx ();
2522 emit_jump (cond_stack->data.cond.endif_label);
2523 emit_label (cond_stack->data.cond.next_label);
2524 cond_stack->data.cond.next_label = gen_label_rtx ();
2525 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2528 /* Generate RTL between the then-clause and the else-clause
2529 of an if-then-else. */
2531 void
2532 expand_start_else ()
2534 if (cond_stack->data.cond.endif_label == 0)
2535 cond_stack->data.cond.endif_label = gen_label_rtx ();
2537 emit_jump (cond_stack->data.cond.endif_label);
2538 emit_label (cond_stack->data.cond.next_label);
2539 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2542 /* After calling expand_start_else, turn this "else" into an "else if"
2543 by providing another condition. */
2545 void
2546 expand_elseif (cond)
2547 tree cond;
2549 cond_stack->data.cond.next_label = gen_label_rtx ();
2550 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2553 /* Generate RTL for the end of an if-then.
2554 Pop the record for it off of cond_stack. */
2556 void
2557 expand_end_cond ()
2559 struct nesting *thiscond = cond_stack;
2561 do_pending_stack_adjust ();
2562 if (thiscond->data.cond.next_label)
2563 emit_label (thiscond->data.cond.next_label);
2564 if (thiscond->data.cond.endif_label)
2565 emit_label (thiscond->data.cond.endif_label);
2567 POPSTACK (cond_stack);
2568 last_expr_type = 0;
2571 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2572 loop should be exited by `exit_something'. This is a loop for which
2573 `expand_continue' will jump to the top of the loop.
2575 Make an entry on loop_stack to record the labels associated with
2576 this loop. */
2578 struct nesting *
2579 expand_start_loop (exit_flag)
2580 int exit_flag;
2582 struct nesting *thisloop = ALLOC_NESTING ();
2584 /* Make an entry on loop_stack for the loop we are entering. */
2586 thisloop->next = loop_stack;
2587 thisloop->all = nesting_stack;
2588 thisloop->depth = ++nesting_depth;
2589 thisloop->data.loop.start_label = gen_label_rtx ();
2590 thisloop->data.loop.end_label = gen_label_rtx ();
2591 thisloop->data.loop.alt_end_label = 0;
2592 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2593 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2594 loop_stack = thisloop;
2595 nesting_stack = thisloop;
2597 do_pending_stack_adjust ();
2598 emit_queue ();
2599 emit_note (NULL, NOTE_INSN_LOOP_BEG);
2600 emit_label (thisloop->data.loop.start_label);
2602 return thisloop;
2605 /* Like expand_start_loop but for a loop where the continuation point
2606 (for expand_continue_loop) will be specified explicitly. */
2608 struct nesting *
2609 expand_start_loop_continue_elsewhere (exit_flag)
2610 int exit_flag;
2612 struct nesting *thisloop = expand_start_loop (exit_flag);
2613 loop_stack->data.loop.continue_label = gen_label_rtx ();
2614 return thisloop;
2617 /* Begin a null, aka do { } while (0) "loop". But since the contents
2618 of said loop can still contain a break, we must frob the loop nest. */
2620 struct nesting *
2621 expand_start_null_loop ()
2623 struct nesting *thisloop = ALLOC_NESTING ();
2625 /* Make an entry on loop_stack for the loop we are entering. */
2627 thisloop->next = loop_stack;
2628 thisloop->all = nesting_stack;
2629 thisloop->depth = ++nesting_depth;
2630 thisloop->data.loop.start_label = emit_note (NULL, NOTE_INSN_DELETED);
2631 thisloop->data.loop.end_label = gen_label_rtx ();
2632 thisloop->data.loop.alt_end_label = NULL_RTX;
2633 thisloop->data.loop.continue_label = thisloop->data.loop.end_label;
2634 thisloop->exit_label = thisloop->data.loop.end_label;
2635 loop_stack = thisloop;
2636 nesting_stack = thisloop;
2638 return thisloop;
2641 /* Specify the continuation point for a loop started with
2642 expand_start_loop_continue_elsewhere.
2643 Use this at the point in the code to which a continue statement
2644 should jump. */
2646 void
2647 expand_loop_continue_here ()
2649 do_pending_stack_adjust ();
2650 emit_note (NULL, NOTE_INSN_LOOP_CONT);
2651 emit_label (loop_stack->data.loop.continue_label);
2654 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2655 Pop the block off of loop_stack. */
2657 void
2658 expand_end_loop ()
2660 rtx start_label = loop_stack->data.loop.start_label;
2661 rtx etc_note;
2662 int eh_regions, debug_blocks;
2664 /* Mark the continue-point at the top of the loop if none elsewhere. */
2665 if (start_label == loop_stack->data.loop.continue_label)
2666 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2668 do_pending_stack_adjust ();
2670 /* If the loop starts with a loop exit, roll that to the end where
2671 it will optimize together with the jump back.
2673 If the loop presently looks like this (in pseudo-C):
2675 LOOP_BEG
2676 start_label:
2677 if (test) goto end_label;
2678 LOOP_END_TOP_COND
2679 body;
2680 goto start_label;
2681 end_label:
2683 transform it to look like:
2685 LOOP_BEG
2686 goto start_label;
2687 top_label:
2688 body;
2689 start_label:
2690 if (test) goto end_label;
2691 goto top_label;
2692 end_label:
2694 We rely on the presence of NOTE_INSN_LOOP_END_TOP_COND to mark
2695 the end of the entry condtional. Without this, our lexical scan
2696 can't tell the difference between an entry conditional and a
2697 body conditional that exits the loop. Mistaking the two means
2698 that we can misplace the NOTE_INSN_LOOP_CONT note, which can
2699 screw up loop unrolling.
2701 Things will be oh so much better when loop optimization is done
2702 off of a proper control flow graph... */
2704 /* Scan insns from the top of the loop looking for the END_TOP_COND note. */
2706 eh_regions = debug_blocks = 0;
2707 for (etc_note = start_label; etc_note ; etc_note = NEXT_INSN (etc_note))
2708 if (GET_CODE (etc_note) == NOTE)
2710 if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_LOOP_END_TOP_COND)
2711 break;
2713 /* We must not walk into a nested loop. */
2714 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_LOOP_BEG)
2716 etc_note = NULL_RTX;
2717 break;
2720 /* At the same time, scan for EH region notes, as we don't want
2721 to scrog region nesting. This shouldn't happen, but... */
2722 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_EH_REGION_BEG)
2723 eh_regions++;
2724 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_EH_REGION_END)
2726 if (--eh_regions < 0)
2727 /* We've come to the end of an EH region, but never saw the
2728 beginning of that region. That means that an EH region
2729 begins before the top of the loop, and ends in the middle
2730 of it. The existence of such a situation violates a basic
2731 assumption in this code, since that would imply that even
2732 when EH_REGIONS is zero, we might move code out of an
2733 exception region. */
2734 abort ();
2737 /* Likewise for debug scopes. In this case we'll either (1) move
2738 all of the notes if they are properly nested or (2) leave the
2739 notes alone and only rotate the loop at high optimization
2740 levels when we expect to scrog debug info. */
2741 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_BLOCK_BEG)
2742 debug_blocks++;
2743 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_BLOCK_END)
2744 debug_blocks--;
2747 if (etc_note
2748 && optimize
2749 && eh_regions == 0
2750 && (debug_blocks == 0 || optimize >= 2)
2751 && NEXT_INSN (etc_note) != NULL_RTX
2752 && ! any_condjump_p (get_last_insn ()))
2754 /* We found one. Move everything from START to ETC to the end
2755 of the loop, and add a jump from the top of the loop. */
2756 rtx top_label = gen_label_rtx ();
2757 rtx start_move = start_label;
2759 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2760 then we want to move this note also. */
2761 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2762 && NOTE_LINE_NUMBER (PREV_INSN (start_move)) == NOTE_INSN_LOOP_CONT)
2763 start_move = PREV_INSN (start_move);
2765 emit_label_before (top_label, start_move);
2767 /* Actually move the insns. If the debug scopes are nested, we
2768 can move everything at once. Otherwise we have to move them
2769 one by one and squeeze out the block notes. */
2770 if (debug_blocks == 0)
2771 reorder_insns (start_move, etc_note, get_last_insn ());
2772 else
2774 rtx insn, next_insn;
2775 for (insn = start_move; insn; insn = next_insn)
2777 /* Figure out which insn comes after this one. We have
2778 to do this before we move INSN. */
2779 next_insn = (insn == etc_note ? NULL : NEXT_INSN (insn));
2781 if (GET_CODE (insn) == NOTE
2782 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2783 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2784 continue;
2786 reorder_insns (insn, insn, get_last_insn ());
2790 /* Add the jump from the top of the loop. */
2791 emit_jump_insn_before (gen_jump (start_label), top_label);
2792 emit_barrier_before (top_label);
2793 start_label = top_label;
2796 emit_jump (start_label);
2797 emit_note (NULL, NOTE_INSN_LOOP_END);
2798 emit_label (loop_stack->data.loop.end_label);
2800 POPSTACK (loop_stack);
2802 last_expr_type = 0;
2805 /* Finish a null loop, aka do { } while (0). */
2807 void
2808 expand_end_null_loop ()
2810 do_pending_stack_adjust ();
2811 emit_label (loop_stack->data.loop.end_label);
2813 POPSTACK (loop_stack);
2815 last_expr_type = 0;
2818 /* Generate a jump to the current loop's continue-point.
2819 This is usually the top of the loop, but may be specified
2820 explicitly elsewhere. If not currently inside a loop,
2821 return 0 and do nothing; caller will print an error message. */
2824 expand_continue_loop (whichloop)
2825 struct nesting *whichloop;
2827 last_expr_type = 0;
2828 if (whichloop == 0)
2829 whichloop = loop_stack;
2830 if (whichloop == 0)
2831 return 0;
2832 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2833 NULL_RTX);
2834 return 1;
2837 /* Generate a jump to exit the current loop. If not currently inside a loop,
2838 return 0 and do nothing; caller will print an error message. */
2841 expand_exit_loop (whichloop)
2842 struct nesting *whichloop;
2844 last_expr_type = 0;
2845 if (whichloop == 0)
2846 whichloop = loop_stack;
2847 if (whichloop == 0)
2848 return 0;
2849 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2850 return 1;
2853 /* Generate a conditional jump to exit the current loop if COND
2854 evaluates to zero. If not currently inside a loop,
2855 return 0 and do nothing; caller will print an error message. */
2858 expand_exit_loop_if_false (whichloop, cond)
2859 struct nesting *whichloop;
2860 tree cond;
2862 rtx label = gen_label_rtx ();
2863 rtx last_insn;
2864 last_expr_type = 0;
2866 if (whichloop == 0)
2867 whichloop = loop_stack;
2868 if (whichloop == 0)
2869 return 0;
2870 /* In order to handle fixups, we actually create a conditional jump
2871 around an unconditional branch to exit the loop. If fixups are
2872 necessary, they go before the unconditional branch. */
2874 do_jump (cond, NULL_RTX, label);
2875 last_insn = get_last_insn ();
2876 if (GET_CODE (last_insn) == CODE_LABEL)
2877 whichloop->data.loop.alt_end_label = last_insn;
2878 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2879 NULL_RTX);
2880 emit_label (label);
2882 return 1;
2885 /* Like expand_exit_loop_if_false except also emit a note marking
2886 the end of the conditional. Should only be used immediately
2887 after expand_loop_start. */
2890 expand_exit_loop_top_cond (whichloop, cond)
2891 struct nesting *whichloop;
2892 tree cond;
2894 if (! expand_exit_loop_if_false (whichloop, cond))
2895 return 0;
2897 emit_note (NULL, NOTE_INSN_LOOP_END_TOP_COND);
2898 return 1;
2901 /* Return nonzero if the loop nest is empty. Else return zero. */
2904 stmt_loop_nest_empty ()
2906 /* cfun->stmt can be NULL if we are building a call to get the
2907 EH context for a setjmp/longjmp EH target and the current
2908 function was a deferred inline function. */
2909 return (cfun->stmt == NULL || loop_stack == NULL);
2912 /* Return non-zero if we should preserve sub-expressions as separate
2913 pseudos. We never do so if we aren't optimizing. We always do so
2914 if -fexpensive-optimizations.
2916 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2917 the loop may still be a small one. */
2920 preserve_subexpressions_p ()
2922 rtx insn;
2924 if (flag_expensive_optimizations)
2925 return 1;
2927 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2928 return 0;
2930 insn = get_last_insn_anywhere ();
2932 return (insn
2933 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2934 < n_non_fixed_regs * 3));
2938 /* Generate a jump to exit the current loop, conditional, binding contour
2939 or case statement. Not all such constructs are visible to this function,
2940 only those started with EXIT_FLAG nonzero. Individual languages use
2941 the EXIT_FLAG parameter to control which kinds of constructs you can
2942 exit this way.
2944 If not currently inside anything that can be exited,
2945 return 0 and do nothing; caller will print an error message. */
2948 expand_exit_something ()
2950 struct nesting *n;
2951 last_expr_type = 0;
2952 for (n = nesting_stack; n; n = n->all)
2953 if (n->exit_label != 0)
2955 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2956 return 1;
2959 return 0;
2962 /* Generate RTL to return from the current function, with no value.
2963 (That is, we do not do anything about returning any value.) */
2965 void
2966 expand_null_return ()
2968 rtx last_insn = get_last_insn ();
2970 /* If this function was declared to return a value, but we
2971 didn't, clobber the return registers so that they are not
2972 propagated live to the rest of the function. */
2973 clobber_return_register ();
2975 expand_null_return_1 (last_insn);
2978 /* Generate RTL to return from the current function, with value VAL. */
2980 static void
2981 expand_value_return (val)
2982 rtx val;
2984 rtx last_insn = get_last_insn ();
2985 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2987 /* Copy the value to the return location
2988 unless it's already there. */
2990 if (return_reg != val)
2992 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2993 #ifdef PROMOTE_FUNCTION_RETURN
2994 int unsignedp = TREE_UNSIGNED (type);
2995 enum machine_mode old_mode
2996 = DECL_MODE (DECL_RESULT (current_function_decl));
2997 enum machine_mode mode
2998 = promote_mode (type, old_mode, &unsignedp, 1);
3000 if (mode != old_mode)
3001 val = convert_modes (mode, old_mode, val, unsignedp);
3002 #endif
3003 if (GET_CODE (return_reg) == PARALLEL)
3004 emit_group_load (return_reg, val, int_size_in_bytes (type));
3005 else
3006 emit_move_insn (return_reg, val);
3009 expand_null_return_1 (last_insn);
3012 /* Output a return with no value. If LAST_INSN is nonzero,
3013 pretend that the return takes place after LAST_INSN. */
3015 static void
3016 expand_null_return_1 (last_insn)
3017 rtx last_insn;
3019 rtx end_label = cleanup_label ? cleanup_label : return_label;
3021 clear_pending_stack_adjust ();
3022 do_pending_stack_adjust ();
3023 last_expr_type = 0;
3025 if (end_label == 0)
3026 end_label = return_label = gen_label_rtx ();
3027 expand_goto_internal (NULL_TREE, end_label, last_insn);
3030 /* Generate RTL to evaluate the expression RETVAL and return it
3031 from the current function. */
3033 void
3034 expand_return (retval)
3035 tree retval;
3037 /* If there are any cleanups to be performed, then they will
3038 be inserted following LAST_INSN. It is desirable
3039 that the last_insn, for such purposes, should be the
3040 last insn before computing the return value. Otherwise, cleanups
3041 which call functions can clobber the return value. */
3042 /* ??? rms: I think that is erroneous, because in C++ it would
3043 run destructors on variables that might be used in the subsequent
3044 computation of the return value. */
3045 rtx last_insn = 0;
3046 rtx result_rtl;
3047 rtx val = 0;
3048 tree retval_rhs;
3050 /* If function wants no value, give it none. */
3051 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
3053 expand_expr (retval, NULL_RTX, VOIDmode, 0);
3054 emit_queue ();
3055 expand_null_return ();
3056 return;
3059 if (retval == error_mark_node)
3061 /* Treat this like a return of no value from a function that
3062 returns a value. */
3063 expand_null_return ();
3064 return;
3066 else if (TREE_CODE (retval) == RESULT_DECL)
3067 retval_rhs = retval;
3068 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
3069 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
3070 retval_rhs = TREE_OPERAND (retval, 1);
3071 else if (VOID_TYPE_P (TREE_TYPE (retval)))
3072 /* Recognize tail-recursive call to void function. */
3073 retval_rhs = retval;
3074 else
3075 retval_rhs = NULL_TREE;
3077 last_insn = get_last_insn ();
3079 /* Distribute return down conditional expr if either of the sides
3080 may involve tail recursion (see test below). This enhances the number
3081 of tail recursions we see. Don't do this always since it can produce
3082 sub-optimal code in some cases and we distribute assignments into
3083 conditional expressions when it would help. */
3085 if (optimize && retval_rhs != 0
3086 && frame_offset == 0
3087 && TREE_CODE (retval_rhs) == COND_EXPR
3088 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
3089 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
3091 rtx label = gen_label_rtx ();
3092 tree expr;
3094 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
3095 start_cleanup_deferral ();
3096 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3097 DECL_RESULT (current_function_decl),
3098 TREE_OPERAND (retval_rhs, 1));
3099 TREE_SIDE_EFFECTS (expr) = 1;
3100 expand_return (expr);
3101 emit_label (label);
3103 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3104 DECL_RESULT (current_function_decl),
3105 TREE_OPERAND (retval_rhs, 2));
3106 TREE_SIDE_EFFECTS (expr) = 1;
3107 expand_return (expr);
3108 end_cleanup_deferral ();
3109 return;
3112 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
3114 /* If the result is an aggregate that is being returned in one (or more)
3115 registers, load the registers here. The compiler currently can't handle
3116 copying a BLKmode value into registers. We could put this code in a
3117 more general area (for use by everyone instead of just function
3118 call/return), but until this feature is generally usable it is kept here
3119 (and in expand_call). The value must go into a pseudo in case there
3120 are cleanups that will clobber the real return register. */
3122 if (retval_rhs != 0
3123 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
3124 && GET_CODE (result_rtl) == REG)
3126 int i;
3127 unsigned HOST_WIDE_INT bitpos, xbitpos;
3128 unsigned HOST_WIDE_INT big_endian_correction = 0;
3129 unsigned HOST_WIDE_INT bytes
3130 = int_size_in_bytes (TREE_TYPE (retval_rhs));
3131 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3132 unsigned int bitsize
3133 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
3134 rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs);
3135 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
3136 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
3137 enum machine_mode tmpmode, result_reg_mode;
3139 if (bytes == 0)
3141 expand_null_return ();
3142 return;
3145 /* Structures whose size is not a multiple of a word are aligned
3146 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
3147 machine, this means we must skip the empty high order bytes when
3148 calculating the bit offset. */
3149 if (BYTES_BIG_ENDIAN
3150 && !FUNCTION_ARG_REG_LITTLE_ENDIAN
3151 && bytes % UNITS_PER_WORD)
3152 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3153 * BITS_PER_UNIT));
3155 /* Copy the structure BITSIZE bits at a time. */
3156 for (bitpos = 0, xbitpos = big_endian_correction;
3157 bitpos < bytes * BITS_PER_UNIT;
3158 bitpos += bitsize, xbitpos += bitsize)
3160 /* We need a new destination pseudo each time xbitpos is
3161 on a word boundary and when xbitpos == big_endian_correction
3162 (the first time through). */
3163 if (xbitpos % BITS_PER_WORD == 0
3164 || xbitpos == big_endian_correction)
3166 /* Generate an appropriate register. */
3167 dst = gen_reg_rtx (word_mode);
3168 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
3170 /* Clear the destination before we move anything into it. */
3171 emit_move_insn (dst, CONST0_RTX (GET_MODE (dst)));
3174 /* We need a new source operand each time bitpos is on a word
3175 boundary. */
3176 if (bitpos % BITS_PER_WORD == 0)
3177 src = operand_subword_force (result_val,
3178 bitpos / BITS_PER_WORD,
3179 BLKmode);
3181 /* Use bitpos for the source extraction (left justified) and
3182 xbitpos for the destination store (right justified). */
3183 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3184 extract_bit_field (src, bitsize,
3185 bitpos % BITS_PER_WORD, 1,
3186 NULL_RTX, word_mode, word_mode,
3187 BITS_PER_WORD),
3188 BITS_PER_WORD);
3191 /* Find the smallest integer mode large enough to hold the
3192 entire structure and use that mode instead of BLKmode
3193 on the USE insn for the return register. */
3194 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3195 tmpmode != VOIDmode;
3196 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3197 /* Have we found a large enough mode? */
3198 if (GET_MODE_SIZE (tmpmode) >= bytes)
3199 break;
3201 /* No suitable mode found. */
3202 if (tmpmode == VOIDmode)
3203 abort ();
3205 PUT_MODE (result_rtl, tmpmode);
3207 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3208 result_reg_mode = word_mode;
3209 else
3210 result_reg_mode = tmpmode;
3211 result_reg = gen_reg_rtx (result_reg_mode);
3213 emit_queue ();
3214 for (i = 0; i < n_regs; i++)
3215 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3216 result_pseudos[i]);
3218 if (tmpmode != result_reg_mode)
3219 result_reg = gen_lowpart (tmpmode, result_reg);
3221 expand_value_return (result_reg);
3223 else if (retval_rhs != 0
3224 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
3225 && (GET_CODE (result_rtl) == REG
3226 || (GET_CODE (result_rtl) == PARALLEL)))
3228 /* Calculate the return value into a temporary (usually a pseudo
3229 reg). */
3230 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
3231 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
3233 val = assign_temp (nt, 0, 0, 1);
3234 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3235 val = force_not_mem (val);
3236 emit_queue ();
3237 /* Return the calculated value, doing cleanups first. */
3238 expand_value_return (val);
3240 else
3242 /* No cleanups or no hard reg used;
3243 calculate value into hard return reg. */
3244 expand_expr (retval, const0_rtx, VOIDmode, 0);
3245 emit_queue ();
3246 expand_value_return (result_rtl);
3250 /* Return 1 if the end of the generated RTX is not a barrier.
3251 This means code already compiled can drop through. */
3254 drop_through_at_end_p ()
3256 rtx insn = get_last_insn ();
3257 while (insn && GET_CODE (insn) == NOTE)
3258 insn = PREV_INSN (insn);
3259 return insn && GET_CODE (insn) != BARRIER;
3262 /* Attempt to optimize a potential tail recursion call into a goto.
3263 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3264 where to place the jump to the tail recursion label.
3266 Return TRUE if the call was optimized into a goto. */
3269 optimize_tail_recursion (arguments, last_insn)
3270 tree arguments;
3271 rtx last_insn;
3273 /* Finish checking validity, and if valid emit code to set the
3274 argument variables for the new call. */
3275 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3277 if (tail_recursion_label == 0)
3279 tail_recursion_label = gen_label_rtx ();
3280 emit_label_after (tail_recursion_label,
3281 tail_recursion_reentry);
3283 emit_queue ();
3284 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3285 emit_barrier ();
3286 return 1;
3288 return 0;
3291 /* Emit code to alter this function's formal parms for a tail-recursive call.
3292 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3293 FORMALS is the chain of decls of formals.
3294 Return 1 if this can be done;
3295 otherwise return 0 and do not emit any code. */
3297 static int
3298 tail_recursion_args (actuals, formals)
3299 tree actuals, formals;
3301 tree a = actuals, f = formals;
3302 int i;
3303 rtx *argvec;
3305 /* Check that number and types of actuals are compatible
3306 with the formals. This is not always true in valid C code.
3307 Also check that no formal needs to be addressable
3308 and that all formals are scalars. */
3310 /* Also count the args. */
3312 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3314 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3315 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3316 return 0;
3317 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3318 return 0;
3320 if (a != 0 || f != 0)
3321 return 0;
3323 /* Compute all the actuals. */
3325 argvec = (rtx *) alloca (i * sizeof (rtx));
3327 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3328 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3330 /* Find which actual values refer to current values of previous formals.
3331 Copy each of them now, before any formal is changed. */
3333 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3335 int copy = 0;
3336 int j;
3337 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3338 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3340 copy = 1;
3341 break;
3343 if (copy)
3344 argvec[i] = copy_to_reg (argvec[i]);
3347 /* Store the values of the actuals into the formals. */
3349 for (f = formals, a = actuals, i = 0; f;
3350 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3352 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3353 emit_move_insn (DECL_RTL (f), argvec[i]);
3354 else
3355 convert_move (DECL_RTL (f), argvec[i],
3356 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
3359 free_temp_slots ();
3360 return 1;
3363 /* Generate the RTL code for entering a binding contour.
3364 The variables are declared one by one, by calls to `expand_decl'.
3366 FLAGS is a bitwise or of the following flags:
3368 1 - Nonzero if this construct should be visible to
3369 `exit_something'.
3371 2 - Nonzero if this contour does not require a
3372 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3373 language-independent code should set this flag because they
3374 will not create corresponding BLOCK nodes. (There should be
3375 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3376 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3377 when expand_end_bindings is called.
3379 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3380 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3381 note. */
3383 void
3384 expand_start_bindings_and_block (flags, block)
3385 int flags;
3386 tree block;
3388 struct nesting *thisblock = ALLOC_NESTING ();
3389 rtx note;
3390 int exit_flag = ((flags & 1) != 0);
3391 int block_flag = ((flags & 2) == 0);
3393 /* If a BLOCK is supplied, then the caller should be requesting a
3394 NOTE_INSN_BLOCK_BEG note. */
3395 if (!block_flag && block)
3396 abort ();
3398 /* Create a note to mark the beginning of the block. */
3399 if (block_flag)
3401 note = emit_note (NULL, NOTE_INSN_BLOCK_BEG);
3402 NOTE_BLOCK (note) = block;
3404 else
3405 note = emit_note (NULL, NOTE_INSN_DELETED);
3407 /* Make an entry on block_stack for the block we are entering. */
3409 thisblock->next = block_stack;
3410 thisblock->all = nesting_stack;
3411 thisblock->depth = ++nesting_depth;
3412 thisblock->data.block.stack_level = 0;
3413 thisblock->data.block.cleanups = 0;
3414 thisblock->data.block.n_function_calls = 0;
3415 thisblock->data.block.exception_region = 0;
3416 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3418 thisblock->data.block.conditional_code = 0;
3419 thisblock->data.block.last_unconditional_cleanup = note;
3420 /* When we insert instructions after the last unconditional cleanup,
3421 we don't adjust last_insn. That means that a later add_insn will
3422 clobber the instructions we've just added. The easiest way to
3423 fix this is to just insert another instruction here, so that the
3424 instructions inserted after the last unconditional cleanup are
3425 never the last instruction. */
3426 emit_note (NULL, NOTE_INSN_DELETED);
3427 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3429 if (block_stack
3430 && !(block_stack->data.block.cleanups == NULL_TREE
3431 && block_stack->data.block.outer_cleanups == NULL_TREE))
3432 thisblock->data.block.outer_cleanups
3433 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3434 block_stack->data.block.outer_cleanups);
3435 else
3436 thisblock->data.block.outer_cleanups = 0;
3437 thisblock->data.block.label_chain = 0;
3438 thisblock->data.block.innermost_stack_block = stack_block_stack;
3439 thisblock->data.block.first_insn = note;
3440 thisblock->data.block.block_start_count = ++current_block_start_count;
3441 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3442 block_stack = thisblock;
3443 nesting_stack = thisblock;
3445 /* Make a new level for allocating stack slots. */
3446 push_temp_slots ();
3449 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3450 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3451 expand_expr are made. After we end the region, we know that all
3452 space for all temporaries that were created by TARGET_EXPRs will be
3453 destroyed and their space freed for reuse. */
3455 void
3456 expand_start_target_temps ()
3458 /* This is so that even if the result is preserved, the space
3459 allocated will be freed, as we know that it is no longer in use. */
3460 push_temp_slots ();
3462 /* Start a new binding layer that will keep track of all cleanup
3463 actions to be performed. */
3464 expand_start_bindings (2);
3466 target_temp_slot_level = temp_slot_level;
3469 void
3470 expand_end_target_temps ()
3472 expand_end_bindings (NULL_TREE, 0, 0);
3474 /* This is so that even if the result is preserved, the space
3475 allocated will be freed, as we know that it is no longer in use. */
3476 pop_temp_slots ();
3479 /* Given a pointer to a BLOCK node return non-zero if (and only if) the node
3480 in question represents the outermost pair of curly braces (i.e. the "body
3481 block") of a function or method.
3483 For any BLOCK node representing a "body block" of a function or method, the
3484 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3485 represents the outermost (function) scope for the function or method (i.e.
3486 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3487 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3490 is_body_block (stmt)
3491 tree stmt;
3493 if (TREE_CODE (stmt) == BLOCK)
3495 tree parent = BLOCK_SUPERCONTEXT (stmt);
3497 if (parent && TREE_CODE (parent) == BLOCK)
3499 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3501 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3502 return 1;
3506 return 0;
3509 /* True if we are currently emitting insns in an area of output code
3510 that is controlled by a conditional expression. This is used by
3511 the cleanup handling code to generate conditional cleanup actions. */
3514 conditional_context ()
3516 return block_stack && block_stack->data.block.conditional_code;
3519 /* Return an opaque pointer to the current nesting level, so frontend code
3520 can check its own sanity. */
3522 struct nesting *
3523 current_nesting_level ()
3525 return cfun ? block_stack : 0;
3528 /* Emit a handler label for a nonlocal goto handler.
3529 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3531 static rtx
3532 expand_nl_handler_label (slot, before_insn)
3533 rtx slot, before_insn;
3535 rtx insns;
3536 rtx handler_label = gen_label_rtx ();
3538 /* Don't let cleanup_cfg delete the handler. */
3539 LABEL_PRESERVE_P (handler_label) = 1;
3541 start_sequence ();
3542 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3543 insns = get_insns ();
3544 end_sequence ();
3545 emit_insns_before (insns, before_insn);
3547 emit_label (handler_label);
3549 return handler_label;
3552 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3553 handler. */
3554 static void
3555 expand_nl_goto_receiver ()
3557 #ifdef HAVE_nonlocal_goto
3558 if (! HAVE_nonlocal_goto)
3559 #endif
3560 /* First adjust our frame pointer to its actual value. It was
3561 previously set to the start of the virtual area corresponding to
3562 the stacked variables when we branched here and now needs to be
3563 adjusted to the actual hardware fp value.
3565 Assignments are to virtual registers are converted by
3566 instantiate_virtual_regs into the corresponding assignment
3567 to the underlying register (fp in this case) that makes
3568 the original assignment true.
3569 So the following insn will actually be
3570 decrementing fp by STARTING_FRAME_OFFSET. */
3571 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3573 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3574 if (fixed_regs[ARG_POINTER_REGNUM])
3576 #ifdef ELIMINABLE_REGS
3577 /* If the argument pointer can be eliminated in favor of the
3578 frame pointer, we don't need to restore it. We assume here
3579 that if such an elimination is present, it can always be used.
3580 This is the case on all known machines; if we don't make this
3581 assumption, we do unnecessary saving on many machines. */
3582 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
3583 size_t i;
3585 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
3586 if (elim_regs[i].from == ARG_POINTER_REGNUM
3587 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3588 break;
3590 if (i == ARRAY_SIZE (elim_regs))
3591 #endif
3593 /* Now restore our arg pointer from the address at which it
3594 was saved in our stack frame. */
3595 emit_move_insn (virtual_incoming_args_rtx,
3596 copy_to_reg (get_arg_pointer_save_area (cfun)));
3599 #endif
3601 #ifdef HAVE_nonlocal_goto_receiver
3602 if (HAVE_nonlocal_goto_receiver)
3603 emit_insn (gen_nonlocal_goto_receiver ());
3604 #endif
3607 /* Make handlers for nonlocal gotos taking place in the function calls in
3608 block THISBLOCK. */
3610 static void
3611 expand_nl_goto_receivers (thisblock)
3612 struct nesting *thisblock;
3614 tree link;
3615 rtx afterward = gen_label_rtx ();
3616 rtx insns, slot;
3617 rtx label_list;
3618 int any_invalid;
3620 /* Record the handler address in the stack slot for that purpose,
3621 during this block, saving and restoring the outer value. */
3622 if (thisblock->next != 0)
3623 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3625 rtx save_receiver = gen_reg_rtx (Pmode);
3626 emit_move_insn (XEXP (slot, 0), save_receiver);
3628 start_sequence ();
3629 emit_move_insn (save_receiver, XEXP (slot, 0));
3630 insns = get_insns ();
3631 end_sequence ();
3632 emit_insns_before (insns, thisblock->data.block.first_insn);
3635 /* Jump around the handlers; they run only when specially invoked. */
3636 emit_jump (afterward);
3638 /* Make a separate handler for each label. */
3639 link = nonlocal_labels;
3640 slot = nonlocal_goto_handler_slots;
3641 label_list = NULL_RTX;
3642 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3643 /* Skip any labels we shouldn't be able to jump to from here,
3644 we generate one special handler for all of them below which just calls
3645 abort. */
3646 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3648 rtx lab;
3649 lab = expand_nl_handler_label (XEXP (slot, 0),
3650 thisblock->data.block.first_insn);
3651 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3653 expand_nl_goto_receiver ();
3655 /* Jump to the "real" nonlocal label. */
3656 expand_goto (TREE_VALUE (link));
3659 /* A second pass over all nonlocal labels; this time we handle those
3660 we should not be able to jump to at this point. */
3661 link = nonlocal_labels;
3662 slot = nonlocal_goto_handler_slots;
3663 any_invalid = 0;
3664 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3665 if (DECL_TOO_LATE (TREE_VALUE (link)))
3667 rtx lab;
3668 lab = expand_nl_handler_label (XEXP (slot, 0),
3669 thisblock->data.block.first_insn);
3670 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3671 any_invalid = 1;
3674 if (any_invalid)
3676 expand_nl_goto_receiver ();
3677 expand_builtin_trap ();
3680 nonlocal_goto_handler_labels = label_list;
3681 emit_label (afterward);
3684 /* Warn about any unused VARS (which may contain nodes other than
3685 VAR_DECLs, but such nodes are ignored). The nodes are connected
3686 via the TREE_CHAIN field. */
3688 void
3689 warn_about_unused_variables (vars)
3690 tree vars;
3692 tree decl;
3694 if (warn_unused_variable)
3695 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3696 if (TREE_CODE (decl) == VAR_DECL
3697 && ! TREE_USED (decl)
3698 && ! DECL_IN_SYSTEM_HEADER (decl)
3699 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3700 warning_with_decl (decl, "unused variable `%s'");
3703 /* Generate RTL code to terminate a binding contour.
3705 VARS is the chain of VAR_DECL nodes for the variables bound in this
3706 contour. There may actually be other nodes in this chain, but any
3707 nodes other than VAR_DECLS are ignored.
3709 MARK_ENDS is nonzero if we should put a note at the beginning
3710 and end of this binding contour.
3712 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
3713 (That is true automatically if the contour has a saved stack level.) */
3715 void
3716 expand_end_bindings (vars, mark_ends, dont_jump_in)
3717 tree vars;
3718 int mark_ends;
3719 int dont_jump_in;
3721 struct nesting *thisblock = block_stack;
3723 /* If any of the variables in this scope were not used, warn the
3724 user. */
3725 warn_about_unused_variables (vars);
3727 if (thisblock->exit_label)
3729 do_pending_stack_adjust ();
3730 emit_label (thisblock->exit_label);
3733 /* If necessary, make handlers for nonlocal gotos taking
3734 place in the function calls in this block. */
3735 if (function_call_count != thisblock->data.block.n_function_calls
3736 && nonlocal_labels
3737 /* Make handler for outermost block
3738 if there were any nonlocal gotos to this function. */
3739 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3740 /* Make handler for inner block if it has something
3741 special to do when you jump out of it. */
3742 : (thisblock->data.block.cleanups != 0
3743 || thisblock->data.block.stack_level != 0)))
3744 expand_nl_goto_receivers (thisblock);
3746 /* Don't allow jumping into a block that has a stack level.
3747 Cleanups are allowed, though. */
3748 if (dont_jump_in
3749 || thisblock->data.block.stack_level != 0)
3751 struct label_chain *chain;
3753 /* Any labels in this block are no longer valid to go to.
3754 Mark them to cause an error message. */
3755 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3757 DECL_TOO_LATE (chain->label) = 1;
3758 /* If any goto without a fixup came to this label,
3759 that must be an error, because gotos without fixups
3760 come from outside all saved stack-levels. */
3761 if (TREE_ADDRESSABLE (chain->label))
3762 error_with_decl (chain->label,
3763 "label `%s' used before containing binding contour");
3767 /* Restore stack level in effect before the block
3768 (only if variable-size objects allocated). */
3769 /* Perform any cleanups associated with the block. */
3771 if (thisblock->data.block.stack_level != 0
3772 || thisblock->data.block.cleanups != 0)
3774 int reachable;
3775 rtx insn;
3777 /* Don't let cleanups affect ({...}) constructs. */
3778 int old_expr_stmts_for_value = expr_stmts_for_value;
3779 rtx old_last_expr_value = last_expr_value;
3780 tree old_last_expr_type = last_expr_type;
3781 expr_stmts_for_value = 0;
3783 /* Only clean up here if this point can actually be reached. */
3784 insn = get_last_insn ();
3785 if (GET_CODE (insn) == NOTE)
3786 insn = prev_nonnote_insn (insn);
3787 reachable = (! insn || GET_CODE (insn) != BARRIER);
3789 /* Do the cleanups. */
3790 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable);
3791 if (reachable)
3792 do_pending_stack_adjust ();
3794 expr_stmts_for_value = old_expr_stmts_for_value;
3795 last_expr_value = old_last_expr_value;
3796 last_expr_type = old_last_expr_type;
3798 /* Restore the stack level. */
3800 if (reachable && thisblock->data.block.stack_level != 0)
3802 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3803 thisblock->data.block.stack_level, NULL_RTX);
3804 if (nonlocal_goto_handler_slots != 0)
3805 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3806 NULL_RTX);
3809 /* Any gotos out of this block must also do these things.
3810 Also report any gotos with fixups that came to labels in this
3811 level. */
3812 fixup_gotos (thisblock,
3813 thisblock->data.block.stack_level,
3814 thisblock->data.block.cleanups,
3815 thisblock->data.block.first_insn,
3816 dont_jump_in);
3819 /* Mark the beginning and end of the scope if requested.
3820 We do this now, after running cleanups on the variables
3821 just going out of scope, so they are in scope for their cleanups. */
3823 if (mark_ends)
3825 rtx note = emit_note (NULL, NOTE_INSN_BLOCK_END);
3826 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3828 else
3829 /* Get rid of the beginning-mark if we don't make an end-mark. */
3830 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3832 /* Restore the temporary level of TARGET_EXPRs. */
3833 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3835 /* Restore block_stack level for containing block. */
3837 stack_block_stack = thisblock->data.block.innermost_stack_block;
3838 POPSTACK (block_stack);
3840 /* Pop the stack slot nesting and free any slots at this level. */
3841 pop_temp_slots ();
3844 /* Generate code to save the stack pointer at the start of the current block
3845 and set up to restore it on exit. */
3847 void
3848 save_stack_pointer ()
3850 struct nesting *thisblock = block_stack;
3852 if (thisblock->data.block.stack_level == 0)
3854 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3855 &thisblock->data.block.stack_level,
3856 thisblock->data.block.first_insn);
3857 stack_block_stack = thisblock;
3861 /* Generate RTL for the automatic variable declaration DECL.
3862 (Other kinds of declarations are simply ignored if seen here.) */
3864 void
3865 expand_decl (decl)
3866 tree decl;
3868 struct nesting *thisblock;
3869 tree type;
3871 type = TREE_TYPE (decl);
3873 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
3874 type in case this node is used in a reference. */
3875 if (TREE_CODE (decl) == CONST_DECL)
3877 DECL_MODE (decl) = TYPE_MODE (type);
3878 DECL_ALIGN (decl) = TYPE_ALIGN (type);
3879 DECL_SIZE (decl) = TYPE_SIZE (type);
3880 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
3881 return;
3884 /* Otherwise, only automatic variables need any expansion done. Static and
3885 external variables, and external functions, will be handled by
3886 `assemble_variable' (called from finish_decl). TYPE_DECL requires
3887 nothing. PARM_DECLs are handled in `assign_parms'. */
3888 if (TREE_CODE (decl) != VAR_DECL)
3889 return;
3891 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3892 return;
3894 thisblock = block_stack;
3896 /* Create the RTL representation for the variable. */
3898 if (type == error_mark_node)
3899 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
3901 else if (DECL_SIZE (decl) == 0)
3902 /* Variable with incomplete type. */
3904 rtx x;
3905 if (DECL_INITIAL (decl) == 0)
3906 /* Error message was already done; now avoid a crash. */
3907 x = gen_rtx_MEM (BLKmode, const0_rtx);
3908 else
3909 /* An initializer is going to decide the size of this array.
3910 Until we know the size, represent its address with a reg. */
3911 x = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3913 set_mem_attributes (x, decl, 1);
3914 SET_DECL_RTL (decl, x);
3916 else if (DECL_MODE (decl) != BLKmode
3917 /* If -ffloat-store, don't put explicit float vars
3918 into regs. */
3919 && !(flag_float_store
3920 && TREE_CODE (type) == REAL_TYPE)
3921 && ! TREE_THIS_VOLATILE (decl)
3922 && (DECL_REGISTER (decl) || optimize))
3924 /* Automatic variable that can go in a register. */
3925 int unsignedp = TREE_UNSIGNED (type);
3926 enum machine_mode reg_mode
3927 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3929 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
3931 if (GET_CODE (DECL_RTL (decl)) == REG)
3932 REGNO_DECL (REGNO (DECL_RTL (decl))) = decl;
3933 else if (GET_CODE (DECL_RTL (decl)) == CONCAT)
3935 REGNO_DECL (REGNO (XEXP (DECL_RTL (decl), 0))) = decl;
3936 REGNO_DECL (REGNO (XEXP (DECL_RTL (decl), 1))) = decl;
3939 mark_user_reg (DECL_RTL (decl));
3941 if (POINTER_TYPE_P (type))
3942 mark_reg_pointer (DECL_RTL (decl),
3943 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3945 maybe_set_unchanging (DECL_RTL (decl), decl);
3947 /* If something wants our address, try to use ADDRESSOF. */
3948 if (TREE_ADDRESSABLE (decl))
3949 put_var_into_stack (decl);
3952 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
3953 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3954 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
3955 STACK_CHECK_MAX_VAR_SIZE)))
3957 /* Variable of fixed size that goes on the stack. */
3958 rtx oldaddr = 0;
3959 rtx addr;
3960 rtx x;
3962 /* If we previously made RTL for this decl, it must be an array
3963 whose size was determined by the initializer.
3964 The old address was a register; set that register now
3965 to the proper address. */
3966 if (DECL_RTL_SET_P (decl))
3968 if (GET_CODE (DECL_RTL (decl)) != MEM
3969 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3970 abort ();
3971 oldaddr = XEXP (DECL_RTL (decl), 0);
3974 /* Set alignment we actually gave this decl. */
3975 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
3976 : GET_MODE_BITSIZE (DECL_MODE (decl)));
3977 DECL_USER_ALIGN (decl) = 0;
3979 x = assign_temp (decl, 1, 1, 1);
3980 set_mem_attributes (x, decl, 1);
3981 SET_DECL_RTL (decl, x);
3983 if (oldaddr)
3985 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
3986 if (addr != oldaddr)
3987 emit_move_insn (oldaddr, addr);
3990 else
3991 /* Dynamic-size object: must push space on the stack. */
3993 rtx address, size, x;
3995 /* Record the stack pointer on entry to block, if have
3996 not already done so. */
3997 do_pending_stack_adjust ();
3998 save_stack_pointer ();
4000 /* In function-at-a-time mode, variable_size doesn't expand this,
4001 so do it now. */
4002 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
4003 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
4004 const0_rtx, VOIDmode, 0);
4006 /* Compute the variable's size, in bytes. */
4007 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
4008 free_temp_slots ();
4010 /* Allocate space on the stack for the variable. Note that
4011 DECL_ALIGN says how the variable is to be aligned and we
4012 cannot use it to conclude anything about the alignment of
4013 the size. */
4014 address = allocate_dynamic_stack_space (size, NULL_RTX,
4015 TYPE_ALIGN (TREE_TYPE (decl)));
4017 /* Reference the variable indirect through that rtx. */
4018 x = gen_rtx_MEM (DECL_MODE (decl), address);
4019 set_mem_attributes (x, decl, 1);
4020 SET_DECL_RTL (decl, x);
4023 /* Indicate the alignment we actually gave this variable. */
4024 #ifdef STACK_BOUNDARY
4025 DECL_ALIGN (decl) = STACK_BOUNDARY;
4026 #else
4027 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
4028 #endif
4029 DECL_USER_ALIGN (decl) = 0;
4033 /* Emit code to perform the initialization of a declaration DECL. */
4035 void
4036 expand_decl_init (decl)
4037 tree decl;
4039 int was_used = TREE_USED (decl);
4041 /* If this is a CONST_DECL, we don't have to generate any code. Likewise
4042 for static decls. */
4043 if (TREE_CODE (decl) == CONST_DECL
4044 || TREE_STATIC (decl))
4045 return;
4047 /* Compute and store the initial value now. */
4049 if (DECL_INITIAL (decl) == error_mark_node)
4051 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
4053 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
4054 || code == POINTER_TYPE || code == REFERENCE_TYPE)
4055 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
4056 0, 0);
4057 emit_queue ();
4059 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
4061 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
4062 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
4063 emit_queue ();
4066 /* Don't let the initialization count as "using" the variable. */
4067 TREE_USED (decl) = was_used;
4069 /* Free any temporaries we made while initializing the decl. */
4070 preserve_temp_slots (NULL_RTX);
4071 free_temp_slots ();
4074 /* CLEANUP is an expression to be executed at exit from this binding contour;
4075 for example, in C++, it might call the destructor for this variable.
4077 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
4078 CLEANUP multiple times, and have the correct semantics. This
4079 happens in exception handling, for gotos, returns, breaks that
4080 leave the current scope.
4082 If CLEANUP is nonzero and DECL is zero, we record a cleanup
4083 that is not associated with any particular variable. */
4086 expand_decl_cleanup (decl, cleanup)
4087 tree decl, cleanup;
4089 struct nesting *thisblock;
4091 /* Error if we are not in any block. */
4092 if (cfun == 0 || block_stack == 0)
4093 return 0;
4095 thisblock = block_stack;
4097 /* Record the cleanup if there is one. */
4099 if (cleanup != 0)
4101 tree t;
4102 rtx seq;
4103 tree *cleanups = &thisblock->data.block.cleanups;
4104 int cond_context = conditional_context ();
4106 if (cond_context)
4108 rtx flag = gen_reg_rtx (word_mode);
4109 rtx set_flag_0;
4110 tree cond;
4112 start_sequence ();
4113 emit_move_insn (flag, const0_rtx);
4114 set_flag_0 = get_insns ();
4115 end_sequence ();
4117 thisblock->data.block.last_unconditional_cleanup
4118 = emit_insns_after (set_flag_0,
4119 thisblock->data.block.last_unconditional_cleanup);
4121 emit_move_insn (flag, const1_rtx);
4123 cond = build_decl (VAR_DECL, NULL_TREE,
4124 (*lang_hooks.types.type_for_mode) (word_mode, 1));
4125 SET_DECL_RTL (cond, flag);
4127 /* Conditionalize the cleanup. */
4128 cleanup = build (COND_EXPR, void_type_node,
4129 (*lang_hooks.truthvalue_conversion) (cond),
4130 cleanup, integer_zero_node);
4131 cleanup = fold (cleanup);
4133 cleanups = thisblock->data.block.cleanup_ptr;
4136 cleanup = unsave_expr (cleanup);
4138 t = *cleanups = tree_cons (decl, cleanup, *cleanups);
4140 if (! cond_context)
4141 /* If this block has a cleanup, it belongs in stack_block_stack. */
4142 stack_block_stack = thisblock;
4144 if (cond_context)
4146 start_sequence ();
4149 if (! using_eh_for_cleanups_p)
4150 TREE_ADDRESSABLE (t) = 1;
4151 else
4152 expand_eh_region_start ();
4154 if (cond_context)
4156 seq = get_insns ();
4157 end_sequence ();
4158 if (seq)
4159 thisblock->data.block.last_unconditional_cleanup
4160 = emit_insns_after (seq,
4161 thisblock->data.block.last_unconditional_cleanup);
4163 else
4165 thisblock->data.block.last_unconditional_cleanup
4166 = get_last_insn ();
4167 /* When we insert instructions after the last unconditional cleanup,
4168 we don't adjust last_insn. That means that a later add_insn will
4169 clobber the instructions we've just added. The easiest way to
4170 fix this is to just insert another instruction here, so that the
4171 instructions inserted after the last unconditional cleanup are
4172 never the last instruction. */
4173 emit_note (NULL, NOTE_INSN_DELETED);
4174 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
4177 return 1;
4180 /* Like expand_decl_cleanup, but maybe only run the cleanup if an exception
4181 is thrown. */
4184 expand_decl_cleanup_eh (decl, cleanup, eh_only)
4185 tree decl, cleanup;
4186 int eh_only;
4188 int ret = expand_decl_cleanup (decl, cleanup);
4189 if (cleanup && ret)
4191 tree node = block_stack->data.block.cleanups;
4192 CLEANUP_EH_ONLY (node) = eh_only;
4194 return ret;
4197 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4198 DECL_ELTS is the list of elements that belong to DECL's type.
4199 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4201 void
4202 expand_anon_union_decl (decl, cleanup, decl_elts)
4203 tree decl, cleanup, decl_elts;
4205 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4206 rtx x;
4207 tree t;
4209 /* If any of the elements are addressable, so is the entire union. */
4210 for (t = decl_elts; t; t = TREE_CHAIN (t))
4211 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4213 TREE_ADDRESSABLE (decl) = 1;
4214 break;
4217 expand_decl (decl);
4218 expand_decl_cleanup (decl, cleanup);
4219 x = DECL_RTL (decl);
4221 /* Go through the elements, assigning RTL to each. */
4222 for (t = decl_elts; t; t = TREE_CHAIN (t))
4224 tree decl_elt = TREE_VALUE (t);
4225 tree cleanup_elt = TREE_PURPOSE (t);
4226 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4228 /* If any of the elements are addressable, so is the entire
4229 union. */
4230 if (TREE_USED (decl_elt))
4231 TREE_USED (decl) = 1;
4233 /* Propagate the union's alignment to the elements. */
4234 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4235 DECL_USER_ALIGN (decl_elt) = DECL_USER_ALIGN (decl);
4237 /* If the element has BLKmode and the union doesn't, the union is
4238 aligned such that the element doesn't need to have BLKmode, so
4239 change the element's mode to the appropriate one for its size. */
4240 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4241 DECL_MODE (decl_elt) = mode
4242 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4244 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4245 instead create a new MEM rtx with the proper mode. */
4246 if (GET_CODE (x) == MEM)
4248 if (mode == GET_MODE (x))
4249 SET_DECL_RTL (decl_elt, x);
4250 else
4251 SET_DECL_RTL (decl_elt, adjust_address_nv (x, mode, 0));
4253 else if (GET_CODE (x) == REG)
4255 if (mode == GET_MODE (x))
4256 SET_DECL_RTL (decl_elt, x);
4257 else
4258 SET_DECL_RTL (decl_elt, gen_lowpart_SUBREG (mode, x));
4260 else
4261 abort ();
4263 /* Record the cleanup if there is one. */
4265 if (cleanup != 0)
4266 thisblock->data.block.cleanups
4267 = tree_cons (decl_elt, cleanup_elt,
4268 thisblock->data.block.cleanups);
4272 /* Expand a list of cleanups LIST.
4273 Elements may be expressions or may be nested lists.
4275 If DONT_DO is nonnull, then any list-element
4276 whose TREE_PURPOSE matches DONT_DO is omitted.
4277 This is sometimes used to avoid a cleanup associated with
4278 a value that is being returned out of the scope.
4280 If IN_FIXUP is non-zero, we are generating this cleanup for a fixup
4281 goto and handle protection regions specially in that case.
4283 If REACHABLE, we emit code, otherwise just inform the exception handling
4284 code about this finalization. */
4286 static void
4287 expand_cleanups (list, dont_do, in_fixup, reachable)
4288 tree list;
4289 tree dont_do;
4290 int in_fixup;
4291 int reachable;
4293 tree tail;
4294 for (tail = list; tail; tail = TREE_CHAIN (tail))
4295 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
4297 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4298 expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable);
4299 else
4301 if (! in_fixup && using_eh_for_cleanups_p)
4302 expand_eh_region_end_cleanup (TREE_VALUE (tail));
4304 if (reachable && !CLEANUP_EH_ONLY (tail))
4306 /* Cleanups may be run multiple times. For example,
4307 when exiting a binding contour, we expand the
4308 cleanups associated with that contour. When a goto
4309 within that binding contour has a target outside that
4310 contour, it will expand all cleanups from its scope to
4311 the target. Though the cleanups are expanded multiple
4312 times, the control paths are non-overlapping so the
4313 cleanups will not be executed twice. */
4315 /* We may need to protect from outer cleanups. */
4316 if (in_fixup && using_eh_for_cleanups_p)
4318 expand_eh_region_start ();
4320 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4322 expand_eh_region_end_fixup (TREE_VALUE (tail));
4324 else
4325 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4327 free_temp_slots ();
4333 /* Mark when the context we are emitting RTL for as a conditional
4334 context, so that any cleanup actions we register with
4335 expand_decl_init will be properly conditionalized when those
4336 cleanup actions are later performed. Must be called before any
4337 expression (tree) is expanded that is within a conditional context. */
4339 void
4340 start_cleanup_deferral ()
4342 /* block_stack can be NULL if we are inside the parameter list. It is
4343 OK to do nothing, because cleanups aren't possible here. */
4344 if (block_stack)
4345 ++block_stack->data.block.conditional_code;
4348 /* Mark the end of a conditional region of code. Because cleanup
4349 deferrals may be nested, we may still be in a conditional region
4350 after we end the currently deferred cleanups, only after we end all
4351 deferred cleanups, are we back in unconditional code. */
4353 void
4354 end_cleanup_deferral ()
4356 /* block_stack can be NULL if we are inside the parameter list. It is
4357 OK to do nothing, because cleanups aren't possible here. */
4358 if (block_stack)
4359 --block_stack->data.block.conditional_code;
4362 /* Move all cleanups from the current block_stack
4363 to the containing block_stack, where they are assumed to
4364 have been created. If anything can cause a temporary to
4365 be created, but not expanded for more than one level of
4366 block_stacks, then this code will have to change. */
4368 void
4369 move_cleanups_up ()
4371 struct nesting *block = block_stack;
4372 struct nesting *outer = block->next;
4374 outer->data.block.cleanups
4375 = chainon (block->data.block.cleanups,
4376 outer->data.block.cleanups);
4377 block->data.block.cleanups = 0;
4380 tree
4381 last_cleanup_this_contour ()
4383 if (block_stack == 0)
4384 return 0;
4386 return block_stack->data.block.cleanups;
4389 /* Return 1 if there are any pending cleanups at this point.
4390 If THIS_CONTOUR is nonzero, check the current contour as well.
4391 Otherwise, look only at the contours that enclose this one. */
4394 any_pending_cleanups (this_contour)
4395 int this_contour;
4397 struct nesting *block;
4399 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4400 return 0;
4402 if (this_contour && block_stack->data.block.cleanups != NULL)
4403 return 1;
4404 if (block_stack->data.block.cleanups == 0
4405 && block_stack->data.block.outer_cleanups == 0)
4406 return 0;
4408 for (block = block_stack->next; block; block = block->next)
4409 if (block->data.block.cleanups != 0)
4410 return 1;
4412 return 0;
4415 /* Enter a case (Pascal) or switch (C) statement.
4416 Push a block onto case_stack and nesting_stack
4417 to accumulate the case-labels that are seen
4418 and to record the labels generated for the statement.
4420 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4421 Otherwise, this construct is transparent for `exit_something'.
4423 EXPR is the index-expression to be dispatched on.
4424 TYPE is its nominal type. We could simply convert EXPR to this type,
4425 but instead we take short cuts. */
4427 void
4428 expand_start_case (exit_flag, expr, type, printname)
4429 int exit_flag;
4430 tree expr;
4431 tree type;
4432 const char *printname;
4434 struct nesting *thiscase = ALLOC_NESTING ();
4436 /* Make an entry on case_stack for the case we are entering. */
4438 thiscase->next = case_stack;
4439 thiscase->all = nesting_stack;
4440 thiscase->depth = ++nesting_depth;
4441 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4442 thiscase->data.case_stmt.case_list = 0;
4443 thiscase->data.case_stmt.index_expr = expr;
4444 thiscase->data.case_stmt.nominal_type = type;
4445 thiscase->data.case_stmt.default_label = 0;
4446 thiscase->data.case_stmt.printname = printname;
4447 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4448 case_stack = thiscase;
4449 nesting_stack = thiscase;
4451 do_pending_stack_adjust ();
4453 /* Make sure case_stmt.start points to something that won't
4454 need any transformation before expand_end_case. */
4455 if (GET_CODE (get_last_insn ()) != NOTE)
4456 emit_note (NULL, NOTE_INSN_DELETED);
4458 thiscase->data.case_stmt.start = get_last_insn ();
4460 start_cleanup_deferral ();
4463 /* Start a "dummy case statement" within which case labels are invalid
4464 and are not connected to any larger real case statement.
4465 This can be used if you don't want to let a case statement jump
4466 into the middle of certain kinds of constructs. */
4468 void
4469 expand_start_case_dummy ()
4471 struct nesting *thiscase = ALLOC_NESTING ();
4473 /* Make an entry on case_stack for the dummy. */
4475 thiscase->next = case_stack;
4476 thiscase->all = nesting_stack;
4477 thiscase->depth = ++nesting_depth;
4478 thiscase->exit_label = 0;
4479 thiscase->data.case_stmt.case_list = 0;
4480 thiscase->data.case_stmt.start = 0;
4481 thiscase->data.case_stmt.nominal_type = 0;
4482 thiscase->data.case_stmt.default_label = 0;
4483 case_stack = thiscase;
4484 nesting_stack = thiscase;
4485 start_cleanup_deferral ();
4488 /* End a dummy case statement. */
4490 void
4491 expand_end_case_dummy ()
4493 end_cleanup_deferral ();
4494 POPSTACK (case_stack);
4497 /* Return the data type of the index-expression
4498 of the innermost case statement, or null if none. */
4500 tree
4501 case_index_expr_type ()
4503 if (case_stack)
4504 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
4505 return 0;
4508 static void
4509 check_seenlabel ()
4511 /* If this is the first label, warn if any insns have been emitted. */
4512 if (case_stack->data.case_stmt.line_number_status >= 0)
4514 rtx insn;
4516 restore_line_number_status
4517 (case_stack->data.case_stmt.line_number_status);
4518 case_stack->data.case_stmt.line_number_status = -1;
4520 for (insn = case_stack->data.case_stmt.start;
4521 insn;
4522 insn = NEXT_INSN (insn))
4524 if (GET_CODE (insn) == CODE_LABEL)
4525 break;
4526 if (GET_CODE (insn) != NOTE
4527 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4530 insn = PREV_INSN (insn);
4531 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4533 /* If insn is zero, then there must have been a syntax error. */
4534 if (insn)
4535 warning_with_file_and_line (NOTE_SOURCE_FILE (insn),
4536 NOTE_LINE_NUMBER (insn),
4537 "unreachable code at beginning of %s",
4538 case_stack->data.case_stmt.printname);
4539 break;
4545 /* Accumulate one case or default label inside a case or switch statement.
4546 VALUE is the value of the case (a null pointer, for a default label).
4547 The function CONVERTER, when applied to arguments T and V,
4548 converts the value V to the type T.
4550 If not currently inside a case or switch statement, return 1 and do
4551 nothing. The caller will print a language-specific error message.
4552 If VALUE is a duplicate or overlaps, return 2 and do nothing
4553 except store the (first) duplicate node in *DUPLICATE.
4554 If VALUE is out of range, return 3 and do nothing.
4555 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4556 Return 0 on success.
4558 Extended to handle range statements. */
4561 pushcase (value, converter, label, duplicate)
4562 tree value;
4563 tree (*converter) PARAMS ((tree, tree));
4564 tree label;
4565 tree *duplicate;
4567 tree index_type;
4568 tree nominal_type;
4570 /* Fail if not inside a real case statement. */
4571 if (! (case_stack && case_stack->data.case_stmt.start))
4572 return 1;
4574 if (stack_block_stack
4575 && stack_block_stack->depth > case_stack->depth)
4576 return 5;
4578 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4579 nominal_type = case_stack->data.case_stmt.nominal_type;
4581 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4582 if (index_type == error_mark_node)
4583 return 0;
4585 /* Convert VALUE to the type in which the comparisons are nominally done. */
4586 if (value != 0)
4587 value = (*converter) (nominal_type, value);
4589 check_seenlabel ();
4591 /* Fail if this value is out of range for the actual type of the index
4592 (which may be narrower than NOMINAL_TYPE). */
4593 if (value != 0
4594 && (TREE_CONSTANT_OVERFLOW (value)
4595 || ! int_fits_type_p (value, index_type)))
4596 return 3;
4598 return add_case_node (value, value, label, duplicate);
4601 /* Like pushcase but this case applies to all values between VALUE1 and
4602 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4603 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4604 starts at VALUE1 and ends at the highest value of the index type.
4605 If both are NULL, this case applies to all values.
4607 The return value is the same as that of pushcase but there is one
4608 additional error code: 4 means the specified range was empty. */
4611 pushcase_range (value1, value2, converter, label, duplicate)
4612 tree value1, value2;
4613 tree (*converter) PARAMS ((tree, tree));
4614 tree label;
4615 tree *duplicate;
4617 tree index_type;
4618 tree nominal_type;
4620 /* Fail if not inside a real case statement. */
4621 if (! (case_stack && case_stack->data.case_stmt.start))
4622 return 1;
4624 if (stack_block_stack
4625 && stack_block_stack->depth > case_stack->depth)
4626 return 5;
4628 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4629 nominal_type = case_stack->data.case_stmt.nominal_type;
4631 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4632 if (index_type == error_mark_node)
4633 return 0;
4635 check_seenlabel ();
4637 /* Convert VALUEs to type in which the comparisons are nominally done
4638 and replace any unspecified value with the corresponding bound. */
4639 if (value1 == 0)
4640 value1 = TYPE_MIN_VALUE (index_type);
4641 if (value2 == 0)
4642 value2 = TYPE_MAX_VALUE (index_type);
4644 /* Fail if the range is empty. Do this before any conversion since
4645 we want to allow out-of-range empty ranges. */
4646 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4647 return 4;
4649 /* If the max was unbounded, use the max of the nominal_type we are
4650 converting to. Do this after the < check above to suppress false
4651 positives. */
4652 if (value2 == 0)
4653 value2 = TYPE_MAX_VALUE (nominal_type);
4655 value1 = (*converter) (nominal_type, value1);
4656 value2 = (*converter) (nominal_type, value2);
4658 /* Fail if these values are out of range. */
4659 if (TREE_CONSTANT_OVERFLOW (value1)
4660 || ! int_fits_type_p (value1, index_type))
4661 return 3;
4663 if (TREE_CONSTANT_OVERFLOW (value2)
4664 || ! int_fits_type_p (value2, index_type))
4665 return 3;
4667 return add_case_node (value1, value2, label, duplicate);
4670 /* Do the actual insertion of a case label for pushcase and pushcase_range
4671 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4672 slowdown for large switch statements. */
4675 add_case_node (low, high, label, duplicate)
4676 tree low, high;
4677 tree label;
4678 tree *duplicate;
4680 struct case_node *p, **q, *r;
4682 /* If there's no HIGH value, then this is not a case range; it's
4683 just a simple case label. But that's just a degenerate case
4684 range. */
4685 if (!high)
4686 high = low;
4688 /* Handle default labels specially. */
4689 if (!high && !low)
4691 if (case_stack->data.case_stmt.default_label != 0)
4693 *duplicate = case_stack->data.case_stmt.default_label;
4694 return 2;
4696 case_stack->data.case_stmt.default_label = label;
4697 expand_label (label);
4698 return 0;
4701 q = &case_stack->data.case_stmt.case_list;
4702 p = *q;
4704 while ((r = *q))
4706 p = r;
4708 /* Keep going past elements distinctly greater than HIGH. */
4709 if (tree_int_cst_lt (high, p->low))
4710 q = &p->left;
4712 /* or distinctly less than LOW. */
4713 else if (tree_int_cst_lt (p->high, low))
4714 q = &p->right;
4716 else
4718 /* We have an overlap; this is an error. */
4719 *duplicate = p->code_label;
4720 return 2;
4724 /* Add this label to the chain, and succeed. */
4726 r = (struct case_node *) xmalloc (sizeof (struct case_node));
4727 r->low = low;
4729 /* If the bounds are equal, turn this into the one-value case. */
4730 if (tree_int_cst_equal (low, high))
4731 r->high = r->low;
4732 else
4733 r->high = high;
4735 r->code_label = label;
4736 expand_label (label);
4738 *q = r;
4739 r->parent = p;
4740 r->left = 0;
4741 r->right = 0;
4742 r->balance = 0;
4744 while (p)
4746 struct case_node *s;
4748 if (r == p->left)
4750 int b;
4752 if (! (b = p->balance))
4753 /* Growth propagation from left side. */
4754 p->balance = -1;
4755 else if (b < 0)
4757 if (r->balance < 0)
4759 /* R-Rotation */
4760 if ((p->left = s = r->right))
4761 s->parent = p;
4763 r->right = p;
4764 p->balance = 0;
4765 r->balance = 0;
4766 s = p->parent;
4767 p->parent = r;
4769 if ((r->parent = s))
4771 if (s->left == p)
4772 s->left = r;
4773 else
4774 s->right = r;
4776 else
4777 case_stack->data.case_stmt.case_list = r;
4779 else
4780 /* r->balance == +1 */
4782 /* LR-Rotation */
4784 int b2;
4785 struct case_node *t = r->right;
4787 if ((p->left = s = t->right))
4788 s->parent = p;
4790 t->right = p;
4791 if ((r->right = s = t->left))
4792 s->parent = r;
4794 t->left = r;
4795 b = t->balance;
4796 b2 = b < 0;
4797 p->balance = b2;
4798 b2 = -b2 - b;
4799 r->balance = b2;
4800 t->balance = 0;
4801 s = p->parent;
4802 p->parent = t;
4803 r->parent = t;
4805 if ((t->parent = s))
4807 if (s->left == p)
4808 s->left = t;
4809 else
4810 s->right = t;
4812 else
4813 case_stack->data.case_stmt.case_list = t;
4815 break;
4818 else
4820 /* p->balance == +1; growth of left side balances the node. */
4821 p->balance = 0;
4822 break;
4825 else
4826 /* r == p->right */
4828 int b;
4830 if (! (b = p->balance))
4831 /* Growth propagation from right side. */
4832 p->balance++;
4833 else if (b > 0)
4835 if (r->balance > 0)
4837 /* L-Rotation */
4839 if ((p->right = s = r->left))
4840 s->parent = p;
4842 r->left = p;
4843 p->balance = 0;
4844 r->balance = 0;
4845 s = p->parent;
4846 p->parent = r;
4847 if ((r->parent = s))
4849 if (s->left == p)
4850 s->left = r;
4851 else
4852 s->right = r;
4855 else
4856 case_stack->data.case_stmt.case_list = r;
4859 else
4860 /* r->balance == -1 */
4862 /* RL-Rotation */
4863 int b2;
4864 struct case_node *t = r->left;
4866 if ((p->right = s = t->left))
4867 s->parent = p;
4869 t->left = p;
4871 if ((r->left = s = t->right))
4872 s->parent = r;
4874 t->right = r;
4875 b = t->balance;
4876 b2 = b < 0;
4877 r->balance = b2;
4878 b2 = -b2 - b;
4879 p->balance = b2;
4880 t->balance = 0;
4881 s = p->parent;
4882 p->parent = t;
4883 r->parent = t;
4885 if ((t->parent = s))
4887 if (s->left == p)
4888 s->left = t;
4889 else
4890 s->right = t;
4893 else
4894 case_stack->data.case_stmt.case_list = t;
4896 break;
4898 else
4900 /* p->balance == -1; growth of right side balances the node. */
4901 p->balance = 0;
4902 break;
4906 r = p;
4907 p = p->parent;
4910 return 0;
4913 /* Returns the number of possible values of TYPE.
4914 Returns -1 if the number is unknown, variable, or if the number does not
4915 fit in a HOST_WIDE_INT.
4916 Sets *SPARSENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4917 do not increase monotonically (there may be duplicates);
4918 to 1 if the values increase monotonically, but not always by 1;
4919 otherwise sets it to 0. */
4921 HOST_WIDE_INT
4922 all_cases_count (type, sparseness)
4923 tree type;
4924 int *sparseness;
4926 tree t;
4927 HOST_WIDE_INT count, minval, lastval;
4929 *sparseness = 0;
4931 switch (TREE_CODE (type))
4933 case BOOLEAN_TYPE:
4934 count = 2;
4935 break;
4937 case CHAR_TYPE:
4938 count = 1 << BITS_PER_UNIT;
4939 break;
4941 default:
4942 case INTEGER_TYPE:
4943 if (TYPE_MAX_VALUE (type) != 0
4944 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4945 TYPE_MIN_VALUE (type))))
4946 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4947 convert (type, integer_zero_node))))
4948 && host_integerp (t, 1))
4949 count = tree_low_cst (t, 1);
4950 else
4951 return -1;
4952 break;
4954 case ENUMERAL_TYPE:
4955 /* Don't waste time with enumeral types with huge values. */
4956 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4957 || TYPE_MAX_VALUE (type) == 0
4958 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4959 return -1;
4961 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4962 count = 0;
4964 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4966 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4968 if (*sparseness == 2 || thisval <= lastval)
4969 *sparseness = 2;
4970 else if (thisval != minval + count)
4971 *sparseness = 1;
4973 lastval = thisval;
4974 count++;
4978 return count;
4981 #define BITARRAY_TEST(ARRAY, INDEX) \
4982 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4983 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4984 #define BITARRAY_SET(ARRAY, INDEX) \
4985 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4986 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4988 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4989 with the case values we have seen, assuming the case expression
4990 has the given TYPE.
4991 SPARSENESS is as determined by all_cases_count.
4993 The time needed is proportional to COUNT, unless
4994 SPARSENESS is 2, in which case quadratic time is needed. */
4996 void
4997 mark_seen_cases (type, cases_seen, count, sparseness)
4998 tree type;
4999 unsigned char *cases_seen;
5000 HOST_WIDE_INT count;
5001 int sparseness;
5003 tree next_node_to_try = NULL_TREE;
5004 HOST_WIDE_INT next_node_offset = 0;
5006 struct case_node *n, *root = case_stack->data.case_stmt.case_list;
5007 tree val = make_node (INTEGER_CST);
5009 TREE_TYPE (val) = type;
5010 if (! root)
5011 /* Do nothing. */
5013 else if (sparseness == 2)
5015 tree t;
5016 unsigned HOST_WIDE_INT xlo;
5018 /* This less efficient loop is only needed to handle
5019 duplicate case values (multiple enum constants
5020 with the same value). */
5021 TREE_TYPE (val) = TREE_TYPE (root->low);
5022 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
5023 t = TREE_CHAIN (t), xlo++)
5025 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
5026 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
5027 n = root;
5030 /* Keep going past elements distinctly greater than VAL. */
5031 if (tree_int_cst_lt (val, n->low))
5032 n = n->left;
5034 /* or distinctly less than VAL. */
5035 else if (tree_int_cst_lt (n->high, val))
5036 n = n->right;
5038 else
5040 /* We have found a matching range. */
5041 BITARRAY_SET (cases_seen, xlo);
5042 break;
5045 while (n);
5048 else
5050 if (root->left)
5051 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
5053 for (n = root; n; n = n->right)
5055 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
5056 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
5057 while (! tree_int_cst_lt (n->high, val))
5059 /* Calculate (into xlo) the "offset" of the integer (val).
5060 The element with lowest value has offset 0, the next smallest
5061 element has offset 1, etc. */
5063 unsigned HOST_WIDE_INT xlo;
5064 HOST_WIDE_INT xhi;
5065 tree t;
5067 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
5069 /* The TYPE_VALUES will be in increasing order, so
5070 starting searching where we last ended. */
5071 t = next_node_to_try;
5072 xlo = next_node_offset;
5073 xhi = 0;
5074 for (;;)
5076 if (t == NULL_TREE)
5078 t = TYPE_VALUES (type);
5079 xlo = 0;
5081 if (tree_int_cst_equal (val, TREE_VALUE (t)))
5083 next_node_to_try = TREE_CHAIN (t);
5084 next_node_offset = xlo + 1;
5085 break;
5087 xlo++;
5088 t = TREE_CHAIN (t);
5089 if (t == next_node_to_try)
5091 xlo = -1;
5092 break;
5096 else
5098 t = TYPE_MIN_VALUE (type);
5099 if (t)
5100 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5101 &xlo, &xhi);
5102 else
5103 xlo = xhi = 0;
5104 add_double (xlo, xhi,
5105 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5106 &xlo, &xhi);
5109 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5110 BITARRAY_SET (cases_seen, xlo);
5112 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5113 1, 0,
5114 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5120 /* Given a switch statement with an expression that is an enumeration
5121 type, warn if any of the enumeration type's literals are not
5122 covered by the case expressions of the switch. Also, warn if there
5123 are any extra switch cases that are *not* elements of the
5124 enumerated type.
5126 Historical note:
5128 At one stage this function would: ``If all enumeration literals
5129 were covered by the case expressions, turn one of the expressions
5130 into the default expression since it should not be possible to fall
5131 through such a switch.''
5133 That code has since been removed as: ``This optimization is
5134 disabled because it causes valid programs to fail. ANSI C does not
5135 guarantee that an expression with enum type will have a value that
5136 is the same as one of the enumeration literals.'' */
5138 void
5139 check_for_full_enumeration_handling (type)
5140 tree type;
5142 struct case_node *n;
5143 tree chain;
5145 /* True iff the selector type is a numbered set mode. */
5146 int sparseness = 0;
5148 /* The number of possible selector values. */
5149 HOST_WIDE_INT size;
5151 /* For each possible selector value. a one iff it has been matched
5152 by a case value alternative. */
5153 unsigned char *cases_seen;
5155 /* The allocated size of cases_seen, in chars. */
5156 HOST_WIDE_INT bytes_needed;
5158 size = all_cases_count (type, &sparseness);
5159 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5161 if (size > 0 && size < 600000
5162 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5163 this optimization if we don't have enough memory rather than
5164 aborting, as xmalloc would do. */
5165 && (cases_seen =
5166 (unsigned char *) really_call_calloc (bytes_needed, 1)) != NULL)
5168 HOST_WIDE_INT i;
5169 tree v = TYPE_VALUES (type);
5171 /* The time complexity of this code is normally O(N), where
5172 N being the number of members in the enumerated type.
5173 However, if type is an ENUMERAL_TYPE whose values do not
5174 increase monotonically, O(N*log(N)) time may be needed. */
5176 mark_seen_cases (type, cases_seen, size, sparseness);
5178 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5179 if (BITARRAY_TEST (cases_seen, i) == 0)
5180 warning ("enumeration value `%s' not handled in switch",
5181 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5183 free (cases_seen);
5186 /* Now we go the other way around; we warn if there are case
5187 expressions that don't correspond to enumerators. This can
5188 occur since C and C++ don't enforce type-checking of
5189 assignments to enumeration variables. */
5191 if (case_stack->data.case_stmt.case_list
5192 && case_stack->data.case_stmt.case_list->left)
5193 case_stack->data.case_stmt.case_list
5194 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5195 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5197 for (chain = TYPE_VALUES (type);
5198 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5199 chain = TREE_CHAIN (chain))
5202 if (!chain)
5204 if (TYPE_NAME (type) == 0)
5205 warning ("case value `%ld' not in enumerated type",
5206 (long) TREE_INT_CST_LOW (n->low));
5207 else
5208 warning ("case value `%ld' not in enumerated type `%s'",
5209 (long) TREE_INT_CST_LOW (n->low),
5210 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5211 == IDENTIFIER_NODE)
5212 ? TYPE_NAME (type)
5213 : DECL_NAME (TYPE_NAME (type))));
5215 if (!tree_int_cst_equal (n->low, n->high))
5217 for (chain = TYPE_VALUES (type);
5218 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5219 chain = TREE_CHAIN (chain))
5222 if (!chain)
5224 if (TYPE_NAME (type) == 0)
5225 warning ("case value `%ld' not in enumerated type",
5226 (long) TREE_INT_CST_LOW (n->high));
5227 else
5228 warning ("case value `%ld' not in enumerated type `%s'",
5229 (long) TREE_INT_CST_LOW (n->high),
5230 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5231 == IDENTIFIER_NODE)
5232 ? TYPE_NAME (type)
5233 : DECL_NAME (TYPE_NAME (type))));
5239 /* Free CN, and its children. */
5241 static void
5242 free_case_nodes (cn)
5243 case_node_ptr cn;
5245 if (cn)
5247 free_case_nodes (cn->left);
5248 free_case_nodes (cn->right);
5249 free (cn);
5255 /* Terminate a case (Pascal) or switch (C) statement
5256 in which ORIG_INDEX is the expression to be tested.
5257 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
5258 type as given in the source before any compiler conversions.
5259 Generate the code to test it and jump to the right place. */
5261 void
5262 expand_end_case_type (orig_index, orig_type)
5263 tree orig_index, orig_type;
5265 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
5266 rtx default_label = 0;
5267 struct case_node *n;
5268 unsigned int count;
5269 rtx index;
5270 rtx table_label;
5271 int ncases;
5272 rtx *labelvec;
5273 int i;
5274 rtx before_case, end;
5275 struct nesting *thiscase = case_stack;
5276 tree index_expr, index_type;
5277 int unsignedp;
5279 /* Don't crash due to previous errors. */
5280 if (thiscase == NULL)
5281 return;
5283 table_label = gen_label_rtx ();
5284 index_expr = thiscase->data.case_stmt.index_expr;
5285 index_type = TREE_TYPE (index_expr);
5286 unsignedp = TREE_UNSIGNED (index_type);
5287 if (orig_type == NULL)
5288 orig_type = TREE_TYPE (orig_index);
5290 do_pending_stack_adjust ();
5292 /* This might get an spurious warning in the presence of a syntax error;
5293 it could be fixed by moving the call to check_seenlabel after the
5294 check for error_mark_node, and copying the code of check_seenlabel that
5295 deals with case_stack->data.case_stmt.line_number_status /
5296 restore_line_number_status in front of the call to end_cleanup_deferral;
5297 However, this might miss some useful warnings in the presence of
5298 non-syntax errors. */
5299 check_seenlabel ();
5301 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5302 if (index_type != error_mark_node)
5304 /* If the switch expression was an enumerated type, check that
5305 exactly all enumeration literals are covered by the cases.
5306 The check is made when -Wswitch was specified and there is no
5307 default case, or when -Wswitch-enum was specified. */
5308 if (((warn_switch && !thiscase->data.case_stmt.default_label)
5309 || warn_switch_enum)
5310 && TREE_CODE (orig_type) == ENUMERAL_TYPE
5311 && TREE_CODE (index_expr) != INTEGER_CST)
5312 check_for_full_enumeration_handling (orig_type);
5314 if (warn_switch_default && !thiscase->data.case_stmt.default_label)
5315 warning ("switch missing default case");
5317 /* If we don't have a default-label, create one here,
5318 after the body of the switch. */
5319 if (thiscase->data.case_stmt.default_label == 0)
5321 thiscase->data.case_stmt.default_label
5322 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5323 expand_label (thiscase->data.case_stmt.default_label);
5325 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5327 before_case = get_last_insn ();
5329 if (thiscase->data.case_stmt.case_list
5330 && thiscase->data.case_stmt.case_list->left)
5331 thiscase->data.case_stmt.case_list
5332 = case_tree2list (thiscase->data.case_stmt.case_list, 0);
5334 /* Simplify the case-list before we count it. */
5335 group_case_nodes (thiscase->data.case_stmt.case_list);
5337 /* Get upper and lower bounds of case values.
5338 Also convert all the case values to the index expr's data type. */
5340 count = 0;
5341 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5343 /* Check low and high label values are integers. */
5344 if (TREE_CODE (n->low) != INTEGER_CST)
5345 abort ();
5346 if (TREE_CODE (n->high) != INTEGER_CST)
5347 abort ();
5349 n->low = convert (index_type, n->low);
5350 n->high = convert (index_type, n->high);
5352 /* Count the elements and track the largest and smallest
5353 of them (treating them as signed even if they are not). */
5354 if (count++ == 0)
5356 minval = n->low;
5357 maxval = n->high;
5359 else
5361 if (INT_CST_LT (n->low, minval))
5362 minval = n->low;
5363 if (INT_CST_LT (maxval, n->high))
5364 maxval = n->high;
5366 /* A range counts double, since it requires two compares. */
5367 if (! tree_int_cst_equal (n->low, n->high))
5368 count++;
5371 /* Compute span of values. */
5372 if (count != 0)
5373 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5375 end_cleanup_deferral ();
5377 if (count == 0)
5379 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5380 emit_queue ();
5381 emit_jump (default_label);
5384 /* If range of values is much bigger than number of values,
5385 make a sequence of conditional branches instead of a dispatch.
5386 If the switch-index is a constant, do it this way
5387 because we can optimize it. */
5389 else if (count < case_values_threshold ()
5390 || compare_tree_int (range, 10 * count) > 0
5391 /* RANGE may be signed, and really large ranges will show up
5392 as negative numbers. */
5393 || compare_tree_int (range, 0) < 0
5394 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5395 || flag_pic
5396 #endif
5397 || TREE_CODE (index_expr) == INTEGER_CST
5398 || (TREE_CODE (index_expr) == COMPOUND_EXPR
5399 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
5401 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5403 /* If the index is a short or char that we do not have
5404 an insn to handle comparisons directly, convert it to
5405 a full integer now, rather than letting each comparison
5406 generate the conversion. */
5408 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5409 && ! have_insn_for (COMPARE, GET_MODE (index)))
5411 enum machine_mode wider_mode;
5412 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5413 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5414 if (have_insn_for (COMPARE, wider_mode))
5416 index = convert_to_mode (wider_mode, index, unsignedp);
5417 break;
5421 emit_queue ();
5422 do_pending_stack_adjust ();
5424 index = protect_from_queue (index, 0);
5425 if (GET_CODE (index) == MEM)
5426 index = copy_to_reg (index);
5427 if (GET_CODE (index) == CONST_INT
5428 || TREE_CODE (index_expr) == INTEGER_CST)
5430 /* Make a tree node with the proper constant value
5431 if we don't already have one. */
5432 if (TREE_CODE (index_expr) != INTEGER_CST)
5434 index_expr
5435 = build_int_2 (INTVAL (index),
5436 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5437 index_expr = convert (index_type, index_expr);
5440 /* For constant index expressions we need only
5441 issue an unconditional branch to the appropriate
5442 target code. The job of removing any unreachable
5443 code is left to the optimisation phase if the
5444 "-O" option is specified. */
5445 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5446 if (! tree_int_cst_lt (index_expr, n->low)
5447 && ! tree_int_cst_lt (n->high, index_expr))
5448 break;
5450 if (n)
5451 emit_jump (label_rtx (n->code_label));
5452 else
5453 emit_jump (default_label);
5455 else
5457 /* If the index expression is not constant we generate
5458 a binary decision tree to select the appropriate
5459 target code. This is done as follows:
5461 The list of cases is rearranged into a binary tree,
5462 nearly optimal assuming equal probability for each case.
5464 The tree is transformed into RTL, eliminating
5465 redundant test conditions at the same time.
5467 If program flow could reach the end of the
5468 decision tree an unconditional jump to the
5469 default code is emitted. */
5471 use_cost_table
5472 = (TREE_CODE (orig_type) != ENUMERAL_TYPE
5473 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5474 balance_case_nodes (&thiscase->data.case_stmt.case_list, NULL);
5475 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5476 default_label, index_type);
5477 emit_jump_if_reachable (default_label);
5480 else
5482 if (! try_casesi (index_type, index_expr, minval, range,
5483 table_label, default_label))
5485 index_type = thiscase->data.case_stmt.nominal_type;
5487 /* Index jumptables from zero for suitable values of
5488 minval to avoid a subtraction. */
5489 if (! optimize_size
5490 && compare_tree_int (minval, 0) > 0
5491 && compare_tree_int (minval, 3) < 0)
5493 minval = integer_zero_node;
5494 range = maxval;
5497 if (! try_tablejump (index_type, index_expr, minval, range,
5498 table_label, default_label))
5499 abort ();
5502 /* Get table of labels to jump to, in order of case index. */
5504 ncases = tree_low_cst (range, 0) + 1;
5505 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
5506 memset ((char *) labelvec, 0, ncases * sizeof (rtx));
5508 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5510 /* Compute the low and high bounds relative to the minimum
5511 value since that should fit in a HOST_WIDE_INT while the
5512 actual values may not. */
5513 HOST_WIDE_INT i_low
5514 = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5515 n->low, minval)), 1);
5516 HOST_WIDE_INT i_high
5517 = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5518 n->high, minval)), 1);
5519 HOST_WIDE_INT i;
5521 for (i = i_low; i <= i_high; i ++)
5522 labelvec[i]
5523 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5526 /* Fill in the gaps with the default. */
5527 for (i = 0; i < ncases; i++)
5528 if (labelvec[i] == 0)
5529 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5531 /* Output the table */
5532 emit_label (table_label);
5534 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5535 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5536 gen_rtx_LABEL_REF (Pmode, table_label),
5537 gen_rtvec_v (ncases, labelvec),
5538 const0_rtx, const0_rtx));
5539 else
5540 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5541 gen_rtvec_v (ncases, labelvec)));
5543 /* If the case insn drops through the table,
5544 after the table we must jump to the default-label.
5545 Otherwise record no drop-through after the table. */
5546 #ifdef CASE_DROPS_THROUGH
5547 emit_jump (default_label);
5548 #else
5549 emit_barrier ();
5550 #endif
5553 before_case = NEXT_INSN (before_case);
5554 end = get_last_insn ();
5555 if (squeeze_notes (&before_case, &end))
5556 abort ();
5557 reorder_insns (before_case, end,
5558 thiscase->data.case_stmt.start);
5560 else
5561 end_cleanup_deferral ();
5563 if (thiscase->exit_label)
5564 emit_label (thiscase->exit_label);
5566 free_case_nodes (case_stack->data.case_stmt.case_list);
5567 POPSTACK (case_stack);
5569 free_temp_slots ();
5572 /* Convert the tree NODE into a list linked by the right field, with the left
5573 field zeroed. RIGHT is used for recursion; it is a list to be placed
5574 rightmost in the resulting list. */
5576 static struct case_node *
5577 case_tree2list (node, right)
5578 struct case_node *node, *right;
5580 struct case_node *left;
5582 if (node->right)
5583 right = case_tree2list (node->right, right);
5585 node->right = right;
5586 if ((left = node->left))
5588 node->left = 0;
5589 return case_tree2list (left, node);
5592 return node;
5595 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5597 static void
5598 do_jump_if_equal (op1, op2, label, unsignedp)
5599 rtx op1, op2, label;
5600 int unsignedp;
5602 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
5604 if (INTVAL (op1) == INTVAL (op2))
5605 emit_jump (label);
5607 else
5608 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX,
5609 (GET_MODE (op1) == VOIDmode
5610 ? GET_MODE (op2) : GET_MODE (op1)),
5611 unsignedp, label);
5614 /* Not all case values are encountered equally. This function
5615 uses a heuristic to weight case labels, in cases where that
5616 looks like a reasonable thing to do.
5618 Right now, all we try to guess is text, and we establish the
5619 following weights:
5621 chars above space: 16
5622 digits: 16
5623 default: 12
5624 space, punct: 8
5625 tab: 4
5626 newline: 2
5627 other "\" chars: 1
5628 remaining chars: 0
5630 If we find any cases in the switch that are not either -1 or in the range
5631 of valid ASCII characters, or are control characters other than those
5632 commonly used with "\", don't treat this switch scanning text.
5634 Return 1 if these nodes are suitable for cost estimation, otherwise
5635 return 0. */
5637 static int
5638 estimate_case_costs (node)
5639 case_node_ptr node;
5641 tree min_ascii = integer_minus_one_node;
5642 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5643 case_node_ptr n;
5644 int i;
5646 /* If we haven't already made the cost table, make it now. Note that the
5647 lower bound of the table is -1, not zero. */
5649 if (! cost_table_initialized)
5651 cost_table_initialized = 1;
5653 for (i = 0; i < 128; i++)
5655 if (ISALNUM (i))
5656 COST_TABLE (i) = 16;
5657 else if (ISPUNCT (i))
5658 COST_TABLE (i) = 8;
5659 else if (ISCNTRL (i))
5660 COST_TABLE (i) = -1;
5663 COST_TABLE (' ') = 8;
5664 COST_TABLE ('\t') = 4;
5665 COST_TABLE ('\0') = 4;
5666 COST_TABLE ('\n') = 2;
5667 COST_TABLE ('\f') = 1;
5668 COST_TABLE ('\v') = 1;
5669 COST_TABLE ('\b') = 1;
5672 /* See if all the case expressions look like text. It is text if the
5673 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5674 as signed arithmetic since we don't want to ever access cost_table with a
5675 value less than -1. Also check that none of the constants in a range
5676 are strange control characters. */
5678 for (n = node; n; n = n->right)
5680 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5681 return 0;
5683 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5684 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5685 if (COST_TABLE (i) < 0)
5686 return 0;
5689 /* All interesting values are within the range of interesting
5690 ASCII characters. */
5691 return 1;
5694 /* Scan an ordered list of case nodes
5695 combining those with consecutive values or ranges.
5697 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5699 static void
5700 group_case_nodes (head)
5701 case_node_ptr head;
5703 case_node_ptr node = head;
5705 while (node)
5707 rtx lb = next_real_insn (label_rtx (node->code_label));
5708 rtx lb2;
5709 case_node_ptr np = node;
5711 /* Try to group the successors of NODE with NODE. */
5712 while (((np = np->right) != 0)
5713 /* Do they jump to the same place? */
5714 && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb
5715 || (lb != 0 && lb2 != 0
5716 && simplejump_p (lb)
5717 && simplejump_p (lb2)
5718 && rtx_equal_p (SET_SRC (PATTERN (lb)),
5719 SET_SRC (PATTERN (lb2)))))
5720 /* Are their ranges consecutive? */
5721 && tree_int_cst_equal (np->low,
5722 fold (build (PLUS_EXPR,
5723 TREE_TYPE (node->high),
5724 node->high,
5725 integer_one_node)))
5726 /* An overflow is not consecutive. */
5727 && tree_int_cst_lt (node->high,
5728 fold (build (PLUS_EXPR,
5729 TREE_TYPE (node->high),
5730 node->high,
5731 integer_one_node))))
5733 node->high = np->high;
5735 /* NP is the first node after NODE which can't be grouped with it.
5736 Delete the nodes in between, and move on to that node. */
5737 node->right = np;
5738 node = np;
5742 /* Take an ordered list of case nodes
5743 and transform them into a near optimal binary tree,
5744 on the assumption that any target code selection value is as
5745 likely as any other.
5747 The transformation is performed by splitting the ordered
5748 list into two equal sections plus a pivot. The parts are
5749 then attached to the pivot as left and right branches. Each
5750 branch is then transformed recursively. */
5752 static void
5753 balance_case_nodes (head, parent)
5754 case_node_ptr *head;
5755 case_node_ptr parent;
5757 case_node_ptr np;
5759 np = *head;
5760 if (np)
5762 int cost = 0;
5763 int i = 0;
5764 int ranges = 0;
5765 case_node_ptr *npp;
5766 case_node_ptr left;
5768 /* Count the number of entries on branch. Also count the ranges. */
5770 while (np)
5772 if (!tree_int_cst_equal (np->low, np->high))
5774 ranges++;
5775 if (use_cost_table)
5776 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
5779 if (use_cost_table)
5780 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
5782 i++;
5783 np = np->right;
5786 if (i > 2)
5788 /* Split this list if it is long enough for that to help. */
5789 npp = head;
5790 left = *npp;
5791 if (use_cost_table)
5793 /* Find the place in the list that bisects the list's total cost,
5794 Here I gets half the total cost. */
5795 int n_moved = 0;
5796 i = (cost + 1) / 2;
5797 while (1)
5799 /* Skip nodes while their cost does not reach that amount. */
5800 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5801 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
5802 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
5803 if (i <= 0)
5804 break;
5805 npp = &(*npp)->right;
5806 n_moved += 1;
5808 if (n_moved == 0)
5810 /* Leave this branch lopsided, but optimize left-hand
5811 side and fill in `parent' fields for right-hand side. */
5812 np = *head;
5813 np->parent = parent;
5814 balance_case_nodes (&np->left, np);
5815 for (; np->right; np = np->right)
5816 np->right->parent = np;
5817 return;
5820 /* If there are just three nodes, split at the middle one. */
5821 else if (i == 3)
5822 npp = &(*npp)->right;
5823 else
5825 /* Find the place in the list that bisects the list's total cost,
5826 where ranges count as 2.
5827 Here I gets half the total cost. */
5828 i = (i + ranges + 1) / 2;
5829 while (1)
5831 /* Skip nodes while their cost does not reach that amount. */
5832 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5833 i--;
5834 i--;
5835 if (i <= 0)
5836 break;
5837 npp = &(*npp)->right;
5840 *head = np = *npp;
5841 *npp = 0;
5842 np->parent = parent;
5843 np->left = left;
5845 /* Optimize each of the two split parts. */
5846 balance_case_nodes (&np->left, np);
5847 balance_case_nodes (&np->right, np);
5849 else
5851 /* Else leave this branch as one level,
5852 but fill in `parent' fields. */
5853 np = *head;
5854 np->parent = parent;
5855 for (; np->right; np = np->right)
5856 np->right->parent = np;
5861 /* Search the parent sections of the case node tree
5862 to see if a test for the lower bound of NODE would be redundant.
5863 INDEX_TYPE is the type of the index expression.
5865 The instructions to generate the case decision tree are
5866 output in the same order as nodes are processed so it is
5867 known that if a parent node checks the range of the current
5868 node minus one that the current node is bounded at its lower
5869 span. Thus the test would be redundant. */
5871 static int
5872 node_has_low_bound (node, index_type)
5873 case_node_ptr node;
5874 tree index_type;
5876 tree low_minus_one;
5877 case_node_ptr pnode;
5879 /* If the lower bound of this node is the lowest value in the index type,
5880 we need not test it. */
5882 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
5883 return 1;
5885 /* If this node has a left branch, the value at the left must be less
5886 than that at this node, so it cannot be bounded at the bottom and
5887 we need not bother testing any further. */
5889 if (node->left)
5890 return 0;
5892 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
5893 node->low, integer_one_node));
5895 /* If the subtraction above overflowed, we can't verify anything.
5896 Otherwise, look for a parent that tests our value - 1. */
5898 if (! tree_int_cst_lt (low_minus_one, node->low))
5899 return 0;
5901 for (pnode = node->parent; pnode; pnode = pnode->parent)
5902 if (tree_int_cst_equal (low_minus_one, pnode->high))
5903 return 1;
5905 return 0;
5908 /* Search the parent sections of the case node tree
5909 to see if a test for the upper bound of NODE would be redundant.
5910 INDEX_TYPE is the type of the index expression.
5912 The instructions to generate the case decision tree are
5913 output in the same order as nodes are processed so it is
5914 known that if a parent node checks the range of the current
5915 node plus one that the current node is bounded at its upper
5916 span. Thus the test would be redundant. */
5918 static int
5919 node_has_high_bound (node, index_type)
5920 case_node_ptr node;
5921 tree index_type;
5923 tree high_plus_one;
5924 case_node_ptr pnode;
5926 /* If there is no upper bound, obviously no test is needed. */
5928 if (TYPE_MAX_VALUE (index_type) == NULL)
5929 return 1;
5931 /* If the upper bound of this node is the highest value in the type
5932 of the index expression, we need not test against it. */
5934 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
5935 return 1;
5937 /* If this node has a right branch, the value at the right must be greater
5938 than that at this node, so it cannot be bounded at the top and
5939 we need not bother testing any further. */
5941 if (node->right)
5942 return 0;
5944 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
5945 node->high, integer_one_node));
5947 /* If the addition above overflowed, we can't verify anything.
5948 Otherwise, look for a parent that tests our value + 1. */
5950 if (! tree_int_cst_lt (node->high, high_plus_one))
5951 return 0;
5953 for (pnode = node->parent; pnode; pnode = pnode->parent)
5954 if (tree_int_cst_equal (high_plus_one, pnode->low))
5955 return 1;
5957 return 0;
5960 /* Search the parent sections of the
5961 case node tree to see if both tests for the upper and lower
5962 bounds of NODE would be redundant. */
5964 static int
5965 node_is_bounded (node, index_type)
5966 case_node_ptr node;
5967 tree index_type;
5969 return (node_has_low_bound (node, index_type)
5970 && node_has_high_bound (node, index_type));
5973 /* Emit an unconditional jump to LABEL unless it would be dead code. */
5975 static void
5976 emit_jump_if_reachable (label)
5977 rtx label;
5979 if (GET_CODE (get_last_insn ()) != BARRIER)
5980 emit_jump (label);
5983 /* Emit step-by-step code to select a case for the value of INDEX.
5984 The thus generated decision tree follows the form of the
5985 case-node binary tree NODE, whose nodes represent test conditions.
5986 INDEX_TYPE is the type of the index of the switch.
5988 Care is taken to prune redundant tests from the decision tree
5989 by detecting any boundary conditions already checked by
5990 emitted rtx. (See node_has_high_bound, node_has_low_bound
5991 and node_is_bounded, above.)
5993 Where the test conditions can be shown to be redundant we emit
5994 an unconditional jump to the target code. As a further
5995 optimization, the subordinates of a tree node are examined to
5996 check for bounded nodes. In this case conditional and/or
5997 unconditional jumps as a result of the boundary check for the
5998 current node are arranged to target the subordinates associated
5999 code for out of bound conditions on the current node.
6001 We can assume that when control reaches the code generated here,
6002 the index value has already been compared with the parents
6003 of this node, and determined to be on the same side of each parent
6004 as this node is. Thus, if this node tests for the value 51,
6005 and a parent tested for 52, we don't need to consider
6006 the possibility of a value greater than 51. If another parent
6007 tests for the value 50, then this node need not test anything. */
6009 static void
6010 emit_case_nodes (index, node, default_label, index_type)
6011 rtx index;
6012 case_node_ptr node;
6013 rtx default_label;
6014 tree index_type;
6016 /* If INDEX has an unsigned type, we must make unsigned branches. */
6017 int unsignedp = TREE_UNSIGNED (index_type);
6018 enum machine_mode mode = GET_MODE (index);
6019 enum machine_mode imode = TYPE_MODE (index_type);
6021 /* See if our parents have already tested everything for us.
6022 If they have, emit an unconditional jump for this node. */
6023 if (node_is_bounded (node, index_type))
6024 emit_jump (label_rtx (node->code_label));
6026 else if (tree_int_cst_equal (node->low, node->high))
6028 /* Node is single valued. First see if the index expression matches
6029 this node and then check our children, if any. */
6031 do_jump_if_equal (index,
6032 convert_modes (mode, imode,
6033 expand_expr (node->low, NULL_RTX,
6034 VOIDmode, 0),
6035 unsignedp),
6036 label_rtx (node->code_label), unsignedp);
6038 if (node->right != 0 && node->left != 0)
6040 /* This node has children on both sides.
6041 Dispatch to one side or the other
6042 by comparing the index value with this node's value.
6043 If one subtree is bounded, check that one first,
6044 so we can avoid real branches in the tree. */
6046 if (node_is_bounded (node->right, index_type))
6048 emit_cmp_and_jump_insns (index,
6049 convert_modes
6050 (mode, imode,
6051 expand_expr (node->high, NULL_RTX,
6052 VOIDmode, 0),
6053 unsignedp),
6054 GT, NULL_RTX, mode, unsignedp,
6055 label_rtx (node->right->code_label));
6056 emit_case_nodes (index, node->left, default_label, index_type);
6059 else if (node_is_bounded (node->left, index_type))
6061 emit_cmp_and_jump_insns (index,
6062 convert_modes
6063 (mode, imode,
6064 expand_expr (node->high, NULL_RTX,
6065 VOIDmode, 0),
6066 unsignedp),
6067 LT, NULL_RTX, mode, unsignedp,
6068 label_rtx (node->left->code_label));
6069 emit_case_nodes (index, node->right, default_label, index_type);
6072 else
6074 /* Neither node is bounded. First distinguish the two sides;
6075 then emit the code for one side at a time. */
6077 tree test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6079 /* See if the value is on the right. */
6080 emit_cmp_and_jump_insns (index,
6081 convert_modes
6082 (mode, imode,
6083 expand_expr (node->high, NULL_RTX,
6084 VOIDmode, 0),
6085 unsignedp),
6086 GT, NULL_RTX, mode, unsignedp,
6087 label_rtx (test_label));
6089 /* Value must be on the left.
6090 Handle the left-hand subtree. */
6091 emit_case_nodes (index, node->left, default_label, index_type);
6092 /* If left-hand subtree does nothing,
6093 go to default. */
6094 emit_jump_if_reachable (default_label);
6096 /* Code branches here for the right-hand subtree. */
6097 expand_label (test_label);
6098 emit_case_nodes (index, node->right, default_label, index_type);
6102 else if (node->right != 0 && node->left == 0)
6104 /* Here we have a right child but no left so we issue conditional
6105 branch to default and process the right child.
6107 Omit the conditional branch to default if we it avoid only one
6108 right child; it costs too much space to save so little time. */
6110 if (node->right->right || node->right->left
6111 || !tree_int_cst_equal (node->right->low, node->right->high))
6113 if (!node_has_low_bound (node, index_type))
6115 emit_cmp_and_jump_insns (index,
6116 convert_modes
6117 (mode, imode,
6118 expand_expr (node->high, NULL_RTX,
6119 VOIDmode, 0),
6120 unsignedp),
6121 LT, NULL_RTX, mode, unsignedp,
6122 default_label);
6125 emit_case_nodes (index, node->right, default_label, index_type);
6127 else
6128 /* We cannot process node->right normally
6129 since we haven't ruled out the numbers less than
6130 this node's value. So handle node->right explicitly. */
6131 do_jump_if_equal (index,
6132 convert_modes
6133 (mode, imode,
6134 expand_expr (node->right->low, NULL_RTX,
6135 VOIDmode, 0),
6136 unsignedp),
6137 label_rtx (node->right->code_label), unsignedp);
6140 else if (node->right == 0 && node->left != 0)
6142 /* Just one subtree, on the left. */
6143 if (node->left->left || node->left->right
6144 || !tree_int_cst_equal (node->left->low, node->left->high))
6146 if (!node_has_high_bound (node, index_type))
6148 emit_cmp_and_jump_insns (index,
6149 convert_modes
6150 (mode, imode,
6151 expand_expr (node->high, NULL_RTX,
6152 VOIDmode, 0),
6153 unsignedp),
6154 GT, NULL_RTX, mode, unsignedp,
6155 default_label);
6158 emit_case_nodes (index, node->left, default_label, index_type);
6160 else
6161 /* We cannot process node->left normally
6162 since we haven't ruled out the numbers less than
6163 this node's value. So handle node->left explicitly. */
6164 do_jump_if_equal (index,
6165 convert_modes
6166 (mode, imode,
6167 expand_expr (node->left->low, NULL_RTX,
6168 VOIDmode, 0),
6169 unsignedp),
6170 label_rtx (node->left->code_label), unsignedp);
6173 else
6175 /* Node is a range. These cases are very similar to those for a single
6176 value, except that we do not start by testing whether this node
6177 is the one to branch to. */
6179 if (node->right != 0 && node->left != 0)
6181 /* Node has subtrees on both sides.
6182 If the right-hand subtree is bounded,
6183 test for it first, since we can go straight there.
6184 Otherwise, we need to make a branch in the control structure,
6185 then handle the two subtrees. */
6186 tree test_label = 0;
6188 if (node_is_bounded (node->right, index_type))
6189 /* Right hand node is fully bounded so we can eliminate any
6190 testing and branch directly to the target code. */
6191 emit_cmp_and_jump_insns (index,
6192 convert_modes
6193 (mode, imode,
6194 expand_expr (node->high, NULL_RTX,
6195 VOIDmode, 0),
6196 unsignedp),
6197 GT, NULL_RTX, mode, unsignedp,
6198 label_rtx (node->right->code_label));
6199 else
6201 /* Right hand node requires testing.
6202 Branch to a label where we will handle it later. */
6204 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6205 emit_cmp_and_jump_insns (index,
6206 convert_modes
6207 (mode, imode,
6208 expand_expr (node->high, NULL_RTX,
6209 VOIDmode, 0),
6210 unsignedp),
6211 GT, NULL_RTX, mode, unsignedp,
6212 label_rtx (test_label));
6215 /* Value belongs to this node or to the left-hand subtree. */
6217 emit_cmp_and_jump_insns (index,
6218 convert_modes
6219 (mode, imode,
6220 expand_expr (node->low, NULL_RTX,
6221 VOIDmode, 0),
6222 unsignedp),
6223 GE, NULL_RTX, mode, unsignedp,
6224 label_rtx (node->code_label));
6226 /* Handle the left-hand subtree. */
6227 emit_case_nodes (index, node->left, default_label, index_type);
6229 /* If right node had to be handled later, do that now. */
6231 if (test_label)
6233 /* If the left-hand subtree fell through,
6234 don't let it fall into the right-hand subtree. */
6235 emit_jump_if_reachable (default_label);
6237 expand_label (test_label);
6238 emit_case_nodes (index, node->right, default_label, index_type);
6242 else if (node->right != 0 && node->left == 0)
6244 /* Deal with values to the left of this node,
6245 if they are possible. */
6246 if (!node_has_low_bound (node, index_type))
6248 emit_cmp_and_jump_insns (index,
6249 convert_modes
6250 (mode, imode,
6251 expand_expr (node->low, NULL_RTX,
6252 VOIDmode, 0),
6253 unsignedp),
6254 LT, NULL_RTX, mode, unsignedp,
6255 default_label);
6258 /* Value belongs to this node or to the right-hand subtree. */
6260 emit_cmp_and_jump_insns (index,
6261 convert_modes
6262 (mode, imode,
6263 expand_expr (node->high, NULL_RTX,
6264 VOIDmode, 0),
6265 unsignedp),
6266 LE, NULL_RTX, mode, unsignedp,
6267 label_rtx (node->code_label));
6269 emit_case_nodes (index, node->right, default_label, index_type);
6272 else if (node->right == 0 && node->left != 0)
6274 /* Deal with values to the right of this node,
6275 if they are possible. */
6276 if (!node_has_high_bound (node, index_type))
6278 emit_cmp_and_jump_insns (index,
6279 convert_modes
6280 (mode, imode,
6281 expand_expr (node->high, NULL_RTX,
6282 VOIDmode, 0),
6283 unsignedp),
6284 GT, NULL_RTX, mode, unsignedp,
6285 default_label);
6288 /* Value belongs to this node or to the left-hand subtree. */
6290 emit_cmp_and_jump_insns (index,
6291 convert_modes
6292 (mode, imode,
6293 expand_expr (node->low, NULL_RTX,
6294 VOIDmode, 0),
6295 unsignedp),
6296 GE, NULL_RTX, mode, unsignedp,
6297 label_rtx (node->code_label));
6299 emit_case_nodes (index, node->left, default_label, index_type);
6302 else
6304 /* Node has no children so we check low and high bounds to remove
6305 redundant tests. Only one of the bounds can exist,
6306 since otherwise this node is bounded--a case tested already. */
6307 int high_bound = node_has_high_bound (node, index_type);
6308 int low_bound = node_has_low_bound (node, index_type);
6310 if (!high_bound && low_bound)
6312 emit_cmp_and_jump_insns (index,
6313 convert_modes
6314 (mode, imode,
6315 expand_expr (node->high, NULL_RTX,
6316 VOIDmode, 0),
6317 unsignedp),
6318 GT, NULL_RTX, mode, unsignedp,
6319 default_label);
6322 else if (!low_bound && high_bound)
6324 emit_cmp_and_jump_insns (index,
6325 convert_modes
6326 (mode, imode,
6327 expand_expr (node->low, NULL_RTX,
6328 VOIDmode, 0),
6329 unsignedp),
6330 LT, NULL_RTX, mode, unsignedp,
6331 default_label);
6333 else if (!low_bound && !high_bound)
6335 /* Widen LOW and HIGH to the same width as INDEX. */
6336 tree type = (*lang_hooks.types.type_for_mode) (mode, unsignedp);
6337 tree low = build1 (CONVERT_EXPR, type, node->low);
6338 tree high = build1 (CONVERT_EXPR, type, node->high);
6339 rtx low_rtx, new_index, new_bound;
6341 /* Instead of doing two branches, emit one unsigned branch for
6342 (index-low) > (high-low). */
6343 low_rtx = expand_expr (low, NULL_RTX, mode, 0);
6344 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
6345 NULL_RTX, unsignedp,
6346 OPTAB_WIDEN);
6347 new_bound = expand_expr (fold (build (MINUS_EXPR, type,
6348 high, low)),
6349 NULL_RTX, mode, 0);
6351 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
6352 mode, 1, default_label);
6355 emit_jump (label_rtx (node->code_label));