1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2020 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
32 initializer_each_zero_or_onep
34 tree_expr_nonnegative_p
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
54 #include "cfn-operators.pd"
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
60 Also define operand lists:
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
69 (define_operator_list X##FN BUILT_IN_I##FN \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
84 mult trunc_div trunc_mod rdiv
86 bit_and bit_ior bit_xor
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
101 /* With nop_convert? combine convert? and view_convert? in one pattern
102 plus conditionalize on tree_nop_conversion_p conversions. */
103 (match (nop_convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
127 (for op (plus pointer_plus minus bit_ior bit_xor)
129 (op @0 integer_zerop)
132 /* 0 +p index -> (type)index */
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
137 /* ptr - 0 -> (type)ptr */
139 (pointer_diff @0 integer_zerop)
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
155 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158 if not -frounding-math. For sNaNs the first operation would raise
159 exceptions but turn the result into qNan, so the second operation
160 would not raise it. */
161 (for inner_op (plus minus)
162 (for outer_op (plus minus)
164 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
167 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
171 = ((outer_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173 (if (outer_plus && !inner_plus)
178 This is unsafe for certain floats even in non-IEEE formats.
179 In IEEE, it is unsafe because it does wrong for NaNs.
180 Also note that operand_equal_p is always false if an operand
184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
185 { build_zero_cst (type); }))
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
191 (mult @0 integer_zerop@1)
194 /* Maybe fold x * 0 to 0. The expressions aren't the same
195 when x is NaN, since x * 0 is also NaN. Nor are they the
196 same in modes with signed zeros, since multiplying a
197 negative value by 0 gives -0, not +0. */
199 (mult @0 real_zerop@1)
200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
203 /* In IEEE floating point, x*1 is not equivalent to x for snans.
204 Likewise for complex arithmetic with signed zeros. */
207 (if (!HONOR_SNANS (type)
208 && (!HONOR_SIGNED_ZEROS (type)
209 || !COMPLEX_FLOAT_TYPE_P (type)))
212 /* Transform x * -1.0 into -x. */
214 (mult @0 real_minus_onep)
215 (if (!HONOR_SNANS (type)
216 && (!HONOR_SIGNED_ZEROS (type)
217 || !COMPLEX_FLOAT_TYPE_P (type)))
220 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
222 (mult SSA_NAME@1 SSA_NAME@2)
223 (if (INTEGRAL_TYPE_P (type)
224 && get_nonzero_bits (@1) == 1
225 && get_nonzero_bits (@2) == 1)
228 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
229 unless the target has native support for the former but not the latter. */
231 (mult @0 VECTOR_CST@1)
232 (if (initializer_each_zero_or_onep (@1)
233 && !HONOR_SNANS (type)
234 && !HONOR_SIGNED_ZEROS (type))
235 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
237 && (!VECTOR_MODE_P (TYPE_MODE (type))
238 || (VECTOR_MODE_P (TYPE_MODE (itype))
239 && optab_handler (and_optab,
240 TYPE_MODE (itype)) != CODE_FOR_nothing)))
241 (view_convert (bit_and:itype (view_convert @0)
242 (ne @1 { build_zero_cst (type); })))))))
244 (for cmp (gt ge lt le)
245 outp (convert convert negate negate)
246 outn (negate negate convert convert)
247 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
248 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
249 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
250 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
252 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
253 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
254 && types_match (type, TREE_TYPE (@0)))
256 (if (types_match (type, float_type_node))
257 (BUILT_IN_COPYSIGNF @1 (outp @0)))
258 (if (types_match (type, double_type_node))
259 (BUILT_IN_COPYSIGN @1 (outp @0)))
260 (if (types_match (type, long_double_type_node))
261 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
262 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
263 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
264 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
265 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
267 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
268 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
269 && types_match (type, TREE_TYPE (@0)))
271 (if (types_match (type, float_type_node))
272 (BUILT_IN_COPYSIGNF @1 (outn @0)))
273 (if (types_match (type, double_type_node))
274 (BUILT_IN_COPYSIGN @1 (outn @0)))
275 (if (types_match (type, long_double_type_node))
276 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
278 /* Transform X * copysign (1.0, X) into abs(X). */
280 (mult:c @0 (COPYSIGN_ALL real_onep @0))
281 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
284 /* Transform X * copysign (1.0, -X) into -abs(X). */
286 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
287 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
290 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
292 (COPYSIGN_ALL REAL_CST@0 @1)
293 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
294 (COPYSIGN_ALL (negate @0) @1)))
296 /* X * 1, X / 1 -> X. */
297 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
302 /* (A / (1 << B)) -> (A >> B).
303 Only for unsigned A. For signed A, this would not preserve rounding
305 For example: (-1 / ( 1 << B)) != -1 >> B.
306 Also also widening conversions, like:
307 (A / (unsigned long long) (1U << B)) -> (A >> B)
309 (A / (unsigned long long) (1 << B)) -> (A >> B).
310 If the left shift is signed, it can be done only if the upper bits
311 of A starting from shift's type sign bit are zero, as
312 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
313 so it is valid only if A >> 31 is zero. */
315 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
316 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
317 && (!VECTOR_TYPE_P (type)
318 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
319 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
320 && (useless_type_conversion_p (type, TREE_TYPE (@1))
321 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
322 && (TYPE_UNSIGNED (TREE_TYPE (@1))
323 || (element_precision (type)
324 == element_precision (TREE_TYPE (@1)))
325 || (INTEGRAL_TYPE_P (type)
326 && (tree_nonzero_bits (@0)
327 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
329 element_precision (type))) == 0)))))
332 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
333 undefined behavior in constexpr evaluation, and assuming that the division
334 traps enables better optimizations than these anyway. */
335 (for div (trunc_div ceil_div floor_div round_div exact_div)
336 /* 0 / X is always zero. */
338 (div integer_zerop@0 @1)
339 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
340 (if (!integer_zerop (@1))
344 (div @0 integer_minus_onep@1)
345 (if (!TYPE_UNSIGNED (type))
350 /* But not for 0 / 0 so that we can get the proper warnings and errors.
351 And not for _Fract types where we can't build 1. */
352 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
353 { build_one_cst (type); }))
354 /* X / abs (X) is X < 0 ? -1 : 1. */
357 (if (INTEGRAL_TYPE_P (type)
358 && TYPE_OVERFLOW_UNDEFINED (type))
359 (cond (lt @0 { build_zero_cst (type); })
360 { build_minus_one_cst (type); } { build_one_cst (type); })))
363 (div:C @0 (negate @0))
364 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
365 && TYPE_OVERFLOW_UNDEFINED (type))
366 { build_minus_one_cst (type); })))
368 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
369 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
372 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
373 && TYPE_UNSIGNED (type))
376 /* Combine two successive divisions. Note that combining ceil_div
377 and floor_div is trickier and combining round_div even more so. */
378 (for div (trunc_div exact_div)
380 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
382 wi::overflow_type overflow;
383 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
384 TYPE_SIGN (type), &overflow);
386 (if (div == EXACT_DIV_EXPR
387 || optimize_successive_divisions_p (@2, @3))
389 (div @0 { wide_int_to_tree (type, mul); })
390 (if (TYPE_UNSIGNED (type)
391 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
392 { build_zero_cst (type); }))))))
394 /* Combine successive multiplications. Similar to above, but handling
395 overflow is different. */
397 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
399 wi::overflow_type overflow;
400 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
401 TYPE_SIGN (type), &overflow);
403 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
404 otherwise undefined overflow implies that @0 must be zero. */
405 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
406 (mult @0 { wide_int_to_tree (type, mul); }))))
408 /* Optimize A / A to 1.0 if we don't care about
409 NaNs or Infinities. */
412 (if (FLOAT_TYPE_P (type)
413 && ! HONOR_NANS (type)
414 && ! HONOR_INFINITIES (type))
415 { build_one_cst (type); }))
417 /* Optimize -A / A to -1.0 if we don't care about
418 NaNs or Infinities. */
420 (rdiv:C @0 (negate @0))
421 (if (FLOAT_TYPE_P (type)
422 && ! HONOR_NANS (type)
423 && ! HONOR_INFINITIES (type))
424 { build_minus_one_cst (type); }))
426 /* PR71078: x / abs(x) -> copysign (1.0, x) */
428 (rdiv:C (convert? @0) (convert? (abs @0)))
429 (if (SCALAR_FLOAT_TYPE_P (type)
430 && ! HONOR_NANS (type)
431 && ! HONOR_INFINITIES (type))
433 (if (types_match (type, float_type_node))
434 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
435 (if (types_match (type, double_type_node))
436 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
437 (if (types_match (type, long_double_type_node))
438 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
440 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
443 (if (!HONOR_SNANS (type))
446 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
448 (rdiv @0 real_minus_onep)
449 (if (!HONOR_SNANS (type))
452 (if (flag_reciprocal_math)
453 /* Convert (A/B)/C to A/(B*C). */
455 (rdiv (rdiv:s @0 @1) @2)
456 (rdiv @0 (mult @1 @2)))
458 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
460 (rdiv @0 (mult:s @1 REAL_CST@2))
462 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
464 (rdiv (mult @0 { tem; } ) @1))))
466 /* Convert A/(B/C) to (A/B)*C */
468 (rdiv @0 (rdiv:s @1 @2))
469 (mult (rdiv @0 @1) @2)))
471 /* Simplify x / (- y) to -x / y. */
473 (rdiv @0 (negate @1))
474 (rdiv (negate @0) @1))
476 (if (flag_unsafe_math_optimizations)
477 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
478 Since C / x may underflow to zero, do this only for unsafe math. */
479 (for op (lt le gt ge)
482 (op (rdiv REAL_CST@0 @1) real_zerop@2)
483 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
485 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
487 /* For C < 0, use the inverted operator. */
488 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
491 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
492 (for div (trunc_div ceil_div floor_div round_div exact_div)
494 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
495 (if (integer_pow2p (@2)
496 && tree_int_cst_sgn (@2) > 0
497 && tree_nop_conversion_p (type, TREE_TYPE (@0))
498 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
500 { build_int_cst (integer_type_node,
501 wi::exact_log2 (wi::to_wide (@2))); }))))
503 /* If ARG1 is a constant, we can convert this to a multiply by the
504 reciprocal. This does not have the same rounding properties,
505 so only do this if -freciprocal-math. We can actually
506 always safely do it if ARG1 is a power of two, but it's hard to
507 tell if it is or not in a portable manner. */
508 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
512 (if (flag_reciprocal_math
515 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
517 (mult @0 { tem; } )))
518 (if (cst != COMPLEX_CST)
519 (with { tree inverse = exact_inverse (type, @1); }
521 (mult @0 { inverse; } ))))))))
523 (for mod (ceil_mod floor_mod round_mod trunc_mod)
524 /* 0 % X is always zero. */
526 (mod integer_zerop@0 @1)
527 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
528 (if (!integer_zerop (@1))
530 /* X % 1 is always zero. */
532 (mod @0 integer_onep)
533 { build_zero_cst (type); })
534 /* X % -1 is zero. */
536 (mod @0 integer_minus_onep@1)
537 (if (!TYPE_UNSIGNED (type))
538 { build_zero_cst (type); }))
542 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
543 (if (!integer_zerop (@0))
544 { build_zero_cst (type); }))
545 /* (X % Y) % Y is just X % Y. */
547 (mod (mod@2 @0 @1) @1)
549 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
551 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
552 (if (ANY_INTEGRAL_TYPE_P (type)
553 && TYPE_OVERFLOW_UNDEFINED (type)
554 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
556 { build_zero_cst (type); }))
557 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
558 modulo and comparison, since it is simpler and equivalent. */
561 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
562 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
563 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
564 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
566 /* X % -C is the same as X % C. */
568 (trunc_mod @0 INTEGER_CST@1)
569 (if (TYPE_SIGN (type) == SIGNED
570 && !TREE_OVERFLOW (@1)
571 && wi::neg_p (wi::to_wide (@1))
572 && !TYPE_OVERFLOW_TRAPS (type)
573 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
574 && !sign_bit_p (@1, @1))
575 (trunc_mod @0 (negate @1))))
577 /* X % -Y is the same as X % Y. */
579 (trunc_mod @0 (convert? (negate @1)))
580 (if (INTEGRAL_TYPE_P (type)
581 && !TYPE_UNSIGNED (type)
582 && !TYPE_OVERFLOW_TRAPS (type)
583 && tree_nop_conversion_p (type, TREE_TYPE (@1))
584 /* Avoid this transformation if X might be INT_MIN or
585 Y might be -1, because we would then change valid
586 INT_MIN % -(-1) into invalid INT_MIN % -1. */
587 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
588 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
590 (trunc_mod @0 (convert @1))))
592 /* X - (X / Y) * Y is the same as X % Y. */
594 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
595 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
596 (convert (trunc_mod @0 @1))))
598 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
599 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
600 Also optimize A % (C << N) where C is a power of 2,
601 to A & ((C << N) - 1). */
602 (match (power_of_two_cand @1)
604 (match (power_of_two_cand @1)
605 (lshift INTEGER_CST@1 @2))
606 (for mod (trunc_mod floor_mod)
608 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
609 (if ((TYPE_UNSIGNED (type)
610 || tree_expr_nonnegative_p (@0))
611 && tree_nop_conversion_p (type, TREE_TYPE (@3))
612 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
613 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
615 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
617 (trunc_div (mult @0 integer_pow2p@1) @1)
618 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
619 (bit_and @0 { wide_int_to_tree
620 (type, wi::mask (TYPE_PRECISION (type)
621 - wi::exact_log2 (wi::to_wide (@1)),
622 false, TYPE_PRECISION (type))); })))
624 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
626 (mult (trunc_div @0 integer_pow2p@1) @1)
627 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
628 (bit_and @0 (negate @1))))
630 /* Simplify (t * 2) / 2) -> t. */
631 (for div (trunc_div ceil_div floor_div round_div exact_div)
633 (div (mult:c @0 @1) @1)
634 (if (ANY_INTEGRAL_TYPE_P (type)
635 && TYPE_OVERFLOW_UNDEFINED (type))
639 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
644 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
647 (pows (op @0) REAL_CST@1)
648 (with { HOST_WIDE_INT n; }
649 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
651 /* Likewise for powi. */
654 (pows (op @0) INTEGER_CST@1)
655 (if ((wi::to_wide (@1) & 1) == 0)
657 /* Strip negate and abs from both operands of hypot. */
665 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
666 (for copysigns (COPYSIGN_ALL)
668 (copysigns (op @0) @1)
671 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
676 /* Convert absu(x)*absu(x) -> x*x. */
678 (mult (absu@1 @0) @1)
679 (mult (convert@2 @0) @2))
681 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
685 (coss (copysigns @0 @1))
688 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
692 (pows (copysigns @0 @2) REAL_CST@1)
693 (with { HOST_WIDE_INT n; }
694 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
696 /* Likewise for powi. */
700 (pows (copysigns @0 @2) INTEGER_CST@1)
701 (if ((wi::to_wide (@1) & 1) == 0)
706 /* hypot(copysign(x, y), z) -> hypot(x, z). */
708 (hypots (copysigns @0 @1) @2)
710 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
712 (hypots @0 (copysigns @1 @2))
715 /* copysign(x, CST) -> [-]abs (x). */
716 (for copysigns (COPYSIGN_ALL)
718 (copysigns @0 REAL_CST@1)
719 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
723 /* copysign(copysign(x, y), z) -> copysign(x, z). */
724 (for copysigns (COPYSIGN_ALL)
726 (copysigns (copysigns @0 @1) @2)
729 /* copysign(x,y)*copysign(x,y) -> x*x. */
730 (for copysigns (COPYSIGN_ALL)
732 (mult (copysigns@2 @0 @1) @2)
735 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
736 (for ccoss (CCOS CCOSH)
741 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
742 (for ops (conj negate)
748 /* Fold (a * (1 << b)) into (a << b) */
750 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
751 (if (! FLOAT_TYPE_P (type)
752 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
755 /* Fold (1 << (C - x)) where C = precision(type) - 1
756 into ((1 << C) >> x). */
758 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
759 (if (INTEGRAL_TYPE_P (type)
760 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
762 (if (TYPE_UNSIGNED (type))
763 (rshift (lshift @0 @2) @3)
765 { tree utype = unsigned_type_for (type); }
766 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
768 /* Fold (C1/X)*C2 into (C1*C2)/X. */
770 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
771 (if (flag_associative_math
774 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
776 (rdiv { tem; } @1)))))
778 /* Simplify ~X & X as zero. */
780 (bit_and:c (convert? @0) (convert? (bit_not @0)))
781 { build_zero_cst (type); })
783 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
785 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
786 (if (TYPE_UNSIGNED (type))
787 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
789 (for bitop (bit_and bit_ior)
791 /* PR35691: Transform
792 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
793 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
795 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
796 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
797 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
798 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
799 (cmp (bit_ior @0 (convert @1)) @2)))
801 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
802 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
804 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
805 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
806 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
807 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
808 (cmp (bit_and @0 (convert @1)) @2))))
810 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
812 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
813 (minus (bit_xor @0 @1) @1))
815 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
816 (if (~wi::to_wide (@2) == wi::to_wide (@1))
817 (minus (bit_xor @0 @1) @1)))
819 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
821 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
822 (minus @1 (bit_xor @0 @1)))
824 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
825 (for op (bit_ior bit_xor plus)
827 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
830 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
831 (if (~wi::to_wide (@2) == wi::to_wide (@1))
834 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
836 (bit_ior:c (bit_xor:c @0 @1) @0)
839 /* (a & ~b) | (a ^ b) --> a ^ b */
841 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
844 /* (a & ~b) ^ ~a --> ~(a & b) */
846 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
847 (bit_not (bit_and @0 @1)))
849 /* (~a & b) ^ a --> (a | b) */
851 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
854 /* (a | b) & ~(a ^ b) --> a & b */
856 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
859 /* a | ~(a ^ b) --> a | ~b */
861 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
862 (bit_ior @0 (bit_not @1)))
864 /* (a | b) | (a &^ b) --> a | b */
865 (for op (bit_and bit_xor)
867 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
870 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
872 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
875 /* ~(~a & b) --> a | ~b */
877 (bit_not (bit_and:cs (bit_not @0) @1))
878 (bit_ior @0 (bit_not @1)))
880 /* ~(~a | b) --> a & ~b */
882 (bit_not (bit_ior:cs (bit_not @0) @1))
883 (bit_and @0 (bit_not @1)))
885 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
888 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
889 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
890 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
894 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
895 ((A & N) + B) & M -> (A + B) & M
896 Similarly if (N & M) == 0,
897 ((A | N) + B) & M -> (A + B) & M
898 and for - instead of + (or unary - instead of +)
899 and/or ^ instead of |.
900 If B is constant and (B & M) == 0, fold into A & M. */
902 (for bitop (bit_and bit_ior bit_xor)
904 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
907 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
908 @3, @4, @1, ERROR_MARK, NULL_TREE,
911 (convert (bit_and (op (convert:utype { pmop[0]; })
912 (convert:utype { pmop[1]; }))
913 (convert:utype @2))))))
915 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
918 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
919 NULL_TREE, NULL_TREE, @1, bitop, @3,
922 (convert (bit_and (op (convert:utype { pmop[0]; })
923 (convert:utype { pmop[1]; }))
924 (convert:utype @2)))))))
926 (bit_and (op:s @0 @1) INTEGER_CST@2)
929 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
930 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
931 NULL_TREE, NULL_TREE, pmop); }
933 (convert (bit_and (op (convert:utype { pmop[0]; })
934 (convert:utype { pmop[1]; }))
935 (convert:utype @2)))))))
936 (for bitop (bit_and bit_ior bit_xor)
938 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
941 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
942 bitop, @2, @3, NULL_TREE, ERROR_MARK,
943 NULL_TREE, NULL_TREE, pmop); }
945 (convert (bit_and (negate (convert:utype { pmop[0]; }))
946 (convert:utype @1)))))))
948 /* X % Y is smaller than Y. */
951 (cmp (trunc_mod @0 @1) @1)
952 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
953 { constant_boolean_node (cmp == LT_EXPR, type); })))
956 (cmp @1 (trunc_mod @0 @1))
957 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
958 { constant_boolean_node (cmp == GT_EXPR, type); })))
962 (bit_ior @0 integer_all_onesp@1)
967 (bit_ior @0 integer_zerop)
972 (bit_and @0 integer_zerop@1)
978 (for op (bit_ior bit_xor plus)
980 (op:c (convert? @0) (convert? (bit_not @0)))
981 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
986 { build_zero_cst (type); })
988 /* Canonicalize X ^ ~0 to ~X. */
990 (bit_xor @0 integer_all_onesp@1)
995 (bit_and @0 integer_all_onesp)
998 /* x & x -> x, x | x -> x */
999 (for bitop (bit_and bit_ior)
1004 /* x & C -> x if we know that x & ~C == 0. */
1007 (bit_and SSA_NAME@0 INTEGER_CST@1)
1008 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1009 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1013 /* x + (x & 1) -> (x + 1) & ~1 */
1015 (plus:c @0 (bit_and:s @0 integer_onep@1))
1016 (bit_and (plus @0 @1) (bit_not @1)))
1018 /* x & ~(x & y) -> x & ~y */
1019 /* x | ~(x | y) -> x | ~y */
1020 (for bitop (bit_and bit_ior)
1022 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1023 (bitop @0 (bit_not @1))))
1025 /* (~x & y) | ~(x | y) -> ~x */
1027 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1030 /* (x | y) ^ (x | ~y) -> ~x */
1032 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1035 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1037 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1038 (bit_not (bit_xor @0 @1)))
1040 /* (~x | y) ^ (x ^ y) -> x | ~y */
1042 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1043 (bit_ior @0 (bit_not @1)))
1045 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1047 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1048 (bit_not (bit_and @0 @1)))
1050 /* (x | y) & ~x -> y & ~x */
1051 /* (x & y) | ~x -> y | ~x */
1052 (for bitop (bit_and bit_ior)
1053 rbitop (bit_ior bit_and)
1055 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1058 /* (x & y) ^ (x | y) -> x ^ y */
1060 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1063 /* (x ^ y) ^ (x | y) -> x & y */
1065 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1068 /* (x & y) + (x ^ y) -> x | y */
1069 /* (x & y) | (x ^ y) -> x | y */
1070 /* (x & y) ^ (x ^ y) -> x | y */
1071 (for op (plus bit_ior bit_xor)
1073 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1076 /* (x & y) + (x | y) -> x + y */
1078 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1081 /* (x + y) - (x | y) -> x & y */
1083 (minus (plus @0 @1) (bit_ior @0 @1))
1084 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1085 && !TYPE_SATURATING (type))
1088 /* (x + y) - (x & y) -> x | y */
1090 (minus (plus @0 @1) (bit_and @0 @1))
1091 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1092 && !TYPE_SATURATING (type))
1095 /* (x | y) - (x ^ y) -> x & y */
1097 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1100 /* (x | y) - (x & y) -> x ^ y */
1102 (minus (bit_ior @0 @1) (bit_and @0 @1))
1105 /* (x | y) & ~(x & y) -> x ^ y */
1107 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1110 /* (x | y) & (~x ^ y) -> x & y */
1112 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1115 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1117 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1118 (bit_not (bit_xor @0 @1)))
1120 /* (~x | y) ^ (x | ~y) -> x ^ y */
1122 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1125 /* ~x & ~y -> ~(x | y)
1126 ~x | ~y -> ~(x & y) */
1127 (for op (bit_and bit_ior)
1128 rop (bit_ior bit_and)
1130 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1131 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1132 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1133 (bit_not (rop (convert @0) (convert @1))))))
1135 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1136 with a constant, and the two constants have no bits in common,
1137 we should treat this as a BIT_IOR_EXPR since this may produce more
1139 (for op (bit_xor plus)
1141 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1142 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1143 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1144 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1145 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1146 (bit_ior (convert @4) (convert @5)))))
1148 /* (X | Y) ^ X -> Y & ~ X*/
1150 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1152 (convert (bit_and @1 (bit_not @0)))))
1154 /* Convert ~X ^ ~Y to X ^ Y. */
1156 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1157 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1158 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1159 (bit_xor (convert @0) (convert @1))))
1161 /* Convert ~X ^ C to X ^ ~C. */
1163 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1164 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1165 (bit_xor (convert @0) (bit_not @1))))
1167 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1168 (for opo (bit_and bit_xor)
1169 opi (bit_xor bit_and)
1171 (opo:c (opi:cs @0 @1) @1)
1172 (bit_and (bit_not @0) @1)))
1174 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1175 operands are another bit-wise operation with a common input. If so,
1176 distribute the bit operations to save an operation and possibly two if
1177 constants are involved. For example, convert
1178 (A | B) & (A | C) into A | (B & C)
1179 Further simplification will occur if B and C are constants. */
1180 (for op (bit_and bit_ior bit_xor)
1181 rop (bit_ior bit_and bit_and)
1183 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1184 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1185 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1186 (rop (convert @0) (op (convert @1) (convert @2))))))
1188 /* Some simple reassociation for bit operations, also handled in reassoc. */
1189 /* (X & Y) & Y -> X & Y
1190 (X | Y) | Y -> X | Y */
1191 (for op (bit_and bit_ior)
1193 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1195 /* (X ^ Y) ^ Y -> X */
1197 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1199 /* (X & Y) & (X & Z) -> (X & Y) & Z
1200 (X | Y) | (X | Z) -> (X | Y) | Z */
1201 (for op (bit_and bit_ior)
1203 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1204 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1205 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1206 (if (single_use (@5) && single_use (@6))
1207 (op @3 (convert @2))
1208 (if (single_use (@3) && single_use (@4))
1209 (op (convert @1) @5))))))
1210 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1212 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1214 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1215 (bit_xor (convert @1) (convert @2))))
1217 /* Convert abs (abs (X)) into abs (X).
1218 also absu (absu (X)) into absu (X). */
1224 (absu (convert@2 (absu@1 @0)))
1225 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1228 /* Convert abs[u] (-X) -> abs[u] (X). */
1237 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1239 (abs tree_expr_nonnegative_p@0)
1243 (absu tree_expr_nonnegative_p@0)
1246 /* A few cases of fold-const.c negate_expr_p predicate. */
1247 (match negate_expr_p
1249 (if ((INTEGRAL_TYPE_P (type)
1250 && TYPE_UNSIGNED (type))
1251 || (!TYPE_OVERFLOW_SANITIZED (type)
1252 && may_negate_without_overflow_p (t)))))
1253 (match negate_expr_p
1255 (match negate_expr_p
1257 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1258 (match negate_expr_p
1260 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1261 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1263 (match negate_expr_p
1265 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1266 (match negate_expr_p
1268 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1269 || (FLOAT_TYPE_P (type)
1270 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1271 && !HONOR_SIGNED_ZEROS (type)))))
1273 /* (-A) * (-B) -> A * B */
1275 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1276 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1277 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1278 (mult (convert @0) (convert (negate @1)))))
1280 /* -(A + B) -> (-B) - A. */
1282 (negate (plus:c @0 negate_expr_p@1))
1283 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1284 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1285 (minus (negate @1) @0)))
1287 /* -(A - B) -> B - A. */
1289 (negate (minus @0 @1))
1290 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1291 || (FLOAT_TYPE_P (type)
1292 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1293 && !HONOR_SIGNED_ZEROS (type)))
1296 (negate (pointer_diff @0 @1))
1297 (if (TYPE_OVERFLOW_UNDEFINED (type))
1298 (pointer_diff @1 @0)))
1300 /* A - B -> A + (-B) if B is easily negatable. */
1302 (minus @0 negate_expr_p@1)
1303 (if (!FIXED_POINT_TYPE_P (type))
1304 (plus @0 (negate @1))))
1306 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1308 For bitwise binary operations apply operand conversions to the
1309 binary operation result instead of to the operands. This allows
1310 to combine successive conversions and bitwise binary operations.
1311 We combine the above two cases by using a conditional convert. */
1312 (for bitop (bit_and bit_ior bit_xor)
1314 (bitop (convert @0) (convert? @1))
1315 (if (((TREE_CODE (@1) == INTEGER_CST
1316 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1317 && int_fits_type_p (@1, TREE_TYPE (@0)))
1318 || types_match (@0, @1))
1319 /* ??? This transform conflicts with fold-const.c doing
1320 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1321 constants (if x has signed type, the sign bit cannot be set
1322 in c). This folds extension into the BIT_AND_EXPR.
1323 Restrict it to GIMPLE to avoid endless recursions. */
1324 && (bitop != BIT_AND_EXPR || GIMPLE)
1325 && (/* That's a good idea if the conversion widens the operand, thus
1326 after hoisting the conversion the operation will be narrower. */
1327 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1328 /* It's also a good idea if the conversion is to a non-integer
1330 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1331 /* Or if the precision of TO is not the same as the precision
1333 || !type_has_mode_precision_p (type)))
1334 (convert (bitop @0 (convert @1))))))
1336 (for bitop (bit_and bit_ior)
1337 rbitop (bit_ior bit_and)
1338 /* (x | y) & x -> x */
1339 /* (x & y) | x -> x */
1341 (bitop:c (rbitop:c @0 @1) @0)
1343 /* (~x | y) & x -> x & y */
1344 /* (~x & y) | x -> x | y */
1346 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1349 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1351 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1352 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1354 /* Combine successive equal operations with constants. */
1355 (for bitop (bit_and bit_ior bit_xor)
1357 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1358 (if (!CONSTANT_CLASS_P (@0))
1359 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1360 folded to a constant. */
1361 (bitop @0 (bitop @1 @2))
1362 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1363 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1364 the values involved are such that the operation can't be decided at
1365 compile time. Try folding one of @0 or @1 with @2 to see whether
1366 that combination can be decided at compile time.
1368 Keep the existing form if both folds fail, to avoid endless
1370 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1372 (bitop @1 { cst1; })
1373 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1375 (bitop @0 { cst2; }))))))))
1377 /* Try simple folding for X op !X, and X op X with the help
1378 of the truth_valued_p and logical_inverted_value predicates. */
1379 (match truth_valued_p
1381 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1382 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1383 (match truth_valued_p
1385 (match truth_valued_p
1388 (match (logical_inverted_value @0)
1390 (match (logical_inverted_value @0)
1391 (bit_not truth_valued_p@0))
1392 (match (logical_inverted_value @0)
1393 (eq @0 integer_zerop))
1394 (match (logical_inverted_value @0)
1395 (ne truth_valued_p@0 integer_truep))
1396 (match (logical_inverted_value @0)
1397 (bit_xor truth_valued_p@0 integer_truep))
1401 (bit_and:c @0 (logical_inverted_value @0))
1402 { build_zero_cst (type); })
1403 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1404 (for op (bit_ior bit_xor)
1406 (op:c truth_valued_p@0 (logical_inverted_value @0))
1407 { constant_boolean_node (true, type); }))
1408 /* X ==/!= !X is false/true. */
1411 (op:c truth_valued_p@0 (logical_inverted_value @0))
1412 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1416 (bit_not (bit_not @0))
1419 /* Convert ~ (-A) to A - 1. */
1421 (bit_not (convert? (negate @0)))
1422 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1423 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1424 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1426 /* Convert - (~A) to A + 1. */
1428 (negate (nop_convert? (bit_not @0)))
1429 (plus (view_convert @0) { build_each_one_cst (type); }))
1431 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1433 (bit_not (convert? (minus @0 integer_each_onep)))
1434 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1435 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1436 (convert (negate @0))))
1438 (bit_not (convert? (plus @0 integer_all_onesp)))
1439 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1440 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1441 (convert (negate @0))))
1443 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1445 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1446 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1447 (convert (bit_xor @0 (bit_not @1)))))
1449 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1450 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1451 (convert (bit_xor @0 @1))))
1453 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1455 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1456 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1457 (bit_not (bit_xor (view_convert @0) @1))))
1459 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1461 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1462 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1464 /* Fold A - (A & B) into ~B & A. */
1466 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1467 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1468 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1469 (convert (bit_and (bit_not @1) @0))))
1471 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1472 (for cmp (gt lt ge le)
1474 (mult (convert (cmp @0 @1)) @2)
1475 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1477 /* For integral types with undefined overflow and C != 0 fold
1478 x * C EQ/NE y * C into x EQ/NE y. */
1481 (cmp (mult:c @0 @1) (mult:c @2 @1))
1482 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1483 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1484 && tree_expr_nonzero_p (@1))
1487 /* For integral types with wrapping overflow and C odd fold
1488 x * C EQ/NE y * C into x EQ/NE y. */
1491 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1492 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1493 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1494 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1497 /* For integral types with undefined overflow and C != 0 fold
1498 x * C RELOP y * C into:
1500 x RELOP y for nonnegative C
1501 y RELOP x for negative C */
1502 (for cmp (lt gt le ge)
1504 (cmp (mult:c @0 @1) (mult:c @2 @1))
1505 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1506 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1507 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1509 (if (TREE_CODE (@1) == INTEGER_CST
1510 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1513 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1517 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1518 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1519 && TYPE_UNSIGNED (TREE_TYPE (@0))
1520 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1521 && (wi::to_wide (@2)
1522 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1523 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1524 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1526 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1527 (for cmp (simple_comparison)
1529 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1530 (if (element_precision (@3) >= element_precision (@0)
1531 && types_match (@0, @1))
1532 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1533 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1535 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1538 tree utype = unsigned_type_for (TREE_TYPE (@0));
1540 (cmp (convert:utype @1) (convert:utype @0)))))
1541 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1542 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1546 tree utype = unsigned_type_for (TREE_TYPE (@0));
1548 (cmp (convert:utype @0) (convert:utype @1)))))))))
1550 /* X / C1 op C2 into a simple range test. */
1551 (for cmp (simple_comparison)
1553 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1554 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1555 && integer_nonzerop (@1)
1556 && !TREE_OVERFLOW (@1)
1557 && !TREE_OVERFLOW (@2))
1558 (with { tree lo, hi; bool neg_overflow;
1559 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1562 (if (code == LT_EXPR || code == GE_EXPR)
1563 (if (TREE_OVERFLOW (lo))
1564 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1565 (if (code == LT_EXPR)
1568 (if (code == LE_EXPR || code == GT_EXPR)
1569 (if (TREE_OVERFLOW (hi))
1570 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1571 (if (code == LE_EXPR)
1575 { build_int_cst (type, code == NE_EXPR); })
1576 (if (code == EQ_EXPR && !hi)
1578 (if (code == EQ_EXPR && !lo)
1580 (if (code == NE_EXPR && !hi)
1582 (if (code == NE_EXPR && !lo)
1585 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1589 tree etype = range_check_type (TREE_TYPE (@0));
1592 hi = fold_convert (etype, hi);
1593 lo = fold_convert (etype, lo);
1594 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1597 (if (etype && hi && !TREE_OVERFLOW (hi))
1598 (if (code == EQ_EXPR)
1599 (le (minus (convert:etype @0) { lo; }) { hi; })
1600 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1602 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1603 (for op (lt le ge gt)
1605 (op (plus:c @0 @2) (plus:c @1 @2))
1606 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1607 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1609 /* For equality and subtraction, this is also true with wrapping overflow. */
1610 (for op (eq ne minus)
1612 (op (plus:c @0 @2) (plus:c @1 @2))
1613 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1614 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1615 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1618 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1619 (for op (lt le ge gt)
1621 (op (minus @0 @2) (minus @1 @2))
1622 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1623 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1625 /* For equality and subtraction, this is also true with wrapping overflow. */
1626 (for op (eq ne minus)
1628 (op (minus @0 @2) (minus @1 @2))
1629 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1630 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1631 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1633 /* And for pointers... */
1634 (for op (simple_comparison)
1636 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1637 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1640 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1641 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1642 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1643 (pointer_diff @0 @1)))
1645 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1646 (for op (lt le ge gt)
1648 (op (minus @2 @0) (minus @2 @1))
1649 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1650 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1652 /* For equality and subtraction, this is also true with wrapping overflow. */
1653 (for op (eq ne minus)
1655 (op (minus @2 @0) (minus @2 @1))
1656 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1657 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1658 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1660 /* And for pointers... */
1661 (for op (simple_comparison)
1663 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1664 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1667 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1668 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1669 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1670 (pointer_diff @1 @0)))
1672 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1673 (for op (lt le gt ge)
1675 (op:c (plus:c@2 @0 @1) @1)
1676 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1677 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1679 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1680 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1681 /* For equality, this is also true with wrapping overflow. */
1684 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1685 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1686 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1687 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1688 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1689 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1690 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1691 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1693 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1694 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1695 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1696 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1697 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1699 /* X - Y < X is the same as Y > 0 when there is no overflow.
1700 For equality, this is also true with wrapping overflow. */
1701 (for op (simple_comparison)
1703 (op:c @0 (minus@2 @0 @1))
1704 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1705 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1706 || ((op == EQ_EXPR || op == NE_EXPR)
1707 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1708 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1709 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1712 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1713 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1717 (cmp (trunc_div @0 @1) integer_zerop)
1718 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1719 /* Complex ==/!= is allowed, but not </>=. */
1720 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1721 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1724 /* X == C - X can never be true if C is odd. */
1727 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1728 (if (TREE_INT_CST_LOW (@1) & 1)
1729 { constant_boolean_node (cmp == NE_EXPR, type); })))
1731 /* Arguments on which one can call get_nonzero_bits to get the bits
1733 (match with_possible_nonzero_bits
1735 (match with_possible_nonzero_bits
1737 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1738 /* Slightly extended version, do not make it recursive to keep it cheap. */
1739 (match (with_possible_nonzero_bits2 @0)
1740 with_possible_nonzero_bits@0)
1741 (match (with_possible_nonzero_bits2 @0)
1742 (bit_and:c with_possible_nonzero_bits@0 @2))
1744 /* Same for bits that are known to be set, but we do not have
1745 an equivalent to get_nonzero_bits yet. */
1746 (match (with_certain_nonzero_bits2 @0)
1748 (match (with_certain_nonzero_bits2 @0)
1749 (bit_ior @1 INTEGER_CST@0))
1751 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1754 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1755 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1756 { constant_boolean_node (cmp == NE_EXPR, type); })))
1758 /* ((X inner_op C0) outer_op C1)
1759 With X being a tree where value_range has reasoned certain bits to always be
1760 zero throughout its computed value range,
1761 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1762 where zero_mask has 1's for all bits that are sure to be 0 in
1764 if (inner_op == '^') C0 &= ~C1;
1765 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1766 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1768 (for inner_op (bit_ior bit_xor)
1769 outer_op (bit_xor bit_ior)
1772 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1776 wide_int zero_mask_not;
1780 if (TREE_CODE (@2) == SSA_NAME)
1781 zero_mask_not = get_nonzero_bits (@2);
1785 if (inner_op == BIT_XOR_EXPR)
1787 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1788 cst_emit = C0 | wi::to_wide (@1);
1792 C0 = wi::to_wide (@0);
1793 cst_emit = C0 ^ wi::to_wide (@1);
1796 (if (!fail && (C0 & zero_mask_not) == 0)
1797 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1798 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1799 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1801 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1803 (pointer_plus (pointer_plus:s @0 @1) @3)
1804 (pointer_plus @0 (plus @1 @3)))
1810 tem4 = (unsigned long) tem3;
1815 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1816 /* Conditionally look through a sign-changing conversion. */
1817 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1818 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1819 || (GENERIC && type == TREE_TYPE (@1))))
1822 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1823 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1827 tem = (sizetype) ptr;
1831 and produce the simpler and easier to analyze with respect to alignment
1832 ... = ptr & ~algn; */
1834 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1835 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1836 (bit_and @0 { algn; })))
1838 /* Try folding difference of addresses. */
1840 (minus (convert ADDR_EXPR@0) (convert @1))
1841 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1842 (with { poly_int64 diff; }
1843 (if (ptr_difference_const (@0, @1, &diff))
1844 { build_int_cst_type (type, diff); }))))
1846 (minus (convert @0) (convert ADDR_EXPR@1))
1847 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1848 (with { poly_int64 diff; }
1849 (if (ptr_difference_const (@0, @1, &diff))
1850 { build_int_cst_type (type, diff); }))))
1852 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1853 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1854 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1855 (with { poly_int64 diff; }
1856 (if (ptr_difference_const (@0, @1, &diff))
1857 { build_int_cst_type (type, diff); }))))
1859 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1860 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1861 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1862 (with { poly_int64 diff; }
1863 (if (ptr_difference_const (@0, @1, &diff))
1864 { build_int_cst_type (type, diff); }))))
1866 /* If arg0 is derived from the address of an object or function, we may
1867 be able to fold this expression using the object or function's
1870 (bit_and (convert? @0) INTEGER_CST@1)
1871 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1872 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1876 unsigned HOST_WIDE_INT bitpos;
1877 get_pointer_alignment_1 (@0, &align, &bitpos);
1879 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1880 { wide_int_to_tree (type, (wi::to_wide (@1)
1881 & (bitpos / BITS_PER_UNIT))); }))))
1885 (if (INTEGRAL_TYPE_P (type)
1886 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1890 (if (INTEGRAL_TYPE_P (type)
1891 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1893 /* x > y && x != XXX_MIN --> x > y
1894 x > y && x == XXX_MIN --> false . */
1897 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1899 (if (eqne == EQ_EXPR)
1900 { constant_boolean_node (false, type); })
1901 (if (eqne == NE_EXPR)
1905 /* x < y && x != XXX_MAX --> x < y
1906 x < y && x == XXX_MAX --> false. */
1909 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1911 (if (eqne == EQ_EXPR)
1912 { constant_boolean_node (false, type); })
1913 (if (eqne == NE_EXPR)
1917 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1919 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1922 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
1924 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1927 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
1929 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1932 /* x <= y || x != XXX_MIN --> true. */
1934 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1935 { constant_boolean_node (true, type); })
1937 /* x <= y || x == XXX_MIN --> x <= y. */
1939 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1942 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
1944 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1947 /* x >= y || x != XXX_MAX --> true
1948 x >= y || x == XXX_MAX --> x >= y. */
1951 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1953 (if (eqne == EQ_EXPR)
1955 (if (eqne == NE_EXPR)
1956 { constant_boolean_node (true, type); }))))
1958 /* Convert (X == CST1) && (X OP2 CST2) to a known value
1959 based on CST1 OP2 CST2. Similarly for (X != CST1). */
1962 (for code2 (eq ne lt gt le ge)
1964 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1967 int cmp = tree_int_cst_compare (@1, @2);
1971 case EQ_EXPR: val = (cmp == 0); break;
1972 case NE_EXPR: val = (cmp != 0); break;
1973 case LT_EXPR: val = (cmp < 0); break;
1974 case GT_EXPR: val = (cmp > 0); break;
1975 case LE_EXPR: val = (cmp <= 0); break;
1976 case GE_EXPR: val = (cmp >= 0); break;
1977 default: gcc_unreachable ();
1981 (if (code1 == EQ_EXPR && val) @3)
1982 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
1983 (if (code1 == NE_EXPR && !val) @4))))))
1985 /* Convert (X OP1 CST1) && (X OP2 CST2). */
1987 (for code1 (lt le gt ge)
1988 (for code2 (lt le gt ge)
1990 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
1993 int cmp = tree_int_cst_compare (@1, @2);
1996 /* Choose the more restrictive of two < or <= comparisons. */
1997 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
1998 && (code2 == LT_EXPR || code2 == LE_EXPR))
1999 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2002 /* Likewise chose the more restrictive of two > or >= comparisons. */
2003 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2004 && (code2 == GT_EXPR || code2 == GE_EXPR))
2005 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2008 /* Check for singleton ranges. */
2010 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2011 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2013 /* Check for disjoint ranges. */
2015 && (code1 == LT_EXPR || code1 == LE_EXPR)
2016 && (code2 == GT_EXPR || code2 == GE_EXPR))
2017 { constant_boolean_node (false, type); })
2019 && (code1 == GT_EXPR || code1 == GE_EXPR)
2020 && (code2 == LT_EXPR || code2 == LE_EXPR))
2021 { constant_boolean_node (false, type); })
2024 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2025 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2028 (for code2 (eq ne lt gt le ge)
2030 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2033 int cmp = tree_int_cst_compare (@1, @2);
2037 case EQ_EXPR: val = (cmp == 0); break;
2038 case NE_EXPR: val = (cmp != 0); break;
2039 case LT_EXPR: val = (cmp < 0); break;
2040 case GT_EXPR: val = (cmp > 0); break;
2041 case LE_EXPR: val = (cmp <= 0); break;
2042 case GE_EXPR: val = (cmp >= 0); break;
2043 default: gcc_unreachable ();
2047 (if (code1 == EQ_EXPR && val) @4)
2048 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2049 (if (code1 == NE_EXPR && !val) @3))))))
2051 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2053 (for code1 (lt le gt ge)
2054 (for code2 (lt le gt ge)
2056 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2059 int cmp = tree_int_cst_compare (@1, @2);
2062 /* Choose the more restrictive of two < or <= comparisons. */
2063 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2064 && (code2 == LT_EXPR || code2 == LE_EXPR))
2065 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2068 /* Likewise chose the more restrictive of two > or >= comparisons. */
2069 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2070 && (code2 == GT_EXPR || code2 == GE_EXPR))
2071 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2074 /* Check for singleton ranges. */
2076 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2077 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2079 /* Check for disjoint ranges. */
2081 && (code1 == LT_EXPR || code1 == LE_EXPR)
2082 && (code2 == GT_EXPR || code2 == GE_EXPR))
2083 { constant_boolean_node (true, type); })
2085 && (code1 == GT_EXPR || code1 == GE_EXPR)
2086 && (code2 == LT_EXPR || code2 == LE_EXPR))
2087 { constant_boolean_node (true, type); })
2090 /* We can't reassociate at all for saturating types. */
2091 (if (!TYPE_SATURATING (type))
2093 /* Contract negates. */
2094 /* A + (-B) -> A - B */
2096 (plus:c @0 (convert? (negate @1)))
2097 /* Apply STRIP_NOPS on the negate. */
2098 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2099 && !TYPE_OVERFLOW_SANITIZED (type))
2103 if (INTEGRAL_TYPE_P (type)
2104 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2105 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2107 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2108 /* A - (-B) -> A + B */
2110 (minus @0 (convert? (negate @1)))
2111 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2112 && !TYPE_OVERFLOW_SANITIZED (type))
2116 if (INTEGRAL_TYPE_P (type)
2117 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2118 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2120 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2122 Sign-extension is ok except for INT_MIN, which thankfully cannot
2123 happen without overflow. */
2125 (negate (convert (negate @1)))
2126 (if (INTEGRAL_TYPE_P (type)
2127 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2128 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2129 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2130 && !TYPE_OVERFLOW_SANITIZED (type)
2131 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2134 (negate (convert negate_expr_p@1))
2135 (if (SCALAR_FLOAT_TYPE_P (type)
2136 && ((DECIMAL_FLOAT_TYPE_P (type)
2137 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2138 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2139 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2140 (convert (negate @1))))
2142 (negate (nop_convert? (negate @1)))
2143 (if (!TYPE_OVERFLOW_SANITIZED (type)
2144 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2147 /* We can't reassociate floating-point unless -fassociative-math
2148 or fixed-point plus or minus because of saturation to +-Inf. */
2149 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2150 && !FIXED_POINT_TYPE_P (type))
2152 /* Match patterns that allow contracting a plus-minus pair
2153 irrespective of overflow issues. */
2154 /* (A +- B) - A -> +- B */
2155 /* (A +- B) -+ B -> A */
2156 /* A - (A +- B) -> -+ B */
2157 /* A +- (B -+ A) -> +- B */
2159 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2162 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2163 (if (!ANY_INTEGRAL_TYPE_P (type)
2164 || TYPE_OVERFLOW_WRAPS (type))
2165 (negate (view_convert @1))
2166 (view_convert (negate @1))))
2168 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2171 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2172 (if (!ANY_INTEGRAL_TYPE_P (type)
2173 || TYPE_OVERFLOW_WRAPS (type))
2174 (negate (view_convert @1))
2175 (view_convert (negate @1))))
2177 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2179 /* (A +- B) + (C - A) -> C +- B */
2180 /* (A + B) - (A - C) -> B + C */
2181 /* More cases are handled with comparisons. */
2183 (plus:c (plus:c @0 @1) (minus @2 @0))
2186 (plus:c (minus @0 @1) (minus @2 @0))
2189 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2190 (if (TYPE_OVERFLOW_UNDEFINED (type)
2191 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2192 (pointer_diff @2 @1)))
2194 (minus (plus:c @0 @1) (minus @0 @2))
2197 /* (A +- CST1) +- CST2 -> A + CST3
2198 Use view_convert because it is safe for vectors and equivalent for
2200 (for outer_op (plus minus)
2201 (for inner_op (plus minus)
2202 neg_inner_op (minus plus)
2204 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2206 /* If one of the types wraps, use that one. */
2207 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2208 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2209 forever if something doesn't simplify into a constant. */
2210 (if (!CONSTANT_CLASS_P (@0))
2211 (if (outer_op == PLUS_EXPR)
2212 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2213 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2214 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2215 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2216 (if (outer_op == PLUS_EXPR)
2217 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2218 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2219 /* If the constant operation overflows we cannot do the transform
2220 directly as we would introduce undefined overflow, for example
2221 with (a - 1) + INT_MIN. */
2222 (if (types_match (type, @0))
2223 (with { tree cst = const_binop (outer_op == inner_op
2224 ? PLUS_EXPR : MINUS_EXPR,
2226 (if (cst && !TREE_OVERFLOW (cst))
2227 (inner_op @0 { cst; } )
2228 /* X+INT_MAX+1 is X-INT_MIN. */
2229 (if (INTEGRAL_TYPE_P (type) && cst
2230 && wi::to_wide (cst) == wi::min_value (type))
2231 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2232 /* Last resort, use some unsigned type. */
2233 (with { tree utype = unsigned_type_for (type); }
2235 (view_convert (inner_op
2236 (view_convert:utype @0)
2238 { drop_tree_overflow (cst); }))))))))))))))
2240 /* (CST1 - A) +- CST2 -> CST3 - A */
2241 (for outer_op (plus minus)
2243 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2244 /* If one of the types wraps, use that one. */
2245 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2246 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2247 forever if something doesn't simplify into a constant. */
2248 (if (!CONSTANT_CLASS_P (@0))
2249 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2250 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2251 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2252 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2253 (if (types_match (type, @0))
2254 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2255 (if (cst && !TREE_OVERFLOW (cst))
2256 (minus { cst; } @0))))))))
2258 /* CST1 - (CST2 - A) -> CST3 + A
2259 Use view_convert because it is safe for vectors and equivalent for
2262 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2263 /* If one of the types wraps, use that one. */
2264 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2265 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2266 forever if something doesn't simplify into a constant. */
2267 (if (!CONSTANT_CLASS_P (@0))
2268 (plus (view_convert @0) (minus @1 (view_convert @2))))
2269 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2270 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2271 (view_convert (plus @0 (minus (view_convert @1) @2)))
2272 (if (types_match (type, @0))
2273 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2274 (if (cst && !TREE_OVERFLOW (cst))
2275 (plus { cst; } @0)))))))
2277 /* ((T)(A)) + CST -> (T)(A + CST) */
2280 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2281 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2282 && TREE_CODE (type) == INTEGER_TYPE
2283 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2284 && int_fits_type_p (@1, TREE_TYPE (@0)))
2285 /* Perform binary operation inside the cast if the constant fits
2286 and (A + CST)'s range does not overflow. */
2289 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2290 max_ovf = wi::OVF_OVERFLOW;
2291 tree inner_type = TREE_TYPE (@0);
2294 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2295 TYPE_SIGN (inner_type));
2297 wide_int wmin0, wmax0;
2298 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2300 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2301 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2304 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2305 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2309 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2311 (for op (plus minus)
2313 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2314 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2315 && TREE_CODE (type) == INTEGER_TYPE
2316 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2317 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2318 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2319 && TYPE_OVERFLOW_WRAPS (type))
2320 (plus (convert @0) (op @2 (convert @1))))))
2325 (plus:c (bit_not @0) @0)
2326 (if (!TYPE_OVERFLOW_TRAPS (type))
2327 { build_all_ones_cst (type); }))
2331 (plus (convert? (bit_not @0)) integer_each_onep)
2332 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2333 (negate (convert @0))))
2337 (minus (convert? (negate @0)) integer_each_onep)
2338 (if (!TYPE_OVERFLOW_TRAPS (type)
2339 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2340 (bit_not (convert @0))))
2344 (minus integer_all_onesp @0)
2347 /* (T)(P + A) - (T)P -> (T) A */
2349 (minus (convert (plus:c @@0 @1))
2351 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2352 /* For integer types, if A has a smaller type
2353 than T the result depends on the possible
2355 E.g. T=size_t, A=(unsigned)429497295, P>0.
2356 However, if an overflow in P + A would cause
2357 undefined behavior, we can assume that there
2359 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2360 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2363 (minus (convert (pointer_plus @@0 @1))
2365 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2366 /* For pointer types, if the conversion of A to the
2367 final type requires a sign- or zero-extension,
2368 then we have to punt - it is not defined which
2370 || (POINTER_TYPE_P (TREE_TYPE (@0))
2371 && TREE_CODE (@1) == INTEGER_CST
2372 && tree_int_cst_sign_bit (@1) == 0))
2375 (pointer_diff (pointer_plus @@0 @1) @0)
2376 /* The second argument of pointer_plus must be interpreted as signed, and
2377 thus sign-extended if necessary. */
2378 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2379 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2380 second arg is unsigned even when we need to consider it as signed,
2381 we don't want to diagnose overflow here. */
2382 (convert (view_convert:stype @1))))
2384 /* (T)P - (T)(P + A) -> -(T) A */
2386 (minus (convert? @0)
2387 (convert (plus:c @@0 @1)))
2388 (if (INTEGRAL_TYPE_P (type)
2389 && TYPE_OVERFLOW_UNDEFINED (type)
2390 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2391 (with { tree utype = unsigned_type_for (type); }
2392 (convert (negate (convert:utype @1))))
2393 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2394 /* For integer types, if A has a smaller type
2395 than T the result depends on the possible
2397 E.g. T=size_t, A=(unsigned)429497295, P>0.
2398 However, if an overflow in P + A would cause
2399 undefined behavior, we can assume that there
2401 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2402 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2403 (negate (convert @1)))))
2406 (convert (pointer_plus @@0 @1)))
2407 (if (INTEGRAL_TYPE_P (type)
2408 && TYPE_OVERFLOW_UNDEFINED (type)
2409 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2410 (with { tree utype = unsigned_type_for (type); }
2411 (convert (negate (convert:utype @1))))
2412 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2413 /* For pointer types, if the conversion of A to the
2414 final type requires a sign- or zero-extension,
2415 then we have to punt - it is not defined which
2417 || (POINTER_TYPE_P (TREE_TYPE (@0))
2418 && TREE_CODE (@1) == INTEGER_CST
2419 && tree_int_cst_sign_bit (@1) == 0))
2420 (negate (convert @1)))))
2422 (pointer_diff @0 (pointer_plus @@0 @1))
2423 /* The second argument of pointer_plus must be interpreted as signed, and
2424 thus sign-extended if necessary. */
2425 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2426 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2427 second arg is unsigned even when we need to consider it as signed,
2428 we don't want to diagnose overflow here. */
2429 (negate (convert (view_convert:stype @1)))))
2431 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2433 (minus (convert (plus:c @@0 @1))
2434 (convert (plus:c @0 @2)))
2435 (if (INTEGRAL_TYPE_P (type)
2436 && TYPE_OVERFLOW_UNDEFINED (type)
2437 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2438 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2439 (with { tree utype = unsigned_type_for (type); }
2440 (convert (minus (convert:utype @1) (convert:utype @2))))
2441 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2442 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2443 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2444 /* For integer types, if A has a smaller type
2445 than T the result depends on the possible
2447 E.g. T=size_t, A=(unsigned)429497295, P>0.
2448 However, if an overflow in P + A would cause
2449 undefined behavior, we can assume that there
2451 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2452 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2453 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2454 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2455 (minus (convert @1) (convert @2)))))
2457 (minus (convert (pointer_plus @@0 @1))
2458 (convert (pointer_plus @0 @2)))
2459 (if (INTEGRAL_TYPE_P (type)
2460 && TYPE_OVERFLOW_UNDEFINED (type)
2461 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2462 (with { tree utype = unsigned_type_for (type); }
2463 (convert (minus (convert:utype @1) (convert:utype @2))))
2464 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2465 /* For pointer types, if the conversion of A to the
2466 final type requires a sign- or zero-extension,
2467 then we have to punt - it is not defined which
2469 || (POINTER_TYPE_P (TREE_TYPE (@0))
2470 && TREE_CODE (@1) == INTEGER_CST
2471 && tree_int_cst_sign_bit (@1) == 0
2472 && TREE_CODE (@2) == INTEGER_CST
2473 && tree_int_cst_sign_bit (@2) == 0))
2474 (minus (convert @1) (convert @2)))))
2476 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2477 /* The second argument of pointer_plus must be interpreted as signed, and
2478 thus sign-extended if necessary. */
2479 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2480 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2481 second arg is unsigned even when we need to consider it as signed,
2482 we don't want to diagnose overflow here. */
2483 (minus (convert (view_convert:stype @1))
2484 (convert (view_convert:stype @2)))))))
2486 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2487 Modeled after fold_plusminus_mult_expr. */
2488 (if (!TYPE_SATURATING (type)
2489 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2490 (for plusminus (plus minus)
2492 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2493 (if ((!ANY_INTEGRAL_TYPE_P (type)
2494 || TYPE_OVERFLOW_WRAPS (type)
2495 || (INTEGRAL_TYPE_P (type)
2496 && tree_expr_nonzero_p (@0)
2497 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2498 /* If @1 +- @2 is constant require a hard single-use on either
2499 original operand (but not on both). */
2500 && (single_use (@3) || single_use (@4)))
2501 (mult (plusminus @1 @2) @0)))
2502 /* We cannot generate constant 1 for fract. */
2503 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2505 (plusminus @0 (mult:c@3 @0 @2))
2506 (if ((!ANY_INTEGRAL_TYPE_P (type)
2507 || TYPE_OVERFLOW_WRAPS (type)
2508 /* For @0 + @0*@2 this transformation would introduce UB
2509 (where there was none before) for @0 in [-1,0] and @2 max.
2510 For @0 - @0*@2 this transformation would introduce UB
2511 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2512 || (INTEGRAL_TYPE_P (type)
2513 && ((tree_expr_nonzero_p (@0)
2514 && expr_not_equal_to (@0,
2515 wi::minus_one (TYPE_PRECISION (type))))
2516 || (plusminus == PLUS_EXPR
2517 ? expr_not_equal_to (@2,
2518 wi::max_value (TYPE_PRECISION (type), SIGNED))
2519 /* Let's ignore the @0 -1 and @2 min case. */
2520 : (expr_not_equal_to (@2,
2521 wi::min_value (TYPE_PRECISION (type), SIGNED))
2522 && expr_not_equal_to (@2,
2523 wi::min_value (TYPE_PRECISION (type), SIGNED)
2526 (mult (plusminus { build_one_cst (type); } @2) @0)))
2528 (plusminus (mult:c@3 @0 @2) @0)
2529 (if ((!ANY_INTEGRAL_TYPE_P (type)
2530 || TYPE_OVERFLOW_WRAPS (type)
2531 /* For @0*@2 + @0 this transformation would introduce UB
2532 (where there was none before) for @0 in [-1,0] and @2 max.
2533 For @0*@2 - @0 this transformation would introduce UB
2534 for @0 0 and @2 min. */
2535 || (INTEGRAL_TYPE_P (type)
2536 && ((tree_expr_nonzero_p (@0)
2537 && (plusminus == MINUS_EXPR
2538 || expr_not_equal_to (@0,
2539 wi::minus_one (TYPE_PRECISION (type)))))
2540 || expr_not_equal_to (@2,
2541 (plusminus == PLUS_EXPR
2542 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2543 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2545 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2547 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2549 (for minmax (min max FMIN_ALL FMAX_ALL)
2553 /* min(max(x,y),y) -> y. */
2555 (min:c (max:c @0 @1) @1)
2557 /* max(min(x,y),y) -> y. */
2559 (max:c (min:c @0 @1) @1)
2561 /* max(a,-a) -> abs(a). */
2563 (max:c @0 (negate @0))
2564 (if (TREE_CODE (type) != COMPLEX_TYPE
2565 && (! ANY_INTEGRAL_TYPE_P (type)
2566 || TYPE_OVERFLOW_UNDEFINED (type)))
2568 /* min(a,-a) -> -abs(a). */
2570 (min:c @0 (negate @0))
2571 (if (TREE_CODE (type) != COMPLEX_TYPE
2572 && (! ANY_INTEGRAL_TYPE_P (type)
2573 || TYPE_OVERFLOW_UNDEFINED (type)))
2578 (if (INTEGRAL_TYPE_P (type)
2579 && TYPE_MIN_VALUE (type)
2580 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2582 (if (INTEGRAL_TYPE_P (type)
2583 && TYPE_MAX_VALUE (type)
2584 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2589 (if (INTEGRAL_TYPE_P (type)
2590 && TYPE_MAX_VALUE (type)
2591 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2593 (if (INTEGRAL_TYPE_P (type)
2594 && TYPE_MIN_VALUE (type)
2595 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2598 /* max (a, a + CST) -> a + CST where CST is positive. */
2599 /* max (a, a + CST) -> a where CST is negative. */
2601 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2602 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2603 (if (tree_int_cst_sgn (@1) > 0)
2607 /* min (a, a + CST) -> a where CST is positive. */
2608 /* min (a, a + CST) -> a + CST where CST is negative. */
2610 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2611 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2612 (if (tree_int_cst_sgn (@1) > 0)
2616 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2617 and the outer convert demotes the expression back to x's type. */
2618 (for minmax (min max)
2620 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2621 (if (INTEGRAL_TYPE_P (type)
2622 && types_match (@1, type) && int_fits_type_p (@2, type)
2623 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2624 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2625 (minmax @1 (convert @2)))))
2627 (for minmax (FMIN_ALL FMAX_ALL)
2628 /* If either argument is NaN, return the other one. Avoid the
2629 transformation if we get (and honor) a signalling NaN. */
2631 (minmax:c @0 REAL_CST@1)
2632 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2633 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2635 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2636 functions to return the numeric arg if the other one is NaN.
2637 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2638 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2639 worry about it either. */
2640 (if (flag_finite_math_only)
2647 /* min (-A, -B) -> -max (A, B) */
2648 (for minmax (min max FMIN_ALL FMAX_ALL)
2649 maxmin (max min FMAX_ALL FMIN_ALL)
2651 (minmax (negate:s@2 @0) (negate:s@3 @1))
2652 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2653 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2654 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2655 (negate (maxmin @0 @1)))))
2656 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2657 MAX (~X, ~Y) -> ~MIN (X, Y) */
2658 (for minmax (min max)
2661 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2662 (bit_not (maxmin @0 @1))))
2664 /* MIN (X, Y) == X -> X <= Y */
2665 (for minmax (min min max max)
2669 (cmp:c (minmax:c @0 @1) @0)
2670 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2672 /* MIN (X, 5) == 0 -> X == 0
2673 MIN (X, 5) == 7 -> false */
2676 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2677 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2678 TYPE_SIGN (TREE_TYPE (@0))))
2679 { constant_boolean_node (cmp == NE_EXPR, type); }
2680 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2681 TYPE_SIGN (TREE_TYPE (@0))))
2685 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2686 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2687 TYPE_SIGN (TREE_TYPE (@0))))
2688 { constant_boolean_node (cmp == NE_EXPR, type); }
2689 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2690 TYPE_SIGN (TREE_TYPE (@0))))
2692 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2693 (for minmax (min min max max min min max max )
2694 cmp (lt le gt ge gt ge lt le )
2695 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2697 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2698 (comb (cmp @0 @2) (cmp @1 @2))))
2700 /* Undo fancy way of writing max/min or other ?: expressions,
2701 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2702 People normally use ?: and that is what we actually try to optimize. */
2703 (for cmp (simple_comparison)
2705 (minus @0 (bit_and:c (minus @0 @1)
2706 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2707 (if (INTEGRAL_TYPE_P (type)
2708 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2709 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2710 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2711 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2712 || !TYPE_UNSIGNED (TREE_TYPE (@4))))
2713 (cond (cmp @2 @3) @1 @0)))
2715 (plus:c @0 (bit_and:c (minus @1 @0)
2716 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2717 (if (INTEGRAL_TYPE_P (type)
2718 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2719 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2720 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2721 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2722 || !TYPE_UNSIGNED (TREE_TYPE (@4))))
2723 (cond (cmp @2 @3) @1 @0))))
2725 /* Simplifications of shift and rotates. */
2727 (for rotate (lrotate rrotate)
2729 (rotate integer_all_onesp@0 @1)
2732 /* Optimize -1 >> x for arithmetic right shifts. */
2734 (rshift integer_all_onesp@0 @1)
2735 (if (!TYPE_UNSIGNED (type)
2736 && tree_expr_nonnegative_p (@1))
2739 /* Optimize (x >> c) << c into x & (-1<<c). */
2741 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2742 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2743 /* It doesn't matter if the right shift is arithmetic or logical. */
2744 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2747 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2748 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2749 /* Allow intermediate conversion to integral type with whatever sign, as
2750 long as the low TYPE_PRECISION (type)
2751 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
2752 && INTEGRAL_TYPE_P (type)
2753 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2754 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2755 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2756 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2757 || wi::geu_p (wi::to_wide (@1),
2758 TYPE_PRECISION (type)
2759 - TYPE_PRECISION (TREE_TYPE (@2)))))
2760 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2762 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2765 (rshift (lshift @0 INTEGER_CST@1) @1)
2766 (if (TYPE_UNSIGNED (type)
2767 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2768 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2770 (for shiftrotate (lrotate rrotate lshift rshift)
2772 (shiftrotate @0 integer_zerop)
2775 (shiftrotate integer_zerop@0 @1)
2777 /* Prefer vector1 << scalar to vector1 << vector2
2778 if vector2 is uniform. */
2779 (for vec (VECTOR_CST CONSTRUCTOR)
2781 (shiftrotate @0 vec@1)
2782 (with { tree tem = uniform_vector_p (@1); }
2784 (shiftrotate @0 { tem; }))))))
2786 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2787 Y is 0. Similarly for X >> Y. */
2789 (for shift (lshift rshift)
2791 (shift @0 SSA_NAME@1)
2792 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2794 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2795 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2797 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2801 /* Rewrite an LROTATE_EXPR by a constant into an
2802 RROTATE_EXPR by a new constant. */
2804 (lrotate @0 INTEGER_CST@1)
2805 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2806 build_int_cst (TREE_TYPE (@1),
2807 element_precision (type)), @1); }))
2809 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2810 (for op (lrotate rrotate rshift lshift)
2812 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2813 (with { unsigned int prec = element_precision (type); }
2814 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2815 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2816 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2817 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2818 (with { unsigned int low = (tree_to_uhwi (@1)
2819 + tree_to_uhwi (@2)); }
2820 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2821 being well defined. */
2823 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2824 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2825 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2826 { build_zero_cst (type); }
2827 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2828 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2831 /* ((1 << A) & 1) != 0 -> A == 0
2832 ((1 << A) & 1) == 0 -> A != 0 */
2836 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2837 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2839 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2840 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2844 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2845 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2847 || (!integer_zerop (@2)
2848 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2849 { constant_boolean_node (cmp == NE_EXPR, type); }
2850 (if (!integer_zerop (@2)
2851 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2852 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2854 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2855 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2856 if the new mask might be further optimized. */
2857 (for shift (lshift rshift)
2859 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2861 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2862 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2863 && tree_fits_uhwi_p (@1)
2864 && tree_to_uhwi (@1) > 0
2865 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2868 unsigned int shiftc = tree_to_uhwi (@1);
2869 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2870 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2871 tree shift_type = TREE_TYPE (@3);
2874 if (shift == LSHIFT_EXPR)
2875 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2876 else if (shift == RSHIFT_EXPR
2877 && type_has_mode_precision_p (shift_type))
2879 prec = TYPE_PRECISION (TREE_TYPE (@3));
2881 /* See if more bits can be proven as zero because of
2884 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2886 tree inner_type = TREE_TYPE (@0);
2887 if (type_has_mode_precision_p (inner_type)
2888 && TYPE_PRECISION (inner_type) < prec)
2890 prec = TYPE_PRECISION (inner_type);
2891 /* See if we can shorten the right shift. */
2893 shift_type = inner_type;
2894 /* Otherwise X >> C1 is all zeros, so we'll optimize
2895 it into (X, 0) later on by making sure zerobits
2899 zerobits = HOST_WIDE_INT_M1U;
2902 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2903 zerobits <<= prec - shiftc;
2905 /* For arithmetic shift if sign bit could be set, zerobits
2906 can contain actually sign bits, so no transformation is
2907 possible, unless MASK masks them all away. In that
2908 case the shift needs to be converted into logical shift. */
2909 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2910 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2912 if ((mask & zerobits) == 0)
2913 shift_type = unsigned_type_for (TREE_TYPE (@3));
2919 /* ((X << 16) & 0xff00) is (X, 0). */
2920 (if ((mask & zerobits) == mask)
2921 { build_int_cst (type, 0); }
2922 (with { newmask = mask | zerobits; }
2923 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2926 /* Only do the transformation if NEWMASK is some integer
2928 for (prec = BITS_PER_UNIT;
2929 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2930 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2933 (if (prec < HOST_BITS_PER_WIDE_INT
2934 || newmask == HOST_WIDE_INT_M1U)
2936 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2937 (if (!tree_int_cst_equal (newmaskt, @2))
2938 (if (shift_type != TREE_TYPE (@3))
2939 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2940 (bit_and @4 { newmaskt; })))))))))))))
2942 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2943 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2944 (for shift (lshift rshift)
2945 (for bit_op (bit_and bit_xor bit_ior)
2947 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2948 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2949 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2950 (bit_op (shift (convert @0) @1) { mask; }))))))
2952 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2954 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2955 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2956 && (element_precision (TREE_TYPE (@0))
2957 <= element_precision (TREE_TYPE (@1))
2958 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2960 { tree shift_type = TREE_TYPE (@0); }
2961 (convert (rshift (convert:shift_type @1) @2)))))
2963 /* ~(~X >>r Y) -> X >>r Y
2964 ~(~X <<r Y) -> X <<r Y */
2965 (for rotate (lrotate rrotate)
2967 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2968 (if ((element_precision (TREE_TYPE (@0))
2969 <= element_precision (TREE_TYPE (@1))
2970 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2971 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2972 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2974 { tree rotate_type = TREE_TYPE (@0); }
2975 (convert (rotate (convert:rotate_type @1) @2))))))
2977 /* Simplifications of conversions. */
2979 /* Basic strip-useless-type-conversions / strip_nops. */
2980 (for cvt (convert view_convert float fix_trunc)
2983 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2984 || (GENERIC && type == TREE_TYPE (@0)))
2987 /* Contract view-conversions. */
2989 (view_convert (view_convert @0))
2992 /* For integral conversions with the same precision or pointer
2993 conversions use a NOP_EXPR instead. */
2996 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2997 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2998 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3001 /* Strip inner integral conversions that do not change precision or size, or
3002 zero-extend while keeping the same size (for bool-to-char). */
3004 (view_convert (convert@0 @1))
3005 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3006 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3007 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3008 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3009 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3010 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3013 /* Simplify a view-converted empty constructor. */
3015 (view_convert CONSTRUCTOR@0)
3016 (if (TREE_CODE (@0) != SSA_NAME
3017 && CONSTRUCTOR_NELTS (@0) == 0)
3018 { build_zero_cst (type); }))
3020 /* Re-association barriers around constants and other re-association
3021 barriers can be removed. */
3023 (paren CONSTANT_CLASS_P@0)
3026 (paren (paren@1 @0))
3029 /* Handle cases of two conversions in a row. */
3030 (for ocvt (convert float fix_trunc)
3031 (for icvt (convert float)
3036 tree inside_type = TREE_TYPE (@0);
3037 tree inter_type = TREE_TYPE (@1);
3038 int inside_int = INTEGRAL_TYPE_P (inside_type);
3039 int inside_ptr = POINTER_TYPE_P (inside_type);
3040 int inside_float = FLOAT_TYPE_P (inside_type);
3041 int inside_vec = VECTOR_TYPE_P (inside_type);
3042 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3043 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3044 int inter_int = INTEGRAL_TYPE_P (inter_type);
3045 int inter_ptr = POINTER_TYPE_P (inter_type);
3046 int inter_float = FLOAT_TYPE_P (inter_type);
3047 int inter_vec = VECTOR_TYPE_P (inter_type);
3048 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3049 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3050 int final_int = INTEGRAL_TYPE_P (type);
3051 int final_ptr = POINTER_TYPE_P (type);
3052 int final_float = FLOAT_TYPE_P (type);
3053 int final_vec = VECTOR_TYPE_P (type);
3054 unsigned int final_prec = TYPE_PRECISION (type);
3055 int final_unsignedp = TYPE_UNSIGNED (type);
3058 /* In addition to the cases of two conversions in a row
3059 handled below, if we are converting something to its own
3060 type via an object of identical or wider precision, neither
3061 conversion is needed. */
3062 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3064 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3065 && (((inter_int || inter_ptr) && final_int)
3066 || (inter_float && final_float))
3067 && inter_prec >= final_prec)
3070 /* Likewise, if the intermediate and initial types are either both
3071 float or both integer, we don't need the middle conversion if the
3072 former is wider than the latter and doesn't change the signedness
3073 (for integers). Avoid this if the final type is a pointer since
3074 then we sometimes need the middle conversion. */
3075 (if (((inter_int && inside_int) || (inter_float && inside_float))
3076 && (final_int || final_float)
3077 && inter_prec >= inside_prec
3078 && (inter_float || inter_unsignedp == inside_unsignedp))
3081 /* If we have a sign-extension of a zero-extended value, we can
3082 replace that by a single zero-extension. Likewise if the
3083 final conversion does not change precision we can drop the
3084 intermediate conversion. */
3085 (if (inside_int && inter_int && final_int
3086 && ((inside_prec < inter_prec && inter_prec < final_prec
3087 && inside_unsignedp && !inter_unsignedp)
3088 || final_prec == inter_prec))
3091 /* Two conversions in a row are not needed unless:
3092 - some conversion is floating-point (overstrict for now), or
3093 - some conversion is a vector (overstrict for now), or
3094 - the intermediate type is narrower than both initial and
3096 - the intermediate type and innermost type differ in signedness,
3097 and the outermost type is wider than the intermediate, or
3098 - the initial type is a pointer type and the precisions of the
3099 intermediate and final types differ, or
3100 - the final type is a pointer type and the precisions of the
3101 initial and intermediate types differ. */
3102 (if (! inside_float && ! inter_float && ! final_float
3103 && ! inside_vec && ! inter_vec && ! final_vec
3104 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3105 && ! (inside_int && inter_int
3106 && inter_unsignedp != inside_unsignedp
3107 && inter_prec < final_prec)
3108 && ((inter_unsignedp && inter_prec > inside_prec)
3109 == (final_unsignedp && final_prec > inter_prec))
3110 && ! (inside_ptr && inter_prec != final_prec)
3111 && ! (final_ptr && inside_prec != inter_prec))
3114 /* A truncation to an unsigned type (a zero-extension) should be
3115 canonicalized as bitwise and of a mask. */
3116 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3117 && final_int && inter_int && inside_int
3118 && final_prec == inside_prec
3119 && final_prec > inter_prec
3121 (convert (bit_and @0 { wide_int_to_tree
3123 wi::mask (inter_prec, false,
3124 TYPE_PRECISION (inside_type))); })))
3126 /* If we are converting an integer to a floating-point that can
3127 represent it exactly and back to an integer, we can skip the
3128 floating-point conversion. */
3129 (if (GIMPLE /* PR66211 */
3130 && inside_int && inter_float && final_int &&
3131 (unsigned) significand_size (TYPE_MODE (inter_type))
3132 >= inside_prec - !inside_unsignedp)
3135 /* If we have a narrowing conversion to an integral type that is fed by a
3136 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3137 masks off bits outside the final type (and nothing else). */
3139 (convert (bit_and @0 INTEGER_CST@1))
3140 (if (INTEGRAL_TYPE_P (type)
3141 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3142 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3143 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3144 TYPE_PRECISION (type)), 0))
3148 /* (X /[ex] A) * A -> X. */
3150 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3153 /* Simplify (A / B) * B + (A % B) -> A. */
3154 (for div (trunc_div ceil_div floor_div round_div)
3155 mod (trunc_mod ceil_mod floor_mod round_mod)
3157 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3160 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3161 (for op (plus minus)
3163 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3164 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3165 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3168 wi::overflow_type overflow;
3169 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3170 TYPE_SIGN (type), &overflow);
3172 (if (types_match (type, TREE_TYPE (@2))
3173 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3174 (op @0 { wide_int_to_tree (type, mul); })
3175 (with { tree utype = unsigned_type_for (type); }
3176 (convert (op (convert:utype @0)
3177 (mult (convert:utype @1) (convert:utype @2))))))))))
3179 /* Canonicalization of binary operations. */
3181 /* Convert X + -C into X - C. */
3183 (plus @0 REAL_CST@1)
3184 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3185 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3186 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3187 (minus @0 { tem; })))))
3189 /* Convert x+x into x*2. */
3192 (if (SCALAR_FLOAT_TYPE_P (type))
3193 (mult @0 { build_real (type, dconst2); })
3194 (if (INTEGRAL_TYPE_P (type))
3195 (mult @0 { build_int_cst (type, 2); }))))
3199 (minus integer_zerop @1)
3202 (pointer_diff integer_zerop @1)
3203 (negate (convert @1)))
3205 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3206 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3207 (-ARG1 + ARG0) reduces to -ARG1. */
3209 (minus real_zerop@0 @1)
3210 (if (fold_real_zero_addition_p (type, @0, 0))
3213 /* Transform x * -1 into -x. */
3215 (mult @0 integer_minus_onep)
3218 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3219 signed overflow for CST != 0 && CST != -1. */
3221 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3222 (if (TREE_CODE (@2) != INTEGER_CST
3224 && !integer_zerop (@1) && !integer_minus_onep (@1))
3225 (mult (mult @0 @2) @1)))
3227 /* True if we can easily extract the real and imaginary parts of a complex
3229 (match compositional_complex
3230 (convert? (complex @0 @1)))
3232 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3234 (complex (realpart @0) (imagpart @0))
3237 (realpart (complex @0 @1))
3240 (imagpart (complex @0 @1))
3243 /* Sometimes we only care about half of a complex expression. */
3245 (realpart (convert?:s (conj:s @0)))
3246 (convert (realpart @0)))
3248 (imagpart (convert?:s (conj:s @0)))
3249 (convert (negate (imagpart @0))))
3250 (for part (realpart imagpart)
3251 (for op (plus minus)
3253 (part (convert?:s@2 (op:s @0 @1)))
3254 (convert (op (part @0) (part @1))))))
3256 (realpart (convert?:s (CEXPI:s @0)))
3259 (imagpart (convert?:s (CEXPI:s @0)))
3262 /* conj(conj(x)) -> x */
3264 (conj (convert? (conj @0)))
3265 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3268 /* conj({x,y}) -> {x,-y} */
3270 (conj (convert?:s (complex:s @0 @1)))
3271 (with { tree itype = TREE_TYPE (type); }
3272 (complex (convert:itype @0) (negate (convert:itype @1)))))
3274 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3275 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3280 (bswap (bit_not (bswap @0)))
3282 (for bitop (bit_xor bit_ior bit_and)
3284 (bswap (bitop:c (bswap @0) @1))
3285 (bitop @0 (bswap @1)))))
3288 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3290 /* Simplify constant conditions.
3291 Only optimize constant conditions when the selected branch
3292 has the same type as the COND_EXPR. This avoids optimizing
3293 away "c ? x : throw", where the throw has a void type.
3294 Note that we cannot throw away the fold-const.c variant nor
3295 this one as we depend on doing this transform before possibly
3296 A ? B : B -> B triggers and the fold-const.c one can optimize
3297 0 ? A : B to B even if A has side-effects. Something
3298 genmatch cannot handle. */
3300 (cond INTEGER_CST@0 @1 @2)
3301 (if (integer_zerop (@0))
3302 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3304 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3307 (vec_cond VECTOR_CST@0 @1 @2)
3308 (if (integer_all_onesp (@0))
3310 (if (integer_zerop (@0))
3313 /* Sink unary operations to constant branches, but only if we do fold it to
3315 (for op (negate bit_not abs absu)
3317 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3321 cst1 = const_unop (op, type, @1);
3323 cst2 = const_unop (op, type, @2);
3326 (vec_cond @0 { cst1; } { cst2; })))))
3328 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3330 /* This pattern implements two kinds simplification:
3333 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3334 1) Conversions are type widening from smaller type.
3335 2) Const c1 equals to c2 after canonicalizing comparison.
3336 3) Comparison has tree code LT, LE, GT or GE.
3337 This specific pattern is needed when (cmp (convert x) c) may not
3338 be simplified by comparison patterns because of multiple uses of
3339 x. It also makes sense here because simplifying across multiple
3340 referred var is always benefitial for complicated cases.
3343 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3344 (for cmp (lt le gt ge eq)
3346 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3349 tree from_type = TREE_TYPE (@1);
3350 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3351 enum tree_code code = ERROR_MARK;
3353 if (INTEGRAL_TYPE_P (from_type)
3354 && int_fits_type_p (@2, from_type)
3355 && (types_match (c1_type, from_type)
3356 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3357 && (TYPE_UNSIGNED (from_type)
3358 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3359 && (types_match (c2_type, from_type)
3360 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3361 && (TYPE_UNSIGNED (from_type)
3362 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3366 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3368 /* X <= Y - 1 equals to X < Y. */
3371 /* X > Y - 1 equals to X >= Y. */
3375 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3377 /* X < Y + 1 equals to X <= Y. */
3380 /* X >= Y + 1 equals to X > Y. */
3384 if (code != ERROR_MARK
3385 || wi::to_widest (@2) == wi::to_widest (@3))
3387 if (cmp == LT_EXPR || cmp == LE_EXPR)
3389 if (cmp == GT_EXPR || cmp == GE_EXPR)
3393 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3394 else if (int_fits_type_p (@3, from_type))
3398 (if (code == MAX_EXPR)
3399 (convert (max @1 (convert @2)))
3400 (if (code == MIN_EXPR)
3401 (convert (min @1 (convert @2)))
3402 (if (code == EQ_EXPR)
3403 (convert (cond (eq @1 (convert @3))
3404 (convert:from_type @3) (convert:from_type @2)))))))))
3406 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3408 1) OP is PLUS or MINUS.
3409 2) CMP is LT, LE, GT or GE.
3410 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3412 This pattern also handles special cases like:
3414 A) Operand x is a unsigned to signed type conversion and c1 is
3415 integer zero. In this case,
3416 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3417 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3418 B) Const c1 may not equal to (C3 op' C2). In this case we also
3419 check equality for (c1+1) and (c1-1) by adjusting comparison
3422 TODO: Though signed type is handled by this pattern, it cannot be
3423 simplified at the moment because C standard requires additional
3424 type promotion. In order to match&simplify it here, the IR needs
3425 to be cleaned up by other optimizers, i.e, VRP. */
3426 (for op (plus minus)
3427 (for cmp (lt le gt ge)
3429 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3430 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3431 (if (types_match (from_type, to_type)
3432 /* Check if it is special case A). */
3433 || (TYPE_UNSIGNED (from_type)
3434 && !TYPE_UNSIGNED (to_type)
3435 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3436 && integer_zerop (@1)
3437 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3440 wi::overflow_type overflow = wi::OVF_NONE;
3441 enum tree_code code, cmp_code = cmp;
3443 wide_int c1 = wi::to_wide (@1);
3444 wide_int c2 = wi::to_wide (@2);
3445 wide_int c3 = wi::to_wide (@3);
3446 signop sgn = TYPE_SIGN (from_type);
3448 /* Handle special case A), given x of unsigned type:
3449 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3450 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3451 if (!types_match (from_type, to_type))
3453 if (cmp_code == LT_EXPR)
3455 if (cmp_code == GE_EXPR)
3457 c1 = wi::max_value (to_type);
3459 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3460 compute (c3 op' c2) and check if it equals to c1 with op' being
3461 the inverted operator of op. Make sure overflow doesn't happen
3462 if it is undefined. */
3463 if (op == PLUS_EXPR)
3464 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3466 real_c1 = wi::add (c3, c2, sgn, &overflow);
3469 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3471 /* Check if c1 equals to real_c1. Boundary condition is handled
3472 by adjusting comparison operation if necessary. */
3473 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3476 /* X <= Y - 1 equals to X < Y. */
3477 if (cmp_code == LE_EXPR)
3479 /* X > Y - 1 equals to X >= Y. */
3480 if (cmp_code == GT_EXPR)
3483 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3486 /* X < Y + 1 equals to X <= Y. */
3487 if (cmp_code == LT_EXPR)
3489 /* X >= Y + 1 equals to X > Y. */
3490 if (cmp_code == GE_EXPR)
3493 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3495 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3497 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3502 (if (code == MAX_EXPR)
3503 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3504 { wide_int_to_tree (from_type, c2); })
3505 (if (code == MIN_EXPR)
3506 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3507 { wide_int_to_tree (from_type, c2); })))))))))
3509 (for cnd (cond vec_cond)
3510 /* A ? B : (A ? X : C) -> A ? B : C. */
3512 (cnd @0 (cnd @0 @1 @2) @3)
3515 (cnd @0 @1 (cnd @0 @2 @3))
3517 /* A ? B : (!A ? C : X) -> A ? B : C. */
3518 /* ??? This matches embedded conditions open-coded because genmatch
3519 would generate matching code for conditions in separate stmts only.
3520 The following is still important to merge then and else arm cases
3521 from if-conversion. */
3523 (cnd @0 @1 (cnd @2 @3 @4))
3524 (if (inverse_conditions_p (@0, @2))
3527 (cnd @0 (cnd @1 @2 @3) @4)
3528 (if (inverse_conditions_p (@0, @1))
3531 /* A ? B : B -> B. */
3536 /* !A ? B : C -> A ? C : B. */
3538 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3541 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3542 return all -1 or all 0 results. */
3543 /* ??? We could instead convert all instances of the vec_cond to negate,
3544 but that isn't necessarily a win on its own. */
3546 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3547 (if (VECTOR_TYPE_P (type)
3548 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3549 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3550 && (TYPE_MODE (TREE_TYPE (type))
3551 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3552 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3554 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3556 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3557 (if (VECTOR_TYPE_P (type)
3558 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3559 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3560 && (TYPE_MODE (TREE_TYPE (type))
3561 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3562 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3565 /* Simplifications of comparisons. */
3567 /* See if we can reduce the magnitude of a constant involved in a
3568 comparison by changing the comparison code. This is a canonicalization
3569 formerly done by maybe_canonicalize_comparison_1. */
3573 (cmp @0 uniform_integer_cst_p@1)
3574 (with { tree cst = uniform_integer_cst_p (@1); }
3575 (if (tree_int_cst_sgn (cst) == -1)
3576 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3577 wide_int_to_tree (TREE_TYPE (cst),
3583 (cmp @0 uniform_integer_cst_p@1)
3584 (with { tree cst = uniform_integer_cst_p (@1); }
3585 (if (tree_int_cst_sgn (cst) == 1)
3586 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3587 wide_int_to_tree (TREE_TYPE (cst),
3588 wi::to_wide (cst) - 1)); })))))
3590 /* We can simplify a logical negation of a comparison to the
3591 inverted comparison. As we cannot compute an expression
3592 operator using invert_tree_comparison we have to simulate
3593 that with expression code iteration. */
3594 (for cmp (tcc_comparison)
3595 icmp (inverted_tcc_comparison)
3596 ncmp (inverted_tcc_comparison_with_nans)
3597 /* Ideally we'd like to combine the following two patterns
3598 and handle some more cases by using
3599 (logical_inverted_value (cmp @0 @1))
3600 here but for that genmatch would need to "inline" that.
3601 For now implement what forward_propagate_comparison did. */
3603 (bit_not (cmp @0 @1))
3604 (if (VECTOR_TYPE_P (type)
3605 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3606 /* Comparison inversion may be impossible for trapping math,
3607 invert_tree_comparison will tell us. But we can't use
3608 a computed operator in the replacement tree thus we have
3609 to play the trick below. */
3610 (with { enum tree_code ic = invert_tree_comparison
3611 (cmp, HONOR_NANS (@0)); }
3617 (bit_xor (cmp @0 @1) integer_truep)
3618 (with { enum tree_code ic = invert_tree_comparison
3619 (cmp, HONOR_NANS (@0)); }
3625 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3626 ??? The transformation is valid for the other operators if overflow
3627 is undefined for the type, but performing it here badly interacts
3628 with the transformation in fold_cond_expr_with_comparison which
3629 attempts to synthetize ABS_EXPR. */
3631 (for sub (minus pointer_diff)
3633 (cmp (sub@2 @0 @1) integer_zerop)
3634 (if (single_use (@2))
3637 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3638 signed arithmetic case. That form is created by the compiler
3639 often enough for folding it to be of value. One example is in
3640 computing loop trip counts after Operator Strength Reduction. */
3641 (for cmp (simple_comparison)
3642 scmp (swapped_simple_comparison)
3644 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3645 /* Handle unfolded multiplication by zero. */
3646 (if (integer_zerop (@1))
3648 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3649 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3651 /* If @1 is negative we swap the sense of the comparison. */
3652 (if (tree_int_cst_sgn (@1) < 0)
3656 /* Simplify comparison of something with itself. For IEEE
3657 floating-point, we can only do some of these simplifications. */
3661 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3662 || ! HONOR_NANS (@0))
3663 { constant_boolean_node (true, type); }
3664 (if (cmp != EQ_EXPR)
3670 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3671 || ! HONOR_NANS (@0))
3672 { constant_boolean_node (false, type); })))
3673 (for cmp (unle unge uneq)
3676 { constant_boolean_node (true, type); }))
3677 (for cmp (unlt ungt)
3683 (if (!flag_trapping_math)
3684 { constant_boolean_node (false, type); }))
3686 /* Fold ~X op ~Y as Y op X. */
3687 (for cmp (simple_comparison)
3689 (cmp (bit_not@2 @0) (bit_not@3 @1))
3690 (if (single_use (@2) && single_use (@3))
3693 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3694 (for cmp (simple_comparison)
3695 scmp (swapped_simple_comparison)
3697 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3698 (if (single_use (@2)
3699 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3700 (scmp @0 (bit_not @1)))))
3702 (for cmp (simple_comparison)
3703 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3705 (cmp (convert@2 @0) (convert? @1))
3706 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3707 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3708 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3709 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3710 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3713 tree type1 = TREE_TYPE (@1);
3714 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3716 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3717 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3718 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3719 type1 = float_type_node;
3720 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3721 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3722 type1 = double_type_node;
3725 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3726 ? TREE_TYPE (@0) : type1);
3728 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3729 (cmp (convert:newtype @0) (convert:newtype @1))))))
3733 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3735 /* a CMP (-0) -> a CMP 0 */
3736 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3737 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3738 /* x != NaN is always true, other ops are always false. */
3739 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3740 && ! HONOR_SNANS (@1))
3741 { constant_boolean_node (cmp == NE_EXPR, type); })
3742 /* Fold comparisons against infinity. */
3743 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3744 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3747 REAL_VALUE_TYPE max;
3748 enum tree_code code = cmp;
3749 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3751 code = swap_tree_comparison (code);
3754 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3755 (if (code == GT_EXPR
3756 && !(HONOR_NANS (@0) && flag_trapping_math))
3757 { constant_boolean_node (false, type); })
3758 (if (code == LE_EXPR)
3759 /* x <= +Inf is always true, if we don't care about NaNs. */
3760 (if (! HONOR_NANS (@0))
3761 { constant_boolean_node (true, type); }
3762 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3763 an "invalid" exception. */
3764 (if (!flag_trapping_math)
3766 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3767 for == this introduces an exception for x a NaN. */
3768 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3770 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3772 (lt @0 { build_real (TREE_TYPE (@0), max); })
3773 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3774 /* x < +Inf is always equal to x <= DBL_MAX. */
3775 (if (code == LT_EXPR)
3776 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3778 (ge @0 { build_real (TREE_TYPE (@0), max); })
3779 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3780 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3781 an exception for x a NaN so use an unordered comparison. */
3782 (if (code == NE_EXPR)
3783 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3784 (if (! HONOR_NANS (@0))
3786 (ge @0 { build_real (TREE_TYPE (@0), max); })
3787 (le @0 { build_real (TREE_TYPE (@0), max); }))
3789 (unge @0 { build_real (TREE_TYPE (@0), max); })
3790 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3792 /* If this is a comparison of a real constant with a PLUS_EXPR
3793 or a MINUS_EXPR of a real constant, we can convert it into a
3794 comparison with a revised real constant as long as no overflow
3795 occurs when unsafe_math_optimizations are enabled. */
3796 (if (flag_unsafe_math_optimizations)
3797 (for op (plus minus)
3799 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3802 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3803 TREE_TYPE (@1), @2, @1);
3805 (if (tem && !TREE_OVERFLOW (tem))
3806 (cmp @0 { tem; }))))))
3808 /* Likewise, we can simplify a comparison of a real constant with
3809 a MINUS_EXPR whose first operand is also a real constant, i.e.
3810 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3811 floating-point types only if -fassociative-math is set. */
3812 (if (flag_associative_math)
3814 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3815 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3816 (if (tem && !TREE_OVERFLOW (tem))
3817 (cmp { tem; } @1)))))
3819 /* Fold comparisons against built-in math functions. */
3820 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3823 (cmp (sq @0) REAL_CST@1)
3825 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3827 /* sqrt(x) < y is always false, if y is negative. */
3828 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3829 { constant_boolean_node (false, type); })
3830 /* sqrt(x) > y is always true, if y is negative and we
3831 don't care about NaNs, i.e. negative values of x. */
3832 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3833 { constant_boolean_node (true, type); })
3834 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3835 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3836 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3838 /* sqrt(x) < 0 is always false. */
3839 (if (cmp == LT_EXPR)
3840 { constant_boolean_node (false, type); })
3841 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3842 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3843 { constant_boolean_node (true, type); })
3844 /* sqrt(x) <= 0 -> x == 0. */
3845 (if (cmp == LE_EXPR)
3847 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3848 == or !=. In the last case:
3850 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3852 if x is negative or NaN. Due to -funsafe-math-optimizations,
3853 the results for other x follow from natural arithmetic. */
3855 (if ((cmp == LT_EXPR
3859 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3860 /* Give up for -frounding-math. */
3861 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3865 enum tree_code ncmp = cmp;
3866 const real_format *fmt
3867 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3868 real_arithmetic (&c2, MULT_EXPR,
3869 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3870 real_convert (&c2, fmt, &c2);
3871 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3872 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
3873 if (!REAL_VALUE_ISINF (c2))
3875 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3876 build_real (TREE_TYPE (@0), c2));
3877 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3879 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3880 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3881 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3882 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3883 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3884 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3887 /* With rounding to even, sqrt of up to 3 different values
3888 gives the same normal result, so in some cases c2 needs
3890 REAL_VALUE_TYPE c2alt, tow;
3891 if (cmp == LT_EXPR || cmp == GE_EXPR)
3895 real_nextafter (&c2alt, fmt, &c2, &tow);
3896 real_convert (&c2alt, fmt, &c2alt);
3897 if (REAL_VALUE_ISINF (c2alt))
3901 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3902 build_real (TREE_TYPE (@0), c2alt));
3903 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3905 else if (real_equal (&TREE_REAL_CST (c3),
3906 &TREE_REAL_CST (@1)))
3912 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3913 (if (REAL_VALUE_ISINF (c2))
3914 /* sqrt(x) > y is x == +Inf, when y is very large. */
3915 (if (HONOR_INFINITIES (@0))
3916 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3917 { constant_boolean_node (false, type); })
3918 /* sqrt(x) > c is the same as x > c*c. */
3919 (if (ncmp != ERROR_MARK)
3920 (if (ncmp == GE_EXPR)
3921 (ge @0 { build_real (TREE_TYPE (@0), c2); })
3922 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
3923 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
3924 (if (REAL_VALUE_ISINF (c2))
3926 /* sqrt(x) < y is always true, when y is a very large
3927 value and we don't care about NaNs or Infinities. */
3928 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3929 { constant_boolean_node (true, type); })
3930 /* sqrt(x) < y is x != +Inf when y is very large and we
3931 don't care about NaNs. */
3932 (if (! HONOR_NANS (@0))
3933 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3934 /* sqrt(x) < y is x >= 0 when y is very large and we
3935 don't care about Infinities. */
3936 (if (! HONOR_INFINITIES (@0))
3937 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3938 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3941 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3942 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3943 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3944 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
3945 (if (ncmp == LT_EXPR)
3946 (lt @0 { build_real (TREE_TYPE (@0), c2); })
3947 (le @0 { build_real (TREE_TYPE (@0), c2); }))
3948 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3949 (if (ncmp != ERROR_MARK && GENERIC)
3950 (if (ncmp == LT_EXPR)
3952 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3953 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
3955 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3956 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
3957 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3959 (cmp (sq @0) (sq @1))
3960 (if (! HONOR_NANS (@0))
3963 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3964 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3965 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3967 (cmp (float@0 @1) (float @2))
3968 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3969 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3972 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3973 tree type1 = TREE_TYPE (@1);
3974 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3975 tree type2 = TREE_TYPE (@2);
3976 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3978 (if (fmt.can_represent_integral_type_p (type1)
3979 && fmt.can_represent_integral_type_p (type2))
3980 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3981 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3982 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3983 && type1_signed_p >= type2_signed_p)
3984 (icmp @1 (convert @2))
3985 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3986 && type1_signed_p <= type2_signed_p)
3987 (icmp (convert:type2 @1) @2)
3988 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3989 && type1_signed_p == type2_signed_p)
3990 (icmp @1 @2))))))))))
3992 /* Optimize various special cases of (FTYPE) N CMP CST. */
3993 (for cmp (lt le eq ne ge gt)
3994 icmp (le le eq ne ge ge)
3996 (cmp (float @0) REAL_CST@1)
3997 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3998 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4001 tree itype = TREE_TYPE (@0);
4002 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4003 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4004 /* Be careful to preserve any potential exceptions due to
4005 NaNs. qNaNs are ok in == or != context.
4006 TODO: relax under -fno-trapping-math or
4007 -fno-signaling-nans. */
4009 = real_isnan (cst) && (cst->signalling
4010 || (cmp != EQ_EXPR && cmp != NE_EXPR));
4012 /* TODO: allow non-fitting itype and SNaNs when
4013 -fno-trapping-math. */
4014 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4017 signop isign = TYPE_SIGN (itype);
4018 REAL_VALUE_TYPE imin, imax;
4019 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4020 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4022 REAL_VALUE_TYPE icst;
4023 if (cmp == GT_EXPR || cmp == GE_EXPR)
4024 real_ceil (&icst, fmt, cst);
4025 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4026 real_floor (&icst, fmt, cst);
4028 real_trunc (&icst, fmt, cst);
4030 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4032 bool overflow_p = false;
4034 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4037 /* Optimize cases when CST is outside of ITYPE's range. */
4038 (if (real_compare (LT_EXPR, cst, &imin))
4039 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4041 (if (real_compare (GT_EXPR, cst, &imax))
4042 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4044 /* Remove cast if CST is an integer representable by ITYPE. */
4046 (cmp @0 { gcc_assert (!overflow_p);
4047 wide_int_to_tree (itype, icst_val); })
4049 /* When CST is fractional, optimize
4050 (FTYPE) N == CST -> 0
4051 (FTYPE) N != CST -> 1. */
4052 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4053 { constant_boolean_node (cmp == NE_EXPR, type); })
4054 /* Otherwise replace with sensible integer constant. */
4057 gcc_checking_assert (!overflow_p);
4059 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4061 /* Fold A /[ex] B CMP C to A CMP B * C. */
4064 (cmp (exact_div @0 @1) INTEGER_CST@2)
4065 (if (!integer_zerop (@1))
4066 (if (wi::to_wide (@2) == 0)
4068 (if (TREE_CODE (@1) == INTEGER_CST)
4071 wi::overflow_type ovf;
4072 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4073 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4076 { constant_boolean_node (cmp == NE_EXPR, type); }
4077 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4078 (for cmp (lt le gt ge)
4080 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4081 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4084 wi::overflow_type ovf;
4085 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4086 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4089 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4090 TYPE_SIGN (TREE_TYPE (@2)))
4091 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4092 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4094 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4096 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4097 For large C (more than min/B+2^size), this is also true, with the
4098 multiplication computed modulo 2^size.
4099 For intermediate C, this just tests the sign of A. */
4100 (for cmp (lt le gt ge)
4103 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4104 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4105 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4106 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4109 tree utype = TREE_TYPE (@2);
4110 wide_int denom = wi::to_wide (@1);
4111 wide_int right = wi::to_wide (@2);
4112 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4113 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4114 bool small = wi::leu_p (right, smax);
4115 bool large = wi::geu_p (right, smin);
4117 (if (small || large)
4118 (cmp (convert:utype @0) (mult @2 (convert @1)))
4119 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4121 /* Unordered tests if either argument is a NaN. */
4123 (bit_ior (unordered @0 @0) (unordered @1 @1))
4124 (if (types_match (@0, @1))
4127 (bit_and (ordered @0 @0) (ordered @1 @1))
4128 (if (types_match (@0, @1))
4131 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4134 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4137 /* Simple range test simplifications. */
4138 /* A < B || A >= B -> true. */
4139 (for test1 (lt le le le ne ge)
4140 test2 (ge gt ge ne eq ne)
4142 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4143 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4144 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4145 { constant_boolean_node (true, type); })))
4146 /* A < B && A >= B -> false. */
4147 (for test1 (lt lt lt le ne eq)
4148 test2 (ge gt eq gt eq gt)
4150 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4151 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4152 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4153 { constant_boolean_node (false, type); })))
4155 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4156 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4158 Note that comparisons
4159 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4160 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4161 will be canonicalized to above so there's no need to
4168 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4169 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4172 tree ty = TREE_TYPE (@0);
4173 unsigned prec = TYPE_PRECISION (ty);
4174 wide_int mask = wi::to_wide (@2, prec);
4175 wide_int rhs = wi::to_wide (@3, prec);
4176 signop sgn = TYPE_SIGN (ty);
4178 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4179 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4180 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4181 { build_zero_cst (ty); }))))))
4183 /* -A CMP -B -> B CMP A. */
4184 (for cmp (tcc_comparison)
4185 scmp (swapped_tcc_comparison)
4187 (cmp (negate @0) (negate @1))
4188 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4189 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4190 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4193 (cmp (negate @0) CONSTANT_CLASS_P@1)
4194 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4195 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4196 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4197 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4198 (if (tem && !TREE_OVERFLOW (tem))
4199 (scmp @0 { tem; }))))))
4201 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4204 (op (abs @0) zerop@1)
4207 /* From fold_sign_changed_comparison and fold_widened_comparison.
4208 FIXME: the lack of symmetry is disturbing. */
4209 (for cmp (simple_comparison)
4211 (cmp (convert@0 @00) (convert?@1 @10))
4212 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4213 /* Disable this optimization if we're casting a function pointer
4214 type on targets that require function pointer canonicalization. */
4215 && !(targetm.have_canonicalize_funcptr_for_compare ()
4216 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4217 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4218 || (POINTER_TYPE_P (TREE_TYPE (@10))
4219 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4221 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4222 && (TREE_CODE (@10) == INTEGER_CST
4224 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4227 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4228 /* ??? The special-casing of INTEGER_CST conversion was in the original
4229 code and here to avoid a spurious overflow flag on the resulting
4230 constant which fold_convert produces. */
4231 (if (TREE_CODE (@1) == INTEGER_CST)
4232 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4233 TREE_OVERFLOW (@1)); })
4234 (cmp @00 (convert @1)))
4236 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4237 /* If possible, express the comparison in the shorter mode. */
4238 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4239 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4240 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4241 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4242 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4243 || ((TYPE_PRECISION (TREE_TYPE (@00))
4244 >= TYPE_PRECISION (TREE_TYPE (@10)))
4245 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4246 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4247 || (TREE_CODE (@10) == INTEGER_CST
4248 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4249 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4250 (cmp @00 (convert @10))
4251 (if (TREE_CODE (@10) == INTEGER_CST
4252 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4253 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4256 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4257 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4258 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4259 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4261 (if (above || below)
4262 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4263 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4264 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4265 { constant_boolean_node (above ? true : false, type); }
4266 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4267 { constant_boolean_node (above ? false : true, type); }))))))))))))
4270 /* A local variable can never be pointed to by
4271 the default SSA name of an incoming parameter.
4272 SSA names are canonicalized to 2nd place. */
4274 (cmp addr@0 SSA_NAME@1)
4275 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4276 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
4277 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
4278 (if (TREE_CODE (base) == VAR_DECL
4279 && auto_var_in_fn_p (base, current_function_decl))
4280 (if (cmp == NE_EXPR)
4281 { constant_boolean_node (true, type); }
4282 { constant_boolean_node (false, type); }))))))
4284 /* Equality compare simplifications from fold_binary */
4287 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4288 Similarly for NE_EXPR. */
4290 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4291 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4292 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4293 { constant_boolean_node (cmp == NE_EXPR, type); }))
4295 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4297 (cmp (bit_xor @0 @1) integer_zerop)
4300 /* (X ^ Y) == Y becomes X == 0.
4301 Likewise (X ^ Y) == X becomes Y == 0. */
4303 (cmp:c (bit_xor:c @0 @1) @0)
4304 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4306 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4308 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4309 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4310 (cmp @0 (bit_xor @1 (convert @2)))))
4313 (cmp (convert? addr@0) integer_zerop)
4314 (if (tree_single_nonzero_warnv_p (@0, NULL))
4315 { constant_boolean_node (cmp == NE_EXPR, type); })))
4317 /* If we have (A & C) == C where C is a power of 2, convert this into
4318 (A & C) != 0. Similarly for NE_EXPR. */
4322 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4323 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4325 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4326 convert this into a shift followed by ANDing with D. */
4329 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4330 INTEGER_CST@2 integer_zerop)
4331 (if (integer_pow2p (@2))
4333 int shift = (wi::exact_log2 (wi::to_wide (@2))
4334 - wi::exact_log2 (wi::to_wide (@1)));
4338 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4340 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4343 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4344 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4348 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4349 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4350 && type_has_mode_precision_p (TREE_TYPE (@0))
4351 && element_precision (@2) >= element_precision (@0)
4352 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4353 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4354 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4356 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4357 this into a right shift or sign extension followed by ANDing with C. */
4360 (lt @0 integer_zerop)
4361 INTEGER_CST@1 integer_zerop)
4362 (if (integer_pow2p (@1)
4363 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4365 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4369 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4371 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4372 sign extension followed by AND with C will achieve the effect. */
4373 (bit_and (convert @0) @1)))))
4375 /* When the addresses are not directly of decls compare base and offset.
4376 This implements some remaining parts of fold_comparison address
4377 comparisons but still no complete part of it. Still it is good
4378 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4379 (for cmp (simple_comparison)
4381 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4384 poly_int64 off0, off1;
4385 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4386 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4387 if (base0 && TREE_CODE (base0) == MEM_REF)
4389 off0 += mem_ref_offset (base0).force_shwi ();
4390 base0 = TREE_OPERAND (base0, 0);
4392 if (base1 && TREE_CODE (base1) == MEM_REF)
4394 off1 += mem_ref_offset (base1).force_shwi ();
4395 base1 = TREE_OPERAND (base1, 0);
4398 (if (base0 && base1)
4402 /* Punt in GENERIC on variables with value expressions;
4403 the value expressions might point to fields/elements
4404 of other vars etc. */
4406 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4407 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4409 else if (decl_in_symtab_p (base0)
4410 && decl_in_symtab_p (base1))
4411 equal = symtab_node::get_create (base0)
4412 ->equal_address_to (symtab_node::get_create (base1));
4413 else if ((DECL_P (base0)
4414 || TREE_CODE (base0) == SSA_NAME
4415 || TREE_CODE (base0) == STRING_CST)
4417 || TREE_CODE (base1) == SSA_NAME
4418 || TREE_CODE (base1) == STRING_CST))
4419 equal = (base0 == base1);
4422 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4423 off0.is_constant (&ioff0);
4424 off1.is_constant (&ioff1);
4425 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4426 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4427 || (TREE_CODE (base0) == STRING_CST
4428 && TREE_CODE (base1) == STRING_CST
4429 && ioff0 >= 0 && ioff1 >= 0
4430 && ioff0 < TREE_STRING_LENGTH (base0)
4431 && ioff1 < TREE_STRING_LENGTH (base1)
4432 /* This is a too conservative test that the STRING_CSTs
4433 will not end up being string-merged. */
4434 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4435 TREE_STRING_POINTER (base1) + ioff1,
4436 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4437 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4439 else if (!DECL_P (base0) || !DECL_P (base1))
4441 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4443 /* If this is a pointer comparison, ignore for now even
4444 valid equalities where one pointer is the offset zero
4445 of one object and the other to one past end of another one. */
4446 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4448 /* Assume that automatic variables can't be adjacent to global
4450 else if (is_global_var (base0) != is_global_var (base1))
4454 tree sz0 = DECL_SIZE_UNIT (base0);
4455 tree sz1 = DECL_SIZE_UNIT (base1);
4456 /* If sizes are unknown, e.g. VLA or not representable,
4458 if (!tree_fits_poly_int64_p (sz0)
4459 || !tree_fits_poly_int64_p (sz1))
4463 poly_int64 size0 = tree_to_poly_int64 (sz0);
4464 poly_int64 size1 = tree_to_poly_int64 (sz1);
4465 /* If one offset is pointing (or could be) to the beginning
4466 of one object and the other is pointing to one past the
4467 last byte of the other object, punt. */
4468 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4470 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4472 /* If both offsets are the same, there are some cases
4473 we know that are ok. Either if we know they aren't
4474 zero, or if we know both sizes are no zero. */
4476 && known_eq (off0, off1)
4477 && (known_ne (off0, 0)
4478 || (known_ne (size0, 0) && known_ne (size1, 0))))
4485 && (cmp == EQ_EXPR || cmp == NE_EXPR
4486 /* If the offsets are equal we can ignore overflow. */
4487 || known_eq (off0, off1)
4488 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4489 /* Or if we compare using pointers to decls or strings. */
4490 || (POINTER_TYPE_P (TREE_TYPE (@2))
4491 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4493 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4494 { constant_boolean_node (known_eq (off0, off1), type); })
4495 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4496 { constant_boolean_node (known_ne (off0, off1), type); })
4497 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4498 { constant_boolean_node (known_lt (off0, off1), type); })
4499 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4500 { constant_boolean_node (known_le (off0, off1), type); })
4501 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4502 { constant_boolean_node (known_ge (off0, off1), type); })
4503 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4504 { constant_boolean_node (known_gt (off0, off1), type); }))
4507 (if (cmp == EQ_EXPR)
4508 { constant_boolean_node (false, type); })
4509 (if (cmp == NE_EXPR)
4510 { constant_boolean_node (true, type); })))))))))
4512 /* Simplify pointer equality compares using PTA. */
4516 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4517 && ptrs_compare_unequal (@0, @1))
4518 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4520 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4521 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4522 Disable the transform if either operand is pointer to function.
4523 This broke pr22051-2.c for arm where function pointer
4524 canonicalizaion is not wanted. */
4528 (cmp (convert @0) INTEGER_CST@1)
4529 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4530 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4531 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4532 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4533 && POINTER_TYPE_P (TREE_TYPE (@1))
4534 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4535 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4536 (cmp @0 (convert @1)))))
4538 /* Non-equality compare simplifications from fold_binary */
4539 (for cmp (lt gt le ge)
4540 /* Comparisons with the highest or lowest possible integer of
4541 the specified precision will have known values. */
4543 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4544 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4545 || POINTER_TYPE_P (TREE_TYPE (@1))
4546 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4547 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4550 tree cst = uniform_integer_cst_p (@1);
4551 tree arg1_type = TREE_TYPE (cst);
4552 unsigned int prec = TYPE_PRECISION (arg1_type);
4553 wide_int max = wi::max_value (arg1_type);
4554 wide_int signed_max = wi::max_value (prec, SIGNED);
4555 wide_int min = wi::min_value (arg1_type);
4558 (if (wi::to_wide (cst) == max)
4560 (if (cmp == GT_EXPR)
4561 { constant_boolean_node (false, type); })
4562 (if (cmp == GE_EXPR)
4564 (if (cmp == LE_EXPR)
4565 { constant_boolean_node (true, type); })
4566 (if (cmp == LT_EXPR)
4568 (if (wi::to_wide (cst) == min)
4570 (if (cmp == LT_EXPR)
4571 { constant_boolean_node (false, type); })
4572 (if (cmp == LE_EXPR)
4574 (if (cmp == GE_EXPR)
4575 { constant_boolean_node (true, type); })
4576 (if (cmp == GT_EXPR)
4578 (if (wi::to_wide (cst) == max - 1)
4580 (if (cmp == GT_EXPR)
4581 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4582 wide_int_to_tree (TREE_TYPE (cst),
4585 (if (cmp == LE_EXPR)
4586 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4587 wide_int_to_tree (TREE_TYPE (cst),
4590 (if (wi::to_wide (cst) == min + 1)
4592 (if (cmp == GE_EXPR)
4593 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4594 wide_int_to_tree (TREE_TYPE (cst),
4597 (if (cmp == LT_EXPR)
4598 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4599 wide_int_to_tree (TREE_TYPE (cst),
4602 (if (wi::to_wide (cst) == signed_max
4603 && TYPE_UNSIGNED (arg1_type)
4604 /* We will flip the signedness of the comparison operator
4605 associated with the mode of @1, so the sign bit is
4606 specified by this mode. Check that @1 is the signed
4607 max associated with this sign bit. */
4608 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4609 /* signed_type does not work on pointer types. */
4610 && INTEGRAL_TYPE_P (arg1_type))
4611 /* The following case also applies to X < signed_max+1
4612 and X >= signed_max+1 because previous transformations. */
4613 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4614 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4616 (if (cst == @1 && cmp == LE_EXPR)
4617 (ge (convert:st @0) { build_zero_cst (st); }))
4618 (if (cst == @1 && cmp == GT_EXPR)
4619 (lt (convert:st @0) { build_zero_cst (st); }))
4620 (if (cmp == LE_EXPR)
4621 (ge (view_convert:st @0) { build_zero_cst (st); }))
4622 (if (cmp == GT_EXPR)
4623 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4625 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4626 /* If the second operand is NaN, the result is constant. */
4629 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4630 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4631 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4632 ? false : true, type); })))
4634 /* bool_var != 0 becomes bool_var. */
4636 (ne @0 integer_zerop)
4637 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4638 && types_match (type, TREE_TYPE (@0)))
4640 /* bool_var == 1 becomes bool_var. */
4642 (eq @0 integer_onep)
4643 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4644 && types_match (type, TREE_TYPE (@0)))
4647 bool_var == 0 becomes !bool_var or
4648 bool_var != 1 becomes !bool_var
4649 here because that only is good in assignment context as long
4650 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4651 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4652 clearly less optimal and which we'll transform again in forwprop. */
4654 /* When one argument is a constant, overflow detection can be simplified.
4655 Currently restricted to single use so as not to interfere too much with
4656 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4657 A + CST CMP A -> A CMP' CST' */
4658 (for cmp (lt le ge gt)
4661 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4662 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4663 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4664 && wi::to_wide (@1) != 0
4666 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4667 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4668 wi::max_value (prec, UNSIGNED)
4669 - wi::to_wide (@1)); })))))
4671 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4672 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4673 expects the long form, so we restrict the transformation for now. */
4676 (cmp:c (minus@2 @0 @1) @0)
4677 (if (single_use (@2)
4678 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4679 && TYPE_UNSIGNED (TREE_TYPE (@0))
4680 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4683 /* Testing for overflow is unnecessary if we already know the result. */
4688 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4689 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4690 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4691 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4696 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4697 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4698 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4699 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4701 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4702 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4706 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4707 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4708 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4709 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4711 /* Simplification of math builtins. These rules must all be optimizations
4712 as well as IL simplifications. If there is a possibility that the new
4713 form could be a pessimization, the rule should go in the canonicalization
4714 section that follows this one.
4716 Rules can generally go in this section if they satisfy one of
4719 - the rule describes an identity
4721 - the rule replaces calls with something as simple as addition or
4724 - the rule contains unary calls only and simplifies the surrounding
4725 arithmetic. (The idea here is to exclude non-unary calls in which
4726 one operand is constant and in which the call is known to be cheap
4727 when the operand has that value.) */
4729 (if (flag_unsafe_math_optimizations)
4730 /* Simplify sqrt(x) * sqrt(x) -> x. */
4732 (mult (SQRT_ALL@1 @0) @1)
4733 (if (!HONOR_SNANS (type))
4736 (for op (plus minus)
4737 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4741 (rdiv (op @0 @2) @1)))
4743 (for cmp (lt le gt ge)
4744 neg_cmp (gt ge lt le)
4745 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4747 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4749 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4751 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4752 || (real_zerop (tem) && !real_zerop (@1))))
4754 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4756 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4757 (neg_cmp @0 { tem; })))))))
4759 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4760 (for root (SQRT CBRT)
4762 (mult (root:s @0) (root:s @1))
4763 (root (mult @0 @1))))
4765 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4766 (for exps (EXP EXP2 EXP10 POW10)
4768 (mult (exps:s @0) (exps:s @1))
4769 (exps (plus @0 @1))))
4771 /* Simplify a/root(b/c) into a*root(c/b). */
4772 (for root (SQRT CBRT)
4774 (rdiv @0 (root:s (rdiv:s @1 @2)))
4775 (mult @0 (root (rdiv @2 @1)))))
4777 /* Simplify x/expN(y) into x*expN(-y). */
4778 (for exps (EXP EXP2 EXP10 POW10)
4780 (rdiv @0 (exps:s @1))
4781 (mult @0 (exps (negate @1)))))
4783 (for logs (LOG LOG2 LOG10 LOG10)
4784 exps (EXP EXP2 EXP10 POW10)
4785 /* logN(expN(x)) -> x. */
4789 /* expN(logN(x)) -> x. */
4794 /* Optimize logN(func()) for various exponential functions. We
4795 want to determine the value "x" and the power "exponent" in
4796 order to transform logN(x**exponent) into exponent*logN(x). */
4797 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4798 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4801 (if (SCALAR_FLOAT_TYPE_P (type))
4807 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4808 x = build_real_truncate (type, dconst_e ());
4811 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4812 x = build_real (type, dconst2);
4816 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4818 REAL_VALUE_TYPE dconst10;
4819 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4820 x = build_real (type, dconst10);
4827 (mult (logs { x; }) @0)))))
4835 (if (SCALAR_FLOAT_TYPE_P (type))
4841 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4842 x = build_real (type, dconsthalf);
4845 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4846 x = build_real_truncate (type, dconst_third ());
4852 (mult { x; } (logs @0))))))
4854 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4855 (for logs (LOG LOG2 LOG10)
4859 (mult @1 (logs @0))))
4861 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4862 or if C is a positive power of 2,
4863 pow(C,x) -> exp2(log2(C)*x). */
4871 (pows REAL_CST@0 @1)
4872 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4873 && real_isfinite (TREE_REAL_CST_PTR (@0))
4874 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4875 the use_exp2 case until after vectorization. It seems actually
4876 beneficial for all constants to postpone this until later,
4877 because exp(log(C)*x), while faster, will have worse precision
4878 and if x folds into a constant too, that is unnecessary
4880 && canonicalize_math_after_vectorization_p ())
4882 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4883 bool use_exp2 = false;
4884 if (targetm.libc_has_function (function_c99_misc)
4885 && value->cl == rvc_normal)
4887 REAL_VALUE_TYPE frac_rvt = *value;
4888 SET_REAL_EXP (&frac_rvt, 1);
4889 if (real_equal (&frac_rvt, &dconst1))
4894 (if (optimize_pow_to_exp (@0, @1))
4895 (exps (mult (logs @0) @1)))
4896 (exp2s (mult (log2s @0) @1)))))))
4899 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4901 exps (EXP EXP2 EXP10 POW10)
4902 logs (LOG LOG2 LOG10 LOG10)
4904 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4905 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4906 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4907 (exps (plus (mult (logs @0) @1) @2)))))
4912 exps (EXP EXP2 EXP10 POW10)
4913 /* sqrt(expN(x)) -> expN(x*0.5). */
4916 (exps (mult @0 { build_real (type, dconsthalf); })))
4917 /* cbrt(expN(x)) -> expN(x/3). */
4920 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4921 /* pow(expN(x), y) -> expN(x*y). */
4924 (exps (mult @0 @1))))
4926 /* tan(atan(x)) -> x. */
4933 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4937 copysigns (COPYSIGN)
4942 REAL_VALUE_TYPE r_cst;
4943 build_sinatan_real (&r_cst, type);
4944 tree t_cst = build_real (type, r_cst);
4945 tree t_one = build_one_cst (type);
4947 (if (SCALAR_FLOAT_TYPE_P (type))
4948 (cond (lt (abs @0) { t_cst; })
4949 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4950 (copysigns { t_one; } @0))))))
4952 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4956 copysigns (COPYSIGN)
4961 REAL_VALUE_TYPE r_cst;
4962 build_sinatan_real (&r_cst, type);
4963 tree t_cst = build_real (type, r_cst);
4964 tree t_one = build_one_cst (type);
4965 tree t_zero = build_zero_cst (type);
4967 (if (SCALAR_FLOAT_TYPE_P (type))
4968 (cond (lt (abs @0) { t_cst; })
4969 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4970 (copysigns { t_zero; } @0))))))
4972 (if (!flag_errno_math)
4973 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4978 (sinhs (atanhs:s @0))
4979 (with { tree t_one = build_one_cst (type); }
4980 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4982 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4987 (coshs (atanhs:s @0))
4988 (with { tree t_one = build_one_cst (type); }
4989 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4991 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4993 (CABS (complex:C @0 real_zerop@1))
4996 /* trunc(trunc(x)) -> trunc(x), etc. */
4997 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5001 /* f(x) -> x if x is integer valued and f does nothing for such values. */
5002 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5004 (fns integer_valued_real_p@0)
5007 /* hypot(x,0) and hypot(0,x) -> abs(x). */
5009 (HYPOT:c @0 real_zerop@1)
5012 /* pow(1,x) -> 1. */
5014 (POW real_onep@0 @1)
5018 /* copysign(x,x) -> x. */
5019 (COPYSIGN_ALL @0 @0)
5023 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
5024 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5027 (for scale (LDEXP SCALBN SCALBLN)
5028 /* ldexp(0, x) -> 0. */
5030 (scale real_zerop@0 @1)
5032 /* ldexp(x, 0) -> x. */
5034 (scale @0 integer_zerop@1)
5036 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
5038 (scale REAL_CST@0 @1)
5039 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5042 /* Canonicalization of sequences of math builtins. These rules represent
5043 IL simplifications but are not necessarily optimizations.
5045 The sincos pass is responsible for picking "optimal" implementations
5046 of math builtins, which may be more complicated and can sometimes go
5047 the other way, e.g. converting pow into a sequence of sqrts.
5048 We only want to do these canonicalizations before the pass has run. */
5050 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5051 /* Simplify tan(x) * cos(x) -> sin(x). */
5053 (mult:c (TAN:s @0) (COS:s @0))
5056 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5058 (mult:c @0 (POW:s @0 REAL_CST@1))
5059 (if (!TREE_OVERFLOW (@1))
5060 (POW @0 (plus @1 { build_one_cst (type); }))))
5062 /* Simplify sin(x) / cos(x) -> tan(x). */
5064 (rdiv (SIN:s @0) (COS:s @0))
5067 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5069 (rdiv (SINH:s @0) (COSH:s @0))
5072 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5074 (rdiv (COS:s @0) (SIN:s @0))
5075 (rdiv { build_one_cst (type); } (TAN @0)))
5077 /* Simplify sin(x) / tan(x) -> cos(x). */
5079 (rdiv (SIN:s @0) (TAN:s @0))
5080 (if (! HONOR_NANS (@0)
5081 && ! HONOR_INFINITIES (@0))
5084 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5086 (rdiv (TAN:s @0) (SIN:s @0))
5087 (if (! HONOR_NANS (@0)
5088 && ! HONOR_INFINITIES (@0))
5089 (rdiv { build_one_cst (type); } (COS @0))))
5091 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5093 (mult (POW:s @0 @1) (POW:s @0 @2))
5094 (POW @0 (plus @1 @2)))
5096 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5098 (mult (POW:s @0 @1) (POW:s @2 @1))
5099 (POW (mult @0 @2) @1))
5101 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5103 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5104 (POWI (mult @0 @2) @1))
5106 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5108 (rdiv (POW:s @0 REAL_CST@1) @0)
5109 (if (!TREE_OVERFLOW (@1))
5110 (POW @0 (minus @1 { build_one_cst (type); }))))
5112 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5114 (rdiv @0 (POW:s @1 @2))
5115 (mult @0 (POW @1 (negate @2))))
5120 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5123 (pows @0 { build_real (type, dconst_quarter ()); }))
5124 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5127 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5128 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5131 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5132 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5134 (cbrts (cbrts tree_expr_nonnegative_p@0))
5135 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5136 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5138 (sqrts (pows @0 @1))
5139 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5140 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5142 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5143 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5144 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5146 (pows (sqrts @0) @1)
5147 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5148 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5150 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5151 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5152 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5154 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5155 (pows @0 (mult @1 @2))))
5157 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5159 (CABS (complex @0 @0))
5160 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5162 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5165 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5167 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5172 (cexps compositional_complex@0)
5173 (if (targetm.libc_has_function (function_c99_math_complex))
5175 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5176 (mult @1 (imagpart @2)))))))
5178 (if (canonicalize_math_p ())
5179 /* floor(x) -> trunc(x) if x is nonnegative. */
5180 (for floors (FLOOR_ALL)
5183 (floors tree_expr_nonnegative_p@0)
5186 (match double_value_p
5188 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5189 (for froms (BUILT_IN_TRUNCL
5201 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5202 (if (optimize && canonicalize_math_p ())
5204 (froms (convert double_value_p@0))
5205 (convert (tos @0)))))
5207 (match float_value_p
5209 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5210 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5211 BUILT_IN_FLOORL BUILT_IN_FLOOR
5212 BUILT_IN_CEILL BUILT_IN_CEIL
5213 BUILT_IN_ROUNDL BUILT_IN_ROUND
5214 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5215 BUILT_IN_RINTL BUILT_IN_RINT)
5216 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5217 BUILT_IN_FLOORF BUILT_IN_FLOORF
5218 BUILT_IN_CEILF BUILT_IN_CEILF
5219 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5220 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5221 BUILT_IN_RINTF BUILT_IN_RINTF)
5222 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5224 (if (optimize && canonicalize_math_p ()
5225 && targetm.libc_has_function (function_c99_misc))
5227 (froms (convert float_value_p@0))
5228 (convert (tos @0)))))
5230 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5231 tos (XFLOOR XCEIL XROUND XRINT)
5232 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5233 (if (optimize && canonicalize_math_p ())
5235 (froms (convert double_value_p@0))
5238 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5239 XFLOOR XCEIL XROUND XRINT)
5240 tos (XFLOORF XCEILF XROUNDF XRINTF)
5241 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5243 (if (optimize && canonicalize_math_p ())
5245 (froms (convert float_value_p@0))
5248 (if (canonicalize_math_p ())
5249 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5250 (for floors (IFLOOR LFLOOR LLFLOOR)
5252 (floors tree_expr_nonnegative_p@0)
5255 (if (canonicalize_math_p ())
5256 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5257 (for fns (IFLOOR LFLOOR LLFLOOR
5259 IROUND LROUND LLROUND)
5261 (fns integer_valued_real_p@0)
5263 (if (!flag_errno_math)
5264 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5265 (for rints (IRINT LRINT LLRINT)
5267 (rints integer_valued_real_p@0)
5270 (if (canonicalize_math_p ())
5271 (for ifn (IFLOOR ICEIL IROUND IRINT)
5272 lfn (LFLOOR LCEIL LROUND LRINT)
5273 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5274 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5275 sizeof (int) == sizeof (long). */
5276 (if (TYPE_PRECISION (integer_type_node)
5277 == TYPE_PRECISION (long_integer_type_node))
5280 (lfn:long_integer_type_node @0)))
5281 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5282 sizeof (long long) == sizeof (long). */
5283 (if (TYPE_PRECISION (long_long_integer_type_node)
5284 == TYPE_PRECISION (long_integer_type_node))
5287 (lfn:long_integer_type_node @0)))))
5289 /* cproj(x) -> x if we're ignoring infinities. */
5292 (if (!HONOR_INFINITIES (type))
5295 /* If the real part is inf and the imag part is known to be
5296 nonnegative, return (inf + 0i). */
5298 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5299 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5300 { build_complex_inf (type, false); }))
5302 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5304 (CPROJ (complex @0 REAL_CST@1))
5305 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5306 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5312 (pows @0 REAL_CST@1)
5314 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5315 REAL_VALUE_TYPE tmp;
5318 /* pow(x,0) -> 1. */
5319 (if (real_equal (value, &dconst0))
5320 { build_real (type, dconst1); })
5321 /* pow(x,1) -> x. */
5322 (if (real_equal (value, &dconst1))
5324 /* pow(x,-1) -> 1/x. */
5325 (if (real_equal (value, &dconstm1))
5326 (rdiv { build_real (type, dconst1); } @0))
5327 /* pow(x,0.5) -> sqrt(x). */
5328 (if (flag_unsafe_math_optimizations
5329 && canonicalize_math_p ()
5330 && real_equal (value, &dconsthalf))
5332 /* pow(x,1/3) -> cbrt(x). */
5333 (if (flag_unsafe_math_optimizations
5334 && canonicalize_math_p ()
5335 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5336 real_equal (value, &tmp)))
5339 /* powi(1,x) -> 1. */
5341 (POWI real_onep@0 @1)
5345 (POWI @0 INTEGER_CST@1)
5347 /* powi(x,0) -> 1. */
5348 (if (wi::to_wide (@1) == 0)
5349 { build_real (type, dconst1); })
5350 /* powi(x,1) -> x. */
5351 (if (wi::to_wide (@1) == 1)
5353 /* powi(x,-1) -> 1/x. */
5354 (if (wi::to_wide (@1) == -1)
5355 (rdiv { build_real (type, dconst1); } @0))))
5357 /* Narrowing of arithmetic and logical operations.
5359 These are conceptually similar to the transformations performed for
5360 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5361 term we want to move all that code out of the front-ends into here. */
5363 /* Convert (outertype)((innertype0)a+(innertype1)b)
5364 into ((newtype)a+(newtype)b) where newtype
5365 is the widest mode from all of these. */
5366 (for op (plus minus mult rdiv)
5368 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5369 /* If we have a narrowing conversion of an arithmetic operation where
5370 both operands are widening conversions from the same type as the outer
5371 narrowing conversion. Then convert the innermost operands to a
5372 suitable unsigned type (to avoid introducing undefined behavior),
5373 perform the operation and convert the result to the desired type. */
5374 (if (INTEGRAL_TYPE_P (type)
5377 /* We check for type compatibility between @0 and @1 below,
5378 so there's no need to check that @2/@4 are integral types. */
5379 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5380 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5381 /* The precision of the type of each operand must match the
5382 precision of the mode of each operand, similarly for the
5384 && type_has_mode_precision_p (TREE_TYPE (@1))
5385 && type_has_mode_precision_p (TREE_TYPE (@2))
5386 && type_has_mode_precision_p (type)
5387 /* The inner conversion must be a widening conversion. */
5388 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5389 && types_match (@1, type)
5390 && (types_match (@1, @2)
5391 /* Or the second operand is const integer or converted const
5392 integer from valueize. */
5393 || TREE_CODE (@2) == INTEGER_CST))
5394 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5395 (op @1 (convert @2))
5396 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5397 (convert (op (convert:utype @1)
5398 (convert:utype @2)))))
5399 (if (FLOAT_TYPE_P (type)
5400 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5401 == DECIMAL_FLOAT_TYPE_P (type))
5402 (with { tree arg0 = strip_float_extensions (@1);
5403 tree arg1 = strip_float_extensions (@2);
5404 tree itype = TREE_TYPE (@0);
5405 tree ty1 = TREE_TYPE (arg0);
5406 tree ty2 = TREE_TYPE (arg1);
5407 enum tree_code code = TREE_CODE (itype); }
5408 (if (FLOAT_TYPE_P (ty1)
5409 && FLOAT_TYPE_P (ty2))
5410 (with { tree newtype = type;
5411 if (TYPE_MODE (ty1) == SDmode
5412 || TYPE_MODE (ty2) == SDmode
5413 || TYPE_MODE (type) == SDmode)
5414 newtype = dfloat32_type_node;
5415 if (TYPE_MODE (ty1) == DDmode
5416 || TYPE_MODE (ty2) == DDmode
5417 || TYPE_MODE (type) == DDmode)
5418 newtype = dfloat64_type_node;
5419 if (TYPE_MODE (ty1) == TDmode
5420 || TYPE_MODE (ty2) == TDmode
5421 || TYPE_MODE (type) == TDmode)
5422 newtype = dfloat128_type_node; }
5423 (if ((newtype == dfloat32_type_node
5424 || newtype == dfloat64_type_node
5425 || newtype == dfloat128_type_node)
5427 && types_match (newtype, type))
5428 (op (convert:newtype @1) (convert:newtype @2))
5429 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5431 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5433 /* Sometimes this transformation is safe (cannot
5434 change results through affecting double rounding
5435 cases) and sometimes it is not. If NEWTYPE is
5436 wider than TYPE, e.g. (float)((long double)double
5437 + (long double)double) converted to
5438 (float)(double + double), the transformation is
5439 unsafe regardless of the details of the types
5440 involved; double rounding can arise if the result
5441 of NEWTYPE arithmetic is a NEWTYPE value half way
5442 between two representable TYPE values but the
5443 exact value is sufficiently different (in the
5444 right direction) for this difference to be
5445 visible in ITYPE arithmetic. If NEWTYPE is the
5446 same as TYPE, however, the transformation may be
5447 safe depending on the types involved: it is safe
5448 if the ITYPE has strictly more than twice as many
5449 mantissa bits as TYPE, can represent infinities
5450 and NaNs if the TYPE can, and has sufficient
5451 exponent range for the product or ratio of two
5452 values representable in the TYPE to be within the
5453 range of normal values of ITYPE. */
5454 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5455 && (flag_unsafe_math_optimizations
5456 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5457 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5459 && !excess_precision_type (newtype)))
5460 && !types_match (itype, newtype))
5461 (convert:type (op (convert:newtype @1)
5462 (convert:newtype @2)))
5467 /* This is another case of narrowing, specifically when there's an outer
5468 BIT_AND_EXPR which masks off bits outside the type of the innermost
5469 operands. Like the previous case we have to convert the operands
5470 to unsigned types to avoid introducing undefined behavior for the
5471 arithmetic operation. */
5472 (for op (minus plus)
5474 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5475 (if (INTEGRAL_TYPE_P (type)
5476 /* We check for type compatibility between @0 and @1 below,
5477 so there's no need to check that @1/@3 are integral types. */
5478 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5479 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5480 /* The precision of the type of each operand must match the
5481 precision of the mode of each operand, similarly for the
5483 && type_has_mode_precision_p (TREE_TYPE (@0))
5484 && type_has_mode_precision_p (TREE_TYPE (@1))
5485 && type_has_mode_precision_p (type)
5486 /* The inner conversion must be a widening conversion. */
5487 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5488 && types_match (@0, @1)
5489 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5490 <= TYPE_PRECISION (TREE_TYPE (@0)))
5491 && (wi::to_wide (@4)
5492 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5493 true, TYPE_PRECISION (type))) == 0)
5494 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5495 (with { tree ntype = TREE_TYPE (@0); }
5496 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5497 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5498 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5499 (convert:utype @4))))))))
5501 /* Transform (@0 < @1 and @0 < @2) to use min,
5502 (@0 > @1 and @0 > @2) to use max */
5503 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5504 op (lt le gt ge lt le gt ge )
5505 ext (min min max max max max min min )
5507 (logic (op:cs @0 @1) (op:cs @0 @2))
5508 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5509 && TREE_CODE (@0) != INTEGER_CST)
5510 (op @0 (ext @1 @2)))))
5513 /* signbit(x) -> 0 if x is nonnegative. */
5514 (SIGNBIT tree_expr_nonnegative_p@0)
5515 { integer_zero_node; })
5518 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5520 (if (!HONOR_SIGNED_ZEROS (@0))
5521 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5523 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5525 (for op (plus minus)
5528 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5529 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5530 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5531 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5532 && !TYPE_SATURATING (TREE_TYPE (@0)))
5533 (with { tree res = int_const_binop (rop, @2, @1); }
5534 (if (TREE_OVERFLOW (res)
5535 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5536 { constant_boolean_node (cmp == NE_EXPR, type); }
5537 (if (single_use (@3))
5538 (cmp @0 { TREE_OVERFLOW (res)
5539 ? drop_tree_overflow (res) : res; }))))))))
5540 (for cmp (lt le gt ge)
5541 (for op (plus minus)
5544 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5545 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5546 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5547 (with { tree res = int_const_binop (rop, @2, @1); }
5548 (if (TREE_OVERFLOW (res))
5550 fold_overflow_warning (("assuming signed overflow does not occur "
5551 "when simplifying conditional to constant"),
5552 WARN_STRICT_OVERFLOW_CONDITIONAL);
5553 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5554 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5555 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5556 TYPE_SIGN (TREE_TYPE (@1)))
5557 != (op == MINUS_EXPR);
5558 constant_boolean_node (less == ovf_high, type);
5560 (if (single_use (@3))
5563 fold_overflow_warning (("assuming signed overflow does not occur "
5564 "when changing X +- C1 cmp C2 to "
5566 WARN_STRICT_OVERFLOW_COMPARISON);
5568 (cmp @0 { res; })))))))))
5570 /* Canonicalizations of BIT_FIELD_REFs. */
5573 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5574 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5577 (BIT_FIELD_REF (view_convert @0) @1 @2)
5578 (BIT_FIELD_REF @0 @1 @2))
5581 (BIT_FIELD_REF @0 @1 integer_zerop)
5582 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5586 (BIT_FIELD_REF @0 @1 @2)
5588 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5589 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5591 (if (integer_zerop (@2))
5592 (view_convert (realpart @0)))
5593 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5594 (view_convert (imagpart @0)))))
5595 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5596 && INTEGRAL_TYPE_P (type)
5597 /* On GIMPLE this should only apply to register arguments. */
5598 && (! GIMPLE || is_gimple_reg (@0))
5599 /* A bit-field-ref that referenced the full argument can be stripped. */
5600 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5601 && integer_zerop (@2))
5602 /* Low-parts can be reduced to integral conversions.
5603 ??? The following doesn't work for PDP endian. */
5604 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5605 /* Don't even think about BITS_BIG_ENDIAN. */
5606 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5607 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5608 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5609 ? (TYPE_PRECISION (TREE_TYPE (@0))
5610 - TYPE_PRECISION (type))
5614 /* Simplify vector extracts. */
5617 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5618 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5619 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5620 || (VECTOR_TYPE_P (type)
5621 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5624 tree ctor = (TREE_CODE (@0) == SSA_NAME
5625 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5626 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5627 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5628 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5629 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5632 && (idx % width) == 0
5634 && known_le ((idx + n) / width,
5635 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5640 /* Constructor elements can be subvectors. */
5642 if (CONSTRUCTOR_NELTS (ctor) != 0)
5644 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5645 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5646 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5648 unsigned HOST_WIDE_INT elt, count, const_k;
5651 /* We keep an exact subset of the constructor elements. */
5652 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5653 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5654 { build_constructor (type, NULL); }
5656 (if (elt < CONSTRUCTOR_NELTS (ctor))
5657 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5658 { build_zero_cst (type); })
5659 /* We don't want to emit new CTORs unless the old one goes away.
5660 ??? Eventually allow this if the CTOR ends up constant or
5662 (if (single_use (@0))
5664 vec<constructor_elt, va_gc> *vals;
5665 vec_alloc (vals, count);
5666 for (unsigned i = 0;
5667 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5668 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5669 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5670 build_constructor (type, vals);
5672 /* The bitfield references a single constructor element. */
5673 (if (k.is_constant (&const_k)
5674 && idx + n <= (idx / const_k + 1) * const_k)
5676 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5677 { build_zero_cst (type); })
5679 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5680 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5681 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5683 /* Simplify a bit extraction from a bit insertion for the cases with
5684 the inserted element fully covering the extraction or the insertion
5685 not touching the extraction. */
5687 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5690 unsigned HOST_WIDE_INT isize;
5691 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5692 isize = TYPE_PRECISION (TREE_TYPE (@1));
5694 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5697 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5698 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5699 wi::to_wide (@ipos) + isize))
5700 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5702 - wi::to_wide (@ipos)); }))
5703 (if (wi::geu_p (wi::to_wide (@ipos),
5704 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5705 || wi::geu_p (wi::to_wide (@rpos),
5706 wi::to_wide (@ipos) + isize))
5707 (BIT_FIELD_REF @0 @rsize @rpos)))))
5709 (if (canonicalize_math_after_vectorization_p ())
5712 (fmas:c (negate @0) @1 @2)
5713 (IFN_FNMA @0 @1 @2))
5715 (fmas @0 @1 (negate @2))
5718 (fmas:c (negate @0) @1 (negate @2))
5719 (IFN_FNMS @0 @1 @2))
5721 (negate (fmas@3 @0 @1 @2))
5722 (if (single_use (@3))
5723 (IFN_FNMS @0 @1 @2))))
5726 (IFN_FMS:c (negate @0) @1 @2)
5727 (IFN_FNMS @0 @1 @2))
5729 (IFN_FMS @0 @1 (negate @2))
5732 (IFN_FMS:c (negate @0) @1 (negate @2))
5733 (IFN_FNMA @0 @1 @2))
5735 (negate (IFN_FMS@3 @0 @1 @2))
5736 (if (single_use (@3))
5737 (IFN_FNMA @0 @1 @2)))
5740 (IFN_FNMA:c (negate @0) @1 @2)
5743 (IFN_FNMA @0 @1 (negate @2))
5744 (IFN_FNMS @0 @1 @2))
5746 (IFN_FNMA:c (negate @0) @1 (negate @2))
5749 (negate (IFN_FNMA@3 @0 @1 @2))
5750 (if (single_use (@3))
5751 (IFN_FMS @0 @1 @2)))
5754 (IFN_FNMS:c (negate @0) @1 @2)
5757 (IFN_FNMS @0 @1 (negate @2))
5758 (IFN_FNMA @0 @1 @2))
5760 (IFN_FNMS:c (negate @0) @1 (negate @2))
5763 (negate (IFN_FNMS@3 @0 @1 @2))
5764 (if (single_use (@3))
5765 (IFN_FMA @0 @1 @2))))
5767 /* POPCOUNT simplifications. */
5768 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5769 BUILT_IN_POPCOUNTIMAX)
5770 /* popcount(X&1) is nop_expr(X&1). */
5773 (if (tree_nonzero_bits (@0) == 1)
5775 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5777 (plus (popcount:s @0) (popcount:s @1))
5778 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5779 (popcount (bit_ior @0 @1))))
5780 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5781 (for cmp (le eq ne gt)
5784 (cmp (popcount @0) integer_zerop)
5785 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5788 /* 64- and 32-bits branchless implementations of popcount are detected:
5790 int popcount64c (uint64_t x)
5792 x -= (x >> 1) & 0x5555555555555555ULL;
5793 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5794 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5795 return (x * 0x0101010101010101ULL) >> 56;
5798 int popcount32c (uint32_t x)
5800 x -= (x >> 1) & 0x55555555;
5801 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5802 x = (x + (x >> 4)) & 0x0f0f0f0f;
5803 return (x * 0x01010101) >> 24;
5810 (rshift @8 INTEGER_CST@5)
5812 (bit_and @6 INTEGER_CST@7)
5816 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
5822 /* Check constants and optab. */
5823 (with { unsigned prec = TYPE_PRECISION (type);
5824 int shift = (64 - prec) & 63;
5825 unsigned HOST_WIDE_INT c1
5826 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
5827 unsigned HOST_WIDE_INT c2
5828 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
5829 unsigned HOST_WIDE_INT c3
5830 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
5831 unsigned HOST_WIDE_INT c4
5832 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
5837 && TYPE_UNSIGNED (type)
5838 && integer_onep (@4)
5839 && wi::to_widest (@10) == 2
5840 && wi::to_widest (@5) == 4
5841 && wi::to_widest (@1) == prec - 8
5842 && tree_to_uhwi (@2) == c1
5843 && tree_to_uhwi (@3) == c2
5844 && tree_to_uhwi (@9) == c3
5845 && tree_to_uhwi (@7) == c3
5846 && tree_to_uhwi (@11) == c4
5847 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
5849 (convert (IFN_POPCOUNT:type @0)))))
5859 r = c ? a1 op a2 : b;
5861 if the target can do it in one go. This makes the operation conditional
5862 on c, so could drop potentially-trapping arithmetic, but that's a valid
5863 simplification if the result of the operation isn't needed.
5865 Avoid speculatively generating a stand-alone vector comparison
5866 on targets that might not support them. Any target implementing
5867 conditional internal functions must support the same comparisons
5868 inside and outside a VEC_COND_EXPR. */
5871 (for uncond_op (UNCOND_BINARY)
5872 cond_op (COND_BINARY)
5874 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5875 (with { tree op_type = TREE_TYPE (@4); }
5876 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5877 && element_precision (type) == element_precision (op_type))
5878 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5880 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5881 (with { tree op_type = TREE_TYPE (@4); }
5882 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5883 && element_precision (type) == element_precision (op_type))
5884 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5886 /* Same for ternary operations. */
5887 (for uncond_op (UNCOND_TERNARY)
5888 cond_op (COND_TERNARY)
5890 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5891 (with { tree op_type = TREE_TYPE (@5); }
5892 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5893 && element_precision (type) == element_precision (op_type))
5894 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5896 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5897 (with { tree op_type = TREE_TYPE (@5); }
5898 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5899 && element_precision (type) == element_precision (op_type))
5900 (view_convert (cond_op (bit_not @0) @2 @3 @4
5901 (view_convert:op_type @1)))))))
5904 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5905 "else" value of an IFN_COND_*. */
5906 (for cond_op (COND_BINARY)
5908 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5909 (with { tree op_type = TREE_TYPE (@3); }
5910 (if (element_precision (type) == element_precision (op_type))
5911 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5913 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5914 (with { tree op_type = TREE_TYPE (@5); }
5915 (if (inverse_conditions_p (@0, @2)
5916 && element_precision (type) == element_precision (op_type))
5917 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5919 /* Same for ternary operations. */
5920 (for cond_op (COND_TERNARY)
5922 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5923 (with { tree op_type = TREE_TYPE (@4); }
5924 (if (element_precision (type) == element_precision (op_type))
5925 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5927 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5928 (with { tree op_type = TREE_TYPE (@6); }
5929 (if (inverse_conditions_p (@0, @2)
5930 && element_precision (type) == element_precision (op_type))
5931 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5933 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5936 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5937 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5939 If pointers are known not to wrap, B checks whether @1 bytes starting
5940 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5941 bytes. A is more efficiently tested as:
5943 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5945 The equivalent expression for B is given by replacing @1 with @1 - 1:
5947 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5949 @0 and @2 can be swapped in both expressions without changing the result.
5951 The folds rely on sizetype's being unsigned (which is always true)
5952 and on its being the same width as the pointer (which we have to check).
5954 The fold replaces two pointer_plus expressions, two comparisons and
5955 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5956 the best case it's a saving of two operations. The A fold retains one
5957 of the original pointer_pluses, so is a win even if both pointer_pluses
5958 are used elsewhere. The B fold is a wash if both pointer_pluses are
5959 used elsewhere, since all we end up doing is replacing a comparison with
5960 a pointer_plus. We do still apply the fold under those circumstances
5961 though, in case applying it to other conditions eventually makes one of the
5962 pointer_pluses dead. */
5963 (for ior (truth_orif truth_or bit_ior)
5966 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5967 (cmp:cs (pointer_plus@4 @2 @1) @0))
5968 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5969 && TYPE_OVERFLOW_WRAPS (sizetype)
5970 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5971 /* Calculate the rhs constant. */
5972 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5973 offset_int rhs = off * 2; }
5974 /* Always fails for negative values. */
5975 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5976 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5977 pick a canonical order. This increases the chances of using the
5978 same pointer_plus in multiple checks. */
5979 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5980 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5981 (if (cmp == LT_EXPR)
5982 (gt (convert:sizetype
5983 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5984 { swap_p ? @0 : @2; }))
5986 (gt (convert:sizetype
5987 (pointer_diff:ssizetype
5988 (pointer_plus { swap_p ? @2 : @0; }
5989 { wide_int_to_tree (sizetype, off); })
5990 { swap_p ? @0 : @2; }))
5991 { rhs_tree; })))))))))
5993 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5995 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5996 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5997 (with { int i = single_nonzero_element (@1); }
5999 (with { tree elt = vector_cst_elt (@1, i);
6000 tree elt_type = TREE_TYPE (elt);
6001 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6002 tree size = bitsize_int (elt_bits);
6003 tree pos = bitsize_int (elt_bits * i); }
6006 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6010 (vec_perm @0 @1 VECTOR_CST@2)
6013 tree op0 = @0, op1 = @1, op2 = @2;
6015 /* Build a vector of integers from the tree mask. */
6016 vec_perm_builder builder;
6017 if (!tree_to_vec_perm_builder (&builder, op2))
6020 /* Create a vec_perm_indices for the integer vector. */
6021 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6022 bool single_arg = (op0 == op1);
6023 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6025 (if (sel.series_p (0, 1, 0, 1))
6027 (if (sel.series_p (0, 1, nelts, 1))
6033 if (sel.all_from_input_p (0))
6035 else if (sel.all_from_input_p (1))
6038 sel.rotate_inputs (1);
6040 else if (known_ge (poly_uint64 (sel[0]), nelts))
6042 std::swap (op0, op1);
6043 sel.rotate_inputs (1);
6047 tree cop0 = op0, cop1 = op1;
6048 if (TREE_CODE (op0) == SSA_NAME
6049 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6050 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6051 cop0 = gimple_assign_rhs1 (def);
6052 if (TREE_CODE (op1) == SSA_NAME
6053 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6054 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6055 cop1 = gimple_assign_rhs1 (def);
6059 (if ((TREE_CODE (cop0) == VECTOR_CST
6060 || TREE_CODE (cop0) == CONSTRUCTOR)
6061 && (TREE_CODE (cop1) == VECTOR_CST
6062 || TREE_CODE (cop1) == CONSTRUCTOR)
6063 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6067 bool changed = (op0 == op1 && !single_arg);
6068 tree ins = NULL_TREE;
6071 /* See if the permutation is performing a single element
6072 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6073 in that case. But only if the vector mode is supported,
6074 otherwise this is invalid GIMPLE. */
6075 if (TYPE_MODE (type) != BLKmode
6076 && (TREE_CODE (cop0) == VECTOR_CST
6077 || TREE_CODE (cop0) == CONSTRUCTOR
6078 || TREE_CODE (cop1) == VECTOR_CST
6079 || TREE_CODE (cop1) == CONSTRUCTOR))
6081 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6084 /* After canonicalizing the first elt to come from the
6085 first vector we only can insert the first elt from
6086 the first vector. */
6088 if ((ins = fold_read_from_vector (cop0, sel[0])))
6091 /* The above can fail for two-element vectors which always
6092 appear to insert the first element, so try inserting
6093 into the second lane as well. For more than two
6094 elements that's wasted time. */
6095 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6097 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6098 for (at = 0; at < encoded_nelts; ++at)
6099 if (maybe_ne (sel[at], at))
6101 if (at < encoded_nelts
6102 && (known_eq (at + 1, nelts)
6103 || sel.series_p (at + 1, 1, at + 1, 1)))
6105 if (known_lt (poly_uint64 (sel[at]), nelts))
6106 ins = fold_read_from_vector (cop0, sel[at]);
6108 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6113 /* Generate a canonical form of the selector. */
6114 if (!ins && sel.encoding () != builder)
6116 /* Some targets are deficient and fail to expand a single
6117 argument permutation while still allowing an equivalent
6118 2-argument version. */
6120 if (sel.ninputs () == 2
6121 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6122 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6125 vec_perm_indices sel2 (builder, 2, nelts);
6126 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6127 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6129 /* Not directly supported with either encoding,
6130 so use the preferred form. */
6131 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6133 if (!operand_equal_p (op2, oldop2, 0))
6138 (bit_insert { op0; } { ins; }
6139 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
6141 (vec_perm { op0; } { op1; } { op2; }))))))))))
6143 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6145 (match vec_same_elem_p
6147 (if (uniform_vector_p (@0))))
6149 (match vec_same_elem_p
6153 (vec_perm vec_same_elem_p@0 @0 @1)
6156 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6157 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6158 constant which when multiplied by a power of 2 contains a unique value
6159 in the top 5 or 6 bits. This is then indexed into a table which maps it
6160 to the number of trailing zeroes. */
6161 (match (ctz_table_index @1 @2 @3)
6162 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))