* rtl.h (struct rtx_def): Update comments.
[official-gcc.git] / gcc / gcse.c
blob56c26a4be9f578e281a0e3cd007cf24930b0e77d
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162 #include "except.h"
163 #include "ggc.h"
164 #include "params.h"
166 #include "obstack.h"
167 #define obstack_chunk_alloc gmalloc
168 #define obstack_chunk_free free
170 /* Propagate flow information through back edges and thus enable PRE's
171 moving loop invariant calculations out of loops.
173 Originally this tended to create worse overall code, but several
174 improvements during the development of PRE seem to have made following
175 back edges generally a win.
177 Note much of the loop invariant code motion done here would normally
178 be done by loop.c, which has more heuristics for when to move invariants
179 out of loops. At some point we might need to move some of those
180 heuristics into gcse.c. */
181 #define FOLLOW_BACK_EDGES 1
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
280 /* -dG dump file. */
281 static FILE *gcse_file;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
302 /* Non-zero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
307 /* Non-zero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
310 struct reg_use {rtx reg_rtx; };
312 /* Hash table of expressions. */
314 struct expr
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
343 struct occr
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Non-zero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Non-zero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
367 /* Total size of the expression hash table, in elements. */
368 static unsigned int expr_hash_table_size;
370 /* The table itself.
371 This is an array of `expr_hash_table_size' elements. */
372 static struct expr **expr_hash_table;
374 /* Total size of the copy propagation hash table, in elements. */
375 static unsigned int set_hash_table_size;
377 /* The table itself.
378 This is an array of `set_hash_table_size' elements. */
379 static struct expr **set_hash_table;
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid;
385 /* Highest UID in UID_CUID. */
386 static int max_uid;
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
391 #else
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
393 #endif
395 /* Number of cuids. */
396 static int max_cuid;
398 /* Mapping of cuids to insns. */
399 static rtx *cuid_insn;
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno;
409 /* Maximum number of cse-able expressions found. */
410 static int n_exprs;
412 /* Maximum number of assignments for copy propagation found. */
413 static int n_sets;
415 /* Table of registers that are modified.
417 For each register, each element is a list of places where the pseudo-reg
418 is set.
420 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
421 requires knowledge of which blocks kill which regs [and thus could use
422 a bitmap instead of the lists `reg_set_table' uses].
424 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
425 num-regs) [however perhaps it may be useful to keep the data as is]. One
426 advantage of recording things this way is that `reg_set_table' is fairly
427 sparse with respect to pseudo regs but for hard regs could be fairly dense
428 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
429 up functions like compute_transp since in the case of pseudo-regs we only
430 need to iterate over the number of times a pseudo-reg is set, not over the
431 number of basic blocks [clearly there is a bit of a slow down in the cases
432 where a pseudo is set more than once in a block, however it is believed
433 that the net effect is to speed things up]. This isn't done for hard-regs
434 because recording call-clobbered hard-regs in `reg_set_table' at each
435 function call can consume a fair bit of memory, and iterating over
436 hard-regs stored this way in compute_transp will be more expensive. */
438 typedef struct reg_set
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
446 static reg_set **reg_set_table;
448 /* Size of `reg_set_table'.
449 The table starts out at max_gcse_regno + slop, and is enlarged as
450 necessary. */
451 static int reg_set_table_size;
453 /* Amount to grow `reg_set_table' by when it's full. */
454 #define REG_SET_TABLE_SLOP 100
456 /* This is a list of expressions which are MEMs and will be used by load
457 or store motion.
458 Load motion tracks MEMs which aren't killed by
459 anything except itself. (ie, loads and stores to a single location).
460 We can then allow movement of these MEM refs with a little special
461 allowance. (all stores copy the same value to the reaching reg used
462 for the loads). This means all values used to store into memory must have
463 no side effects so we can re-issue the setter value.
464 Store Motion uses this structure as an expression table to track stores
465 which look interesting, and might be moveable towards the exit block. */
467 struct ls_expr
469 struct expr * expr; /* Gcse expression reference for LM. */
470 rtx pattern; /* Pattern of this mem. */
471 rtx loads; /* INSN list of loads seen. */
472 rtx stores; /* INSN list of stores seen. */
473 struct ls_expr * next; /* Next in the list. */
474 int invalid; /* Invalid for some reason. */
475 int index; /* If it maps to a bitmap index. */
476 int hash_index; /* Index when in a hash table. */
477 rtx reaching_reg; /* Register to use when re-writing. */
480 /* Head of the list of load/store memory refs. */
481 static struct ls_expr * pre_ldst_mems = NULL;
483 /* Bitmap containing one bit for each register in the program.
484 Used when performing GCSE to track which registers have been set since
485 the start of the basic block. */
486 static regset reg_set_bitmap;
488 /* For each block, a bitmap of registers set in the block.
489 This is used by expr_killed_p and compute_transp.
490 It is computed during hash table computation and not by compute_sets
491 as it includes registers added since the last pass (or between cprop and
492 gcse) and it's currently not easy to realloc sbitmap vectors. */
493 static sbitmap *reg_set_in_block;
495 /* Array, indexed by basic block number for a list of insns which modify
496 memory within that block. */
497 static rtx * modify_mem_list;
498 bitmap modify_mem_list_set;
500 /* This array parallels modify_mem_list, but is kept canonicalized. */
501 static rtx * canon_modify_mem_list;
502 bitmap canon_modify_mem_list_set;
503 /* Various variables for statistics gathering. */
505 /* Memory used in a pass.
506 This isn't intended to be absolutely precise. Its intent is only
507 to keep an eye on memory usage. */
508 static int bytes_used;
510 /* GCSE substitutions made. */
511 static int gcse_subst_count;
512 /* Number of copy instructions created. */
513 static int gcse_create_count;
514 /* Number of constants propagated. */
515 static int const_prop_count;
516 /* Number of copys propagated. */
517 static int copy_prop_count;
519 /* These variables are used by classic GCSE.
520 Normally they'd be defined a bit later, but `rd_gen' needs to
521 be declared sooner. */
523 /* Each block has a bitmap of each type.
524 The length of each blocks bitmap is:
526 max_cuid - for reaching definitions
527 n_exprs - for available expressions
529 Thus we view the bitmaps as 2 dimensional arrays. i.e.
530 rd_kill[block_num][cuid_num]
531 ae_kill[block_num][expr_num] */
533 /* For reaching defs */
534 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
536 /* for available exprs */
537 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
539 /* Objects of this type are passed around by the null-pointer check
540 removal routines. */
541 struct null_pointer_info
543 /* The basic block being processed. */
544 int current_block;
545 /* The first register to be handled in this pass. */
546 unsigned int min_reg;
547 /* One greater than the last register to be handled in this pass. */
548 unsigned int max_reg;
549 sbitmap *nonnull_local;
550 sbitmap *nonnull_killed;
553 static void compute_can_copy PARAMS ((void));
554 static char *gmalloc PARAMS ((unsigned int));
555 static char *grealloc PARAMS ((char *, unsigned int));
556 static char *gcse_alloc PARAMS ((unsigned long));
557 static void alloc_gcse_mem PARAMS ((rtx));
558 static void free_gcse_mem PARAMS ((void));
559 static void alloc_reg_set_mem PARAMS ((int));
560 static void free_reg_set_mem PARAMS ((void));
561 static int get_bitmap_width PARAMS ((int, int, int));
562 static void record_one_set PARAMS ((int, rtx));
563 static void record_set_info PARAMS ((rtx, rtx, void *));
564 static void compute_sets PARAMS ((rtx));
565 static void hash_scan_insn PARAMS ((rtx, int, int));
566 static void hash_scan_set PARAMS ((rtx, rtx, int));
567 static void hash_scan_clobber PARAMS ((rtx, rtx));
568 static void hash_scan_call PARAMS ((rtx, rtx));
569 static int want_to_gcse_p PARAMS ((rtx));
570 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
571 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
572 static int oprs_available_p PARAMS ((rtx, rtx));
573 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
574 int, int));
575 static void insert_set_in_table PARAMS ((rtx, rtx));
576 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
577 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
578 static unsigned int hash_string_1 PARAMS ((const char *));
579 static unsigned int hash_set PARAMS ((int, int));
580 static int expr_equiv_p PARAMS ((rtx, rtx));
581 static void record_last_reg_set_info PARAMS ((rtx, int));
582 static void record_last_mem_set_info PARAMS ((rtx));
583 static void record_last_set_info PARAMS ((rtx, rtx, void *));
584 static void compute_hash_table PARAMS ((int));
585 static void alloc_set_hash_table PARAMS ((int));
586 static void free_set_hash_table PARAMS ((void));
587 static void compute_set_hash_table PARAMS ((void));
588 static void alloc_expr_hash_table PARAMS ((unsigned int));
589 static void free_expr_hash_table PARAMS ((void));
590 static void compute_expr_hash_table PARAMS ((void));
591 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
592 int, int));
593 static struct expr *lookup_expr PARAMS ((rtx));
594 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
595 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
596 static void reset_opr_set_tables PARAMS ((void));
597 static int oprs_not_set_p PARAMS ((rtx, rtx));
598 static void mark_call PARAMS ((rtx));
599 static void mark_set PARAMS ((rtx, rtx));
600 static void mark_clobber PARAMS ((rtx, rtx));
601 static void mark_oprs_set PARAMS ((rtx));
602 static void alloc_cprop_mem PARAMS ((int, int));
603 static void free_cprop_mem PARAMS ((void));
604 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
605 static void compute_transpout PARAMS ((void));
606 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
607 int));
608 static void compute_cprop_data PARAMS ((void));
609 static void find_used_regs PARAMS ((rtx *, void *));
610 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
611 static struct expr *find_avail_set PARAMS ((int, rtx));
612 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx));
613 #ifdef HAVE_cc0
614 static int cprop_cc0_jump PARAMS ((basic_block, rtx, struct reg_use *, rtx));
615 #endif
616 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
617 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
618 static void canon_list_insert PARAMS ((rtx, rtx, void *));
619 static int cprop_insn PARAMS ((basic_block, rtx, int));
620 static int cprop PARAMS ((int));
621 static int one_cprop_pass PARAMS ((int, int));
622 static void alloc_pre_mem PARAMS ((int, int));
623 static void free_pre_mem PARAMS ((void));
624 static void compute_pre_data PARAMS ((void));
625 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
626 basic_block));
627 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
628 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
629 static void pre_insert_copies PARAMS ((void));
630 static int pre_delete PARAMS ((void));
631 static int pre_gcse PARAMS ((void));
632 static int one_pre_gcse_pass PARAMS ((int));
633 static void add_label_notes PARAMS ((rtx, rtx));
634 static void alloc_code_hoist_mem PARAMS ((int, int));
635 static void free_code_hoist_mem PARAMS ((void));
636 static void compute_code_hoist_vbeinout PARAMS ((void));
637 static void compute_code_hoist_data PARAMS ((void));
638 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
639 char *));
640 static void hoist_code PARAMS ((void));
641 static int one_code_hoisting_pass PARAMS ((void));
642 static void alloc_rd_mem PARAMS ((int, int));
643 static void free_rd_mem PARAMS ((void));
644 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
645 static void compute_kill_rd PARAMS ((void));
646 static void compute_rd PARAMS ((void));
647 static void alloc_avail_expr_mem PARAMS ((int, int));
648 static void free_avail_expr_mem PARAMS ((void));
649 static void compute_ae_gen PARAMS ((void));
650 static int expr_killed_p PARAMS ((rtx, basic_block));
651 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
652 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
653 basic_block, int));
654 static rtx computing_insn PARAMS ((struct expr *, rtx));
655 static int def_reaches_here_p PARAMS ((rtx, rtx));
656 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
657 static int handle_avail_expr PARAMS ((rtx, struct expr *));
658 static int classic_gcse PARAMS ((void));
659 static int one_classic_gcse_pass PARAMS ((int));
660 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
661 static void delete_null_pointer_checks_1 PARAMS ((unsigned int *,
662 sbitmap *, sbitmap *,
663 struct null_pointer_info *));
664 static rtx process_insert_insn PARAMS ((struct expr *));
665 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
666 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
667 basic_block, int, char *));
668 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
669 basic_block, char *));
670 static struct ls_expr * ldst_entry PARAMS ((rtx));
671 static void free_ldst_entry PARAMS ((struct ls_expr *));
672 static void free_ldst_mems PARAMS ((void));
673 static void print_ldst_list PARAMS ((FILE *));
674 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
675 static int enumerate_ldsts PARAMS ((void));
676 static inline struct ls_expr * first_ls_expr PARAMS ((void));
677 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
678 static int simple_mem PARAMS ((rtx));
679 static void invalidate_any_buried_refs PARAMS ((rtx));
680 static void compute_ld_motion_mems PARAMS ((void));
681 static void trim_ld_motion_mems PARAMS ((void));
682 static void update_ld_motion_stores PARAMS ((struct expr *));
683 static void reg_set_info PARAMS ((rtx, rtx, void *));
684 static int store_ops_ok PARAMS ((rtx, basic_block));
685 static void find_moveable_store PARAMS ((rtx));
686 static int compute_store_table PARAMS ((void));
687 static int load_kills_store PARAMS ((rtx, rtx));
688 static int find_loads PARAMS ((rtx, rtx));
689 static int store_killed_in_insn PARAMS ((rtx, rtx));
690 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
691 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
692 static void build_store_vectors PARAMS ((void));
693 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
694 static int insert_store PARAMS ((struct ls_expr *, edge));
695 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
696 static void delete_store PARAMS ((struct ls_expr *,
697 basic_block));
698 static void free_store_memory PARAMS ((void));
699 static void store_motion PARAMS ((void));
700 static void free_insn_expr_list_list PARAMS ((rtx *));
701 static void clear_modify_mem_tables PARAMS ((void));
702 static void free_modify_mem_tables PARAMS ((void));
704 /* Entry point for global common subexpression elimination.
705 F is the first instruction in the function. */
708 gcse_main (f, file)
709 rtx f;
710 FILE *file;
712 int changed, pass;
713 /* Bytes used at start of pass. */
714 int initial_bytes_used;
715 /* Maximum number of bytes used by a pass. */
716 int max_pass_bytes;
717 /* Point to release obstack data from for each pass. */
718 char *gcse_obstack_bottom;
720 /* Insertion of instructions on edges can create new basic blocks; we
721 need the original basic block count so that we can properly deallocate
722 arrays sized on the number of basic blocks originally in the cfg. */
723 int orig_bb_count;
724 /* We do not construct an accurate cfg in functions which call
725 setjmp, so just punt to be safe. */
726 if (current_function_calls_setjmp)
727 return 0;
729 /* Assume that we do not need to run jump optimizations after gcse. */
730 run_jump_opt_after_gcse = 0;
732 /* For calling dump_foo fns from gdb. */
733 debug_stderr = stderr;
734 gcse_file = file;
736 /* Identify the basic block information for this function, including
737 successors and predecessors. */
738 max_gcse_regno = max_reg_num ();
740 if (file)
741 dump_flow_info (file);
743 orig_bb_count = n_basic_blocks;
744 /* Return if there's nothing to do. */
745 if (n_basic_blocks <= 1)
746 return 0;
748 /* Trying to perform global optimizations on flow graphs which have
749 a high connectivity will take a long time and is unlikely to be
750 particularly useful.
752 In normal circumstances a cfg should have about twice as many edges
753 as blocks. But we do not want to punish small functions which have
754 a couple switch statements. So we require a relatively large number
755 of basic blocks and the ratio of edges to blocks to be high. */
756 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
758 if (warn_disabled_optimization)
759 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
760 n_basic_blocks, n_edges / n_basic_blocks);
761 return 0;
764 /* If allocating memory for the cprop bitmap would take up too much
765 storage it's better just to disable the optimization. */
766 if ((n_basic_blocks
767 * SBITMAP_SET_SIZE (max_gcse_regno)
768 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
770 if (warn_disabled_optimization)
771 warning ("GCSE disabled: %d basic blocks and %d registers",
772 n_basic_blocks, max_gcse_regno);
774 return 0;
777 /* See what modes support reg/reg copy operations. */
778 if (! can_copy_init_p)
780 compute_can_copy ();
781 can_copy_init_p = 1;
784 gcc_obstack_init (&gcse_obstack);
785 bytes_used = 0;
787 /* We need alias. */
788 init_alias_analysis ();
789 /* Record where pseudo-registers are set. This data is kept accurate
790 during each pass. ??? We could also record hard-reg information here
791 [since it's unchanging], however it is currently done during hash table
792 computation.
794 It may be tempting to compute MEM set information here too, but MEM sets
795 will be subject to code motion one day and thus we need to compute
796 information about memory sets when we build the hash tables. */
798 alloc_reg_set_mem (max_gcse_regno);
799 compute_sets (f);
801 pass = 0;
802 initial_bytes_used = bytes_used;
803 max_pass_bytes = 0;
804 gcse_obstack_bottom = gcse_alloc (1);
805 changed = 1;
806 while (changed && pass < MAX_GCSE_PASSES)
808 changed = 0;
809 if (file)
810 fprintf (file, "GCSE pass %d\n\n", pass + 1);
812 /* Initialize bytes_used to the space for the pred/succ lists,
813 and the reg_set_table data. */
814 bytes_used = initial_bytes_used;
816 /* Each pass may create new registers, so recalculate each time. */
817 max_gcse_regno = max_reg_num ();
819 alloc_gcse_mem (f);
821 /* Don't allow constant propagation to modify jumps
822 during this pass. */
823 changed = one_cprop_pass (pass + 1, 0);
825 if (optimize_size)
826 changed |= one_classic_gcse_pass (pass + 1);
827 else
829 changed |= one_pre_gcse_pass (pass + 1);
830 /* We may have just created new basic blocks. Release and
831 recompute various things which are sized on the number of
832 basic blocks. */
833 if (changed)
835 free_modify_mem_tables ();
836 modify_mem_list
837 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
838 canon_modify_mem_list
839 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
840 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
841 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
842 orig_bb_count = n_basic_blocks;
844 free_reg_set_mem ();
845 alloc_reg_set_mem (max_reg_num ());
846 compute_sets (f);
847 run_jump_opt_after_gcse = 1;
850 if (max_pass_bytes < bytes_used)
851 max_pass_bytes = bytes_used;
853 /* Free up memory, then reallocate for code hoisting. We can
854 not re-use the existing allocated memory because the tables
855 will not have info for the insns or registers created by
856 partial redundancy elimination. */
857 free_gcse_mem ();
859 /* It does not make sense to run code hoisting unless we optimizing
860 for code size -- it rarely makes programs faster, and can make
861 them bigger if we did partial redundancy elimination (when optimizing
862 for space, we use a classic gcse algorithm instead of partial
863 redundancy algorithms). */
864 if (optimize_size)
866 max_gcse_regno = max_reg_num ();
867 alloc_gcse_mem (f);
868 changed |= one_code_hoisting_pass ();
869 free_gcse_mem ();
871 if (max_pass_bytes < bytes_used)
872 max_pass_bytes = bytes_used;
875 if (file)
877 fprintf (file, "\n");
878 fflush (file);
881 obstack_free (&gcse_obstack, gcse_obstack_bottom);
882 pass++;
885 /* Do one last pass of copy propagation, including cprop into
886 conditional jumps. */
888 max_gcse_regno = max_reg_num ();
889 alloc_gcse_mem (f);
890 /* This time, go ahead and allow cprop to alter jumps. */
891 one_cprop_pass (pass + 1, 1);
892 free_gcse_mem ();
894 if (file)
896 fprintf (file, "GCSE of %s: %d basic blocks, ",
897 current_function_name, n_basic_blocks);
898 fprintf (file, "%d pass%s, %d bytes\n\n",
899 pass, pass > 1 ? "es" : "", max_pass_bytes);
902 obstack_free (&gcse_obstack, NULL);
903 free_reg_set_mem ();
904 /* We are finished with alias. */
905 end_alias_analysis ();
906 allocate_reg_info (max_reg_num (), FALSE, FALSE);
908 if (!optimize_size && flag_gcse_sm)
909 store_motion ();
910 /* Record where pseudo-registers are set. */
911 return run_jump_opt_after_gcse;
914 /* Misc. utilities. */
916 /* Compute which modes support reg/reg copy operations. */
918 static void
919 compute_can_copy ()
921 int i;
922 #ifndef AVOID_CCMODE_COPIES
923 rtx reg, insn;
924 #endif
925 memset (can_copy_p, 0, NUM_MACHINE_MODES);
927 start_sequence ();
928 for (i = 0; i < NUM_MACHINE_MODES; i++)
929 if (GET_MODE_CLASS (i) == MODE_CC)
931 #ifdef AVOID_CCMODE_COPIES
932 can_copy_p[i] = 0;
933 #else
934 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
935 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
936 if (recog (PATTERN (insn), insn, NULL) >= 0)
937 can_copy_p[i] = 1;
938 #endif
940 else
941 can_copy_p[i] = 1;
943 end_sequence ();
946 /* Cover function to xmalloc to record bytes allocated. */
948 static char *
949 gmalloc (size)
950 unsigned int size;
952 bytes_used += size;
953 return xmalloc (size);
956 /* Cover function to xrealloc.
957 We don't record the additional size since we don't know it.
958 It won't affect memory usage stats much anyway. */
960 static char *
961 grealloc (ptr, size)
962 char *ptr;
963 unsigned int size;
965 return xrealloc (ptr, size);
968 /* Cover function to obstack_alloc.
969 We don't need to record the bytes allocated here since
970 obstack_chunk_alloc is set to gmalloc. */
972 static char *
973 gcse_alloc (size)
974 unsigned long size;
976 return (char *) obstack_alloc (&gcse_obstack, size);
979 /* Allocate memory for the cuid mapping array,
980 and reg/memory set tracking tables.
982 This is called at the start of each pass. */
984 static void
985 alloc_gcse_mem (f)
986 rtx f;
988 int i, n;
989 rtx insn;
991 /* Find the largest UID and create a mapping from UIDs to CUIDs.
992 CUIDs are like UIDs except they increase monotonically, have no gaps,
993 and only apply to real insns. */
995 max_uid = get_max_uid ();
996 n = (max_uid + 1) * sizeof (int);
997 uid_cuid = (int *) gmalloc (n);
998 memset ((char *) uid_cuid, 0, n);
999 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1001 if (INSN_P (insn))
1002 uid_cuid[INSN_UID (insn)] = i++;
1003 else
1004 uid_cuid[INSN_UID (insn)] = i;
1007 /* Create a table mapping cuids to insns. */
1009 max_cuid = i;
1010 n = (max_cuid + 1) * sizeof (rtx);
1011 cuid_insn = (rtx *) gmalloc (n);
1012 memset ((char *) cuid_insn, 0, n);
1013 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1014 if (INSN_P (insn))
1015 CUID_INSN (i++) = insn;
1017 /* Allocate vars to track sets of regs. */
1018 reg_set_bitmap = BITMAP_XMALLOC ();
1020 /* Allocate vars to track sets of regs, memory per block. */
1021 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
1022 max_gcse_regno);
1023 /* Allocate array to keep a list of insns which modify memory in each
1024 basic block. */
1025 modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
1026 canon_modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx));
1027 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
1028 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx));
1029 modify_mem_list_set = BITMAP_XMALLOC ();
1030 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1033 /* Free memory allocated by alloc_gcse_mem. */
1035 static void
1036 free_gcse_mem ()
1038 free (uid_cuid);
1039 free (cuid_insn);
1041 BITMAP_XFREE (reg_set_bitmap);
1043 sbitmap_vector_free (reg_set_in_block);
1044 free_modify_mem_tables ();
1045 BITMAP_XFREE (modify_mem_list_set);
1046 BITMAP_XFREE (canon_modify_mem_list_set);
1049 /* Many of the global optimization algorithms work by solving dataflow
1050 equations for various expressions. Initially, some local value is
1051 computed for each expression in each block. Then, the values across the
1052 various blocks are combined (by following flow graph edges) to arrive at
1053 global values. Conceptually, each set of equations is independent. We
1054 may therefore solve all the equations in parallel, solve them one at a
1055 time, or pick any intermediate approach.
1057 When you're going to need N two-dimensional bitmaps, each X (say, the
1058 number of blocks) by Y (say, the number of expressions), call this
1059 function. It's not important what X and Y represent; only that Y
1060 correspond to the things that can be done in parallel. This function will
1061 return an appropriate chunking factor C; you should solve C sets of
1062 equations in parallel. By going through this function, we can easily
1063 trade space against time; by solving fewer equations in parallel we use
1064 less space. */
1066 static int
1067 get_bitmap_width (n, x, y)
1068 int n;
1069 int x;
1070 int y;
1072 /* It's not really worth figuring out *exactly* how much memory will
1073 be used by a particular choice. The important thing is to get
1074 something approximately right. */
1075 size_t max_bitmap_memory = 10 * 1024 * 1024;
1077 /* The number of bytes we'd use for a single column of minimum
1078 width. */
1079 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1081 /* Often, it's reasonable just to solve all the equations in
1082 parallel. */
1083 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1084 return y;
1086 /* Otherwise, pick the largest width we can, without going over the
1087 limit. */
1088 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1089 / column_size);
1092 /* Compute the local properties of each recorded expression.
1094 Local properties are those that are defined by the block, irrespective of
1095 other blocks.
1097 An expression is transparent in a block if its operands are not modified
1098 in the block.
1100 An expression is computed (locally available) in a block if it is computed
1101 at least once and expression would contain the same value if the
1102 computation was moved to the end of the block.
1104 An expression is locally anticipatable in a block if it is computed at
1105 least once and expression would contain the same value if the computation
1106 was moved to the beginning of the block.
1108 We call this routine for cprop, pre and code hoisting. They all compute
1109 basically the same information and thus can easily share this code.
1111 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1112 properties. If NULL, then it is not necessary to compute or record that
1113 particular property.
1115 SETP controls which hash table to look at. If zero, this routine looks at
1116 the expr hash table; if nonzero this routine looks at the set hash table.
1117 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1118 ABSALTERED. */
1120 static void
1121 compute_local_properties (transp, comp, antloc, setp)
1122 sbitmap *transp;
1123 sbitmap *comp;
1124 sbitmap *antloc;
1125 int setp;
1127 unsigned int i, hash_table_size;
1128 struct expr **hash_table;
1130 /* Initialize any bitmaps that were passed in. */
1131 if (transp)
1133 if (setp)
1134 sbitmap_vector_zero (transp, n_basic_blocks);
1135 else
1136 sbitmap_vector_ones (transp, n_basic_blocks);
1139 if (comp)
1140 sbitmap_vector_zero (comp, n_basic_blocks);
1141 if (antloc)
1142 sbitmap_vector_zero (antloc, n_basic_blocks);
1144 /* We use the same code for cprop, pre and hoisting. For cprop
1145 we care about the set hash table, for pre and hoisting we
1146 care about the expr hash table. */
1147 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1148 hash_table = setp ? set_hash_table : expr_hash_table;
1150 for (i = 0; i < hash_table_size; i++)
1152 struct expr *expr;
1154 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1156 int indx = expr->bitmap_index;
1157 struct occr *occr;
1159 /* The expression is transparent in this block if it is not killed.
1160 We start by assuming all are transparent [none are killed], and
1161 then reset the bits for those that are. */
1162 if (transp)
1163 compute_transp (expr->expr, indx, transp, setp);
1165 /* The occurrences recorded in antic_occr are exactly those that
1166 we want to set to non-zero in ANTLOC. */
1167 if (antloc)
1168 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1170 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1172 /* While we're scanning the table, this is a good place to
1173 initialize this. */
1174 occr->deleted_p = 0;
1177 /* The occurrences recorded in avail_occr are exactly those that
1178 we want to set to non-zero in COMP. */
1179 if (comp)
1180 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1182 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1184 /* While we're scanning the table, this is a good place to
1185 initialize this. */
1186 occr->copied_p = 0;
1189 /* While we're scanning the table, this is a good place to
1190 initialize this. */
1191 expr->reaching_reg = 0;
1196 /* Register set information.
1198 `reg_set_table' records where each register is set or otherwise
1199 modified. */
1201 static struct obstack reg_set_obstack;
1203 static void
1204 alloc_reg_set_mem (n_regs)
1205 int n_regs;
1207 unsigned int n;
1209 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1210 n = reg_set_table_size * sizeof (struct reg_set *);
1211 reg_set_table = (struct reg_set **) gmalloc (n);
1212 memset ((char *) reg_set_table, 0, n);
1214 gcc_obstack_init (&reg_set_obstack);
1217 static void
1218 free_reg_set_mem ()
1220 free (reg_set_table);
1221 obstack_free (&reg_set_obstack, NULL);
1224 /* Record REGNO in the reg_set table. */
1226 static void
1227 record_one_set (regno, insn)
1228 int regno;
1229 rtx insn;
1231 /* Allocate a new reg_set element and link it onto the list. */
1232 struct reg_set *new_reg_info;
1234 /* If the table isn't big enough, enlarge it. */
1235 if (regno >= reg_set_table_size)
1237 int new_size = regno + REG_SET_TABLE_SLOP;
1239 reg_set_table
1240 = (struct reg_set **) grealloc ((char *) reg_set_table,
1241 new_size * sizeof (struct reg_set *));
1242 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1243 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1244 reg_set_table_size = new_size;
1247 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1248 sizeof (struct reg_set));
1249 bytes_used += sizeof (struct reg_set);
1250 new_reg_info->insn = insn;
1251 new_reg_info->next = reg_set_table[regno];
1252 reg_set_table[regno] = new_reg_info;
1255 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1256 an insn. The DATA is really the instruction in which the SET is
1257 occurring. */
1259 static void
1260 record_set_info (dest, setter, data)
1261 rtx dest, setter ATTRIBUTE_UNUSED;
1262 void *data;
1264 rtx record_set_insn = (rtx) data;
1266 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1267 record_one_set (REGNO (dest), record_set_insn);
1270 /* Scan the function and record each set of each pseudo-register.
1272 This is called once, at the start of the gcse pass. See the comments for
1273 `reg_set_table' for further documenation. */
1275 static void
1276 compute_sets (f)
1277 rtx f;
1279 rtx insn;
1281 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1282 if (INSN_P (insn))
1283 note_stores (PATTERN (insn), record_set_info, insn);
1286 /* Hash table support. */
1288 /* For each register, the cuid of the first/last insn in the block
1289 that set it, or -1 if not set. */
1290 #define NEVER_SET -1
1292 struct reg_avail_info
1294 int last_bb;
1295 int first_set;
1296 int last_set;
1299 static struct reg_avail_info *reg_avail_info;
1300 static int current_bb;
1303 /* See whether X, the source of a set, is something we want to consider for
1304 GCSE. */
1306 static int
1307 want_to_gcse_p (x)
1308 rtx x;
1310 static rtx test_insn = 0;
1311 int num_clobbers = 0;
1312 int icode;
1314 switch (GET_CODE (x))
1316 case REG:
1317 case SUBREG:
1318 case CONST_INT:
1319 case CONST_DOUBLE:
1320 case CONST_VECTOR:
1321 case CALL:
1322 return 0;
1324 default:
1325 break;
1328 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1329 if (general_operand (x, GET_MODE (x)))
1330 return 1;
1331 else if (GET_MODE (x) == VOIDmode)
1332 return 0;
1334 /* Otherwise, check if we can make a valid insn from it. First initialize
1335 our test insn if we haven't already. */
1336 if (test_insn == 0)
1338 test_insn
1339 = make_insn_raw (gen_rtx_SET (VOIDmode,
1340 gen_rtx_REG (word_mode,
1341 FIRST_PSEUDO_REGISTER * 2),
1342 const0_rtx));
1343 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1344 ggc_add_rtx_root (&test_insn, 1);
1347 /* Now make an insn like the one we would make when GCSE'ing and see if
1348 valid. */
1349 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1350 SET_SRC (PATTERN (test_insn)) = x;
1351 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1352 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1355 /* Return non-zero if the operands of expression X are unchanged from the
1356 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1357 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1359 static int
1360 oprs_unchanged_p (x, insn, avail_p)
1361 rtx x, insn;
1362 int avail_p;
1364 int i, j;
1365 enum rtx_code code;
1366 const char *fmt;
1368 if (x == 0)
1369 return 1;
1371 code = GET_CODE (x);
1372 switch (code)
1374 case REG:
1376 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1378 if (info->last_bb != current_bb)
1379 return 1;
1380 if (avail_p)
1381 return info->last_set < INSN_CUID (insn);
1382 else
1383 return info->first_set >= INSN_CUID (insn);
1386 case MEM:
1387 if (load_killed_in_block_p (BASIC_BLOCK (current_bb), INSN_CUID (insn),
1388 x, avail_p))
1389 return 0;
1390 else
1391 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1393 case PRE_DEC:
1394 case PRE_INC:
1395 case POST_DEC:
1396 case POST_INC:
1397 case PRE_MODIFY:
1398 case POST_MODIFY:
1399 return 0;
1401 case PC:
1402 case CC0: /*FIXME*/
1403 case CONST:
1404 case CONST_INT:
1405 case CONST_DOUBLE:
1406 case CONST_VECTOR:
1407 case SYMBOL_REF:
1408 case LABEL_REF:
1409 case ADDR_VEC:
1410 case ADDR_DIFF_VEC:
1411 return 1;
1413 default:
1414 break;
1417 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1419 if (fmt[i] == 'e')
1421 /* If we are about to do the last recursive call needed at this
1422 level, change it into iteration. This function is called enough
1423 to be worth it. */
1424 if (i == 0)
1425 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1427 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1428 return 0;
1430 else if (fmt[i] == 'E')
1431 for (j = 0; j < XVECLEN (x, i); j++)
1432 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1433 return 0;
1436 return 1;
1439 /* Used for communication between mems_conflict_for_gcse_p and
1440 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1441 conflict between two memory references. */
1442 static int gcse_mems_conflict_p;
1444 /* Used for communication between mems_conflict_for_gcse_p and
1445 load_killed_in_block_p. A memory reference for a load instruction,
1446 mems_conflict_for_gcse_p will see if a memory store conflicts with
1447 this memory load. */
1448 static rtx gcse_mem_operand;
1450 /* DEST is the output of an instruction. If it is a memory reference, and
1451 possibly conflicts with the load found in gcse_mem_operand, then set
1452 gcse_mems_conflict_p to a nonzero value. */
1454 static void
1455 mems_conflict_for_gcse_p (dest, setter, data)
1456 rtx dest, setter ATTRIBUTE_UNUSED;
1457 void *data ATTRIBUTE_UNUSED;
1459 while (GET_CODE (dest) == SUBREG
1460 || GET_CODE (dest) == ZERO_EXTRACT
1461 || GET_CODE (dest) == SIGN_EXTRACT
1462 || GET_CODE (dest) == STRICT_LOW_PART)
1463 dest = XEXP (dest, 0);
1465 /* If DEST is not a MEM, then it will not conflict with the load. Note
1466 that function calls are assumed to clobber memory, but are handled
1467 elsewhere. */
1468 if (GET_CODE (dest) != MEM)
1469 return;
1471 /* If we are setting a MEM in our list of specially recognized MEMs,
1472 don't mark as killed this time. */
1474 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1476 if (!find_rtx_in_ldst (dest))
1477 gcse_mems_conflict_p = 1;
1478 return;
1481 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1482 rtx_addr_varies_p))
1483 gcse_mems_conflict_p = 1;
1486 /* Return nonzero if the expression in X (a memory reference) is killed
1487 in block BB before or after the insn with the CUID in UID_LIMIT.
1488 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1489 before UID_LIMIT.
1491 To check the entire block, set UID_LIMIT to max_uid + 1 and
1492 AVAIL_P to 0. */
1494 static int
1495 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1496 basic_block bb;
1497 int uid_limit;
1498 rtx x;
1499 int avail_p;
1501 rtx list_entry = modify_mem_list[bb->index];
1502 while (list_entry)
1504 rtx setter;
1505 /* Ignore entries in the list that do not apply. */
1506 if ((avail_p
1507 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1508 || (! avail_p
1509 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1511 list_entry = XEXP (list_entry, 1);
1512 continue;
1515 setter = XEXP (list_entry, 0);
1517 /* If SETTER is a call everything is clobbered. Note that calls
1518 to pure functions are never put on the list, so we need not
1519 worry about them. */
1520 if (GET_CODE (setter) == CALL_INSN)
1521 return 1;
1523 /* SETTER must be an INSN of some kind that sets memory. Call
1524 note_stores to examine each hunk of memory that is modified.
1526 The note_stores interface is pretty limited, so we have to
1527 communicate via global variables. Yuk. */
1528 gcse_mem_operand = x;
1529 gcse_mems_conflict_p = 0;
1530 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1531 if (gcse_mems_conflict_p)
1532 return 1;
1533 list_entry = XEXP (list_entry, 1);
1535 return 0;
1538 /* Return non-zero if the operands of expression X are unchanged from
1539 the start of INSN's basic block up to but not including INSN. */
1541 static int
1542 oprs_anticipatable_p (x, insn)
1543 rtx x, insn;
1545 return oprs_unchanged_p (x, insn, 0);
1548 /* Return non-zero if the operands of expression X are unchanged from
1549 INSN to the end of INSN's basic block. */
1551 static int
1552 oprs_available_p (x, insn)
1553 rtx x, insn;
1555 return oprs_unchanged_p (x, insn, 1);
1558 /* Hash expression X.
1560 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1561 indicating if a volatile operand is found or if the expression contains
1562 something we don't want to insert in the table.
1564 ??? One might want to merge this with canon_hash. Later. */
1566 static unsigned int
1567 hash_expr (x, mode, do_not_record_p, hash_table_size)
1568 rtx x;
1569 enum machine_mode mode;
1570 int *do_not_record_p;
1571 int hash_table_size;
1573 unsigned int hash;
1575 *do_not_record_p = 0;
1577 hash = hash_expr_1 (x, mode, do_not_record_p);
1578 return hash % hash_table_size;
1581 /* Hash a string. Just add its bytes up. */
1583 static inline unsigned
1584 hash_string_1 (ps)
1585 const char *ps;
1587 unsigned hash = 0;
1588 const unsigned char *p = (const unsigned char *) ps;
1590 if (p)
1591 while (*p)
1592 hash += *p++;
1594 return hash;
1597 /* Subroutine of hash_expr to do the actual work. */
1599 static unsigned int
1600 hash_expr_1 (x, mode, do_not_record_p)
1601 rtx x;
1602 enum machine_mode mode;
1603 int *do_not_record_p;
1605 int i, j;
1606 unsigned hash = 0;
1607 enum rtx_code code;
1608 const char *fmt;
1610 /* Used to turn recursion into iteration. We can't rely on GCC's
1611 tail-recursion eliminatio since we need to keep accumulating values
1612 in HASH. */
1614 if (x == 0)
1615 return hash;
1617 repeat:
1618 code = GET_CODE (x);
1619 switch (code)
1621 case REG:
1622 hash += ((unsigned int) REG << 7) + REGNO (x);
1623 return hash;
1625 case CONST_INT:
1626 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1627 + (unsigned int) INTVAL (x));
1628 return hash;
1630 case CONST_DOUBLE:
1631 /* This is like the general case, except that it only counts
1632 the integers representing the constant. */
1633 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1634 if (GET_MODE (x) != VOIDmode)
1635 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1636 hash += (unsigned int) XWINT (x, i);
1637 else
1638 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1639 + (unsigned int) CONST_DOUBLE_HIGH (x));
1640 return hash;
1642 case CONST_VECTOR:
1644 int units;
1645 rtx elt;
1647 units = CONST_VECTOR_NUNITS (x);
1649 for (i = 0; i < units; ++i)
1651 elt = CONST_VECTOR_ELT (x, i);
1652 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1655 return hash;
1658 /* Assume there is only one rtx object for any given label. */
1659 case LABEL_REF:
1660 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1661 differences and differences between each stage's debugging dumps. */
1662 hash += (((unsigned int) LABEL_REF << 7)
1663 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1664 return hash;
1666 case SYMBOL_REF:
1668 /* Don't hash on the symbol's address to avoid bootstrap differences.
1669 Different hash values may cause expressions to be recorded in
1670 different orders and thus different registers to be used in the
1671 final assembler. This also avoids differences in the dump files
1672 between various stages. */
1673 unsigned int h = 0;
1674 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1676 while (*p)
1677 h += (h << 7) + *p++; /* ??? revisit */
1679 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1680 return hash;
1683 case MEM:
1684 if (MEM_VOLATILE_P (x))
1686 *do_not_record_p = 1;
1687 return 0;
1690 hash += (unsigned int) MEM;
1691 hash += MEM_ALIAS_SET (x);
1692 x = XEXP (x, 0);
1693 goto repeat;
1695 case PRE_DEC:
1696 case PRE_INC:
1697 case POST_DEC:
1698 case POST_INC:
1699 case PC:
1700 case CC0:
1701 case CALL:
1702 case UNSPEC_VOLATILE:
1703 *do_not_record_p = 1;
1704 return 0;
1706 case ASM_OPERANDS:
1707 if (MEM_VOLATILE_P (x))
1709 *do_not_record_p = 1;
1710 return 0;
1712 else
1714 /* We don't want to take the filename and line into account. */
1715 hash += (unsigned) code + (unsigned) GET_MODE (x)
1716 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1717 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1718 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1720 if (ASM_OPERANDS_INPUT_LENGTH (x))
1722 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1724 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1725 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1726 do_not_record_p)
1727 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1728 (x, i)));
1731 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1732 x = ASM_OPERANDS_INPUT (x, 0);
1733 mode = GET_MODE (x);
1734 goto repeat;
1736 return hash;
1739 default:
1740 break;
1743 hash += (unsigned) code + (unsigned) GET_MODE (x);
1744 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1746 if (fmt[i] == 'e')
1748 /* If we are about to do the last recursive call
1749 needed at this level, change it into iteration.
1750 This function is called enough to be worth it. */
1751 if (i == 0)
1753 x = XEXP (x, i);
1754 goto repeat;
1757 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1758 if (*do_not_record_p)
1759 return 0;
1762 else if (fmt[i] == 'E')
1763 for (j = 0; j < XVECLEN (x, i); j++)
1765 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1766 if (*do_not_record_p)
1767 return 0;
1770 else if (fmt[i] == 's')
1771 hash += hash_string_1 (XSTR (x, i));
1772 else if (fmt[i] == 'i')
1773 hash += (unsigned int) XINT (x, i);
1774 else
1775 abort ();
1778 return hash;
1781 /* Hash a set of register REGNO.
1783 Sets are hashed on the register that is set. This simplifies the PRE copy
1784 propagation code.
1786 ??? May need to make things more elaborate. Later, as necessary. */
1788 static unsigned int
1789 hash_set (regno, hash_table_size)
1790 int regno;
1791 int hash_table_size;
1793 unsigned int hash;
1795 hash = regno;
1796 return hash % hash_table_size;
1799 /* Return non-zero if exp1 is equivalent to exp2.
1800 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1802 static int
1803 expr_equiv_p (x, y)
1804 rtx x, y;
1806 int i, j;
1807 enum rtx_code code;
1808 const char *fmt;
1810 if (x == y)
1811 return 1;
1813 if (x == 0 || y == 0)
1814 return x == y;
1816 code = GET_CODE (x);
1817 if (code != GET_CODE (y))
1818 return 0;
1820 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1821 if (GET_MODE (x) != GET_MODE (y))
1822 return 0;
1824 switch (code)
1826 case PC:
1827 case CC0:
1828 return x == y;
1830 case CONST_INT:
1831 return INTVAL (x) == INTVAL (y);
1833 case LABEL_REF:
1834 return XEXP (x, 0) == XEXP (y, 0);
1836 case SYMBOL_REF:
1837 return XSTR (x, 0) == XSTR (y, 0);
1839 case REG:
1840 return REGNO (x) == REGNO (y);
1842 case MEM:
1843 /* Can't merge two expressions in different alias sets, since we can
1844 decide that the expression is transparent in a block when it isn't,
1845 due to it being set with the different alias set. */
1846 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1847 return 0;
1848 break;
1850 /* For commutative operations, check both orders. */
1851 case PLUS:
1852 case MULT:
1853 case AND:
1854 case IOR:
1855 case XOR:
1856 case NE:
1857 case EQ:
1858 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1859 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1860 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1861 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1863 case ASM_OPERANDS:
1864 /* We don't use the generic code below because we want to
1865 disregard filename and line numbers. */
1867 /* A volatile asm isn't equivalent to any other. */
1868 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1869 return 0;
1871 if (GET_MODE (x) != GET_MODE (y)
1872 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1873 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1874 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1875 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1876 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1877 return 0;
1879 if (ASM_OPERANDS_INPUT_LENGTH (x))
1881 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1882 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1883 ASM_OPERANDS_INPUT (y, i))
1884 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1885 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1886 return 0;
1889 return 1;
1891 default:
1892 break;
1895 /* Compare the elements. If any pair of corresponding elements
1896 fail to match, return 0 for the whole thing. */
1898 fmt = GET_RTX_FORMAT (code);
1899 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1901 switch (fmt[i])
1903 case 'e':
1904 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1905 return 0;
1906 break;
1908 case 'E':
1909 if (XVECLEN (x, i) != XVECLEN (y, i))
1910 return 0;
1911 for (j = 0; j < XVECLEN (x, i); j++)
1912 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1913 return 0;
1914 break;
1916 case 's':
1917 if (strcmp (XSTR (x, i), XSTR (y, i)))
1918 return 0;
1919 break;
1921 case 'i':
1922 if (XINT (x, i) != XINT (y, i))
1923 return 0;
1924 break;
1926 case 'w':
1927 if (XWINT (x, i) != XWINT (y, i))
1928 return 0;
1929 break;
1931 case '0':
1932 break;
1934 default:
1935 abort ();
1939 return 1;
1942 /* Insert expression X in INSN in the hash table.
1943 If it is already present, record it as the last occurrence in INSN's
1944 basic block.
1946 MODE is the mode of the value X is being stored into.
1947 It is only used if X is a CONST_INT.
1949 ANTIC_P is non-zero if X is an anticipatable expression.
1950 AVAIL_P is non-zero if X is an available expression. */
1952 static void
1953 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1954 rtx x;
1955 enum machine_mode mode;
1956 rtx insn;
1957 int antic_p, avail_p;
1959 int found, do_not_record_p;
1960 unsigned int hash;
1961 struct expr *cur_expr, *last_expr = NULL;
1962 struct occr *antic_occr, *avail_occr;
1963 struct occr *last_occr = NULL;
1965 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1967 /* Do not insert expression in table if it contains volatile operands,
1968 or if hash_expr determines the expression is something we don't want
1969 to or can't handle. */
1970 if (do_not_record_p)
1971 return;
1973 cur_expr = expr_hash_table[hash];
1974 found = 0;
1976 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1978 /* If the expression isn't found, save a pointer to the end of
1979 the list. */
1980 last_expr = cur_expr;
1981 cur_expr = cur_expr->next_same_hash;
1984 if (! found)
1986 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1987 bytes_used += sizeof (struct expr);
1988 if (expr_hash_table[hash] == NULL)
1989 /* This is the first pattern that hashed to this index. */
1990 expr_hash_table[hash] = cur_expr;
1991 else
1992 /* Add EXPR to end of this hash chain. */
1993 last_expr->next_same_hash = cur_expr;
1995 /* Set the fields of the expr element. */
1996 cur_expr->expr = x;
1997 cur_expr->bitmap_index = n_exprs++;
1998 cur_expr->next_same_hash = NULL;
1999 cur_expr->antic_occr = NULL;
2000 cur_expr->avail_occr = NULL;
2003 /* Now record the occurrence(s). */
2004 if (antic_p)
2006 antic_occr = cur_expr->antic_occr;
2008 /* Search for another occurrence in the same basic block. */
2009 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2011 /* If an occurrence isn't found, save a pointer to the end of
2012 the list. */
2013 last_occr = antic_occr;
2014 antic_occr = antic_occr->next;
2017 if (antic_occr)
2018 /* Found another instance of the expression in the same basic block.
2019 Prefer the currently recorded one. We want the first one in the
2020 block and the block is scanned from start to end. */
2021 ; /* nothing to do */
2022 else
2024 /* First occurrence of this expression in this basic block. */
2025 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2026 bytes_used += sizeof (struct occr);
2027 /* First occurrence of this expression in any block? */
2028 if (cur_expr->antic_occr == NULL)
2029 cur_expr->antic_occr = antic_occr;
2030 else
2031 last_occr->next = antic_occr;
2033 antic_occr->insn = insn;
2034 antic_occr->next = NULL;
2038 if (avail_p)
2040 avail_occr = cur_expr->avail_occr;
2042 /* Search for another occurrence in the same basic block. */
2043 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2045 /* If an occurrence isn't found, save a pointer to the end of
2046 the list. */
2047 last_occr = avail_occr;
2048 avail_occr = avail_occr->next;
2051 if (avail_occr)
2052 /* Found another instance of the expression in the same basic block.
2053 Prefer this occurrence to the currently recorded one. We want
2054 the last one in the block and the block is scanned from start
2055 to end. */
2056 avail_occr->insn = insn;
2057 else
2059 /* First occurrence of this expression in this basic block. */
2060 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2061 bytes_used += sizeof (struct occr);
2063 /* First occurrence of this expression in any block? */
2064 if (cur_expr->avail_occr == NULL)
2065 cur_expr->avail_occr = avail_occr;
2066 else
2067 last_occr->next = avail_occr;
2069 avail_occr->insn = insn;
2070 avail_occr->next = NULL;
2075 /* Insert pattern X in INSN in the hash table.
2076 X is a SET of a reg to either another reg or a constant.
2077 If it is already present, record it as the last occurrence in INSN's
2078 basic block. */
2080 static void
2081 insert_set_in_table (x, insn)
2082 rtx x;
2083 rtx insn;
2085 int found;
2086 unsigned int hash;
2087 struct expr *cur_expr, *last_expr = NULL;
2088 struct occr *cur_occr, *last_occr = NULL;
2090 if (GET_CODE (x) != SET
2091 || GET_CODE (SET_DEST (x)) != REG)
2092 abort ();
2094 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
2096 cur_expr = set_hash_table[hash];
2097 found = 0;
2099 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2101 /* If the expression isn't found, save a pointer to the end of
2102 the list. */
2103 last_expr = cur_expr;
2104 cur_expr = cur_expr->next_same_hash;
2107 if (! found)
2109 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2110 bytes_used += sizeof (struct expr);
2111 if (set_hash_table[hash] == NULL)
2112 /* This is the first pattern that hashed to this index. */
2113 set_hash_table[hash] = cur_expr;
2114 else
2115 /* Add EXPR to end of this hash chain. */
2116 last_expr->next_same_hash = cur_expr;
2118 /* Set the fields of the expr element.
2119 We must copy X because it can be modified when copy propagation is
2120 performed on its operands. */
2121 cur_expr->expr = copy_rtx (x);
2122 cur_expr->bitmap_index = n_sets++;
2123 cur_expr->next_same_hash = NULL;
2124 cur_expr->antic_occr = NULL;
2125 cur_expr->avail_occr = NULL;
2128 /* Now record the occurrence. */
2129 cur_occr = cur_expr->avail_occr;
2131 /* Search for another occurrence in the same basic block. */
2132 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2134 /* If an occurrence isn't found, save a pointer to the end of
2135 the list. */
2136 last_occr = cur_occr;
2137 cur_occr = cur_occr->next;
2140 if (cur_occr)
2141 /* Found another instance of the expression in the same basic block.
2142 Prefer this occurrence to the currently recorded one. We want the
2143 last one in the block and the block is scanned from start to end. */
2144 cur_occr->insn = insn;
2145 else
2147 /* First occurrence of this expression in this basic block. */
2148 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2149 bytes_used += sizeof (struct occr);
2151 /* First occurrence of this expression in any block? */
2152 if (cur_expr->avail_occr == NULL)
2153 cur_expr->avail_occr = cur_occr;
2154 else
2155 last_occr->next = cur_occr;
2157 cur_occr->insn = insn;
2158 cur_occr->next = NULL;
2162 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2163 non-zero, this is for the assignment hash table, otherwise it is for the
2164 expression hash table. */
2166 static void
2167 hash_scan_set (pat, insn, set_p)
2168 rtx pat, insn;
2169 int set_p;
2171 rtx src = SET_SRC (pat);
2172 rtx dest = SET_DEST (pat);
2173 rtx note;
2175 if (GET_CODE (src) == CALL)
2176 hash_scan_call (src, insn);
2178 else if (GET_CODE (dest) == REG)
2180 unsigned int regno = REGNO (dest);
2181 rtx tmp;
2183 /* If this is a single set and we are doing constant propagation,
2184 see if a REG_NOTE shows this equivalent to a constant. */
2185 if (set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2186 && CONSTANT_P (XEXP (note, 0)))
2187 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2189 /* Only record sets of pseudo-regs in the hash table. */
2190 if (! set_p
2191 && regno >= FIRST_PSEUDO_REGISTER
2192 /* Don't GCSE something if we can't do a reg/reg copy. */
2193 && can_copy_p [GET_MODE (dest)]
2194 /* GCSE commonly inserts instruction after the insn. We can't
2195 do that easily for EH_REGION notes so disable GCSE on these
2196 for now. */
2197 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2198 /* Is SET_SRC something we want to gcse? */
2199 && want_to_gcse_p (src)
2200 /* Don't CSE a nop. */
2201 && ! set_noop_p (pat)
2202 /* Don't GCSE if it has attached REG_EQUIV note.
2203 At this point this only function parameters should have
2204 REG_EQUIV notes and if the argument slot is used somewhere
2205 explicitly, it means address of parameter has been taken,
2206 so we should not extend the lifetime of the pseudo. */
2207 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2208 || GET_CODE (XEXP (note, 0)) != MEM))
2210 /* An expression is not anticipatable if its operands are
2211 modified before this insn or if this is not the only SET in
2212 this insn. */
2213 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2214 /* An expression is not available if its operands are
2215 subsequently modified, including this insn. It's also not
2216 available if this is a branch, because we can't insert
2217 a set after the branch. */
2218 int avail_p = (oprs_available_p (src, insn)
2219 && ! JUMP_P (insn));
2221 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
2224 /* Record sets for constant/copy propagation. */
2225 else if (set_p
2226 && regno >= FIRST_PSEUDO_REGISTER
2227 && ((GET_CODE (src) == REG
2228 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2229 && can_copy_p [GET_MODE (dest)]
2230 && REGNO (src) != regno)
2231 || CONSTANT_P (src))
2232 /* A copy is not available if its src or dest is subsequently
2233 modified. Here we want to search from INSN+1 on, but
2234 oprs_available_p searches from INSN on. */
2235 && (insn == BLOCK_END (BLOCK_NUM (insn))
2236 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2237 && oprs_available_p (pat, tmp))))
2238 insert_set_in_table (pat, insn);
2242 static void
2243 hash_scan_clobber (x, insn)
2244 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2246 /* Currently nothing to do. */
2249 static void
2250 hash_scan_call (x, insn)
2251 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2253 /* Currently nothing to do. */
2256 /* Process INSN and add hash table entries as appropriate.
2258 Only available expressions that set a single pseudo-reg are recorded.
2260 Single sets in a PARALLEL could be handled, but it's an extra complication
2261 that isn't dealt with right now. The trick is handling the CLOBBERs that
2262 are also in the PARALLEL. Later.
2264 If SET_P is non-zero, this is for the assignment hash table,
2265 otherwise it is for the expression hash table.
2266 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2267 not record any expressions. */
2269 static void
2270 hash_scan_insn (insn, set_p, in_libcall_block)
2271 rtx insn;
2272 int set_p;
2273 int in_libcall_block;
2275 rtx pat = PATTERN (insn);
2276 int i;
2278 if (in_libcall_block)
2279 return;
2281 /* Pick out the sets of INSN and for other forms of instructions record
2282 what's been modified. */
2284 if (GET_CODE (pat) == SET)
2285 hash_scan_set (pat, insn, set_p);
2286 else if (GET_CODE (pat) == PARALLEL)
2287 for (i = 0; i < XVECLEN (pat, 0); i++)
2289 rtx x = XVECEXP (pat, 0, i);
2291 if (GET_CODE (x) == SET)
2292 hash_scan_set (x, insn, set_p);
2293 else if (GET_CODE (x) == CLOBBER)
2294 hash_scan_clobber (x, insn);
2295 else if (GET_CODE (x) == CALL)
2296 hash_scan_call (x, insn);
2299 else if (GET_CODE (pat) == CLOBBER)
2300 hash_scan_clobber (pat, insn);
2301 else if (GET_CODE (pat) == CALL)
2302 hash_scan_call (pat, insn);
2305 static void
2306 dump_hash_table (file, name, table, table_size, total_size)
2307 FILE *file;
2308 const char *name;
2309 struct expr **table;
2310 int table_size, total_size;
2312 int i;
2313 /* Flattened out table, so it's printed in proper order. */
2314 struct expr **flat_table;
2315 unsigned int *hash_val;
2316 struct expr *expr;
2318 flat_table
2319 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2320 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
2322 for (i = 0; i < table_size; i++)
2323 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2325 flat_table[expr->bitmap_index] = expr;
2326 hash_val[expr->bitmap_index] = i;
2329 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2330 name, table_size, total_size);
2332 for (i = 0; i < total_size; i++)
2333 if (flat_table[i] != 0)
2335 expr = flat_table[i];
2336 fprintf (file, "Index %d (hash value %d)\n ",
2337 expr->bitmap_index, hash_val[i]);
2338 print_rtl (file, expr->expr);
2339 fprintf (file, "\n");
2342 fprintf (file, "\n");
2344 free (flat_table);
2345 free (hash_val);
2348 /* Record register first/last/block set information for REGNO in INSN.
2350 first_set records the first place in the block where the register
2351 is set and is used to compute "anticipatability".
2353 last_set records the last place in the block where the register
2354 is set and is used to compute "availability".
2356 last_bb records the block for which first_set and last_set are
2357 valid, as a quick test to invalidate them.
2359 reg_set_in_block records whether the register is set in the block
2360 and is used to compute "transparency". */
2362 static void
2363 record_last_reg_set_info (insn, regno)
2364 rtx insn;
2365 int regno;
2367 struct reg_avail_info *info = &reg_avail_info[regno];
2368 int cuid = INSN_CUID (insn);
2370 info->last_set = cuid;
2371 if (info->last_bb != current_bb)
2373 info->last_bb = current_bb;
2374 info->first_set = cuid;
2375 SET_BIT (reg_set_in_block[current_bb], regno);
2380 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2381 Note we store a pair of elements in the list, so they have to be
2382 taken off pairwise. */
2384 static void
2385 canon_list_insert (dest, unused1, v_insn)
2386 rtx dest ATTRIBUTE_UNUSED;
2387 rtx unused1 ATTRIBUTE_UNUSED;
2388 void * v_insn;
2390 rtx dest_addr, insn;
2391 int bb;
2393 while (GET_CODE (dest) == SUBREG
2394 || GET_CODE (dest) == ZERO_EXTRACT
2395 || GET_CODE (dest) == SIGN_EXTRACT
2396 || GET_CODE (dest) == STRICT_LOW_PART)
2397 dest = XEXP (dest, 0);
2399 /* If DEST is not a MEM, then it will not conflict with a load. Note
2400 that function calls are assumed to clobber memory, but are handled
2401 elsewhere. */
2403 if (GET_CODE (dest) != MEM)
2404 return;
2406 dest_addr = get_addr (XEXP (dest, 0));
2407 dest_addr = canon_rtx (dest_addr);
2408 insn = (rtx) v_insn;
2409 bb = BLOCK_NUM (insn);
2411 canon_modify_mem_list[bb] =
2412 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2413 canon_modify_mem_list[bb] =
2414 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2415 bitmap_set_bit (canon_modify_mem_list_set, bb);
2418 /* Record memory modification information for INSN. We do not actually care
2419 about the memory location(s) that are set, or even how they are set (consider
2420 a CALL_INSN). We merely need to record which insns modify memory. */
2422 static void
2423 record_last_mem_set_info (insn)
2424 rtx insn;
2426 int bb = BLOCK_NUM (insn);
2428 /* load_killed_in_block_p will handle the case of calls clobbering
2429 everything. */
2430 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2431 bitmap_set_bit (modify_mem_list_set, bb);
2433 if (GET_CODE (insn) == CALL_INSN)
2435 /* Note that traversals of this loop (other than for free-ing)
2436 will break after encountering a CALL_INSN. So, there's no
2437 need to insert a pair of items, as canon_list_insert does. */
2438 canon_modify_mem_list[bb] =
2439 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2440 bitmap_set_bit (canon_modify_mem_list_set, bb);
2442 else
2443 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2446 /* Called from compute_hash_table via note_stores to handle one
2447 SET or CLOBBER in an insn. DATA is really the instruction in which
2448 the SET is taking place. */
2450 static void
2451 record_last_set_info (dest, setter, data)
2452 rtx dest, setter ATTRIBUTE_UNUSED;
2453 void *data;
2455 rtx last_set_insn = (rtx) data;
2457 if (GET_CODE (dest) == SUBREG)
2458 dest = SUBREG_REG (dest);
2460 if (GET_CODE (dest) == REG)
2461 record_last_reg_set_info (last_set_insn, REGNO (dest));
2462 else if (GET_CODE (dest) == MEM
2463 /* Ignore pushes, they clobber nothing. */
2464 && ! push_operand (dest, GET_MODE (dest)))
2465 record_last_mem_set_info (last_set_insn);
2468 /* Top level function to create an expression or assignment hash table.
2470 Expression entries are placed in the hash table if
2471 - they are of the form (set (pseudo-reg) src),
2472 - src is something we want to perform GCSE on,
2473 - none of the operands are subsequently modified in the block
2475 Assignment entries are placed in the hash table if
2476 - they are of the form (set (pseudo-reg) src),
2477 - src is something we want to perform const/copy propagation on,
2478 - none of the operands or target are subsequently modified in the block
2480 Currently src must be a pseudo-reg or a const_int.
2482 F is the first insn.
2483 SET_P is non-zero for computing the assignment hash table. */
2485 static void
2486 compute_hash_table (set_p)
2487 int set_p;
2489 unsigned int i;
2491 /* While we compute the hash table we also compute a bit array of which
2492 registers are set in which blocks.
2493 ??? This isn't needed during const/copy propagation, but it's cheap to
2494 compute. Later. */
2495 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
2497 /* re-Cache any INSN_LIST nodes we have allocated. */
2498 clear_modify_mem_tables ();
2499 /* Some working arrays used to track first and last set in each block. */
2500 reg_avail_info = (struct reg_avail_info*)
2501 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2503 for (i = 0; i < max_gcse_regno; ++i)
2504 reg_avail_info[i].last_bb = NEVER_SET;
2506 for (current_bb = 0; current_bb < n_basic_blocks; current_bb++)
2508 rtx insn;
2509 unsigned int regno;
2510 int in_libcall_block;
2512 /* First pass over the instructions records information used to
2513 determine when registers and memory are first and last set.
2514 ??? hard-reg reg_set_in_block computation
2515 could be moved to compute_sets since they currently don't change. */
2517 for (insn = BLOCK_HEAD (current_bb);
2518 insn && insn != NEXT_INSN (BLOCK_END (current_bb));
2519 insn = NEXT_INSN (insn))
2521 if (! INSN_P (insn))
2522 continue;
2524 if (GET_CODE (insn) == CALL_INSN)
2526 bool clobbers_all = false;
2527 #ifdef NON_SAVING_SETJMP
2528 if (NON_SAVING_SETJMP
2529 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2530 clobbers_all = true;
2531 #endif
2533 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2534 if (clobbers_all
2535 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2536 record_last_reg_set_info (insn, regno);
2538 mark_call (insn);
2541 note_stores (PATTERN (insn), record_last_set_info, insn);
2544 /* The next pass builds the hash table. */
2546 for (insn = BLOCK_HEAD (current_bb), in_libcall_block = 0;
2547 insn && insn != NEXT_INSN (BLOCK_END (current_bb));
2548 insn = NEXT_INSN (insn))
2549 if (INSN_P (insn))
2551 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2552 in_libcall_block = 1;
2553 else if (set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2554 in_libcall_block = 0;
2555 hash_scan_insn (insn, set_p, in_libcall_block);
2556 if (!set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2557 in_libcall_block = 0;
2561 free (reg_avail_info);
2562 reg_avail_info = NULL;
2565 /* Allocate space for the set hash table.
2566 N_INSNS is the number of instructions in the function.
2567 It is used to determine the number of buckets to use. */
2569 static void
2570 alloc_set_hash_table (n_insns)
2571 int n_insns;
2573 int n;
2575 set_hash_table_size = n_insns / 4;
2576 if (set_hash_table_size < 11)
2577 set_hash_table_size = 11;
2579 /* Attempt to maintain efficient use of hash table.
2580 Making it an odd number is simplest for now.
2581 ??? Later take some measurements. */
2582 set_hash_table_size |= 1;
2583 n = set_hash_table_size * sizeof (struct expr *);
2584 set_hash_table = (struct expr **) gmalloc (n);
2587 /* Free things allocated by alloc_set_hash_table. */
2589 static void
2590 free_set_hash_table ()
2592 free (set_hash_table);
2595 /* Compute the hash table for doing copy/const propagation. */
2597 static void
2598 compute_set_hash_table ()
2600 /* Initialize count of number of entries in hash table. */
2601 n_sets = 0;
2602 memset ((char *) set_hash_table, 0,
2603 set_hash_table_size * sizeof (struct expr *));
2605 compute_hash_table (1);
2608 /* Allocate space for the expression hash table.
2609 N_INSNS is the number of instructions in the function.
2610 It is used to determine the number of buckets to use. */
2612 static void
2613 alloc_expr_hash_table (n_insns)
2614 unsigned int n_insns;
2616 int n;
2618 expr_hash_table_size = n_insns / 2;
2619 /* Make sure the amount is usable. */
2620 if (expr_hash_table_size < 11)
2621 expr_hash_table_size = 11;
2623 /* Attempt to maintain efficient use of hash table.
2624 Making it an odd number is simplest for now.
2625 ??? Later take some measurements. */
2626 expr_hash_table_size |= 1;
2627 n = expr_hash_table_size * sizeof (struct expr *);
2628 expr_hash_table = (struct expr **) gmalloc (n);
2631 /* Free things allocated by alloc_expr_hash_table. */
2633 static void
2634 free_expr_hash_table ()
2636 free (expr_hash_table);
2639 /* Compute the hash table for doing GCSE. */
2641 static void
2642 compute_expr_hash_table ()
2644 /* Initialize count of number of entries in hash table. */
2645 n_exprs = 0;
2646 memset ((char *) expr_hash_table, 0,
2647 expr_hash_table_size * sizeof (struct expr *));
2649 compute_hash_table (0);
2652 /* Expression tracking support. */
2654 /* Lookup pattern PAT in the expression table.
2655 The result is a pointer to the table entry, or NULL if not found. */
2657 static struct expr *
2658 lookup_expr (pat)
2659 rtx pat;
2661 int do_not_record_p;
2662 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2663 expr_hash_table_size);
2664 struct expr *expr;
2666 if (do_not_record_p)
2667 return NULL;
2669 expr = expr_hash_table[hash];
2671 while (expr && ! expr_equiv_p (expr->expr, pat))
2672 expr = expr->next_same_hash;
2674 return expr;
2677 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2678 matches it, otherwise return the first entry for REGNO. The result is a
2679 pointer to the table entry, or NULL if not found. */
2681 static struct expr *
2682 lookup_set (regno, pat)
2683 unsigned int regno;
2684 rtx pat;
2686 unsigned int hash = hash_set (regno, set_hash_table_size);
2687 struct expr *expr;
2689 expr = set_hash_table[hash];
2691 if (pat)
2693 while (expr && ! expr_equiv_p (expr->expr, pat))
2694 expr = expr->next_same_hash;
2696 else
2698 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2699 expr = expr->next_same_hash;
2702 return expr;
2705 /* Return the next entry for REGNO in list EXPR. */
2707 static struct expr *
2708 next_set (regno, expr)
2709 unsigned int regno;
2710 struct expr *expr;
2713 expr = expr->next_same_hash;
2714 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2716 return expr;
2719 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2720 types may be mixed. */
2722 static void
2723 free_insn_expr_list_list (listp)
2724 rtx *listp;
2726 rtx list, next;
2728 for (list = *listp; list ; list = next)
2730 next = XEXP (list, 1);
2731 if (GET_CODE (list) == EXPR_LIST)
2732 free_EXPR_LIST_node (list);
2733 else
2734 free_INSN_LIST_node (list);
2737 *listp = NULL;
2740 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2741 static void
2742 clear_modify_mem_tables ()
2744 int i;
2746 EXECUTE_IF_SET_IN_BITMAP
2747 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2748 bitmap_clear (modify_mem_list_set);
2750 EXECUTE_IF_SET_IN_BITMAP
2751 (canon_modify_mem_list_set, 0, i,
2752 free_insn_expr_list_list (canon_modify_mem_list + i));
2753 bitmap_clear (canon_modify_mem_list_set);
2756 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2758 static void
2759 free_modify_mem_tables ()
2761 clear_modify_mem_tables ();
2762 free (modify_mem_list);
2763 free (canon_modify_mem_list);
2764 modify_mem_list = 0;
2765 canon_modify_mem_list = 0;
2768 /* Reset tables used to keep track of what's still available [since the
2769 start of the block]. */
2771 static void
2772 reset_opr_set_tables ()
2774 /* Maintain a bitmap of which regs have been set since beginning of
2775 the block. */
2776 CLEAR_REG_SET (reg_set_bitmap);
2778 /* Also keep a record of the last instruction to modify memory.
2779 For now this is very trivial, we only record whether any memory
2780 location has been modified. */
2781 clear_modify_mem_tables ();
2784 /* Return non-zero if the operands of X are not set before INSN in
2785 INSN's basic block. */
2787 static int
2788 oprs_not_set_p (x, insn)
2789 rtx x, insn;
2791 int i, j;
2792 enum rtx_code code;
2793 const char *fmt;
2795 if (x == 0)
2796 return 1;
2798 code = GET_CODE (x);
2799 switch (code)
2801 case PC:
2802 case CC0:
2803 case CONST:
2804 case CONST_INT:
2805 case CONST_DOUBLE:
2806 case CONST_VECTOR:
2807 case SYMBOL_REF:
2808 case LABEL_REF:
2809 case ADDR_VEC:
2810 case ADDR_DIFF_VEC:
2811 return 1;
2813 case MEM:
2814 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2815 INSN_CUID (insn), x, 0))
2816 return 0;
2817 else
2818 return oprs_not_set_p (XEXP (x, 0), insn);
2820 case REG:
2821 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2823 default:
2824 break;
2827 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2829 if (fmt[i] == 'e')
2831 /* If we are about to do the last recursive call
2832 needed at this level, change it into iteration.
2833 This function is called enough to be worth it. */
2834 if (i == 0)
2835 return oprs_not_set_p (XEXP (x, i), insn);
2837 if (! oprs_not_set_p (XEXP (x, i), insn))
2838 return 0;
2840 else if (fmt[i] == 'E')
2841 for (j = 0; j < XVECLEN (x, i); j++)
2842 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2843 return 0;
2846 return 1;
2849 /* Mark things set by a CALL. */
2851 static void
2852 mark_call (insn)
2853 rtx insn;
2855 if (! CONST_OR_PURE_CALL_P (insn))
2856 record_last_mem_set_info (insn);
2859 /* Mark things set by a SET. */
2861 static void
2862 mark_set (pat, insn)
2863 rtx pat, insn;
2865 rtx dest = SET_DEST (pat);
2867 while (GET_CODE (dest) == SUBREG
2868 || GET_CODE (dest) == ZERO_EXTRACT
2869 || GET_CODE (dest) == SIGN_EXTRACT
2870 || GET_CODE (dest) == STRICT_LOW_PART)
2871 dest = XEXP (dest, 0);
2873 if (GET_CODE (dest) == REG)
2874 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2875 else if (GET_CODE (dest) == MEM)
2876 record_last_mem_set_info (insn);
2878 if (GET_CODE (SET_SRC (pat)) == CALL)
2879 mark_call (insn);
2882 /* Record things set by a CLOBBER. */
2884 static void
2885 mark_clobber (pat, insn)
2886 rtx pat, insn;
2888 rtx clob = XEXP (pat, 0);
2890 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2891 clob = XEXP (clob, 0);
2893 if (GET_CODE (clob) == REG)
2894 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2895 else
2896 record_last_mem_set_info (insn);
2899 /* Record things set by INSN.
2900 This data is used by oprs_not_set_p. */
2902 static void
2903 mark_oprs_set (insn)
2904 rtx insn;
2906 rtx pat = PATTERN (insn);
2907 int i;
2909 if (GET_CODE (pat) == SET)
2910 mark_set (pat, insn);
2911 else if (GET_CODE (pat) == PARALLEL)
2912 for (i = 0; i < XVECLEN (pat, 0); i++)
2914 rtx x = XVECEXP (pat, 0, i);
2916 if (GET_CODE (x) == SET)
2917 mark_set (x, insn);
2918 else if (GET_CODE (x) == CLOBBER)
2919 mark_clobber (x, insn);
2920 else if (GET_CODE (x) == CALL)
2921 mark_call (insn);
2924 else if (GET_CODE (pat) == CLOBBER)
2925 mark_clobber (pat, insn);
2926 else if (GET_CODE (pat) == CALL)
2927 mark_call (insn);
2931 /* Classic GCSE reaching definition support. */
2933 /* Allocate reaching def variables. */
2935 static void
2936 alloc_rd_mem (n_blocks, n_insns)
2937 int n_blocks, n_insns;
2939 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2940 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2942 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2943 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2945 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2946 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2948 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2949 sbitmap_vector_zero (rd_out, n_basic_blocks);
2952 /* Free reaching def variables. */
2954 static void
2955 free_rd_mem ()
2957 sbitmap_vector_free (rd_kill);
2958 sbitmap_vector_free (rd_gen);
2959 sbitmap_vector_free (reaching_defs);
2960 sbitmap_vector_free (rd_out);
2963 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2965 static void
2966 handle_rd_kill_set (insn, regno, bb)
2967 rtx insn;
2968 int regno;
2969 basic_block bb;
2971 struct reg_set *this_reg;
2973 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2974 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2975 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2978 /* Compute the set of kill's for reaching definitions. */
2980 static void
2981 compute_kill_rd ()
2983 int bb, cuid;
2984 unsigned int regno;
2985 int i;
2987 /* For each block
2988 For each set bit in `gen' of the block (i.e each insn which
2989 generates a definition in the block)
2990 Call the reg set by the insn corresponding to that bit regx
2991 Look at the linked list starting at reg_set_table[regx]
2992 For each setting of regx in the linked list, which is not in
2993 this block
2994 Set the bit in `kill' corresponding to that insn. */
2995 for (bb = 0; bb < n_basic_blocks; bb++)
2996 for (cuid = 0; cuid < max_cuid; cuid++)
2997 if (TEST_BIT (rd_gen[bb], cuid))
2999 rtx insn = CUID_INSN (cuid);
3000 rtx pat = PATTERN (insn);
3002 if (GET_CODE (insn) == CALL_INSN)
3004 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
3005 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
3006 handle_rd_kill_set (insn, regno, BASIC_BLOCK (bb));
3009 if (GET_CODE (pat) == PARALLEL)
3011 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
3013 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
3015 if ((code == SET || code == CLOBBER)
3016 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
3017 handle_rd_kill_set (insn,
3018 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
3019 BASIC_BLOCK (bb));
3022 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
3023 /* Each setting of this register outside of this block
3024 must be marked in the set of kills in this block. */
3025 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), BASIC_BLOCK (bb));
3029 /* Compute the reaching definitions as in
3030 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3031 Chapter 10. It is the same algorithm as used for computing available
3032 expressions but applied to the gens and kills of reaching definitions. */
3034 static void
3035 compute_rd ()
3037 int bb, changed, passes;
3039 for (bb = 0; bb < n_basic_blocks; bb++)
3040 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
3042 passes = 0;
3043 changed = 1;
3044 while (changed)
3046 changed = 0;
3047 for (bb = 0; bb < n_basic_blocks; bb++)
3049 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
3050 changed |= sbitmap_union_of_diff_cg (rd_out[bb], rd_gen[bb],
3051 reaching_defs[bb], rd_kill[bb]);
3053 passes++;
3056 if (gcse_file)
3057 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3060 /* Classic GCSE available expression support. */
3062 /* Allocate memory for available expression computation. */
3064 static void
3065 alloc_avail_expr_mem (n_blocks, n_exprs)
3066 int n_blocks, n_exprs;
3068 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3069 sbitmap_vector_zero (ae_kill, n_basic_blocks);
3071 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3072 sbitmap_vector_zero (ae_gen, n_basic_blocks);
3074 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3075 sbitmap_vector_zero (ae_in, n_basic_blocks);
3077 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3078 sbitmap_vector_zero (ae_out, n_basic_blocks);
3081 static void
3082 free_avail_expr_mem ()
3084 sbitmap_vector_free (ae_kill);
3085 sbitmap_vector_free (ae_gen);
3086 sbitmap_vector_free (ae_in);
3087 sbitmap_vector_free (ae_out);
3090 /* Compute the set of available expressions generated in each basic block. */
3092 static void
3093 compute_ae_gen ()
3095 unsigned int i;
3096 struct expr *expr;
3097 struct occr *occr;
3099 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3100 This is all we have to do because an expression is not recorded if it
3101 is not available, and the only expressions we want to work with are the
3102 ones that are recorded. */
3103 for (i = 0; i < expr_hash_table_size; i++)
3104 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
3105 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3106 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3109 /* Return non-zero if expression X is killed in BB. */
3111 static int
3112 expr_killed_p (x, bb)
3113 rtx x;
3114 basic_block bb;
3116 int i, j;
3117 enum rtx_code code;
3118 const char *fmt;
3120 if (x == 0)
3121 return 1;
3123 code = GET_CODE (x);
3124 switch (code)
3126 case REG:
3127 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3129 case MEM:
3130 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3131 return 1;
3132 else
3133 return expr_killed_p (XEXP (x, 0), bb);
3135 case PC:
3136 case CC0: /*FIXME*/
3137 case CONST:
3138 case CONST_INT:
3139 case CONST_DOUBLE:
3140 case CONST_VECTOR:
3141 case SYMBOL_REF:
3142 case LABEL_REF:
3143 case ADDR_VEC:
3144 case ADDR_DIFF_VEC:
3145 return 0;
3147 default:
3148 break;
3151 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3153 if (fmt[i] == 'e')
3155 /* If we are about to do the last recursive call
3156 needed at this level, change it into iteration.
3157 This function is called enough to be worth it. */
3158 if (i == 0)
3159 return expr_killed_p (XEXP (x, i), bb);
3160 else if (expr_killed_p (XEXP (x, i), bb))
3161 return 1;
3163 else if (fmt[i] == 'E')
3164 for (j = 0; j < XVECLEN (x, i); j++)
3165 if (expr_killed_p (XVECEXP (x, i, j), bb))
3166 return 1;
3169 return 0;
3172 /* Compute the set of available expressions killed in each basic block. */
3174 static void
3175 compute_ae_kill (ae_gen, ae_kill)
3176 sbitmap *ae_gen, *ae_kill;
3178 int bb;
3179 unsigned int i;
3180 struct expr *expr;
3182 for (bb = 0; bb < n_basic_blocks; bb++)
3183 for (i = 0; i < expr_hash_table_size; i++)
3184 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
3186 /* Skip EXPR if generated in this block. */
3187 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
3188 continue;
3190 if (expr_killed_p (expr->expr, BASIC_BLOCK (bb)))
3191 SET_BIT (ae_kill[bb], expr->bitmap_index);
3195 /* Actually perform the Classic GCSE optimizations. */
3197 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3199 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3200 as a positive reach. We want to do this when there are two computations
3201 of the expression in the block.
3203 VISITED is a pointer to a working buffer for tracking which BB's have
3204 been visited. It is NULL for the top-level call.
3206 We treat reaching expressions that go through blocks containing the same
3207 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3208 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3209 2 as not reaching. The intent is to improve the probability of finding
3210 only one reaching expression and to reduce register lifetimes by picking
3211 the closest such expression. */
3213 static int
3214 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3215 struct occr *occr;
3216 struct expr *expr;
3217 basic_block bb;
3218 int check_self_loop;
3219 char *visited;
3221 edge pred;
3223 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3225 basic_block pred_bb = pred->src;
3227 if (visited[pred_bb->index])
3228 /* This predecessor has already been visited. Nothing to do. */
3230 else if (pred_bb == bb)
3232 /* BB loops on itself. */
3233 if (check_self_loop
3234 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3235 && BLOCK_NUM (occr->insn) == pred_bb->index)
3236 return 1;
3238 visited[pred_bb->index] = 1;
3241 /* Ignore this predecessor if it kills the expression. */
3242 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3243 visited[pred_bb->index] = 1;
3245 /* Does this predecessor generate this expression? */
3246 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3248 /* Is this the occurrence we're looking for?
3249 Note that there's only one generating occurrence per block
3250 so we just need to check the block number. */
3251 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3252 return 1;
3254 visited[pred_bb->index] = 1;
3257 /* Neither gen nor kill. */
3258 else
3260 visited[pred_bb->index] = 1;
3261 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3262 visited))
3264 return 1;
3268 /* All paths have been checked. */
3269 return 0;
3272 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3273 memory allocated for that function is returned. */
3275 static int
3276 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3277 struct occr *occr;
3278 struct expr *expr;
3279 basic_block bb;
3280 int check_self_loop;
3282 int rval;
3283 char *visited = (char *) xcalloc (n_basic_blocks, 1);
3285 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3287 free (visited);
3288 return rval;
3291 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3292 If there is more than one such instruction, return NULL.
3294 Called only by handle_avail_expr. */
3296 static rtx
3297 computing_insn (expr, insn)
3298 struct expr *expr;
3299 rtx insn;
3301 basic_block bb = BLOCK_FOR_INSN (insn);
3303 if (expr->avail_occr->next == NULL)
3305 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3306 /* The available expression is actually itself
3307 (i.e. a loop in the flow graph) so do nothing. */
3308 return NULL;
3310 /* (FIXME) Case that we found a pattern that was created by
3311 a substitution that took place. */
3312 return expr->avail_occr->insn;
3314 else
3316 /* Pattern is computed more than once.
3317 Search backwards from this insn to see how many of these
3318 computations actually reach this insn. */
3319 struct occr *occr;
3320 rtx insn_computes_expr = NULL;
3321 int can_reach = 0;
3323 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3325 if (BLOCK_FOR_INSN (occr->insn) == bb)
3327 /* The expression is generated in this block.
3328 The only time we care about this is when the expression
3329 is generated later in the block [and thus there's a loop].
3330 We let the normal cse pass handle the other cases. */
3331 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3332 && expr_reaches_here_p (occr, expr, bb, 1))
3334 can_reach++;
3335 if (can_reach > 1)
3336 return NULL;
3338 insn_computes_expr = occr->insn;
3341 else if (expr_reaches_here_p (occr, expr, bb, 0))
3343 can_reach++;
3344 if (can_reach > 1)
3345 return NULL;
3347 insn_computes_expr = occr->insn;
3351 if (insn_computes_expr == NULL)
3352 abort ();
3354 return insn_computes_expr;
3358 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3359 Only called by can_disregard_other_sets. */
3361 static int
3362 def_reaches_here_p (insn, def_insn)
3363 rtx insn, def_insn;
3365 rtx reg;
3367 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3368 return 1;
3370 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3372 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3374 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3375 return 1;
3376 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3377 reg = XEXP (PATTERN (def_insn), 0);
3378 else if (GET_CODE (PATTERN (def_insn)) == SET)
3379 reg = SET_DEST (PATTERN (def_insn));
3380 else
3381 abort ();
3383 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3385 else
3386 return 0;
3389 return 0;
3392 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3393 value returned is the number of definitions that reach INSN. Returning a
3394 value of zero means that [maybe] more than one definition reaches INSN and
3395 the caller can't perform whatever optimization it is trying. i.e. it is
3396 always safe to return zero. */
3398 static int
3399 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3400 struct reg_set **addr_this_reg;
3401 rtx insn;
3402 int for_combine;
3404 int number_of_reaching_defs = 0;
3405 struct reg_set *this_reg;
3407 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3408 if (def_reaches_here_p (insn, this_reg->insn))
3410 number_of_reaching_defs++;
3411 /* Ignore parallels for now. */
3412 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3413 return 0;
3415 if (!for_combine
3416 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3417 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3418 SET_SRC (PATTERN (insn)))))
3419 /* A setting of the reg to a different value reaches INSN. */
3420 return 0;
3422 if (number_of_reaching_defs > 1)
3424 /* If in this setting the value the register is being set to is
3425 equal to the previous value the register was set to and this
3426 setting reaches the insn we are trying to do the substitution
3427 on then we are ok. */
3428 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3429 return 0;
3430 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3431 SET_SRC (PATTERN (insn))))
3432 return 0;
3435 *addr_this_reg = this_reg;
3438 return number_of_reaching_defs;
3441 /* Expression computed by insn is available and the substitution is legal,
3442 so try to perform the substitution.
3444 The result is non-zero if any changes were made. */
3446 static int
3447 handle_avail_expr (insn, expr)
3448 rtx insn;
3449 struct expr *expr;
3451 rtx pat, insn_computes_expr, expr_set;
3452 rtx to;
3453 struct reg_set *this_reg;
3454 int found_setting, use_src;
3455 int changed = 0;
3457 /* We only handle the case where one computation of the expression
3458 reaches this instruction. */
3459 insn_computes_expr = computing_insn (expr, insn);
3460 if (insn_computes_expr == NULL)
3461 return 0;
3462 expr_set = single_set (insn_computes_expr);
3463 if (!expr_set)
3464 abort ();
3466 found_setting = 0;
3467 use_src = 0;
3469 /* At this point we know only one computation of EXPR outside of this
3470 block reaches this insn. Now try to find a register that the
3471 expression is computed into. */
3472 if (GET_CODE (SET_SRC (expr_set)) == REG)
3474 /* This is the case when the available expression that reaches
3475 here has already been handled as an available expression. */
3476 unsigned int regnum_for_replacing
3477 = REGNO (SET_SRC (expr_set));
3479 /* If the register was created by GCSE we can't use `reg_set_table',
3480 however we know it's set only once. */
3481 if (regnum_for_replacing >= max_gcse_regno
3482 /* If the register the expression is computed into is set only once,
3483 or only one set reaches this insn, we can use it. */
3484 || (((this_reg = reg_set_table[regnum_for_replacing]),
3485 this_reg->next == NULL)
3486 || can_disregard_other_sets (&this_reg, insn, 0)))
3488 use_src = 1;
3489 found_setting = 1;
3493 if (!found_setting)
3495 unsigned int regnum_for_replacing
3496 = REGNO (SET_DEST (expr_set));
3498 /* This shouldn't happen. */
3499 if (regnum_for_replacing >= max_gcse_regno)
3500 abort ();
3502 this_reg = reg_set_table[regnum_for_replacing];
3504 /* If the register the expression is computed into is set only once,
3505 or only one set reaches this insn, use it. */
3506 if (this_reg->next == NULL
3507 || can_disregard_other_sets (&this_reg, insn, 0))
3508 found_setting = 1;
3511 if (found_setting)
3513 pat = PATTERN (insn);
3514 if (use_src)
3515 to = SET_SRC (expr_set);
3516 else
3517 to = SET_DEST (expr_set);
3518 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3520 /* We should be able to ignore the return code from validate_change but
3521 to play it safe we check. */
3522 if (changed)
3524 gcse_subst_count++;
3525 if (gcse_file != NULL)
3527 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3528 INSN_UID (insn));
3529 fprintf (gcse_file, " reg %d %s insn %d\n",
3530 REGNO (to), use_src ? "from" : "set in",
3531 INSN_UID (insn_computes_expr));
3536 /* The register that the expr is computed into is set more than once. */
3537 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3539 /* Insert an insn after insnx that copies the reg set in insnx
3540 into a new pseudo register call this new register REGN.
3541 From insnb until end of basic block or until REGB is set
3542 replace all uses of REGB with REGN. */
3543 rtx new_insn;
3545 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3547 /* Generate the new insn. */
3548 /* ??? If the change fails, we return 0, even though we created
3549 an insn. I think this is ok. */
3550 new_insn
3551 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3552 SET_DEST (expr_set)),
3553 insn_computes_expr);
3555 /* Keep register set table up to date. */
3556 record_one_set (REGNO (to), new_insn);
3558 gcse_create_count++;
3559 if (gcse_file != NULL)
3561 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3562 INSN_UID (NEXT_INSN (insn_computes_expr)),
3563 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3564 fprintf (gcse_file, ", computed in insn %d,\n",
3565 INSN_UID (insn_computes_expr));
3566 fprintf (gcse_file, " into newly allocated reg %d\n",
3567 REGNO (to));
3570 pat = PATTERN (insn);
3572 /* Do register replacement for INSN. */
3573 changed = validate_change (insn, &SET_SRC (pat),
3574 SET_DEST (PATTERN
3575 (NEXT_INSN (insn_computes_expr))),
3578 /* We should be able to ignore the return code from validate_change but
3579 to play it safe we check. */
3580 if (changed)
3582 gcse_subst_count++;
3583 if (gcse_file != NULL)
3585 fprintf (gcse_file,
3586 "GCSE: Replacing the source in insn %d with reg %d ",
3587 INSN_UID (insn),
3588 REGNO (SET_DEST (PATTERN (NEXT_INSN
3589 (insn_computes_expr)))));
3590 fprintf (gcse_file, "set in insn %d\n",
3591 INSN_UID (insn_computes_expr));
3596 return changed;
3599 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3600 the dataflow analysis has been done.
3602 The result is non-zero if a change was made. */
3604 static int
3605 classic_gcse ()
3607 int bb, changed;
3608 rtx insn;
3610 /* Note we start at block 1. */
3612 changed = 0;
3613 for (bb = 1; bb < n_basic_blocks; bb++)
3615 /* Reset tables used to keep track of what's still valid [since the
3616 start of the block]. */
3617 reset_opr_set_tables ();
3619 for (insn = BLOCK_HEAD (bb);
3620 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3621 insn = NEXT_INSN (insn))
3623 /* Is insn of form (set (pseudo-reg) ...)? */
3624 if (GET_CODE (insn) == INSN
3625 && GET_CODE (PATTERN (insn)) == SET
3626 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3627 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3629 rtx pat = PATTERN (insn);
3630 rtx src = SET_SRC (pat);
3631 struct expr *expr;
3633 if (want_to_gcse_p (src)
3634 /* Is the expression recorded? */
3635 && ((expr = lookup_expr (src)) != NULL)
3636 /* Is the expression available [at the start of the
3637 block]? */
3638 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3639 /* Are the operands unchanged since the start of the
3640 block? */
3641 && oprs_not_set_p (src, insn))
3642 changed |= handle_avail_expr (insn, expr);
3645 /* Keep track of everything modified by this insn. */
3646 /* ??? Need to be careful w.r.t. mods done to INSN. */
3647 if (INSN_P (insn))
3648 mark_oprs_set (insn);
3652 return changed;
3655 /* Top level routine to perform one classic GCSE pass.
3657 Return non-zero if a change was made. */
3659 static int
3660 one_classic_gcse_pass (pass)
3661 int pass;
3663 int changed = 0;
3665 gcse_subst_count = 0;
3666 gcse_create_count = 0;
3668 alloc_expr_hash_table (max_cuid);
3669 alloc_rd_mem (n_basic_blocks, max_cuid);
3670 compute_expr_hash_table ();
3671 if (gcse_file)
3672 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3673 expr_hash_table_size, n_exprs);
3675 if (n_exprs > 0)
3677 compute_kill_rd ();
3678 compute_rd ();
3679 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3680 compute_ae_gen ();
3681 compute_ae_kill (ae_gen, ae_kill);
3682 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3683 changed = classic_gcse ();
3684 free_avail_expr_mem ();
3687 free_rd_mem ();
3688 free_expr_hash_table ();
3690 if (gcse_file)
3692 fprintf (gcse_file, "\n");
3693 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3694 current_function_name, pass, bytes_used, gcse_subst_count);
3695 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3698 return changed;
3701 /* Compute copy/constant propagation working variables. */
3703 /* Local properties of assignments. */
3704 static sbitmap *cprop_pavloc;
3705 static sbitmap *cprop_absaltered;
3707 /* Global properties of assignments (computed from the local properties). */
3708 static sbitmap *cprop_avin;
3709 static sbitmap *cprop_avout;
3711 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3712 basic blocks. N_SETS is the number of sets. */
3714 static void
3715 alloc_cprop_mem (n_blocks, n_sets)
3716 int n_blocks, n_sets;
3718 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3719 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3721 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3722 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3725 /* Free vars used by copy/const propagation. */
3727 static void
3728 free_cprop_mem ()
3730 sbitmap_vector_free (cprop_pavloc);
3731 sbitmap_vector_free (cprop_absaltered);
3732 sbitmap_vector_free (cprop_avin);
3733 sbitmap_vector_free (cprop_avout);
3736 /* For each block, compute whether X is transparent. X is either an
3737 expression or an assignment [though we don't care which, for this context
3738 an assignment is treated as an expression]. For each block where an
3739 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3740 bit in BMAP. */
3742 static void
3743 compute_transp (x, indx, bmap, set_p)
3744 rtx x;
3745 int indx;
3746 sbitmap *bmap;
3747 int set_p;
3749 int bb, i, j;
3750 enum rtx_code code;
3751 reg_set *r;
3752 const char *fmt;
3754 /* repeat is used to turn tail-recursion into iteration since GCC
3755 can't do it when there's no return value. */
3756 repeat:
3758 if (x == 0)
3759 return;
3761 code = GET_CODE (x);
3762 switch (code)
3764 case REG:
3765 if (set_p)
3767 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3769 for (bb = 0; bb < n_basic_blocks; bb++)
3770 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3771 SET_BIT (bmap[bb], indx);
3773 else
3775 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3776 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3779 else
3781 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3783 for (bb = 0; bb < n_basic_blocks; bb++)
3784 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3785 RESET_BIT (bmap[bb], indx);
3787 else
3789 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3790 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3794 return;
3796 case MEM:
3797 for (bb = 0; bb < n_basic_blocks; bb++)
3799 rtx list_entry = canon_modify_mem_list[bb];
3801 while (list_entry)
3803 rtx dest, dest_addr;
3805 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3807 if (set_p)
3808 SET_BIT (bmap[bb], indx);
3809 else
3810 RESET_BIT (bmap[bb], indx);
3811 break;
3813 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3814 Examine each hunk of memory that is modified. */
3816 dest = XEXP (list_entry, 0);
3817 list_entry = XEXP (list_entry, 1);
3818 dest_addr = XEXP (list_entry, 0);
3820 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3821 x, rtx_addr_varies_p))
3823 if (set_p)
3824 SET_BIT (bmap[bb], indx);
3825 else
3826 RESET_BIT (bmap[bb], indx);
3827 break;
3829 list_entry = XEXP (list_entry, 1);
3833 x = XEXP (x, 0);
3834 goto repeat;
3836 case PC:
3837 case CC0: /*FIXME*/
3838 case CONST:
3839 case CONST_INT:
3840 case CONST_DOUBLE:
3841 case CONST_VECTOR:
3842 case SYMBOL_REF:
3843 case LABEL_REF:
3844 case ADDR_VEC:
3845 case ADDR_DIFF_VEC:
3846 return;
3848 default:
3849 break;
3852 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3854 if (fmt[i] == 'e')
3856 /* If we are about to do the last recursive call
3857 needed at this level, change it into iteration.
3858 This function is called enough to be worth it. */
3859 if (i == 0)
3861 x = XEXP (x, i);
3862 goto repeat;
3865 compute_transp (XEXP (x, i), indx, bmap, set_p);
3867 else if (fmt[i] == 'E')
3868 for (j = 0; j < XVECLEN (x, i); j++)
3869 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3873 /* Top level routine to do the dataflow analysis needed by copy/const
3874 propagation. */
3876 static void
3877 compute_cprop_data ()
3879 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3880 compute_available (cprop_pavloc, cprop_absaltered,
3881 cprop_avout, cprop_avin);
3884 /* Copy/constant propagation. */
3886 /* Maximum number of register uses in an insn that we handle. */
3887 #define MAX_USES 8
3889 /* Table of uses found in an insn.
3890 Allocated statically to avoid alloc/free complexity and overhead. */
3891 static struct reg_use reg_use_table[MAX_USES];
3893 /* Index into `reg_use_table' while building it. */
3894 static int reg_use_count;
3896 /* Set up a list of register numbers used in INSN. The found uses are stored
3897 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3898 and contains the number of uses in the table upon exit.
3900 ??? If a register appears multiple times we will record it multiple times.
3901 This doesn't hurt anything but it will slow things down. */
3903 static void
3904 find_used_regs (xptr, data)
3905 rtx *xptr;
3906 void *data ATTRIBUTE_UNUSED;
3908 int i, j;
3909 enum rtx_code code;
3910 const char *fmt;
3911 rtx x = *xptr;
3913 /* repeat is used to turn tail-recursion into iteration since GCC
3914 can't do it when there's no return value. */
3915 repeat:
3916 if (x == 0)
3917 return;
3919 code = GET_CODE (x);
3920 if (REG_P (x))
3922 if (reg_use_count == MAX_USES)
3923 return;
3925 reg_use_table[reg_use_count].reg_rtx = x;
3926 reg_use_count++;
3929 /* Recursively scan the operands of this expression. */
3931 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3933 if (fmt[i] == 'e')
3935 /* If we are about to do the last recursive call
3936 needed at this level, change it into iteration.
3937 This function is called enough to be worth it. */
3938 if (i == 0)
3940 x = XEXP (x, 0);
3941 goto repeat;
3944 find_used_regs (&XEXP (x, i), data);
3946 else if (fmt[i] == 'E')
3947 for (j = 0; j < XVECLEN (x, i); j++)
3948 find_used_regs (&XVECEXP (x, i, j), data);
3952 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3953 Returns non-zero is successful. */
3955 static int
3956 try_replace_reg (from, to, insn)
3957 rtx from, to, insn;
3959 rtx note = find_reg_equal_equiv_note (insn);
3960 rtx src = 0;
3961 int success = 0;
3962 rtx set = single_set (insn);
3964 success = validate_replace_src (from, to, insn);
3966 /* If above failed and this is a single set, try to simplify the source of
3967 the set given our substitution. We could perhaps try this for multiple
3968 SETs, but it probably won't buy us anything. */
3969 if (!success && set != 0)
3971 src = simplify_replace_rtx (SET_SRC (set), from, to);
3973 if (!rtx_equal_p (src, SET_SRC (set))
3974 && validate_change (insn, &SET_SRC (set), src, 0))
3975 success = 1;
3978 /* If we've failed to do replacement, have a single SET, and don't already
3979 have a note, add a REG_EQUAL note to not lose information. */
3980 if (!success && note == 0 && set != 0)
3981 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3983 /* If there is already a NOTE, update the expression in it with our
3984 replacement. */
3985 else if (note != 0)
3986 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3988 /* REG_EQUAL may get simplified into register.
3989 We don't allow that. Remove that note. This code ought
3990 not to hapen, because previous code ought to syntetize
3991 reg-reg move, but be on the safe side. */
3992 if (note && REG_P (XEXP (note, 0)))
3993 remove_note (insn, note);
3995 return success;
3998 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3999 NULL no such set is found. */
4001 static struct expr *
4002 find_avail_set (regno, insn)
4003 int regno;
4004 rtx insn;
4006 /* SET1 contains the last set found that can be returned to the caller for
4007 use in a substitution. */
4008 struct expr *set1 = 0;
4010 /* Loops are not possible here. To get a loop we would need two sets
4011 available at the start of the block containing INSN. ie we would
4012 need two sets like this available at the start of the block:
4014 (set (reg X) (reg Y))
4015 (set (reg Y) (reg X))
4017 This can not happen since the set of (reg Y) would have killed the
4018 set of (reg X) making it unavailable at the start of this block. */
4019 while (1)
4021 rtx src;
4022 struct expr *set = lookup_set (regno, NULL_RTX);
4024 /* Find a set that is available at the start of the block
4025 which contains INSN. */
4026 while (set)
4028 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4029 break;
4030 set = next_set (regno, set);
4033 /* If no available set was found we've reached the end of the
4034 (possibly empty) copy chain. */
4035 if (set == 0)
4036 break;
4038 if (GET_CODE (set->expr) != SET)
4039 abort ();
4041 src = SET_SRC (set->expr);
4043 /* We know the set is available.
4044 Now check that SRC is ANTLOC (i.e. none of the source operands
4045 have changed since the start of the block).
4047 If the source operand changed, we may still use it for the next
4048 iteration of this loop, but we may not use it for substitutions. */
4050 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4051 set1 = set;
4053 /* If the source of the set is anything except a register, then
4054 we have reached the end of the copy chain. */
4055 if (GET_CODE (src) != REG)
4056 break;
4058 /* Follow the copy chain, ie start another iteration of the loop
4059 and see if we have an available copy into SRC. */
4060 regno = REGNO (src);
4063 /* SET1 holds the last set that was available and anticipatable at
4064 INSN. */
4065 return set1;
4068 /* Subroutine of cprop_insn that tries to propagate constants into
4069 JUMP_INSNS. INSN must be a conditional jump. FROM is what we will try to
4070 replace, SRC is the constant we will try to substitute for it. Returns
4071 nonzero if a change was made. We know INSN has just a SET. */
4073 static int
4074 cprop_jump (bb, insn, from, src)
4075 rtx insn;
4076 rtx from;
4077 rtx src;
4078 basic_block bb;
4080 rtx set = PATTERN (insn);
4081 rtx new = simplify_replace_rtx (SET_SRC (set), from, src);
4083 /* If no simplification can be made, then try the next
4084 register. */
4085 if (rtx_equal_p (new, SET_SRC (set)))
4086 return 0;
4088 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4089 if (new == pc_rtx)
4090 delete_insn (insn);
4091 else
4093 if (! validate_change (insn, &SET_SRC (set), new, 0))
4094 return 0;
4096 /* If this has turned into an unconditional jump,
4097 then put a barrier after it so that the unreachable
4098 code will be deleted. */
4099 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4100 emit_barrier_after (insn);
4103 run_jump_opt_after_gcse = 1;
4105 const_prop_count++;
4106 if (gcse_file != NULL)
4108 fprintf (gcse_file,
4109 "CONST-PROP: Replacing reg %d in insn %d with constant ",
4110 REGNO (from), INSN_UID (insn));
4111 print_rtl (gcse_file, src);
4112 fprintf (gcse_file, "\n");
4114 purge_dead_edges (bb);
4116 return 1;
4119 #ifdef HAVE_cc0
4121 /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
4122 for machines that have CC0. INSN is a single set that stores into CC0;
4123 the insn following it is a conditional jump. REG_USED is the use we will
4124 try to replace, SRC is the constant we will try to substitute for it.
4125 Returns nonzero if a change was made. */
4127 static int
4128 cprop_cc0_jump (bb, insn, reg_used, src)
4129 basic_block bb;
4130 rtx insn;
4131 struct reg_use *reg_used;
4132 rtx src;
4134 /* First substitute in the SET_SRC of INSN, then substitute that for
4135 CC0 in JUMP. */
4136 rtx jump = NEXT_INSN (insn);
4137 rtx new_src = simplify_replace_rtx (SET_SRC (PATTERN (insn)),
4138 reg_used->reg_rtx, src);
4140 if (! cprop_jump (bb, jump, cc0_rtx, new_src))
4141 return 0;
4143 /* If we succeeded, delete the cc0 setter. */
4144 delete_insn (insn);
4146 return 1;
4148 #endif
4150 /* Perform constant and copy propagation on INSN.
4151 The result is non-zero if a change was made. */
4153 static int
4154 cprop_insn (bb, insn, alter_jumps)
4155 basic_block bb;
4156 rtx insn;
4157 int alter_jumps;
4159 struct reg_use *reg_used;
4160 int changed = 0;
4161 rtx note;
4163 if (!INSN_P (insn))
4164 return 0;
4166 reg_use_count = 0;
4167 note_uses (&PATTERN (insn), find_used_regs, NULL);
4169 note = find_reg_equal_equiv_note (insn);
4171 /* We may win even when propagating constants into notes. */
4172 if (note)
4173 find_used_regs (&XEXP (note, 0), NULL);
4175 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4176 reg_used++, reg_use_count--)
4178 unsigned int regno = REGNO (reg_used->reg_rtx);
4179 rtx pat, src;
4180 struct expr *set;
4182 /* Ignore registers created by GCSE.
4183 We do this because ... */
4184 if (regno >= max_gcse_regno)
4185 continue;
4187 /* If the register has already been set in this block, there's
4188 nothing we can do. */
4189 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4190 continue;
4192 /* Find an assignment that sets reg_used and is available
4193 at the start of the block. */
4194 set = find_avail_set (regno, insn);
4195 if (! set)
4196 continue;
4198 pat = set->expr;
4199 /* ??? We might be able to handle PARALLELs. Later. */
4200 if (GET_CODE (pat) != SET)
4201 abort ();
4203 src = SET_SRC (pat);
4205 /* Constant propagation. */
4206 if (CONSTANT_P (src))
4208 /* Handle normal insns first. */
4209 if (GET_CODE (insn) == INSN
4210 && try_replace_reg (reg_used->reg_rtx, src, insn))
4212 changed = 1;
4213 const_prop_count++;
4214 if (gcse_file != NULL)
4216 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
4217 regno);
4218 fprintf (gcse_file, "insn %d with constant ",
4219 INSN_UID (insn));
4220 print_rtl (gcse_file, src);
4221 fprintf (gcse_file, "\n");
4224 /* The original insn setting reg_used may or may not now be
4225 deletable. We leave the deletion to flow. */
4228 /* Try to propagate a CONST_INT into a conditional jump.
4229 We're pretty specific about what we will handle in this
4230 code, we can extend this as necessary over time.
4232 Right now the insn in question must look like
4233 (set (pc) (if_then_else ...)) */
4234 else if (alter_jumps
4235 && GET_CODE (insn) == JUMP_INSN
4236 && condjump_p (insn)
4237 && ! simplejump_p (insn))
4238 changed |= cprop_jump (bb, insn, reg_used->reg_rtx, src);
4240 #ifdef HAVE_cc0
4241 /* Similar code for machines that use a pair of CC0 setter and
4242 conditional jump insn. */
4243 else if (alter_jumps
4244 && GET_CODE (PATTERN (insn)) == SET
4245 && SET_DEST (PATTERN (insn)) == cc0_rtx
4246 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
4247 && condjump_p (NEXT_INSN (insn))
4248 && ! simplejump_p (NEXT_INSN (insn))
4249 && cprop_cc0_jump (bb, insn, reg_used, src))
4251 changed = 1;
4252 break;
4254 #endif
4256 else if (GET_CODE (src) == REG
4257 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4258 && REGNO (src) != regno)
4260 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4262 changed = 1;
4263 copy_prop_count++;
4264 if (gcse_file != NULL)
4266 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
4267 regno, INSN_UID (insn));
4268 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4271 /* The original insn setting reg_used may or may not now be
4272 deletable. We leave the deletion to flow. */
4273 /* FIXME: If it turns out that the insn isn't deletable,
4274 then we may have unnecessarily extended register lifetimes
4275 and made things worse. */
4280 return changed;
4283 /* Forward propagate copies. This includes copies and constants. Return
4284 non-zero if a change was made. */
4286 static int
4287 cprop (alter_jumps)
4288 int alter_jumps;
4290 int bb, changed;
4291 rtx insn;
4293 /* Note we start at block 1. */
4295 changed = 0;
4296 for (bb = 1; bb < n_basic_blocks; bb++)
4298 /* Reset tables used to keep track of what's still valid [since the
4299 start of the block]. */
4300 reset_opr_set_tables ();
4302 for (insn = BLOCK_HEAD (bb);
4303 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
4304 insn = NEXT_INSN (insn))
4305 if (INSN_P (insn))
4307 changed |= cprop_insn (BASIC_BLOCK (bb), insn, alter_jumps);
4309 /* Keep track of everything modified by this insn. */
4310 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4311 call mark_oprs_set if we turned the insn into a NOTE. */
4312 if (GET_CODE (insn) != NOTE)
4313 mark_oprs_set (insn);
4317 if (gcse_file != NULL)
4318 fprintf (gcse_file, "\n");
4320 return changed;
4323 /* Perform one copy/constant propagation pass.
4324 F is the first insn in the function.
4325 PASS is the pass count. */
4327 static int
4328 one_cprop_pass (pass, alter_jumps)
4329 int pass;
4330 int alter_jumps;
4332 int changed = 0;
4334 const_prop_count = 0;
4335 copy_prop_count = 0;
4337 alloc_set_hash_table (max_cuid);
4338 compute_set_hash_table ();
4339 if (gcse_file)
4340 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4341 n_sets);
4342 if (n_sets > 0)
4344 alloc_cprop_mem (n_basic_blocks, n_sets);
4345 compute_cprop_data ();
4346 changed = cprop (alter_jumps);
4347 free_cprop_mem ();
4350 free_set_hash_table ();
4352 if (gcse_file)
4354 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4355 current_function_name, pass, bytes_used);
4356 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4357 const_prop_count, copy_prop_count);
4360 return changed;
4363 /* Compute PRE+LCM working variables. */
4365 /* Local properties of expressions. */
4366 /* Nonzero for expressions that are transparent in the block. */
4367 static sbitmap *transp;
4369 /* Nonzero for expressions that are transparent at the end of the block.
4370 This is only zero for expressions killed by abnormal critical edge
4371 created by a calls. */
4372 static sbitmap *transpout;
4374 /* Nonzero for expressions that are computed (available) in the block. */
4375 static sbitmap *comp;
4377 /* Nonzero for expressions that are locally anticipatable in the block. */
4378 static sbitmap *antloc;
4380 /* Nonzero for expressions where this block is an optimal computation
4381 point. */
4382 static sbitmap *pre_optimal;
4384 /* Nonzero for expressions which are redundant in a particular block. */
4385 static sbitmap *pre_redundant;
4387 /* Nonzero for expressions which should be inserted on a specific edge. */
4388 static sbitmap *pre_insert_map;
4390 /* Nonzero for expressions which should be deleted in a specific block. */
4391 static sbitmap *pre_delete_map;
4393 /* Contains the edge_list returned by pre_edge_lcm. */
4394 static struct edge_list *edge_list;
4396 /* Redundant insns. */
4397 static sbitmap pre_redundant_insns;
4399 /* Allocate vars used for PRE analysis. */
4401 static void
4402 alloc_pre_mem (n_blocks, n_exprs)
4403 int n_blocks, n_exprs;
4405 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4406 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4407 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4409 pre_optimal = NULL;
4410 pre_redundant = NULL;
4411 pre_insert_map = NULL;
4412 pre_delete_map = NULL;
4413 ae_in = NULL;
4414 ae_out = NULL;
4415 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4417 /* pre_insert and pre_delete are allocated later. */
4420 /* Free vars used for PRE analysis. */
4422 static void
4423 free_pre_mem ()
4425 sbitmap_vector_free (transp);
4426 sbitmap_vector_free (comp);
4428 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4430 if (pre_optimal)
4431 sbitmap_vector_free (pre_optimal);
4432 if (pre_redundant)
4433 sbitmap_vector_free (pre_redundant);
4434 if (pre_insert_map)
4435 sbitmap_vector_free (pre_insert_map);
4436 if (pre_delete_map)
4437 sbitmap_vector_free (pre_delete_map);
4438 if (ae_in)
4439 sbitmap_vector_free (ae_in);
4440 if (ae_out)
4441 sbitmap_vector_free (ae_out);
4443 transp = comp = NULL;
4444 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4445 ae_in = ae_out = NULL;
4448 /* Top level routine to do the dataflow analysis needed by PRE. */
4450 static void
4451 compute_pre_data ()
4453 sbitmap trapping_expr;
4454 int i;
4455 unsigned int ui;
4457 compute_local_properties (transp, comp, antloc, 0);
4458 sbitmap_vector_zero (ae_kill, n_basic_blocks);
4460 /* Collect expressions which might trap. */
4461 trapping_expr = sbitmap_alloc (n_exprs);
4462 sbitmap_zero (trapping_expr);
4463 for (ui = 0; ui < expr_hash_table_size; ui++)
4465 struct expr *e;
4466 for (e = expr_hash_table[ui]; e != NULL; e = e->next_same_hash)
4467 if (may_trap_p (e->expr))
4468 SET_BIT (trapping_expr, e->bitmap_index);
4471 /* Compute ae_kill for each basic block using:
4473 ~(TRANSP | COMP)
4475 This is significantly faster than compute_ae_kill. */
4477 for (i = 0; i < n_basic_blocks; i++)
4479 edge e;
4481 /* If the current block is the destination of an abnormal edge, we
4482 kill all trapping expressions because we won't be able to properly
4483 place the instruction on the edge. So make them neither
4484 anticipatable nor transparent. This is fairly conservative. */
4485 for (e = BASIC_BLOCK (i)->pred; e ; e = e->pred_next)
4486 if (e->flags & EDGE_ABNORMAL)
4488 sbitmap_difference (antloc[i], antloc[i], trapping_expr);
4489 sbitmap_difference (transp[i], transp[i], trapping_expr);
4490 break;
4493 sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
4494 sbitmap_not (ae_kill[i], ae_kill[i]);
4497 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4498 ae_kill, &pre_insert_map, &pre_delete_map);
4499 sbitmap_vector_free (antloc);
4500 antloc = NULL;
4501 sbitmap_vector_free (ae_kill);
4502 ae_kill = NULL;
4503 sbitmap_free (trapping_expr);
4506 /* PRE utilities */
4508 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4509 block BB.
4511 VISITED is a pointer to a working buffer for tracking which BB's have
4512 been visited. It is NULL for the top-level call.
4514 We treat reaching expressions that go through blocks containing the same
4515 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4516 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4517 2 as not reaching. The intent is to improve the probability of finding
4518 only one reaching expression and to reduce register lifetimes by picking
4519 the closest such expression. */
4521 static int
4522 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4523 basic_block occr_bb;
4524 struct expr *expr;
4525 basic_block bb;
4526 char *visited;
4528 edge pred;
4530 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4532 basic_block pred_bb = pred->src;
4534 if (pred->src == ENTRY_BLOCK_PTR
4535 /* Has predecessor has already been visited? */
4536 || visited[pred_bb->index])
4537 ;/* Nothing to do. */
4539 /* Does this predecessor generate this expression? */
4540 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4542 /* Is this the occurrence we're looking for?
4543 Note that there's only one generating occurrence per block
4544 so we just need to check the block number. */
4545 if (occr_bb == pred_bb)
4546 return 1;
4548 visited[pred_bb->index] = 1;
4550 /* Ignore this predecessor if it kills the expression. */
4551 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4552 visited[pred_bb->index] = 1;
4554 /* Neither gen nor kill. */
4555 else
4557 visited[pred_bb->index] = 1;
4558 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4559 return 1;
4563 /* All paths have been checked. */
4564 return 0;
4567 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4568 memory allocated for that function is returned. */
4570 static int
4571 pre_expr_reaches_here_p (occr_bb, expr, bb)
4572 basic_block occr_bb;
4573 struct expr *expr;
4574 basic_block bb;
4576 int rval;
4577 char *visited = (char *) xcalloc (n_basic_blocks, 1);
4579 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4581 free (visited);
4582 return rval;
4586 /* Given an expr, generate RTL which we can insert at the end of a BB,
4587 or on an edge. Set the block number of any insns generated to
4588 the value of BB. */
4590 static rtx
4591 process_insert_insn (expr)
4592 struct expr *expr;
4594 rtx reg = expr->reaching_reg;
4595 rtx exp = copy_rtx (expr->expr);
4596 rtx pat;
4598 start_sequence ();
4600 /* If the expression is something that's an operand, like a constant,
4601 just copy it to a register. */
4602 if (general_operand (exp, GET_MODE (reg)))
4603 emit_move_insn (reg, exp);
4605 /* Otherwise, make a new insn to compute this expression and make sure the
4606 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4607 expression to make sure we don't have any sharing issues. */
4608 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4609 abort ();
4611 pat = gen_sequence ();
4612 end_sequence ();
4614 return pat;
4617 /* Add EXPR to the end of basic block BB.
4619 This is used by both the PRE and code hoisting.
4621 For PRE, we want to verify that the expr is either transparent
4622 or locally anticipatable in the target block. This check makes
4623 no sense for code hoisting. */
4625 static void
4626 insert_insn_end_bb (expr, bb, pre)
4627 struct expr *expr;
4628 basic_block bb;
4629 int pre;
4631 rtx insn = bb->end;
4632 rtx new_insn;
4633 rtx reg = expr->reaching_reg;
4634 int regno = REGNO (reg);
4635 rtx pat;
4636 int i;
4638 pat = process_insert_insn (expr);
4640 /* If the last insn is a jump, insert EXPR in front [taking care to
4641 handle cc0, etc. properly]. Similary we need to care trapping
4642 instructions in presence of non-call exceptions. */
4644 if (GET_CODE (insn) == JUMP_INSN
4645 || (GET_CODE (insn) == INSN
4646 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4648 #ifdef HAVE_cc0
4649 rtx note;
4650 #endif
4651 /* It should always be the case that we can put these instructions
4652 anywhere in the basic block with performing PRE optimizations.
4653 Check this. */
4654 if (GET_CODE (insn) == INSN && pre
4655 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4656 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4657 abort ();
4659 /* If this is a jump table, then we can't insert stuff here. Since
4660 we know the previous real insn must be the tablejump, we insert
4661 the new instruction just before the tablejump. */
4662 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4663 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4664 insn = prev_real_insn (insn);
4666 #ifdef HAVE_cc0
4667 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4668 if cc0 isn't set. */
4669 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4670 if (note)
4671 insn = XEXP (note, 0);
4672 else
4674 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4675 if (maybe_cc0_setter
4676 && INSN_P (maybe_cc0_setter)
4677 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4678 insn = maybe_cc0_setter;
4680 #endif
4681 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4682 new_insn = emit_insn_before (pat, insn);
4685 /* Likewise if the last insn is a call, as will happen in the presence
4686 of exception handling. */
4687 else if (GET_CODE (insn) == CALL_INSN
4688 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
4690 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4691 we search backward and place the instructions before the first
4692 parameter is loaded. Do this for everyone for consistency and a
4693 presumtion that we'll get better code elsewhere as well.
4695 It should always be the case that we can put these instructions
4696 anywhere in the basic block with performing PRE optimizations.
4697 Check this. */
4699 if (pre
4700 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4701 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4702 abort ();
4704 /* Since different machines initialize their parameter registers
4705 in different orders, assume nothing. Collect the set of all
4706 parameter registers. */
4707 insn = find_first_parameter_load (insn, bb->head);
4709 /* If we found all the parameter loads, then we want to insert
4710 before the first parameter load.
4712 If we did not find all the parameter loads, then we might have
4713 stopped on the head of the block, which could be a CODE_LABEL.
4714 If we inserted before the CODE_LABEL, then we would be putting
4715 the insn in the wrong basic block. In that case, put the insn
4716 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4717 while (GET_CODE (insn) == CODE_LABEL
4718 || NOTE_INSN_BASIC_BLOCK_P (insn))
4719 insn = NEXT_INSN (insn);
4721 new_insn = emit_insn_before (pat, insn);
4723 else
4724 new_insn = emit_insn_after (pat, insn);
4726 /* Keep block number table up to date.
4727 Note, PAT could be a multiple insn sequence, we have to make
4728 sure that each insn in the sequence is handled. */
4729 if (GET_CODE (pat) == SEQUENCE)
4731 for (i = 0; i < XVECLEN (pat, 0); i++)
4733 rtx insn = XVECEXP (pat, 0, i);
4734 if (INSN_P (insn))
4735 add_label_notes (PATTERN (insn), new_insn);
4737 note_stores (PATTERN (insn), record_set_info, insn);
4740 else
4742 add_label_notes (pat, new_insn);
4744 /* Keep register set table up to date. */
4745 record_one_set (regno, new_insn);
4748 gcse_create_count++;
4750 if (gcse_file)
4752 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4753 bb->index, INSN_UID (new_insn));
4754 fprintf (gcse_file, "copying expression %d to reg %d\n",
4755 expr->bitmap_index, regno);
4759 /* Insert partially redundant expressions on edges in the CFG to make
4760 the expressions fully redundant. */
4762 static int
4763 pre_edge_insert (edge_list, index_map)
4764 struct edge_list *edge_list;
4765 struct expr **index_map;
4767 int e, i, j, num_edges, set_size, did_insert = 0;
4768 sbitmap *inserted;
4770 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4771 if it reaches any of the deleted expressions. */
4773 set_size = pre_insert_map[0]->size;
4774 num_edges = NUM_EDGES (edge_list);
4775 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4776 sbitmap_vector_zero (inserted, num_edges);
4778 for (e = 0; e < num_edges; e++)
4780 int indx;
4781 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4783 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4785 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4787 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4788 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4790 struct expr *expr = index_map[j];
4791 struct occr *occr;
4793 /* Now look at each deleted occurrence of this expression. */
4794 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4796 if (! occr->deleted_p)
4797 continue;
4799 /* Insert this expression on this edge if if it would
4800 reach the deleted occurrence in BB. */
4801 if (!TEST_BIT (inserted[e], j))
4803 rtx insn;
4804 edge eg = INDEX_EDGE (edge_list, e);
4806 /* We can't insert anything on an abnormal and
4807 critical edge, so we insert the insn at the end of
4808 the previous block. There are several alternatives
4809 detailed in Morgans book P277 (sec 10.5) for
4810 handling this situation. This one is easiest for
4811 now. */
4813 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4814 insert_insn_end_bb (index_map[j], bb, 0);
4815 else
4817 insn = process_insert_insn (index_map[j]);
4818 insert_insn_on_edge (insn, eg);
4821 if (gcse_file)
4823 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4824 bb->index,
4825 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4826 fprintf (gcse_file, "copy expression %d\n",
4827 expr->bitmap_index);
4830 update_ld_motion_stores (expr);
4831 SET_BIT (inserted[e], j);
4832 did_insert = 1;
4833 gcse_create_count++;
4840 sbitmap_vector_free (inserted);
4841 return did_insert;
4844 /* Copy the result of INSN to REG. INDX is the expression number. */
4846 static void
4847 pre_insert_copy_insn (expr, insn)
4848 struct expr *expr;
4849 rtx insn;
4851 rtx reg = expr->reaching_reg;
4852 int regno = REGNO (reg);
4853 int indx = expr->bitmap_index;
4854 rtx set = single_set (insn);
4855 rtx new_insn;
4857 if (!set)
4858 abort ();
4860 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
4862 /* Keep register set table up to date. */
4863 record_one_set (regno, new_insn);
4865 gcse_create_count++;
4867 if (gcse_file)
4868 fprintf (gcse_file,
4869 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4870 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4871 INSN_UID (insn), regno);
4872 update_ld_motion_stores (expr);
4875 /* Copy available expressions that reach the redundant expression
4876 to `reaching_reg'. */
4878 static void
4879 pre_insert_copies ()
4881 unsigned int i;
4882 struct expr *expr;
4883 struct occr *occr;
4884 struct occr *avail;
4886 /* For each available expression in the table, copy the result to
4887 `reaching_reg' if the expression reaches a deleted one.
4889 ??? The current algorithm is rather brute force.
4890 Need to do some profiling. */
4892 for (i = 0; i < expr_hash_table_size; i++)
4893 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4895 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4896 we don't want to insert a copy here because the expression may not
4897 really be redundant. So only insert an insn if the expression was
4898 deleted. This test also avoids further processing if the
4899 expression wasn't deleted anywhere. */
4900 if (expr->reaching_reg == NULL)
4901 continue;
4903 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4905 if (! occr->deleted_p)
4906 continue;
4908 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4910 rtx insn = avail->insn;
4912 /* No need to handle this one if handled already. */
4913 if (avail->copied_p)
4914 continue;
4916 /* Don't handle this one if it's a redundant one. */
4917 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4918 continue;
4920 /* Or if the expression doesn't reach the deleted one. */
4921 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4922 expr,
4923 BLOCK_FOR_INSN (occr->insn)))
4924 continue;
4926 /* Copy the result of avail to reaching_reg. */
4927 pre_insert_copy_insn (expr, insn);
4928 avail->copied_p = 1;
4934 /* Delete redundant computations.
4935 Deletion is done by changing the insn to copy the `reaching_reg' of
4936 the expression into the result of the SET. It is left to later passes
4937 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4939 Returns non-zero if a change is made. */
4941 static int
4942 pre_delete ()
4944 unsigned int i;
4945 int changed;
4946 struct expr *expr;
4947 struct occr *occr;
4949 changed = 0;
4950 for (i = 0; i < expr_hash_table_size; i++)
4951 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4953 int indx = expr->bitmap_index;
4955 /* We only need to search antic_occr since we require
4956 ANTLOC != 0. */
4958 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4960 rtx insn = occr->insn;
4961 rtx set;
4962 basic_block bb = BLOCK_FOR_INSN (insn);
4964 if (TEST_BIT (pre_delete_map[bb->index], indx))
4966 set = single_set (insn);
4967 if (! set)
4968 abort ();
4970 /* Create a pseudo-reg to store the result of reaching
4971 expressions into. Get the mode for the new pseudo from
4972 the mode of the original destination pseudo. */
4973 if (expr->reaching_reg == NULL)
4974 expr->reaching_reg
4975 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4977 /* In theory this should never fail since we're creating
4978 a reg->reg copy.
4980 However, on the x86 some of the movXX patterns actually
4981 contain clobbers of scratch regs. This may cause the
4982 insn created by validate_change to not match any pattern
4983 and thus cause validate_change to fail. */
4984 if (validate_change (insn, &SET_SRC (set),
4985 expr->reaching_reg, 0))
4987 occr->deleted_p = 1;
4988 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4989 changed = 1;
4990 gcse_subst_count++;
4993 if (gcse_file)
4995 fprintf (gcse_file,
4996 "PRE: redundant insn %d (expression %d) in ",
4997 INSN_UID (insn), indx);
4998 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4999 bb->index, REGNO (expr->reaching_reg));
5005 return changed;
5008 /* Perform GCSE optimizations using PRE.
5009 This is called by one_pre_gcse_pass after all the dataflow analysis
5010 has been done.
5012 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5013 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5014 Compiler Design and Implementation.
5016 ??? A new pseudo reg is created to hold the reaching expression. The nice
5017 thing about the classical approach is that it would try to use an existing
5018 reg. If the register can't be adequately optimized [i.e. we introduce
5019 reload problems], one could add a pass here to propagate the new register
5020 through the block.
5022 ??? We don't handle single sets in PARALLELs because we're [currently] not
5023 able to copy the rest of the parallel when we insert copies to create full
5024 redundancies from partial redundancies. However, there's no reason why we
5025 can't handle PARALLELs in the cases where there are no partial
5026 redundancies. */
5028 static int
5029 pre_gcse ()
5031 unsigned int i;
5032 int did_insert, changed;
5033 struct expr **index_map;
5034 struct expr *expr;
5036 /* Compute a mapping from expression number (`bitmap_index') to
5037 hash table entry. */
5039 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5040 for (i = 0; i < expr_hash_table_size; i++)
5041 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5042 index_map[expr->bitmap_index] = expr;
5044 /* Reset bitmap used to track which insns are redundant. */
5045 pre_redundant_insns = sbitmap_alloc (max_cuid);
5046 sbitmap_zero (pre_redundant_insns);
5048 /* Delete the redundant insns first so that
5049 - we know what register to use for the new insns and for the other
5050 ones with reaching expressions
5051 - we know which insns are redundant when we go to create copies */
5053 changed = pre_delete ();
5055 did_insert = pre_edge_insert (edge_list, index_map);
5057 /* In other places with reaching expressions, copy the expression to the
5058 specially allocated pseudo-reg that reaches the redundant expr. */
5059 pre_insert_copies ();
5060 if (did_insert)
5062 commit_edge_insertions ();
5063 changed = 1;
5066 free (index_map);
5067 sbitmap_free (pre_redundant_insns);
5068 return changed;
5071 /* Top level routine to perform one PRE GCSE pass.
5073 Return non-zero if a change was made. */
5075 static int
5076 one_pre_gcse_pass (pass)
5077 int pass;
5079 int changed = 0;
5081 gcse_subst_count = 0;
5082 gcse_create_count = 0;
5084 alloc_expr_hash_table (max_cuid);
5085 add_noreturn_fake_exit_edges ();
5086 if (flag_gcse_lm)
5087 compute_ld_motion_mems ();
5089 compute_expr_hash_table ();
5090 trim_ld_motion_mems ();
5091 if (gcse_file)
5092 dump_hash_table (gcse_file, "Expression", expr_hash_table,
5093 expr_hash_table_size, n_exprs);
5095 if (n_exprs > 0)
5097 alloc_pre_mem (n_basic_blocks, n_exprs);
5098 compute_pre_data ();
5099 changed |= pre_gcse ();
5100 free_edge_list (edge_list);
5101 free_pre_mem ();
5104 free_ldst_mems ();
5105 remove_fake_edges ();
5106 free_expr_hash_table ();
5108 if (gcse_file)
5110 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5111 current_function_name, pass, bytes_used);
5112 fprintf (gcse_file, "%d substs, %d insns created\n",
5113 gcse_subst_count, gcse_create_count);
5116 return changed;
5119 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5120 If notes are added to an insn which references a CODE_LABEL, the
5121 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5122 because the following loop optimization pass requires them. */
5124 /* ??? This is very similar to the loop.c add_label_notes function. We
5125 could probably share code here. */
5127 /* ??? If there was a jump optimization pass after gcse and before loop,
5128 then we would not need to do this here, because jump would add the
5129 necessary REG_LABEL notes. */
5131 static void
5132 add_label_notes (x, insn)
5133 rtx x;
5134 rtx insn;
5136 enum rtx_code code = GET_CODE (x);
5137 int i, j;
5138 const char *fmt;
5140 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5142 /* This code used to ignore labels that referred to dispatch tables to
5143 avoid flow generating (slighly) worse code.
5145 We no longer ignore such label references (see LABEL_REF handling in
5146 mark_jump_label for additional information). */
5148 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5149 REG_NOTES (insn));
5150 if (LABEL_P (XEXP (x, 0)))
5151 LABEL_NUSES (XEXP (x, 0))++;
5152 return;
5155 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5157 if (fmt[i] == 'e')
5158 add_label_notes (XEXP (x, i), insn);
5159 else if (fmt[i] == 'E')
5160 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5161 add_label_notes (XVECEXP (x, i, j), insn);
5165 /* Compute transparent outgoing information for each block.
5167 An expression is transparent to an edge unless it is killed by
5168 the edge itself. This can only happen with abnormal control flow,
5169 when the edge is traversed through a call. This happens with
5170 non-local labels and exceptions.
5172 This would not be necessary if we split the edge. While this is
5173 normally impossible for abnormal critical edges, with some effort
5174 it should be possible with exception handling, since we still have
5175 control over which handler should be invoked. But due to increased
5176 EH table sizes, this may not be worthwhile. */
5178 static void
5179 compute_transpout ()
5181 int bb;
5182 unsigned int i;
5183 struct expr *expr;
5185 sbitmap_vector_ones (transpout, n_basic_blocks);
5187 for (bb = 0; bb < n_basic_blocks; ++bb)
5189 /* Note that flow inserted a nop a the end of basic blocks that
5190 end in call instructions for reasons other than abnormal
5191 control flow. */
5192 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
5193 continue;
5195 for (i = 0; i < expr_hash_table_size; i++)
5196 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
5197 if (GET_CODE (expr->expr) == MEM)
5199 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5200 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5201 continue;
5203 /* ??? Optimally, we would use interprocedural alias
5204 analysis to determine if this mem is actually killed
5205 by this call. */
5206 RESET_BIT (transpout[bb], expr->bitmap_index);
5211 /* Removal of useless null pointer checks */
5213 /* Called via note_stores. X is set by SETTER. If X is a register we must
5214 invalidate nonnull_local and set nonnull_killed. DATA is really a
5215 `null_pointer_info *'.
5217 We ignore hard registers. */
5219 static void
5220 invalidate_nonnull_info (x, setter, data)
5221 rtx x;
5222 rtx setter ATTRIBUTE_UNUSED;
5223 void *data;
5225 unsigned int regno;
5226 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5228 while (GET_CODE (x) == SUBREG)
5229 x = SUBREG_REG (x);
5231 /* Ignore anything that is not a register or is a hard register. */
5232 if (GET_CODE (x) != REG
5233 || REGNO (x) < npi->min_reg
5234 || REGNO (x) >= npi->max_reg)
5235 return;
5237 regno = REGNO (x) - npi->min_reg;
5239 RESET_BIT (npi->nonnull_local[npi->current_block], regno);
5240 SET_BIT (npi->nonnull_killed[npi->current_block], regno);
5243 /* Do null-pointer check elimination for the registers indicated in
5244 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5245 they are not our responsibility to free. */
5247 static void
5248 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5249 nonnull_avout, npi)
5250 unsigned int *block_reg;
5251 sbitmap *nonnull_avin;
5252 sbitmap *nonnull_avout;
5253 struct null_pointer_info *npi;
5255 int bb;
5256 int current_block;
5257 sbitmap *nonnull_local = npi->nonnull_local;
5258 sbitmap *nonnull_killed = npi->nonnull_killed;
5260 /* Compute local properties, nonnull and killed. A register will have
5261 the nonnull property if at the end of the current block its value is
5262 known to be nonnull. The killed property indicates that somewhere in
5263 the block any information we had about the register is killed.
5265 Note that a register can have both properties in a single block. That
5266 indicates that it's killed, then later in the block a new value is
5267 computed. */
5268 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
5269 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
5271 for (current_block = 0; current_block < n_basic_blocks; current_block++)
5273 rtx insn, stop_insn;
5275 /* Set the current block for invalidate_nonnull_info. */
5276 npi->current_block = current_block;
5278 /* Scan each insn in the basic block looking for memory references and
5279 register sets. */
5280 stop_insn = NEXT_INSN (BLOCK_END (current_block));
5281 for (insn = BLOCK_HEAD (current_block);
5282 insn != stop_insn;
5283 insn = NEXT_INSN (insn))
5285 rtx set;
5286 rtx reg;
5288 /* Ignore anything that is not a normal insn. */
5289 if (! INSN_P (insn))
5290 continue;
5292 /* Basically ignore anything that is not a simple SET. We do have
5293 to make sure to invalidate nonnull_local and set nonnull_killed
5294 for such insns though. */
5295 set = single_set (insn);
5296 if (!set)
5298 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5299 continue;
5302 /* See if we've got a usable memory load. We handle it first
5303 in case it uses its address register as a dest (which kills
5304 the nonnull property). */
5305 if (GET_CODE (SET_SRC (set)) == MEM
5306 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5307 && REGNO (reg) >= npi->min_reg
5308 && REGNO (reg) < npi->max_reg)
5309 SET_BIT (nonnull_local[current_block],
5310 REGNO (reg) - npi->min_reg);
5312 /* Now invalidate stuff clobbered by this insn. */
5313 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5315 /* And handle stores, we do these last since any sets in INSN can
5316 not kill the nonnull property if it is derived from a MEM
5317 appearing in a SET_DEST. */
5318 if (GET_CODE (SET_DEST (set)) == MEM
5319 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5320 && REGNO (reg) >= npi->min_reg
5321 && REGNO (reg) < npi->max_reg)
5322 SET_BIT (nonnull_local[current_block],
5323 REGNO (reg) - npi->min_reg);
5327 /* Now compute global properties based on the local properties. This
5328 is a classic global availablity algorithm. */
5329 compute_available (nonnull_local, nonnull_killed,
5330 nonnull_avout, nonnull_avin);
5332 /* Now look at each bb and see if it ends with a compare of a value
5333 against zero. */
5334 for (bb = 0; bb < n_basic_blocks; bb++)
5336 rtx last_insn = BLOCK_END (bb);
5337 rtx condition, earliest;
5338 int compare_and_branch;
5340 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5341 since BLOCK_REG[BB] is zero if this block did not end with a
5342 comparison against zero, this condition works. */
5343 if (block_reg[bb] < npi->min_reg
5344 || block_reg[bb] >= npi->max_reg)
5345 continue;
5347 /* LAST_INSN is a conditional jump. Get its condition. */
5348 condition = get_condition (last_insn, &earliest);
5350 /* If we can't determine the condition then skip. */
5351 if (! condition)
5352 continue;
5354 /* Is the register known to have a nonzero value? */
5355 if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
5356 continue;
5358 /* Try to compute whether the compare/branch at the loop end is one or
5359 two instructions. */
5360 if (earliest == last_insn)
5361 compare_and_branch = 1;
5362 else if (earliest == prev_nonnote_insn (last_insn))
5363 compare_and_branch = 2;
5364 else
5365 continue;
5367 /* We know the register in this comparison is nonnull at exit from
5368 this block. We can optimize this comparison. */
5369 if (GET_CODE (condition) == NE)
5371 rtx new_jump;
5373 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
5374 last_insn);
5375 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5376 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5377 emit_barrier_after (new_jump);
5380 delete_insn (last_insn);
5381 if (compare_and_branch == 2)
5382 delete_insn (earliest);
5383 purge_dead_edges (BASIC_BLOCK (bb));
5385 /* Don't check this block again. (Note that BLOCK_END is
5386 invalid here; we deleted the last instruction in the
5387 block.) */
5388 block_reg[bb] = 0;
5392 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5393 at compile time.
5395 This is conceptually similar to global constant/copy propagation and
5396 classic global CSE (it even uses the same dataflow equations as cprop).
5398 If a register is used as memory address with the form (mem (reg)), then we
5399 know that REG can not be zero at that point in the program. Any instruction
5400 which sets REG "kills" this property.
5402 So, if every path leading to a conditional branch has an available memory
5403 reference of that form, then we know the register can not have the value
5404 zero at the conditional branch.
5406 So we merely need to compute the local properies and propagate that data
5407 around the cfg, then optimize where possible.
5409 We run this pass two times. Once before CSE, then again after CSE. This
5410 has proven to be the most profitable approach. It is rare for new
5411 optimization opportunities of this nature to appear after the first CSE
5412 pass.
5414 This could probably be integrated with global cprop with a little work. */
5416 void
5417 delete_null_pointer_checks (f)
5418 rtx f ATTRIBUTE_UNUSED;
5420 sbitmap *nonnull_avin, *nonnull_avout;
5421 unsigned int *block_reg;
5422 int bb;
5423 int reg;
5424 int regs_per_pass;
5425 int max_reg;
5426 struct null_pointer_info npi;
5428 /* If we have only a single block, then there's nothing to do. */
5429 if (n_basic_blocks <= 1)
5430 return;
5432 /* Trying to perform global optimizations on flow graphs which have
5433 a high connectivity will take a long time and is unlikely to be
5434 particularly useful.
5436 In normal circumstances a cfg should have about twice as many edges
5437 as blocks. But we do not want to punish small functions which have
5438 a couple switch statements. So we require a relatively large number
5439 of basic blocks and the ratio of edges to blocks to be high. */
5440 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5441 return;
5443 /* We need four bitmaps, each with a bit for each register in each
5444 basic block. */
5445 max_reg = max_reg_num ();
5446 regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
5448 /* Allocate bitmaps to hold local and global properties. */
5449 npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5450 npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5451 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5452 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5454 /* Go through the basic blocks, seeing whether or not each block
5455 ends with a conditional branch whose condition is a comparison
5456 against zero. Record the register compared in BLOCK_REG. */
5457 block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
5458 for (bb = 0; bb < n_basic_blocks; bb++)
5460 rtx last_insn = BLOCK_END (bb);
5461 rtx condition, earliest, reg;
5463 /* We only want conditional branches. */
5464 if (GET_CODE (last_insn) != JUMP_INSN
5465 || !any_condjump_p (last_insn)
5466 || !onlyjump_p (last_insn))
5467 continue;
5469 /* LAST_INSN is a conditional jump. Get its condition. */
5470 condition = get_condition (last_insn, &earliest);
5472 /* If we were unable to get the condition, or it is not an equality
5473 comparison against zero then there's nothing we can do. */
5474 if (!condition
5475 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5476 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5477 || (XEXP (condition, 1)
5478 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5479 continue;
5481 /* We must be checking a register against zero. */
5482 reg = XEXP (condition, 0);
5483 if (GET_CODE (reg) != REG)
5484 continue;
5486 block_reg[bb] = REGNO (reg);
5489 /* Go through the algorithm for each block of registers. */
5490 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5492 npi.min_reg = reg;
5493 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5494 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5495 nonnull_avout, &npi);
5498 /* Free the table of registers compared at the end of every block. */
5499 free (block_reg);
5501 /* Free bitmaps. */
5502 sbitmap_vector_free (npi.nonnull_local);
5503 sbitmap_vector_free (npi.nonnull_killed);
5504 sbitmap_vector_free (nonnull_avin);
5505 sbitmap_vector_free (nonnull_avout);
5508 /* Code Hoisting variables and subroutines. */
5510 /* Very busy expressions. */
5511 static sbitmap *hoist_vbein;
5512 static sbitmap *hoist_vbeout;
5514 /* Hoistable expressions. */
5515 static sbitmap *hoist_exprs;
5517 /* Dominator bitmaps. */
5518 static sbitmap *dominators;
5520 /* ??? We could compute post dominators and run this algorithm in
5521 reverse to to perform tail merging, doing so would probably be
5522 more effective than the tail merging code in jump.c.
5524 It's unclear if tail merging could be run in parallel with
5525 code hoisting. It would be nice. */
5527 /* Allocate vars used for code hoisting analysis. */
5529 static void
5530 alloc_code_hoist_mem (n_blocks, n_exprs)
5531 int n_blocks, n_exprs;
5533 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5534 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5535 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5537 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5538 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5539 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5540 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5542 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5545 /* Free vars used for code hoisting analysis. */
5547 static void
5548 free_code_hoist_mem ()
5550 sbitmap_vector_free (antloc);
5551 sbitmap_vector_free (transp);
5552 sbitmap_vector_free (comp);
5554 sbitmap_vector_free (hoist_vbein);
5555 sbitmap_vector_free (hoist_vbeout);
5556 sbitmap_vector_free (hoist_exprs);
5557 sbitmap_vector_free (transpout);
5559 sbitmap_vector_free (dominators);
5562 /* Compute the very busy expressions at entry/exit from each block.
5564 An expression is very busy if all paths from a given point
5565 compute the expression. */
5567 static void
5568 compute_code_hoist_vbeinout ()
5570 int bb, changed, passes;
5572 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5573 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5575 passes = 0;
5576 changed = 1;
5578 while (changed)
5580 changed = 0;
5582 /* We scan the blocks in the reverse order to speed up
5583 the convergence. */
5584 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5586 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb], antloc[bb],
5587 hoist_vbeout[bb], transp[bb]);
5588 if (bb != n_basic_blocks - 1)
5589 sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
5592 passes++;
5595 if (gcse_file)
5596 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5599 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5601 static void
5602 compute_code_hoist_data ()
5604 compute_local_properties (transp, comp, antloc, 0);
5605 compute_transpout ();
5606 compute_code_hoist_vbeinout ();
5607 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
5608 if (gcse_file)
5609 fprintf (gcse_file, "\n");
5612 /* Determine if the expression identified by EXPR_INDEX would
5613 reach BB unimpared if it was placed at the end of EXPR_BB.
5615 It's unclear exactly what Muchnick meant by "unimpared". It seems
5616 to me that the expression must either be computed or transparent in
5617 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5618 would allow the expression to be hoisted out of loops, even if
5619 the expression wasn't a loop invariant.
5621 Contrast this to reachability for PRE where an expression is
5622 considered reachable if *any* path reaches instead of *all*
5623 paths. */
5625 static int
5626 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5627 basic_block expr_bb;
5628 int expr_index;
5629 basic_block bb;
5630 char *visited;
5632 edge pred;
5633 int visited_allocated_locally = 0;
5636 if (visited == NULL)
5638 visited_allocated_locally = 1;
5639 visited = xcalloc (n_basic_blocks, 1);
5642 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5644 basic_block pred_bb = pred->src;
5646 if (pred->src == ENTRY_BLOCK_PTR)
5647 break;
5648 else if (visited[pred_bb->index])
5649 continue;
5651 /* Does this predecessor generate this expression? */
5652 else if (TEST_BIT (comp[pred_bb->index], expr_index))
5653 break;
5654 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
5655 break;
5657 /* Not killed. */
5658 else
5660 visited[pred_bb->index] = 1;
5661 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5662 pred_bb, visited))
5663 break;
5666 if (visited_allocated_locally)
5667 free (visited);
5669 return (pred == NULL);
5672 /* Actually perform code hoisting. */
5674 static void
5675 hoist_code ()
5677 int bb, dominated;
5678 unsigned int i;
5679 struct expr **index_map;
5680 struct expr *expr;
5682 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5684 /* Compute a mapping from expression number (`bitmap_index') to
5685 hash table entry. */
5687 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5688 for (i = 0; i < expr_hash_table_size; i++)
5689 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5690 index_map[expr->bitmap_index] = expr;
5692 /* Walk over each basic block looking for potentially hoistable
5693 expressions, nothing gets hoisted from the entry block. */
5694 for (bb = 0; bb < n_basic_blocks; bb++)
5696 int found = 0;
5697 int insn_inserted_p;
5699 /* Examine each expression that is very busy at the exit of this
5700 block. These are the potentially hoistable expressions. */
5701 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5703 int hoistable = 0;
5705 if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
5707 /* We've found a potentially hoistable expression, now
5708 we look at every block BB dominates to see if it
5709 computes the expression. */
5710 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5712 /* Ignore self dominance. */
5713 if (bb == dominated
5714 || ! TEST_BIT (dominators[dominated], bb))
5715 continue;
5717 /* We've found a dominated block, now see if it computes
5718 the busy expression and whether or not moving that
5719 expression to the "beginning" of that block is safe. */
5720 if (!TEST_BIT (antloc[dominated], i))
5721 continue;
5723 /* Note if the expression would reach the dominated block
5724 unimpared if it was placed at the end of BB.
5726 Keep track of how many times this expression is hoistable
5727 from a dominated block into BB. */
5728 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5729 BASIC_BLOCK (dominated), NULL))
5730 hoistable++;
5733 /* If we found more than one hoistable occurrence of this
5734 expression, then note it in the bitmap of expressions to
5735 hoist. It makes no sense to hoist things which are computed
5736 in only one BB, and doing so tends to pessimize register
5737 allocation. One could increase this value to try harder
5738 to avoid any possible code expansion due to register
5739 allocation issues; however experiments have shown that
5740 the vast majority of hoistable expressions are only movable
5741 from two successors, so raising this threshhold is likely
5742 to nullify any benefit we get from code hoisting. */
5743 if (hoistable > 1)
5745 SET_BIT (hoist_exprs[bb], i);
5746 found = 1;
5751 /* If we found nothing to hoist, then quit now. */
5752 if (! found)
5753 continue;
5755 /* Loop over all the hoistable expressions. */
5756 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5758 /* We want to insert the expression into BB only once, so
5759 note when we've inserted it. */
5760 insn_inserted_p = 0;
5762 /* These tests should be the same as the tests above. */
5763 if (TEST_BIT (hoist_vbeout[bb], i))
5765 /* We've found a potentially hoistable expression, now
5766 we look at every block BB dominates to see if it
5767 computes the expression. */
5768 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5770 /* Ignore self dominance. */
5771 if (bb == dominated
5772 || ! TEST_BIT (dominators[dominated], bb))
5773 continue;
5775 /* We've found a dominated block, now see if it computes
5776 the busy expression and whether or not moving that
5777 expression to the "beginning" of that block is safe. */
5778 if (!TEST_BIT (antloc[dominated], i))
5779 continue;
5781 /* The expression is computed in the dominated block and
5782 it would be safe to compute it at the start of the
5783 dominated block. Now we have to determine if the
5784 expression would reach the dominated block if it was
5785 placed at the end of BB. */
5786 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5787 BASIC_BLOCK (dominated), NULL))
5789 struct expr *expr = index_map[i];
5790 struct occr *occr = expr->antic_occr;
5791 rtx insn;
5792 rtx set;
5794 /* Find the right occurrence of this expression. */
5795 while (BLOCK_NUM (occr->insn) != dominated && occr)
5796 occr = occr->next;
5798 /* Should never happen. */
5799 if (!occr)
5800 abort ();
5802 insn = occr->insn;
5804 set = single_set (insn);
5805 if (! set)
5806 abort ();
5808 /* Create a pseudo-reg to store the result of reaching
5809 expressions into. Get the mode for the new pseudo
5810 from the mode of the original destination pseudo. */
5811 if (expr->reaching_reg == NULL)
5812 expr->reaching_reg
5813 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5815 /* In theory this should never fail since we're creating
5816 a reg->reg copy.
5818 However, on the x86 some of the movXX patterns
5819 actually contain clobbers of scratch regs. This may
5820 cause the insn created by validate_change to not
5821 match any pattern and thus cause validate_change to
5822 fail. */
5823 if (validate_change (insn, &SET_SRC (set),
5824 expr->reaching_reg, 0))
5826 occr->deleted_p = 1;
5827 if (!insn_inserted_p)
5829 insert_insn_end_bb (index_map[i],
5830 BASIC_BLOCK (bb), 0);
5831 insn_inserted_p = 1;
5840 free (index_map);
5843 /* Top level routine to perform one code hoisting (aka unification) pass
5845 Return non-zero if a change was made. */
5847 static int
5848 one_code_hoisting_pass ()
5850 int changed = 0;
5852 alloc_expr_hash_table (max_cuid);
5853 compute_expr_hash_table ();
5854 if (gcse_file)
5855 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5856 expr_hash_table_size, n_exprs);
5858 if (n_exprs > 0)
5860 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5861 compute_code_hoist_data ();
5862 hoist_code ();
5863 free_code_hoist_mem ();
5866 free_expr_hash_table ();
5868 return changed;
5871 /* Here we provide the things required to do store motion towards
5872 the exit. In order for this to be effective, gcse also needed to
5873 be taught how to move a load when it is kill only by a store to itself.
5875 int i;
5876 float a[10];
5878 void foo(float scale)
5880 for (i=0; i<10; i++)
5881 a[i] *= scale;
5884 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5885 the load out since its live around the loop, and stored at the bottom
5886 of the loop.
5888 The 'Load Motion' referred to and implemented in this file is
5889 an enhancement to gcse which when using edge based lcm, recognizes
5890 this situation and allows gcse to move the load out of the loop.
5892 Once gcse has hoisted the load, store motion can then push this
5893 load towards the exit, and we end up with no loads or stores of 'i'
5894 in the loop. */
5896 /* This will search the ldst list for a matching expression. If it
5897 doesn't find one, we create one and initialize it. */
5899 static struct ls_expr *
5900 ldst_entry (x)
5901 rtx x;
5903 struct ls_expr * ptr;
5905 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5906 if (expr_equiv_p (ptr->pattern, x))
5907 break;
5909 if (!ptr)
5911 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
5913 ptr->next = pre_ldst_mems;
5914 ptr->expr = NULL;
5915 ptr->pattern = x;
5916 ptr->loads = NULL_RTX;
5917 ptr->stores = NULL_RTX;
5918 ptr->reaching_reg = NULL_RTX;
5919 ptr->invalid = 0;
5920 ptr->index = 0;
5921 ptr->hash_index = 0;
5922 pre_ldst_mems = ptr;
5925 return ptr;
5928 /* Free up an individual ldst entry. */
5930 static void
5931 free_ldst_entry (ptr)
5932 struct ls_expr * ptr;
5934 free_INSN_LIST_list (& ptr->loads);
5935 free_INSN_LIST_list (& ptr->stores);
5937 free (ptr);
5940 /* Free up all memory associated with the ldst list. */
5942 static void
5943 free_ldst_mems ()
5945 while (pre_ldst_mems)
5947 struct ls_expr * tmp = pre_ldst_mems;
5949 pre_ldst_mems = pre_ldst_mems->next;
5951 free_ldst_entry (tmp);
5954 pre_ldst_mems = NULL;
5957 /* Dump debugging info about the ldst list. */
5959 static void
5960 print_ldst_list (file)
5961 FILE * file;
5963 struct ls_expr * ptr;
5965 fprintf (file, "LDST list: \n");
5967 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5969 fprintf (file, " Pattern (%3d): ", ptr->index);
5971 print_rtl (file, ptr->pattern);
5973 fprintf (file, "\n Loads : ");
5975 if (ptr->loads)
5976 print_rtl (file, ptr->loads);
5977 else
5978 fprintf (file, "(nil)");
5980 fprintf (file, "\n Stores : ");
5982 if (ptr->stores)
5983 print_rtl (file, ptr->stores);
5984 else
5985 fprintf (file, "(nil)");
5987 fprintf (file, "\n\n");
5990 fprintf (file, "\n");
5993 /* Returns 1 if X is in the list of ldst only expressions. */
5995 static struct ls_expr *
5996 find_rtx_in_ldst (x)
5997 rtx x;
5999 struct ls_expr * ptr;
6001 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6002 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6003 return ptr;
6005 return NULL;
6008 /* Assign each element of the list of mems a monotonically increasing value. */
6010 static int
6011 enumerate_ldsts ()
6013 struct ls_expr * ptr;
6014 int n = 0;
6016 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6017 ptr->index = n++;
6019 return n;
6022 /* Return first item in the list. */
6024 static inline struct ls_expr *
6025 first_ls_expr ()
6027 return pre_ldst_mems;
6030 /* Return the next item in ther list after the specified one. */
6032 static inline struct ls_expr *
6033 next_ls_expr (ptr)
6034 struct ls_expr * ptr;
6036 return ptr->next;
6039 /* Load Motion for loads which only kill themselves. */
6041 /* Return true if x is a simple MEM operation, with no registers or
6042 side effects. These are the types of loads we consider for the
6043 ld_motion list, otherwise we let the usual aliasing take care of it. */
6045 static int
6046 simple_mem (x)
6047 rtx x;
6049 if (GET_CODE (x) != MEM)
6050 return 0;
6052 if (MEM_VOLATILE_P (x))
6053 return 0;
6055 if (GET_MODE (x) == BLKmode)
6056 return 0;
6058 if (!rtx_varies_p (XEXP (x, 0), 0))
6059 return 1;
6061 return 0;
6064 /* Make sure there isn't a buried reference in this pattern anywhere.
6065 If there is, invalidate the entry for it since we're not capable
6066 of fixing it up just yet.. We have to be sure we know about ALL
6067 loads since the aliasing code will allow all entries in the
6068 ld_motion list to not-alias itself. If we miss a load, we will get
6069 the wrong value since gcse might common it and we won't know to
6070 fix it up. */
6072 static void
6073 invalidate_any_buried_refs (x)
6074 rtx x;
6076 const char * fmt;
6077 int i, j;
6078 struct ls_expr * ptr;
6080 /* Invalidate it in the list. */
6081 if (GET_CODE (x) == MEM && simple_mem (x))
6083 ptr = ldst_entry (x);
6084 ptr->invalid = 1;
6087 /* Recursively process the insn. */
6088 fmt = GET_RTX_FORMAT (GET_CODE (x));
6090 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6092 if (fmt[i] == 'e')
6093 invalidate_any_buried_refs (XEXP (x, i));
6094 else if (fmt[i] == 'E')
6095 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6096 invalidate_any_buried_refs (XVECEXP (x, i, j));
6100 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6101 being defined as MEM loads and stores to symbols, with no
6102 side effects and no registers in the expression. If there are any
6103 uses/defs which don't match this criteria, it is invalidated and
6104 trimmed out later. */
6106 static void
6107 compute_ld_motion_mems ()
6109 struct ls_expr * ptr;
6110 int bb;
6111 rtx insn;
6113 pre_ldst_mems = NULL;
6115 for (bb = 0; bb < n_basic_blocks; bb++)
6117 for (insn = BLOCK_HEAD (bb);
6118 insn && insn != NEXT_INSN (BLOCK_END (bb));
6119 insn = NEXT_INSN (insn))
6121 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6123 if (GET_CODE (PATTERN (insn)) == SET)
6125 rtx src = SET_SRC (PATTERN (insn));
6126 rtx dest = SET_DEST (PATTERN (insn));
6128 /* Check for a simple LOAD... */
6129 if (GET_CODE (src) == MEM && simple_mem (src))
6131 ptr = ldst_entry (src);
6132 if (GET_CODE (dest) == REG)
6133 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6134 else
6135 ptr->invalid = 1;
6137 else
6139 /* Make sure there isn't a buried load somewhere. */
6140 invalidate_any_buried_refs (src);
6143 /* Check for stores. Don't worry about aliased ones, they
6144 will block any movement we might do later. We only care
6145 about this exact pattern since those are the only
6146 circumstance that we will ignore the aliasing info. */
6147 if (GET_CODE (dest) == MEM && simple_mem (dest))
6149 ptr = ldst_entry (dest);
6151 if (GET_CODE (src) != MEM
6152 && GET_CODE (src) != ASM_OPERANDS)
6153 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6154 else
6155 ptr->invalid = 1;
6158 else
6159 invalidate_any_buried_refs (PATTERN (insn));
6165 /* Remove any references that have been either invalidated or are not in the
6166 expression list for pre gcse. */
6168 static void
6169 trim_ld_motion_mems ()
6171 struct ls_expr * last = NULL;
6172 struct ls_expr * ptr = first_ls_expr ();
6174 while (ptr != NULL)
6176 int del = ptr->invalid;
6177 struct expr * expr = NULL;
6179 /* Delete if entry has been made invalid. */
6180 if (!del)
6182 unsigned int i;
6184 del = 1;
6185 /* Delete if we cannot find this mem in the expression list. */
6186 for (i = 0; i < expr_hash_table_size && del; i++)
6188 for (expr = expr_hash_table[i];
6189 expr != NULL;
6190 expr = expr->next_same_hash)
6191 if (expr_equiv_p (expr->expr, ptr->pattern))
6193 del = 0;
6194 break;
6199 if (del)
6201 if (last != NULL)
6203 last->next = ptr->next;
6204 free_ldst_entry (ptr);
6205 ptr = last->next;
6207 else
6209 pre_ldst_mems = pre_ldst_mems->next;
6210 free_ldst_entry (ptr);
6211 ptr = pre_ldst_mems;
6214 else
6216 /* Set the expression field if we are keeping it. */
6217 last = ptr;
6218 ptr->expr = expr;
6219 ptr = ptr->next;
6223 /* Show the world what we've found. */
6224 if (gcse_file && pre_ldst_mems != NULL)
6225 print_ldst_list (gcse_file);
6228 /* This routine will take an expression which we are replacing with
6229 a reaching register, and update any stores that are needed if
6230 that expression is in the ld_motion list. Stores are updated by
6231 copying their SRC to the reaching register, and then storeing
6232 the reaching register into the store location. These keeps the
6233 correct value in the reaching register for the loads. */
6235 static void
6236 update_ld_motion_stores (expr)
6237 struct expr * expr;
6239 struct ls_expr * mem_ptr;
6241 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6243 /* We can try to find just the REACHED stores, but is shouldn't
6244 matter to set the reaching reg everywhere... some might be
6245 dead and should be eliminated later. */
6247 /* We replace SET mem = expr with
6248 SET reg = expr
6249 SET mem = reg , where reg is the
6250 reaching reg used in the load. */
6251 rtx list = mem_ptr->stores;
6253 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6255 rtx insn = XEXP (list, 0);
6256 rtx pat = PATTERN (insn);
6257 rtx src = SET_SRC (pat);
6258 rtx reg = expr->reaching_reg;
6259 rtx copy, new;
6261 /* If we've already copied it, continue. */
6262 if (expr->reaching_reg == src)
6263 continue;
6265 if (gcse_file)
6267 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6268 print_rtl (gcse_file, expr->reaching_reg);
6269 fprintf (gcse_file, ":\n ");
6270 print_inline_rtx (gcse_file, insn, 8);
6271 fprintf (gcse_file, "\n");
6274 copy = gen_move_insn ( reg, SET_SRC (pat));
6275 new = emit_insn_before (copy, insn);
6276 record_one_set (REGNO (reg), new);
6277 SET_SRC (pat) = reg;
6279 /* un-recognize this pattern since it's probably different now. */
6280 INSN_CODE (insn) = -1;
6281 gcse_create_count++;
6286 /* Store motion code. */
6288 /* This is used to communicate the target bitvector we want to use in the
6289 reg_set_info routine when called via the note_stores mechanism. */
6290 static sbitmap * regvec;
6292 /* Used in computing the reverse edge graph bit vectors. */
6293 static sbitmap * st_antloc;
6295 /* Global holding the number of store expressions we are dealing with. */
6296 static int num_stores;
6298 /* Checks to set if we need to mark a register set. Called from note_stores. */
6300 static void
6301 reg_set_info (dest, setter, data)
6302 rtx dest, setter ATTRIBUTE_UNUSED;
6303 void * data ATTRIBUTE_UNUSED;
6305 if (GET_CODE (dest) == SUBREG)
6306 dest = SUBREG_REG (dest);
6308 if (GET_CODE (dest) == REG)
6309 SET_BIT (*regvec, REGNO (dest));
6312 /* Return non-zero if the register operands of expression X are killed
6313 anywhere in basic block BB. */
6315 static int
6316 store_ops_ok (x, bb)
6317 rtx x;
6318 basic_block bb;
6320 int i;
6321 enum rtx_code code;
6322 const char * fmt;
6324 /* Repeat is used to turn tail-recursion into iteration. */
6325 repeat:
6327 if (x == 0)
6328 return 1;
6330 code = GET_CODE (x);
6331 switch (code)
6333 case REG:
6334 /* If a reg has changed after us in this
6335 block, the operand has been killed. */
6336 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6338 case MEM:
6339 x = XEXP (x, 0);
6340 goto repeat;
6342 case PRE_DEC:
6343 case PRE_INC:
6344 case POST_DEC:
6345 case POST_INC:
6346 return 0;
6348 case PC:
6349 case CC0: /*FIXME*/
6350 case CONST:
6351 case CONST_INT:
6352 case CONST_DOUBLE:
6353 case CONST_VECTOR:
6354 case SYMBOL_REF:
6355 case LABEL_REF:
6356 case ADDR_VEC:
6357 case ADDR_DIFF_VEC:
6358 return 1;
6360 default:
6361 break;
6364 i = GET_RTX_LENGTH (code) - 1;
6365 fmt = GET_RTX_FORMAT (code);
6367 for (; i >= 0; i--)
6369 if (fmt[i] == 'e')
6371 rtx tem = XEXP (x, i);
6373 /* If we are about to do the last recursive call
6374 needed at this level, change it into iteration.
6375 This function is called enough to be worth it. */
6376 if (i == 0)
6378 x = tem;
6379 goto repeat;
6382 if (! store_ops_ok (tem, bb))
6383 return 0;
6385 else if (fmt[i] == 'E')
6387 int j;
6389 for (j = 0; j < XVECLEN (x, i); j++)
6391 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6392 return 0;
6397 return 1;
6400 /* Determine whether insn is MEM store pattern that we will consider moving. */
6402 static void
6403 find_moveable_store (insn)
6404 rtx insn;
6406 struct ls_expr * ptr;
6407 rtx dest = PATTERN (insn);
6409 if (GET_CODE (dest) != SET
6410 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6411 return;
6413 dest = SET_DEST (dest);
6415 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6416 || GET_MODE (dest) == BLKmode)
6417 return;
6419 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6420 return;
6422 if (rtx_varies_p (XEXP (dest, 0), 0))
6423 return;
6425 ptr = ldst_entry (dest);
6426 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6429 /* Perform store motion. Much like gcse, except we move expressions the
6430 other way by looking at the flowgraph in reverse. */
6432 static int
6433 compute_store_table ()
6435 int bb, ret;
6436 unsigned regno;
6437 rtx insn, pat;
6439 max_gcse_regno = max_reg_num ();
6441 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
6442 max_gcse_regno);
6443 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
6444 pre_ldst_mems = 0;
6446 /* Find all the stores we care about. */
6447 for (bb = 0; bb < n_basic_blocks; bb++)
6449 regvec = & (reg_set_in_block[bb]);
6450 for (insn = BLOCK_END (bb);
6451 insn && insn != PREV_INSN (BLOCK_HEAD (bb));
6452 insn = PREV_INSN (insn))
6454 /* Ignore anything that is not a normal insn. */
6455 if (! INSN_P (insn))
6456 continue;
6458 if (GET_CODE (insn) == CALL_INSN)
6460 bool clobbers_all = false;
6461 #ifdef NON_SAVING_SETJMP
6462 if (NON_SAVING_SETJMP
6463 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6464 clobbers_all = true;
6465 #endif
6467 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6468 if (clobbers_all
6469 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6470 SET_BIT (reg_set_in_block[bb], regno);
6473 pat = PATTERN (insn);
6474 note_stores (pat, reg_set_info, NULL);
6476 /* Now that we've marked regs, look for stores. */
6477 if (GET_CODE (pat) == SET)
6478 find_moveable_store (insn);
6482 ret = enumerate_ldsts ();
6484 if (gcse_file)
6486 fprintf (gcse_file, "Store Motion Expressions.\n");
6487 print_ldst_list (gcse_file);
6490 return ret;
6493 /* Check to see if the load X is aliased with STORE_PATTERN. */
6495 static int
6496 load_kills_store (x, store_pattern)
6497 rtx x, store_pattern;
6499 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6500 return 1;
6501 return 0;
6504 /* Go through the entire insn X, looking for any loads which might alias
6505 STORE_PATTERN. Return 1 if found. */
6507 static int
6508 find_loads (x, store_pattern)
6509 rtx x, store_pattern;
6511 const char * fmt;
6512 int i, j;
6513 int ret = 0;
6515 if (!x)
6516 return 0;
6518 if (GET_CODE (x) == SET)
6519 x = SET_SRC (x);
6521 if (GET_CODE (x) == MEM)
6523 if (load_kills_store (x, store_pattern))
6524 return 1;
6527 /* Recursively process the insn. */
6528 fmt = GET_RTX_FORMAT (GET_CODE (x));
6530 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6532 if (fmt[i] == 'e')
6533 ret |= find_loads (XEXP (x, i), store_pattern);
6534 else if (fmt[i] == 'E')
6535 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6536 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6538 return ret;
6541 /* Check if INSN kills the store pattern X (is aliased with it).
6542 Return 1 if it it does. */
6544 static int
6545 store_killed_in_insn (x, insn)
6546 rtx x, insn;
6548 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6549 return 0;
6551 if (GET_CODE (insn) == CALL_INSN)
6553 /* A normal or pure call might read from pattern,
6554 but a const call will not. */
6555 return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
6558 if (GET_CODE (PATTERN (insn)) == SET)
6560 rtx pat = PATTERN (insn);
6561 /* Check for memory stores to aliased objects. */
6562 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6563 /* pretend its a load and check for aliasing. */
6564 if (find_loads (SET_DEST (pat), x))
6565 return 1;
6566 return find_loads (SET_SRC (pat), x);
6568 else
6569 return find_loads (PATTERN (insn), x);
6572 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6573 within basic block BB. */
6575 static int
6576 store_killed_after (x, insn, bb)
6577 rtx x, insn;
6578 basic_block bb;
6580 rtx last = bb->end;
6582 if (insn == last)
6583 return 0;
6585 /* Check if the register operands of the store are OK in this block.
6586 Note that if registers are changed ANYWHERE in the block, we'll
6587 decide we can't move it, regardless of whether it changed above
6588 or below the store. This could be improved by checking the register
6589 operands while lookinng for aliasing in each insn. */
6590 if (!store_ops_ok (XEXP (x, 0), bb))
6591 return 1;
6593 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6594 if (store_killed_in_insn (x, insn))
6595 return 1;
6597 return 0;
6600 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6601 within basic block BB. */
6602 static int
6603 store_killed_before (x, insn, bb)
6604 rtx x, insn;
6605 basic_block bb;
6607 rtx first = bb->head;
6609 if (insn == first)
6610 return store_killed_in_insn (x, insn);
6612 /* Check if the register operands of the store are OK in this block.
6613 Note that if registers are changed ANYWHERE in the block, we'll
6614 decide we can't move it, regardless of whether it changed above
6615 or below the store. This could be improved by checking the register
6616 operands while lookinng for aliasing in each insn. */
6617 if (!store_ops_ok (XEXP (x, 0), bb))
6618 return 1;
6620 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6621 if (store_killed_in_insn (x, insn))
6622 return 1;
6624 return 0;
6627 #define ANTIC_STORE_LIST(x) ((x)->loads)
6628 #define AVAIL_STORE_LIST(x) ((x)->stores)
6630 /* Given the table of available store insns at the end of blocks,
6631 determine which ones are not killed by aliasing, and generate
6632 the appropriate vectors for gen and killed. */
6633 static void
6634 build_store_vectors ()
6636 basic_block bb;
6637 int b;
6638 rtx insn, st;
6639 struct ls_expr * ptr;
6641 /* Build the gen_vector. This is any store in the table which is not killed
6642 by aliasing later in its block. */
6643 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6644 sbitmap_vector_zero (ae_gen, n_basic_blocks);
6646 st_antloc = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6647 sbitmap_vector_zero (st_antloc, n_basic_blocks);
6649 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6651 /* Put all the stores into either the antic list, or the avail list,
6652 or both. */
6653 rtx store_list = ptr->stores;
6654 ptr->stores = NULL_RTX;
6656 for (st = store_list; st != NULL; st = XEXP (st, 1))
6658 insn = XEXP (st, 0);
6659 bb = BLOCK_FOR_INSN (insn);
6661 if (!store_killed_after (ptr->pattern, insn, bb))
6663 /* If we've already seen an availale expression in this block,
6664 we can delete the one we saw already (It occurs earlier in
6665 the block), and replace it with this one). We'll copy the
6666 old SRC expression to an unused register in case there
6667 are any side effects. */
6668 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6670 /* Find previous store. */
6671 rtx st;
6672 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
6673 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
6674 break;
6675 if (st)
6677 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6678 if (gcse_file)
6679 fprintf (gcse_file, "Removing redundant store:\n");
6680 replace_store_insn (r, XEXP (st, 0), bb);
6681 XEXP (st, 0) = insn;
6682 continue;
6685 SET_BIT (ae_gen[bb->index], ptr->index);
6686 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6687 AVAIL_STORE_LIST (ptr));
6690 if (!store_killed_before (ptr->pattern, insn, bb))
6692 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
6693 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6694 ANTIC_STORE_LIST (ptr));
6698 /* Free the original list of store insns. */
6699 free_INSN_LIST_list (&store_list);
6702 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6703 sbitmap_vector_zero (ae_kill, n_basic_blocks);
6705 transp = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6706 sbitmap_vector_zero (transp, n_basic_blocks);
6708 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6709 for (b = 0; b < n_basic_blocks; b++)
6711 if (store_killed_after (ptr->pattern, BLOCK_HEAD (b), BASIC_BLOCK (b)))
6713 /* The anticipatable expression is not killed if it's gen'd. */
6715 We leave this check out for now. If we have a code sequence
6716 in a block which looks like:
6717 ST MEMa = x
6718 L y = MEMa
6719 ST MEMa = z
6720 We should flag this as having an ANTIC expression, NOT
6721 transparent, NOT killed, and AVAIL.
6722 Unfortunately, since we haven't re-written all loads to
6723 use the reaching reg, we'll end up doing an incorrect
6724 Load in the middle here if we push the store down. It happens in
6725 gcc.c-torture/execute/960311-1.c with -O3
6726 If we always kill it in this case, we'll sometimes do
6727 uneccessary work, but it shouldn't actually hurt anything.
6728 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6729 SET_BIT (ae_kill[b], ptr->index);
6731 else
6732 SET_BIT (transp[b], ptr->index);
6735 /* Any block with no exits calls some non-returning function, so
6736 we better mark the store killed here, or we might not store to
6737 it at all. If we knew it was abort, we wouldn't have to store,
6738 but we don't know that for sure. */
6739 if (gcse_file)
6741 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6742 print_ldst_list (gcse_file);
6743 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, n_basic_blocks);
6744 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, n_basic_blocks);
6745 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, n_basic_blocks);
6746 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, n_basic_blocks);
6750 /* Insert an instruction at the begining of a basic block, and update
6751 the BLOCK_HEAD if needed. */
6753 static void
6754 insert_insn_start_bb (insn, bb)
6755 rtx insn;
6756 basic_block bb;
6758 /* Insert at start of successor block. */
6759 rtx prev = PREV_INSN (bb->head);
6760 rtx before = bb->head;
6761 while (before != 0)
6763 if (GET_CODE (before) != CODE_LABEL
6764 && (GET_CODE (before) != NOTE
6765 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6766 break;
6767 prev = before;
6768 if (prev == bb->end)
6769 break;
6770 before = NEXT_INSN (before);
6773 insn = emit_insn_after (insn, prev);
6775 if (gcse_file)
6777 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6778 bb->index);
6779 print_inline_rtx (gcse_file, insn, 6);
6780 fprintf (gcse_file, "\n");
6784 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6785 the memory reference, and E is the edge to insert it on. Returns non-zero
6786 if an edge insertion was performed. */
6788 static int
6789 insert_store (expr, e)
6790 struct ls_expr * expr;
6791 edge e;
6793 rtx reg, insn;
6794 basic_block bb;
6795 edge tmp;
6797 /* We did all the deleted before this insert, so if we didn't delete a
6798 store, then we haven't set the reaching reg yet either. */
6799 if (expr->reaching_reg == NULL_RTX)
6800 return 0;
6802 reg = expr->reaching_reg;
6803 insn = gen_move_insn (expr->pattern, reg);
6805 /* If we are inserting this expression on ALL predecessor edges of a BB,
6806 insert it at the start of the BB, and reset the insert bits on the other
6807 edges so we don't try to insert it on the other edges. */
6808 bb = e->dest;
6809 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6811 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6812 if (index == EDGE_INDEX_NO_EDGE)
6813 abort ();
6814 if (! TEST_BIT (pre_insert_map[index], expr->index))
6815 break;
6818 /* If tmp is NULL, we found an insertion on every edge, blank the
6819 insertion vector for these edges, and insert at the start of the BB. */
6820 if (!tmp && bb != EXIT_BLOCK_PTR)
6822 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6824 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6825 RESET_BIT (pre_insert_map[index], expr->index);
6827 insert_insn_start_bb (insn, bb);
6828 return 0;
6831 /* We can't insert on this edge, so we'll insert at the head of the
6832 successors block. See Morgan, sec 10.5. */
6833 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6835 insert_insn_start_bb (insn, bb);
6836 return 0;
6839 insert_insn_on_edge (insn, e);
6841 if (gcse_file)
6843 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6844 e->src->index, e->dest->index);
6845 print_inline_rtx (gcse_file, insn, 6);
6846 fprintf (gcse_file, "\n");
6849 return 1;
6852 /* This routine will replace a store with a SET to a specified register. */
6854 static void
6855 replace_store_insn (reg, del, bb)
6856 rtx reg, del;
6857 basic_block bb;
6859 rtx insn;
6861 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
6862 insn = emit_insn_after (insn, del);
6864 if (gcse_file)
6866 fprintf (gcse_file,
6867 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6868 print_inline_rtx (gcse_file, del, 6);
6869 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6870 print_inline_rtx (gcse_file, insn, 6);
6871 fprintf (gcse_file, "\n");
6874 delete_insn (del);
6878 /* Delete a store, but copy the value that would have been stored into
6879 the reaching_reg for later storing. */
6881 static void
6882 delete_store (expr, bb)
6883 struct ls_expr * expr;
6884 basic_block bb;
6886 rtx reg, i, del;
6888 if (expr->reaching_reg == NULL_RTX)
6889 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6892 /* If there is more than 1 store, the earlier ones will be dead,
6893 but it doesn't hurt to replace them here. */
6894 reg = expr->reaching_reg;
6896 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6898 del = XEXP (i, 0);
6899 if (BLOCK_FOR_INSN (del) == bb)
6901 /* We know there is only one since we deleted redundant
6902 ones during the available computation. */
6903 replace_store_insn (reg, del, bb);
6904 break;
6909 /* Free memory used by store motion. */
6911 static void
6912 free_store_memory ()
6914 free_ldst_mems ();
6916 if (ae_gen)
6917 sbitmap_vector_free (ae_gen);
6918 if (ae_kill)
6919 sbitmap_vector_free (ae_kill);
6920 if (transp)
6921 sbitmap_vector_free (transp);
6922 if (st_antloc)
6923 sbitmap_vector_free (st_antloc);
6924 if (pre_insert_map)
6925 sbitmap_vector_free (pre_insert_map);
6926 if (pre_delete_map)
6927 sbitmap_vector_free (pre_delete_map);
6928 if (reg_set_in_block)
6929 sbitmap_vector_free (reg_set_in_block);
6931 ae_gen = ae_kill = transp = st_antloc = NULL;
6932 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6935 /* Perform store motion. Much like gcse, except we move expressions the
6936 other way by looking at the flowgraph in reverse. */
6938 static void
6939 store_motion ()
6941 int x;
6942 struct ls_expr * ptr;
6943 int update_flow = 0;
6945 if (gcse_file)
6947 fprintf (gcse_file, "before store motion\n");
6948 print_rtl (gcse_file, get_insns ());
6952 init_alias_analysis ();
6954 /* Find all the stores that are live to the end of their block. */
6955 num_stores = compute_store_table ();
6956 if (num_stores == 0)
6958 sbitmap_vector_free (reg_set_in_block);
6959 end_alias_analysis ();
6960 return;
6963 /* Now compute whats actually available to move. */
6964 add_noreturn_fake_exit_edges ();
6965 build_store_vectors ();
6967 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6968 st_antloc, ae_kill, &pre_insert_map,
6969 &pre_delete_map);
6971 /* Now we want to insert the new stores which are going to be needed. */
6972 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6974 for (x = 0; x < n_basic_blocks; x++)
6975 if (TEST_BIT (pre_delete_map[x], ptr->index))
6976 delete_store (ptr, BASIC_BLOCK (x));
6978 for (x = 0; x < NUM_EDGES (edge_list); x++)
6979 if (TEST_BIT (pre_insert_map[x], ptr->index))
6980 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6983 if (update_flow)
6984 commit_edge_insertions ();
6986 free_store_memory ();
6987 free_edge_list (edge_list);
6988 remove_fake_edges ();
6989 end_alias_analysis ();