1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "stringpool.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab
[(int) stk_type_kind_last
];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
53 static tree
self_referential_size (tree
);
54 static void finalize_record_size (record_layout_info
);
55 static void finalize_type_size (tree
);
56 static void place_union_field (record_layout_info
, tree
);
57 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
59 extern void debug_rli (record_layout_info
);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
65 variable_size (tree size
)
68 if (TREE_CONSTANT (size
))
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size
))
74 return self_referential_size (size
);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks
.decls
.global_bindings_p ())
82 return save_expr (size
);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
88 /* Return true if T is a self-referential component reference. */
91 self_referential_component_ref_p (tree t
)
93 if (TREE_CODE (t
) != COMPONENT_REF
)
96 while (REFERENCE_CLASS_P (t
))
97 t
= TREE_OPERAND (t
, 0);
99 return (TREE_CODE (t
) == PLACEHOLDER_EXPR
);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
107 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
109 enum tree_code code
= TREE_CODE (*tp
);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code
) == tcc_type
113 || TREE_CODE_CLASS (code
) == tcc_declaration
114 || TREE_CODE_CLASS (code
) == tcc_constant
)
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code
== ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp
))
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code
== SAVE_EXPR
)
141 return error_mark_node
;
143 else if (code
== STATEMENT_LIST
)
146 return copy_tree_r (tp
, walk_subtrees
, data
);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
153 self_referential_size (tree size
)
155 static unsigned HOST_WIDE_INT fnno
= 0;
156 vec
<tree
> self_refs
= vNULL
;
157 tree param_type_list
= NULL
, param_decl_list
= NULL
;
158 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
161 vec
<tree
, va_gc
> *args
= NULL
;
163 /* Do not factor out simple operations. */
164 t
= skip_simple_constant_arithmetic (size
);
165 if (TREE_CODE (t
) == CALL_EXPR
|| self_referential_component_ref_p (t
))
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size
, &self_refs
);
170 gcc_assert (self_refs
.length () > 0);
172 /* Obtain a private copy of the expression. */
174 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args
, self_refs
.length ());
181 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
183 tree subst
, param_name
, param_type
, param_decl
;
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref
));
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref
) == ADDR_EXPR
)
194 /* Default case: the component reference. */
196 subst
= TREE_OPERAND (ref
, 1);
198 sprintf (buf
, "p%d", i
);
199 param_name
= get_identifier (buf
);
200 param_type
= TREE_TYPE (ref
);
202 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
203 DECL_ARG_TYPE (param_decl
) = param_type
;
204 DECL_ARTIFICIAL (param_decl
) = 1;
205 TREE_READONLY (param_decl
) = 1;
207 size
= substitute_in_expr (size
, subst
, param_decl
);
209 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
210 param_decl_list
= chainon (param_decl
, param_decl_list
);
211 args
->quick_push (ref
);
214 self_refs
.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list
= nreverse (param_type_list
);
221 param_decl_list
= nreverse (param_decl_list
);
223 /* Build the function type. */
224 return_type
= TREE_TYPE (size
);
225 fntype
= build_function_type (return_type
, param_type_list
);
227 /* Build the function declaration. */
228 sprintf (buf
, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
229 fnname
= get_file_function_name (buf
);
230 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
231 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
232 DECL_CONTEXT (t
) = fndecl
;
233 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
235 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
236 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl
) = 1;
241 DECL_IGNORED_P (fndecl
) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl
) = 1;
245 TREE_NOTHROW (fndecl
) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl
) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
254 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
255 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
256 TREE_STATIC (fndecl
) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions
, fndecl
);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
273 finalize_size_functions (void)
278 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
280 allocate_struct_function (fndecl
, false);
282 dump_function (TDI_original
, fndecl
);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks
->size_function (fndecl
);
287 gimplify_function_tree (fndecl
);
288 cgraph_node::finalize_function (fndecl
, false);
291 vec_free (size_functions
);
294 /* Return a machine mode of class MCLASS with SIZE bits of precision,
295 if one exists. The mode may have padding bits as well the SIZE
296 value bits. If LIMIT is nonzero, disregard modes wider than
297 MAX_FIXED_MODE_SIZE. */
300 mode_for_size (unsigned int size
, enum mode_class mclass
, int limit
)
305 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
306 return opt_machine_mode ();
308 /* Get the first mode which has this size, in the specified class. */
309 FOR_EACH_MODE_IN_CLASS (mode
, mclass
)
310 if (GET_MODE_PRECISION (mode
) == size
)
313 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
314 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
315 if (int_n_data
[i
].bitsize
== size
316 && int_n_enabled_p
[i
])
317 return int_n_data
[i
].m
;
319 return opt_machine_mode ();
322 /* Similar, except passed a tree node. */
325 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
327 unsigned HOST_WIDE_INT uhwi
;
330 if (!tree_fits_uhwi_p (size
))
331 return opt_machine_mode ();
332 uhwi
= tree_to_uhwi (size
);
335 return opt_machine_mode ();
336 return mode_for_size (ui
, mclass
, limit
);
339 /* Return the narrowest mode of class MCLASS that contains at least
340 SIZE bits. Abort if no such mode exists. */
343 smallest_mode_for_size (unsigned int size
, enum mode_class mclass
)
345 machine_mode mode
= VOIDmode
;
348 /* Get the first mode which has at least this size, in the
350 FOR_EACH_MODE_IN_CLASS (mode
, mclass
)
351 if (GET_MODE_PRECISION (mode
) >= size
)
354 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
355 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
356 if (int_n_data
[i
].bitsize
>= size
357 && int_n_data
[i
].bitsize
< GET_MODE_PRECISION (mode
)
358 && int_n_enabled_p
[i
])
359 mode
= int_n_data
[i
].m
;
361 if (mode
== VOIDmode
)
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
370 int_mode_for_mode (machine_mode mode
)
372 switch (GET_MODE_CLASS (mode
))
375 case MODE_PARTIAL_INT
:
376 return as_a
<scalar_int_mode
> (mode
);
378 case MODE_COMPLEX_INT
:
379 case MODE_COMPLEX_FLOAT
:
381 case MODE_DECIMAL_FLOAT
:
382 case MODE_VECTOR_INT
:
383 case MODE_VECTOR_FLOAT
:
388 case MODE_VECTOR_FRACT
:
389 case MODE_VECTOR_ACCUM
:
390 case MODE_VECTOR_UFRACT
:
391 case MODE_VECTOR_UACCUM
:
392 case MODE_POINTER_BOUNDS
:
393 return int_mode_for_size (GET_MODE_BITSIZE (mode
), 0);
397 return opt_scalar_int_mode ();
407 /* Find a mode that can be used for efficient bitwise operations on MODE,
411 bitwise_mode_for_mode (machine_mode mode
)
413 /* Quick exit if we already have a suitable mode. */
414 unsigned int bitsize
= GET_MODE_BITSIZE (mode
);
415 scalar_int_mode int_mode
;
416 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
417 && GET_MODE_BITSIZE (int_mode
) <= MAX_FIXED_MODE_SIZE
)
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode
), true));
423 /* Try to replace complex modes with complex modes. In general we
424 expect both components to be processed independently, so we only
425 care whether there is a register for the inner mode. */
426 if (COMPLEX_MODE_P (mode
))
428 machine_mode trial
= mode
;
429 if ((GET_MODE_CLASS (trial
) == MODE_COMPLEX_INT
430 || mode_for_size (bitsize
, MODE_COMPLEX_INT
, false).exists (&trial
))
431 && have_regs_of_mode
[GET_MODE_INNER (trial
)])
435 /* Try to replace vector modes with vector modes. Also try using vector
436 modes if an integer mode would be too big. */
437 if (VECTOR_MODE_P (mode
) || bitsize
> MAX_FIXED_MODE_SIZE
)
439 machine_mode trial
= mode
;
440 if ((GET_MODE_CLASS (trial
) == MODE_VECTOR_INT
441 || mode_for_size (bitsize
, MODE_VECTOR_INT
, 0).exists (&trial
))
442 && have_regs_of_mode
[trial
]
443 && targetm
.vector_mode_supported_p (trial
))
447 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
448 return mode_for_size (bitsize
, MODE_INT
, true);
451 /* Find a type that can be used for efficient bitwise operations on MODE.
452 Return null if no such mode exists. */
455 bitwise_type_for_mode (machine_mode mode
)
457 if (!bitwise_mode_for_mode (mode
).exists (&mode
))
460 unsigned int inner_size
= GET_MODE_UNIT_BITSIZE (mode
);
461 tree inner_type
= build_nonstandard_integer_type (inner_size
, true);
463 if (VECTOR_MODE_P (mode
))
464 return build_vector_type_for_mode (inner_type
, mode
);
466 if (COMPLEX_MODE_P (mode
))
467 return build_complex_type (inner_type
);
469 gcc_checking_assert (GET_MODE_INNER (mode
) == mode
);
473 /* Find a mode that is suitable for representing a vector with NUNITS
474 elements of mode INNERMODE, if one exists. The returned mode can be
475 either an integer mode or a vector mode. */
478 mode_for_vector (scalar_mode innermode
, unsigned nunits
)
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode
))
484 mode
= MIN_MODE_VECTOR_FLOAT
;
485 else if (SCALAR_FRACT_MODE_P (innermode
))
486 mode
= MIN_MODE_VECTOR_FRACT
;
487 else if (SCALAR_UFRACT_MODE_P (innermode
))
488 mode
= MIN_MODE_VECTOR_UFRACT
;
489 else if (SCALAR_ACCUM_MODE_P (innermode
))
490 mode
= MIN_MODE_VECTOR_ACCUM
;
491 else if (SCALAR_UACCUM_MODE_P (innermode
))
492 mode
= MIN_MODE_VECTOR_UACCUM
;
494 mode
= MIN_MODE_VECTOR_INT
;
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 FOR_EACH_MODE_FROM (mode
, mode
)
499 if (GET_MODE_NUNITS (mode
) == nunits
500 && GET_MODE_INNER (mode
) == innermode
)
503 /* For integers, try mapping it to a same-sized scalar mode. */
504 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
506 unsigned int nbits
= nunits
* GET_MODE_BITSIZE (innermode
);
507 if (int_mode_for_size (nbits
, 0).exists (&mode
)
508 && have_regs_of_mode
[mode
])
512 return opt_machine_mode ();
515 /* Return the mode for a vector that has NUNITS integer elements of
516 INT_BITS bits each, if such a mode exists. The mode can be either
517 an integer mode or a vector mode. */
520 mode_for_int_vector (unsigned int int_bits
, unsigned int nunits
)
522 scalar_int_mode int_mode
;
523 machine_mode vec_mode
;
524 if (int_mode_for_size (int_bits
, 0).exists (&int_mode
)
525 && mode_for_vector (int_mode
, nunits
).exists (&vec_mode
))
527 return opt_machine_mode ();
530 /* Return the alignment of MODE. This will be bounded by 1 and
531 BIGGEST_ALIGNMENT. */
534 get_mode_alignment (machine_mode mode
)
536 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
539 /* Return the natural mode of an array, given that it is SIZE bytes in
540 total and has elements of type ELEM_TYPE. */
543 mode_for_array (tree elem_type
, tree size
)
546 unsigned HOST_WIDE_INT int_size
, int_elem_size
;
549 /* One-element arrays get the component type's mode. */
550 elem_size
= TYPE_SIZE (elem_type
);
551 if (simple_cst_equal (size
, elem_size
))
552 return TYPE_MODE (elem_type
);
555 if (tree_fits_uhwi_p (size
) && tree_fits_uhwi_p (elem_size
))
557 int_size
= tree_to_uhwi (size
);
558 int_elem_size
= tree_to_uhwi (elem_size
);
559 if (int_elem_size
> 0
560 && int_size
% int_elem_size
== 0
561 && targetm
.array_mode_supported_p (TYPE_MODE (elem_type
),
562 int_size
/ int_elem_size
))
565 return mode_for_size_tree (size
, MODE_INT
, limit_p
).else_blk ();
568 /* Subroutine of layout_decl: Force alignment required for the data type.
569 But if the decl itself wants greater alignment, don't override that. */
572 do_type_align (tree type
, tree decl
)
574 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
576 SET_DECL_ALIGN (decl
, TYPE_ALIGN (type
));
577 if (TREE_CODE (decl
) == FIELD_DECL
)
578 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
580 if (TYPE_WARN_IF_NOT_ALIGN (type
) > DECL_WARN_IF_NOT_ALIGN (decl
))
581 SET_DECL_WARN_IF_NOT_ALIGN (decl
, TYPE_WARN_IF_NOT_ALIGN (type
));
584 /* Set the size, mode and alignment of a ..._DECL node.
585 TYPE_DECL does need this for C++.
586 Note that LABEL_DECL and CONST_DECL nodes do not need this,
587 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
588 Don't call layout_decl for them.
590 KNOWN_ALIGN is the amount of alignment we can assume this
591 decl has with no special effort. It is relevant only for FIELD_DECLs
592 and depends on the previous fields.
593 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
594 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
595 the record will be aligned to suit. */
598 layout_decl (tree decl
, unsigned int known_align
)
600 tree type
= TREE_TYPE (decl
);
601 enum tree_code code
= TREE_CODE (decl
);
603 location_t loc
= DECL_SOURCE_LOCATION (decl
);
605 if (code
== CONST_DECL
)
608 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
609 || code
== TYPE_DECL
|| code
== FIELD_DECL
);
611 rtl
= DECL_RTL_IF_SET (decl
);
613 if (type
== error_mark_node
)
614 type
= void_type_node
;
616 /* Usually the size and mode come from the data type without change,
617 however, the front-end may set the explicit width of the field, so its
618 size may not be the same as the size of its type. This happens with
619 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
620 also happens with other fields. For example, the C++ front-end creates
621 zero-sized fields corresponding to empty base classes, and depends on
622 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
623 size in bytes from the size in bits. If we have already set the mode,
624 don't set it again since we can be called twice for FIELD_DECLs. */
626 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
627 if (DECL_MODE (decl
) == VOIDmode
)
628 SET_DECL_MODE (decl
, TYPE_MODE (type
));
630 if (DECL_SIZE (decl
) == 0)
632 DECL_SIZE (decl
) = TYPE_SIZE (type
);
633 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
635 else if (DECL_SIZE_UNIT (decl
) == 0)
636 DECL_SIZE_UNIT (decl
)
637 = fold_convert_loc (loc
, sizetype
,
638 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
641 if (code
!= FIELD_DECL
)
642 /* For non-fields, update the alignment from the type. */
643 do_type_align (type
, decl
);
645 /* For fields, it's a bit more complicated... */
647 bool old_user_align
= DECL_USER_ALIGN (decl
);
648 bool zero_bitfield
= false;
649 bool packed_p
= DECL_PACKED (decl
);
652 if (DECL_BIT_FIELD (decl
))
654 DECL_BIT_FIELD_TYPE (decl
) = type
;
656 /* A zero-length bit-field affects the alignment of the next
657 field. In essence such bit-fields are not influenced by
658 any packing due to #pragma pack or attribute packed. */
659 if (integer_zerop (DECL_SIZE (decl
))
660 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
662 zero_bitfield
= true;
664 if (PCC_BITFIELD_TYPE_MATTERS
)
665 do_type_align (type
, decl
);
668 #ifdef EMPTY_FIELD_BOUNDARY
669 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
671 SET_DECL_ALIGN (decl
, EMPTY_FIELD_BOUNDARY
);
672 DECL_USER_ALIGN (decl
) = 0;
678 /* See if we can use an ordinary integer mode for a bit-field.
679 Conditions are: a fixed size that is correct for another mode,
680 occupying a complete byte or bytes on proper boundary. */
681 if (TYPE_SIZE (type
) != 0
682 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
683 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
686 if (mode_for_size_tree (DECL_SIZE (decl
),
687 MODE_INT
, 1).exists (&xmode
))
689 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
690 if (!(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
691 && (known_align
== 0 || known_align
>= xalign
))
693 SET_DECL_ALIGN (decl
, MAX (xalign
, DECL_ALIGN (decl
)));
694 SET_DECL_MODE (decl
, xmode
);
695 DECL_BIT_FIELD (decl
) = 0;
700 /* Turn off DECL_BIT_FIELD if we won't need it set. */
701 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
702 && known_align
>= TYPE_ALIGN (type
)
703 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
704 DECL_BIT_FIELD (decl
) = 0;
706 else if (packed_p
&& DECL_USER_ALIGN (decl
))
707 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
708 round up; we'll reduce it again below. We want packing to
709 supersede USER_ALIGN inherited from the type, but defer to
710 alignment explicitly specified on the field decl. */;
712 do_type_align (type
, decl
);
714 /* If the field is packed and not explicitly aligned, give it the
715 minimum alignment. Note that do_type_align may set
716 DECL_USER_ALIGN, so we need to check old_user_align instead. */
719 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
));
721 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
723 /* Some targets (i.e. i386, VMS) limit struct field alignment
724 to a lower boundary than alignment of variables unless
725 it was overridden by attribute aligned. */
726 #ifdef BIGGEST_FIELD_ALIGNMENT
727 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
),
728 (unsigned) BIGGEST_FIELD_ALIGNMENT
));
730 #ifdef ADJUST_FIELD_ALIGN
731 SET_DECL_ALIGN (decl
, ADJUST_FIELD_ALIGN (decl
, TREE_TYPE (decl
),
737 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
739 mfa
= maximum_field_alignment
;
740 /* Should this be controlled by DECL_USER_ALIGN, too? */
742 SET_DECL_ALIGN (decl
, MIN (DECL_ALIGN (decl
), mfa
));
745 /* Evaluate nonconstant size only once, either now or as soon as safe. */
746 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
747 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
748 if (DECL_SIZE_UNIT (decl
) != 0
749 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
750 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
752 /* If requested, warn about definitions of large data objects. */
754 && (code
== VAR_DECL
|| code
== PARM_DECL
)
755 && ! DECL_EXTERNAL (decl
))
757 tree size
= DECL_SIZE_UNIT (decl
);
759 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
760 && compare_tree_int (size
, larger_than_size
) > 0)
762 int size_as_int
= TREE_INT_CST_LOW (size
);
764 if (compare_tree_int (size
, size_as_int
) == 0)
765 warning (OPT_Wlarger_than_
, "size of %q+D is %d bytes", decl
, size_as_int
);
767 warning (OPT_Wlarger_than_
, "size of %q+D is larger than %wd bytes",
768 decl
, larger_than_size
);
772 /* If the RTL was already set, update its mode and mem attributes. */
775 PUT_MODE (rtl
, DECL_MODE (decl
));
776 SET_DECL_RTL (decl
, 0);
778 set_mem_attributes (rtl
, decl
, 1);
779 SET_DECL_RTL (decl
, rtl
);
783 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
784 results of a previous call to layout_decl and calls it again. */
787 relayout_decl (tree decl
)
789 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
790 SET_DECL_MODE (decl
, VOIDmode
);
791 if (!DECL_USER_ALIGN (decl
))
792 SET_DECL_ALIGN (decl
, 0);
793 if (DECL_RTL_SET_P (decl
))
794 SET_DECL_RTL (decl
, 0);
796 layout_decl (decl
, 0);
799 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
800 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
801 is to be passed to all other layout functions for this record. It is the
802 responsibility of the caller to call `free' for the storage returned.
803 Note that garbage collection is not permitted until we finish laying
807 start_record_layout (tree t
)
809 record_layout_info rli
= XNEW (struct record_layout_info_s
);
813 /* If the type has a minimum specified alignment (via an attribute
814 declaration, for example) use it -- otherwise, start with a
815 one-byte alignment. */
816 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
817 rli
->unpacked_align
= rli
->record_align
;
818 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
820 #ifdef STRUCTURE_SIZE_BOUNDARY
821 /* Packed structures don't need to have minimum size. */
822 if (! TYPE_PACKED (t
))
826 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
827 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
828 if (maximum_field_alignment
!= 0)
829 tmp
= MIN (tmp
, maximum_field_alignment
);
830 rli
->record_align
= MAX (rli
->record_align
, tmp
);
834 rli
->offset
= size_zero_node
;
835 rli
->bitpos
= bitsize_zero_node
;
837 rli
->pending_statics
= 0;
838 rli
->packed_maybe_necessary
= 0;
839 rli
->remaining_in_alignment
= 0;
844 /* Return the combined bit position for the byte offset OFFSET and the
847 These functions operate on byte and bit positions present in FIELD_DECLs
848 and assume that these expressions result in no (intermediate) overflow.
849 This assumption is necessary to fold the expressions as much as possible,
850 so as to avoid creating artificially variable-sized types in languages
851 supporting variable-sized types like Ada. */
854 bit_from_pos (tree offset
, tree bitpos
)
856 return size_binop (PLUS_EXPR
, bitpos
,
857 size_binop (MULT_EXPR
,
858 fold_convert (bitsizetype
, offset
),
862 /* Return the combined truncated byte position for the byte offset OFFSET and
863 the bit position BITPOS. */
866 byte_from_pos (tree offset
, tree bitpos
)
869 if (TREE_CODE (bitpos
) == MULT_EXPR
870 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
871 bytepos
= TREE_OPERAND (bitpos
, 0);
873 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
874 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
877 /* Split the bit position POS into a byte offset *POFFSET and a bit
878 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
881 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
884 tree toff_align
= bitsize_int (off_align
);
885 if (TREE_CODE (pos
) == MULT_EXPR
886 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
888 *poffset
= size_binop (MULT_EXPR
,
889 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
890 size_int (off_align
/ BITS_PER_UNIT
));
891 *pbitpos
= bitsize_zero_node
;
895 *poffset
= size_binop (MULT_EXPR
,
896 fold_convert (sizetype
,
897 size_binop (FLOOR_DIV_EXPR
, pos
,
899 size_int (off_align
/ BITS_PER_UNIT
));
900 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
904 /* Given a pointer to bit and byte offsets and an offset alignment,
905 normalize the offsets so they are within the alignment. */
908 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
910 /* If the bit position is now larger than it should be, adjust it
912 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
915 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
916 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
921 /* Print debugging information about the information in RLI. */
924 debug_rli (record_layout_info rli
)
926 print_node_brief (stderr
, "type", rli
->t
, 0);
927 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
928 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
930 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
931 rli
->record_align
, rli
->unpacked_align
,
934 /* The ms_struct code is the only that uses this. */
935 if (targetm
.ms_bitfield_layout_p (rli
->t
))
936 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
938 if (rli
->packed_maybe_necessary
)
939 fprintf (stderr
, "packed may be necessary\n");
941 if (!vec_safe_is_empty (rli
->pending_statics
))
943 fprintf (stderr
, "pending statics:\n");
944 debug_vec_tree (rli
->pending_statics
);
948 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
949 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
952 normalize_rli (record_layout_info rli
)
954 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
957 /* Returns the size in bytes allocated so far. */
960 rli_size_unit_so_far (record_layout_info rli
)
962 return byte_from_pos (rli
->offset
, rli
->bitpos
);
965 /* Returns the size in bits allocated so far. */
968 rli_size_so_far (record_layout_info rli
)
970 return bit_from_pos (rli
->offset
, rli
->bitpos
);
973 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
974 the next available location within the record is given by KNOWN_ALIGN.
975 Update the variable alignment fields in RLI, and return the alignment
976 to give the FIELD. */
979 update_alignment_for_field (record_layout_info rli
, tree field
,
980 unsigned int known_align
)
982 /* The alignment required for FIELD. */
983 unsigned int desired_align
;
984 /* The type of this field. */
985 tree type
= TREE_TYPE (field
);
986 /* True if the field was explicitly aligned by the user. */
990 /* Do not attempt to align an ERROR_MARK node */
991 if (TREE_CODE (type
) == ERROR_MARK
)
994 /* Lay out the field so we know what alignment it needs. */
995 layout_decl (field
, known_align
);
996 desired_align
= DECL_ALIGN (field
);
997 user_align
= DECL_USER_ALIGN (field
);
999 is_bitfield
= (type
!= error_mark_node
1000 && DECL_BIT_FIELD_TYPE (field
)
1001 && ! integer_zerop (TYPE_SIZE (type
)));
1003 /* Record must have at least as much alignment as any field.
1004 Otherwise, the alignment of the field within the record is
1006 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1008 /* Here, the alignment of the underlying type of a bitfield can
1009 affect the alignment of a record; even a zero-sized field
1010 can do this. The alignment should be to the alignment of
1011 the type, except that for zero-size bitfields this only
1012 applies if there was an immediately prior, nonzero-size
1013 bitfield. (That's the way it is, experimentally.) */
1014 if ((!is_bitfield
&& !DECL_PACKED (field
))
1015 || ((DECL_SIZE (field
) == NULL_TREE
1016 || !integer_zerop (DECL_SIZE (field
)))
1017 ? !DECL_PACKED (field
)
1019 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1020 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1022 unsigned int type_align
= TYPE_ALIGN (type
);
1023 type_align
= MAX (type_align
, desired_align
);
1024 if (maximum_field_alignment
!= 0)
1025 type_align
= MIN (type_align
, maximum_field_alignment
);
1026 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1027 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1030 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
1032 /* Named bit-fields cause the entire structure to have the
1033 alignment implied by their type. Some targets also apply the same
1034 rules to unnamed bitfields. */
1035 if (DECL_NAME (field
) != 0
1036 || targetm
.align_anon_bitfield ())
1038 unsigned int type_align
= TYPE_ALIGN (type
);
1040 #ifdef ADJUST_FIELD_ALIGN
1041 if (! TYPE_USER_ALIGN (type
))
1042 type_align
= ADJUST_FIELD_ALIGN (field
, type
, type_align
);
1045 /* Targets might chose to handle unnamed and hence possibly
1046 zero-width bitfield. Those are not influenced by #pragmas
1047 or packed attributes. */
1048 if (integer_zerop (DECL_SIZE (field
)))
1050 if (initial_max_fld_align
)
1051 type_align
= MIN (type_align
,
1052 initial_max_fld_align
* BITS_PER_UNIT
);
1054 else if (maximum_field_alignment
!= 0)
1055 type_align
= MIN (type_align
, maximum_field_alignment
);
1056 else if (DECL_PACKED (field
))
1057 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1059 /* The alignment of the record is increased to the maximum
1060 of the current alignment, the alignment indicated on the
1061 field (i.e., the alignment specified by an __aligned__
1062 attribute), and the alignment indicated by the type of
1064 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1065 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1068 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1069 user_align
|= TYPE_USER_ALIGN (type
);
1074 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1075 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1078 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1080 return desired_align
;
1083 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1084 the field alignment of FIELD or FIELD isn't aligned. */
1087 handle_warn_if_not_align (tree field
, unsigned int record_align
)
1089 tree type
= TREE_TYPE (field
);
1091 if (type
== error_mark_node
)
1094 unsigned int warn_if_not_align
= 0;
1098 if (warn_if_not_aligned
)
1100 warn_if_not_align
= DECL_WARN_IF_NOT_ALIGN (field
);
1101 if (!warn_if_not_align
)
1102 warn_if_not_align
= TYPE_WARN_IF_NOT_ALIGN (type
);
1103 if (warn_if_not_align
)
1104 opt_w
= OPT_Wif_not_aligned
;
1107 if (!warn_if_not_align
1108 && warn_packed_not_aligned
1109 && TYPE_USER_ALIGN (type
))
1111 warn_if_not_align
= TYPE_ALIGN (type
);
1112 opt_w
= OPT_Wpacked_not_aligned
;
1115 if (!warn_if_not_align
)
1118 tree context
= DECL_CONTEXT (field
);
1120 warn_if_not_align
/= BITS_PER_UNIT
;
1121 record_align
/= BITS_PER_UNIT
;
1122 if ((record_align
% warn_if_not_align
) != 0)
1123 warning (opt_w
, "alignment %u of %qT is less than %u",
1124 record_align
, context
, warn_if_not_align
);
1126 unsigned HOST_WIDE_INT off
1127 = (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
1128 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)) / BITS_PER_UNIT
);
1129 if ((off
% warn_if_not_align
) != 0)
1130 warning (opt_w
, "%q+D offset %wu in %qT isn't aligned to %u",
1131 field
, off
, context
, warn_if_not_align
);
1134 /* Called from place_field to handle unions. */
1137 place_union_field (record_layout_info rli
, tree field
)
1139 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1141 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1142 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1143 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1144 handle_warn_if_not_align (field
, rli
->record_align
);
1146 /* If this is an ERROR_MARK return *after* having set the
1147 field at the start of the union. This helps when parsing
1149 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1152 if (AGGREGATE_TYPE_P (TREE_TYPE (field
))
1153 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field
)))
1154 TYPE_TYPELESS_STORAGE (rli
->t
) = 1;
1156 /* We assume the union's size will be a multiple of a byte so we don't
1157 bother with BITPOS. */
1158 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1159 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1160 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1161 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1162 DECL_SIZE_UNIT (field
), rli
->offset
);
1165 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1166 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1167 units of alignment than the underlying TYPE. */
1169 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1170 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1172 /* Note that the calculation of OFFSET might overflow; we calculate it so
1173 that we still get the right result as long as ALIGN is a power of two. */
1174 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1176 offset
= offset
% align
;
1177 return ((offset
+ size
+ align
- 1) / align
1178 > tree_to_uhwi (TYPE_SIZE (type
)) / align
);
1181 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1182 is a FIELD_DECL to be added after those fields already present in
1183 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1184 callers that desire that behavior must manually perform that step.) */
1187 place_field (record_layout_info rli
, tree field
)
1189 /* The alignment required for FIELD. */
1190 unsigned int desired_align
;
1191 /* The alignment FIELD would have if we just dropped it into the
1192 record as it presently stands. */
1193 unsigned int known_align
;
1194 unsigned int actual_align
;
1195 /* The type of this field. */
1196 tree type
= TREE_TYPE (field
);
1198 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1200 /* If FIELD is static, then treat it like a separate variable, not
1201 really like a structure field. If it is a FUNCTION_DECL, it's a
1202 method. In both cases, all we do is lay out the decl, and we do
1203 it *after* the record is laid out. */
1206 vec_safe_push (rli
->pending_statics
, field
);
1210 /* Enumerators and enum types which are local to this class need not
1211 be laid out. Likewise for initialized constant fields. */
1212 else if (TREE_CODE (field
) != FIELD_DECL
)
1215 /* Unions are laid out very differently than records, so split
1216 that code off to another function. */
1217 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1219 place_union_field (rli
, field
);
1223 else if (TREE_CODE (type
) == ERROR_MARK
)
1225 /* Place this field at the current allocation position, so we
1226 maintain monotonicity. */
1227 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1228 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1229 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1230 handle_warn_if_not_align (field
, rli
->record_align
);
1234 if (AGGREGATE_TYPE_P (type
)
1235 && TYPE_TYPELESS_STORAGE (type
))
1236 TYPE_TYPELESS_STORAGE (rli
->t
) = 1;
1238 /* Work out the known alignment so far. Note that A & (-A) is the
1239 value of the least-significant bit in A that is one. */
1240 if (! integer_zerop (rli
->bitpos
))
1241 known_align
= least_bit_hwi (tree_to_uhwi (rli
->bitpos
));
1242 else if (integer_zerop (rli
->offset
))
1244 else if (tree_fits_uhwi_p (rli
->offset
))
1245 known_align
= (BITS_PER_UNIT
1246 * least_bit_hwi (tree_to_uhwi (rli
->offset
)));
1248 known_align
= rli
->offset_align
;
1250 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1251 if (known_align
== 0)
1252 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1254 if (warn_packed
&& DECL_PACKED (field
))
1256 if (known_align
>= TYPE_ALIGN (type
))
1258 if (TYPE_ALIGN (type
) > desired_align
)
1260 if (STRICT_ALIGNMENT
)
1261 warning (OPT_Wattributes
, "packed attribute causes "
1262 "inefficient alignment for %q+D", field
);
1263 /* Don't warn if DECL_PACKED was set by the type. */
1264 else if (!TYPE_PACKED (rli
->t
))
1265 warning (OPT_Wattributes
, "packed attribute is "
1266 "unnecessary for %q+D", field
);
1270 rli
->packed_maybe_necessary
= 1;
1273 /* Does this field automatically have alignment it needs by virtue
1274 of the fields that precede it and the record's own alignment? */
1275 if (known_align
< desired_align
)
1277 /* No, we need to skip space before this field.
1278 Bump the cumulative size to multiple of field alignment. */
1280 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1281 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
)
1282 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1284 /* If the alignment is still within offset_align, just align
1285 the bit position. */
1286 if (desired_align
< rli
->offset_align
)
1287 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1290 /* First adjust OFFSET by the partial bits, then align. */
1292 = size_binop (PLUS_EXPR
, rli
->offset
,
1293 fold_convert (sizetype
,
1294 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1295 bitsize_unit_node
)));
1296 rli
->bitpos
= bitsize_zero_node
;
1298 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1301 if (! TREE_CONSTANT (rli
->offset
))
1302 rli
->offset_align
= desired_align
;
1303 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1304 rli
->prev_field
= NULL
;
1307 /* Handle compatibility with PCC. Note that if the record has any
1308 variable-sized fields, we need not worry about compatibility. */
1309 if (PCC_BITFIELD_TYPE_MATTERS
1310 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1311 && TREE_CODE (field
) == FIELD_DECL
1312 && type
!= error_mark_node
1313 && DECL_BIT_FIELD (field
)
1314 && (! DECL_PACKED (field
)
1315 /* Enter for these packed fields only to issue a warning. */
1316 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1317 && maximum_field_alignment
== 0
1318 && ! integer_zerop (DECL_SIZE (field
))
1319 && tree_fits_uhwi_p (DECL_SIZE (field
))
1320 && tree_fits_uhwi_p (rli
->offset
)
1321 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1323 unsigned int type_align
= TYPE_ALIGN (type
);
1324 tree dsize
= DECL_SIZE (field
);
1325 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1326 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1327 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1329 #ifdef ADJUST_FIELD_ALIGN
1330 if (! TYPE_USER_ALIGN (type
))
1331 type_align
= ADJUST_FIELD_ALIGN (field
, type
, type_align
);
1334 /* A bit field may not span more units of alignment of its type
1335 than its type itself. Advance to next boundary if necessary. */
1336 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1338 if (DECL_PACKED (field
))
1340 if (warn_packed_bitfield_compat
== 1)
1343 "offset of packed bit-field %qD has changed in GCC 4.4",
1347 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1350 if (! DECL_PACKED (field
))
1351 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1353 SET_TYPE_WARN_IF_NOT_ALIGN (rli
->t
,
1354 TYPE_WARN_IF_NOT_ALIGN (type
));
1357 #ifdef BITFIELD_NBYTES_LIMITED
1358 if (BITFIELD_NBYTES_LIMITED
1359 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1360 && TREE_CODE (field
) == FIELD_DECL
1361 && type
!= error_mark_node
1362 && DECL_BIT_FIELD_TYPE (field
)
1363 && ! DECL_PACKED (field
)
1364 && ! integer_zerop (DECL_SIZE (field
))
1365 && tree_fits_uhwi_p (DECL_SIZE (field
))
1366 && tree_fits_uhwi_p (rli
->offset
)
1367 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1369 unsigned int type_align
= TYPE_ALIGN (type
);
1370 tree dsize
= DECL_SIZE (field
);
1371 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1372 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1373 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1375 #ifdef ADJUST_FIELD_ALIGN
1376 if (! TYPE_USER_ALIGN (type
))
1377 type_align
= ADJUST_FIELD_ALIGN (field
, type
, type_align
);
1380 if (maximum_field_alignment
!= 0)
1381 type_align
= MIN (type_align
, maximum_field_alignment
);
1382 /* ??? This test is opposite the test in the containing if
1383 statement, so this code is unreachable currently. */
1384 else if (DECL_PACKED (field
))
1385 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1387 /* A bit field may not span the unit of alignment of its type.
1388 Advance to next boundary if necessary. */
1389 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1390 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1392 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1393 SET_TYPE_WARN_IF_NOT_ALIGN (rli
->t
,
1394 TYPE_WARN_IF_NOT_ALIGN (type
));
1398 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1400 When a bit field is inserted into a packed record, the whole
1401 size of the underlying type is used by one or more same-size
1402 adjacent bitfields. (That is, if its long:3, 32 bits is
1403 used in the record, and any additional adjacent long bitfields are
1404 packed into the same chunk of 32 bits. However, if the size
1405 changes, a new field of that size is allocated.) In an unpacked
1406 record, this is the same as using alignment, but not equivalent
1409 Note: for compatibility, we use the type size, not the type alignment
1410 to determine alignment, since that matches the documentation */
1412 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1414 tree prev_saved
= rli
->prev_field
;
1415 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1417 /* This is a bitfield if it exists. */
1418 if (rli
->prev_field
)
1420 /* If both are bitfields, nonzero, and the same size, this is
1421 the middle of a run. Zero declared size fields are special
1422 and handled as "end of run". (Note: it's nonzero declared
1423 size, but equal type sizes!) (Since we know that both
1424 the current and previous fields are bitfields by the
1425 time we check it, DECL_SIZE must be present for both.) */
1426 if (DECL_BIT_FIELD_TYPE (field
)
1427 && !integer_zerop (DECL_SIZE (field
))
1428 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1429 && tree_fits_shwi_p (DECL_SIZE (rli
->prev_field
))
1430 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1431 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1433 /* We're in the middle of a run of equal type size fields; make
1434 sure we realign if we run out of bits. (Not decl size,
1436 HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field
));
1438 if (rli
->remaining_in_alignment
< bitsize
)
1440 HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (type
));
1442 /* out of bits; bump up to next 'word'. */
1444 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1445 bitsize_int (rli
->remaining_in_alignment
));
1446 rli
->prev_field
= field
;
1447 if (typesize
< bitsize
)
1448 rli
->remaining_in_alignment
= 0;
1450 rli
->remaining_in_alignment
= typesize
- bitsize
;
1453 rli
->remaining_in_alignment
-= bitsize
;
1457 /* End of a run: if leaving a run of bitfields of the same type
1458 size, we have to "use up" the rest of the bits of the type
1461 Compute the new position as the sum of the size for the prior
1462 type and where we first started working on that type.
1463 Note: since the beginning of the field was aligned then
1464 of course the end will be too. No round needed. */
1466 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1469 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1470 bitsize_int (rli
->remaining_in_alignment
));
1473 /* We "use up" size zero fields; the code below should behave
1474 as if the prior field was not a bitfield. */
1477 /* Cause a new bitfield to be captured, either this time (if
1478 currently a bitfield) or next time we see one. */
1479 if (!DECL_BIT_FIELD_TYPE (field
)
1480 || integer_zerop (DECL_SIZE (field
)))
1481 rli
->prev_field
= NULL
;
1484 normalize_rli (rli
);
1487 /* If we're starting a new run of same type size bitfields
1488 (or a run of non-bitfields), set up the "first of the run"
1491 That is, if the current field is not a bitfield, or if there
1492 was a prior bitfield the type sizes differ, or if there wasn't
1493 a prior bitfield the size of the current field is nonzero.
1495 Note: we must be sure to test ONLY the type size if there was
1496 a prior bitfield and ONLY for the current field being zero if
1499 if (!DECL_BIT_FIELD_TYPE (field
)
1500 || (prev_saved
!= NULL
1501 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1502 : !integer_zerop (DECL_SIZE (field
)) ))
1504 /* Never smaller than a byte for compatibility. */
1505 unsigned int type_align
= BITS_PER_UNIT
;
1507 /* (When not a bitfield), we could be seeing a flex array (with
1508 no DECL_SIZE). Since we won't be using remaining_in_alignment
1509 until we see a bitfield (and come by here again) we just skip
1511 if (DECL_SIZE (field
) != NULL
1512 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field
)))
1513 && tree_fits_uhwi_p (DECL_SIZE (field
)))
1515 unsigned HOST_WIDE_INT bitsize
1516 = tree_to_uhwi (DECL_SIZE (field
));
1517 unsigned HOST_WIDE_INT typesize
1518 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field
)));
1520 if (typesize
< bitsize
)
1521 rli
->remaining_in_alignment
= 0;
1523 rli
->remaining_in_alignment
= typesize
- bitsize
;
1526 /* Now align (conventionally) for the new type. */
1527 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1529 if (maximum_field_alignment
!= 0)
1530 type_align
= MIN (type_align
, maximum_field_alignment
);
1532 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1534 /* If we really aligned, don't allow subsequent bitfields
1536 rli
->prev_field
= NULL
;
1540 /* Offset so far becomes the position of this field after normalizing. */
1541 normalize_rli (rli
);
1542 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1543 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1544 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1545 handle_warn_if_not_align (field
, rli
->record_align
);
1547 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1548 if (TREE_CODE (DECL_FIELD_OFFSET (field
)) != INTEGER_CST
)
1549 DECL_FIELD_OFFSET (field
) = variable_size (DECL_FIELD_OFFSET (field
));
1551 /* If this field ended up more aligned than we thought it would be (we
1552 approximate this by seeing if its position changed), lay out the field
1553 again; perhaps we can use an integral mode for it now. */
1554 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1555 actual_align
= least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)));
1556 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1557 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1558 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1559 actual_align
= (BITS_PER_UNIT
1560 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field
))));
1562 actual_align
= DECL_OFFSET_ALIGN (field
);
1563 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1564 store / extract bit field operations will check the alignment of the
1565 record against the mode of bit fields. */
1567 if (known_align
!= actual_align
)
1568 layout_decl (field
, actual_align
);
1570 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1571 rli
->prev_field
= field
;
1573 /* Now add size of this field to the size of the record. If the size is
1574 not constant, treat the field as being a multiple of bytes and just
1575 adjust the offset, resetting the bit position. Otherwise, apportion the
1576 size amongst the bit position and offset. First handle the case of an
1577 unspecified size, which can happen when we have an invalid nested struct
1578 definition, such as struct j { struct j { int i; } }. The error message
1579 is printed in finish_struct. */
1580 if (DECL_SIZE (field
) == 0)
1582 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1583 || TREE_OVERFLOW (DECL_SIZE (field
)))
1586 = size_binop (PLUS_EXPR
, rli
->offset
,
1587 fold_convert (sizetype
,
1588 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1589 bitsize_unit_node
)));
1591 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1592 rli
->bitpos
= bitsize_zero_node
;
1593 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1595 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1597 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1599 /* If we ended a bitfield before the full length of the type then
1600 pad the struct out to the full length of the last type. */
1601 if ((DECL_CHAIN (field
) == NULL
1602 || TREE_CODE (DECL_CHAIN (field
)) != FIELD_DECL
)
1603 && DECL_BIT_FIELD_TYPE (field
)
1604 && !integer_zerop (DECL_SIZE (field
)))
1605 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1606 bitsize_int (rli
->remaining_in_alignment
));
1608 normalize_rli (rli
);
1612 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1613 normalize_rli (rli
);
1617 /* Assuming that all the fields have been laid out, this function uses
1618 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1619 indicated by RLI. */
1622 finalize_record_size (record_layout_info rli
)
1624 tree unpadded_size
, unpadded_size_unit
;
1626 /* Now we want just byte and bit offsets, so set the offset alignment
1627 to be a byte and then normalize. */
1628 rli
->offset_align
= BITS_PER_UNIT
;
1629 normalize_rli (rli
);
1631 /* Determine the desired alignment. */
1632 #ifdef ROUND_TYPE_ALIGN
1633 SET_TYPE_ALIGN (rli
->t
, ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1634 rli
->record_align
));
1636 SET_TYPE_ALIGN (rli
->t
, MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
));
1639 /* Compute the size so far. Be sure to allow for extra bits in the
1640 size in bytes. We have guaranteed above that it will be no more
1641 than a single byte. */
1642 unpadded_size
= rli_size_so_far (rli
);
1643 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1644 if (! integer_zerop (rli
->bitpos
))
1646 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1648 /* Round the size up to be a multiple of the required alignment. */
1649 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1650 TYPE_SIZE_UNIT (rli
->t
)
1651 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1653 if (TREE_CONSTANT (unpadded_size
)
1654 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1655 && input_location
!= BUILTINS_LOCATION
)
1656 warning (OPT_Wpadded
, "padding struct size to alignment boundary");
1658 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1659 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1660 && TREE_CONSTANT (unpadded_size
))
1664 #ifdef ROUND_TYPE_ALIGN
1666 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1668 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1671 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1672 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1674 if (TYPE_NAME (rli
->t
))
1678 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1679 name
= TYPE_NAME (rli
->t
);
1681 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1683 if (STRICT_ALIGNMENT
)
1684 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1685 "alignment for %qE", name
);
1687 warning (OPT_Wpacked
,
1688 "packed attribute is unnecessary for %qE", name
);
1692 if (STRICT_ALIGNMENT
)
1693 warning (OPT_Wpacked
,
1694 "packed attribute causes inefficient alignment");
1696 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1702 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1705 compute_record_mode (tree type
)
1708 machine_mode mode
= VOIDmode
;
1710 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1711 However, if possible, we use a mode that fits in a register
1712 instead, in order to allow for better optimization down the
1714 SET_TYPE_MODE (type
, BLKmode
);
1716 if (! tree_fits_uhwi_p (TYPE_SIZE (type
)))
1719 /* A record which has any BLKmode members must itself be
1720 BLKmode; it can't go in a register. Unless the member is
1721 BLKmode only because it isn't aligned. */
1722 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1724 if (TREE_CODE (field
) != FIELD_DECL
)
1727 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1728 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1729 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1730 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1731 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1732 || ! tree_fits_uhwi_p (bit_position (field
))
1733 || DECL_SIZE (field
) == 0
1734 || ! tree_fits_uhwi_p (DECL_SIZE (field
)))
1737 /* If this field is the whole struct, remember its mode so
1738 that, say, we can put a double in a class into a DF
1739 register instead of forcing it to live in the stack. */
1740 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1741 mode
= DECL_MODE (field
);
1743 /* With some targets, it is sub-optimal to access an aligned
1744 BLKmode structure as a scalar. */
1745 if (targetm
.member_type_forces_blk (field
, mode
))
1749 /* If we only have one real field; use its mode if that mode's size
1750 matches the type's size. This only applies to RECORD_TYPE. This
1751 does not apply to unions. */
1752 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
1753 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1754 && GET_MODE_BITSIZE (mode
) == tree_to_uhwi (TYPE_SIZE (type
)))
1757 mode
= mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1).else_blk ();
1759 /* If structure's known alignment is less than what the scalar
1760 mode would need, and it matters, then stick with BLKmode. */
1763 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1764 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (mode
)))
1766 /* If this is the only reason this type is BLKmode, then
1767 don't force containing types to be BLKmode. */
1768 TYPE_NO_FORCE_BLK (type
) = 1;
1772 SET_TYPE_MODE (type
, mode
);
1775 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1779 finalize_type_size (tree type
)
1781 /* Normally, use the alignment corresponding to the mode chosen.
1782 However, where strict alignment is not required, avoid
1783 over-aligning structures, since most compilers do not do this
1785 if (TYPE_MODE (type
) != BLKmode
1786 && TYPE_MODE (type
) != VOIDmode
1787 && (STRICT_ALIGNMENT
|| !AGGREGATE_TYPE_P (type
)))
1789 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1791 /* Don't override a larger alignment requirement coming from a user
1792 alignment of one of the fields. */
1793 if (mode_align
>= TYPE_ALIGN (type
))
1795 SET_TYPE_ALIGN (type
, mode_align
);
1796 TYPE_USER_ALIGN (type
) = 0;
1800 /* Do machine-dependent extra alignment. */
1801 #ifdef ROUND_TYPE_ALIGN
1802 SET_TYPE_ALIGN (type
,
1803 ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
));
1806 /* If we failed to find a simple way to calculate the unit size
1807 of the type, find it by division. */
1808 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1809 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1810 result will fit in sizetype. We will get more efficient code using
1811 sizetype, so we force a conversion. */
1812 TYPE_SIZE_UNIT (type
)
1813 = fold_convert (sizetype
,
1814 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1815 bitsize_unit_node
));
1817 if (TYPE_SIZE (type
) != 0)
1819 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1820 TYPE_SIZE_UNIT (type
)
1821 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
1824 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1825 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1826 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1827 if (TYPE_SIZE_UNIT (type
) != 0
1828 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1829 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1831 /* Also layout any other variants of the type. */
1832 if (TYPE_NEXT_VARIANT (type
)
1833 || type
!= TYPE_MAIN_VARIANT (type
))
1836 /* Record layout info of this variant. */
1837 tree size
= TYPE_SIZE (type
);
1838 tree size_unit
= TYPE_SIZE_UNIT (type
);
1839 unsigned int align
= TYPE_ALIGN (type
);
1840 unsigned int precision
= TYPE_PRECISION (type
);
1841 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1842 machine_mode mode
= TYPE_MODE (type
);
1844 /* Copy it into all variants. */
1845 for (variant
= TYPE_MAIN_VARIANT (type
);
1847 variant
= TYPE_NEXT_VARIANT (variant
))
1849 TYPE_SIZE (variant
) = size
;
1850 TYPE_SIZE_UNIT (variant
) = size_unit
;
1851 unsigned valign
= align
;
1852 if (TYPE_USER_ALIGN (variant
))
1853 valign
= MAX (valign
, TYPE_ALIGN (variant
));
1855 TYPE_USER_ALIGN (variant
) = user_align
;
1856 SET_TYPE_ALIGN (variant
, valign
);
1857 TYPE_PRECISION (variant
) = precision
;
1858 SET_TYPE_MODE (variant
, mode
);
1863 /* Return a new underlying object for a bitfield started with FIELD. */
1866 start_bitfield_representative (tree field
)
1868 tree repr
= make_node (FIELD_DECL
);
1869 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
1870 /* Force the representative to begin at a BITS_PER_UNIT aligned
1871 boundary - C++ may use tail-padding of a base object to
1872 continue packing bits so the bitfield region does not start
1873 at bit zero (see g++.dg/abi/bitfield5.C for example).
1874 Unallocated bits may happen for other reasons as well,
1875 for example Ada which allows explicit bit-granular structure layout. */
1876 DECL_FIELD_BIT_OFFSET (repr
)
1877 = size_binop (BIT_AND_EXPR
,
1878 DECL_FIELD_BIT_OFFSET (field
),
1879 bitsize_int (~(BITS_PER_UNIT
- 1)));
1880 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
1881 DECL_SIZE (repr
) = DECL_SIZE (field
);
1882 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
1883 DECL_PACKED (repr
) = DECL_PACKED (field
);
1884 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
1885 /* There are no indirect accesses to this field. If we introduce
1886 some then they have to use the record alias set. This makes
1887 sure to properly conflict with [indirect] accesses to addressable
1888 fields of the bitfield group. */
1889 DECL_NONADDRESSABLE_P (repr
) = 1;
1893 /* Finish up a bitfield group that was started by creating the underlying
1894 object REPR with the last field in the bitfield group FIELD. */
1897 finish_bitfield_representative (tree repr
, tree field
)
1899 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
1902 size
= size_diffop (DECL_FIELD_OFFSET (field
),
1903 DECL_FIELD_OFFSET (repr
));
1904 while (TREE_CODE (size
) == COMPOUND_EXPR
)
1905 size
= TREE_OPERAND (size
, 1);
1906 gcc_assert (tree_fits_uhwi_p (size
));
1907 bitsize
= (tree_to_uhwi (size
) * BITS_PER_UNIT
1908 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1909 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
))
1910 + tree_to_uhwi (DECL_SIZE (field
)));
1912 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1913 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1915 /* Now nothing tells us how to pad out bitsize ... */
1916 nextf
= DECL_CHAIN (field
);
1917 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
1918 nextf
= DECL_CHAIN (nextf
);
1922 /* If there was an error, the field may be not laid out
1923 correctly. Don't bother to do anything. */
1924 if (TREE_TYPE (nextf
) == error_mark_node
)
1926 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
1927 DECL_FIELD_OFFSET (repr
));
1928 if (tree_fits_uhwi_p (maxsize
))
1930 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1931 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf
))
1932 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1933 /* If the group ends within a bitfield nextf does not need to be
1934 aligned to BITS_PER_UNIT. Thus round up. */
1935 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1938 maxbitsize
= bitsize
;
1942 /* Note that if the C++ FE sets up tail-padding to be re-used it
1943 creates a as-base variant of the type with TYPE_SIZE adjusted
1944 accordingly. So it is safe to include tail-padding here. */
1945 tree aggsize
= lang_hooks
.types
.unit_size_without_reusable_padding
1946 (DECL_CONTEXT (field
));
1947 tree maxsize
= size_diffop (aggsize
, DECL_FIELD_OFFSET (repr
));
1948 /* We cannot generally rely on maxsize to fold to an integer constant,
1949 so use bitsize as fallback for this case. */
1950 if (tree_fits_uhwi_p (maxsize
))
1951 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1952 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1954 maxbitsize
= bitsize
;
1957 /* Only if we don't artificially break up the representative in
1958 the middle of a large bitfield with different possibly
1959 overlapping representatives. And all representatives start
1961 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
1963 /* Find the smallest nice mode to use. */
1964 opt_scalar_int_mode mode_iter
;
1965 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
1966 if (GET_MODE_BITSIZE (mode_iter
.require ()) >= bitsize
)
1969 scalar_int_mode mode
;
1970 if (!mode_iter
.exists (&mode
)
1971 || GET_MODE_BITSIZE (mode
) > maxbitsize
1972 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
)
1974 /* We really want a BLKmode representative only as a last resort,
1975 considering the member b in
1976 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1977 Otherwise we simply want to split the representative up
1978 allowing for overlaps within the bitfield region as required for
1979 struct { int a : 7; int b : 7;
1980 int c : 10; int d; } __attribute__((packed));
1981 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1982 DECL_SIZE (repr
) = bitsize_int (bitsize
);
1983 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
1984 SET_DECL_MODE (repr
, BLKmode
);
1985 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
1986 bitsize
/ BITS_PER_UNIT
);
1990 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
1991 DECL_SIZE (repr
) = bitsize_int (modesize
);
1992 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
1993 SET_DECL_MODE (repr
, mode
);
1994 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
1997 /* Remember whether the bitfield group is at the end of the
1998 structure or not. */
1999 DECL_CHAIN (repr
) = nextf
;
2002 /* Compute and set FIELD_DECLs for the underlying objects we should
2003 use for bitfield access for the structure T. */
2006 finish_bitfield_layout (tree t
)
2009 tree repr
= NULL_TREE
;
2011 /* Unions would be special, for the ease of type-punning optimizations
2012 we could use the underlying type as hint for the representative
2013 if the bitfield would fit and the representative would not exceed
2014 the union in size. */
2015 if (TREE_CODE (t
) != RECORD_TYPE
)
2018 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (t
);
2019 field
; field
= DECL_CHAIN (field
))
2021 if (TREE_CODE (field
) != FIELD_DECL
)
2024 /* In the C++ memory model, consecutive bit fields in a structure are
2025 considered one memory location and updating a memory location
2026 may not store into adjacent memory locations. */
2028 && DECL_BIT_FIELD_TYPE (field
))
2030 /* Start new representative. */
2031 repr
= start_bitfield_representative (field
);
2034 && ! DECL_BIT_FIELD_TYPE (field
))
2036 /* Finish off new representative. */
2037 finish_bitfield_representative (repr
, prev
);
2040 else if (DECL_BIT_FIELD_TYPE (field
))
2042 gcc_assert (repr
!= NULL_TREE
);
2044 /* Zero-size bitfields finish off a representative and
2045 do not have a representative themselves. This is
2046 required by the C++ memory model. */
2047 if (integer_zerop (DECL_SIZE (field
)))
2049 finish_bitfield_representative (repr
, prev
);
2053 /* We assume that either DECL_FIELD_OFFSET of the representative
2054 and each bitfield member is a constant or they are equal.
2055 This is because we need to be able to compute the bit-offset
2056 of each field relative to the representative in get_bit_range
2057 during RTL expansion.
2058 If these constraints are not met, simply force a new
2059 representative to be generated. That will at most
2060 generate worse code but still maintain correctness with
2061 respect to the C++ memory model. */
2062 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
))
2063 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
2064 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
2065 DECL_FIELD_OFFSET (field
), 0)))
2067 finish_bitfield_representative (repr
, prev
);
2068 repr
= start_bitfield_representative (field
);
2075 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
2081 finish_bitfield_representative (repr
, prev
);
2084 /* Do all of the work required to layout the type indicated by RLI,
2085 once the fields have been laid out. This function will call `free'
2086 for RLI, unless FREE_P is false. Passing a value other than false
2087 for FREE_P is bad practice; this option only exists to support the
2091 finish_record_layout (record_layout_info rli
, int free_p
)
2095 /* Compute the final size. */
2096 finalize_record_size (rli
);
2098 /* Compute the TYPE_MODE for the record. */
2099 compute_record_mode (rli
->t
);
2101 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2102 finalize_type_size (rli
->t
);
2104 /* Compute bitfield representatives. */
2105 finish_bitfield_layout (rli
->t
);
2107 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2108 With C++ templates, it is too early to do this when the attribute
2110 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
2111 variant
= TYPE_NEXT_VARIANT (variant
))
2113 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
2114 TYPE_REVERSE_STORAGE_ORDER (variant
)
2115 = TYPE_REVERSE_STORAGE_ORDER (rli
->t
);
2118 /* Lay out any static members. This is done now because their type
2119 may use the record's type. */
2120 while (!vec_safe_is_empty (rli
->pending_statics
))
2121 layout_decl (rli
->pending_statics
->pop (), 0);
2126 vec_free (rli
->pending_statics
);
2132 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2133 NAME, its fields are chained in reverse on FIELDS.
2135 If ALIGN_TYPE is non-null, it is given the same alignment as
2139 finish_builtin_struct (tree type
, const char *name
, tree fields
,
2144 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
2146 DECL_FIELD_CONTEXT (fields
) = type
;
2147 next
= DECL_CHAIN (fields
);
2148 DECL_CHAIN (fields
) = tail
;
2150 TYPE_FIELDS (type
) = tail
;
2154 SET_TYPE_ALIGN (type
, TYPE_ALIGN (align_type
));
2155 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2156 SET_TYPE_WARN_IF_NOT_ALIGN (type
,
2157 TYPE_WARN_IF_NOT_ALIGN (align_type
));
2161 #if 0 /* not yet, should get fixed properly later */
2162 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2164 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2165 TYPE_DECL
, get_identifier (name
), type
);
2167 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2168 layout_decl (TYPE_NAME (type
), 0);
2171 /* Calculate the mode, size, and alignment for TYPE.
2172 For an array type, calculate the element separation as well.
2173 Record TYPE on the chain of permanent or temporary types
2174 so that dbxout will find out about it.
2176 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2177 layout_type does nothing on such a type.
2179 If the type is incomplete, its TYPE_SIZE remains zero. */
2182 layout_type (tree type
)
2186 if (type
== error_mark_node
)
2189 /* We don't want finalize_type_size to copy an alignment attribute to
2190 variants that don't have it. */
2191 type
= TYPE_MAIN_VARIANT (type
);
2193 /* Do nothing if type has been laid out before. */
2194 if (TYPE_SIZE (type
))
2197 switch (TREE_CODE (type
))
2200 /* This kind of type is the responsibility
2201 of the language-specific code. */
2208 scalar_int_mode mode
2209 = smallest_int_mode_for_size (TYPE_PRECISION (type
));
2210 SET_TYPE_MODE (type
, mode
);
2211 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2212 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2213 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2219 /* Allow the caller to choose the type mode, which is how decimal
2220 floats are distinguished from binary ones. */
2221 if (TYPE_MODE (type
) == VOIDmode
)
2223 (type
, float_mode_for_size (TYPE_PRECISION (type
)).require ());
2224 scalar_float_mode mode
= as_a
<scalar_float_mode
> (TYPE_MODE (type
));
2225 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2226 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2230 case FIXED_POINT_TYPE
:
2232 /* TYPE_MODE (type) has been set already. */
2233 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
2234 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2235 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2240 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2241 SET_TYPE_MODE (type
,
2242 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type
))));
2244 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2245 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2250 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
2251 tree innertype
= TREE_TYPE (type
);
2253 gcc_assert (!(nunits
& (nunits
- 1)));
2255 /* Find an appropriate mode for the vector type. */
2256 if (TYPE_MODE (type
) == VOIDmode
)
2257 SET_TYPE_MODE (type
,
2258 mode_for_vector (SCALAR_TYPE_MODE (innertype
),
2259 nunits
).else_blk ());
2261 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2262 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2263 /* Several boolean vector elements may fit in a single unit. */
2264 if (VECTOR_BOOLEAN_TYPE_P (type
)
2265 && type
->type_common
.mode
!= BLKmode
)
2266 TYPE_SIZE_UNIT (type
)
2267 = size_int (GET_MODE_SIZE (type
->type_common
.mode
));
2269 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2270 TYPE_SIZE_UNIT (innertype
),
2272 TYPE_SIZE (type
) = int_const_binop (MULT_EXPR
,
2273 TYPE_SIZE (innertype
),
2274 bitsize_int (nunits
));
2276 /* For vector types, we do not default to the mode's alignment.
2277 Instead, query a target hook, defaulting to natural alignment.
2278 This prevents ABI changes depending on whether or not native
2279 vector modes are supported. */
2280 SET_TYPE_ALIGN (type
, targetm
.vector_alignment (type
));
2282 /* However, if the underlying mode requires a bigger alignment than
2283 what the target hook provides, we cannot use the mode. For now,
2284 simply reject that case. */
2285 gcc_assert (TYPE_ALIGN (type
)
2286 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2291 /* This is an incomplete type and so doesn't have a size. */
2292 SET_TYPE_ALIGN (type
, 1);
2293 TYPE_USER_ALIGN (type
) = 0;
2294 SET_TYPE_MODE (type
, VOIDmode
);
2297 case POINTER_BOUNDS_TYPE
:
2298 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2299 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2303 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2304 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE_UNITS
);
2305 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2306 integral, which may be an __intN. */
2307 SET_TYPE_MODE (type
, int_mode_for_size (POINTER_SIZE
, 0).require ());
2308 TYPE_PRECISION (type
) = POINTER_SIZE
;
2313 /* It's hard to see what the mode and size of a function ought to
2314 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2315 make it consistent with that. */
2316 SET_TYPE_MODE (type
,
2317 int_mode_for_size (FUNCTION_BOUNDARY
, 0).else_blk ());
2318 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2319 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2323 case REFERENCE_TYPE
:
2325 scalar_int_mode mode
= SCALAR_INT_TYPE_MODE (type
);
2326 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2327 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2328 TYPE_UNSIGNED (type
) = 1;
2329 TYPE_PRECISION (type
) = GET_MODE_PRECISION (mode
);
2335 tree index
= TYPE_DOMAIN (type
);
2336 tree element
= TREE_TYPE (type
);
2338 /* We need to know both bounds in order to compute the size. */
2339 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2340 && TYPE_SIZE (element
))
2342 tree ub
= TYPE_MAX_VALUE (index
);
2343 tree lb
= TYPE_MIN_VALUE (index
);
2344 tree element_size
= TYPE_SIZE (element
);
2347 /* Make sure that an array of zero-sized element is zero-sized
2348 regardless of its extent. */
2349 if (integer_zerop (element_size
))
2350 length
= size_zero_node
;
2352 /* The computation should happen in the original signedness so
2353 that (possible) negative values are handled appropriately
2354 when determining overflow. */
2357 /* ??? When it is obvious that the range is signed
2358 represent it using ssizetype. */
2359 if (TREE_CODE (lb
) == INTEGER_CST
2360 && TREE_CODE (ub
) == INTEGER_CST
2361 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2362 && tree_int_cst_lt (ub
, lb
))
2364 lb
= wide_int_to_tree (ssizetype
,
2365 offset_int::from (wi::to_wide (lb
),
2367 ub
= wide_int_to_tree (ssizetype
,
2368 offset_int::from (wi::to_wide (ub
),
2372 = fold_convert (sizetype
,
2373 size_binop (PLUS_EXPR
,
2374 build_int_cst (TREE_TYPE (lb
), 1),
2375 size_binop (MINUS_EXPR
, ub
, lb
)));
2378 /* ??? We have no way to distinguish a null-sized array from an
2379 array spanning the whole sizetype range, so we arbitrarily
2380 decide that [0, -1] is the only valid representation. */
2381 if (integer_zerop (length
)
2382 && TREE_OVERFLOW (length
)
2383 && integer_zerop (lb
))
2384 length
= size_zero_node
;
2386 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2387 fold_convert (bitsizetype
,
2390 /* If we know the size of the element, calculate the total size
2391 directly, rather than do some division thing below. This
2392 optimization helps Fortran assumed-size arrays (where the
2393 size of the array is determined at runtime) substantially. */
2394 if (TYPE_SIZE_UNIT (element
))
2395 TYPE_SIZE_UNIT (type
)
2396 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2399 /* Now round the alignment and size,
2400 using machine-dependent criteria if any. */
2402 unsigned align
= TYPE_ALIGN (element
);
2403 if (TYPE_USER_ALIGN (type
))
2404 align
= MAX (align
, TYPE_ALIGN (type
));
2406 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2407 if (!TYPE_WARN_IF_NOT_ALIGN (type
))
2408 SET_TYPE_WARN_IF_NOT_ALIGN (type
,
2409 TYPE_WARN_IF_NOT_ALIGN (element
));
2410 #ifdef ROUND_TYPE_ALIGN
2411 align
= ROUND_TYPE_ALIGN (type
, align
, BITS_PER_UNIT
);
2413 align
= MAX (align
, BITS_PER_UNIT
);
2415 SET_TYPE_ALIGN (type
, align
);
2416 SET_TYPE_MODE (type
, BLKmode
);
2417 if (TYPE_SIZE (type
) != 0
2418 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2419 /* BLKmode elements force BLKmode aggregate;
2420 else extract/store fields may lose. */
2421 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2422 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2424 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2426 if (TYPE_MODE (type
) != BLKmode
2427 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2428 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2430 TYPE_NO_FORCE_BLK (type
) = 1;
2431 SET_TYPE_MODE (type
, BLKmode
);
2434 if (AGGREGATE_TYPE_P (element
))
2435 TYPE_TYPELESS_STORAGE (type
) = TYPE_TYPELESS_STORAGE (element
);
2436 /* When the element size is constant, check that it is at least as
2437 large as the element alignment. */
2438 if (TYPE_SIZE_UNIT (element
)
2439 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2440 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2442 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2443 && !integer_zerop (TYPE_SIZE_UNIT (element
))
2444 && compare_tree_int (TYPE_SIZE_UNIT (element
),
2445 TYPE_ALIGN_UNIT (element
)) < 0)
2446 error ("alignment of array elements is greater than element size");
2452 case QUAL_UNION_TYPE
:
2455 record_layout_info rli
;
2457 /* Initialize the layout information. */
2458 rli
= start_record_layout (type
);
2460 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2461 in the reverse order in building the COND_EXPR that denotes
2462 its size. We reverse them again later. */
2463 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2464 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2466 /* Place all the fields. */
2467 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2468 place_field (rli
, field
);
2470 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2471 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2473 /* Finish laying out the record. */
2474 finish_record_layout (rli
, /*free_p=*/true);
2482 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2483 records and unions, finish_record_layout already called this
2485 if (!RECORD_OR_UNION_TYPE_P (type
))
2486 finalize_type_size (type
);
2488 /* We should never see alias sets on incomplete aggregates. And we
2489 should not call layout_type on not incomplete aggregates. */
2490 if (AGGREGATE_TYPE_P (type
))
2491 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2494 /* Return the least alignment required for type TYPE. */
2497 min_align_of_type (tree type
)
2499 unsigned int align
= TYPE_ALIGN (type
);
2500 if (!TYPE_USER_ALIGN (type
))
2502 align
= MIN (align
, BIGGEST_ALIGNMENT
);
2503 #ifdef BIGGEST_FIELD_ALIGNMENT
2504 align
= MIN (align
, BIGGEST_FIELD_ALIGNMENT
);
2506 unsigned int field_align
= align
;
2507 #ifdef ADJUST_FIELD_ALIGN
2508 field_align
= ADJUST_FIELD_ALIGN (NULL_TREE
, type
, field_align
);
2510 align
= MIN (align
, field_align
);
2512 return align
/ BITS_PER_UNIT
;
2515 /* Create and return a type for signed integers of PRECISION bits. */
2518 make_signed_type (int precision
)
2520 tree type
= make_node (INTEGER_TYPE
);
2522 TYPE_PRECISION (type
) = precision
;
2524 fixup_signed_type (type
);
2528 /* Create and return a type for unsigned integers of PRECISION bits. */
2531 make_unsigned_type (int precision
)
2533 tree type
= make_node (INTEGER_TYPE
);
2535 TYPE_PRECISION (type
) = precision
;
2537 fixup_unsigned_type (type
);
2541 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2545 make_fract_type (int precision
, int unsignedp
, int satp
)
2547 tree type
= make_node (FIXED_POINT_TYPE
);
2549 TYPE_PRECISION (type
) = precision
;
2552 TYPE_SATURATING (type
) = 1;
2554 /* Lay out the type: set its alignment, size, etc. */
2555 TYPE_UNSIGNED (type
) = unsignedp
;
2556 enum mode_class mclass
= unsignedp
? MODE_UFRACT
: MODE_FRACT
;
2557 SET_TYPE_MODE (type
, mode_for_size (precision
, mclass
, 0).require ());
2563 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2567 make_accum_type (int precision
, int unsignedp
, int satp
)
2569 tree type
= make_node (FIXED_POINT_TYPE
);
2571 TYPE_PRECISION (type
) = precision
;
2574 TYPE_SATURATING (type
) = 1;
2576 /* Lay out the type: set its alignment, size, etc. */
2577 TYPE_UNSIGNED (type
) = unsignedp
;
2578 enum mode_class mclass
= unsignedp
? MODE_UACCUM
: MODE_ACCUM
;
2579 SET_TYPE_MODE (type
, mode_for_size (precision
, mclass
, 0).require ());
2585 /* Initialize sizetypes so layout_type can use them. */
2588 initialize_sizetypes (void)
2590 int precision
, bprecision
;
2592 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2593 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2594 precision
= INT_TYPE_SIZE
;
2595 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2596 precision
= LONG_TYPE_SIZE
;
2597 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2598 precision
= LONG_LONG_TYPE_SIZE
;
2599 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2600 precision
= SHORT_TYPE_SIZE
;
2606 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
2607 if (int_n_enabled_p
[i
])
2610 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
2612 if (strcmp (name
, SIZETYPE
) == 0)
2614 precision
= int_n_data
[i
].bitsize
;
2617 if (precision
== -1)
2622 = MIN (precision
+ LOG2_BITS_PER_UNIT
+ 1, MAX_FIXED_MODE_SIZE
);
2623 bprecision
= GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision
));
2624 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2625 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2627 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2628 sizetype
= make_node (INTEGER_TYPE
);
2629 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2630 TYPE_PRECISION (sizetype
) = precision
;
2631 TYPE_UNSIGNED (sizetype
) = 1;
2632 bitsizetype
= make_node (INTEGER_TYPE
);
2633 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2634 TYPE_PRECISION (bitsizetype
) = bprecision
;
2635 TYPE_UNSIGNED (bitsizetype
) = 1;
2637 /* Now layout both types manually. */
2638 scalar_int_mode mode
= smallest_int_mode_for_size (precision
);
2639 SET_TYPE_MODE (sizetype
, mode
);
2640 SET_TYPE_ALIGN (sizetype
, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
)));
2641 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2642 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (mode
));
2643 set_min_and_max_values_for_integral_type (sizetype
, precision
, UNSIGNED
);
2645 mode
= smallest_int_mode_for_size (bprecision
);
2646 SET_TYPE_MODE (bitsizetype
, mode
);
2647 SET_TYPE_ALIGN (bitsizetype
, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
)));
2648 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2649 TYPE_SIZE_UNIT (bitsizetype
) = size_int (GET_MODE_SIZE (mode
));
2650 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
, UNSIGNED
);
2652 /* Create the signed variants of *sizetype. */
2653 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2654 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2655 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2656 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2659 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2660 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2661 for TYPE, based on the PRECISION and whether or not the TYPE
2662 IS_UNSIGNED. PRECISION need not correspond to a width supported
2663 natively by the hardware; for example, on a machine with 8-bit,
2664 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2668 set_min_and_max_values_for_integral_type (tree type
,
2672 /* For bitfields with zero width we end up creating integer types
2673 with zero precision. Don't assign any minimum/maximum values
2674 to those types, they don't have any valid value. */
2678 TYPE_MIN_VALUE (type
)
2679 = wide_int_to_tree (type
, wi::min_value (precision
, sgn
));
2680 TYPE_MAX_VALUE (type
)
2681 = wide_int_to_tree (type
, wi::max_value (precision
, sgn
));
2684 /* Set the extreme values of TYPE based on its precision in bits,
2685 then lay it out. Used when make_signed_type won't do
2686 because the tree code is not INTEGER_TYPE. */
2689 fixup_signed_type (tree type
)
2691 int precision
= TYPE_PRECISION (type
);
2693 set_min_and_max_values_for_integral_type (type
, precision
, SIGNED
);
2695 /* Lay out the type: set its alignment, size, etc. */
2699 /* Set the extreme values of TYPE based on its precision in bits,
2700 then lay it out. This is used both in `make_unsigned_type'
2701 and for enumeral types. */
2704 fixup_unsigned_type (tree type
)
2706 int precision
= TYPE_PRECISION (type
);
2708 TYPE_UNSIGNED (type
) = 1;
2710 set_min_and_max_values_for_integral_type (type
, precision
, UNSIGNED
);
2712 /* Lay out the type: set its alignment, size, etc. */
2716 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2719 BITREGION_START is the bit position of the first bit in this
2720 sequence of bit fields. BITREGION_END is the last bit in this
2721 sequence. If these two fields are non-zero, we should restrict the
2722 memory access to that range. Otherwise, we are allowed to touch
2723 any adjacent non bit-fields.
2725 ALIGN is the alignment of the underlying object in bits.
2726 VOLATILEP says whether the bitfield is volatile. */
2728 bit_field_mode_iterator
2729 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2730 HOST_WIDE_INT bitregion_start
,
2731 HOST_WIDE_INT bitregion_end
,
2732 unsigned int align
, bool volatilep
)
2733 : m_mode (NARROWEST_INT_MODE
), m_bitsize (bitsize
),
2734 m_bitpos (bitpos
), m_bitregion_start (bitregion_start
),
2735 m_bitregion_end (bitregion_end
), m_align (align
),
2736 m_volatilep (volatilep
), m_count (0)
2738 if (!m_bitregion_end
)
2740 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2741 the bitfield is mapped and won't trap, provided that ALIGN isn't
2742 too large. The cap is the biggest required alignment for data,
2743 or at least the word size. And force one such chunk at least. */
2744 unsigned HOST_WIDE_INT units
2745 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
2748 m_bitregion_end
= bitpos
+ bitsize
+ units
- 1;
2749 m_bitregion_end
-= m_bitregion_end
% units
+ 1;
2753 /* Calls to this function return successively larger modes that can be used
2754 to represent the bitfield. Return true if another bitfield mode is
2755 available, storing it in *OUT_MODE if so. */
2758 bit_field_mode_iterator::next_mode (scalar_int_mode
*out_mode
)
2760 scalar_int_mode mode
;
2761 for (; m_mode
.exists (&mode
); m_mode
= GET_MODE_WIDER_MODE (mode
))
2763 unsigned int unit
= GET_MODE_BITSIZE (mode
);
2765 /* Skip modes that don't have full precision. */
2766 if (unit
!= GET_MODE_PRECISION (mode
))
2769 /* Stop if the mode is too wide to handle efficiently. */
2770 if (unit
> MAX_FIXED_MODE_SIZE
)
2773 /* Don't deliver more than one multiword mode; the smallest one
2775 if (m_count
> 0 && unit
> BITS_PER_WORD
)
2778 /* Skip modes that are too small. */
2779 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) m_bitpos
% unit
;
2780 unsigned HOST_WIDE_INT subend
= substart
+ m_bitsize
;
2784 /* Stop if the mode goes outside the bitregion. */
2785 HOST_WIDE_INT start
= m_bitpos
- substart
;
2786 if (m_bitregion_start
&& start
< m_bitregion_start
)
2788 HOST_WIDE_INT end
= start
+ unit
;
2789 if (end
> m_bitregion_end
+ 1)
2792 /* Stop if the mode requires too much alignment. */
2793 if (GET_MODE_ALIGNMENT (mode
) > m_align
2794 && targetm
.slow_unaligned_access (mode
, m_align
))
2798 m_mode
= GET_MODE_WIDER_MODE (mode
);
2805 /* Return true if smaller modes are generally preferred for this kind
2809 bit_field_mode_iterator::prefer_smaller_modes ()
2812 ? targetm
.narrow_volatile_bitfield ()
2813 : !SLOW_BYTE_ACCESS
);
2816 /* Find the best machine mode to use when referencing a bit field of length
2817 BITSIZE bits starting at BITPOS.
2819 BITREGION_START is the bit position of the first bit in this
2820 sequence of bit fields. BITREGION_END is the last bit in this
2821 sequence. If these two fields are non-zero, we should restrict the
2822 memory access to that range. Otherwise, we are allowed to touch
2823 any adjacent non bit-fields.
2825 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2826 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2827 doesn't want to apply a specific limit.
2829 If no mode meets all these conditions, we return VOIDmode.
2831 The underlying object is known to be aligned to a boundary of ALIGN bits.
2833 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2834 smallest mode meeting these conditions.
2836 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2837 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2840 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2841 decide which of the above modes should be used. */
2844 get_best_mode (int bitsize
, int bitpos
,
2845 unsigned HOST_WIDE_INT bitregion_start
,
2846 unsigned HOST_WIDE_INT bitregion_end
,
2848 unsigned HOST_WIDE_INT largest_mode_bitsize
, bool volatilep
,
2849 scalar_int_mode
*best_mode
)
2851 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
2852 bitregion_end
, align
, volatilep
);
2853 scalar_int_mode mode
;
2855 while (iter
.next_mode (&mode
)
2856 /* ??? For historical reasons, reject modes that would normally
2857 receive greater alignment, even if unaligned accesses are
2858 acceptable. This has both advantages and disadvantages.
2859 Removing this check means that something like:
2861 struct s { unsigned int x; unsigned int y; };
2862 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2864 can be implemented using a single load and compare on
2865 64-bit machines that have no alignment restrictions.
2866 For example, on powerpc64-linux-gnu, we would generate:
2888 However, accessing more than one field can make life harder
2889 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2890 has a series of unsigned short copies followed by a series of
2891 unsigned short comparisons. With this check, both the copies
2892 and comparisons remain 16-bit accesses and FRE is able
2893 to eliminate the latter. Without the check, the comparisons
2894 can be done using 2 64-bit operations, which FRE isn't able
2895 to handle in the same way.
2897 Either way, it would probably be worth disabling this check
2898 during expand. One particular example where removing the
2899 check would help is the get_best_mode call in store_bit_field.
2900 If we are given a memory bitregion of 128 bits that is aligned
2901 to a 64-bit boundary, and the bitfield we want to modify is
2902 in the second half of the bitregion, this check causes
2903 store_bitfield to turn the memory into a 64-bit reference
2904 to the _first_ half of the region. We later use
2905 adjust_bitfield_address to get a reference to the correct half,
2906 but doing so looks to adjust_bitfield_address as though we are
2907 moving past the end of the original object, so it drops the
2908 associated MEM_EXPR and MEM_OFFSET. Removing the check
2909 causes store_bit_field to keep a 128-bit memory reference,
2910 so that the final bitfield reference still has a MEM_EXPR
2912 && GET_MODE_ALIGNMENT (mode
) <= align
2913 && GET_MODE_BITSIZE (mode
) <= largest_mode_bitsize
)
2917 if (iter
.prefer_smaller_modes ())
2924 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2925 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2928 get_mode_bounds (scalar_int_mode mode
, int sign
,
2929 scalar_int_mode target_mode
,
2930 rtx
*mmin
, rtx
*mmax
)
2932 unsigned size
= GET_MODE_PRECISION (mode
);
2933 unsigned HOST_WIDE_INT min_val
, max_val
;
2935 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
2937 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2940 if (STORE_FLAG_VALUE
< 0)
2942 min_val
= STORE_FLAG_VALUE
;
2948 max_val
= STORE_FLAG_VALUE
;
2953 min_val
= -(HOST_WIDE_INT_1U
<< (size
- 1));
2954 max_val
= (HOST_WIDE_INT_1U
<< (size
- 1)) - 1;
2959 max_val
= (HOST_WIDE_INT_1U
<< (size
- 1) << 1) - 1;
2962 *mmin
= gen_int_mode (min_val
, target_mode
);
2963 *mmax
= gen_int_mode (max_val
, target_mode
);
2966 #include "gt-stor-layout.h"