1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
82 #include "stringpool.h"
85 /* Nonzero if we are folding constants inside an initializer; zero
87 int folding_initializer
= 0;
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code
{
111 static bool negate_expr_p (tree
);
112 static tree
negate_expr (tree
);
113 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
114 static enum comparison_code
comparison_to_compcode (enum tree_code
);
115 static enum tree_code
compcode_to_comparison (enum comparison_code
);
116 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
117 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
118 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
120 static int simple_operand_p (const_tree
);
121 static bool simple_operand_p_2 (tree
);
122 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
123 static tree
range_predecessor (tree
);
124 static tree
range_successor (tree
);
125 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
126 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
127 static tree
unextend (tree
, int, int, tree
);
128 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
129 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
130 static tree
fold_binary_op_with_conditional_arg (location_t
,
131 enum tree_code
, tree
,
134 static tree
fold_negate_const (tree
, tree
);
135 static tree
fold_not_const (const_tree
, tree
);
136 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
137 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
138 static tree
fold_view_convert_expr (tree
, tree
);
139 static tree
fold_negate_expr (location_t
, tree
);
142 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
143 Otherwise, return LOC. */
146 expr_location_or (tree t
, location_t loc
)
148 location_t tloc
= EXPR_LOCATION (t
);
149 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
152 /* Similar to protected_set_expr_location, but never modify x in place,
153 if location can and needs to be set, unshare it. */
156 protected_set_expr_location_unshare (tree x
, location_t loc
)
158 if (CAN_HAVE_LOCATION_P (x
)
159 && EXPR_LOCATION (x
) != loc
160 && !(TREE_CODE (x
) == SAVE_EXPR
161 || TREE_CODE (x
) == TARGET_EXPR
162 || TREE_CODE (x
) == BIND_EXPR
))
165 SET_EXPR_LOCATION (x
, loc
);
170 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
171 division and returns the quotient. Otherwise returns
175 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
179 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
181 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
186 /* This is nonzero if we should defer warnings about undefined
187 overflow. This facility exists because these warnings are a
188 special case. The code to estimate loop iterations does not want
189 to issue any warnings, since it works with expressions which do not
190 occur in user code. Various bits of cleanup code call fold(), but
191 only use the result if it has certain characteristics (e.g., is a
192 constant); that code only wants to issue a warning if the result is
195 static int fold_deferring_overflow_warnings
;
197 /* If a warning about undefined overflow is deferred, this is the
198 warning. Note that this may cause us to turn two warnings into
199 one, but that is fine since it is sufficient to only give one
200 warning per expression. */
202 static const char* fold_deferred_overflow_warning
;
204 /* If a warning about undefined overflow is deferred, this is the
205 level at which the warning should be emitted. */
207 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
209 /* Start deferring overflow warnings. We could use a stack here to
210 permit nested calls, but at present it is not necessary. */
213 fold_defer_overflow_warnings (void)
215 ++fold_deferring_overflow_warnings
;
218 /* Stop deferring overflow warnings. If there is a pending warning,
219 and ISSUE is true, then issue the warning if appropriate. STMT is
220 the statement with which the warning should be associated (used for
221 location information); STMT may be NULL. CODE is the level of the
222 warning--a warn_strict_overflow_code value. This function will use
223 the smaller of CODE and the deferred code when deciding whether to
224 issue the warning. CODE may be zero to mean to always use the
228 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
233 gcc_assert (fold_deferring_overflow_warnings
> 0);
234 --fold_deferring_overflow_warnings
;
235 if (fold_deferring_overflow_warnings
> 0)
237 if (fold_deferred_overflow_warning
!= NULL
239 && code
< (int) fold_deferred_overflow_code
)
240 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
244 warnmsg
= fold_deferred_overflow_warning
;
245 fold_deferred_overflow_warning
= NULL
;
247 if (!issue
|| warnmsg
== NULL
)
250 if (gimple_no_warning_p (stmt
))
253 /* Use the smallest code level when deciding to issue the
255 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
256 code
= fold_deferred_overflow_code
;
258 if (!issue_strict_overflow_warning (code
))
262 locus
= input_location
;
264 locus
= gimple_location (stmt
);
265 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
268 /* Stop deferring overflow warnings, ignoring any deferred
272 fold_undefer_and_ignore_overflow_warnings (void)
274 fold_undefer_overflow_warnings (false, NULL
, 0);
277 /* Whether we are deferring overflow warnings. */
280 fold_deferring_overflow_warnings_p (void)
282 return fold_deferring_overflow_warnings
> 0;
285 /* This is called when we fold something based on the fact that signed
286 overflow is undefined. */
289 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
291 if (fold_deferring_overflow_warnings
> 0)
293 if (fold_deferred_overflow_warning
== NULL
294 || wc
< fold_deferred_overflow_code
)
296 fold_deferred_overflow_warning
= gmsgid
;
297 fold_deferred_overflow_code
= wc
;
300 else if (issue_strict_overflow_warning (wc
))
301 warning (OPT_Wstrict_overflow
, gmsgid
);
304 /* Return true if the built-in mathematical function specified by CODE
305 is odd, i.e. -f(x) == f(-x). */
308 negate_mathfn_p (combined_fn fn
)
341 return !flag_rounding_math
;
349 /* Check whether we may negate an integer constant T without causing
353 may_negate_without_overflow_p (const_tree t
)
357 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
359 type
= TREE_TYPE (t
);
360 if (TYPE_UNSIGNED (type
))
363 return !wi::only_sign_bit_p (wi::to_wide (t
));
366 /* Determine whether an expression T can be cheaply negated using
367 the function negate_expr without introducing undefined overflow. */
370 negate_expr_p (tree t
)
377 type
= TREE_TYPE (t
);
380 switch (TREE_CODE (t
))
383 if (INTEGRAL_TYPE_P (type
) && TYPE_UNSIGNED (type
))
386 /* Check that -CST will not overflow type. */
387 return may_negate_without_overflow_p (t
);
389 return (INTEGRAL_TYPE_P (type
)
390 && TYPE_OVERFLOW_WRAPS (type
));
396 return !TYPE_OVERFLOW_SANITIZED (type
);
399 /* We want to canonicalize to positive real constants. Pretend
400 that only negative ones can be easily negated. */
401 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
404 return negate_expr_p (TREE_REALPART (t
))
405 && negate_expr_p (TREE_IMAGPART (t
));
409 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
412 int count
= VECTOR_CST_NELTS (t
), i
;
414 for (i
= 0; i
< count
; i
++)
415 if (!negate_expr_p (VECTOR_CST_ELT (t
, i
)))
422 return negate_expr_p (TREE_OPERAND (t
, 0))
423 && negate_expr_p (TREE_OPERAND (t
, 1));
426 return negate_expr_p (TREE_OPERAND (t
, 0));
429 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
430 || HONOR_SIGNED_ZEROS (element_mode (type
))
431 || (INTEGRAL_TYPE_P (type
)
432 && ! TYPE_OVERFLOW_WRAPS (type
)))
434 /* -(A + B) -> (-B) - A. */
435 if (negate_expr_p (TREE_OPERAND (t
, 1)))
437 /* -(A + B) -> (-A) - B. */
438 return negate_expr_p (TREE_OPERAND (t
, 0));
441 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
442 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
443 && !HONOR_SIGNED_ZEROS (element_mode (type
))
444 && (! INTEGRAL_TYPE_P (type
)
445 || TYPE_OVERFLOW_WRAPS (type
));
448 if (TYPE_UNSIGNED (type
))
450 /* INT_MIN/n * n doesn't overflow while negating one operand it does
451 if n is a (negative) power of two. */
452 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
453 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
454 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
456 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 0))))) != 1)
457 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
459 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 1))))) != 1)))
465 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
466 return negate_expr_p (TREE_OPERAND (t
, 1))
467 || negate_expr_p (TREE_OPERAND (t
, 0));
473 if (TYPE_UNSIGNED (type
))
475 if (negate_expr_p (TREE_OPERAND (t
, 0)))
477 /* In general we can't negate B in A / B, because if A is INT_MIN and
478 B is 1, we may turn this into INT_MIN / -1 which is undefined
479 and actually traps on some architectures. */
480 if (! INTEGRAL_TYPE_P (TREE_TYPE (t
))
481 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
482 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
483 && ! integer_onep (TREE_OPERAND (t
, 1))))
484 return negate_expr_p (TREE_OPERAND (t
, 1));
488 /* Negate -((double)float) as (double)(-float). */
489 if (TREE_CODE (type
) == REAL_TYPE
)
491 tree tem
= strip_float_extensions (t
);
493 return negate_expr_p (tem
);
498 /* Negate -f(x) as f(-x). */
499 if (negate_mathfn_p (get_call_combined_fn (t
)))
500 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
504 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
505 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
507 tree op1
= TREE_OPERAND (t
, 1);
508 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
519 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
520 simplification is possible.
521 If negate_expr_p would return true for T, NULL_TREE will never be
525 fold_negate_expr_1 (location_t loc
, tree t
)
527 tree type
= TREE_TYPE (t
);
530 switch (TREE_CODE (t
))
532 /* Convert - (~A) to A + 1. */
534 if (INTEGRAL_TYPE_P (type
))
535 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
536 build_one_cst (type
));
540 tem
= fold_negate_const (t
, type
);
541 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
542 || (ANY_INTEGRAL_TYPE_P (type
)
543 && !TYPE_OVERFLOW_TRAPS (type
)
544 && TYPE_OVERFLOW_WRAPS (type
))
545 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
550 tem
= fold_negate_const (t
, type
);
554 tem
= fold_negate_const (t
, type
);
559 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
560 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
562 return build_complex (type
, rpart
, ipart
);
568 int count
= VECTOR_CST_NELTS (t
), i
;
570 auto_vec
<tree
, 32> elts (count
);
571 for (i
= 0; i
< count
; i
++)
573 tree elt
= fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
574 if (elt
== NULL_TREE
)
576 elts
.quick_push (elt
);
579 return build_vector (type
, elts
);
583 if (negate_expr_p (t
))
584 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
585 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
586 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
590 if (negate_expr_p (t
))
591 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
592 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
596 if (!TYPE_OVERFLOW_SANITIZED (type
))
597 return TREE_OPERAND (t
, 0);
601 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
602 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
604 /* -(A + B) -> (-B) - A. */
605 if (negate_expr_p (TREE_OPERAND (t
, 1)))
607 tem
= negate_expr (TREE_OPERAND (t
, 1));
608 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
609 tem
, TREE_OPERAND (t
, 0));
612 /* -(A + B) -> (-A) - B. */
613 if (negate_expr_p (TREE_OPERAND (t
, 0)))
615 tem
= negate_expr (TREE_OPERAND (t
, 0));
616 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
617 tem
, TREE_OPERAND (t
, 1));
623 /* - (A - B) -> B - A */
624 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
625 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
626 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
627 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
631 if (TYPE_UNSIGNED (type
))
637 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
639 tem
= TREE_OPERAND (t
, 1);
640 if (negate_expr_p (tem
))
641 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
642 TREE_OPERAND (t
, 0), negate_expr (tem
));
643 tem
= TREE_OPERAND (t
, 0);
644 if (negate_expr_p (tem
))
645 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
646 negate_expr (tem
), TREE_OPERAND (t
, 1));
653 if (TYPE_UNSIGNED (type
))
655 if (negate_expr_p (TREE_OPERAND (t
, 0)))
656 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
657 negate_expr (TREE_OPERAND (t
, 0)),
658 TREE_OPERAND (t
, 1));
659 /* In general we can't negate B in A / B, because if A is INT_MIN and
660 B is 1, we may turn this into INT_MIN / -1 which is undefined
661 and actually traps on some architectures. */
662 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t
))
663 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
664 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
665 && ! integer_onep (TREE_OPERAND (t
, 1))))
666 && negate_expr_p (TREE_OPERAND (t
, 1)))
667 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
669 negate_expr (TREE_OPERAND (t
, 1)));
673 /* Convert -((double)float) into (double)(-float). */
674 if (TREE_CODE (type
) == REAL_TYPE
)
676 tem
= strip_float_extensions (t
);
677 if (tem
!= t
&& negate_expr_p (tem
))
678 return fold_convert_loc (loc
, type
, negate_expr (tem
));
683 /* Negate -f(x) as f(-x). */
684 if (negate_mathfn_p (get_call_combined_fn (t
))
685 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
689 fndecl
= get_callee_fndecl (t
);
690 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
691 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
696 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
697 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
699 tree op1
= TREE_OPERAND (t
, 1);
700 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
702 tree ntype
= TYPE_UNSIGNED (type
)
703 ? signed_type_for (type
)
704 : unsigned_type_for (type
);
705 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
706 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
707 return fold_convert_loc (loc
, type
, temp
);
719 /* A wrapper for fold_negate_expr_1. */
722 fold_negate_expr (location_t loc
, tree t
)
724 tree type
= TREE_TYPE (t
);
726 tree tem
= fold_negate_expr_1 (loc
, t
);
727 if (tem
== NULL_TREE
)
729 return fold_convert_loc (loc
, type
, tem
);
732 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
733 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
745 loc
= EXPR_LOCATION (t
);
746 type
= TREE_TYPE (t
);
749 tem
= fold_negate_expr (loc
, t
);
751 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
752 return fold_convert_loc (loc
, type
, tem
);
755 /* Split a tree IN into a constant, literal and variable parts that could be
756 combined with CODE to make IN. "constant" means an expression with
757 TREE_CONSTANT but that isn't an actual constant. CODE must be a
758 commutative arithmetic operation. Store the constant part into *CONP,
759 the literal in *LITP and return the variable part. If a part isn't
760 present, set it to null. If the tree does not decompose in this way,
761 return the entire tree as the variable part and the other parts as null.
763 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
764 case, we negate an operand that was subtracted. Except if it is a
765 literal for which we use *MINUS_LITP instead.
767 If NEGATE_P is true, we are negating all of IN, again except a literal
768 for which we use *MINUS_LITP instead. If a variable part is of pointer
769 type, it is negated after converting to TYPE. This prevents us from
770 generating illegal MINUS pointer expression. LOC is the location of
771 the converted variable part.
773 If IN is itself a literal or constant, return it as appropriate.
775 Note that we do not guarantee that any of the three values will be the
776 same type as IN, but they will have the same signedness and mode. */
779 split_tree (tree in
, tree type
, enum tree_code code
,
780 tree
*minus_varp
, tree
*conp
, tree
*minus_conp
,
781 tree
*litp
, tree
*minus_litp
, int negate_p
)
790 /* Strip any conversions that don't change the machine mode or signedness. */
791 STRIP_SIGN_NOPS (in
);
793 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
794 || TREE_CODE (in
) == FIXED_CST
)
796 else if (TREE_CODE (in
) == code
797 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
798 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
799 /* We can associate addition and subtraction together (even
800 though the C standard doesn't say so) for integers because
801 the value is not affected. For reals, the value might be
802 affected, so we can't. */
803 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == POINTER_PLUS_EXPR
)
804 || (code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
805 || (code
== MINUS_EXPR
806 && (TREE_CODE (in
) == PLUS_EXPR
807 || TREE_CODE (in
) == POINTER_PLUS_EXPR
)))))
809 tree op0
= TREE_OPERAND (in
, 0);
810 tree op1
= TREE_OPERAND (in
, 1);
811 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
812 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
814 /* First see if either of the operands is a literal, then a constant. */
815 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
816 || TREE_CODE (op0
) == FIXED_CST
)
817 *litp
= op0
, op0
= 0;
818 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
819 || TREE_CODE (op1
) == FIXED_CST
)
820 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
822 if (op0
!= 0 && TREE_CONSTANT (op0
))
823 *conp
= op0
, op0
= 0;
824 else if (op1
!= 0 && TREE_CONSTANT (op1
))
825 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
827 /* If we haven't dealt with either operand, this is not a case we can
828 decompose. Otherwise, VAR is either of the ones remaining, if any. */
829 if (op0
!= 0 && op1
!= 0)
834 var
= op1
, neg_var_p
= neg1_p
;
836 /* Now do any needed negations. */
838 *minus_litp
= *litp
, *litp
= 0;
839 if (neg_conp_p
&& *conp
)
840 *minus_conp
= *conp
, *conp
= 0;
841 if (neg_var_p
&& var
)
842 *minus_varp
= var
, var
= 0;
844 else if (TREE_CONSTANT (in
))
846 else if (TREE_CODE (in
) == BIT_NOT_EXPR
847 && code
== PLUS_EXPR
)
849 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
850 when IN is constant. */
851 *litp
= build_minus_one_cst (type
);
852 *minus_varp
= TREE_OPERAND (in
, 0);
860 *minus_litp
= *litp
, *litp
= 0;
861 else if (*minus_litp
)
862 *litp
= *minus_litp
, *minus_litp
= 0;
864 *minus_conp
= *conp
, *conp
= 0;
865 else if (*minus_conp
)
866 *conp
= *minus_conp
, *minus_conp
= 0;
868 *minus_varp
= var
, var
= 0;
869 else if (*minus_varp
)
870 var
= *minus_varp
, *minus_varp
= 0;
874 && TREE_OVERFLOW_P (*litp
))
875 *litp
= drop_tree_overflow (*litp
);
877 && TREE_OVERFLOW_P (*minus_litp
))
878 *minus_litp
= drop_tree_overflow (*minus_litp
);
883 /* Re-associate trees split by the above function. T1 and T2 are
884 either expressions to associate or null. Return the new
885 expression, if any. LOC is the location of the new expression. If
886 we build an operation, do it in TYPE and with CODE. */
889 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
893 gcc_assert (t2
== 0 || code
!= MINUS_EXPR
);
899 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
900 try to fold this since we will have infinite recursion. But do
901 deal with any NEGATE_EXPRs. */
902 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
903 || TREE_CODE (t1
) == PLUS_EXPR
|| TREE_CODE (t2
) == PLUS_EXPR
904 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
906 if (code
== PLUS_EXPR
)
908 if (TREE_CODE (t1
) == NEGATE_EXPR
)
909 return build2_loc (loc
, MINUS_EXPR
, type
,
910 fold_convert_loc (loc
, type
, t2
),
911 fold_convert_loc (loc
, type
,
912 TREE_OPERAND (t1
, 0)));
913 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
914 return build2_loc (loc
, MINUS_EXPR
, type
,
915 fold_convert_loc (loc
, type
, t1
),
916 fold_convert_loc (loc
, type
,
917 TREE_OPERAND (t2
, 0)));
918 else if (integer_zerop (t2
))
919 return fold_convert_loc (loc
, type
, t1
);
921 else if (code
== MINUS_EXPR
)
923 if (integer_zerop (t2
))
924 return fold_convert_loc (loc
, type
, t1
);
927 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
928 fold_convert_loc (loc
, type
, t2
));
931 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
932 fold_convert_loc (loc
, type
, t2
));
935 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
936 for use in int_const_binop, size_binop and size_diffop. */
939 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
941 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
943 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
958 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
959 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
960 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
964 /* Combine two integer constants PARG1 and PARG2 under operation CODE
965 to produce a new constant. Return NULL_TREE if we don't know how
966 to evaluate CODE at compile-time. */
969 int_const_binop_1 (enum tree_code code
, const_tree parg1
, const_tree parg2
,
974 tree type
= TREE_TYPE (parg1
);
975 signop sign
= TYPE_SIGN (type
);
976 bool overflow
= false;
978 wi::tree_to_wide_ref arg1
= wi::to_wide (parg1
);
979 wide_int arg2
= wi::to_wide (parg2
, TYPE_PRECISION (type
));
984 res
= wi::bit_or (arg1
, arg2
);
988 res
= wi::bit_xor (arg1
, arg2
);
992 res
= wi::bit_and (arg1
, arg2
);
997 if (wi::neg_p (arg2
))
1000 if (code
== RSHIFT_EXPR
)
1006 if (code
== RSHIFT_EXPR
)
1007 /* It's unclear from the C standard whether shifts can overflow.
1008 The following code ignores overflow; perhaps a C standard
1009 interpretation ruling is needed. */
1010 res
= wi::rshift (arg1
, arg2
, sign
);
1012 res
= wi::lshift (arg1
, arg2
);
1017 if (wi::neg_p (arg2
))
1020 if (code
== RROTATE_EXPR
)
1021 code
= LROTATE_EXPR
;
1023 code
= RROTATE_EXPR
;
1026 if (code
== RROTATE_EXPR
)
1027 res
= wi::rrotate (arg1
, arg2
);
1029 res
= wi::lrotate (arg1
, arg2
);
1033 res
= wi::add (arg1
, arg2
, sign
, &overflow
);
1037 res
= wi::sub (arg1
, arg2
, sign
, &overflow
);
1041 res
= wi::mul (arg1
, arg2
, sign
, &overflow
);
1044 case MULT_HIGHPART_EXPR
:
1045 res
= wi::mul_high (arg1
, arg2
, sign
);
1048 case TRUNC_DIV_EXPR
:
1049 case EXACT_DIV_EXPR
:
1052 res
= wi::div_trunc (arg1
, arg2
, sign
, &overflow
);
1055 case FLOOR_DIV_EXPR
:
1058 res
= wi::div_floor (arg1
, arg2
, sign
, &overflow
);
1064 res
= wi::div_ceil (arg1
, arg2
, sign
, &overflow
);
1067 case ROUND_DIV_EXPR
:
1070 res
= wi::div_round (arg1
, arg2
, sign
, &overflow
);
1073 case TRUNC_MOD_EXPR
:
1076 res
= wi::mod_trunc (arg1
, arg2
, sign
, &overflow
);
1079 case FLOOR_MOD_EXPR
:
1082 res
= wi::mod_floor (arg1
, arg2
, sign
, &overflow
);
1088 res
= wi::mod_ceil (arg1
, arg2
, sign
, &overflow
);
1091 case ROUND_MOD_EXPR
:
1094 res
= wi::mod_round (arg1
, arg2
, sign
, &overflow
);
1098 res
= wi::min (arg1
, arg2
, sign
);
1102 res
= wi::max (arg1
, arg2
, sign
);
1109 t
= force_fit_type (type
, res
, overflowable
,
1110 (((sign
== SIGNED
|| overflowable
== -1)
1112 | TREE_OVERFLOW (parg1
) | TREE_OVERFLOW (parg2
)));
1118 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
)
1120 return int_const_binop_1 (code
, arg1
, arg2
, 1);
1123 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1124 constant. We assume ARG1 and ARG2 have the same data type, or at least
1125 are the same kind of constant and the same machine mode. Return zero if
1126 combining the constants is not allowed in the current operating mode. */
1129 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1131 /* Sanity check for the recursive cases. */
1138 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1140 if (code
== POINTER_PLUS_EXPR
)
1141 return int_const_binop (PLUS_EXPR
,
1142 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1144 return int_const_binop (code
, arg1
, arg2
);
1147 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1152 REAL_VALUE_TYPE value
;
1153 REAL_VALUE_TYPE result
;
1157 /* The following codes are handled by real_arithmetic. */
1172 d1
= TREE_REAL_CST (arg1
);
1173 d2
= TREE_REAL_CST (arg2
);
1175 type
= TREE_TYPE (arg1
);
1176 mode
= TYPE_MODE (type
);
1178 /* Don't perform operation if we honor signaling NaNs and
1179 either operand is a signaling NaN. */
1180 if (HONOR_SNANS (mode
)
1181 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1182 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1185 /* Don't perform operation if it would raise a division
1186 by zero exception. */
1187 if (code
== RDIV_EXPR
1188 && real_equal (&d2
, &dconst0
)
1189 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1192 /* If either operand is a NaN, just return it. Otherwise, set up
1193 for floating-point trap; we return an overflow. */
1194 if (REAL_VALUE_ISNAN (d1
))
1196 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1199 t
= build_real (type
, d1
);
1202 else if (REAL_VALUE_ISNAN (d2
))
1204 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1207 t
= build_real (type
, d2
);
1211 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1212 real_convert (&result
, mode
, &value
);
1214 /* Don't constant fold this floating point operation if
1215 the result has overflowed and flag_trapping_math. */
1216 if (flag_trapping_math
1217 && MODE_HAS_INFINITIES (mode
)
1218 && REAL_VALUE_ISINF (result
)
1219 && !REAL_VALUE_ISINF (d1
)
1220 && !REAL_VALUE_ISINF (d2
))
1223 /* Don't constant fold this floating point operation if the
1224 result may dependent upon the run-time rounding mode and
1225 flag_rounding_math is set, or if GCC's software emulation
1226 is unable to accurately represent the result. */
1227 if ((flag_rounding_math
1228 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1229 && (inexact
|| !real_identical (&result
, &value
)))
1232 t
= build_real (type
, result
);
1234 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1238 if (TREE_CODE (arg1
) == FIXED_CST
)
1240 FIXED_VALUE_TYPE f1
;
1241 FIXED_VALUE_TYPE f2
;
1242 FIXED_VALUE_TYPE result
;
1247 /* The following codes are handled by fixed_arithmetic. */
1253 case TRUNC_DIV_EXPR
:
1254 if (TREE_CODE (arg2
) != FIXED_CST
)
1256 f2
= TREE_FIXED_CST (arg2
);
1262 if (TREE_CODE (arg2
) != INTEGER_CST
)
1264 wi::tree_to_wide_ref w2
= wi::to_wide (arg2
);
1265 f2
.data
.high
= w2
.elt (1);
1266 f2
.data
.low
= w2
.ulow ();
1275 f1
= TREE_FIXED_CST (arg1
);
1276 type
= TREE_TYPE (arg1
);
1277 sat_p
= TYPE_SATURATING (type
);
1278 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1279 t
= build_fixed (type
, result
);
1280 /* Propagate overflow flags. */
1281 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1282 TREE_OVERFLOW (t
) = 1;
1286 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1288 tree type
= TREE_TYPE (arg1
);
1289 tree r1
= TREE_REALPART (arg1
);
1290 tree i1
= TREE_IMAGPART (arg1
);
1291 tree r2
= TREE_REALPART (arg2
);
1292 tree i2
= TREE_IMAGPART (arg2
);
1299 real
= const_binop (code
, r1
, r2
);
1300 imag
= const_binop (code
, i1
, i2
);
1304 if (COMPLEX_FLOAT_TYPE_P (type
))
1305 return do_mpc_arg2 (arg1
, arg2
, type
,
1306 /* do_nonfinite= */ folding_initializer
,
1309 real
= const_binop (MINUS_EXPR
,
1310 const_binop (MULT_EXPR
, r1
, r2
),
1311 const_binop (MULT_EXPR
, i1
, i2
));
1312 imag
= const_binop (PLUS_EXPR
,
1313 const_binop (MULT_EXPR
, r1
, i2
),
1314 const_binop (MULT_EXPR
, i1
, r2
));
1318 if (COMPLEX_FLOAT_TYPE_P (type
))
1319 return do_mpc_arg2 (arg1
, arg2
, type
,
1320 /* do_nonfinite= */ folding_initializer
,
1323 case TRUNC_DIV_EXPR
:
1325 case FLOOR_DIV_EXPR
:
1326 case ROUND_DIV_EXPR
:
1327 if (flag_complex_method
== 0)
1329 /* Keep this algorithm in sync with
1330 tree-complex.c:expand_complex_div_straight().
1332 Expand complex division to scalars, straightforward algorithm.
1333 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1337 = const_binop (PLUS_EXPR
,
1338 const_binop (MULT_EXPR
, r2
, r2
),
1339 const_binop (MULT_EXPR
, i2
, i2
));
1341 = const_binop (PLUS_EXPR
,
1342 const_binop (MULT_EXPR
, r1
, r2
),
1343 const_binop (MULT_EXPR
, i1
, i2
));
1345 = const_binop (MINUS_EXPR
,
1346 const_binop (MULT_EXPR
, i1
, r2
),
1347 const_binop (MULT_EXPR
, r1
, i2
));
1349 real
= const_binop (code
, t1
, magsquared
);
1350 imag
= const_binop (code
, t2
, magsquared
);
1354 /* Keep this algorithm in sync with
1355 tree-complex.c:expand_complex_div_wide().
1357 Expand complex division to scalars, modified algorithm to minimize
1358 overflow with wide input ranges. */
1359 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1360 fold_abs_const (r2
, TREE_TYPE (type
)),
1361 fold_abs_const (i2
, TREE_TYPE (type
)));
1363 if (integer_nonzerop (compare
))
1365 /* In the TRUE branch, we compute
1367 div = (br * ratio) + bi;
1368 tr = (ar * ratio) + ai;
1369 ti = (ai * ratio) - ar;
1372 tree ratio
= const_binop (code
, r2
, i2
);
1373 tree div
= const_binop (PLUS_EXPR
, i2
,
1374 const_binop (MULT_EXPR
, r2
, ratio
));
1375 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1376 real
= const_binop (PLUS_EXPR
, real
, i1
);
1377 real
= const_binop (code
, real
, div
);
1379 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1380 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1381 imag
= const_binop (code
, imag
, div
);
1385 /* In the FALSE branch, we compute
1387 divisor = (d * ratio) + c;
1388 tr = (b * ratio) + a;
1389 ti = b - (a * ratio);
1392 tree ratio
= const_binop (code
, i2
, r2
);
1393 tree div
= const_binop (PLUS_EXPR
, r2
,
1394 const_binop (MULT_EXPR
, i2
, ratio
));
1396 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1397 real
= const_binop (PLUS_EXPR
, real
, r1
);
1398 real
= const_binop (code
, real
, div
);
1400 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1401 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1402 imag
= const_binop (code
, imag
, div
);
1412 return build_complex (type
, real
, imag
);
1415 if (TREE_CODE (arg1
) == VECTOR_CST
1416 && TREE_CODE (arg2
) == VECTOR_CST
)
1418 tree type
= TREE_TYPE (arg1
);
1419 int count
= VECTOR_CST_NELTS (arg1
), i
;
1421 auto_vec
<tree
, 32> elts (count
);
1422 for (i
= 0; i
< count
; i
++)
1424 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1425 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1427 tree elt
= const_binop (code
, elem1
, elem2
);
1429 /* It is possible that const_binop cannot handle the given
1430 code and return NULL_TREE */
1431 if (elt
== NULL_TREE
)
1433 elts
.quick_push (elt
);
1436 return build_vector (type
, elts
);
1439 /* Shifts allow a scalar offset for a vector. */
1440 if (TREE_CODE (arg1
) == VECTOR_CST
1441 && TREE_CODE (arg2
) == INTEGER_CST
)
1443 tree type
= TREE_TYPE (arg1
);
1444 int count
= VECTOR_CST_NELTS (arg1
), i
;
1446 auto_vec
<tree
, 32> elts (count
);
1447 for (i
= 0; i
< count
; i
++)
1449 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1451 tree elt
= const_binop (code
, elem1
, arg2
);
1453 /* It is possible that const_binop cannot handle the given
1454 code and return NULL_TREE. */
1455 if (elt
== NULL_TREE
)
1457 elts
.quick_push (elt
);
1460 return build_vector (type
, elts
);
1465 /* Overload that adds a TYPE parameter to be able to dispatch
1466 to fold_relational_const. */
1469 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1471 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1472 return fold_relational_const (code
, type
, arg1
, arg2
);
1474 /* ??? Until we make the const_binop worker take the type of the
1475 result as argument put those cases that need it here. */
1479 if ((TREE_CODE (arg1
) == REAL_CST
1480 && TREE_CODE (arg2
) == REAL_CST
)
1481 || (TREE_CODE (arg1
) == INTEGER_CST
1482 && TREE_CODE (arg2
) == INTEGER_CST
))
1483 return build_complex (type
, arg1
, arg2
);
1486 case VEC_PACK_TRUNC_EXPR
:
1487 case VEC_PACK_FIX_TRUNC_EXPR
:
1489 unsigned int out_nelts
, in_nelts
, i
;
1491 if (TREE_CODE (arg1
) != VECTOR_CST
1492 || TREE_CODE (arg2
) != VECTOR_CST
)
1495 in_nelts
= VECTOR_CST_NELTS (arg1
);
1496 out_nelts
= in_nelts
* 2;
1497 gcc_assert (in_nelts
== VECTOR_CST_NELTS (arg2
)
1498 && out_nelts
== TYPE_VECTOR_SUBPARTS (type
));
1500 auto_vec
<tree
, 32> elts (out_nelts
);
1501 for (i
= 0; i
< out_nelts
; i
++)
1503 tree elt
= (i
< in_nelts
1504 ? VECTOR_CST_ELT (arg1
, i
)
1505 : VECTOR_CST_ELT (arg2
, i
- in_nelts
));
1506 elt
= fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1507 ? NOP_EXPR
: FIX_TRUNC_EXPR
,
1508 TREE_TYPE (type
), elt
);
1509 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1511 elts
.quick_push (elt
);
1514 return build_vector (type
, elts
);
1517 case VEC_WIDEN_MULT_LO_EXPR
:
1518 case VEC_WIDEN_MULT_HI_EXPR
:
1519 case VEC_WIDEN_MULT_EVEN_EXPR
:
1520 case VEC_WIDEN_MULT_ODD_EXPR
:
1522 unsigned int out_nelts
, in_nelts
, out
, ofs
, scale
;
1524 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1527 in_nelts
= VECTOR_CST_NELTS (arg1
);
1528 out_nelts
= in_nelts
/ 2;
1529 gcc_assert (in_nelts
== VECTOR_CST_NELTS (arg2
)
1530 && out_nelts
== TYPE_VECTOR_SUBPARTS (type
));
1532 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1533 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? out_nelts
: 0;
1534 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1535 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : out_nelts
;
1536 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1538 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1541 auto_vec
<tree
, 32> elts (out_nelts
);
1542 for (out
= 0; out
< out_nelts
; out
++)
1544 unsigned int in
= (out
<< scale
) + ofs
;
1545 tree t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1546 VECTOR_CST_ELT (arg1
, in
));
1547 tree t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1548 VECTOR_CST_ELT (arg2
, in
));
1550 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1552 tree elt
= const_binop (MULT_EXPR
, t1
, t2
);
1553 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1555 elts
.quick_push (elt
);
1558 return build_vector (type
, elts
);
1564 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1567 /* Make sure type and arg0 have the same saturating flag. */
1568 gcc_checking_assert (TYPE_SATURATING (type
)
1569 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1571 return const_binop (code
, arg1
, arg2
);
1574 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1575 Return zero if computing the constants is not possible. */
1578 const_unop (enum tree_code code
, tree type
, tree arg0
)
1580 /* Don't perform the operation, other than NEGATE and ABS, if
1581 flag_signaling_nans is on and the operand is a signaling NaN. */
1582 if (TREE_CODE (arg0
) == REAL_CST
1583 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1584 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1585 && code
!= NEGATE_EXPR
1586 && code
!= ABS_EXPR
)
1593 case FIX_TRUNC_EXPR
:
1594 case FIXED_CONVERT_EXPR
:
1595 return fold_convert_const (code
, type
, arg0
);
1597 case ADDR_SPACE_CONVERT_EXPR
:
1598 /* If the source address is 0, and the source address space
1599 cannot have a valid object at 0, fold to dest type null. */
1600 if (integer_zerop (arg0
)
1601 && !(targetm
.addr_space
.zero_address_valid
1602 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1603 return fold_convert_const (code
, type
, arg0
);
1606 case VIEW_CONVERT_EXPR
:
1607 return fold_view_convert_expr (type
, arg0
);
1611 /* Can't call fold_negate_const directly here as that doesn't
1612 handle all cases and we might not be able to negate some
1614 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1615 if (tem
&& CONSTANT_CLASS_P (tem
))
1621 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1622 return fold_abs_const (arg0
, type
);
1626 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1628 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1630 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1635 if (TREE_CODE (arg0
) == INTEGER_CST
)
1636 return fold_not_const (arg0
, type
);
1637 /* Perform BIT_NOT_EXPR on each element individually. */
1638 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1641 unsigned count
= VECTOR_CST_NELTS (arg0
), i
;
1643 auto_vec
<tree
, 32> elements (count
);
1644 for (i
= 0; i
< count
; i
++)
1646 elem
= VECTOR_CST_ELT (arg0
, i
);
1647 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1648 if (elem
== NULL_TREE
)
1650 elements
.quick_push (elem
);
1653 return build_vector (type
, elements
);
1657 case TRUTH_NOT_EXPR
:
1658 if (TREE_CODE (arg0
) == INTEGER_CST
)
1659 return constant_boolean_node (integer_zerop (arg0
), type
);
1663 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1664 return fold_convert (type
, TREE_REALPART (arg0
));
1668 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1669 return fold_convert (type
, TREE_IMAGPART (arg0
));
1672 case VEC_UNPACK_LO_EXPR
:
1673 case VEC_UNPACK_HI_EXPR
:
1674 case VEC_UNPACK_FLOAT_LO_EXPR
:
1675 case VEC_UNPACK_FLOAT_HI_EXPR
:
1677 unsigned int out_nelts
, in_nelts
, i
;
1678 enum tree_code subcode
;
1680 if (TREE_CODE (arg0
) != VECTOR_CST
)
1683 in_nelts
= VECTOR_CST_NELTS (arg0
);
1684 out_nelts
= in_nelts
/ 2;
1685 gcc_assert (out_nelts
== TYPE_VECTOR_SUBPARTS (type
));
1687 unsigned int offset
= 0;
1688 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1689 || code
== VEC_UNPACK_FLOAT_LO_EXPR
))
1692 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1695 subcode
= FLOAT_EXPR
;
1697 auto_vec
<tree
, 32> elts (out_nelts
);
1698 for (i
= 0; i
< out_nelts
; i
++)
1700 tree elt
= fold_convert_const (subcode
, TREE_TYPE (type
),
1701 VECTOR_CST_ELT (arg0
, i
+ offset
));
1702 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1704 elts
.quick_push (elt
);
1707 return build_vector (type
, elts
);
1710 case REDUC_MIN_EXPR
:
1711 case REDUC_MAX_EXPR
:
1712 case REDUC_PLUS_EXPR
:
1714 unsigned int nelts
, i
;
1715 enum tree_code subcode
;
1717 if (TREE_CODE (arg0
) != VECTOR_CST
)
1719 nelts
= VECTOR_CST_NELTS (arg0
);
1723 case REDUC_MIN_EXPR
: subcode
= MIN_EXPR
; break;
1724 case REDUC_MAX_EXPR
: subcode
= MAX_EXPR
; break;
1725 case REDUC_PLUS_EXPR
: subcode
= PLUS_EXPR
; break;
1726 default: gcc_unreachable ();
1729 tree res
= VECTOR_CST_ELT (arg0
, 0);
1730 for (i
= 1; i
< nelts
; i
++)
1732 res
= const_binop (subcode
, res
, VECTOR_CST_ELT (arg0
, i
));
1733 if (res
== NULL_TREE
|| !CONSTANT_CLASS_P (res
))
1747 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1748 indicates which particular sizetype to create. */
1751 size_int_kind (HOST_WIDE_INT number
, enum size_type_kind kind
)
1753 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1756 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1757 is a tree code. The type of the result is taken from the operands.
1758 Both must be equivalent integer types, ala int_binop_types_match_p.
1759 If the operands are constant, so is the result. */
1762 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1764 tree type
= TREE_TYPE (arg0
);
1766 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1767 return error_mark_node
;
1769 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1772 /* Handle the special case of two integer constants faster. */
1773 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
1775 /* And some specific cases even faster than that. */
1776 if (code
== PLUS_EXPR
)
1778 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1780 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1783 else if (code
== MINUS_EXPR
)
1785 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1788 else if (code
== MULT_EXPR
)
1790 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1794 /* Handle general case of two integer constants. For sizetype
1795 constant calculations we always want to know about overflow,
1796 even in the unsigned case. */
1797 return int_const_binop_1 (code
, arg0
, arg1
, -1);
1800 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1803 /* Given two values, either both of sizetype or both of bitsizetype,
1804 compute the difference between the two values. Return the value
1805 in signed type corresponding to the type of the operands. */
1808 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1810 tree type
= TREE_TYPE (arg0
);
1813 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1816 /* If the type is already signed, just do the simple thing. */
1817 if (!TYPE_UNSIGNED (type
))
1818 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1820 if (type
== sizetype
)
1822 else if (type
== bitsizetype
)
1823 ctype
= sbitsizetype
;
1825 ctype
= signed_type_for (type
);
1827 /* If either operand is not a constant, do the conversions to the signed
1828 type and subtract. The hardware will do the right thing with any
1829 overflow in the subtraction. */
1830 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1831 return size_binop_loc (loc
, MINUS_EXPR
,
1832 fold_convert_loc (loc
, ctype
, arg0
),
1833 fold_convert_loc (loc
, ctype
, arg1
));
1835 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1836 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1837 overflow) and negate (which can't either). Special-case a result
1838 of zero while we're here. */
1839 if (tree_int_cst_equal (arg0
, arg1
))
1840 return build_int_cst (ctype
, 0);
1841 else if (tree_int_cst_lt (arg1
, arg0
))
1842 return fold_convert_loc (loc
, ctype
,
1843 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1845 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1846 fold_convert_loc (loc
, ctype
,
1847 size_binop_loc (loc
,
1852 /* A subroutine of fold_convert_const handling conversions of an
1853 INTEGER_CST to another integer type. */
1856 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1858 /* Given an integer constant, make new constant with new type,
1859 appropriately sign-extended or truncated. Use widest_int
1860 so that any extension is done according ARG1's type. */
1861 return force_fit_type (type
, wi::to_widest (arg1
),
1862 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1863 TREE_OVERFLOW (arg1
));
1866 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1867 to an integer type. */
1870 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
1872 bool overflow
= false;
1875 /* The following code implements the floating point to integer
1876 conversion rules required by the Java Language Specification,
1877 that IEEE NaNs are mapped to zero and values that overflow
1878 the target precision saturate, i.e. values greater than
1879 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1880 are mapped to INT_MIN. These semantics are allowed by the
1881 C and C++ standards that simply state that the behavior of
1882 FP-to-integer conversion is unspecified upon overflow. */
1886 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
1890 case FIX_TRUNC_EXPR
:
1891 real_trunc (&r
, VOIDmode
, &x
);
1898 /* If R is NaN, return zero and show we have an overflow. */
1899 if (REAL_VALUE_ISNAN (r
))
1902 val
= wi::zero (TYPE_PRECISION (type
));
1905 /* See if R is less than the lower bound or greater than the
1910 tree lt
= TYPE_MIN_VALUE (type
);
1911 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
1912 if (real_less (&r
, &l
))
1915 val
= wi::to_wide (lt
);
1921 tree ut
= TYPE_MAX_VALUE (type
);
1924 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
1925 if (real_less (&u
, &r
))
1928 val
= wi::to_wide (ut
);
1934 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
1936 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
1940 /* A subroutine of fold_convert_const handling conversions of a
1941 FIXED_CST to an integer type. */
1944 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
1947 double_int temp
, temp_trunc
;
1950 /* Right shift FIXED_CST to temp by fbit. */
1951 temp
= TREE_FIXED_CST (arg1
).data
;
1952 mode
= TREE_FIXED_CST (arg1
).mode
;
1953 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
1955 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
1956 HOST_BITS_PER_DOUBLE_INT
,
1957 SIGNED_FIXED_POINT_MODE_P (mode
));
1959 /* Left shift temp to temp_trunc by fbit. */
1960 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
1961 HOST_BITS_PER_DOUBLE_INT
,
1962 SIGNED_FIXED_POINT_MODE_P (mode
));
1966 temp
= double_int_zero
;
1967 temp_trunc
= double_int_zero
;
1970 /* If FIXED_CST is negative, we need to round the value toward 0.
1971 By checking if the fractional bits are not zero to add 1 to temp. */
1972 if (SIGNED_FIXED_POINT_MODE_P (mode
)
1973 && temp_trunc
.is_negative ()
1974 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
1975 temp
+= double_int_one
;
1977 /* Given a fixed-point constant, make new constant with new type,
1978 appropriately sign-extended or truncated. */
1979 t
= force_fit_type (type
, temp
, -1,
1980 (temp
.is_negative ()
1981 && (TYPE_UNSIGNED (type
)
1982 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
1983 | TREE_OVERFLOW (arg1
));
1988 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1989 to another floating point type. */
1992 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
1994 REAL_VALUE_TYPE value
;
1997 /* Don't perform the operation if flag_signaling_nans is on
1998 and the operand is a signaling NaN. */
1999 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
2000 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
2003 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2004 t
= build_real (type
, value
);
2006 /* If converting an infinity or NAN to a representation that doesn't
2007 have one, set the overflow bit so that we can produce some kind of
2008 error message at the appropriate point if necessary. It's not the
2009 most user-friendly message, but it's better than nothing. */
2010 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
2011 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
2012 TREE_OVERFLOW (t
) = 1;
2013 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2014 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2015 TREE_OVERFLOW (t
) = 1;
2016 /* Regular overflow, conversion produced an infinity in a mode that
2017 can't represent them. */
2018 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2019 && REAL_VALUE_ISINF (value
)
2020 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2021 TREE_OVERFLOW (t
) = 1;
2023 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2027 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2028 to a floating point type. */
2031 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2033 REAL_VALUE_TYPE value
;
2036 real_convert_from_fixed (&value
, SCALAR_FLOAT_TYPE_MODE (type
),
2037 &TREE_FIXED_CST (arg1
));
2038 t
= build_real (type
, value
);
2040 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2044 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2045 to another fixed-point type. */
2048 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2050 FIXED_VALUE_TYPE value
;
2054 overflow_p
= fixed_convert (&value
, SCALAR_TYPE_MODE (type
),
2055 &TREE_FIXED_CST (arg1
), TYPE_SATURATING (type
));
2056 t
= build_fixed (type
, value
);
2058 /* Propagate overflow flags. */
2059 if (overflow_p
| TREE_OVERFLOW (arg1
))
2060 TREE_OVERFLOW (t
) = 1;
2064 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2065 to a fixed-point type. */
2068 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2070 FIXED_VALUE_TYPE value
;
2075 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2077 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2078 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2079 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2081 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2083 overflow_p
= fixed_convert_from_int (&value
, SCALAR_TYPE_MODE (type
), di
,
2084 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2085 TYPE_SATURATING (type
));
2086 t
= build_fixed (type
, value
);
2088 /* Propagate overflow flags. */
2089 if (overflow_p
| TREE_OVERFLOW (arg1
))
2090 TREE_OVERFLOW (t
) = 1;
2094 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2095 to a fixed-point type. */
2098 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2100 FIXED_VALUE_TYPE value
;
2104 overflow_p
= fixed_convert_from_real (&value
, SCALAR_TYPE_MODE (type
),
2105 &TREE_REAL_CST (arg1
),
2106 TYPE_SATURATING (type
));
2107 t
= build_fixed (type
, value
);
2109 /* Propagate overflow flags. */
2110 if (overflow_p
| TREE_OVERFLOW (arg1
))
2111 TREE_OVERFLOW (t
) = 1;
2115 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2116 type TYPE. If no simplification can be done return NULL_TREE. */
2119 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2121 if (TREE_TYPE (arg1
) == type
)
2124 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2125 || TREE_CODE (type
) == OFFSET_TYPE
)
2127 if (TREE_CODE (arg1
) == INTEGER_CST
)
2128 return fold_convert_const_int_from_int (type
, arg1
);
2129 else if (TREE_CODE (arg1
) == REAL_CST
)
2130 return fold_convert_const_int_from_real (code
, type
, arg1
);
2131 else if (TREE_CODE (arg1
) == FIXED_CST
)
2132 return fold_convert_const_int_from_fixed (type
, arg1
);
2134 else if (TREE_CODE (type
) == REAL_TYPE
)
2136 if (TREE_CODE (arg1
) == INTEGER_CST
)
2137 return build_real_from_int_cst (type
, arg1
);
2138 else if (TREE_CODE (arg1
) == REAL_CST
)
2139 return fold_convert_const_real_from_real (type
, arg1
);
2140 else if (TREE_CODE (arg1
) == FIXED_CST
)
2141 return fold_convert_const_real_from_fixed (type
, arg1
);
2143 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2145 if (TREE_CODE (arg1
) == FIXED_CST
)
2146 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2147 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2148 return fold_convert_const_fixed_from_int (type
, arg1
);
2149 else if (TREE_CODE (arg1
) == REAL_CST
)
2150 return fold_convert_const_fixed_from_real (type
, arg1
);
2152 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2154 if (TREE_CODE (arg1
) == VECTOR_CST
2155 && TYPE_VECTOR_SUBPARTS (type
) == VECTOR_CST_NELTS (arg1
))
2157 int len
= VECTOR_CST_NELTS (arg1
);
2158 tree elttype
= TREE_TYPE (type
);
2159 auto_vec
<tree
, 32> v (len
);
2160 for (int i
= 0; i
< len
; ++i
)
2162 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2163 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2164 if (cvt
== NULL_TREE
)
2168 return build_vector (type
, v
);
2174 /* Construct a vector of zero elements of vector type TYPE. */
2177 build_zero_vector (tree type
)
2181 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2182 return build_vector_from_val (type
, t
);
2185 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2188 fold_convertible_p (const_tree type
, const_tree arg
)
2190 tree orig
= TREE_TYPE (arg
);
2195 if (TREE_CODE (arg
) == ERROR_MARK
2196 || TREE_CODE (type
) == ERROR_MARK
2197 || TREE_CODE (orig
) == ERROR_MARK
)
2200 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2203 switch (TREE_CODE (type
))
2205 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2206 case POINTER_TYPE
: case REFERENCE_TYPE
:
2208 return (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2209 || TREE_CODE (orig
) == OFFSET_TYPE
);
2212 case FIXED_POINT_TYPE
:
2215 return TREE_CODE (type
) == TREE_CODE (orig
);
2222 /* Convert expression ARG to type TYPE. Used by the middle-end for
2223 simple conversions in preference to calling the front-end's convert. */
2226 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2228 tree orig
= TREE_TYPE (arg
);
2234 if (TREE_CODE (arg
) == ERROR_MARK
2235 || TREE_CODE (type
) == ERROR_MARK
2236 || TREE_CODE (orig
) == ERROR_MARK
)
2237 return error_mark_node
;
2239 switch (TREE_CODE (type
))
2242 case REFERENCE_TYPE
:
2243 /* Handle conversions between pointers to different address spaces. */
2244 if (POINTER_TYPE_P (orig
)
2245 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2246 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2247 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2250 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2252 if (TREE_CODE (arg
) == INTEGER_CST
)
2254 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2255 if (tem
!= NULL_TREE
)
2258 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2259 || TREE_CODE (orig
) == OFFSET_TYPE
)
2260 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2261 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2262 return fold_convert_loc (loc
, type
,
2263 fold_build1_loc (loc
, REALPART_EXPR
,
2264 TREE_TYPE (orig
), arg
));
2265 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2266 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2267 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2270 if (TREE_CODE (arg
) == INTEGER_CST
)
2272 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2273 if (tem
!= NULL_TREE
)
2276 else if (TREE_CODE (arg
) == REAL_CST
)
2278 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2279 if (tem
!= NULL_TREE
)
2282 else if (TREE_CODE (arg
) == FIXED_CST
)
2284 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2285 if (tem
!= NULL_TREE
)
2289 switch (TREE_CODE (orig
))
2292 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2293 case POINTER_TYPE
: case REFERENCE_TYPE
:
2294 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2297 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2299 case FIXED_POINT_TYPE
:
2300 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2303 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2304 return fold_convert_loc (loc
, type
, tem
);
2310 case FIXED_POINT_TYPE
:
2311 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2312 || TREE_CODE (arg
) == REAL_CST
)
2314 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2315 if (tem
!= NULL_TREE
)
2316 goto fold_convert_exit
;
2319 switch (TREE_CODE (orig
))
2321 case FIXED_POINT_TYPE
:
2326 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2329 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2330 return fold_convert_loc (loc
, type
, tem
);
2337 switch (TREE_CODE (orig
))
2340 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2341 case POINTER_TYPE
: case REFERENCE_TYPE
:
2343 case FIXED_POINT_TYPE
:
2344 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2345 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2346 fold_convert_loc (loc
, TREE_TYPE (type
),
2347 integer_zero_node
));
2352 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2354 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2355 TREE_OPERAND (arg
, 0));
2356 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2357 TREE_OPERAND (arg
, 1));
2358 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2361 arg
= save_expr (arg
);
2362 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2363 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2364 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2365 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2366 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2374 if (integer_zerop (arg
))
2375 return build_zero_vector (type
);
2376 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2377 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2378 || TREE_CODE (orig
) == VECTOR_TYPE
);
2379 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2382 tem
= fold_ignored_result (arg
);
2383 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2386 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2387 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2391 protected_set_expr_location_unshare (tem
, loc
);
2395 /* Return false if expr can be assumed not to be an lvalue, true
2399 maybe_lvalue_p (const_tree x
)
2401 /* We only need to wrap lvalue tree codes. */
2402 switch (TREE_CODE (x
))
2415 case ARRAY_RANGE_REF
:
2421 case PREINCREMENT_EXPR
:
2422 case PREDECREMENT_EXPR
:
2424 case TRY_CATCH_EXPR
:
2425 case WITH_CLEANUP_EXPR
:
2434 /* Assume the worst for front-end tree codes. */
2435 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2443 /* Return an expr equal to X but certainly not valid as an lvalue. */
2446 non_lvalue_loc (location_t loc
, tree x
)
2448 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2453 if (! maybe_lvalue_p (x
))
2455 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2458 /* When pedantic, return an expr equal to X but certainly not valid as a
2459 pedantic lvalue. Otherwise, return X. */
2462 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2464 return protected_set_expr_location_unshare (x
, loc
);
2467 /* Given a tree comparison code, return the code that is the logical inverse.
2468 It is generally not safe to do this for floating-point comparisons, except
2469 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2470 ERROR_MARK in this case. */
2473 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2475 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2476 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2486 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2488 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2490 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2492 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2506 return UNORDERED_EXPR
;
2507 case UNORDERED_EXPR
:
2508 return ORDERED_EXPR
;
2514 /* Similar, but return the comparison that results if the operands are
2515 swapped. This is safe for floating-point. */
2518 swap_tree_comparison (enum tree_code code
)
2525 case UNORDERED_EXPR
:
2551 /* Convert a comparison tree code from an enum tree_code representation
2552 into a compcode bit-based encoding. This function is the inverse of
2553 compcode_to_comparison. */
2555 static enum comparison_code
2556 comparison_to_compcode (enum tree_code code
)
2573 return COMPCODE_ORD
;
2574 case UNORDERED_EXPR
:
2575 return COMPCODE_UNORD
;
2577 return COMPCODE_UNLT
;
2579 return COMPCODE_UNEQ
;
2581 return COMPCODE_UNLE
;
2583 return COMPCODE_UNGT
;
2585 return COMPCODE_LTGT
;
2587 return COMPCODE_UNGE
;
2593 /* Convert a compcode bit-based encoding of a comparison operator back
2594 to GCC's enum tree_code representation. This function is the
2595 inverse of comparison_to_compcode. */
2597 static enum tree_code
2598 compcode_to_comparison (enum comparison_code code
)
2615 return ORDERED_EXPR
;
2616 case COMPCODE_UNORD
:
2617 return UNORDERED_EXPR
;
2635 /* Return a tree for the comparison which is the combination of
2636 doing the AND or OR (depending on CODE) of the two operations LCODE
2637 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2638 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2639 if this makes the transformation invalid. */
2642 combine_comparisons (location_t loc
,
2643 enum tree_code code
, enum tree_code lcode
,
2644 enum tree_code rcode
, tree truth_type
,
2645 tree ll_arg
, tree lr_arg
)
2647 bool honor_nans
= HONOR_NANS (ll_arg
);
2648 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2649 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2654 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2655 compcode
= lcompcode
& rcompcode
;
2658 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2659 compcode
= lcompcode
| rcompcode
;
2668 /* Eliminate unordered comparisons, as well as LTGT and ORD
2669 which are not used unless the mode has NaNs. */
2670 compcode
&= ~COMPCODE_UNORD
;
2671 if (compcode
== COMPCODE_LTGT
)
2672 compcode
= COMPCODE_NE
;
2673 else if (compcode
== COMPCODE_ORD
)
2674 compcode
= COMPCODE_TRUE
;
2676 else if (flag_trapping_math
)
2678 /* Check that the original operation and the optimized ones will trap
2679 under the same condition. */
2680 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2681 && (lcompcode
!= COMPCODE_EQ
)
2682 && (lcompcode
!= COMPCODE_ORD
);
2683 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2684 && (rcompcode
!= COMPCODE_EQ
)
2685 && (rcompcode
!= COMPCODE_ORD
);
2686 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2687 && (compcode
!= COMPCODE_EQ
)
2688 && (compcode
!= COMPCODE_ORD
);
2690 /* In a short-circuited boolean expression the LHS might be
2691 such that the RHS, if evaluated, will never trap. For
2692 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2693 if neither x nor y is NaN. (This is a mixed blessing: for
2694 example, the expression above will never trap, hence
2695 optimizing it to x < y would be invalid). */
2696 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2697 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2700 /* If the comparison was short-circuited, and only the RHS
2701 trapped, we may now generate a spurious trap. */
2703 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2706 /* If we changed the conditions that cause a trap, we lose. */
2707 if ((ltrap
|| rtrap
) != trap
)
2711 if (compcode
== COMPCODE_TRUE
)
2712 return constant_boolean_node (true, truth_type
);
2713 else if (compcode
== COMPCODE_FALSE
)
2714 return constant_boolean_node (false, truth_type
);
2717 enum tree_code tcode
;
2719 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2720 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2724 /* Return nonzero if two operands (typically of the same tree node)
2725 are necessarily equal. FLAGS modifies behavior as follows:
2727 If OEP_ONLY_CONST is set, only return nonzero for constants.
2728 This function tests whether the operands are indistinguishable;
2729 it does not test whether they are equal using C's == operation.
2730 The distinction is important for IEEE floating point, because
2731 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2732 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2734 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2735 even though it may hold multiple values during a function.
2736 This is because a GCC tree node guarantees that nothing else is
2737 executed between the evaluation of its "operands" (which may often
2738 be evaluated in arbitrary order). Hence if the operands themselves
2739 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2740 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2741 unset means assuming isochronic (or instantaneous) tree equivalence.
2742 Unless comparing arbitrary expression trees, such as from different
2743 statements, this flag can usually be left unset.
2745 If OEP_PURE_SAME is set, then pure functions with identical arguments
2746 are considered the same. It is used when the caller has other ways
2747 to ensure that global memory is unchanged in between.
2749 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2750 not values of expressions.
2752 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2753 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2755 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2756 any operand with side effect. This is unnecesarily conservative in the
2757 case we know that arg0 and arg1 are in disjoint code paths (such as in
2758 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2759 addresses with TREE_CONSTANT flag set so we know that &var == &var
2760 even if var is volatile. */
2763 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2765 /* When checking, verify at the outermost operand_equal_p call that
2766 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2768 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2770 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2774 inchash::hash
hstate0 (0), hstate1 (0);
2775 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2776 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2777 hashval_t h0
= hstate0
.end ();
2778 hashval_t h1
= hstate1
.end ();
2779 gcc_assert (h0
== h1
);
2787 /* If either is ERROR_MARK, they aren't equal. */
2788 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2789 || TREE_TYPE (arg0
) == error_mark_node
2790 || TREE_TYPE (arg1
) == error_mark_node
)
2793 /* Similar, if either does not have a type (like a released SSA name),
2794 they aren't equal. */
2795 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2798 /* We cannot consider pointers to different address space equal. */
2799 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2800 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2801 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2802 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2805 /* Check equality of integer constants before bailing out due to
2806 precision differences. */
2807 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2809 /* Address of INTEGER_CST is not defined; check that we did not forget
2810 to drop the OEP_ADDRESS_OF flags. */
2811 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2812 return tree_int_cst_equal (arg0
, arg1
);
2815 if (!(flags
& OEP_ADDRESS_OF
))
2817 /* If both types don't have the same signedness, then we can't consider
2818 them equal. We must check this before the STRIP_NOPS calls
2819 because they may change the signedness of the arguments. As pointers
2820 strictly don't have a signedness, require either two pointers or
2821 two non-pointers as well. */
2822 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2823 || POINTER_TYPE_P (TREE_TYPE (arg0
))
2824 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
2827 /* If both types don't have the same precision, then it is not safe
2829 if (element_precision (TREE_TYPE (arg0
))
2830 != element_precision (TREE_TYPE (arg1
)))
2837 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2838 sanity check once the issue is solved. */
2840 /* Addresses of conversions and SSA_NAMEs (and many other things)
2841 are not defined. Check that we did not forget to drop the
2842 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2843 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
2844 && TREE_CODE (arg0
) != SSA_NAME
);
2847 /* In case both args are comparisons but with different comparison
2848 code, try to swap the comparison operands of one arg to produce
2849 a match and compare that variant. */
2850 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2851 && COMPARISON_CLASS_P (arg0
)
2852 && COMPARISON_CLASS_P (arg1
))
2854 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
2856 if (TREE_CODE (arg0
) == swap_code
)
2857 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2858 TREE_OPERAND (arg1
, 1), flags
)
2859 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2860 TREE_OPERAND (arg1
, 0), flags
);
2863 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
2865 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2866 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
2868 else if (flags
& OEP_ADDRESS_OF
)
2870 /* If we are interested in comparing addresses ignore
2871 MEM_REF wrappings of the base that can appear just for
2873 if (TREE_CODE (arg0
) == MEM_REF
2875 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
2876 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
2877 && integer_zerop (TREE_OPERAND (arg0
, 1)))
2879 else if (TREE_CODE (arg1
) == MEM_REF
2881 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
2882 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
2883 && integer_zerop (TREE_OPERAND (arg1
, 1)))
2891 /* When not checking adddresses, this is needed for conversions and for
2892 COMPONENT_REF. Might as well play it safe and always test this. */
2893 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
2894 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
2895 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
2896 && !(flags
& OEP_ADDRESS_OF
)))
2899 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2900 We don't care about side effects in that case because the SAVE_EXPR
2901 takes care of that for us. In all other cases, two expressions are
2902 equal if they have no side effects. If we have two identical
2903 expressions with side effects that should be treated the same due
2904 to the only side effects being identical SAVE_EXPR's, that will
2905 be detected in the recursive calls below.
2906 If we are taking an invariant address of two identical objects
2907 they are necessarily equal as well. */
2908 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
2909 && (TREE_CODE (arg0
) == SAVE_EXPR
2910 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
2911 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
2914 /* Next handle constant cases, those for which we can return 1 even
2915 if ONLY_CONST is set. */
2916 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
2917 switch (TREE_CODE (arg0
))
2920 return tree_int_cst_equal (arg0
, arg1
);
2923 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
2924 TREE_FIXED_CST (arg1
));
2927 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
2931 if (!HONOR_SIGNED_ZEROS (arg0
))
2933 /* If we do not distinguish between signed and unsigned zero,
2934 consider them equal. */
2935 if (real_zerop (arg0
) && real_zerop (arg1
))
2944 if (VECTOR_CST_NELTS (arg0
) != VECTOR_CST_NELTS (arg1
))
2947 for (i
= 0; i
< VECTOR_CST_NELTS (arg0
); ++i
)
2949 if (!operand_equal_p (VECTOR_CST_ELT (arg0
, i
),
2950 VECTOR_CST_ELT (arg1
, i
), flags
))
2957 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
2959 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
2963 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
2964 && ! memcmp (TREE_STRING_POINTER (arg0
),
2965 TREE_STRING_POINTER (arg1
),
2966 TREE_STRING_LENGTH (arg0
)));
2969 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2970 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
2971 flags
| OEP_ADDRESS_OF
2972 | OEP_MATCH_SIDE_EFFECTS
);
2974 /* In GIMPLE empty constructors are allowed in initializers of
2976 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
2981 if (flags
& OEP_ONLY_CONST
)
2984 /* Define macros to test an operand from arg0 and arg1 for equality and a
2985 variant that allows null and views null as being different from any
2986 non-null value. In the latter case, if either is null, the both
2987 must be; otherwise, do the normal comparison. */
2988 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2989 TREE_OPERAND (arg1, N), flags)
2991 #define OP_SAME_WITH_NULL(N) \
2992 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2993 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2995 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
2998 /* Two conversions are equal only if signedness and modes match. */
2999 switch (TREE_CODE (arg0
))
3002 case FIX_TRUNC_EXPR
:
3003 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3004 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3014 case tcc_comparison
:
3016 if (OP_SAME (0) && OP_SAME (1))
3019 /* For commutative ops, allow the other order. */
3020 return (commutative_tree_code (TREE_CODE (arg0
))
3021 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3022 TREE_OPERAND (arg1
, 1), flags
)
3023 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3024 TREE_OPERAND (arg1
, 0), flags
));
3027 /* If either of the pointer (or reference) expressions we are
3028 dereferencing contain a side effect, these cannot be equal,
3029 but their addresses can be. */
3030 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3031 && (TREE_SIDE_EFFECTS (arg0
)
3032 || TREE_SIDE_EFFECTS (arg1
)))
3035 switch (TREE_CODE (arg0
))
3038 if (!(flags
& OEP_ADDRESS_OF
)
3039 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3040 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3042 flags
&= ~OEP_ADDRESS_OF
;
3046 /* Require the same offset. */
3047 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3048 TYPE_SIZE (TREE_TYPE (arg1
)),
3049 flags
& ~OEP_ADDRESS_OF
))
3054 case VIEW_CONVERT_EXPR
:
3057 case TARGET_MEM_REF
:
3059 if (!(flags
& OEP_ADDRESS_OF
))
3061 /* Require equal access sizes */
3062 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3063 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3064 || !TYPE_SIZE (TREE_TYPE (arg1
))
3065 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3066 TYPE_SIZE (TREE_TYPE (arg1
)),
3069 /* Verify that access happens in similar types. */
3070 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3072 /* Verify that accesses are TBAA compatible. */
3073 if (!alias_ptr_types_compatible_p
3074 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3075 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3076 || (MR_DEPENDENCE_CLIQUE (arg0
)
3077 != MR_DEPENDENCE_CLIQUE (arg1
))
3078 || (MR_DEPENDENCE_BASE (arg0
)
3079 != MR_DEPENDENCE_BASE (arg1
)))
3081 /* Verify that alignment is compatible. */
3082 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3083 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3086 flags
&= ~OEP_ADDRESS_OF
;
3087 return (OP_SAME (0) && OP_SAME (1)
3088 /* TARGET_MEM_REF require equal extra operands. */
3089 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3090 || (OP_SAME_WITH_NULL (2)
3091 && OP_SAME_WITH_NULL (3)
3092 && OP_SAME_WITH_NULL (4))));
3095 case ARRAY_RANGE_REF
:
3098 flags
&= ~OEP_ADDRESS_OF
;
3099 /* Compare the array index by value if it is constant first as we
3100 may have different types but same value here. */
3101 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3102 TREE_OPERAND (arg1
, 1))
3104 && OP_SAME_WITH_NULL (2)
3105 && OP_SAME_WITH_NULL (3)
3106 /* Compare low bound and element size as with OEP_ADDRESS_OF
3107 we have to account for the offset of the ref. */
3108 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3109 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3110 || (operand_equal_p (array_ref_low_bound
3111 (CONST_CAST_TREE (arg0
)),
3113 (CONST_CAST_TREE (arg1
)), flags
)
3114 && operand_equal_p (array_ref_element_size
3115 (CONST_CAST_TREE (arg0
)),
3116 array_ref_element_size
3117 (CONST_CAST_TREE (arg1
)),
3121 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3122 may be NULL when we're called to compare MEM_EXPRs. */
3123 if (!OP_SAME_WITH_NULL (0)
3126 flags
&= ~OEP_ADDRESS_OF
;
3127 return OP_SAME_WITH_NULL (2);
3132 flags
&= ~OEP_ADDRESS_OF
;
3133 return OP_SAME (1) && OP_SAME (2);
3139 case tcc_expression
:
3140 switch (TREE_CODE (arg0
))
3143 /* Be sure we pass right ADDRESS_OF flag. */
3144 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3145 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3146 TREE_OPERAND (arg1
, 0),
3147 flags
| OEP_ADDRESS_OF
);
3149 case TRUTH_NOT_EXPR
:
3152 case TRUTH_ANDIF_EXPR
:
3153 case TRUTH_ORIF_EXPR
:
3154 return OP_SAME (0) && OP_SAME (1);
3157 case WIDEN_MULT_PLUS_EXPR
:
3158 case WIDEN_MULT_MINUS_EXPR
:
3161 /* The multiplcation operands are commutative. */
3164 case TRUTH_AND_EXPR
:
3166 case TRUTH_XOR_EXPR
:
3167 if (OP_SAME (0) && OP_SAME (1))
3170 /* Otherwise take into account this is a commutative operation. */
3171 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3172 TREE_OPERAND (arg1
, 1), flags
)
3173 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3174 TREE_OPERAND (arg1
, 0), flags
));
3177 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3179 flags
&= ~OEP_ADDRESS_OF
;
3182 case BIT_INSERT_EXPR
:
3183 /* BIT_INSERT_EXPR has an implict operand as the type precision
3184 of op1. Need to check to make sure they are the same. */
3185 if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
3186 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
3187 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
3188 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 1))))
3194 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3199 case PREDECREMENT_EXPR
:
3200 case PREINCREMENT_EXPR
:
3201 case POSTDECREMENT_EXPR
:
3202 case POSTINCREMENT_EXPR
:
3203 if (flags
& OEP_LEXICOGRAPHIC
)
3204 return OP_SAME (0) && OP_SAME (1);
3207 case CLEANUP_POINT_EXPR
:
3209 if (flags
& OEP_LEXICOGRAPHIC
)
3218 switch (TREE_CODE (arg0
))
3221 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3222 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3223 /* If not both CALL_EXPRs are either internal or normal function
3224 functions, then they are not equal. */
3226 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3228 /* If the CALL_EXPRs call different internal functions, then they
3230 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3235 /* If the CALL_EXPRs call different functions, then they are not
3237 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3242 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3244 unsigned int cef
= call_expr_flags (arg0
);
3245 if (flags
& OEP_PURE_SAME
)
3246 cef
&= ECF_CONST
| ECF_PURE
;
3249 if (!cef
&& !(flags
& OEP_LEXICOGRAPHIC
))
3253 /* Now see if all the arguments are the same. */
3255 const_call_expr_arg_iterator iter0
, iter1
;
3257 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3258 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3260 a0
= next_const_call_expr_arg (&iter0
),
3261 a1
= next_const_call_expr_arg (&iter1
))
3262 if (! operand_equal_p (a0
, a1
, flags
))
3265 /* If we get here and both argument lists are exhausted
3266 then the CALL_EXPRs are equal. */
3267 return ! (a0
|| a1
);
3273 case tcc_declaration
:
3274 /* Consider __builtin_sqrt equal to sqrt. */
3275 return (TREE_CODE (arg0
) == FUNCTION_DECL
3276 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3277 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3278 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3280 case tcc_exceptional
:
3281 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3283 /* In GIMPLE constructors are used only to build vectors from
3284 elements. Individual elements in the constructor must be
3285 indexed in increasing order and form an initial sequence.
3287 We make no effort to compare constructors in generic.
3288 (see sem_variable::equals in ipa-icf which can do so for
3290 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3291 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3294 /* Be sure that vectors constructed have the same representation.
3295 We only tested element precision and modes to match.
3296 Vectors may be BLKmode and thus also check that the number of
3298 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))
3299 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)))
3302 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3303 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3304 unsigned int len
= vec_safe_length (v0
);
3306 if (len
!= vec_safe_length (v1
))
3309 for (unsigned int i
= 0; i
< len
; i
++)
3311 constructor_elt
*c0
= &(*v0
)[i
];
3312 constructor_elt
*c1
= &(*v1
)[i
];
3314 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3315 /* In GIMPLE the indexes can be either NULL or matching i.
3316 Double check this so we won't get false
3317 positives for GENERIC. */
3319 && (TREE_CODE (c0
->index
) != INTEGER_CST
3320 || !compare_tree_int (c0
->index
, i
)))
3322 && (TREE_CODE (c1
->index
) != INTEGER_CST
3323 || !compare_tree_int (c1
->index
, i
))))
3328 else if (TREE_CODE (arg0
) == STATEMENT_LIST
3329 && (flags
& OEP_LEXICOGRAPHIC
))
3331 /* Compare the STATEMENT_LISTs. */
3332 tree_stmt_iterator tsi1
, tsi2
;
3333 tree body1
= CONST_CAST_TREE (arg0
);
3334 tree body2
= CONST_CAST_TREE (arg1
);
3335 for (tsi1
= tsi_start (body1
), tsi2
= tsi_start (body2
); ;
3336 tsi_next (&tsi1
), tsi_next (&tsi2
))
3338 /* The lists don't have the same number of statements. */
3339 if (tsi_end_p (tsi1
) ^ tsi_end_p (tsi2
))
3341 if (tsi_end_p (tsi1
) && tsi_end_p (tsi2
))
3343 if (!operand_equal_p (tsi_stmt (tsi1
), tsi_stmt (tsi2
),
3351 switch (TREE_CODE (arg0
))
3354 if (flags
& OEP_LEXICOGRAPHIC
)
3355 return OP_SAME_WITH_NULL (0);
3366 #undef OP_SAME_WITH_NULL
3369 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3370 with a different signedness or a narrower precision. */
3373 operand_equal_for_comparison_p (tree arg0
, tree arg1
)
3375 if (operand_equal_p (arg0
, arg1
, 0))
3378 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3379 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3382 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3383 and see if the inner values are the same. This removes any
3384 signedness comparison, which doesn't matter here. */
3389 if (operand_equal_p (op0
, op1
, 0))
3392 /* Discard a single widening conversion from ARG1 and see if the inner
3393 value is the same as ARG0. */
3394 if (CONVERT_EXPR_P (arg1
)
3395 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3396 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3397 < TYPE_PRECISION (TREE_TYPE (arg1
))
3398 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
3404 /* See if ARG is an expression that is either a comparison or is performing
3405 arithmetic on comparisons. The comparisons must only be comparing
3406 two different values, which will be stored in *CVAL1 and *CVAL2; if
3407 they are nonzero it means that some operands have already been found.
3408 No variables may be used anywhere else in the expression except in the
3409 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3410 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3412 If this is true, return 1. Otherwise, return zero. */
3415 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
3417 enum tree_code code
= TREE_CODE (arg
);
3418 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3420 /* We can handle some of the tcc_expression cases here. */
3421 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3423 else if (tclass
== tcc_expression
3424 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3425 || code
== COMPOUND_EXPR
))
3426 tclass
= tcc_binary
;
3428 else if (tclass
== tcc_expression
&& code
== SAVE_EXPR
3429 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
3431 /* If we've already found a CVAL1 or CVAL2, this expression is
3432 two complex to handle. */
3433 if (*cval1
|| *cval2
)
3443 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
3446 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
3447 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3448 cval1
, cval2
, save_p
));
3453 case tcc_expression
:
3454 if (code
== COND_EXPR
)
3455 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
3456 cval1
, cval2
, save_p
)
3457 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3458 cval1
, cval2
, save_p
)
3459 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
3460 cval1
, cval2
, save_p
));
3463 case tcc_comparison
:
3464 /* First see if we can handle the first operand, then the second. For
3465 the second operand, we know *CVAL1 can't be zero. It must be that
3466 one side of the comparison is each of the values; test for the
3467 case where this isn't true by failing if the two operands
3470 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3471 TREE_OPERAND (arg
, 1), 0))
3475 *cval1
= TREE_OPERAND (arg
, 0);
3476 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3478 else if (*cval2
== 0)
3479 *cval2
= TREE_OPERAND (arg
, 0);
3480 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3485 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3487 else if (*cval2
== 0)
3488 *cval2
= TREE_OPERAND (arg
, 1);
3489 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3501 /* ARG is a tree that is known to contain just arithmetic operations and
3502 comparisons. Evaluate the operations in the tree substituting NEW0 for
3503 any occurrence of OLD0 as an operand of a comparison and likewise for
3507 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3508 tree old1
, tree new1
)
3510 tree type
= TREE_TYPE (arg
);
3511 enum tree_code code
= TREE_CODE (arg
);
3512 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3514 /* We can handle some of the tcc_expression cases here. */
3515 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3517 else if (tclass
== tcc_expression
3518 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3519 tclass
= tcc_binary
;
3524 return fold_build1_loc (loc
, code
, type
,
3525 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3526 old0
, new0
, old1
, new1
));
3529 return fold_build2_loc (loc
, code
, type
,
3530 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3531 old0
, new0
, old1
, new1
),
3532 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3533 old0
, new0
, old1
, new1
));
3535 case tcc_expression
:
3539 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3543 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3547 return fold_build3_loc (loc
, code
, type
,
3548 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3549 old0
, new0
, old1
, new1
),
3550 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3551 old0
, new0
, old1
, new1
),
3552 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3553 old0
, new0
, old1
, new1
));
3557 /* Fall through - ??? */
3559 case tcc_comparison
:
3561 tree arg0
= TREE_OPERAND (arg
, 0);
3562 tree arg1
= TREE_OPERAND (arg
, 1);
3564 /* We need to check both for exact equality and tree equality. The
3565 former will be true if the operand has a side-effect. In that
3566 case, we know the operand occurred exactly once. */
3568 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3570 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3573 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3575 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3578 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3586 /* Return a tree for the case when the result of an expression is RESULT
3587 converted to TYPE and OMITTED was previously an operand of the expression
3588 but is now not needed (e.g., we folded OMITTED * 0).
3590 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3591 the conversion of RESULT to TYPE. */
3594 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3596 tree t
= fold_convert_loc (loc
, type
, result
);
3598 /* If the resulting operand is an empty statement, just return the omitted
3599 statement casted to void. */
3600 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3601 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3602 fold_ignored_result (omitted
));
3604 if (TREE_SIDE_EFFECTS (omitted
))
3605 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3606 fold_ignored_result (omitted
), t
);
3608 return non_lvalue_loc (loc
, t
);
3611 /* Return a tree for the case when the result of an expression is RESULT
3612 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3613 of the expression but are now not needed.
3615 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3616 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3617 evaluated before OMITTED2. Otherwise, if neither has side effects,
3618 just do the conversion of RESULT to TYPE. */
3621 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3622 tree omitted1
, tree omitted2
)
3624 tree t
= fold_convert_loc (loc
, type
, result
);
3626 if (TREE_SIDE_EFFECTS (omitted2
))
3627 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3628 if (TREE_SIDE_EFFECTS (omitted1
))
3629 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3631 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3635 /* Return a simplified tree node for the truth-negation of ARG. This
3636 never alters ARG itself. We assume that ARG is an operation that
3637 returns a truth value (0 or 1).
3639 FIXME: one would think we would fold the result, but it causes
3640 problems with the dominator optimizer. */
3643 fold_truth_not_expr (location_t loc
, tree arg
)
3645 tree type
= TREE_TYPE (arg
);
3646 enum tree_code code
= TREE_CODE (arg
);
3647 location_t loc1
, loc2
;
3649 /* If this is a comparison, we can simply invert it, except for
3650 floating-point non-equality comparisons, in which case we just
3651 enclose a TRUTH_NOT_EXPR around what we have. */
3653 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3655 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3656 if (FLOAT_TYPE_P (op_type
)
3657 && flag_trapping_math
3658 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3659 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3662 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3663 if (code
== ERROR_MARK
)
3666 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3667 TREE_OPERAND (arg
, 1));
3668 if (TREE_NO_WARNING (arg
))
3669 TREE_NO_WARNING (ret
) = 1;
3676 return constant_boolean_node (integer_zerop (arg
), type
);
3678 case TRUTH_AND_EXPR
:
3679 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3680 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3681 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3682 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3683 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3686 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3687 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3688 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3689 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3690 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3692 case TRUTH_XOR_EXPR
:
3693 /* Here we can invert either operand. We invert the first operand
3694 unless the second operand is a TRUTH_NOT_EXPR in which case our
3695 result is the XOR of the first operand with the inside of the
3696 negation of the second operand. */
3698 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3699 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3700 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3702 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3703 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3704 TREE_OPERAND (arg
, 1));
3706 case TRUTH_ANDIF_EXPR
:
3707 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3708 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3709 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3710 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3711 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3713 case TRUTH_ORIF_EXPR
:
3714 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3715 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3716 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3717 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3718 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3720 case TRUTH_NOT_EXPR
:
3721 return TREE_OPERAND (arg
, 0);
3725 tree arg1
= TREE_OPERAND (arg
, 1);
3726 tree arg2
= TREE_OPERAND (arg
, 2);
3728 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3729 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3731 /* A COND_EXPR may have a throw as one operand, which
3732 then has void type. Just leave void operands
3734 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3735 VOID_TYPE_P (TREE_TYPE (arg1
))
3736 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3737 VOID_TYPE_P (TREE_TYPE (arg2
))
3738 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3742 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3743 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3744 TREE_OPERAND (arg
, 0),
3745 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3747 case NON_LVALUE_EXPR
:
3748 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3749 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3752 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3753 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3758 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3759 return build1_loc (loc
, TREE_CODE (arg
), type
,
3760 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3763 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3765 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3768 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3770 case CLEANUP_POINT_EXPR
:
3771 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3772 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3773 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3780 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3781 assume that ARG is an operation that returns a truth value (0 or 1
3782 for scalars, 0 or -1 for vectors). Return the folded expression if
3783 folding is successful. Otherwise, return NULL_TREE. */
3786 fold_invert_truthvalue (location_t loc
, tree arg
)
3788 tree type
= TREE_TYPE (arg
);
3789 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3795 /* Return a simplified tree node for the truth-negation of ARG. This
3796 never alters ARG itself. We assume that ARG is an operation that
3797 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3800 invert_truthvalue_loc (location_t loc
, tree arg
)
3802 if (TREE_CODE (arg
) == ERROR_MARK
)
3805 tree type
= TREE_TYPE (arg
);
3806 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3812 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3813 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3814 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3815 is the original memory reference used to preserve the alias set of
3819 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3820 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
3821 int unsignedp
, int reversep
)
3823 tree result
, bftype
;
3825 /* Attempt not to lose the access path if possible. */
3826 if (TREE_CODE (orig_inner
) == COMPONENT_REF
)
3828 tree ninner
= TREE_OPERAND (orig_inner
, 0);
3830 HOST_WIDE_INT nbitsize
, nbitpos
;
3832 int nunsignedp
, nreversep
, nvolatilep
= 0;
3833 tree base
= get_inner_reference (ninner
, &nbitsize
, &nbitpos
,
3834 &noffset
, &nmode
, &nunsignedp
,
3835 &nreversep
, &nvolatilep
);
3837 && noffset
== NULL_TREE
3838 && nbitsize
>= bitsize
3839 && nbitpos
<= bitpos
3840 && bitpos
+ bitsize
<= nbitpos
+ nbitsize
3850 alias_set_type iset
= get_alias_set (orig_inner
);
3851 if (iset
== 0 && get_alias_set (inner
) != iset
)
3852 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
3853 build_fold_addr_expr (inner
),
3854 build_int_cst (ptr_type_node
, 0));
3856 if (bitpos
== 0 && !reversep
)
3858 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3859 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3860 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3861 && tree_fits_shwi_p (size
)
3862 && tree_to_shwi (size
) == bitsize
)
3863 return fold_convert_loc (loc
, type
, inner
);
3867 if (TYPE_PRECISION (bftype
) != bitsize
3868 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
3869 bftype
= build_nonstandard_integer_type (bitsize
, 0);
3871 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
3872 bitsize_int (bitsize
), bitsize_int (bitpos
));
3873 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
3876 result
= fold_convert_loc (loc
, type
, result
);
3881 /* Optimize a bit-field compare.
3883 There are two cases: First is a compare against a constant and the
3884 second is a comparison of two items where the fields are at the same
3885 bit position relative to the start of a chunk (byte, halfword, word)
3886 large enough to contain it. In these cases we can avoid the shift
3887 implicit in bitfield extractions.
3889 For constants, we emit a compare of the shifted constant with the
3890 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3891 compared. For two fields at the same position, we do the ANDs with the
3892 similar mask and compare the result of the ANDs.
3894 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3895 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3896 are the left and right operands of the comparison, respectively.
3898 If the optimization described above can be done, we return the resulting
3899 tree. Otherwise we return zero. */
3902 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
3903 tree compare_type
, tree lhs
, tree rhs
)
3905 HOST_WIDE_INT lbitpos
, lbitsize
, rbitpos
, rbitsize
, nbitpos
, nbitsize
;
3906 tree type
= TREE_TYPE (lhs
);
3908 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
3909 machine_mode lmode
, rmode
;
3910 scalar_int_mode nmode
;
3911 int lunsignedp
, runsignedp
;
3912 int lreversep
, rreversep
;
3913 int lvolatilep
= 0, rvolatilep
= 0;
3914 tree linner
, rinner
= NULL_TREE
;
3918 /* Get all the information about the extractions being done. If the bit size
3919 if the same as the size of the underlying object, we aren't doing an
3920 extraction at all and so can do nothing. We also don't want to
3921 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3922 then will no longer be able to replace it. */
3923 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
3924 &lunsignedp
, &lreversep
, &lvolatilep
);
3925 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
3926 || offset
!= 0 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
|| lvolatilep
)
3930 rreversep
= lreversep
;
3933 /* If this is not a constant, we can only do something if bit positions,
3934 sizes, signedness and storage order are the same. */
3936 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
3937 &runsignedp
, &rreversep
, &rvolatilep
);
3939 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
3940 || lunsignedp
!= runsignedp
|| lreversep
!= rreversep
|| offset
!= 0
3941 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
|| rvolatilep
)
3945 /* Honor the C++ memory model and mimic what RTL expansion does. */
3946 unsigned HOST_WIDE_INT bitstart
= 0;
3947 unsigned HOST_WIDE_INT bitend
= 0;
3948 if (TREE_CODE (lhs
) == COMPONENT_REF
)
3950 get_bit_range (&bitstart
, &bitend
, lhs
, &lbitpos
, &offset
);
3951 if (offset
!= NULL_TREE
)
3955 /* See if we can find a mode to refer to this field. We should be able to,
3956 but fail if we can't. */
3957 if (!get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
3958 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
3959 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
3960 TYPE_ALIGN (TREE_TYPE (rinner
))),
3961 BITS_PER_WORD
, false, &nmode
))
3964 /* Set signed and unsigned types of the precision of this mode for the
3966 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
3968 /* Compute the bit position and size for the new reference and our offset
3969 within it. If the new reference is the same size as the original, we
3970 won't optimize anything, so return zero. */
3971 nbitsize
= GET_MODE_BITSIZE (nmode
);
3972 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
3974 if (nbitsize
== lbitsize
)
3977 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3978 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
3980 /* Make the mask to be used against the extracted field. */
3981 mask
= build_int_cst_type (unsigned_type
, -1);
3982 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
3983 mask
= const_binop (RSHIFT_EXPR
, mask
,
3984 size_int (nbitsize
- lbitsize
- lbitpos
));
3991 /* If not comparing with constant, just rework the comparison
3993 tree t1
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
3994 nbitsize
, nbitpos
, 1, lreversep
);
3995 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t1
, mask
);
3996 tree t2
= make_bit_field_ref (loc
, rinner
, rhs
, unsigned_type
,
3997 nbitsize
, nbitpos
, 1, rreversep
);
3998 t2
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t2
, mask
);
3999 return fold_build2_loc (loc
, code
, compare_type
, t1
, t2
);
4002 /* Otherwise, we are handling the constant case. See if the constant is too
4003 big for the field. Warn and return a tree for 0 (false) if so. We do
4004 this not only for its own sake, but to avoid having to test for this
4005 error case below. If we didn't, we might generate wrong code.
4007 For unsigned fields, the constant shifted right by the field length should
4008 be all zero. For signed fields, the high-order bits should agree with
4013 if (wi::lrshift (wi::to_wide (rhs
), lbitsize
) != 0)
4015 warning (0, "comparison is always %d due to width of bit-field",
4017 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4022 wide_int tem
= wi::arshift (wi::to_wide (rhs
), lbitsize
- 1);
4023 if (tem
!= 0 && tem
!= -1)
4025 warning (0, "comparison is always %d due to width of bit-field",
4027 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4034 /* Single-bit compares should always be against zero. */
4035 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4037 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4038 rhs
= build_int_cst (type
, 0);
4041 /* Make a new bitfield reference, shift the constant over the
4042 appropriate number of bits and mask it with the computed mask
4043 (in case this was a signed field). If we changed it, make a new one. */
4044 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4045 nbitsize
, nbitpos
, 1, lreversep
);
4047 rhs
= const_binop (BIT_AND_EXPR
,
4048 const_binop (LSHIFT_EXPR
,
4049 fold_convert_loc (loc
, unsigned_type
, rhs
),
4050 size_int (lbitpos
)),
4053 lhs
= build2_loc (loc
, code
, compare_type
,
4054 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4058 /* Subroutine for fold_truth_andor_1: decode a field reference.
4060 If EXP is a comparison reference, we return the innermost reference.
4062 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4063 set to the starting bit number.
4065 If the innermost field can be completely contained in a mode-sized
4066 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4068 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4069 otherwise it is not changed.
4071 *PUNSIGNEDP is set to the signedness of the field.
4073 *PREVERSEP is set to the storage order of the field.
4075 *PMASK is set to the mask used. This is either contained in a
4076 BIT_AND_EXPR or derived from the width of the field.
4078 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4080 Return 0 if this is not a component reference or is one that we can't
4081 do anything with. */
4084 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4085 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4086 int *punsignedp
, int *preversep
, int *pvolatilep
,
4087 tree
*pmask
, tree
*pand_mask
)
4090 tree outer_type
= 0;
4092 tree mask
, inner
, offset
;
4094 unsigned int precision
;
4096 /* All the optimizations using this function assume integer fields.
4097 There are problems with FP fields since the type_for_size call
4098 below can fail for, e.g., XFmode. */
4099 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4102 /* We are interested in the bare arrangement of bits, so strip everything
4103 that doesn't affect the machine mode. However, record the type of the
4104 outermost expression if it may matter below. */
4105 if (CONVERT_EXPR_P (exp
)
4106 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4107 outer_type
= TREE_TYPE (exp
);
4110 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4112 and_mask
= TREE_OPERAND (exp
, 1);
4113 exp
= TREE_OPERAND (exp
, 0);
4114 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4115 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4119 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
4120 punsignedp
, preversep
, pvolatilep
);
4121 if ((inner
== exp
&& and_mask
== 0)
4122 || *pbitsize
< 0 || offset
!= 0
4123 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
4124 /* Reject out-of-bound accesses (PR79731). */
4125 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner
))
4126 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner
)),
4127 *pbitpos
+ *pbitsize
) < 0))
4132 /* If the number of bits in the reference is the same as the bitsize of
4133 the outer type, then the outer type gives the signedness. Otherwise
4134 (in case of a small bitfield) the signedness is unchanged. */
4135 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4136 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4138 /* Compute the mask to access the bitfield. */
4139 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4140 precision
= TYPE_PRECISION (unsigned_type
);
4142 mask
= build_int_cst_type (unsigned_type
, -1);
4144 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4145 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4147 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4149 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4150 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4153 *pand_mask
= and_mask
;
4157 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4158 bit positions and MASK is SIGNED. */
4161 all_ones_mask_p (const_tree mask
, unsigned int size
)
4163 tree type
= TREE_TYPE (mask
);
4164 unsigned int precision
= TYPE_PRECISION (type
);
4166 /* If this function returns true when the type of the mask is
4167 UNSIGNED, then there will be errors. In particular see
4168 gcc.c-torture/execute/990326-1.c. There does not appear to be
4169 any documentation paper trail as to why this is so. But the pre
4170 wide-int worked with that restriction and it has been preserved
4172 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4175 return wi::mask (size
, false, precision
) == wi::to_wide (mask
);
4178 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4179 represents the sign bit of EXP's type. If EXP represents a sign
4180 or zero extension, also test VAL against the unextended type.
4181 The return value is the (sub)expression whose sign bit is VAL,
4182 or NULL_TREE otherwise. */
4185 sign_bit_p (tree exp
, const_tree val
)
4190 /* Tree EXP must have an integral type. */
4191 t
= TREE_TYPE (exp
);
4192 if (! INTEGRAL_TYPE_P (t
))
4195 /* Tree VAL must be an integer constant. */
4196 if (TREE_CODE (val
) != INTEGER_CST
4197 || TREE_OVERFLOW (val
))
4200 width
= TYPE_PRECISION (t
);
4201 if (wi::only_sign_bit_p (wi::to_wide (val
), width
))
4204 /* Handle extension from a narrower type. */
4205 if (TREE_CODE (exp
) == NOP_EXPR
4206 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4207 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4212 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4213 to be evaluated unconditionally. */
4216 simple_operand_p (const_tree exp
)
4218 /* Strip any conversions that don't change the machine mode. */
4221 return (CONSTANT_CLASS_P (exp
)
4222 || TREE_CODE (exp
) == SSA_NAME
4224 && ! TREE_ADDRESSABLE (exp
)
4225 && ! TREE_THIS_VOLATILE (exp
)
4226 && ! DECL_NONLOCAL (exp
)
4227 /* Don't regard global variables as simple. They may be
4228 allocated in ways unknown to the compiler (shared memory,
4229 #pragma weak, etc). */
4230 && ! TREE_PUBLIC (exp
)
4231 && ! DECL_EXTERNAL (exp
)
4232 /* Weakrefs are not safe to be read, since they can be NULL.
4233 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4234 have DECL_WEAK flag set. */
4235 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4236 /* Loading a static variable is unduly expensive, but global
4237 registers aren't expensive. */
4238 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4241 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4242 to be evaluated unconditionally.
4243 I addition to simple_operand_p, we assume that comparisons, conversions,
4244 and logic-not operations are simple, if their operands are simple, too. */
4247 simple_operand_p_2 (tree exp
)
4249 enum tree_code code
;
4251 if (TREE_SIDE_EFFECTS (exp
)
4252 || tree_could_trap_p (exp
))
4255 while (CONVERT_EXPR_P (exp
))
4256 exp
= TREE_OPERAND (exp
, 0);
4258 code
= TREE_CODE (exp
);
4260 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4261 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4262 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4264 if (code
== TRUTH_NOT_EXPR
)
4265 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4267 return simple_operand_p (exp
);
4271 /* The following functions are subroutines to fold_range_test and allow it to
4272 try to change a logical combination of comparisons into a range test.
4275 X == 2 || X == 3 || X == 4 || X == 5
4279 (unsigned) (X - 2) <= 3
4281 We describe each set of comparisons as being either inside or outside
4282 a range, using a variable named like IN_P, and then describe the
4283 range with a lower and upper bound. If one of the bounds is omitted,
4284 it represents either the highest or lowest value of the type.
4286 In the comments below, we represent a range by two numbers in brackets
4287 preceded by a "+" to designate being inside that range, or a "-" to
4288 designate being outside that range, so the condition can be inverted by
4289 flipping the prefix. An omitted bound is represented by a "-". For
4290 example, "- [-, 10]" means being outside the range starting at the lowest
4291 possible value and ending at 10, in other words, being greater than 10.
4292 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4295 We set up things so that the missing bounds are handled in a consistent
4296 manner so neither a missing bound nor "true" and "false" need to be
4297 handled using a special case. */
4299 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4300 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4301 and UPPER1_P are nonzero if the respective argument is an upper bound
4302 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4303 must be specified for a comparison. ARG1 will be converted to ARG0's
4304 type if both are specified. */
4307 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4308 tree arg1
, int upper1_p
)
4314 /* If neither arg represents infinity, do the normal operation.
4315 Else, if not a comparison, return infinity. Else handle the special
4316 comparison rules. Note that most of the cases below won't occur, but
4317 are handled for consistency. */
4319 if (arg0
!= 0 && arg1
!= 0)
4321 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4322 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4324 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4327 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4330 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4331 for neither. In real maths, we cannot assume open ended ranges are
4332 the same. But, this is computer arithmetic, where numbers are finite.
4333 We can therefore make the transformation of any unbounded range with
4334 the value Z, Z being greater than any representable number. This permits
4335 us to treat unbounded ranges as equal. */
4336 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4337 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4341 result
= sgn0
== sgn1
;
4344 result
= sgn0
!= sgn1
;
4347 result
= sgn0
< sgn1
;
4350 result
= sgn0
<= sgn1
;
4353 result
= sgn0
> sgn1
;
4356 result
= sgn0
>= sgn1
;
4362 return constant_boolean_node (result
, type
);
4365 /* Helper routine for make_range. Perform one step for it, return
4366 new expression if the loop should continue or NULL_TREE if it should
4370 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4371 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4372 bool *strict_overflow_p
)
4374 tree arg0_type
= TREE_TYPE (arg0
);
4375 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4376 int in_p
= *p_in_p
, n_in_p
;
4380 case TRUTH_NOT_EXPR
:
4381 /* We can only do something if the range is testing for zero. */
4382 if (low
== NULL_TREE
|| high
== NULL_TREE
4383 || ! integer_zerop (low
) || ! integer_zerop (high
))
4388 case EQ_EXPR
: case NE_EXPR
:
4389 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4390 /* We can only do something if the range is testing for zero
4391 and if the second operand is an integer constant. Note that
4392 saying something is "in" the range we make is done by
4393 complementing IN_P since it will set in the initial case of
4394 being not equal to zero; "out" is leaving it alone. */
4395 if (low
== NULL_TREE
|| high
== NULL_TREE
4396 || ! integer_zerop (low
) || ! integer_zerop (high
)
4397 || TREE_CODE (arg1
) != INTEGER_CST
)
4402 case NE_EXPR
: /* - [c, c] */
4405 case EQ_EXPR
: /* + [c, c] */
4406 in_p
= ! in_p
, low
= high
= arg1
;
4408 case GT_EXPR
: /* - [-, c] */
4409 low
= 0, high
= arg1
;
4411 case GE_EXPR
: /* + [c, -] */
4412 in_p
= ! in_p
, low
= arg1
, high
= 0;
4414 case LT_EXPR
: /* - [c, -] */
4415 low
= arg1
, high
= 0;
4417 case LE_EXPR
: /* + [-, c] */
4418 in_p
= ! in_p
, low
= 0, high
= arg1
;
4424 /* If this is an unsigned comparison, we also know that EXP is
4425 greater than or equal to zero. We base the range tests we make
4426 on that fact, so we record it here so we can parse existing
4427 range tests. We test arg0_type since often the return type
4428 of, e.g. EQ_EXPR, is boolean. */
4429 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4431 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4433 build_int_cst (arg0_type
, 0),
4437 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4439 /* If the high bound is missing, but we have a nonzero low
4440 bound, reverse the range so it goes from zero to the low bound
4442 if (high
== 0 && low
&& ! integer_zerop (low
))
4445 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4446 build_int_cst (TREE_TYPE (low
), 1), 0);
4447 low
= build_int_cst (arg0_type
, 0);
4457 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4458 low and high are non-NULL, then normalize will DTRT. */
4459 if (!TYPE_UNSIGNED (arg0_type
)
4460 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4462 if (low
== NULL_TREE
)
4463 low
= TYPE_MIN_VALUE (arg0_type
);
4464 if (high
== NULL_TREE
)
4465 high
= TYPE_MAX_VALUE (arg0_type
);
4468 /* (-x) IN [a,b] -> x in [-b, -a] */
4469 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4470 build_int_cst (exp_type
, 0),
4472 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4473 build_int_cst (exp_type
, 0),
4475 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4481 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4482 build_int_cst (exp_type
, 1));
4486 if (TREE_CODE (arg1
) != INTEGER_CST
)
4489 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4490 move a constant to the other side. */
4491 if (!TYPE_UNSIGNED (arg0_type
)
4492 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4495 /* If EXP is signed, any overflow in the computation is undefined,
4496 so we don't worry about it so long as our computations on
4497 the bounds don't overflow. For unsigned, overflow is defined
4498 and this is exactly the right thing. */
4499 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4500 arg0_type
, low
, 0, arg1
, 0);
4501 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4502 arg0_type
, high
, 1, arg1
, 0);
4503 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4504 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4507 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4508 *strict_overflow_p
= true;
4511 /* Check for an unsigned range which has wrapped around the maximum
4512 value thus making n_high < n_low, and normalize it. */
4513 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4515 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4516 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4517 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4518 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4520 /* If the range is of the form +/- [ x+1, x ], we won't
4521 be able to normalize it. But then, it represents the
4522 whole range or the empty set, so make it
4524 if (tree_int_cst_equal (n_low
, low
)
4525 && tree_int_cst_equal (n_high
, high
))
4531 low
= n_low
, high
= n_high
;
4539 case NON_LVALUE_EXPR
:
4540 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4543 if (! INTEGRAL_TYPE_P (arg0_type
)
4544 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4545 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4548 n_low
= low
, n_high
= high
;
4551 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4554 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4556 /* If we're converting arg0 from an unsigned type, to exp,
4557 a signed type, we will be doing the comparison as unsigned.
4558 The tests above have already verified that LOW and HIGH
4561 So we have to ensure that we will handle large unsigned
4562 values the same way that the current signed bounds treat
4565 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4569 /* For fixed-point modes, we need to pass the saturating flag
4570 as the 2nd parameter. */
4571 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4573 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4574 TYPE_SATURATING (arg0_type
));
4577 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4579 /* A range without an upper bound is, naturally, unbounded.
4580 Since convert would have cropped a very large value, use
4581 the max value for the destination type. */
4583 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4584 : TYPE_MAX_VALUE (arg0_type
);
4586 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4587 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4588 fold_convert_loc (loc
, arg0_type
,
4590 build_int_cst (arg0_type
, 1));
4592 /* If the low bound is specified, "and" the range with the
4593 range for which the original unsigned value will be
4597 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4598 1, fold_convert_loc (loc
, arg0_type
,
4603 in_p
= (n_in_p
== in_p
);
4607 /* Otherwise, "or" the range with the range of the input
4608 that will be interpreted as negative. */
4609 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4610 1, fold_convert_loc (loc
, arg0_type
,
4615 in_p
= (in_p
!= n_in_p
);
4629 /* Given EXP, a logical expression, set the range it is testing into
4630 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4631 actually being tested. *PLOW and *PHIGH will be made of the same
4632 type as the returned expression. If EXP is not a comparison, we
4633 will most likely not be returning a useful value and range. Set
4634 *STRICT_OVERFLOW_P to true if the return value is only valid
4635 because signed overflow is undefined; otherwise, do not change
4636 *STRICT_OVERFLOW_P. */
4639 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4640 bool *strict_overflow_p
)
4642 enum tree_code code
;
4643 tree arg0
, arg1
= NULL_TREE
;
4644 tree exp_type
, nexp
;
4647 location_t loc
= EXPR_LOCATION (exp
);
4649 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4650 and see if we can refine the range. Some of the cases below may not
4651 happen, but it doesn't seem worth worrying about this. We "continue"
4652 the outer loop when we've changed something; otherwise we "break"
4653 the switch, which will "break" the while. */
4656 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4660 code
= TREE_CODE (exp
);
4661 exp_type
= TREE_TYPE (exp
);
4664 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4666 if (TREE_OPERAND_LENGTH (exp
) > 0)
4667 arg0
= TREE_OPERAND (exp
, 0);
4668 if (TREE_CODE_CLASS (code
) == tcc_binary
4669 || TREE_CODE_CLASS (code
) == tcc_comparison
4670 || (TREE_CODE_CLASS (code
) == tcc_expression
4671 && TREE_OPERAND_LENGTH (exp
) > 1))
4672 arg1
= TREE_OPERAND (exp
, 1);
4674 if (arg0
== NULL_TREE
)
4677 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4678 &high
, &in_p
, strict_overflow_p
);
4679 if (nexp
== NULL_TREE
)
4684 /* If EXP is a constant, we can evaluate whether this is true or false. */
4685 if (TREE_CODE (exp
) == INTEGER_CST
)
4687 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4689 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4695 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4699 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4700 a bitwise check i.e. when
4701 LOW == 0xXX...X00...0
4702 HIGH == 0xXX...X11...1
4703 Return corresponding mask in MASK and stem in VALUE. */
4706 maskable_range_p (const_tree low
, const_tree high
, tree type
, tree
*mask
,
4709 if (TREE_CODE (low
) != INTEGER_CST
4710 || TREE_CODE (high
) != INTEGER_CST
)
4713 unsigned prec
= TYPE_PRECISION (type
);
4714 wide_int lo
= wi::to_wide (low
, prec
);
4715 wide_int hi
= wi::to_wide (high
, prec
);
4717 wide_int end_mask
= lo
^ hi
;
4718 if ((end_mask
& (end_mask
+ 1)) != 0
4719 || (lo
& end_mask
) != 0)
4722 wide_int stem_mask
= ~end_mask
;
4723 wide_int stem
= lo
& stem_mask
;
4724 if (stem
!= (hi
& stem_mask
))
4727 *mask
= wide_int_to_tree (type
, stem_mask
);
4728 *value
= wide_int_to_tree (type
, stem
);
4733 /* Helper routine for build_range_check and match.pd. Return the type to
4734 perform the check or NULL if it shouldn't be optimized. */
4737 range_check_type (tree etype
)
4739 /* First make sure that arithmetics in this type is valid, then make sure
4740 that it wraps around. */
4741 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4742 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4743 TYPE_UNSIGNED (etype
));
4745 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4747 tree utype
, minv
, maxv
;
4749 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4750 for the type in question, as we rely on this here. */
4751 utype
= unsigned_type_for (etype
);
4752 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4753 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4754 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4755 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4757 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4766 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4767 type, TYPE, return an expression to test if EXP is in (or out of, depending
4768 on IN_P) the range. Return 0 if the test couldn't be created. */
4771 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4772 tree low
, tree high
)
4774 tree etype
= TREE_TYPE (exp
), mask
, value
;
4776 /* Disable this optimization for function pointer expressions
4777 on targets that require function pointer canonicalization. */
4778 if (targetm
.have_canonicalize_funcptr_for_compare ()
4779 && TREE_CODE (etype
) == POINTER_TYPE
4780 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4785 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4787 return invert_truthvalue_loc (loc
, value
);
4792 if (low
== 0 && high
== 0)
4793 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4796 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4797 fold_convert_loc (loc
, etype
, high
));
4800 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4801 fold_convert_loc (loc
, etype
, low
));
4803 if (operand_equal_p (low
, high
, 0))
4804 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4805 fold_convert_loc (loc
, etype
, low
));
4807 if (TREE_CODE (exp
) == BIT_AND_EXPR
4808 && maskable_range_p (low
, high
, etype
, &mask
, &value
))
4809 return fold_build2_loc (loc
, EQ_EXPR
, type
,
4810 fold_build2_loc (loc
, BIT_AND_EXPR
, etype
,
4814 if (integer_zerop (low
))
4816 if (! TYPE_UNSIGNED (etype
))
4818 etype
= unsigned_type_for (etype
);
4819 high
= fold_convert_loc (loc
, etype
, high
);
4820 exp
= fold_convert_loc (loc
, etype
, exp
);
4822 return build_range_check (loc
, type
, exp
, 1, 0, high
);
4825 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4826 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4828 int prec
= TYPE_PRECISION (etype
);
4830 if (wi::mask
<widest_int
> (prec
- 1, false) == wi::to_widest (high
))
4832 if (TYPE_UNSIGNED (etype
))
4834 tree signed_etype
= signed_type_for (etype
);
4835 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
4837 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
4839 etype
= signed_etype
;
4840 exp
= fold_convert_loc (loc
, etype
, exp
);
4842 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
4843 build_int_cst (etype
, 0));
4847 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4848 This requires wrap-around arithmetics for the type of the expression. */
4849 etype
= range_check_type (etype
);
4850 if (etype
== NULL_TREE
)
4853 if (POINTER_TYPE_P (etype
))
4854 etype
= unsigned_type_for (etype
);
4856 high
= fold_convert_loc (loc
, etype
, high
);
4857 low
= fold_convert_loc (loc
, etype
, low
);
4858 exp
= fold_convert_loc (loc
, etype
, exp
);
4860 value
= const_binop (MINUS_EXPR
, high
, low
);
4862 if (value
!= 0 && !TREE_OVERFLOW (value
))
4863 return build_range_check (loc
, type
,
4864 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
4865 1, build_int_cst (etype
, 0), value
);
4870 /* Return the predecessor of VAL in its type, handling the infinite case. */
4873 range_predecessor (tree val
)
4875 tree type
= TREE_TYPE (val
);
4877 if (INTEGRAL_TYPE_P (type
)
4878 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
4881 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
4882 build_int_cst (TREE_TYPE (val
), 1), 0);
4885 /* Return the successor of VAL in its type, handling the infinite case. */
4888 range_successor (tree val
)
4890 tree type
= TREE_TYPE (val
);
4892 if (INTEGRAL_TYPE_P (type
)
4893 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
4896 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
4897 build_int_cst (TREE_TYPE (val
), 1), 0);
4900 /* Given two ranges, see if we can merge them into one. Return 1 if we
4901 can, 0 if we can't. Set the output range into the specified parameters. */
4904 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
4905 tree high0
, int in1_p
, tree low1
, tree high1
)
4913 int lowequal
= ((low0
== 0 && low1
== 0)
4914 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4915 low0
, 0, low1
, 0)));
4916 int highequal
= ((high0
== 0 && high1
== 0)
4917 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4918 high0
, 1, high1
, 1)));
4920 /* Make range 0 be the range that starts first, or ends last if they
4921 start at the same value. Swap them if it isn't. */
4922 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4925 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4926 high1
, 1, high0
, 1))))
4928 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
4929 tem
= low0
, low0
= low1
, low1
= tem
;
4930 tem
= high0
, high0
= high1
, high1
= tem
;
4933 /* Now flag two cases, whether the ranges are disjoint or whether the
4934 second range is totally subsumed in the first. Note that the tests
4935 below are simplified by the ones above. */
4936 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
4937 high0
, 1, low1
, 0));
4938 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4939 high1
, 1, high0
, 1));
4941 /* We now have four cases, depending on whether we are including or
4942 excluding the two ranges. */
4945 /* If they don't overlap, the result is false. If the second range
4946 is a subset it is the result. Otherwise, the range is from the start
4947 of the second to the end of the first. */
4949 in_p
= 0, low
= high
= 0;
4951 in_p
= 1, low
= low1
, high
= high1
;
4953 in_p
= 1, low
= low1
, high
= high0
;
4956 else if (in0_p
&& ! in1_p
)
4958 /* If they don't overlap, the result is the first range. If they are
4959 equal, the result is false. If the second range is a subset of the
4960 first, and the ranges begin at the same place, we go from just after
4961 the end of the second range to the end of the first. If the second
4962 range is not a subset of the first, or if it is a subset and both
4963 ranges end at the same place, the range starts at the start of the
4964 first range and ends just before the second range.
4965 Otherwise, we can't describe this as a single range. */
4967 in_p
= 1, low
= low0
, high
= high0
;
4968 else if (lowequal
&& highequal
)
4969 in_p
= 0, low
= high
= 0;
4970 else if (subset
&& lowequal
)
4972 low
= range_successor (high1
);
4977 /* We are in the weird situation where high0 > high1 but
4978 high1 has no successor. Punt. */
4982 else if (! subset
|| highequal
)
4985 high
= range_predecessor (low1
);
4989 /* low0 < low1 but low1 has no predecessor. Punt. */
4997 else if (! in0_p
&& in1_p
)
4999 /* If they don't overlap, the result is the second range. If the second
5000 is a subset of the first, the result is false. Otherwise,
5001 the range starts just after the first range and ends at the
5002 end of the second. */
5004 in_p
= 1, low
= low1
, high
= high1
;
5005 else if (subset
|| highequal
)
5006 in_p
= 0, low
= high
= 0;
5009 low
= range_successor (high0
);
5014 /* high1 > high0 but high0 has no successor. Punt. */
5022 /* The case where we are excluding both ranges. Here the complex case
5023 is if they don't overlap. In that case, the only time we have a
5024 range is if they are adjacent. If the second is a subset of the
5025 first, the result is the first. Otherwise, the range to exclude
5026 starts at the beginning of the first range and ends at the end of the
5030 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5031 range_successor (high0
),
5033 in_p
= 0, low
= low0
, high
= high1
;
5036 /* Canonicalize - [min, x] into - [-, x]. */
5037 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
5038 switch (TREE_CODE (TREE_TYPE (low0
)))
5041 if (TYPE_PRECISION (TREE_TYPE (low0
))
5042 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0
))))
5046 if (tree_int_cst_equal (low0
,
5047 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
5051 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
5052 && integer_zerop (low0
))
5059 /* Canonicalize - [x, max] into - [x, -]. */
5060 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
5061 switch (TREE_CODE (TREE_TYPE (high1
)))
5064 if (TYPE_PRECISION (TREE_TYPE (high1
))
5065 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1
))))
5069 if (tree_int_cst_equal (high1
,
5070 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
5074 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
5075 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
5077 build_int_cst (TREE_TYPE (high1
), 1),
5085 /* The ranges might be also adjacent between the maximum and
5086 minimum values of the given type. For
5087 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5088 return + [x + 1, y - 1]. */
5089 if (low0
== 0 && high1
== 0)
5091 low
= range_successor (high0
);
5092 high
= range_predecessor (low1
);
5093 if (low
== 0 || high
== 0)
5103 in_p
= 0, low
= low0
, high
= high0
;
5105 in_p
= 0, low
= low0
, high
= high1
;
5108 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5113 /* Subroutine of fold, looking inside expressions of the form
5114 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5115 of the COND_EXPR. This function is being used also to optimize
5116 A op B ? C : A, by reversing the comparison first.
5118 Return a folded expression whose code is not a COND_EXPR
5119 anymore, or NULL_TREE if no folding opportunity is found. */
5122 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5123 tree arg0
, tree arg1
, tree arg2
)
5125 enum tree_code comp_code
= TREE_CODE (arg0
);
5126 tree arg00
= TREE_OPERAND (arg0
, 0);
5127 tree arg01
= TREE_OPERAND (arg0
, 1);
5128 tree arg1_type
= TREE_TYPE (arg1
);
5134 /* If we have A op 0 ? A : -A, consider applying the following
5137 A == 0? A : -A same as -A
5138 A != 0? A : -A same as A
5139 A >= 0? A : -A same as abs (A)
5140 A > 0? A : -A same as abs (A)
5141 A <= 0? A : -A same as -abs (A)
5142 A < 0? A : -A same as -abs (A)
5144 None of these transformations work for modes with signed
5145 zeros. If A is +/-0, the first two transformations will
5146 change the sign of the result (from +0 to -0, or vice
5147 versa). The last four will fix the sign of the result,
5148 even though the original expressions could be positive or
5149 negative, depending on the sign of A.
5151 Note that all these transformations are correct if A is
5152 NaN, since the two alternatives (A and -A) are also NaNs. */
5153 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5154 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5155 ? real_zerop (arg01
)
5156 : integer_zerop (arg01
))
5157 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5158 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5159 /* In the case that A is of the form X-Y, '-A' (arg2) may
5160 have already been folded to Y-X, check for that. */
5161 || (TREE_CODE (arg1
) == MINUS_EXPR
5162 && TREE_CODE (arg2
) == MINUS_EXPR
5163 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5164 TREE_OPERAND (arg2
, 1), 0)
5165 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5166 TREE_OPERAND (arg2
, 0), 0))))
5171 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5172 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5175 return fold_convert_loc (loc
, type
, arg1
);
5178 if (flag_trapping_math
)
5183 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5185 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5186 return fold_convert_loc (loc
, type
, tem
);
5189 if (flag_trapping_math
)
5194 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5196 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5197 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5199 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5203 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5204 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5205 both transformations are correct when A is NaN: A != 0
5206 is then true, and A == 0 is false. */
5208 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5209 && integer_zerop (arg01
) && integer_zerop (arg2
))
5211 if (comp_code
== NE_EXPR
)
5212 return fold_convert_loc (loc
, type
, arg1
);
5213 else if (comp_code
== EQ_EXPR
)
5214 return build_zero_cst (type
);
5217 /* Try some transformations of A op B ? A : B.
5219 A == B? A : B same as B
5220 A != B? A : B same as A
5221 A >= B? A : B same as max (A, B)
5222 A > B? A : B same as max (B, A)
5223 A <= B? A : B same as min (A, B)
5224 A < B? A : B same as min (B, A)
5226 As above, these transformations don't work in the presence
5227 of signed zeros. For example, if A and B are zeros of
5228 opposite sign, the first two transformations will change
5229 the sign of the result. In the last four, the original
5230 expressions give different results for (A=+0, B=-0) and
5231 (A=-0, B=+0), but the transformed expressions do not.
5233 The first two transformations are correct if either A or B
5234 is a NaN. In the first transformation, the condition will
5235 be false, and B will indeed be chosen. In the case of the
5236 second transformation, the condition A != B will be true,
5237 and A will be chosen.
5239 The conversions to max() and min() are not correct if B is
5240 a number and A is not. The conditions in the original
5241 expressions will be false, so all four give B. The min()
5242 and max() versions would give a NaN instead. */
5243 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5244 && operand_equal_for_comparison_p (arg01
, arg2
)
5245 /* Avoid these transformations if the COND_EXPR may be used
5246 as an lvalue in the C++ front-end. PR c++/19199. */
5248 || VECTOR_TYPE_P (type
)
5249 || (! lang_GNU_CXX ()
5250 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5251 || ! maybe_lvalue_p (arg1
)
5252 || ! maybe_lvalue_p (arg2
)))
5254 tree comp_op0
= arg00
;
5255 tree comp_op1
= arg01
;
5256 tree comp_type
= TREE_TYPE (comp_op0
);
5261 return fold_convert_loc (loc
, type
, arg2
);
5263 return fold_convert_loc (loc
, type
, arg1
);
5268 /* In C++ a ?: expression can be an lvalue, so put the
5269 operand which will be used if they are equal first
5270 so that we can convert this back to the
5271 corresponding COND_EXPR. */
5272 if (!HONOR_NANS (arg1
))
5274 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5275 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5276 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5277 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5278 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5279 comp_op1
, comp_op0
);
5280 return fold_convert_loc (loc
, type
, tem
);
5287 if (!HONOR_NANS (arg1
))
5289 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5290 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5291 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5292 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5293 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5294 comp_op1
, comp_op0
);
5295 return fold_convert_loc (loc
, type
, tem
);
5299 if (!HONOR_NANS (arg1
))
5300 return fold_convert_loc (loc
, type
, arg2
);
5303 if (!HONOR_NANS (arg1
))
5304 return fold_convert_loc (loc
, type
, arg1
);
5307 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5317 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5318 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5319 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5323 /* EXP is some logical combination of boolean tests. See if we can
5324 merge it into some range test. Return the new tree if so. */
5327 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5330 int or_op
= (code
== TRUTH_ORIF_EXPR
5331 || code
== TRUTH_OR_EXPR
);
5332 int in0_p
, in1_p
, in_p
;
5333 tree low0
, low1
, low
, high0
, high1
, high
;
5334 bool strict_overflow_p
= false;
5336 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5337 "when simplifying range test");
5339 if (!INTEGRAL_TYPE_P (type
))
5342 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5343 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5345 /* If this is an OR operation, invert both sides; we will invert
5346 again at the end. */
5348 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5350 /* If both expressions are the same, if we can merge the ranges, and we
5351 can build the range test, return it or it inverted. If one of the
5352 ranges is always true or always false, consider it to be the same
5353 expression as the other. */
5354 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5355 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5357 && 0 != (tem
= (build_range_check (loc
, type
,
5359 : rhs
!= 0 ? rhs
: integer_zero_node
,
5362 if (strict_overflow_p
)
5363 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5364 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5367 /* On machines where the branch cost is expensive, if this is a
5368 short-circuited branch and the underlying object on both sides
5369 is the same, make a non-short-circuit operation. */
5370 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5371 && !flag_sanitize_coverage
5372 && lhs
!= 0 && rhs
!= 0
5373 && (code
== TRUTH_ANDIF_EXPR
5374 || code
== TRUTH_ORIF_EXPR
)
5375 && operand_equal_p (lhs
, rhs
, 0))
5377 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5378 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5379 which cases we can't do this. */
5380 if (simple_operand_p (lhs
))
5381 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5382 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5385 else if (!lang_hooks
.decls
.global_bindings_p ()
5386 && !CONTAINS_PLACEHOLDER_P (lhs
))
5388 tree common
= save_expr (lhs
);
5390 if (0 != (lhs
= build_range_check (loc
, type
, common
,
5391 or_op
? ! in0_p
: in0_p
,
5393 && (0 != (rhs
= build_range_check (loc
, type
, common
,
5394 or_op
? ! in1_p
: in1_p
,
5397 if (strict_overflow_p
)
5398 fold_overflow_warning (warnmsg
,
5399 WARN_STRICT_OVERFLOW_COMPARISON
);
5400 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5401 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5410 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5411 bit value. Arrange things so the extra bits will be set to zero if and
5412 only if C is signed-extended to its full width. If MASK is nonzero,
5413 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5416 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5418 tree type
= TREE_TYPE (c
);
5419 int modesize
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type
));
5422 if (p
== modesize
|| unsignedp
)
5425 /* We work by getting just the sign bit into the low-order bit, then
5426 into the high-order bit, then sign-extend. We then XOR that value
5428 temp
= build_int_cst (TREE_TYPE (c
),
5429 wi::extract_uhwi (wi::to_wide (c
), p
- 1, 1));
5431 /* We must use a signed type in order to get an arithmetic right shift.
5432 However, we must also avoid introducing accidental overflows, so that
5433 a subsequent call to integer_zerop will work. Hence we must
5434 do the type conversion here. At this point, the constant is either
5435 zero or one, and the conversion to a signed type can never overflow.
5436 We could get an overflow if this conversion is done anywhere else. */
5437 if (TYPE_UNSIGNED (type
))
5438 temp
= fold_convert (signed_type_for (type
), temp
);
5440 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5441 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5443 temp
= const_binop (BIT_AND_EXPR
, temp
,
5444 fold_convert (TREE_TYPE (c
), mask
));
5445 /* If necessary, convert the type back to match the type of C. */
5446 if (TYPE_UNSIGNED (type
))
5447 temp
= fold_convert (type
, temp
);
5449 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5452 /* For an expression that has the form
5456 we can drop one of the inner expressions and simplify to
5460 LOC is the location of the resulting expression. OP is the inner
5461 logical operation; the left-hand side in the examples above, while CMPOP
5462 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5463 removing a condition that guards another, as in
5464 (A != NULL && A->...) || A == NULL
5465 which we must not transform. If RHS_ONLY is true, only eliminate the
5466 right-most operand of the inner logical operation. */
5469 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5472 tree type
= TREE_TYPE (cmpop
);
5473 enum tree_code code
= TREE_CODE (cmpop
);
5474 enum tree_code truthop_code
= TREE_CODE (op
);
5475 tree lhs
= TREE_OPERAND (op
, 0);
5476 tree rhs
= TREE_OPERAND (op
, 1);
5477 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5478 enum tree_code rhs_code
= TREE_CODE (rhs
);
5479 enum tree_code lhs_code
= TREE_CODE (lhs
);
5480 enum tree_code inv_code
;
5482 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5485 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5488 if (rhs_code
== truthop_code
)
5490 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5491 if (newrhs
!= NULL_TREE
)
5494 rhs_code
= TREE_CODE (rhs
);
5497 if (lhs_code
== truthop_code
&& !rhs_only
)
5499 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5500 if (newlhs
!= NULL_TREE
)
5503 lhs_code
= TREE_CODE (lhs
);
5507 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5508 if (inv_code
== rhs_code
5509 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5510 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5512 if (!rhs_only
&& inv_code
== lhs_code
5513 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5514 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5516 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5517 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5522 /* Find ways of folding logical expressions of LHS and RHS:
5523 Try to merge two comparisons to the same innermost item.
5524 Look for range tests like "ch >= '0' && ch <= '9'".
5525 Look for combinations of simple terms on machines with expensive branches
5526 and evaluate the RHS unconditionally.
5528 For example, if we have p->a == 2 && p->b == 4 and we can make an
5529 object large enough to span both A and B, we can do this with a comparison
5530 against the object ANDed with the a mask.
5532 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5533 operations to do this with one comparison.
5535 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5536 function and the one above.
5538 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5539 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5541 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5544 We return the simplified tree or 0 if no optimization is possible. */
5547 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5550 /* If this is the "or" of two comparisons, we can do something if
5551 the comparisons are NE_EXPR. If this is the "and", we can do something
5552 if the comparisons are EQ_EXPR. I.e.,
5553 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5555 WANTED_CODE is this operation code. For single bit fields, we can
5556 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5557 comparison for one-bit fields. */
5559 enum tree_code wanted_code
;
5560 enum tree_code lcode
, rcode
;
5561 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5562 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5563 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5564 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5565 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5566 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5567 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5568 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5569 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5570 scalar_int_mode lnmode
, rnmode
;
5571 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5572 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5573 tree l_const
, r_const
;
5574 tree lntype
, rntype
, result
;
5575 HOST_WIDE_INT first_bit
, end_bit
;
5578 /* Start by getting the comparison codes. Fail if anything is volatile.
5579 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5580 it were surrounded with a NE_EXPR. */
5582 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5585 lcode
= TREE_CODE (lhs
);
5586 rcode
= TREE_CODE (rhs
);
5588 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5590 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5591 build_int_cst (TREE_TYPE (lhs
), 0));
5595 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5597 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5598 build_int_cst (TREE_TYPE (rhs
), 0));
5602 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5603 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5606 ll_arg
= TREE_OPERAND (lhs
, 0);
5607 lr_arg
= TREE_OPERAND (lhs
, 1);
5608 rl_arg
= TREE_OPERAND (rhs
, 0);
5609 rr_arg
= TREE_OPERAND (rhs
, 1);
5611 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5612 if (simple_operand_p (ll_arg
)
5613 && simple_operand_p (lr_arg
))
5615 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5616 && operand_equal_p (lr_arg
, rr_arg
, 0))
5618 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5619 truth_type
, ll_arg
, lr_arg
);
5623 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5624 && operand_equal_p (lr_arg
, rl_arg
, 0))
5626 result
= combine_comparisons (loc
, code
, lcode
,
5627 swap_tree_comparison (rcode
),
5628 truth_type
, ll_arg
, lr_arg
);
5634 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5635 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5637 /* If the RHS can be evaluated unconditionally and its operands are
5638 simple, it wins to evaluate the RHS unconditionally on machines
5639 with expensive branches. In this case, this isn't a comparison
5640 that can be merged. */
5642 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5644 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5645 && simple_operand_p (rl_arg
)
5646 && simple_operand_p (rr_arg
))
5648 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5649 if (code
== TRUTH_OR_EXPR
5650 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5651 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5652 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5653 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5654 return build2_loc (loc
, NE_EXPR
, truth_type
,
5655 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5657 build_int_cst (TREE_TYPE (ll_arg
), 0));
5659 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5660 if (code
== TRUTH_AND_EXPR
5661 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5662 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5663 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5664 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5665 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5666 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5668 build_int_cst (TREE_TYPE (ll_arg
), 0));
5671 /* See if the comparisons can be merged. Then get all the parameters for
5674 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5675 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5678 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5680 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5681 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5682 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5683 &ll_mask
, &ll_and_mask
);
5684 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5685 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5686 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5687 &lr_mask
, &lr_and_mask
);
5688 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5689 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5690 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5691 &rl_mask
, &rl_and_mask
);
5692 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5693 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5694 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5695 &rr_mask
, &rr_and_mask
);
5697 /* It must be true that the inner operation on the lhs of each
5698 comparison must be the same if we are to be able to do anything.
5699 Then see if we have constants. If not, the same must be true for
5702 || ll_reversep
!= rl_reversep
5703 || ll_inner
== 0 || rl_inner
== 0
5704 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5707 if (TREE_CODE (lr_arg
) == INTEGER_CST
5708 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5710 l_const
= lr_arg
, r_const
= rr_arg
;
5711 lr_reversep
= ll_reversep
;
5713 else if (lr_reversep
!= rr_reversep
5714 || lr_inner
== 0 || rr_inner
== 0
5715 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5718 l_const
= r_const
= 0;
5720 /* If either comparison code is not correct for our logical operation,
5721 fail. However, we can convert a one-bit comparison against zero into
5722 the opposite comparison against that bit being set in the field. */
5724 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5725 if (lcode
!= wanted_code
)
5727 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5729 /* Make the left operand unsigned, since we are only interested
5730 in the value of one bit. Otherwise we are doing the wrong
5739 /* This is analogous to the code for l_const above. */
5740 if (rcode
!= wanted_code
)
5742 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5751 /* See if we can find a mode that contains both fields being compared on
5752 the left. If we can't, fail. Otherwise, update all constants and masks
5753 to be relative to a field of that size. */
5754 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5755 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5756 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5757 TYPE_ALIGN (TREE_TYPE (ll_inner
)), BITS_PER_WORD
,
5758 volatilep
, &lnmode
))
5761 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5762 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5763 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5764 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5766 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5768 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5769 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5772 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5773 size_int (xll_bitpos
));
5774 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5775 size_int (xrl_bitpos
));
5779 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5780 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5781 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5782 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5783 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5786 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5788 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5793 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5794 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5795 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
5796 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5797 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5800 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5802 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5806 /* If the right sides are not constant, do the same for it. Also,
5807 disallow this optimization if a size or signedness mismatch occurs
5808 between the left and right sides. */
5811 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5812 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5813 /* Make sure the two fields on the right
5814 correspond to the left without being swapped. */
5815 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5818 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5819 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5820 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5821 TYPE_ALIGN (TREE_TYPE (lr_inner
)), BITS_PER_WORD
,
5822 volatilep
, &rnmode
))
5825 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5826 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5827 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5828 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5830 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5832 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5833 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5836 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5838 size_int (xlr_bitpos
));
5839 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5841 size_int (xrr_bitpos
));
5843 /* Make a mask that corresponds to both fields being compared.
5844 Do this for both items being compared. If the operands are the
5845 same size and the bits being compared are in the same position
5846 then we can do this by masking both and comparing the masked
5848 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5849 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
5850 if (lnbitsize
== rnbitsize
5851 && xll_bitpos
== xlr_bitpos
5855 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
5856 lntype
, lnbitsize
, lnbitpos
,
5857 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
5858 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5859 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
5861 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
5862 rntype
, rnbitsize
, rnbitpos
,
5863 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
5864 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
5865 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
5867 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5870 /* There is still another way we can do something: If both pairs of
5871 fields being compared are adjacent, we may be able to make a wider
5872 field containing them both.
5874 Note that we still must mask the lhs/rhs expressions. Furthermore,
5875 the mask must be shifted to account for the shift done by
5876 make_bit_field_ref. */
5877 if (((ll_bitsize
+ ll_bitpos
== rl_bitpos
5878 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
5879 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
5880 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
5888 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
5889 ll_bitsize
+ rl_bitsize
,
5890 MIN (ll_bitpos
, rl_bitpos
),
5891 ll_unsignedp
, ll_reversep
);
5892 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
5893 lr_bitsize
+ rr_bitsize
,
5894 MIN (lr_bitpos
, rr_bitpos
),
5895 lr_unsignedp
, lr_reversep
);
5897 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
5898 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
5899 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
5900 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
5902 /* Convert to the smaller type before masking out unwanted bits. */
5904 if (lntype
!= rntype
)
5906 if (lnbitsize
> rnbitsize
)
5908 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
5909 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
5912 else if (lnbitsize
< rnbitsize
)
5914 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
5915 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
5920 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
5921 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
5923 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
5924 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
5926 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5932 /* Handle the case of comparisons with constants. If there is something in
5933 common between the masks, those bits of the constants must be the same.
5934 If not, the condition is always false. Test for this to avoid generating
5935 incorrect code below. */
5936 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
5937 if (! integer_zerop (result
)
5938 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
5939 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
5941 if (wanted_code
== NE_EXPR
)
5943 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5944 return constant_boolean_node (true, truth_type
);
5948 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5949 return constant_boolean_node (false, truth_type
);
5956 /* Construct the expression we will return. First get the component
5957 reference we will make. Unless the mask is all ones the width of
5958 that field, perform the mask operation. Then compare with the
5960 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
5961 lntype
, lnbitsize
, lnbitpos
,
5962 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
5964 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5965 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5966 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
5968 return build2_loc (loc
, wanted_code
, truth_type
, result
,
5969 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
5972 /* T is an integer expression that is being multiplied, divided, or taken a
5973 modulus (CODE says which and what kind of divide or modulus) by a
5974 constant C. See if we can eliminate that operation by folding it with
5975 other operations already in T. WIDE_TYPE, if non-null, is a type that
5976 should be used for the computation if wider than our type.
5978 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5979 (X * 2) + (Y * 4). We must, however, be assured that either the original
5980 expression would not overflow or that overflow is undefined for the type
5981 in the language in question.
5983 If we return a non-null expression, it is an equivalent form of the
5984 original computation, but need not be in the original type.
5986 We set *STRICT_OVERFLOW_P to true if the return values depends on
5987 signed overflow being undefined. Otherwise we do not change
5988 *STRICT_OVERFLOW_P. */
5991 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
5992 bool *strict_overflow_p
)
5994 /* To avoid exponential search depth, refuse to allow recursion past
5995 three levels. Beyond that (1) it's highly unlikely that we'll find
5996 something interesting and (2) we've probably processed it before
5997 when we built the inner expression. */
6006 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6013 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6014 bool *strict_overflow_p
)
6016 tree type
= TREE_TYPE (t
);
6017 enum tree_code tcode
= TREE_CODE (t
);
6018 tree ctype
= (wide_type
!= 0
6019 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type
))
6020 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
)))
6021 ? wide_type
: type
);
6023 int same_p
= tcode
== code
;
6024 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6025 bool sub_strict_overflow_p
;
6027 /* Don't deal with constants of zero here; they confuse the code below. */
6028 if (integer_zerop (c
))
6031 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6032 op0
= TREE_OPERAND (t
, 0);
6034 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6035 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6037 /* Note that we need not handle conditional operations here since fold
6038 already handles those cases. So just do arithmetic here. */
6042 /* For a constant, we can always simplify if we are a multiply
6043 or (for divide and modulus) if it is a multiple of our constant. */
6044 if (code
== MULT_EXPR
6045 || wi::multiple_of_p (wi::to_wide (t
), wi::to_wide (c
),
6048 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6049 fold_convert (ctype
, c
));
6050 /* If the multiplication overflowed, we lost information on it.
6051 See PR68142 and PR69845. */
6052 if (TREE_OVERFLOW (tem
))
6058 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6059 /* If op0 is an expression ... */
6060 if ((COMPARISON_CLASS_P (op0
)
6061 || UNARY_CLASS_P (op0
)
6062 || BINARY_CLASS_P (op0
)
6063 || VL_EXP_CLASS_P (op0
)
6064 || EXPRESSION_CLASS_P (op0
))
6065 /* ... and has wrapping overflow, and its type is smaller
6066 than ctype, then we cannot pass through as widening. */
6067 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6068 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6069 && (TYPE_PRECISION (ctype
)
6070 > TYPE_PRECISION (TREE_TYPE (op0
))))
6071 /* ... or this is a truncation (t is narrower than op0),
6072 then we cannot pass through this narrowing. */
6073 || (TYPE_PRECISION (type
)
6074 < TYPE_PRECISION (TREE_TYPE (op0
)))
6075 /* ... or signedness changes for division or modulus,
6076 then we cannot pass through this conversion. */
6077 || (code
!= MULT_EXPR
6078 && (TYPE_UNSIGNED (ctype
)
6079 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6080 /* ... or has undefined overflow while the converted to
6081 type has not, we cannot do the operation in the inner type
6082 as that would introduce undefined overflow. */
6083 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6084 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6085 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6088 /* Pass the constant down and see if we can make a simplification. If
6089 we can, replace this expression with the inner simplification for
6090 possible later conversion to our or some other type. */
6091 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6092 && TREE_CODE (t2
) == INTEGER_CST
6093 && !TREE_OVERFLOW (t2
)
6094 && (0 != (t1
= extract_muldiv (op0
, t2
, code
,
6096 ? ctype
: NULL_TREE
,
6097 strict_overflow_p
))))
6102 /* If widening the type changes it from signed to unsigned, then we
6103 must avoid building ABS_EXPR itself as unsigned. */
6104 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6106 tree cstype
= (*signed_type_for
) (ctype
);
6107 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6110 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6111 return fold_convert (ctype
, t1
);
6115 /* If the constant is negative, we cannot simplify this. */
6116 if (tree_int_cst_sgn (c
) == -1)
6120 /* For division and modulus, type can't be unsigned, as e.g.
6121 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6122 For signed types, even with wrapping overflow, this is fine. */
6123 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6125 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6127 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6130 case MIN_EXPR
: case MAX_EXPR
:
6131 /* If widening the type changes the signedness, then we can't perform
6132 this optimization as that changes the result. */
6133 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6136 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6137 sub_strict_overflow_p
= false;
6138 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6139 &sub_strict_overflow_p
)) != 0
6140 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6141 &sub_strict_overflow_p
)) != 0)
6143 if (tree_int_cst_sgn (c
) < 0)
6144 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6145 if (sub_strict_overflow_p
)
6146 *strict_overflow_p
= true;
6147 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6148 fold_convert (ctype
, t2
));
6152 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6153 /* If the second operand is constant, this is a multiplication
6154 or floor division, by a power of two, so we can treat it that
6155 way unless the multiplier or divisor overflows. Signed
6156 left-shift overflow is implementation-defined rather than
6157 undefined in C90, so do not convert signed left shift into
6159 if (TREE_CODE (op1
) == INTEGER_CST
6160 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6161 /* const_binop may not detect overflow correctly,
6162 so check for it explicitly here. */
6163 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
6165 && 0 != (t1
= fold_convert (ctype
,
6166 const_binop (LSHIFT_EXPR
,
6169 && !TREE_OVERFLOW (t1
))
6170 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6171 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6173 fold_convert (ctype
, op0
),
6175 c
, code
, wide_type
, strict_overflow_p
);
6178 case PLUS_EXPR
: case MINUS_EXPR
:
6179 /* See if we can eliminate the operation on both sides. If we can, we
6180 can return a new PLUS or MINUS. If we can't, the only remaining
6181 cases where we can do anything are if the second operand is a
6183 sub_strict_overflow_p
= false;
6184 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6185 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6186 if (t1
!= 0 && t2
!= 0
6187 && TYPE_OVERFLOW_WRAPS (ctype
)
6188 && (code
== MULT_EXPR
6189 /* If not multiplication, we can only do this if both operands
6190 are divisible by c. */
6191 || (multiple_of_p (ctype
, op0
, c
)
6192 && multiple_of_p (ctype
, op1
, c
))))
6194 if (sub_strict_overflow_p
)
6195 *strict_overflow_p
= true;
6196 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6197 fold_convert (ctype
, t2
));
6200 /* If this was a subtraction, negate OP1 and set it to be an addition.
6201 This simplifies the logic below. */
6202 if (tcode
== MINUS_EXPR
)
6204 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6205 /* If OP1 was not easily negatable, the constant may be OP0. */
6206 if (TREE_CODE (op0
) == INTEGER_CST
)
6208 std::swap (op0
, op1
);
6213 if (TREE_CODE (op1
) != INTEGER_CST
)
6216 /* If either OP1 or C are negative, this optimization is not safe for
6217 some of the division and remainder types while for others we need
6218 to change the code. */
6219 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6221 if (code
== CEIL_DIV_EXPR
)
6222 code
= FLOOR_DIV_EXPR
;
6223 else if (code
== FLOOR_DIV_EXPR
)
6224 code
= CEIL_DIV_EXPR
;
6225 else if (code
!= MULT_EXPR
6226 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6230 /* If it's a multiply or a division/modulus operation of a multiple
6231 of our constant, do the operation and verify it doesn't overflow. */
6232 if (code
== MULT_EXPR
6233 || wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6236 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6237 fold_convert (ctype
, c
));
6238 /* We allow the constant to overflow with wrapping semantics. */
6240 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6246 /* If we have an unsigned type, we cannot widen the operation since it
6247 will change the result if the original computation overflowed. */
6248 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6251 /* The last case is if we are a multiply. In that case, we can
6252 apply the distributive law to commute the multiply and addition
6253 if the multiplication of the constants doesn't overflow
6254 and overflow is defined. With undefined overflow
6255 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6256 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6257 return fold_build2 (tcode
, ctype
,
6258 fold_build2 (code
, ctype
,
6259 fold_convert (ctype
, op0
),
6260 fold_convert (ctype
, c
)),
6266 /* We have a special case here if we are doing something like
6267 (C * 8) % 4 since we know that's zero. */
6268 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6269 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6270 /* If the multiplication can overflow we cannot optimize this. */
6271 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6272 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6273 && wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6276 *strict_overflow_p
= true;
6277 return omit_one_operand (type
, integer_zero_node
, op0
);
6280 /* ... fall through ... */
6282 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6283 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6284 /* If we can extract our operation from the LHS, do so and return a
6285 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6286 do something only if the second operand is a constant. */
6288 && TYPE_OVERFLOW_WRAPS (ctype
)
6289 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6290 strict_overflow_p
)) != 0)
6291 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6292 fold_convert (ctype
, op1
));
6293 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6294 && TYPE_OVERFLOW_WRAPS (ctype
)
6295 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6296 strict_overflow_p
)) != 0)
6297 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6298 fold_convert (ctype
, t1
));
6299 else if (TREE_CODE (op1
) != INTEGER_CST
)
6302 /* If these are the same operation types, we can associate them
6303 assuming no overflow. */
6306 bool overflow_p
= false;
6307 bool overflow_mul_p
;
6308 signop sign
= TYPE_SIGN (ctype
);
6309 unsigned prec
= TYPE_PRECISION (ctype
);
6310 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6311 wi::to_wide (c
, prec
),
6312 sign
, &overflow_mul_p
);
6313 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6315 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6318 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6319 wide_int_to_tree (ctype
, mul
));
6322 /* If these operations "cancel" each other, we have the main
6323 optimizations of this pass, which occur when either constant is a
6324 multiple of the other, in which case we replace this with either an
6325 operation or CODE or TCODE.
6327 If we have an unsigned type, we cannot do this since it will change
6328 the result if the original computation overflowed. */
6329 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6330 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6331 || (tcode
== MULT_EXPR
6332 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6333 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6334 && code
!= MULT_EXPR
)))
6336 if (wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6339 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6340 *strict_overflow_p
= true;
6341 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6342 fold_convert (ctype
,
6343 const_binop (TRUNC_DIV_EXPR
,
6346 else if (wi::multiple_of_p (wi::to_wide (c
), wi::to_wide (op1
),
6349 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6350 *strict_overflow_p
= true;
6351 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6352 fold_convert (ctype
,
6353 const_binop (TRUNC_DIV_EXPR
,
6366 /* Return a node which has the indicated constant VALUE (either 0 or
6367 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6368 and is of the indicated TYPE. */
6371 constant_boolean_node (bool value
, tree type
)
6373 if (type
== integer_type_node
)
6374 return value
? integer_one_node
: integer_zero_node
;
6375 else if (type
== boolean_type_node
)
6376 return value
? boolean_true_node
: boolean_false_node
;
6377 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6378 return build_vector_from_val (type
,
6379 build_int_cst (TREE_TYPE (type
),
6382 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6386 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6387 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6388 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6389 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6390 COND is the first argument to CODE; otherwise (as in the example
6391 given here), it is the second argument. TYPE is the type of the
6392 original expression. Return NULL_TREE if no simplification is
6396 fold_binary_op_with_conditional_arg (location_t loc
,
6397 enum tree_code code
,
6398 tree type
, tree op0
, tree op1
,
6399 tree cond
, tree arg
, int cond_first_p
)
6401 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6402 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6403 tree test
, true_value
, false_value
;
6404 tree lhs
= NULL_TREE
;
6405 tree rhs
= NULL_TREE
;
6406 enum tree_code cond_code
= COND_EXPR
;
6408 if (TREE_CODE (cond
) == COND_EXPR
6409 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6411 test
= TREE_OPERAND (cond
, 0);
6412 true_value
= TREE_OPERAND (cond
, 1);
6413 false_value
= TREE_OPERAND (cond
, 2);
6414 /* If this operand throws an expression, then it does not make
6415 sense to try to perform a logical or arithmetic operation
6417 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6419 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6422 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6423 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6425 tree testtype
= TREE_TYPE (cond
);
6427 true_value
= constant_boolean_node (true, testtype
);
6428 false_value
= constant_boolean_node (false, testtype
);
6431 /* Detect the case of mixing vector and scalar types - bail out. */
6434 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6435 cond_code
= VEC_COND_EXPR
;
6437 /* This transformation is only worthwhile if we don't have to wrap ARG
6438 in a SAVE_EXPR and the operation can be simplified without recursing
6439 on at least one of the branches once its pushed inside the COND_EXPR. */
6440 if (!TREE_CONSTANT (arg
)
6441 && (TREE_SIDE_EFFECTS (arg
)
6442 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6443 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6446 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6449 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6451 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6453 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6457 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6459 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6461 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6464 /* Check that we have simplified at least one of the branches. */
6465 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6468 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6472 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6474 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6475 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6476 ADDEND is the same as X.
6478 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6479 and finite. The problematic cases are when X is zero, and its mode
6480 has signed zeros. In the case of rounding towards -infinity,
6481 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6482 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6485 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6487 if (!real_zerop (addend
))
6490 /* Don't allow the fold with -fsignaling-nans. */
6491 if (HONOR_SNANS (element_mode (type
)))
6494 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6495 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6498 /* In a vector or complex, we would need to check the sign of all zeros. */
6499 if (TREE_CODE (addend
) != REAL_CST
)
6502 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6503 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6506 /* The mode has signed zeros, and we have to honor their sign.
6507 In this situation, there is only one case we can return true for.
6508 X - 0 is the same as X unless rounding towards -infinity is
6510 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6513 /* Subroutine of match.pd that optimizes comparisons of a division by
6514 a nonzero integer constant against an integer constant, i.e.
6517 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6518 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6521 fold_div_compare (enum tree_code code
, tree c1
, tree c2
, tree
*lo
,
6522 tree
*hi
, bool *neg_overflow
)
6524 tree prod
, tmp
, type
= TREE_TYPE (c1
);
6525 signop sign
= TYPE_SIGN (type
);
6528 /* We have to do this the hard way to detect unsigned overflow.
6529 prod = int_const_binop (MULT_EXPR, c1, c2); */
6530 wide_int val
= wi::mul (wi::to_wide (c1
), wi::to_wide (c2
), sign
, &overflow
);
6531 prod
= force_fit_type (type
, val
, -1, overflow
);
6532 *neg_overflow
= false;
6534 if (sign
== UNSIGNED
)
6536 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6539 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6540 val
= wi::add (wi::to_wide (prod
), wi::to_wide (tmp
), sign
, &overflow
);
6541 *hi
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (prod
));
6543 else if (tree_int_cst_sgn (c1
) >= 0)
6545 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6546 switch (tree_int_cst_sgn (c2
))
6549 *neg_overflow
= true;
6550 *lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6555 *lo
= fold_negate_const (tmp
, type
);
6560 *hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6570 /* A negative divisor reverses the relational operators. */
6571 code
= swap_tree_comparison (code
);
6573 tmp
= int_const_binop (PLUS_EXPR
, c1
, build_int_cst (type
, 1));
6574 switch (tree_int_cst_sgn (c2
))
6577 *hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6582 *hi
= fold_negate_const (tmp
, type
);
6587 *neg_overflow
= true;
6588 *lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6597 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
6600 if (TREE_OVERFLOW (*lo
)
6601 || operand_equal_p (*lo
, TYPE_MIN_VALUE (type
), 0))
6603 if (TREE_OVERFLOW (*hi
)
6604 || operand_equal_p (*hi
, TYPE_MAX_VALUE (type
), 0))
6611 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6612 equality/inequality test, then return a simplified form of the test
6613 using a sign testing. Otherwise return NULL. TYPE is the desired
6617 fold_single_bit_test_into_sign_test (location_t loc
,
6618 enum tree_code code
, tree arg0
, tree arg1
,
6621 /* If this is testing a single bit, we can optimize the test. */
6622 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6623 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6624 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6626 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6627 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6628 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6630 if (arg00
!= NULL_TREE
6631 /* This is only a win if casting to a signed type is cheap,
6632 i.e. when arg00's type is not a partial mode. */
6633 && type_has_mode_precision_p (TREE_TYPE (arg00
)))
6635 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6636 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6638 fold_convert_loc (loc
, stype
, arg00
),
6639 build_int_cst (stype
, 0));
6646 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6647 equality/inequality test, then return a simplified form of
6648 the test using shifts and logical operations. Otherwise return
6649 NULL. TYPE is the desired result type. */
6652 fold_single_bit_test (location_t loc
, enum tree_code code
,
6653 tree arg0
, tree arg1
, tree result_type
)
6655 /* If this is testing a single bit, we can optimize the test. */
6656 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6657 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6658 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6660 tree inner
= TREE_OPERAND (arg0
, 0);
6661 tree type
= TREE_TYPE (arg0
);
6662 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6663 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
6665 tree signed_type
, unsigned_type
, intermediate_type
;
6668 /* First, see if we can fold the single bit test into a sign-bit
6670 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6675 /* Otherwise we have (A & C) != 0 where C is a single bit,
6676 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6677 Similarly for (A & C) == 0. */
6679 /* If INNER is a right shift of a constant and it plus BITNUM does
6680 not overflow, adjust BITNUM and INNER. */
6681 if (TREE_CODE (inner
) == RSHIFT_EXPR
6682 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6683 && bitnum
< TYPE_PRECISION (type
)
6684 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner
, 1)),
6685 TYPE_PRECISION (type
) - bitnum
))
6687 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6688 inner
= TREE_OPERAND (inner
, 0);
6691 /* If we are going to be able to omit the AND below, we must do our
6692 operations as unsigned. If we must use the AND, we have a choice.
6693 Normally unsigned is faster, but for some machines signed is. */
6694 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
6695 && !flag_syntax_only
) ? 0 : 1;
6697 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6698 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6699 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6700 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6703 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6704 inner
, size_int (bitnum
));
6706 one
= build_int_cst (intermediate_type
, 1);
6708 if (code
== EQ_EXPR
)
6709 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6711 /* Put the AND last so it can combine with more things. */
6712 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6714 /* Make sure to return the proper type. */
6715 inner
= fold_convert_loc (loc
, result_type
, inner
);
6722 /* Test whether it is preferable two swap two operands, ARG0 and
6723 ARG1, for example because ARG0 is an integer constant and ARG1
6727 tree_swap_operands_p (const_tree arg0
, const_tree arg1
)
6729 if (CONSTANT_CLASS_P (arg1
))
6731 if (CONSTANT_CLASS_P (arg0
))
6737 if (TREE_CONSTANT (arg1
))
6739 if (TREE_CONSTANT (arg0
))
6742 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6743 for commutative and comparison operators. Ensuring a canonical
6744 form allows the optimizers to find additional redundancies without
6745 having to explicitly check for both orderings. */
6746 if (TREE_CODE (arg0
) == SSA_NAME
6747 && TREE_CODE (arg1
) == SSA_NAME
6748 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6751 /* Put SSA_NAMEs last. */
6752 if (TREE_CODE (arg1
) == SSA_NAME
)
6754 if (TREE_CODE (arg0
) == SSA_NAME
)
6757 /* Put variables last. */
6767 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6768 means A >= Y && A != MAX, but in this case we know that
6769 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6772 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6774 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6776 if (TREE_CODE (bound
) == LT_EXPR
)
6777 a
= TREE_OPERAND (bound
, 0);
6778 else if (TREE_CODE (bound
) == GT_EXPR
)
6779 a
= TREE_OPERAND (bound
, 1);
6783 typea
= TREE_TYPE (a
);
6784 if (!INTEGRAL_TYPE_P (typea
)
6785 && !POINTER_TYPE_P (typea
))
6788 if (TREE_CODE (ineq
) == LT_EXPR
)
6790 a1
= TREE_OPERAND (ineq
, 1);
6791 y
= TREE_OPERAND (ineq
, 0);
6793 else if (TREE_CODE (ineq
) == GT_EXPR
)
6795 a1
= TREE_OPERAND (ineq
, 0);
6796 y
= TREE_OPERAND (ineq
, 1);
6801 if (TREE_TYPE (a1
) != typea
)
6804 if (POINTER_TYPE_P (typea
))
6806 /* Convert the pointer types into integer before taking the difference. */
6807 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
6808 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
6809 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
6812 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
6814 if (!diff
|| !integer_onep (diff
))
6817 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
6820 /* Fold a sum or difference of at least one multiplication.
6821 Returns the folded tree or NULL if no simplification could be made. */
6824 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
6825 tree arg0
, tree arg1
)
6827 tree arg00
, arg01
, arg10
, arg11
;
6828 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
6830 /* (A * C) +- (B * C) -> (A+-B) * C.
6831 (A * C) +- A -> A * (C+-1).
6832 We are most concerned about the case where C is a constant,
6833 but other combinations show up during loop reduction. Since
6834 it is not difficult, try all four possibilities. */
6836 if (TREE_CODE (arg0
) == MULT_EXPR
)
6838 arg00
= TREE_OPERAND (arg0
, 0);
6839 arg01
= TREE_OPERAND (arg0
, 1);
6841 else if (TREE_CODE (arg0
) == INTEGER_CST
)
6843 arg00
= build_one_cst (type
);
6848 /* We cannot generate constant 1 for fract. */
6849 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
6852 arg01
= build_one_cst (type
);
6854 if (TREE_CODE (arg1
) == MULT_EXPR
)
6856 arg10
= TREE_OPERAND (arg1
, 0);
6857 arg11
= TREE_OPERAND (arg1
, 1);
6859 else if (TREE_CODE (arg1
) == INTEGER_CST
)
6861 arg10
= build_one_cst (type
);
6862 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6863 the purpose of this canonicalization. */
6864 if (wi::neg_p (wi::to_wide (arg1
), TYPE_SIGN (TREE_TYPE (arg1
)))
6865 && negate_expr_p (arg1
)
6866 && code
== PLUS_EXPR
)
6868 arg11
= negate_expr (arg1
);
6876 /* We cannot generate constant 1 for fract. */
6877 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
6880 arg11
= build_one_cst (type
);
6884 /* Prefer factoring a common non-constant. */
6885 if (operand_equal_p (arg00
, arg10
, 0))
6886 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
6887 else if (operand_equal_p (arg01
, arg11
, 0))
6888 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
6889 else if (operand_equal_p (arg00
, arg11
, 0))
6890 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
6891 else if (operand_equal_p (arg01
, arg10
, 0))
6892 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
6894 /* No identical multiplicands; see if we can find a common
6895 power-of-two factor in non-power-of-two multiplies. This
6896 can help in multi-dimensional array access. */
6897 else if (tree_fits_shwi_p (arg01
)
6898 && tree_fits_shwi_p (arg11
))
6900 HOST_WIDE_INT int01
, int11
, tmp
;
6903 int01
= tree_to_shwi (arg01
);
6904 int11
= tree_to_shwi (arg11
);
6906 /* Move min of absolute values to int11. */
6907 if (absu_hwi (int01
) < absu_hwi (int11
))
6909 tmp
= int01
, int01
= int11
, int11
= tmp
;
6910 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
6917 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
6918 /* The remainder should not be a constant, otherwise we
6919 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6920 increased the number of multiplications necessary. */
6921 && TREE_CODE (arg10
) != INTEGER_CST
)
6923 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
6924 build_int_cst (TREE_TYPE (arg00
),
6929 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
6936 if (! INTEGRAL_TYPE_P (type
)
6937 || TYPE_OVERFLOW_WRAPS (type
)
6938 /* We are neither factoring zero nor minus one. */
6939 || TREE_CODE (same
) == INTEGER_CST
)
6940 return fold_build2_loc (loc
, MULT_EXPR
, type
,
6941 fold_build2_loc (loc
, code
, type
,
6942 fold_convert_loc (loc
, type
, alt0
),
6943 fold_convert_loc (loc
, type
, alt1
)),
6944 fold_convert_loc (loc
, type
, same
));
6946 /* Same may be zero and thus the operation 'code' may overflow. Likewise
6947 same may be minus one and thus the multiplication may overflow. Perform
6948 the operations in an unsigned type. */
6949 tree utype
= unsigned_type_for (type
);
6950 tree tem
= fold_build2_loc (loc
, code
, utype
,
6951 fold_convert_loc (loc
, utype
, alt0
),
6952 fold_convert_loc (loc
, utype
, alt1
));
6953 /* If the sum evaluated to a constant that is not -INF the multiplication
6955 if (TREE_CODE (tem
) == INTEGER_CST
6956 && (wi::to_wide (tem
)
6957 != wi::min_value (TYPE_PRECISION (utype
), SIGNED
)))
6958 return fold_build2_loc (loc
, MULT_EXPR
, type
,
6959 fold_convert (type
, tem
), same
);
6961 return fold_convert_loc (loc
, type
,
6962 fold_build2_loc (loc
, MULT_EXPR
, utype
, tem
,
6963 fold_convert_loc (loc
, utype
, same
)));
6966 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6967 specified by EXPR into the buffer PTR of length LEN bytes.
6968 Return the number of bytes placed in the buffer, or zero
6972 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
6974 tree type
= TREE_TYPE (expr
);
6975 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
6976 int byte
, offset
, word
, words
;
6977 unsigned char value
;
6979 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
6986 return MIN (len
, total_bytes
- off
);
6988 words
= total_bytes
/ UNITS_PER_WORD
;
6990 for (byte
= 0; byte
< total_bytes
; byte
++)
6992 int bitpos
= byte
* BITS_PER_UNIT
;
6993 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6995 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
6997 if (total_bytes
> UNITS_PER_WORD
)
6999 word
= byte
/ UNITS_PER_WORD
;
7000 if (WORDS_BIG_ENDIAN
)
7001 word
= (words
- 1) - word
;
7002 offset
= word
* UNITS_PER_WORD
;
7003 if (BYTES_BIG_ENDIAN
)
7004 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7006 offset
+= byte
% UNITS_PER_WORD
;
7009 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7010 if (offset
>= off
&& offset
- off
< len
)
7011 ptr
[offset
- off
] = value
;
7013 return MIN (len
, total_bytes
- off
);
7017 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7018 specified by EXPR into the buffer PTR of length LEN bytes.
7019 Return the number of bytes placed in the buffer, or zero
7023 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7025 tree type
= TREE_TYPE (expr
);
7026 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7027 int total_bytes
= GET_MODE_SIZE (mode
);
7028 FIXED_VALUE_TYPE value
;
7029 tree i_value
, i_type
;
7031 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7034 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7036 if (NULL_TREE
== i_type
|| TYPE_PRECISION (i_type
) != total_bytes
)
7039 value
= TREE_FIXED_CST (expr
);
7040 i_value
= double_int_to_tree (i_type
, value
.data
);
7042 return native_encode_int (i_value
, ptr
, len
, off
);
7046 /* Subroutine of native_encode_expr. Encode the REAL_CST
7047 specified by EXPR into the buffer PTR of length LEN bytes.
7048 Return the number of bytes placed in the buffer, or zero
7052 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7054 tree type
= TREE_TYPE (expr
);
7055 int total_bytes
= GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type
));
7056 int byte
, offset
, word
, words
, bitpos
;
7057 unsigned char value
;
7059 /* There are always 32 bits in each long, no matter the size of
7060 the hosts long. We handle floating point representations with
7064 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7071 return MIN (len
, total_bytes
- off
);
7073 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7075 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7077 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7078 bitpos
+= BITS_PER_UNIT
)
7080 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7081 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7083 if (UNITS_PER_WORD
< 4)
7085 word
= byte
/ UNITS_PER_WORD
;
7086 if (WORDS_BIG_ENDIAN
)
7087 word
= (words
- 1) - word
;
7088 offset
= word
* UNITS_PER_WORD
;
7089 if (BYTES_BIG_ENDIAN
)
7090 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7092 offset
+= byte
% UNITS_PER_WORD
;
7097 if (BYTES_BIG_ENDIAN
)
7099 /* Reverse bytes within each long, or within the entire float
7100 if it's smaller than a long (for HFmode). */
7101 offset
= MIN (3, total_bytes
- 1) - offset
;
7102 gcc_assert (offset
>= 0);
7105 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7107 && offset
- off
< len
)
7108 ptr
[offset
- off
] = value
;
7110 return MIN (len
, total_bytes
- off
);
7113 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7114 specified by EXPR into the buffer PTR of length LEN bytes.
7115 Return the number of bytes placed in the buffer, or zero
7119 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7124 part
= TREE_REALPART (expr
);
7125 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7126 if (off
== -1 && rsize
== 0)
7128 part
= TREE_IMAGPART (expr
);
7130 off
= MAX (0, off
- GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part
))));
7131 isize
= native_encode_expr (part
, ptr
? ptr
+ rsize
: NULL
,
7133 if (off
== -1 && isize
!= rsize
)
7135 return rsize
+ isize
;
7139 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7140 specified by EXPR into the buffer PTR of length LEN bytes.
7141 Return the number of bytes placed in the buffer, or zero
7145 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7152 count
= VECTOR_CST_NELTS (expr
);
7153 itype
= TREE_TYPE (TREE_TYPE (expr
));
7154 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (itype
));
7155 for (i
= 0; i
< count
; i
++)
7162 elem
= VECTOR_CST_ELT (expr
, i
);
7163 int res
= native_encode_expr (elem
, ptr
? ptr
+ offset
: NULL
,
7165 if ((off
== -1 && res
!= size
) || res
== 0)
7177 /* Subroutine of native_encode_expr. Encode the STRING_CST
7178 specified by EXPR into the buffer PTR of length LEN bytes.
7179 Return the number of bytes placed in the buffer, or zero
7183 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7185 tree type
= TREE_TYPE (expr
);
7187 /* Wide-char strings are encoded in target byte-order so native
7188 encoding them is trivial. */
7189 if (BITS_PER_UNIT
!= CHAR_BIT
7190 || TREE_CODE (type
) != ARRAY_TYPE
7191 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7192 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7195 HOST_WIDE_INT total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
7196 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7202 else if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7205 if (off
< TREE_STRING_LENGTH (expr
))
7207 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7208 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7210 memset (ptr
+ written
, 0,
7211 MIN (total_bytes
- written
, len
- written
));
7214 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7215 return MIN (total_bytes
- off
, len
);
7219 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7220 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7221 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7222 anything, just do a dry run. If OFF is not -1 then start
7223 the encoding at byte offset OFF and encode at most LEN bytes.
7224 Return the number of bytes placed in the buffer, or zero upon failure. */
7227 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7229 /* We don't support starting at negative offset and -1 is special. */
7233 switch (TREE_CODE (expr
))
7236 return native_encode_int (expr
, ptr
, len
, off
);
7239 return native_encode_real (expr
, ptr
, len
, off
);
7242 return native_encode_fixed (expr
, ptr
, len
, off
);
7245 return native_encode_complex (expr
, ptr
, len
, off
);
7248 return native_encode_vector (expr
, ptr
, len
, off
);
7251 return native_encode_string (expr
, ptr
, len
, off
);
7259 /* Subroutine of native_interpret_expr. Interpret the contents of
7260 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7261 If the buffer cannot be interpreted, return NULL_TREE. */
7264 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7266 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7268 if (total_bytes
> len
7269 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7272 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7274 return wide_int_to_tree (type
, result
);
7278 /* Subroutine of native_interpret_expr. Interpret the contents of
7279 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7280 If the buffer cannot be interpreted, return NULL_TREE. */
7283 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7285 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7286 int total_bytes
= GET_MODE_SIZE (mode
);
7288 FIXED_VALUE_TYPE fixed_value
;
7290 if (total_bytes
> len
7291 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7294 result
= double_int::from_buffer (ptr
, total_bytes
);
7295 fixed_value
= fixed_from_double_int (result
, mode
);
7297 return build_fixed (type
, fixed_value
);
7301 /* Subroutine of native_interpret_expr. Interpret the contents of
7302 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7303 If the buffer cannot be interpreted, return NULL_TREE. */
7306 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7308 scalar_float_mode mode
= SCALAR_FLOAT_TYPE_MODE (type
);
7309 int total_bytes
= GET_MODE_SIZE (mode
);
7310 unsigned char value
;
7311 /* There are always 32 bits in each long, no matter the size of
7312 the hosts long. We handle floating point representations with
7317 if (total_bytes
> len
|| total_bytes
> 24)
7319 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7321 memset (tmp
, 0, sizeof (tmp
));
7322 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7323 bitpos
+= BITS_PER_UNIT
)
7325 /* Both OFFSET and BYTE index within a long;
7326 bitpos indexes the whole float. */
7327 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7328 if (UNITS_PER_WORD
< 4)
7330 int word
= byte
/ UNITS_PER_WORD
;
7331 if (WORDS_BIG_ENDIAN
)
7332 word
= (words
- 1) - word
;
7333 offset
= word
* UNITS_PER_WORD
;
7334 if (BYTES_BIG_ENDIAN
)
7335 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7337 offset
+= byte
% UNITS_PER_WORD
;
7342 if (BYTES_BIG_ENDIAN
)
7344 /* Reverse bytes within each long, or within the entire float
7345 if it's smaller than a long (for HFmode). */
7346 offset
= MIN (3, total_bytes
- 1) - offset
;
7347 gcc_assert (offset
>= 0);
7350 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7352 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7355 real_from_target (&r
, tmp
, mode
);
7356 return build_real (type
, r
);
7360 /* Subroutine of native_interpret_expr. Interpret the contents of
7361 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7362 If the buffer cannot be interpreted, return NULL_TREE. */
7365 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7367 tree etype
, rpart
, ipart
;
7370 etype
= TREE_TYPE (type
);
7371 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7374 rpart
= native_interpret_expr (etype
, ptr
, size
);
7377 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7380 return build_complex (type
, rpart
, ipart
);
7384 /* Subroutine of native_interpret_expr. Interpret the contents of
7385 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7386 If the buffer cannot be interpreted, return NULL_TREE. */
7389 native_interpret_vector (tree type
, const unsigned char *ptr
, int len
)
7394 etype
= TREE_TYPE (type
);
7395 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7396 count
= TYPE_VECTOR_SUBPARTS (type
);
7397 if (size
* count
> len
)
7400 auto_vec
<tree
, 32> elements (count
);
7401 for (i
= 0; i
< count
; ++i
)
7403 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7406 elements
.quick_push (elem
);
7408 return build_vector (type
, elements
);
7412 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7413 the buffer PTR of length LEN as a constant of type TYPE. For
7414 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7415 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7416 return NULL_TREE. */
7419 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7421 switch (TREE_CODE (type
))
7427 case REFERENCE_TYPE
:
7428 return native_interpret_int (type
, ptr
, len
);
7431 return native_interpret_real (type
, ptr
, len
);
7433 case FIXED_POINT_TYPE
:
7434 return native_interpret_fixed (type
, ptr
, len
);
7437 return native_interpret_complex (type
, ptr
, len
);
7440 return native_interpret_vector (type
, ptr
, len
);
7447 /* Returns true if we can interpret the contents of a native encoding
7451 can_native_interpret_type_p (tree type
)
7453 switch (TREE_CODE (type
))
7459 case REFERENCE_TYPE
:
7460 case FIXED_POINT_TYPE
:
7471 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7472 TYPE at compile-time. If we're unable to perform the conversion
7473 return NULL_TREE. */
7476 fold_view_convert_expr (tree type
, tree expr
)
7478 /* We support up to 512-bit values (for V8DFmode). */
7479 unsigned char buffer
[64];
7482 /* Check that the host and target are sane. */
7483 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7486 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7490 return native_interpret_expr (type
, buffer
, len
);
7493 /* Build an expression for the address of T. Folds away INDIRECT_REF
7494 to avoid confusing the gimplify process. */
7497 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7499 /* The size of the object is not relevant when talking about its address. */
7500 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7501 t
= TREE_OPERAND (t
, 0);
7503 if (TREE_CODE (t
) == INDIRECT_REF
)
7505 t
= TREE_OPERAND (t
, 0);
7507 if (TREE_TYPE (t
) != ptrtype
)
7508 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7510 else if (TREE_CODE (t
) == MEM_REF
7511 && integer_zerop (TREE_OPERAND (t
, 1)))
7512 return TREE_OPERAND (t
, 0);
7513 else if (TREE_CODE (t
) == MEM_REF
7514 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7515 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7516 TREE_OPERAND (t
, 0),
7517 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7518 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7520 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7522 if (TREE_TYPE (t
) != ptrtype
)
7523 t
= fold_convert_loc (loc
, ptrtype
, t
);
7526 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7531 /* Build an expression for the address of T. */
7534 build_fold_addr_expr_loc (location_t loc
, tree t
)
7536 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7538 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7541 /* Fold a unary expression of code CODE and type TYPE with operand
7542 OP0. Return the folded expression if folding is successful.
7543 Otherwise, return NULL_TREE. */
7546 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7550 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7552 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7553 && TREE_CODE_LENGTH (code
) == 1);
7558 if (CONVERT_EXPR_CODE_P (code
)
7559 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7561 /* Don't use STRIP_NOPS, because signedness of argument type
7563 STRIP_SIGN_NOPS (arg0
);
7567 /* Strip any conversions that don't change the mode. This
7568 is safe for every expression, except for a comparison
7569 expression because its signedness is derived from its
7572 Note that this is done as an internal manipulation within
7573 the constant folder, in order to find the simplest
7574 representation of the arguments so that their form can be
7575 studied. In any cases, the appropriate type conversions
7576 should be put back in the tree that will get out of the
7581 if (CONSTANT_CLASS_P (arg0
))
7583 tree tem
= const_unop (code
, type
, arg0
);
7586 if (TREE_TYPE (tem
) != type
)
7587 tem
= fold_convert_loc (loc
, type
, tem
);
7593 tem
= generic_simplify (loc
, code
, type
, op0
);
7597 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7599 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7600 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7601 fold_build1_loc (loc
, code
, type
,
7602 fold_convert_loc (loc
, TREE_TYPE (op0
),
7603 TREE_OPERAND (arg0
, 1))));
7604 else if (TREE_CODE (arg0
) == COND_EXPR
)
7606 tree arg01
= TREE_OPERAND (arg0
, 1);
7607 tree arg02
= TREE_OPERAND (arg0
, 2);
7608 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7609 arg01
= fold_build1_loc (loc
, code
, type
,
7610 fold_convert_loc (loc
,
7611 TREE_TYPE (op0
), arg01
));
7612 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7613 arg02
= fold_build1_loc (loc
, code
, type
,
7614 fold_convert_loc (loc
,
7615 TREE_TYPE (op0
), arg02
));
7616 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7619 /* If this was a conversion, and all we did was to move into
7620 inside the COND_EXPR, bring it back out. But leave it if
7621 it is a conversion from integer to integer and the
7622 result precision is no wider than a word since such a
7623 conversion is cheap and may be optimized away by combine,
7624 while it couldn't if it were outside the COND_EXPR. Then return
7625 so we don't get into an infinite recursion loop taking the
7626 conversion out and then back in. */
7628 if ((CONVERT_EXPR_CODE_P (code
)
7629 || code
== NON_LVALUE_EXPR
)
7630 && TREE_CODE (tem
) == COND_EXPR
7631 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7632 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7633 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7634 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7635 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7636 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7637 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7639 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7640 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7641 || flag_syntax_only
))
7642 tem
= build1_loc (loc
, code
, type
,
7644 TREE_TYPE (TREE_OPERAND
7645 (TREE_OPERAND (tem
, 1), 0)),
7646 TREE_OPERAND (tem
, 0),
7647 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7648 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7656 case NON_LVALUE_EXPR
:
7657 if (!maybe_lvalue_p (op0
))
7658 return fold_convert_loc (loc
, type
, op0
);
7663 case FIX_TRUNC_EXPR
:
7664 if (COMPARISON_CLASS_P (op0
))
7666 /* If we have (type) (a CMP b) and type is an integral type, return
7667 new expression involving the new type. Canonicalize
7668 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7670 Do not fold the result as that would not simplify further, also
7671 folding again results in recursions. */
7672 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7673 return build2_loc (loc
, TREE_CODE (op0
), type
,
7674 TREE_OPERAND (op0
, 0),
7675 TREE_OPERAND (op0
, 1));
7676 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7677 && TREE_CODE (type
) != VECTOR_TYPE
)
7678 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7679 constant_boolean_node (true, type
),
7680 constant_boolean_node (false, type
));
7683 /* Handle (T *)&A.B.C for A being of type T and B and C
7684 living at offset zero. This occurs frequently in
7685 C++ upcasting and then accessing the base. */
7686 if (TREE_CODE (op0
) == ADDR_EXPR
7687 && POINTER_TYPE_P (type
)
7688 && handled_component_p (TREE_OPERAND (op0
, 0)))
7690 HOST_WIDE_INT bitsize
, bitpos
;
7693 int unsignedp
, reversep
, volatilep
;
7695 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7696 &offset
, &mode
, &unsignedp
, &reversep
,
7698 /* If the reference was to a (constant) zero offset, we can use
7699 the address of the base if it has the same base type
7700 as the result type and the pointer type is unqualified. */
7701 if (! offset
&& bitpos
== 0
7702 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7703 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7704 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7705 return fold_convert_loc (loc
, type
,
7706 build_fold_addr_expr_loc (loc
, base
));
7709 if (TREE_CODE (op0
) == MODIFY_EXPR
7710 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7711 /* Detect assigning a bitfield. */
7712 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7714 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7716 /* Don't leave an assignment inside a conversion
7717 unless assigning a bitfield. */
7718 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7719 /* First do the assignment, then return converted constant. */
7720 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7721 TREE_NO_WARNING (tem
) = 1;
7722 TREE_USED (tem
) = 1;
7726 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7727 constants (if x has signed type, the sign bit cannot be set
7728 in c). This folds extension into the BIT_AND_EXPR.
7729 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7730 very likely don't have maximal range for their precision and this
7731 transformation effectively doesn't preserve non-maximal ranges. */
7732 if (TREE_CODE (type
) == INTEGER_TYPE
7733 && TREE_CODE (op0
) == BIT_AND_EXPR
7734 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7736 tree and_expr
= op0
;
7737 tree and0
= TREE_OPERAND (and_expr
, 0);
7738 tree and1
= TREE_OPERAND (and_expr
, 1);
7741 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7742 || (TYPE_PRECISION (type
)
7743 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7745 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7746 <= HOST_BITS_PER_WIDE_INT
7747 && tree_fits_uhwi_p (and1
))
7749 unsigned HOST_WIDE_INT cst
;
7751 cst
= tree_to_uhwi (and1
);
7752 cst
&= HOST_WIDE_INT_M1U
7753 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7754 change
= (cst
== 0);
7756 && !flag_syntax_only
7757 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0
)))
7760 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7761 and0
= fold_convert_loc (loc
, uns
, and0
);
7762 and1
= fold_convert_loc (loc
, uns
, and1
);
7767 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7768 TREE_OVERFLOW (and1
));
7769 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7770 fold_convert_loc (loc
, type
, and0
), tem
);
7774 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7775 cast (T1)X will fold away. We assume that this happens when X itself
7777 if (POINTER_TYPE_P (type
)
7778 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
7779 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
7781 tree arg00
= TREE_OPERAND (arg0
, 0);
7782 tree arg01
= TREE_OPERAND (arg0
, 1);
7784 return fold_build_pointer_plus_loc
7785 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
7788 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7789 of the same precision, and X is an integer type not narrower than
7790 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7791 if (INTEGRAL_TYPE_P (type
)
7792 && TREE_CODE (op0
) == BIT_NOT_EXPR
7793 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7794 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
7795 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
7797 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
7798 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7799 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
7800 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
7801 fold_convert_loc (loc
, type
, tem
));
7804 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7805 type of X and Y (integer types only). */
7806 if (INTEGRAL_TYPE_P (type
)
7807 && TREE_CODE (op0
) == MULT_EXPR
7808 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7809 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7811 /* Be careful not to introduce new overflows. */
7813 if (TYPE_OVERFLOW_WRAPS (type
))
7816 mult_type
= unsigned_type_for (type
);
7818 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7820 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
7821 fold_convert_loc (loc
, mult_type
,
7822 TREE_OPERAND (op0
, 0)),
7823 fold_convert_loc (loc
, mult_type
,
7824 TREE_OPERAND (op0
, 1)));
7825 return fold_convert_loc (loc
, type
, tem
);
7831 case VIEW_CONVERT_EXPR
:
7832 if (TREE_CODE (op0
) == MEM_REF
)
7834 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
7835 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
7836 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
7837 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
7838 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
7845 tem
= fold_negate_expr (loc
, arg0
);
7847 return fold_convert_loc (loc
, type
, tem
);
7851 /* Convert fabs((double)float) into (double)fabsf(float). */
7852 if (TREE_CODE (arg0
) == NOP_EXPR
7853 && TREE_CODE (type
) == REAL_TYPE
)
7855 tree targ0
= strip_float_extensions (arg0
);
7857 return fold_convert_loc (loc
, type
,
7858 fold_build1_loc (loc
, ABS_EXPR
,
7865 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7866 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
7867 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
7868 fold_convert_loc (loc
, type
,
7869 TREE_OPERAND (arg0
, 0)))))
7870 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
7871 fold_convert_loc (loc
, type
,
7872 TREE_OPERAND (arg0
, 1)));
7873 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
7874 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
7875 fold_convert_loc (loc
, type
,
7876 TREE_OPERAND (arg0
, 1)))))
7877 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
7878 fold_convert_loc (loc
, type
,
7879 TREE_OPERAND (arg0
, 0)), tem
);
7883 case TRUTH_NOT_EXPR
:
7884 /* Note that the operand of this must be an int
7885 and its values must be 0 or 1.
7886 ("true" is a fixed value perhaps depending on the language,
7887 but we don't handle values other than 1 correctly yet.) */
7888 tem
= fold_truth_not_expr (loc
, arg0
);
7891 return fold_convert_loc (loc
, type
, tem
);
7894 /* Fold *&X to X if X is an lvalue. */
7895 if (TREE_CODE (op0
) == ADDR_EXPR
)
7897 tree op00
= TREE_OPERAND (op0
, 0);
7899 || TREE_CODE (op00
) == PARM_DECL
7900 || TREE_CODE (op00
) == RESULT_DECL
)
7901 && !TREE_READONLY (op00
))
7908 } /* switch (code) */
7912 /* If the operation was a conversion do _not_ mark a resulting constant
7913 with TREE_OVERFLOW if the original constant was not. These conversions
7914 have implementation defined behavior and retaining the TREE_OVERFLOW
7915 flag here would confuse later passes such as VRP. */
7917 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
7918 tree type
, tree op0
)
7920 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
7922 && TREE_CODE (res
) == INTEGER_CST
7923 && TREE_CODE (op0
) == INTEGER_CST
7924 && CONVERT_EXPR_CODE_P (code
))
7925 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
7930 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7931 operands OP0 and OP1. LOC is the location of the resulting expression.
7932 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7933 Return the folded expression if folding is successful. Otherwise,
7934 return NULL_TREE. */
7936 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
7937 tree arg0
, tree arg1
, tree op0
, tree op1
)
7941 /* We only do these simplifications if we are optimizing. */
7945 /* Check for things like (A || B) && (A || C). We can convert this
7946 to A || (B && C). Note that either operator can be any of the four
7947 truth and/or operations and the transformation will still be
7948 valid. Also note that we only care about order for the
7949 ANDIF and ORIF operators. If B contains side effects, this
7950 might change the truth-value of A. */
7951 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
7952 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
7953 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
7954 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
7955 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
7956 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
7958 tree a00
= TREE_OPERAND (arg0
, 0);
7959 tree a01
= TREE_OPERAND (arg0
, 1);
7960 tree a10
= TREE_OPERAND (arg1
, 0);
7961 tree a11
= TREE_OPERAND (arg1
, 1);
7962 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
7963 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
7964 && (code
== TRUTH_AND_EXPR
7965 || code
== TRUTH_OR_EXPR
));
7967 if (operand_equal_p (a00
, a10
, 0))
7968 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
7969 fold_build2_loc (loc
, code
, type
, a01
, a11
));
7970 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
7971 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
7972 fold_build2_loc (loc
, code
, type
, a01
, a10
));
7973 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
7974 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
7975 fold_build2_loc (loc
, code
, type
, a00
, a11
));
7977 /* This case if tricky because we must either have commutative
7978 operators or else A10 must not have side-effects. */
7980 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
7981 && operand_equal_p (a01
, a11
, 0))
7982 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
7983 fold_build2_loc (loc
, code
, type
, a00
, a10
),
7987 /* See if we can build a range comparison. */
7988 if (0 != (tem
= fold_range_test (loc
, code
, type
, op0
, op1
)))
7991 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
7992 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
7994 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
7996 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
7999 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8000 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8002 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8004 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8007 /* Check for the possibility of merging component references. If our
8008 lhs is another similar operation, try to merge its rhs with our
8009 rhs. Then try to merge our lhs and rhs. */
8010 if (TREE_CODE (arg0
) == code
8011 && 0 != (tem
= fold_truth_andor_1 (loc
, code
, type
,
8012 TREE_OPERAND (arg0
, 1), arg1
)))
8013 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8015 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8018 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8019 && !flag_sanitize_coverage
8020 && (code
== TRUTH_AND_EXPR
8021 || code
== TRUTH_ANDIF_EXPR
8022 || code
== TRUTH_OR_EXPR
8023 || code
== TRUTH_ORIF_EXPR
))
8025 enum tree_code ncode
, icode
;
8027 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8028 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8029 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8031 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8032 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8033 We don't want to pack more than two leafs to a non-IF AND/OR
8035 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8036 equal to IF-CODE, then we don't want to add right-hand operand.
8037 If the inner right-hand side of left-hand operand has
8038 side-effects, or isn't simple, then we can't add to it,
8039 as otherwise we might destroy if-sequence. */
8040 if (TREE_CODE (arg0
) == icode
8041 && simple_operand_p_2 (arg1
)
8042 /* Needed for sequence points to handle trappings, and
8044 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8046 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8048 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8051 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8052 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8053 else if (TREE_CODE (arg1
) == icode
8054 && simple_operand_p_2 (arg0
)
8055 /* Needed for sequence points to handle trappings, and
8057 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8059 tem
= fold_build2_loc (loc
, ncode
, type
,
8060 arg0
, TREE_OPERAND (arg1
, 0));
8061 return fold_build2_loc (loc
, icode
, type
, tem
,
8062 TREE_OPERAND (arg1
, 1));
8064 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8066 For sequence point consistancy, we need to check for trapping,
8067 and side-effects. */
8068 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8069 && simple_operand_p_2 (arg1
))
8070 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8076 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8077 by changing CODE to reduce the magnitude of constants involved in
8078 ARG0 of the comparison.
8079 Returns a canonicalized comparison tree if a simplification was
8080 possible, otherwise returns NULL_TREE.
8081 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8082 valid if signed overflow is undefined. */
8085 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8086 tree arg0
, tree arg1
,
8087 bool *strict_overflow_p
)
8089 enum tree_code code0
= TREE_CODE (arg0
);
8090 tree t
, cst0
= NULL_TREE
;
8093 /* Match A +- CST code arg1. We can change this only if overflow
8095 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8096 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8097 /* In principle pointers also have undefined overflow behavior,
8098 but that causes problems elsewhere. */
8099 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8100 && (code0
== MINUS_EXPR
8101 || code0
== PLUS_EXPR
)
8102 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8105 /* Identify the constant in arg0 and its sign. */
8106 cst0
= TREE_OPERAND (arg0
, 1);
8107 sgn0
= tree_int_cst_sgn (cst0
);
8109 /* Overflowed constants and zero will cause problems. */
8110 if (integer_zerop (cst0
)
8111 || TREE_OVERFLOW (cst0
))
8114 /* See if we can reduce the magnitude of the constant in
8115 arg0 by changing the comparison code. */
8116 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8118 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8120 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8121 else if (code
== GT_EXPR
8122 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8124 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8125 else if (code
== LE_EXPR
8126 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8128 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8129 else if (code
== GE_EXPR
8130 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8134 *strict_overflow_p
= true;
8136 /* Now build the constant reduced in magnitude. But not if that
8137 would produce one outside of its types range. */
8138 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8140 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8141 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8143 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8144 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8147 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8148 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8149 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8150 t
= fold_convert (TREE_TYPE (arg1
), t
);
8152 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8155 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8156 overflow further. Try to decrease the magnitude of constants involved
8157 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8158 and put sole constants at the second argument position.
8159 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8162 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8163 tree arg0
, tree arg1
)
8166 bool strict_overflow_p
;
8167 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8168 "when reducing constant in comparison");
8170 /* Try canonicalization by simplifying arg0. */
8171 strict_overflow_p
= false;
8172 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8173 &strict_overflow_p
);
8176 if (strict_overflow_p
)
8177 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8181 /* Try canonicalization by simplifying arg1 using the swapped
8183 code
= swap_tree_comparison (code
);
8184 strict_overflow_p
= false;
8185 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8186 &strict_overflow_p
);
8187 if (t
&& strict_overflow_p
)
8188 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8192 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8193 space. This is used to avoid issuing overflow warnings for
8194 expressions like &p->x which can not wrap. */
8197 pointer_may_wrap_p (tree base
, tree offset
, HOST_WIDE_INT bitpos
)
8199 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8206 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8207 if (offset
== NULL_TREE
)
8208 wi_offset
= wi::zero (precision
);
8209 else if (TREE_CODE (offset
) != INTEGER_CST
|| TREE_OVERFLOW (offset
))
8212 wi_offset
= wi::to_wide (offset
);
8215 wide_int units
= wi::shwi (bitpos
/ BITS_PER_UNIT
, precision
);
8216 wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8220 if (!wi::fits_uhwi_p (total
))
8223 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (base
)));
8227 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8229 if (TREE_CODE (base
) == ADDR_EXPR
)
8231 HOST_WIDE_INT base_size
;
8233 base_size
= int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base
, 0)));
8234 if (base_size
> 0 && size
< base_size
)
8238 return total
.to_uhwi () > (unsigned HOST_WIDE_INT
) size
;
8241 /* Return a positive integer when the symbol DECL is known to have
8242 a nonzero address, zero when it's known not to (e.g., it's a weak
8243 symbol), and a negative integer when the symbol is not yet in the
8244 symbol table and so whether or not its address is zero is unknown.
8245 For function local objects always return positive integer. */
8247 maybe_nonzero_address (tree decl
)
8249 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8250 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8251 return symbol
->nonzero_address ();
8253 /* Function local objects are never NULL. */
8255 && (DECL_CONTEXT (decl
)
8256 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
8257 && auto_var_in_fn_p (decl
, DECL_CONTEXT (decl
))))
8263 /* Subroutine of fold_binary. This routine performs all of the
8264 transformations that are common to the equality/inequality
8265 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8266 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8267 fold_binary should call fold_binary. Fold a comparison with
8268 tree code CODE and type TYPE with operands OP0 and OP1. Return
8269 the folded comparison or NULL_TREE. */
8272 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8275 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8276 tree arg0
, arg1
, tem
;
8281 STRIP_SIGN_NOPS (arg0
);
8282 STRIP_SIGN_NOPS (arg1
);
8284 /* For comparisons of pointers we can decompose it to a compile time
8285 comparison of the base objects and the offsets into the object.
8286 This requires at least one operand being an ADDR_EXPR or a
8287 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8288 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8289 && (TREE_CODE (arg0
) == ADDR_EXPR
8290 || TREE_CODE (arg1
) == ADDR_EXPR
8291 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8292 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8294 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8295 HOST_WIDE_INT bitsize
, bitpos0
= 0, bitpos1
= 0;
8297 int volatilep
, reversep
, unsignedp
;
8298 bool indirect_base0
= false, indirect_base1
= false;
8300 /* Get base and offset for the access. Strip ADDR_EXPR for
8301 get_inner_reference, but put it back by stripping INDIRECT_REF
8302 off the base object if possible. indirect_baseN will be true
8303 if baseN is not an address but refers to the object itself. */
8305 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8308 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8309 &bitsize
, &bitpos0
, &offset0
, &mode
,
8310 &unsignedp
, &reversep
, &volatilep
);
8311 if (TREE_CODE (base0
) == INDIRECT_REF
)
8312 base0
= TREE_OPERAND (base0
, 0);
8314 indirect_base0
= true;
8316 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8318 base0
= TREE_OPERAND (arg0
, 0);
8319 STRIP_SIGN_NOPS (base0
);
8320 if (TREE_CODE (base0
) == ADDR_EXPR
)
8323 = get_inner_reference (TREE_OPERAND (base0
, 0),
8324 &bitsize
, &bitpos0
, &offset0
, &mode
,
8325 &unsignedp
, &reversep
, &volatilep
);
8326 if (TREE_CODE (base0
) == INDIRECT_REF
)
8327 base0
= TREE_OPERAND (base0
, 0);
8329 indirect_base0
= true;
8331 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8332 offset0
= TREE_OPERAND (arg0
, 1);
8334 offset0
= size_binop (PLUS_EXPR
, offset0
,
8335 TREE_OPERAND (arg0
, 1));
8336 if (TREE_CODE (offset0
) == INTEGER_CST
)
8338 offset_int tem
= wi::sext (wi::to_offset (offset0
),
8339 TYPE_PRECISION (sizetype
));
8340 tem
<<= LOG2_BITS_PER_UNIT
;
8342 if (wi::fits_shwi_p (tem
))
8344 bitpos0
= tem
.to_shwi ();
8345 offset0
= NULL_TREE
;
8351 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8354 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8355 &bitsize
, &bitpos1
, &offset1
, &mode
,
8356 &unsignedp
, &reversep
, &volatilep
);
8357 if (TREE_CODE (base1
) == INDIRECT_REF
)
8358 base1
= TREE_OPERAND (base1
, 0);
8360 indirect_base1
= true;
8362 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8364 base1
= TREE_OPERAND (arg1
, 0);
8365 STRIP_SIGN_NOPS (base1
);
8366 if (TREE_CODE (base1
) == ADDR_EXPR
)
8369 = get_inner_reference (TREE_OPERAND (base1
, 0),
8370 &bitsize
, &bitpos1
, &offset1
, &mode
,
8371 &unsignedp
, &reversep
, &volatilep
);
8372 if (TREE_CODE (base1
) == INDIRECT_REF
)
8373 base1
= TREE_OPERAND (base1
, 0);
8375 indirect_base1
= true;
8377 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8378 offset1
= TREE_OPERAND (arg1
, 1);
8380 offset1
= size_binop (PLUS_EXPR
, offset1
,
8381 TREE_OPERAND (arg1
, 1));
8382 if (TREE_CODE (offset1
) == INTEGER_CST
)
8384 offset_int tem
= wi::sext (wi::to_offset (offset1
),
8385 TYPE_PRECISION (sizetype
));
8386 tem
<<= LOG2_BITS_PER_UNIT
;
8388 if (wi::fits_shwi_p (tem
))
8390 bitpos1
= tem
.to_shwi ();
8391 offset1
= NULL_TREE
;
8396 /* If we have equivalent bases we might be able to simplify. */
8397 if (indirect_base0
== indirect_base1
8398 && operand_equal_p (base0
, base1
,
8399 indirect_base0
? OEP_ADDRESS_OF
: 0))
8401 /* We can fold this expression to a constant if the non-constant
8402 offset parts are equal. */
8403 if (offset0
== offset1
8404 || (offset0
&& offset1
8405 && operand_equal_p (offset0
, offset1
, 0)))
8408 && bitpos0
!= bitpos1
8409 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8410 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8411 fold_overflow_warning (("assuming pointer wraparound does not "
8412 "occur when comparing P +- C1 with "
8414 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8419 return constant_boolean_node (bitpos0
== bitpos1
, type
);
8421 return constant_boolean_node (bitpos0
!= bitpos1
, type
);
8423 return constant_boolean_node (bitpos0
< bitpos1
, type
);
8425 return constant_boolean_node (bitpos0
<= bitpos1
, type
);
8427 return constant_boolean_node (bitpos0
>= bitpos1
, type
);
8429 return constant_boolean_node (bitpos0
> bitpos1
, type
);
8433 /* We can simplify the comparison to a comparison of the variable
8434 offset parts if the constant offset parts are equal.
8435 Be careful to use signed sizetype here because otherwise we
8436 mess with array offsets in the wrong way. This is possible
8437 because pointer arithmetic is restricted to retain within an
8438 object and overflow on pointer differences is undefined as of
8439 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8440 else if (bitpos0
== bitpos1
)
8442 /* By converting to signed sizetype we cover middle-end pointer
8443 arithmetic which operates on unsigned pointer types of size
8444 type size and ARRAY_REF offsets which are properly sign or
8445 zero extended from their type in case it is narrower than
8447 if (offset0
== NULL_TREE
)
8448 offset0
= build_int_cst (ssizetype
, 0);
8450 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8451 if (offset1
== NULL_TREE
)
8452 offset1
= build_int_cst (ssizetype
, 0);
8454 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8457 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8458 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8459 fold_overflow_warning (("assuming pointer wraparound does not "
8460 "occur when comparing P +- C1 with "
8462 WARN_STRICT_OVERFLOW_COMPARISON
);
8464 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8467 /* For equal offsets we can simplify to a comparison of the
8469 else if (bitpos0
== bitpos1
8471 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8473 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8474 && ((offset0
== offset1
)
8475 || (offset0
&& offset1
8476 && operand_equal_p (offset0
, offset1
, 0))))
8479 base0
= build_fold_addr_expr_loc (loc
, base0
);
8481 base1
= build_fold_addr_expr_loc (loc
, base1
);
8482 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8484 /* Comparison between an ordinary (non-weak) symbol and a null
8485 pointer can be eliminated since such symbols must have a non
8486 null address. In C, relational expressions between pointers
8487 to objects and null pointers are undefined. The results
8488 below follow the C++ rules with the additional property that
8489 every object pointer compares greater than a null pointer.
8491 else if (((DECL_P (base0
)
8492 && maybe_nonzero_address (base0
) > 0
8493 /* Avoid folding references to struct members at offset 0 to
8494 prevent tests like '&ptr->firstmember == 0' from getting
8495 eliminated. When ptr is null, although the -> expression
8496 is strictly speaking invalid, GCC retains it as a matter
8497 of QoI. See PR c/44555. */
8498 && (offset0
== NULL_TREE
&& bitpos0
!= 0))
8499 || CONSTANT_CLASS_P (base0
))
8501 /* The caller guarantees that when one of the arguments is
8502 constant (i.e., null in this case) it is second. */
8503 && integer_zerop (arg1
))
8510 return constant_boolean_node (false, type
);
8514 return constant_boolean_node (true, type
);
8521 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8522 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8523 the resulting offset is smaller in absolute value than the
8524 original one and has the same sign. */
8525 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8526 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8527 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8528 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8529 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8530 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8531 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8532 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8534 tree const1
= TREE_OPERAND (arg0
, 1);
8535 tree const2
= TREE_OPERAND (arg1
, 1);
8536 tree variable1
= TREE_OPERAND (arg0
, 0);
8537 tree variable2
= TREE_OPERAND (arg1
, 0);
8539 const char * const warnmsg
= G_("assuming signed overflow does not "
8540 "occur when combining constants around "
8543 /* Put the constant on the side where it doesn't overflow and is
8544 of lower absolute value and of same sign than before. */
8545 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8546 ? MINUS_EXPR
: PLUS_EXPR
,
8548 if (!TREE_OVERFLOW (cst
)
8549 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8550 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8552 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8553 return fold_build2_loc (loc
, code
, type
,
8555 fold_build2_loc (loc
, TREE_CODE (arg1
),
8560 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8561 ? MINUS_EXPR
: PLUS_EXPR
,
8563 if (!TREE_OVERFLOW (cst
)
8564 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8565 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8567 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8568 return fold_build2_loc (loc
, code
, type
,
8569 fold_build2_loc (loc
, TREE_CODE (arg0
),
8576 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8580 /* If we are comparing an expression that just has comparisons
8581 of two integer values, arithmetic expressions of those comparisons,
8582 and constants, we can simplify it. There are only three cases
8583 to check: the two values can either be equal, the first can be
8584 greater, or the second can be greater. Fold the expression for
8585 those three values. Since each value must be 0 or 1, we have
8586 eight possibilities, each of which corresponds to the constant 0
8587 or 1 or one of the six possible comparisons.
8589 This handles common cases like (a > b) == 0 but also handles
8590 expressions like ((x > y) - (y > x)) > 0, which supposedly
8591 occur in macroized code. */
8593 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8595 tree cval1
= 0, cval2
= 0;
8598 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
8599 /* Don't handle degenerate cases here; they should already
8600 have been handled anyway. */
8601 && cval1
!= 0 && cval2
!= 0
8602 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8603 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8604 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8605 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8606 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8607 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8608 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8610 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8611 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8613 /* We can't just pass T to eval_subst in case cval1 or cval2
8614 was the same as ARG1. */
8617 = fold_build2_loc (loc
, code
, type
,
8618 eval_subst (loc
, arg0
, cval1
, maxval
,
8622 = fold_build2_loc (loc
, code
, type
,
8623 eval_subst (loc
, arg0
, cval1
, maxval
,
8627 = fold_build2_loc (loc
, code
, type
,
8628 eval_subst (loc
, arg0
, cval1
, minval
,
8632 /* All three of these results should be 0 or 1. Confirm they are.
8633 Then use those values to select the proper code to use. */
8635 if (TREE_CODE (high_result
) == INTEGER_CST
8636 && TREE_CODE (equal_result
) == INTEGER_CST
8637 && TREE_CODE (low_result
) == INTEGER_CST
)
8639 /* Make a 3-bit mask with the high-order bit being the
8640 value for `>', the next for '=', and the low for '<'. */
8641 switch ((integer_onep (high_result
) * 4)
8642 + (integer_onep (equal_result
) * 2)
8643 + integer_onep (low_result
))
8647 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8668 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8673 tem
= save_expr (build2 (code
, type
, cval1
, cval2
));
8674 protected_set_expr_location (tem
, loc
);
8677 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8686 /* Subroutine of fold_binary. Optimize complex multiplications of the
8687 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8688 argument EXPR represents the expression "z" of type TYPE. */
8691 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8693 tree itype
= TREE_TYPE (type
);
8694 tree rpart
, ipart
, tem
;
8696 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8698 rpart
= TREE_OPERAND (expr
, 0);
8699 ipart
= TREE_OPERAND (expr
, 1);
8701 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8703 rpart
= TREE_REALPART (expr
);
8704 ipart
= TREE_IMAGPART (expr
);
8708 expr
= save_expr (expr
);
8709 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8710 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8713 rpart
= save_expr (rpart
);
8714 ipart
= save_expr (ipart
);
8715 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8716 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8717 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8718 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8719 build_zero_cst (itype
));
8723 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8724 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8725 true if successful. */
8728 vec_cst_ctor_to_array (tree arg
, unsigned int nelts
, tree
*elts
)
8732 if (TREE_CODE (arg
) == VECTOR_CST
)
8734 for (i
= 0; i
< VECTOR_CST_NELTS (arg
); ++i
)
8735 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8737 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8739 constructor_elt
*elt
;
8741 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8742 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8745 elts
[i
] = elt
->value
;
8749 for (; i
< nelts
; i
++)
8751 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
8755 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8756 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8757 NULL_TREE otherwise. */
8760 fold_vec_perm (tree type
, tree arg0
, tree arg1
, vec_perm_indices sel
)
8763 bool need_ctor
= false;
8765 unsigned int nelts
= sel
.length ();
8766 gcc_assert (TYPE_VECTOR_SUBPARTS (type
) == nelts
8767 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
8768 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
);
8769 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
8770 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
8773 tree
*in_elts
= XALLOCAVEC (tree
, nelts
* 2);
8774 if (!vec_cst_ctor_to_array (arg0
, nelts
, in_elts
)
8775 || !vec_cst_ctor_to_array (arg1
, nelts
, in_elts
+ nelts
))
8778 auto_vec
<tree
, 32> out_elts (nelts
);
8779 for (i
= 0; i
< nelts
; i
++)
8781 if (!CONSTANT_CLASS_P (in_elts
[sel
[i
]]))
8783 out_elts
.quick_push (unshare_expr (in_elts
[sel
[i
]]));
8788 vec
<constructor_elt
, va_gc
> *v
;
8789 vec_alloc (v
, nelts
);
8790 for (i
= 0; i
< nelts
; i
++)
8791 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, out_elts
[i
]);
8792 return build_constructor (type
, v
);
8795 return build_vector (type
, out_elts
);
8798 /* Try to fold a pointer difference of type TYPE two address expressions of
8799 array references AREF0 and AREF1 using location LOC. Return a
8800 simplified expression for the difference or NULL_TREE. */
8803 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
8804 tree aref0
, tree aref1
)
8806 tree base0
= TREE_OPERAND (aref0
, 0);
8807 tree base1
= TREE_OPERAND (aref1
, 0);
8808 tree base_offset
= build_int_cst (type
, 0);
8810 /* If the bases are array references as well, recurse. If the bases
8811 are pointer indirections compute the difference of the pointers.
8812 If the bases are equal, we are set. */
8813 if ((TREE_CODE (base0
) == ARRAY_REF
8814 && TREE_CODE (base1
) == ARRAY_REF
8816 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
)))
8817 || (INDIRECT_REF_P (base0
)
8818 && INDIRECT_REF_P (base1
)
8820 = fold_binary_loc (loc
, MINUS_EXPR
, type
,
8821 fold_convert (type
, TREE_OPERAND (base0
, 0)),
8823 TREE_OPERAND (base1
, 0)))))
8824 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
8826 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
8827 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
8828 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
8829 tree diff
= fold_build2_loc (loc
, MINUS_EXPR
, type
, op0
, op1
);
8830 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
8832 fold_build2_loc (loc
, MULT_EXPR
, type
,
8838 /* If the real or vector real constant CST of type TYPE has an exact
8839 inverse, return it, else return NULL. */
8842 exact_inverse (tree type
, tree cst
)
8847 unsigned vec_nelts
, i
;
8849 switch (TREE_CODE (cst
))
8852 r
= TREE_REAL_CST (cst
);
8854 if (exact_real_inverse (TYPE_MODE (type
), &r
))
8855 return build_real (type
, r
);
8861 vec_nelts
= VECTOR_CST_NELTS (cst
);
8862 unit_type
= TREE_TYPE (type
);
8863 mode
= TYPE_MODE (unit_type
);
8865 auto_vec
<tree
, 32> elts (vec_nelts
);
8866 for (i
= 0; i
< vec_nelts
; i
++)
8868 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
8869 if (!exact_real_inverse (mode
, &r
))
8871 elts
.quick_push (build_real (unit_type
, r
));
8874 return build_vector (type
, elts
);
8882 /* Mask out the tz least significant bits of X of type TYPE where
8883 tz is the number of trailing zeroes in Y. */
8885 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
8887 int tz
= wi::ctz (y
);
8889 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
8893 /* Return true when T is an address and is known to be nonzero.
8894 For floating point we further ensure that T is not denormal.
8895 Similar logic is present in nonzero_address in rtlanal.h.
8897 If the return value is based on the assumption that signed overflow
8898 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8899 change *STRICT_OVERFLOW_P. */
8902 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
8904 tree type
= TREE_TYPE (t
);
8905 enum tree_code code
;
8907 /* Doing something useful for floating point would need more work. */
8908 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
8911 code
= TREE_CODE (t
);
8912 switch (TREE_CODE_CLASS (code
))
8915 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
8918 case tcc_comparison
:
8919 return tree_binary_nonzero_warnv_p (code
, type
,
8920 TREE_OPERAND (t
, 0),
8921 TREE_OPERAND (t
, 1),
8924 case tcc_declaration
:
8926 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
8934 case TRUTH_NOT_EXPR
:
8935 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
8938 case TRUTH_AND_EXPR
:
8940 case TRUTH_XOR_EXPR
:
8941 return tree_binary_nonzero_warnv_p (code
, type
,
8942 TREE_OPERAND (t
, 0),
8943 TREE_OPERAND (t
, 1),
8951 case WITH_SIZE_EXPR
:
8953 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
8958 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
8962 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
8967 tree fndecl
= get_callee_fndecl (t
);
8968 if (!fndecl
) return false;
8969 if (flag_delete_null_pointer_checks
&& !flag_check_new
8970 && DECL_IS_OPERATOR_NEW (fndecl
)
8971 && !TREE_NOTHROW (fndecl
))
8973 if (flag_delete_null_pointer_checks
8974 && lookup_attribute ("returns_nonnull",
8975 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
8977 return alloca_call_p (t
);
8986 /* Return true when T is an address and is known to be nonzero.
8987 Handle warnings about undefined signed overflow. */
8990 tree_expr_nonzero_p (tree t
)
8992 bool ret
, strict_overflow_p
;
8994 strict_overflow_p
= false;
8995 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
8996 if (strict_overflow_p
)
8997 fold_overflow_warning (("assuming signed overflow does not occur when "
8998 "determining that expression is always "
9000 WARN_STRICT_OVERFLOW_MISC
);
9004 /* Return true if T is known not to be equal to an integer W. */
9007 expr_not_equal_to (tree t
, const wide_int
&w
)
9009 wide_int min
, max
, nz
;
9010 value_range_type rtype
;
9011 switch (TREE_CODE (t
))
9014 return wi::to_wide (t
) != w
;
9017 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9019 rtype
= get_range_info (t
, &min
, &max
);
9020 if (rtype
== VR_RANGE
)
9022 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9024 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9027 else if (rtype
== VR_ANTI_RANGE
9028 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9029 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9031 /* If T has some known zero bits and W has any of those bits set,
9032 then T is known not to be equal to W. */
9033 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9034 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9043 /* Fold a binary expression of code CODE and type TYPE with operands
9044 OP0 and OP1. LOC is the location of the resulting expression.
9045 Return the folded expression if folding is successful. Otherwise,
9046 return NULL_TREE. */
9049 fold_binary_loc (location_t loc
,
9050 enum tree_code code
, tree type
, tree op0
, tree op1
)
9052 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9053 tree arg0
, arg1
, tem
;
9054 tree t1
= NULL_TREE
;
9055 bool strict_overflow_p
;
9058 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9059 && TREE_CODE_LENGTH (code
) == 2
9061 && op1
!= NULL_TREE
);
9066 /* Strip any conversions that don't change the mode. This is
9067 safe for every expression, except for a comparison expression
9068 because its signedness is derived from its operands. So, in
9069 the latter case, only strip conversions that don't change the
9070 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9073 Note that this is done as an internal manipulation within the
9074 constant folder, in order to find the simplest representation
9075 of the arguments so that their form can be studied. In any
9076 cases, the appropriate type conversions should be put back in
9077 the tree that will get out of the constant folder. */
9079 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9081 STRIP_SIGN_NOPS (arg0
);
9082 STRIP_SIGN_NOPS (arg1
);
9090 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9091 constant but we can't do arithmetic on them. */
9092 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9094 tem
= const_binop (code
, type
, arg0
, arg1
);
9095 if (tem
!= NULL_TREE
)
9097 if (TREE_TYPE (tem
) != type
)
9098 tem
= fold_convert_loc (loc
, type
, tem
);
9103 /* If this is a commutative operation, and ARG0 is a constant, move it
9104 to ARG1 to reduce the number of tests below. */
9105 if (commutative_tree_code (code
)
9106 && tree_swap_operands_p (arg0
, arg1
))
9107 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9109 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9110 to ARG1 to reduce the number of tests below. */
9111 if (kind
== tcc_comparison
9112 && tree_swap_operands_p (arg0
, arg1
))
9113 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9115 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9119 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9121 First check for cases where an arithmetic operation is applied to a
9122 compound, conditional, or comparison operation. Push the arithmetic
9123 operation inside the compound or conditional to see if any folding
9124 can then be done. Convert comparison to conditional for this purpose.
9125 The also optimizes non-constant cases that used to be done in
9128 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9129 one of the operands is a comparison and the other is a comparison, a
9130 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9131 code below would make the expression more complex. Change it to a
9132 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9133 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9135 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9136 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9137 && TREE_CODE (type
) != VECTOR_TYPE
9138 && ((truth_value_p (TREE_CODE (arg0
))
9139 && (truth_value_p (TREE_CODE (arg1
))
9140 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9141 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9142 || (truth_value_p (TREE_CODE (arg1
))
9143 && (truth_value_p (TREE_CODE (arg0
))
9144 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9145 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9147 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9148 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9151 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9152 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9154 if (code
== EQ_EXPR
)
9155 tem
= invert_truthvalue_loc (loc
, tem
);
9157 return fold_convert_loc (loc
, type
, tem
);
9160 if (TREE_CODE_CLASS (code
) == tcc_binary
9161 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9163 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9165 tem
= fold_build2_loc (loc
, code
, type
,
9166 fold_convert_loc (loc
, TREE_TYPE (op0
),
9167 TREE_OPERAND (arg0
, 1)), op1
);
9168 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9171 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
9173 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9174 fold_convert_loc (loc
, TREE_TYPE (op1
),
9175 TREE_OPERAND (arg1
, 1)));
9176 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9180 if (TREE_CODE (arg0
) == COND_EXPR
9181 || TREE_CODE (arg0
) == VEC_COND_EXPR
9182 || COMPARISON_CLASS_P (arg0
))
9184 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9186 /*cond_first_p=*/1);
9187 if (tem
!= NULL_TREE
)
9191 if (TREE_CODE (arg1
) == COND_EXPR
9192 || TREE_CODE (arg1
) == VEC_COND_EXPR
9193 || COMPARISON_CLASS_P (arg1
))
9195 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9197 /*cond_first_p=*/0);
9198 if (tem
!= NULL_TREE
)
9206 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9207 if (TREE_CODE (arg0
) == ADDR_EXPR
9208 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9210 tree iref
= TREE_OPERAND (arg0
, 0);
9211 return fold_build2 (MEM_REF
, type
,
9212 TREE_OPERAND (iref
, 0),
9213 int_const_binop (PLUS_EXPR
, arg1
,
9214 TREE_OPERAND (iref
, 1)));
9217 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9218 if (TREE_CODE (arg0
) == ADDR_EXPR
9219 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9222 HOST_WIDE_INT coffset
;
9223 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9227 return fold_build2 (MEM_REF
, type
,
9228 build_fold_addr_expr (base
),
9229 int_const_binop (PLUS_EXPR
, arg1
,
9230 size_int (coffset
)));
9235 case POINTER_PLUS_EXPR
:
9236 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9237 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9238 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9239 return fold_convert_loc (loc
, type
,
9240 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9241 fold_convert_loc (loc
, sizetype
,
9243 fold_convert_loc (loc
, sizetype
,
9249 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9251 /* X + (X / CST) * -CST is X % CST. */
9252 if (TREE_CODE (arg1
) == MULT_EXPR
9253 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9254 && operand_equal_p (arg0
,
9255 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9257 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9258 tree cst1
= TREE_OPERAND (arg1
, 1);
9259 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9261 if (sum
&& integer_zerop (sum
))
9262 return fold_convert_loc (loc
, type
,
9263 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9264 TREE_TYPE (arg0
), arg0
,
9269 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9270 one. Make sure the type is not saturating and has the signedness of
9271 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9272 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9273 if ((TREE_CODE (arg0
) == MULT_EXPR
9274 || TREE_CODE (arg1
) == MULT_EXPR
)
9275 && !TYPE_SATURATING (type
)
9276 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9277 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9278 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9280 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9285 if (! FLOAT_TYPE_P (type
))
9287 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9288 (plus (plus (mult) (mult)) (foo)) so that we can
9289 take advantage of the factoring cases below. */
9290 if (ANY_INTEGRAL_TYPE_P (type
)
9291 && TYPE_OVERFLOW_WRAPS (type
)
9292 && (((TREE_CODE (arg0
) == PLUS_EXPR
9293 || TREE_CODE (arg0
) == MINUS_EXPR
)
9294 && TREE_CODE (arg1
) == MULT_EXPR
)
9295 || ((TREE_CODE (arg1
) == PLUS_EXPR
9296 || TREE_CODE (arg1
) == MINUS_EXPR
)
9297 && TREE_CODE (arg0
) == MULT_EXPR
)))
9299 tree parg0
, parg1
, parg
, marg
;
9300 enum tree_code pcode
;
9302 if (TREE_CODE (arg1
) == MULT_EXPR
)
9303 parg
= arg0
, marg
= arg1
;
9305 parg
= arg1
, marg
= arg0
;
9306 pcode
= TREE_CODE (parg
);
9307 parg0
= TREE_OPERAND (parg
, 0);
9308 parg1
= TREE_OPERAND (parg
, 1);
9312 if (TREE_CODE (parg0
) == MULT_EXPR
9313 && TREE_CODE (parg1
) != MULT_EXPR
)
9314 return fold_build2_loc (loc
, pcode
, type
,
9315 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9316 fold_convert_loc (loc
, type
,
9318 fold_convert_loc (loc
, type
,
9320 fold_convert_loc (loc
, type
, parg1
));
9321 if (TREE_CODE (parg0
) != MULT_EXPR
9322 && TREE_CODE (parg1
) == MULT_EXPR
)
9324 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9325 fold_convert_loc (loc
, type
, parg0
),
9326 fold_build2_loc (loc
, pcode
, type
,
9327 fold_convert_loc (loc
, type
, marg
),
9328 fold_convert_loc (loc
, type
,
9334 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9335 to __complex__ ( x, y ). This is not the same for SNaNs or
9336 if signed zeros are involved. */
9337 if (!HONOR_SNANS (element_mode (arg0
))
9338 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9339 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9341 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9342 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9343 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9344 bool arg0rz
= false, arg0iz
= false;
9345 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9346 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9348 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9349 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9350 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9352 tree rp
= arg1r
? arg1r
9353 : build1 (REALPART_EXPR
, rtype
, arg1
);
9354 tree ip
= arg0i
? arg0i
9355 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9356 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9358 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9360 tree rp
= arg0r
? arg0r
9361 : build1 (REALPART_EXPR
, rtype
, arg0
);
9362 tree ip
= arg1i
? arg1i
9363 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9364 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9369 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9370 We associate floats only if the user has specified
9371 -fassociative-math. */
9372 if (flag_associative_math
9373 && TREE_CODE (arg1
) == PLUS_EXPR
9374 && TREE_CODE (arg0
) != MULT_EXPR
)
9376 tree tree10
= TREE_OPERAND (arg1
, 0);
9377 tree tree11
= TREE_OPERAND (arg1
, 1);
9378 if (TREE_CODE (tree11
) == MULT_EXPR
9379 && TREE_CODE (tree10
) == MULT_EXPR
)
9382 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9383 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9386 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9387 We associate floats only if the user has specified
9388 -fassociative-math. */
9389 if (flag_associative_math
9390 && TREE_CODE (arg0
) == PLUS_EXPR
9391 && TREE_CODE (arg1
) != MULT_EXPR
)
9393 tree tree00
= TREE_OPERAND (arg0
, 0);
9394 tree tree01
= TREE_OPERAND (arg0
, 1);
9395 if (TREE_CODE (tree01
) == MULT_EXPR
9396 && TREE_CODE (tree00
) == MULT_EXPR
)
9399 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9400 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9406 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9407 is a rotate of A by C1 bits. */
9408 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9409 is a rotate of A by B bits.
9410 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9411 though in this case CODE must be | and not + or ^, otherwise
9412 it doesn't return A when B is 0. */
9414 enum tree_code code0
, code1
;
9416 code0
= TREE_CODE (arg0
);
9417 code1
= TREE_CODE (arg1
);
9418 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9419 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9420 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9421 TREE_OPERAND (arg1
, 0), 0)
9422 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9423 TYPE_UNSIGNED (rtype
))
9424 /* Only create rotates in complete modes. Other cases are not
9425 expanded properly. */
9426 && (element_precision (rtype
)
9427 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9429 tree tree01
, tree11
;
9430 tree orig_tree01
, orig_tree11
;
9431 enum tree_code code01
, code11
;
9433 tree01
= orig_tree01
= TREE_OPERAND (arg0
, 1);
9434 tree11
= orig_tree11
= TREE_OPERAND (arg1
, 1);
9435 STRIP_NOPS (tree01
);
9436 STRIP_NOPS (tree11
);
9437 code01
= TREE_CODE (tree01
);
9438 code11
= TREE_CODE (tree11
);
9439 if (code11
!= MINUS_EXPR
9440 && (code01
== MINUS_EXPR
|| code01
== BIT_AND_EXPR
))
9442 std::swap (code0
, code1
);
9443 std::swap (code01
, code11
);
9444 std::swap (tree01
, tree11
);
9445 std::swap (orig_tree01
, orig_tree11
);
9447 if (code01
== INTEGER_CST
9448 && code11
== INTEGER_CST
9449 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9450 == element_precision (rtype
)))
9452 tem
= build2_loc (loc
, LROTATE_EXPR
,
9453 rtype
, TREE_OPERAND (arg0
, 0),
9454 code0
== LSHIFT_EXPR
9455 ? orig_tree01
: orig_tree11
);
9456 return fold_convert_loc (loc
, type
, tem
);
9458 else if (code11
== MINUS_EXPR
)
9460 tree tree110
, tree111
;
9461 tree110
= TREE_OPERAND (tree11
, 0);
9462 tree111
= TREE_OPERAND (tree11
, 1);
9463 STRIP_NOPS (tree110
);
9464 STRIP_NOPS (tree111
);
9465 if (TREE_CODE (tree110
) == INTEGER_CST
9466 && 0 == compare_tree_int (tree110
,
9467 element_precision (rtype
))
9468 && operand_equal_p (tree01
, tree111
, 0))
9470 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9471 ? LROTATE_EXPR
: RROTATE_EXPR
),
9472 rtype
, TREE_OPERAND (arg0
, 0),
9474 return fold_convert_loc (loc
, type
, tem
);
9477 else if (code
== BIT_IOR_EXPR
9478 && code11
== BIT_AND_EXPR
9479 && pow2p_hwi (element_precision (rtype
)))
9481 tree tree110
, tree111
;
9482 tree110
= TREE_OPERAND (tree11
, 0);
9483 tree111
= TREE_OPERAND (tree11
, 1);
9484 STRIP_NOPS (tree110
);
9485 STRIP_NOPS (tree111
);
9486 if (TREE_CODE (tree110
) == NEGATE_EXPR
9487 && TREE_CODE (tree111
) == INTEGER_CST
9488 && 0 == compare_tree_int (tree111
,
9489 element_precision (rtype
) - 1)
9490 && operand_equal_p (tree01
, TREE_OPERAND (tree110
, 0), 0))
9492 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9493 ? LROTATE_EXPR
: RROTATE_EXPR
),
9494 rtype
, TREE_OPERAND (arg0
, 0),
9496 return fold_convert_loc (loc
, type
, tem
);
9503 /* In most languages, can't associate operations on floats through
9504 parentheses. Rather than remember where the parentheses were, we
9505 don't associate floats at all, unless the user has specified
9507 And, we need to make sure type is not saturating. */
9509 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9510 && !TYPE_SATURATING (type
))
9512 tree var0
, minus_var0
, con0
, minus_con0
, lit0
, minus_lit0
;
9513 tree var1
, minus_var1
, con1
, minus_con1
, lit1
, minus_lit1
;
9517 /* Split both trees into variables, constants, and literals. Then
9518 associate each group together, the constants with literals,
9519 then the result with variables. This increases the chances of
9520 literals being recombined later and of generating relocatable
9521 expressions for the sum of a constant and literal. */
9522 var0
= split_tree (arg0
, type
, code
,
9523 &minus_var0
, &con0
, &minus_con0
,
9524 &lit0
, &minus_lit0
, 0);
9525 var1
= split_tree (arg1
, type
, code
,
9526 &minus_var1
, &con1
, &minus_con1
,
9527 &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9529 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9530 if (code
== MINUS_EXPR
)
9533 /* With undefined overflow prefer doing association in a type
9534 which wraps on overflow, if that is one of the operand types. */
9535 if (POINTER_TYPE_P (type
)
9536 || (INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
)))
9538 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9539 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9540 atype
= TREE_TYPE (arg0
);
9541 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9542 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9543 atype
= TREE_TYPE (arg1
);
9544 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9547 /* With undefined overflow we can only associate constants with one
9548 variable, and constants whose association doesn't overflow. */
9549 if (POINTER_TYPE_P (atype
)
9550 || (INTEGRAL_TYPE_P (atype
) && !TYPE_OVERFLOW_WRAPS (atype
)))
9552 if ((var0
&& var1
) || (minus_var0
&& minus_var1
))
9554 /* ??? If split_tree would handle NEGATE_EXPR we could
9555 simply reject these cases and the allowed cases would
9556 be the var0/minus_var1 ones. */
9557 tree tmp0
= var0
? var0
: minus_var0
;
9558 tree tmp1
= var1
? var1
: minus_var1
;
9559 bool one_neg
= false;
9561 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9563 tmp0
= TREE_OPERAND (tmp0
, 0);
9566 if (CONVERT_EXPR_P (tmp0
)
9567 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9568 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9569 <= TYPE_PRECISION (atype
)))
9570 tmp0
= TREE_OPERAND (tmp0
, 0);
9571 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9573 tmp1
= TREE_OPERAND (tmp1
, 0);
9576 if (CONVERT_EXPR_P (tmp1
)
9577 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9578 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9579 <= TYPE_PRECISION (atype
)))
9580 tmp1
= TREE_OPERAND (tmp1
, 0);
9581 /* The only case we can still associate with two variables
9582 is if they cancel out. */
9584 || !operand_equal_p (tmp0
, tmp1
, 0))
9587 else if ((var0
&& minus_var1
9588 && ! operand_equal_p (var0
, minus_var1
, 0))
9589 || (minus_var0
&& var1
9590 && ! operand_equal_p (minus_var0
, var1
, 0)))
9594 /* Only do something if we found more than two objects. Otherwise,
9595 nothing has changed and we risk infinite recursion. */
9597 && (2 < ((var0
!= 0) + (var1
!= 0)
9598 + (minus_var0
!= 0) + (minus_var1
!= 0)
9599 + (con0
!= 0) + (con1
!= 0)
9600 + (minus_con0
!= 0) + (minus_con1
!= 0)
9601 + (lit0
!= 0) + (lit1
!= 0)
9602 + (minus_lit0
!= 0) + (minus_lit1
!= 0))))
9604 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9605 minus_var0
= associate_trees (loc
, minus_var0
, minus_var1
,
9607 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9608 minus_con0
= associate_trees (loc
, minus_con0
, minus_con1
,
9610 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9611 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9614 if (minus_var0
&& var0
)
9616 var0
= associate_trees (loc
, var0
, minus_var0
,
9620 if (minus_con0
&& con0
)
9622 con0
= associate_trees (loc
, con0
, minus_con0
,
9627 /* Preserve the MINUS_EXPR if the negative part of the literal is
9628 greater than the positive part. Otherwise, the multiplicative
9629 folding code (i.e extract_muldiv) may be fooled in case
9630 unsigned constants are subtracted, like in the following
9631 example: ((X*2 + 4) - 8U)/2. */
9632 if (minus_lit0
&& lit0
)
9634 if (TREE_CODE (lit0
) == INTEGER_CST
9635 && TREE_CODE (minus_lit0
) == INTEGER_CST
9636 && tree_int_cst_lt (lit0
, minus_lit0
)
9637 /* But avoid ending up with only negated parts. */
9640 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9646 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9652 /* Don't introduce overflows through reassociation. */
9653 if ((lit0
&& TREE_OVERFLOW_P (lit0
))
9654 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
)))
9657 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9658 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9660 minus_con0
= associate_trees (loc
, minus_con0
, minus_lit0
,
9664 /* Eliminate minus_con0. */
9668 con0
= associate_trees (loc
, con0
, minus_con0
,
9671 var0
= associate_trees (loc
, var0
, minus_con0
,
9678 /* Eliminate minus_var0. */
9682 con0
= associate_trees (loc
, con0
, minus_var0
,
9690 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9698 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9699 if (TREE_CODE (arg0
) == NEGATE_EXPR
9700 && negate_expr_p (op1
))
9701 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
9703 fold_convert_loc (loc
, type
,
9704 TREE_OPERAND (arg0
, 0)));
9706 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9707 __complex__ ( x, -y ). This is not the same for SNaNs or if
9708 signed zeros are involved. */
9709 if (!HONOR_SNANS (element_mode (arg0
))
9710 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9711 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9713 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9714 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9715 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9716 bool arg0rz
= false, arg0iz
= false;
9717 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9718 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9720 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9721 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9722 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9724 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9726 : build1 (REALPART_EXPR
, rtype
, arg1
));
9727 tree ip
= arg0i
? arg0i
9728 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9729 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9731 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9733 tree rp
= arg0r
? arg0r
9734 : build1 (REALPART_EXPR
, rtype
, arg0
);
9735 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9737 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
9738 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9743 /* A - B -> A + (-B) if B is easily negatable. */
9744 if (negate_expr_p (op1
)
9745 && ! TYPE_OVERFLOW_SANITIZED (type
)
9746 && ((FLOAT_TYPE_P (type
)
9747 /* Avoid this transformation if B is a positive REAL_CST. */
9748 && (TREE_CODE (op1
) != REAL_CST
9749 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
9750 || INTEGRAL_TYPE_P (type
)))
9751 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9752 fold_convert_loc (loc
, type
, arg0
),
9755 /* Fold &a[i] - &a[j] to i-j. */
9756 if (TREE_CODE (arg0
) == ADDR_EXPR
9757 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9758 && TREE_CODE (arg1
) == ADDR_EXPR
9759 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9761 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9762 TREE_OPERAND (arg0
, 0),
9763 TREE_OPERAND (arg1
, 0));
9768 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9769 one. Make sure the type is not saturating and has the signedness of
9770 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9771 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9772 if ((TREE_CODE (arg0
) == MULT_EXPR
9773 || TREE_CODE (arg1
) == MULT_EXPR
)
9774 && !TYPE_SATURATING (type
)
9775 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9776 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9777 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9779 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9787 if (! FLOAT_TYPE_P (type
))
9789 /* Transform x * -C into -x * C if x is easily negatable. */
9790 if (TREE_CODE (op1
) == INTEGER_CST
9791 && tree_int_cst_sgn (op1
) == -1
9792 && negate_expr_p (op0
)
9793 && negate_expr_p (op1
)
9794 && (tem
= negate_expr (op1
)) != op1
9795 && ! TREE_OVERFLOW (tem
))
9796 return fold_build2_loc (loc
, MULT_EXPR
, type
,
9797 fold_convert_loc (loc
, type
,
9798 negate_expr (op0
)), tem
);
9800 strict_overflow_p
= false;
9801 if (TREE_CODE (arg1
) == INTEGER_CST
9802 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
9803 &strict_overflow_p
)))
9805 if (strict_overflow_p
)
9806 fold_overflow_warning (("assuming signed overflow does not "
9807 "occur when simplifying "
9809 WARN_STRICT_OVERFLOW_MISC
);
9810 return fold_convert_loc (loc
, type
, tem
);
9813 /* Optimize z * conj(z) for integer complex numbers. */
9814 if (TREE_CODE (arg0
) == CONJ_EXPR
9815 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
9816 return fold_mult_zconjz (loc
, type
, arg1
);
9817 if (TREE_CODE (arg1
) == CONJ_EXPR
9818 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
9819 return fold_mult_zconjz (loc
, type
, arg0
);
9823 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9824 This is not the same for NaNs or if signed zeros are
9826 if (!HONOR_NANS (arg0
)
9827 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9828 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
9829 && TREE_CODE (arg1
) == COMPLEX_CST
9830 && real_zerop (TREE_REALPART (arg1
)))
9832 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9833 if (real_onep (TREE_IMAGPART (arg1
)))
9835 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
9836 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
9838 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
9839 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
9841 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
9842 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
9843 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
9847 /* Optimize z * conj(z) for floating point complex numbers.
9848 Guarded by flag_unsafe_math_optimizations as non-finite
9849 imaginary components don't produce scalar results. */
9850 if (flag_unsafe_math_optimizations
9851 && TREE_CODE (arg0
) == CONJ_EXPR
9852 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
9853 return fold_mult_zconjz (loc
, type
, arg1
);
9854 if (flag_unsafe_math_optimizations
9855 && TREE_CODE (arg1
) == CONJ_EXPR
9856 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
9857 return fold_mult_zconjz (loc
, type
, arg0
);
9862 /* Canonicalize (X & C1) | C2. */
9863 if (TREE_CODE (arg0
) == BIT_AND_EXPR
9864 && TREE_CODE (arg1
) == INTEGER_CST
9865 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9867 int width
= TYPE_PRECISION (type
), w
;
9868 wide_int c1
= wi::to_wide (TREE_OPERAND (arg0
, 1));
9869 wide_int c2
= wi::to_wide (arg1
);
9871 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9872 if ((c1
& c2
) == c1
)
9873 return omit_one_operand_loc (loc
, type
, arg1
,
9874 TREE_OPERAND (arg0
, 0));
9876 wide_int msk
= wi::mask (width
, false,
9877 TYPE_PRECISION (TREE_TYPE (arg1
)));
9879 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9880 if (wi::bit_and_not (msk
, c1
| c2
) == 0)
9882 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
9883 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
9886 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9887 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9888 mode which allows further optimizations. */
9891 wide_int c3
= wi::bit_and_not (c1
, c2
);
9892 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
9894 wide_int mask
= wi::mask (w
, false,
9895 TYPE_PRECISION (type
));
9896 if (((c1
| c2
) & mask
) == mask
9897 && wi::bit_and_not (c1
, mask
) == 0)
9906 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
9907 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
,
9908 wide_int_to_tree (type
, c3
));
9909 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
9913 /* See if this can be simplified into a rotate first. If that
9914 is unsuccessful continue in the association code. */
9918 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9919 if (TREE_CODE (arg0
) == BIT_AND_EXPR
9920 && INTEGRAL_TYPE_P (type
)
9921 && integer_onep (TREE_OPERAND (arg0
, 1))
9922 && integer_onep (arg1
))
9923 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
9924 build_zero_cst (TREE_TYPE (arg0
)));
9926 /* See if this can be simplified into a rotate first. If that
9927 is unsuccessful continue in the association code. */
9931 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9932 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
9933 && INTEGRAL_TYPE_P (type
)
9934 && integer_onep (TREE_OPERAND (arg0
, 1))
9935 && integer_onep (arg1
))
9938 tem
= TREE_OPERAND (arg0
, 0);
9939 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
9940 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
9942 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
9943 build_zero_cst (TREE_TYPE (tem
)));
9945 /* Fold ~X & 1 as (X & 1) == 0. */
9946 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9947 && INTEGRAL_TYPE_P (type
)
9948 && integer_onep (arg1
))
9951 tem
= TREE_OPERAND (arg0
, 0);
9952 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
9953 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
9955 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
9956 build_zero_cst (TREE_TYPE (tem
)));
9958 /* Fold !X & 1 as X == 0. */
9959 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
9960 && integer_onep (arg1
))
9962 tem
= TREE_OPERAND (arg0
, 0);
9963 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
9964 build_zero_cst (TREE_TYPE (tem
)));
9967 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9968 multiple of 1 << CST. */
9969 if (TREE_CODE (arg1
) == INTEGER_CST
)
9971 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
9972 wide_int ncst1
= -cst1
;
9973 if ((cst1
& ncst1
) == ncst1
9974 && multiple_of_p (type
, arg0
,
9975 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
9976 return fold_convert_loc (loc
, type
, arg0
);
9979 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9981 if (TREE_CODE (arg1
) == INTEGER_CST
9982 && TREE_CODE (arg0
) == MULT_EXPR
9983 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9985 wi::tree_to_wide_ref warg1
= wi::to_wide (arg1
);
9987 = mask_with_tz (type
, warg1
, wi::to_wide (TREE_OPERAND (arg0
, 1)));
9990 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
9992 else if (masked
!= warg1
)
9994 /* Avoid the transform if arg1 is a mask of some
9995 mode which allows further optimizations. */
9996 int pop
= wi::popcount (warg1
);
9997 if (!(pop
>= BITS_PER_UNIT
9999 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10000 return fold_build2_loc (loc
, code
, type
, op0
,
10001 wide_int_to_tree (type
, masked
));
10005 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10006 ((A & N) + B) & M -> (A + B) & M
10007 Similarly if (N & M) == 0,
10008 ((A | N) + B) & M -> (A + B) & M
10009 and for - instead of + (or unary - instead of +)
10010 and/or ^ instead of |.
10011 If B is constant and (B & M) == 0, fold into A & M. */
10012 if (TREE_CODE (arg1
) == INTEGER_CST
)
10014 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10015 if ((~cst1
!= 0) && (cst1
& (cst1
+ 1)) == 0
10016 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10017 && (TREE_CODE (arg0
) == PLUS_EXPR
10018 || TREE_CODE (arg0
) == MINUS_EXPR
10019 || TREE_CODE (arg0
) == NEGATE_EXPR
)
10020 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
))
10021 || TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
))
10027 /* Now we know that arg0 is (C + D) or (C - D) or
10028 -C and arg1 (M) is == (1LL << cst) - 1.
10029 Store C into PMOP[0] and D into PMOP[1]. */
10030 pmop
[0] = TREE_OPERAND (arg0
, 0);
10032 if (TREE_CODE (arg0
) != NEGATE_EXPR
)
10034 pmop
[1] = TREE_OPERAND (arg0
, 1);
10038 if ((wi::max_value (TREE_TYPE (arg0
)) & cst1
) != cst1
)
10041 for (; which
>= 0; which
--)
10042 switch (TREE_CODE (pmop
[which
]))
10047 if (TREE_CODE (TREE_OPERAND (pmop
[which
], 1))
10050 cst0
= wi::to_wide (TREE_OPERAND (pmop
[which
], 1)) & cst1
;
10051 if (TREE_CODE (pmop
[which
]) == BIT_AND_EXPR
)
10056 else if (cst0
!= 0)
10058 /* If C or D is of the form (A & N) where
10059 (N & M) == M, or of the form (A | N) or
10060 (A ^ N) where (N & M) == 0, replace it with A. */
10061 pmop
[which
] = TREE_OPERAND (pmop
[which
], 0);
10064 /* If C or D is a N where (N & M) == 0, it can be
10065 omitted (assumed 0). */
10066 if ((TREE_CODE (arg0
) == PLUS_EXPR
10067 || (TREE_CODE (arg0
) == MINUS_EXPR
&& which
== 0))
10068 && (cst1
& wi::to_wide (pmop
[which
])) == 0)
10069 pmop
[which
] = NULL
;
10075 /* Only build anything new if we optimized one or both arguments
10077 if (pmop
[0] != TREE_OPERAND (arg0
, 0)
10078 || (TREE_CODE (arg0
) != NEGATE_EXPR
10079 && pmop
[1] != TREE_OPERAND (arg0
, 1)))
10081 tree utype
= TREE_TYPE (arg0
);
10082 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
10084 /* Perform the operations in a type that has defined
10085 overflow behavior. */
10086 utype
= unsigned_type_for (TREE_TYPE (arg0
));
10087 if (pmop
[0] != NULL
)
10088 pmop
[0] = fold_convert_loc (loc
, utype
, pmop
[0]);
10089 if (pmop
[1] != NULL
)
10090 pmop
[1] = fold_convert_loc (loc
, utype
, pmop
[1]);
10093 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
10094 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[0]);
10095 else if (TREE_CODE (arg0
) == PLUS_EXPR
)
10097 if (pmop
[0] != NULL
&& pmop
[1] != NULL
)
10098 tem
= fold_build2_loc (loc
, PLUS_EXPR
, utype
,
10100 else if (pmop
[0] != NULL
)
10102 else if (pmop
[1] != NULL
)
10105 return build_int_cst (type
, 0);
10107 else if (pmop
[0] == NULL
)
10108 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[1]);
10110 tem
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
10112 /* TEM is now the new binary +, - or unary - replacement. */
10113 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, utype
, tem
,
10114 fold_convert_loc (loc
, utype
, arg1
));
10115 return fold_convert_loc (loc
, type
, tem
);
10120 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10121 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10122 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10124 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10126 wide_int mask
= wide_int::from (wi::to_wide (arg1
), prec
, UNSIGNED
);
10129 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10135 /* Don't touch a floating-point divide by zero unless the mode
10136 of the constant can represent infinity. */
10137 if (TREE_CODE (arg1
) == REAL_CST
10138 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10139 && real_zerop (arg1
))
10142 /* (-A) / (-B) -> A / B */
10143 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10144 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10145 TREE_OPERAND (arg0
, 0),
10146 negate_expr (arg1
));
10147 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10148 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10149 negate_expr (arg0
),
10150 TREE_OPERAND (arg1
, 0));
10153 case TRUNC_DIV_EXPR
:
10156 case FLOOR_DIV_EXPR
:
10157 /* Simplify A / (B << N) where A and B are positive and B is
10158 a power of 2, to A >> (N + log2(B)). */
10159 strict_overflow_p
= false;
10160 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10161 && (TYPE_UNSIGNED (type
)
10162 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10164 tree sval
= TREE_OPERAND (arg1
, 0);
10165 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10167 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10168 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10169 wi::exact_log2 (wi::to_wide (sval
)));
10171 if (strict_overflow_p
)
10172 fold_overflow_warning (("assuming signed overflow does not "
10173 "occur when simplifying A / (B << N)"),
10174 WARN_STRICT_OVERFLOW_MISC
);
10176 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10178 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10179 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10185 case ROUND_DIV_EXPR
:
10186 case CEIL_DIV_EXPR
:
10187 case EXACT_DIV_EXPR
:
10188 if (integer_zerop (arg1
))
10191 /* Convert -A / -B to A / B when the type is signed and overflow is
10193 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10194 && TREE_CODE (op0
) == NEGATE_EXPR
10195 && negate_expr_p (op1
))
10197 if (INTEGRAL_TYPE_P (type
))
10198 fold_overflow_warning (("assuming signed overflow does not occur "
10199 "when distributing negation across "
10201 WARN_STRICT_OVERFLOW_MISC
);
10202 return fold_build2_loc (loc
, code
, type
,
10203 fold_convert_loc (loc
, type
,
10204 TREE_OPERAND (arg0
, 0)),
10205 negate_expr (op1
));
10207 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10208 && TREE_CODE (arg1
) == NEGATE_EXPR
10209 && negate_expr_p (op0
))
10211 if (INTEGRAL_TYPE_P (type
))
10212 fold_overflow_warning (("assuming signed overflow does not occur "
10213 "when distributing negation across "
10215 WARN_STRICT_OVERFLOW_MISC
);
10216 return fold_build2_loc (loc
, code
, type
,
10218 fold_convert_loc (loc
, type
,
10219 TREE_OPERAND (arg1
, 0)));
10222 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10223 operation, EXACT_DIV_EXPR.
10225 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10226 At one time others generated faster code, it's not clear if they do
10227 after the last round to changes to the DIV code in expmed.c. */
10228 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10229 && multiple_of_p (type
, arg0
, arg1
))
10230 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10231 fold_convert (type
, arg0
),
10232 fold_convert (type
, arg1
));
10234 strict_overflow_p
= false;
10235 if (TREE_CODE (arg1
) == INTEGER_CST
10236 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10237 &strict_overflow_p
)))
10239 if (strict_overflow_p
)
10240 fold_overflow_warning (("assuming signed overflow does not occur "
10241 "when simplifying division"),
10242 WARN_STRICT_OVERFLOW_MISC
);
10243 return fold_convert_loc (loc
, type
, tem
);
10248 case CEIL_MOD_EXPR
:
10249 case FLOOR_MOD_EXPR
:
10250 case ROUND_MOD_EXPR
:
10251 case TRUNC_MOD_EXPR
:
10252 strict_overflow_p
= false;
10253 if (TREE_CODE (arg1
) == INTEGER_CST
10254 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10255 &strict_overflow_p
)))
10257 if (strict_overflow_p
)
10258 fold_overflow_warning (("assuming signed overflow does not occur "
10259 "when simplifying modulus"),
10260 WARN_STRICT_OVERFLOW_MISC
);
10261 return fold_convert_loc (loc
, type
, tem
);
10270 /* Since negative shift count is not well-defined,
10271 don't try to compute it in the compiler. */
10272 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10275 prec
= element_precision (type
);
10277 /* If we have a rotate of a bit operation with the rotate count and
10278 the second operand of the bit operation both constant,
10279 permute the two operations. */
10280 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10281 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10282 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10283 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10284 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10286 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10287 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10288 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10289 fold_build2_loc (loc
, code
, type
,
10291 fold_build2_loc (loc
, code
, type
,
10295 /* Two consecutive rotates adding up to the some integer
10296 multiple of the precision of the type can be ignored. */
10297 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10298 && TREE_CODE (arg0
) == RROTATE_EXPR
10299 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10300 && wi::umod_trunc (wi::to_wide (arg1
)
10301 + wi::to_wide (TREE_OPERAND (arg0
, 1)),
10303 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10311 case TRUTH_ANDIF_EXPR
:
10312 /* Note that the operands of this must be ints
10313 and their values must be 0 or 1.
10314 ("true" is a fixed value perhaps depending on the language.) */
10315 /* If first arg is constant zero, return it. */
10316 if (integer_zerop (arg0
))
10317 return fold_convert_loc (loc
, type
, arg0
);
10319 case TRUTH_AND_EXPR
:
10320 /* If either arg is constant true, drop it. */
10321 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10322 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10323 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10324 /* Preserve sequence points. */
10325 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10326 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10327 /* If second arg is constant zero, result is zero, but first arg
10328 must be evaluated. */
10329 if (integer_zerop (arg1
))
10330 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10331 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10332 case will be handled here. */
10333 if (integer_zerop (arg0
))
10334 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10336 /* !X && X is always false. */
10337 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10338 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10339 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10340 /* X && !X is always false. */
10341 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10342 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10343 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10345 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10346 means A >= Y && A != MAX, but in this case we know that
10349 if (!TREE_SIDE_EFFECTS (arg0
)
10350 && !TREE_SIDE_EFFECTS (arg1
))
10352 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10353 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10354 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10356 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10357 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10358 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10361 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10367 case TRUTH_ORIF_EXPR
:
10368 /* Note that the operands of this must be ints
10369 and their values must be 0 or true.
10370 ("true" is a fixed value perhaps depending on the language.) */
10371 /* If first arg is constant true, return it. */
10372 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10373 return fold_convert_loc (loc
, type
, arg0
);
10375 case TRUTH_OR_EXPR
:
10376 /* If either arg is constant zero, drop it. */
10377 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10378 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10379 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10380 /* Preserve sequence points. */
10381 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10382 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10383 /* If second arg is constant true, result is true, but we must
10384 evaluate first arg. */
10385 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10386 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10387 /* Likewise for first arg, but note this only occurs here for
10389 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10390 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10392 /* !X || X is always true. */
10393 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10394 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10395 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10396 /* X || !X is always true. */
10397 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10398 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10399 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10401 /* (X && !Y) || (!X && Y) is X ^ Y */
10402 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10403 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10405 tree a0
, a1
, l0
, l1
, n0
, n1
;
10407 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10408 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10410 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10411 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10413 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10414 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10416 if ((operand_equal_p (n0
, a0
, 0)
10417 && operand_equal_p (n1
, a1
, 0))
10418 || (operand_equal_p (n0
, a1
, 0)
10419 && operand_equal_p (n1
, a0
, 0)))
10420 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10423 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10429 case TRUTH_XOR_EXPR
:
10430 /* If the second arg is constant zero, drop it. */
10431 if (integer_zerop (arg1
))
10432 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10433 /* If the second arg is constant true, this is a logical inversion. */
10434 if (integer_onep (arg1
))
10436 tem
= invert_truthvalue_loc (loc
, arg0
);
10437 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10439 /* Identical arguments cancel to zero. */
10440 if (operand_equal_p (arg0
, arg1
, 0))
10441 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10443 /* !X ^ X is always true. */
10444 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10445 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10446 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10448 /* X ^ !X is always true. */
10449 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10450 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10451 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10460 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10461 if (tem
!= NULL_TREE
)
10464 /* bool_var != 1 becomes !bool_var. */
10465 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10466 && code
== NE_EXPR
)
10467 return fold_convert_loc (loc
, type
,
10468 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10469 TREE_TYPE (arg0
), arg0
));
10471 /* bool_var == 0 becomes !bool_var. */
10472 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10473 && code
== EQ_EXPR
)
10474 return fold_convert_loc (loc
, type
,
10475 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10476 TREE_TYPE (arg0
), arg0
));
10478 /* !exp != 0 becomes !exp */
10479 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10480 && code
== NE_EXPR
)
10481 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10483 /* If this is an EQ or NE comparison with zero and ARG0 is
10484 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10485 two operations, but the latter can be done in one less insn
10486 on machines that have only two-operand insns or on which a
10487 constant cannot be the first operand. */
10488 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10489 && integer_zerop (arg1
))
10491 tree arg00
= TREE_OPERAND (arg0
, 0);
10492 tree arg01
= TREE_OPERAND (arg0
, 1);
10493 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10494 && integer_onep (TREE_OPERAND (arg00
, 0)))
10496 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10497 arg01
, TREE_OPERAND (arg00
, 1));
10498 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10499 build_int_cst (TREE_TYPE (arg0
), 1));
10500 return fold_build2_loc (loc
, code
, type
,
10501 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10504 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10505 && integer_onep (TREE_OPERAND (arg01
, 0)))
10507 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10508 arg00
, TREE_OPERAND (arg01
, 1));
10509 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10510 build_int_cst (TREE_TYPE (arg0
), 1));
10511 return fold_build2_loc (loc
, code
, type
,
10512 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10517 /* If this is an NE or EQ comparison of zero against the result of a
10518 signed MOD operation whose second operand is a power of 2, make
10519 the MOD operation unsigned since it is simpler and equivalent. */
10520 if (integer_zerop (arg1
)
10521 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
10522 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
10523 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
10524 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
10525 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
10526 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10528 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
10529 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
10530 fold_convert_loc (loc
, newtype
,
10531 TREE_OPERAND (arg0
, 0)),
10532 fold_convert_loc (loc
, newtype
,
10533 TREE_OPERAND (arg0
, 1)));
10535 return fold_build2_loc (loc
, code
, type
, newmod
,
10536 fold_convert_loc (loc
, newtype
, arg1
));
10539 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10540 C1 is a valid shift constant, and C2 is a power of two, i.e.
10542 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10543 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10544 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10546 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10547 && integer_zerop (arg1
))
10549 tree itype
= TREE_TYPE (arg0
);
10550 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10551 prec
= TYPE_PRECISION (itype
);
10553 /* Check for a valid shift count. */
10554 if (wi::ltu_p (wi::to_wide (arg001
), prec
))
10556 tree arg01
= TREE_OPERAND (arg0
, 1);
10557 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10558 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10559 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10560 can be rewritten as (X & (C2 << C1)) != 0. */
10561 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10563 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10564 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10565 return fold_build2_loc (loc
, code
, type
, tem
,
10566 fold_convert_loc (loc
, itype
, arg1
));
10568 /* Otherwise, for signed (arithmetic) shifts,
10569 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10570 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10571 else if (!TYPE_UNSIGNED (itype
))
10572 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10573 arg000
, build_int_cst (itype
, 0));
10574 /* Otherwise, of unsigned (logical) shifts,
10575 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10576 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10578 return omit_one_operand_loc (loc
, type
,
10579 code
== EQ_EXPR
? integer_one_node
10580 : integer_zero_node
,
10585 /* If this is a comparison of a field, we may be able to simplify it. */
10586 if ((TREE_CODE (arg0
) == COMPONENT_REF
10587 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10588 /* Handle the constant case even without -O
10589 to make sure the warnings are given. */
10590 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10592 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10597 /* Optimize comparisons of strlen vs zero to a compare of the
10598 first character of the string vs zero. To wit,
10599 strlen(ptr) == 0 => *ptr == 0
10600 strlen(ptr) != 0 => *ptr != 0
10601 Other cases should reduce to one of these two (or a constant)
10602 due to the return value of strlen being unsigned. */
10603 if (TREE_CODE (arg0
) == CALL_EXPR
10604 && integer_zerop (arg1
))
10606 tree fndecl
= get_callee_fndecl (arg0
);
10609 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
10610 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
10611 && call_expr_nargs (arg0
) == 1
10612 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10614 tree iref
= build_fold_indirect_ref_loc (loc
,
10615 CALL_EXPR_ARG (arg0
, 0));
10616 return fold_build2_loc (loc
, code
, type
, iref
,
10617 build_int_cst (TREE_TYPE (iref
), 0));
10621 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10622 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10623 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10624 && integer_zerop (arg1
)
10625 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10627 tree arg00
= TREE_OPERAND (arg0
, 0);
10628 tree arg01
= TREE_OPERAND (arg0
, 1);
10629 tree itype
= TREE_TYPE (arg00
);
10630 if (wi::to_wide (arg01
) == element_precision (itype
) - 1)
10632 if (TYPE_UNSIGNED (itype
))
10634 itype
= signed_type_for (itype
);
10635 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10637 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10638 type
, arg00
, build_zero_cst (itype
));
10642 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10643 (X & C) == 0 when C is a single bit. */
10644 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10645 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10646 && integer_zerop (arg1
)
10647 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10649 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10650 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10651 TREE_OPERAND (arg0
, 1));
10652 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10654 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10658 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10659 constant C is a power of two, i.e. a single bit. */
10660 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10661 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10662 && integer_zerop (arg1
)
10663 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10664 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10665 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10667 tree arg00
= TREE_OPERAND (arg0
, 0);
10668 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10669 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10672 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10673 when is C is a power of two, i.e. a single bit. */
10674 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10675 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10676 && integer_zerop (arg1
)
10677 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10678 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10679 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10681 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10682 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10683 arg000
, TREE_OPERAND (arg0
, 1));
10684 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10685 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10688 if (integer_zerop (arg1
)
10689 && tree_expr_nonzero_p (arg0
))
10691 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10692 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10695 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10696 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10697 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10699 tree arg00
= TREE_OPERAND (arg0
, 0);
10700 tree arg01
= TREE_OPERAND (arg0
, 1);
10701 tree arg10
= TREE_OPERAND (arg1
, 0);
10702 tree arg11
= TREE_OPERAND (arg1
, 1);
10703 tree itype
= TREE_TYPE (arg0
);
10705 if (operand_equal_p (arg01
, arg11
, 0))
10707 tem
= fold_convert_loc (loc
, itype
, arg10
);
10708 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10709 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10710 return fold_build2_loc (loc
, code
, type
, tem
,
10711 build_zero_cst (itype
));
10713 if (operand_equal_p (arg01
, arg10
, 0))
10715 tem
= fold_convert_loc (loc
, itype
, arg11
);
10716 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10717 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10718 return fold_build2_loc (loc
, code
, type
, tem
,
10719 build_zero_cst (itype
));
10721 if (operand_equal_p (arg00
, arg11
, 0))
10723 tem
= fold_convert_loc (loc
, itype
, arg10
);
10724 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10725 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10726 return fold_build2_loc (loc
, code
, type
, tem
,
10727 build_zero_cst (itype
));
10729 if (operand_equal_p (arg00
, arg10
, 0))
10731 tem
= fold_convert_loc (loc
, itype
, arg11
);
10732 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10733 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10734 return fold_build2_loc (loc
, code
, type
, tem
,
10735 build_zero_cst (itype
));
10739 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10740 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10742 tree arg00
= TREE_OPERAND (arg0
, 0);
10743 tree arg01
= TREE_OPERAND (arg0
, 1);
10744 tree arg10
= TREE_OPERAND (arg1
, 0);
10745 tree arg11
= TREE_OPERAND (arg1
, 1);
10746 tree itype
= TREE_TYPE (arg0
);
10748 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10749 operand_equal_p guarantees no side-effects so we don't need
10750 to use omit_one_operand on Z. */
10751 if (operand_equal_p (arg01
, arg11
, 0))
10752 return fold_build2_loc (loc
, code
, type
, arg00
,
10753 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10755 if (operand_equal_p (arg01
, arg10
, 0))
10756 return fold_build2_loc (loc
, code
, type
, arg00
,
10757 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10759 if (operand_equal_p (arg00
, arg11
, 0))
10760 return fold_build2_loc (loc
, code
, type
, arg01
,
10761 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10763 if (operand_equal_p (arg00
, arg10
, 0))
10764 return fold_build2_loc (loc
, code
, type
, arg01
,
10765 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10768 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10769 if (TREE_CODE (arg01
) == INTEGER_CST
10770 && TREE_CODE (arg11
) == INTEGER_CST
)
10772 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10773 fold_convert_loc (loc
, itype
, arg11
));
10774 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10775 return fold_build2_loc (loc
, code
, type
, tem
,
10776 fold_convert_loc (loc
, itype
, arg10
));
10780 /* Attempt to simplify equality/inequality comparisons of complex
10781 values. Only lower the comparison if the result is known or
10782 can be simplified to a single scalar comparison. */
10783 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10784 || TREE_CODE (arg0
) == COMPLEX_CST
)
10785 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10786 || TREE_CODE (arg1
) == COMPLEX_CST
))
10788 tree real0
, imag0
, real1
, imag1
;
10791 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10793 real0
= TREE_OPERAND (arg0
, 0);
10794 imag0
= TREE_OPERAND (arg0
, 1);
10798 real0
= TREE_REALPART (arg0
);
10799 imag0
= TREE_IMAGPART (arg0
);
10802 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10804 real1
= TREE_OPERAND (arg1
, 0);
10805 imag1
= TREE_OPERAND (arg1
, 1);
10809 real1
= TREE_REALPART (arg1
);
10810 imag1
= TREE_IMAGPART (arg1
);
10813 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
10814 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
10816 if (integer_zerop (rcond
))
10818 if (code
== EQ_EXPR
)
10819 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10821 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
10825 if (code
== NE_EXPR
)
10826 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10828 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
10832 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
10833 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
10835 if (integer_zerop (icond
))
10837 if (code
== EQ_EXPR
)
10838 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10840 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
10844 if (code
== NE_EXPR
)
10845 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10847 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
10858 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10859 if (tem
!= NULL_TREE
)
10862 /* Transform comparisons of the form X +- C CMP X. */
10863 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
10864 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10865 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
10866 && !HONOR_SNANS (arg0
))
10868 tree arg01
= TREE_OPERAND (arg0
, 1);
10869 enum tree_code code0
= TREE_CODE (arg0
);
10870 int is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
10872 /* (X - c) > X becomes false. */
10873 if (code
== GT_EXPR
10874 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
10875 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
10876 return constant_boolean_node (0, type
);
10878 /* Likewise (X + c) < X becomes false. */
10879 if (code
== LT_EXPR
10880 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
10881 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
10882 return constant_boolean_node (0, type
);
10884 /* Convert (X - c) <= X to true. */
10885 if (!HONOR_NANS (arg1
)
10887 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
10888 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
10889 return constant_boolean_node (1, type
);
10891 /* Convert (X + c) >= X to true. */
10892 if (!HONOR_NANS (arg1
)
10894 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
10895 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
10896 return constant_boolean_node (1, type
);
10899 /* If we are comparing an ABS_EXPR with a constant, we can
10900 convert all the cases into explicit comparisons, but they may
10901 well not be faster than doing the ABS and one comparison.
10902 But ABS (X) <= C is a range comparison, which becomes a subtraction
10903 and a comparison, and is probably faster. */
10904 if (code
== LE_EXPR
10905 && TREE_CODE (arg1
) == INTEGER_CST
10906 && TREE_CODE (arg0
) == ABS_EXPR
10907 && ! TREE_SIDE_EFFECTS (arg0
)
10908 && (0 != (tem
= negate_expr (arg1
)))
10909 && TREE_CODE (tem
) == INTEGER_CST
10910 && !TREE_OVERFLOW (tem
))
10911 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
10912 build2 (GE_EXPR
, type
,
10913 TREE_OPERAND (arg0
, 0), tem
),
10914 build2 (LE_EXPR
, type
,
10915 TREE_OPERAND (arg0
, 0), arg1
));
10917 /* Convert ABS_EXPR<x> >= 0 to true. */
10918 strict_overflow_p
= false;
10919 if (code
== GE_EXPR
10920 && (integer_zerop (arg1
)
10921 || (! HONOR_NANS (arg0
)
10922 && real_zerop (arg1
)))
10923 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
10925 if (strict_overflow_p
)
10926 fold_overflow_warning (("assuming signed overflow does not occur "
10927 "when simplifying comparison of "
10928 "absolute value and zero"),
10929 WARN_STRICT_OVERFLOW_CONDITIONAL
);
10930 return omit_one_operand_loc (loc
, type
,
10931 constant_boolean_node (true, type
),
10935 /* Convert ABS_EXPR<x> < 0 to false. */
10936 strict_overflow_p
= false;
10937 if (code
== LT_EXPR
10938 && (integer_zerop (arg1
) || real_zerop (arg1
))
10939 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
10941 if (strict_overflow_p
)
10942 fold_overflow_warning (("assuming signed overflow does not occur "
10943 "when simplifying comparison of "
10944 "absolute value and zero"),
10945 WARN_STRICT_OVERFLOW_CONDITIONAL
);
10946 return omit_one_operand_loc (loc
, type
,
10947 constant_boolean_node (false, type
),
10951 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
10952 and similarly for >= into !=. */
10953 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
10954 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
10955 && TREE_CODE (arg1
) == LSHIFT_EXPR
10956 && integer_onep (TREE_OPERAND (arg1
, 0)))
10957 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
10958 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
10959 TREE_OPERAND (arg1
, 1)),
10960 build_zero_cst (TREE_TYPE (arg0
)));
10962 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
10963 otherwise Y might be >= # of bits in X's type and thus e.g.
10964 (unsigned char) (1 << Y) for Y 15 might be 0.
10965 If the cast is widening, then 1 << Y should have unsigned type,
10966 otherwise if Y is number of bits in the signed shift type minus 1,
10967 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
10968 31 might be 0xffffffff80000000. */
10969 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
10970 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
10971 && CONVERT_EXPR_P (arg1
)
10972 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
10973 && (element_precision (TREE_TYPE (arg1
))
10974 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
10975 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
10976 || (element_precision (TREE_TYPE (arg1
))
10977 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
10978 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
10980 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
10981 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
10982 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
10983 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
10984 build_zero_cst (TREE_TYPE (arg0
)));
10989 case UNORDERED_EXPR
:
10997 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
10999 tree targ0
= strip_float_extensions (arg0
);
11000 tree targ1
= strip_float_extensions (arg1
);
11001 tree newtype
= TREE_TYPE (targ0
);
11003 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11004 newtype
= TREE_TYPE (targ1
);
11006 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11007 return fold_build2_loc (loc
, code
, type
,
11008 fold_convert_loc (loc
, newtype
, targ0
),
11009 fold_convert_loc (loc
, newtype
, targ1
));
11014 case COMPOUND_EXPR
:
11015 /* When pedantic, a compound expression can be neither an lvalue
11016 nor an integer constant expression. */
11017 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11019 /* Don't let (0, 0) be null pointer constant. */
11020 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11021 : fold_convert_loc (loc
, type
, arg1
);
11022 return pedantic_non_lvalue_loc (loc
, tem
);
11025 /* An ASSERT_EXPR should never be passed to fold_binary. */
11026 gcc_unreachable ();
11030 } /* switch (code) */
11033 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11034 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11038 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
11040 switch (TREE_CODE (*tp
))
11046 *walk_subtrees
= 0;
11055 /* Return whether the sub-tree ST contains a label which is accessible from
11056 outside the sub-tree. */
11059 contains_label_p (tree st
)
11062 (walk_tree_without_duplicates (&st
, contains_label_1
, NULL
) != NULL_TREE
);
11065 /* Fold a ternary expression of code CODE and type TYPE with operands
11066 OP0, OP1, and OP2. Return the folded expression if folding is
11067 successful. Otherwise, return NULL_TREE. */
11070 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11071 tree op0
, tree op1
, tree op2
)
11074 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11075 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11077 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11078 && TREE_CODE_LENGTH (code
) == 3);
11080 /* If this is a commutative operation, and OP0 is a constant, move it
11081 to OP1 to reduce the number of tests below. */
11082 if (commutative_ternary_tree_code (code
)
11083 && tree_swap_operands_p (op0
, op1
))
11084 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11086 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11090 /* Strip any conversions that don't change the mode. This is safe
11091 for every expression, except for a comparison expression because
11092 its signedness is derived from its operands. So, in the latter
11093 case, only strip conversions that don't change the signedness.
11095 Note that this is done as an internal manipulation within the
11096 constant folder, in order to find the simplest representation of
11097 the arguments so that their form can be studied. In any cases,
11098 the appropriate type conversions should be put back in the tree
11099 that will get out of the constant folder. */
11120 case COMPONENT_REF
:
11121 if (TREE_CODE (arg0
) == CONSTRUCTOR
11122 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11124 unsigned HOST_WIDE_INT idx
;
11126 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11133 case VEC_COND_EXPR
:
11134 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11135 so all simple results must be passed through pedantic_non_lvalue. */
11136 if (TREE_CODE (arg0
) == INTEGER_CST
)
11138 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11139 tem
= integer_zerop (arg0
) ? op2
: op1
;
11140 /* Only optimize constant conditions when the selected branch
11141 has the same type as the COND_EXPR. This avoids optimizing
11142 away "c ? x : throw", where the throw has a void type.
11143 Avoid throwing away that operand which contains label. */
11144 if ((!TREE_SIDE_EFFECTS (unused_op
)
11145 || !contains_label_p (unused_op
))
11146 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11147 || VOID_TYPE_P (type
)))
11148 return pedantic_non_lvalue_loc (loc
, tem
);
11151 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11153 if ((TREE_CODE (arg1
) == VECTOR_CST
11154 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11155 && (TREE_CODE (arg2
) == VECTOR_CST
11156 || TREE_CODE (arg2
) == CONSTRUCTOR
))
11158 unsigned int nelts
= VECTOR_CST_NELTS (arg0
), i
;
11159 gcc_assert (nelts
== TYPE_VECTOR_SUBPARTS (type
));
11160 auto_vec_perm_indices
sel (nelts
);
11161 for (i
= 0; i
< nelts
; i
++)
11163 tree val
= VECTOR_CST_ELT (arg0
, i
);
11164 if (integer_all_onesp (val
))
11165 sel
.quick_push (i
);
11166 else if (integer_zerop (val
))
11167 sel
.quick_push (nelts
+ i
);
11168 else /* Currently unreachable. */
11171 tree t
= fold_vec_perm (type
, arg1
, arg2
, sel
);
11172 if (t
!= NULL_TREE
)
11177 /* If we have A op B ? A : C, we may be able to convert this to a
11178 simpler expression, depending on the operation and the values
11179 of B and C. Signed zeros prevent all of these transformations,
11180 for reasons given above each one.
11182 Also try swapping the arguments and inverting the conditional. */
11183 if (COMPARISON_CLASS_P (arg0
)
11184 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op1
)
11185 && !HONOR_SIGNED_ZEROS (element_mode (op1
)))
11187 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11192 if (COMPARISON_CLASS_P (arg0
)
11193 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op2
)
11194 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11196 location_t loc0
= expr_location_or (arg0
, loc
);
11197 tem
= fold_invert_truthvalue (loc0
, arg0
);
11198 if (tem
&& COMPARISON_CLASS_P (tem
))
11200 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11206 /* If the second operand is simpler than the third, swap them
11207 since that produces better jump optimization results. */
11208 if (truth_value_p (TREE_CODE (arg0
))
11209 && tree_swap_operands_p (op1
, op2
))
11211 location_t loc0
= expr_location_or (arg0
, loc
);
11212 /* See if this can be inverted. If it can't, possibly because
11213 it was a floating-point inequality comparison, don't do
11215 tem
= fold_invert_truthvalue (loc0
, arg0
);
11217 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11220 /* Convert A ? 1 : 0 to simply A. */
11221 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11222 : (integer_onep (op1
)
11223 && !VECTOR_TYPE_P (type
)))
11224 && integer_zerop (op2
)
11225 /* If we try to convert OP0 to our type, the
11226 call to fold will try to move the conversion inside
11227 a COND, which will recurse. In that case, the COND_EXPR
11228 is probably the best choice, so leave it alone. */
11229 && type
== TREE_TYPE (arg0
))
11230 return pedantic_non_lvalue_loc (loc
, arg0
);
11232 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11233 over COND_EXPR in cases such as floating point comparisons. */
11234 if (integer_zerop (op1
)
11235 && code
== COND_EXPR
11236 && integer_onep (op2
)
11237 && !VECTOR_TYPE_P (type
)
11238 && truth_value_p (TREE_CODE (arg0
)))
11239 return pedantic_non_lvalue_loc (loc
,
11240 fold_convert_loc (loc
, type
,
11241 invert_truthvalue_loc (loc
,
11244 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11245 if (TREE_CODE (arg0
) == LT_EXPR
11246 && integer_zerop (TREE_OPERAND (arg0
, 1))
11247 && integer_zerop (op2
)
11248 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11250 /* sign_bit_p looks through both zero and sign extensions,
11251 but for this optimization only sign extensions are
11253 tree tem2
= TREE_OPERAND (arg0
, 0);
11254 while (tem
!= tem2
)
11256 if (TREE_CODE (tem2
) != NOP_EXPR
11257 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11262 tem2
= TREE_OPERAND (tem2
, 0);
11264 /* sign_bit_p only checks ARG1 bits within A's precision.
11265 If <sign bit of A> has wider type than A, bits outside
11266 of A's precision in <sign bit of A> need to be checked.
11267 If they are all 0, this optimization needs to be done
11268 in unsigned A's type, if they are all 1 in signed A's type,
11269 otherwise this can't be done. */
11271 && TYPE_PRECISION (TREE_TYPE (tem
))
11272 < TYPE_PRECISION (TREE_TYPE (arg1
))
11273 && TYPE_PRECISION (TREE_TYPE (tem
))
11274 < TYPE_PRECISION (type
))
11276 int inner_width
, outer_width
;
11279 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11280 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11281 if (outer_width
> TYPE_PRECISION (type
))
11282 outer_width
= TYPE_PRECISION (type
);
11284 wide_int mask
= wi::shifted_mask
11285 (inner_width
, outer_width
- inner_width
, false,
11286 TYPE_PRECISION (TREE_TYPE (arg1
)));
11288 wide_int common
= mask
& wi::to_wide (arg1
);
11289 if (common
== mask
)
11291 tem_type
= signed_type_for (TREE_TYPE (tem
));
11292 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11294 else if (common
== 0)
11296 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11297 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11305 fold_convert_loc (loc
, type
,
11306 fold_build2_loc (loc
, BIT_AND_EXPR
,
11307 TREE_TYPE (tem
), tem
,
11308 fold_convert_loc (loc
,
11313 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11314 already handled above. */
11315 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11316 && integer_onep (TREE_OPERAND (arg0
, 1))
11317 && integer_zerop (op2
)
11318 && integer_pow2p (arg1
))
11320 tree tem
= TREE_OPERAND (arg0
, 0);
11322 if (TREE_CODE (tem
) == RSHIFT_EXPR
11323 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11324 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
)
11325 == tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11326 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11327 fold_convert_loc (loc
, type
,
11328 TREE_OPERAND (tem
, 0)),
11332 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11333 is probably obsolete because the first operand should be a
11334 truth value (that's why we have the two cases above), but let's
11335 leave it in until we can confirm this for all front-ends. */
11336 if (integer_zerop (op2
)
11337 && TREE_CODE (arg0
) == NE_EXPR
11338 && integer_zerop (TREE_OPERAND (arg0
, 1))
11339 && integer_pow2p (arg1
)
11340 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11341 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11342 arg1
, OEP_ONLY_CONST
))
11343 return pedantic_non_lvalue_loc (loc
,
11344 fold_convert_loc (loc
, type
,
11345 TREE_OPERAND (arg0
, 0)));
11347 /* Disable the transformations below for vectors, since
11348 fold_binary_op_with_conditional_arg may undo them immediately,
11349 yielding an infinite loop. */
11350 if (code
== VEC_COND_EXPR
)
11353 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11354 if (integer_zerop (op2
)
11355 && truth_value_p (TREE_CODE (arg0
))
11356 && truth_value_p (TREE_CODE (arg1
))
11357 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11358 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11359 : TRUTH_ANDIF_EXPR
,
11360 type
, fold_convert_loc (loc
, type
, arg0
), op1
);
11362 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11363 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11364 && truth_value_p (TREE_CODE (arg0
))
11365 && truth_value_p (TREE_CODE (arg1
))
11366 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11368 location_t loc0
= expr_location_or (arg0
, loc
);
11369 /* Only perform transformation if ARG0 is easily inverted. */
11370 tem
= fold_invert_truthvalue (loc0
, arg0
);
11372 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11375 type
, fold_convert_loc (loc
, type
, tem
),
11379 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11380 if (integer_zerop (arg1
)
11381 && truth_value_p (TREE_CODE (arg0
))
11382 && truth_value_p (TREE_CODE (op2
))
11383 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11385 location_t loc0
= expr_location_or (arg0
, loc
);
11386 /* Only perform transformation if ARG0 is easily inverted. */
11387 tem
= fold_invert_truthvalue (loc0
, arg0
);
11389 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11390 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11391 type
, fold_convert_loc (loc
, type
, tem
),
11395 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11396 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11397 && truth_value_p (TREE_CODE (arg0
))
11398 && truth_value_p (TREE_CODE (op2
))
11399 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11400 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11401 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11402 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11407 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11408 of fold_ternary on them. */
11409 gcc_unreachable ();
11411 case BIT_FIELD_REF
:
11412 if (TREE_CODE (arg0
) == VECTOR_CST
11413 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11414 || (TREE_CODE (type
) == VECTOR_TYPE
11415 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
)))))
11417 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11418 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11419 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11420 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11423 && (idx
% width
) == 0
11424 && (n
% width
) == 0
11425 && ((idx
+ n
) / width
) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)))
11430 if (TREE_CODE (arg0
) == VECTOR_CST
)
11433 return VECTOR_CST_ELT (arg0
, idx
);
11435 auto_vec
<tree
, 32> vals (n
);
11436 for (unsigned i
= 0; i
< n
; ++i
)
11437 vals
.quick_push (VECTOR_CST_ELT (arg0
, idx
+ i
));
11438 return build_vector (type
, vals
);
11443 /* On constants we can use native encode/interpret to constant
11444 fold (nearly) all BIT_FIELD_REFs. */
11445 if (CONSTANT_CLASS_P (arg0
)
11446 && can_native_interpret_type_p (type
)
11447 && BITS_PER_UNIT
== 8)
11449 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11450 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11451 /* Limit us to a reasonable amount of work. To relax the
11452 other limitations we need bit-shifting of the buffer
11453 and rounding up the size. */
11454 if (bitpos
% BITS_PER_UNIT
== 0
11455 && bitsize
% BITS_PER_UNIT
== 0
11456 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11458 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11459 unsigned HOST_WIDE_INT len
11460 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11461 bitpos
/ BITS_PER_UNIT
);
11463 && len
* BITS_PER_UNIT
>= bitsize
)
11465 tree v
= native_interpret_expr (type
, b
,
11466 bitsize
/ BITS_PER_UNIT
);
11476 /* For integers we can decompose the FMA if possible. */
11477 if (TREE_CODE (arg0
) == INTEGER_CST
11478 && TREE_CODE (arg1
) == INTEGER_CST
)
11479 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
11480 const_binop (MULT_EXPR
, arg0
, arg1
), arg2
);
11481 if (integer_zerop (arg2
))
11482 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
11484 return fold_fma (loc
, type
, arg0
, arg1
, arg2
);
11486 case VEC_PERM_EXPR
:
11487 if (TREE_CODE (arg2
) == VECTOR_CST
)
11489 unsigned int nelts
= VECTOR_CST_NELTS (arg2
), i
, mask
, mask2
;
11490 bool need_mask_canon
= false;
11491 bool need_mask_canon2
= false;
11492 bool all_in_vec0
= true;
11493 bool all_in_vec1
= true;
11494 bool maybe_identity
= true;
11495 bool single_arg
= (op0
== op1
);
11496 bool changed
= false;
11498 mask2
= 2 * nelts
- 1;
11499 mask
= single_arg
? (nelts
- 1) : mask2
;
11500 gcc_assert (nelts
== TYPE_VECTOR_SUBPARTS (type
));
11501 auto_vec_perm_indices
sel (nelts
);
11502 auto_vec_perm_indices
sel2 (nelts
);
11503 for (i
= 0; i
< nelts
; i
++)
11505 tree val
= VECTOR_CST_ELT (arg2
, i
);
11506 if (TREE_CODE (val
) != INTEGER_CST
)
11509 /* Make sure that the perm value is in an acceptable
11511 wi::tree_to_wide_ref t
= wi::to_wide (val
);
11512 need_mask_canon
|= wi::gtu_p (t
, mask
);
11513 need_mask_canon2
|= wi::gtu_p (t
, mask2
);
11514 unsigned int elt
= t
.to_uhwi () & mask
;
11515 unsigned int elt2
= t
.to_uhwi () & mask2
;
11518 all_in_vec1
= false;
11520 all_in_vec0
= false;
11522 if ((elt
& (nelts
- 1)) != i
)
11523 maybe_identity
= false;
11525 sel
.quick_push (elt
);
11526 sel2
.quick_push (elt2
);
11529 if (maybe_identity
)
11539 else if (all_in_vec1
)
11542 for (i
= 0; i
< nelts
; i
++)
11544 need_mask_canon
= true;
11547 if ((TREE_CODE (op0
) == VECTOR_CST
11548 || TREE_CODE (op0
) == CONSTRUCTOR
)
11549 && (TREE_CODE (op1
) == VECTOR_CST
11550 || TREE_CODE (op1
) == CONSTRUCTOR
))
11552 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11553 if (t
!= NULL_TREE
)
11557 if (op0
== op1
&& !single_arg
)
11560 /* Some targets are deficient and fail to expand a single
11561 argument permutation while still allowing an equivalent
11562 2-argument version. */
11563 if (need_mask_canon
&& arg2
== op2
11564 && !can_vec_perm_p (TYPE_MODE (type
), false, &sel
)
11565 && can_vec_perm_p (TYPE_MODE (type
), false, &sel2
))
11567 need_mask_canon
= need_mask_canon2
;
11571 if (need_mask_canon
&& arg2
== op2
)
11573 tree eltype
= TREE_TYPE (TREE_TYPE (arg2
));
11574 auto_vec
<tree
, 32> tsel (nelts
);
11575 for (i
= 0; i
< nelts
; i
++)
11576 tsel
.quick_push (build_int_cst (eltype
, sel
[i
]));
11577 op2
= build_vector (TREE_TYPE (arg2
), tsel
);
11582 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11586 case BIT_INSERT_EXPR
:
11587 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11588 if (TREE_CODE (arg0
) == INTEGER_CST
11589 && TREE_CODE (arg1
) == INTEGER_CST
)
11591 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11592 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11593 wide_int tem
= (wi::to_wide (arg0
)
11594 & wi::shifted_mask (bitpos
, bitsize
, true,
11595 TYPE_PRECISION (type
)));
11597 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11599 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11601 else if (TREE_CODE (arg0
) == VECTOR_CST
11602 && CONSTANT_CLASS_P (arg1
)
11603 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11606 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11607 unsigned HOST_WIDE_INT elsize
11608 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11609 if (bitpos
% elsize
== 0)
11611 unsigned k
= bitpos
/ elsize
;
11612 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11616 unsigned int nelts
= VECTOR_CST_NELTS (arg0
);
11617 auto_vec
<tree
, 32> elts (nelts
);
11618 elts
.quick_grow (nelts
);
11619 memcpy (&elts
[0], VECTOR_CST_ELTS (arg0
),
11620 sizeof (tree
) * nelts
);
11622 return build_vector (type
, elts
);
11630 } /* switch (code) */
11633 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11634 of an array (or vector). */
11637 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11639 tree index_type
= NULL_TREE
;
11640 offset_int low_bound
= 0;
11642 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11644 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11645 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11647 /* Static constructors for variably sized objects makes no sense. */
11648 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11649 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11650 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11655 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11656 TYPE_SIGN (index_type
));
11658 offset_int index
= low_bound
- 1;
11660 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11661 TYPE_SIGN (index_type
));
11663 offset_int max_index
;
11664 unsigned HOST_WIDE_INT cnt
;
11667 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11669 /* Array constructor might explicitly set index, or specify a range,
11670 or leave index NULL meaning that it is next index after previous
11674 if (TREE_CODE (cfield
) == INTEGER_CST
)
11675 max_index
= index
= wi::to_offset (cfield
);
11678 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11679 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11680 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11687 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11688 TYPE_SIGN (index_type
));
11692 /* Do we have match? */
11693 if (wi::cmpu (access_index
, index
) >= 0
11694 && wi::cmpu (access_index
, max_index
) <= 0)
11700 /* Perform constant folding and related simplification of EXPR.
11701 The related simplifications include x*1 => x, x*0 => 0, etc.,
11702 and application of the associative law.
11703 NOP_EXPR conversions may be removed freely (as long as we
11704 are careful not to change the type of the overall expression).
11705 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11706 but we can constant-fold them if they have constant operands. */
11708 #ifdef ENABLE_FOLD_CHECKING
11709 # define fold(x) fold_1 (x)
11710 static tree
fold_1 (tree
);
11716 const tree t
= expr
;
11717 enum tree_code code
= TREE_CODE (t
);
11718 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11720 location_t loc
= EXPR_LOCATION (expr
);
11722 /* Return right away if a constant. */
11723 if (kind
== tcc_constant
)
11726 /* CALL_EXPR-like objects with variable numbers of operands are
11727 treated specially. */
11728 if (kind
== tcc_vl_exp
)
11730 if (code
== CALL_EXPR
)
11732 tem
= fold_call_expr (loc
, expr
, false);
11733 return tem
? tem
: expr
;
11738 if (IS_EXPR_CODE_CLASS (kind
))
11740 tree type
= TREE_TYPE (t
);
11741 tree op0
, op1
, op2
;
11743 switch (TREE_CODE_LENGTH (code
))
11746 op0
= TREE_OPERAND (t
, 0);
11747 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11748 return tem
? tem
: expr
;
11750 op0
= TREE_OPERAND (t
, 0);
11751 op1
= TREE_OPERAND (t
, 1);
11752 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11753 return tem
? tem
: expr
;
11755 op0
= TREE_OPERAND (t
, 0);
11756 op1
= TREE_OPERAND (t
, 1);
11757 op2
= TREE_OPERAND (t
, 2);
11758 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11759 return tem
? tem
: expr
;
11769 tree op0
= TREE_OPERAND (t
, 0);
11770 tree op1
= TREE_OPERAND (t
, 1);
11772 if (TREE_CODE (op1
) == INTEGER_CST
11773 && TREE_CODE (op0
) == CONSTRUCTOR
11774 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
11776 tree val
= get_array_ctor_element_at_index (op0
,
11777 wi::to_offset (op1
));
11785 /* Return a VECTOR_CST if possible. */
11788 tree type
= TREE_TYPE (t
);
11789 if (TREE_CODE (type
) != VECTOR_TYPE
)
11794 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
11795 if (! CONSTANT_CLASS_P (val
))
11798 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
11802 return fold (DECL_INITIAL (t
));
11806 } /* switch (code) */
11809 #ifdef ENABLE_FOLD_CHECKING
11812 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
11813 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
11814 static void fold_check_failed (const_tree
, const_tree
);
11815 void print_fold_checksum (const_tree
);
11817 /* When --enable-checking=fold, compute a digest of expr before
11818 and after actual fold call to see if fold did not accidentally
11819 change original expr. */
11825 struct md5_ctx ctx
;
11826 unsigned char checksum_before
[16], checksum_after
[16];
11827 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
11829 md5_init_ctx (&ctx
);
11830 fold_checksum_tree (expr
, &ctx
, &ht
);
11831 md5_finish_ctx (&ctx
, checksum_before
);
11834 ret
= fold_1 (expr
);
11836 md5_init_ctx (&ctx
);
11837 fold_checksum_tree (expr
, &ctx
, &ht
);
11838 md5_finish_ctx (&ctx
, checksum_after
);
11840 if (memcmp (checksum_before
, checksum_after
, 16))
11841 fold_check_failed (expr
, ret
);
11847 print_fold_checksum (const_tree expr
)
11849 struct md5_ctx ctx
;
11850 unsigned char checksum
[16], cnt
;
11851 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
11853 md5_init_ctx (&ctx
);
11854 fold_checksum_tree (expr
, &ctx
, &ht
);
11855 md5_finish_ctx (&ctx
, checksum
);
11856 for (cnt
= 0; cnt
< 16; ++cnt
)
11857 fprintf (stderr
, "%02x", checksum
[cnt
]);
11858 putc ('\n', stderr
);
11862 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
11864 internal_error ("fold check: original tree changed by fold");
11868 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
11869 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
11871 const tree_node
**slot
;
11872 enum tree_code code
;
11873 union tree_node buf
;
11879 slot
= ht
->find_slot (expr
, INSERT
);
11883 code
= TREE_CODE (expr
);
11884 if (TREE_CODE_CLASS (code
) == tcc_declaration
11885 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
11887 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
11888 memcpy ((char *) &buf
, expr
, tree_size (expr
));
11889 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
11890 buf
.decl_with_vis
.symtab_node
= NULL
;
11891 expr
= (tree
) &buf
;
11893 else if (TREE_CODE_CLASS (code
) == tcc_type
11894 && (TYPE_POINTER_TO (expr
)
11895 || TYPE_REFERENCE_TO (expr
)
11896 || TYPE_CACHED_VALUES_P (expr
)
11897 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
11898 || TYPE_NEXT_VARIANT (expr
)
11899 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
11901 /* Allow these fields to be modified. */
11903 memcpy ((char *) &buf
, expr
, tree_size (expr
));
11904 expr
= tmp
= (tree
) &buf
;
11905 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
11906 TYPE_POINTER_TO (tmp
) = NULL
;
11907 TYPE_REFERENCE_TO (tmp
) = NULL
;
11908 TYPE_NEXT_VARIANT (tmp
) = NULL
;
11909 TYPE_ALIAS_SET (tmp
) = -1;
11910 if (TYPE_CACHED_VALUES_P (tmp
))
11912 TYPE_CACHED_VALUES_P (tmp
) = 0;
11913 TYPE_CACHED_VALUES (tmp
) = NULL
;
11916 md5_process_bytes (expr
, tree_size (expr
), ctx
);
11917 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
11918 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
11919 if (TREE_CODE_CLASS (code
) != tcc_type
11920 && TREE_CODE_CLASS (code
) != tcc_declaration
11921 && code
!= TREE_LIST
11922 && code
!= SSA_NAME
11923 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
11924 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
11925 switch (TREE_CODE_CLASS (code
))
11931 md5_process_bytes (TREE_STRING_POINTER (expr
),
11932 TREE_STRING_LENGTH (expr
), ctx
);
11935 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
11936 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
11939 for (i
= 0; i
< (int) VECTOR_CST_NELTS (expr
); ++i
)
11940 fold_checksum_tree (VECTOR_CST_ELT (expr
, i
), ctx
, ht
);
11946 case tcc_exceptional
:
11950 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
11951 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
11952 expr
= TREE_CHAIN (expr
);
11953 goto recursive_label
;
11956 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
11957 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
11963 case tcc_expression
:
11964 case tcc_reference
:
11965 case tcc_comparison
:
11968 case tcc_statement
:
11970 len
= TREE_OPERAND_LENGTH (expr
);
11971 for (i
= 0; i
< len
; ++i
)
11972 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
11974 case tcc_declaration
:
11975 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
11976 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
11977 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
11979 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
11980 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
11981 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
11982 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
11983 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
11986 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
11988 if (TREE_CODE (expr
) == FUNCTION_DECL
)
11990 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
11991 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
11993 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
11997 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
11998 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
11999 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12000 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12001 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12002 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12003 if (INTEGRAL_TYPE_P (expr
)
12004 || SCALAR_FLOAT_TYPE_P (expr
))
12006 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12007 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12009 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12010 if (TREE_CODE (expr
) == RECORD_TYPE
12011 || TREE_CODE (expr
) == UNION_TYPE
12012 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12013 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12014 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12021 /* Helper function for outputting the checksum of a tree T. When
12022 debugging with gdb, you can "define mynext" to be "next" followed
12023 by "call debug_fold_checksum (op0)", then just trace down till the
12026 DEBUG_FUNCTION
void
12027 debug_fold_checksum (const_tree t
)
12030 unsigned char checksum
[16];
12031 struct md5_ctx ctx
;
12032 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12034 md5_init_ctx (&ctx
);
12035 fold_checksum_tree (t
, &ctx
, &ht
);
12036 md5_finish_ctx (&ctx
, checksum
);
12039 for (i
= 0; i
< 16; i
++)
12040 fprintf (stderr
, "%d ", checksum
[i
]);
12042 fprintf (stderr
, "\n");
12047 /* Fold a unary tree expression with code CODE of type TYPE with an
12048 operand OP0. LOC is the location of the resulting expression.
12049 Return a folded expression if successful. Otherwise, return a tree
12050 expression with code CODE of type TYPE with an operand OP0. */
12053 fold_build1_loc (location_t loc
,
12054 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12057 #ifdef ENABLE_FOLD_CHECKING
12058 unsigned char checksum_before
[16], checksum_after
[16];
12059 struct md5_ctx ctx
;
12060 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12062 md5_init_ctx (&ctx
);
12063 fold_checksum_tree (op0
, &ctx
, &ht
);
12064 md5_finish_ctx (&ctx
, checksum_before
);
12068 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12070 tem
= build1_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12072 #ifdef ENABLE_FOLD_CHECKING
12073 md5_init_ctx (&ctx
);
12074 fold_checksum_tree (op0
, &ctx
, &ht
);
12075 md5_finish_ctx (&ctx
, checksum_after
);
12077 if (memcmp (checksum_before
, checksum_after
, 16))
12078 fold_check_failed (op0
, tem
);
12083 /* Fold a binary tree expression with code CODE of type TYPE with
12084 operands OP0 and OP1. LOC is the location of the resulting
12085 expression. Return a folded expression if successful. Otherwise,
12086 return a tree expression with code CODE of type TYPE with operands
12090 fold_build2_loc (location_t loc
,
12091 enum tree_code code
, tree type
, tree op0
, tree op1
12095 #ifdef ENABLE_FOLD_CHECKING
12096 unsigned char checksum_before_op0
[16],
12097 checksum_before_op1
[16],
12098 checksum_after_op0
[16],
12099 checksum_after_op1
[16];
12100 struct md5_ctx ctx
;
12101 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12103 md5_init_ctx (&ctx
);
12104 fold_checksum_tree (op0
, &ctx
, &ht
);
12105 md5_finish_ctx (&ctx
, checksum_before_op0
);
12108 md5_init_ctx (&ctx
);
12109 fold_checksum_tree (op1
, &ctx
, &ht
);
12110 md5_finish_ctx (&ctx
, checksum_before_op1
);
12114 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12116 tem
= build2_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12118 #ifdef ENABLE_FOLD_CHECKING
12119 md5_init_ctx (&ctx
);
12120 fold_checksum_tree (op0
, &ctx
, &ht
);
12121 md5_finish_ctx (&ctx
, checksum_after_op0
);
12124 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12125 fold_check_failed (op0
, tem
);
12127 md5_init_ctx (&ctx
);
12128 fold_checksum_tree (op1
, &ctx
, &ht
);
12129 md5_finish_ctx (&ctx
, checksum_after_op1
);
12131 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12132 fold_check_failed (op1
, tem
);
12137 /* Fold a ternary tree expression with code CODE of type TYPE with
12138 operands OP0, OP1, and OP2. Return a folded expression if
12139 successful. Otherwise, return a tree expression with code CODE of
12140 type TYPE with operands OP0, OP1, and OP2. */
12143 fold_build3_loc (location_t loc
, enum tree_code code
, tree type
,
12144 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12147 #ifdef ENABLE_FOLD_CHECKING
12148 unsigned char checksum_before_op0
[16],
12149 checksum_before_op1
[16],
12150 checksum_before_op2
[16],
12151 checksum_after_op0
[16],
12152 checksum_after_op1
[16],
12153 checksum_after_op2
[16];
12154 struct md5_ctx ctx
;
12155 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12157 md5_init_ctx (&ctx
);
12158 fold_checksum_tree (op0
, &ctx
, &ht
);
12159 md5_finish_ctx (&ctx
, checksum_before_op0
);
12162 md5_init_ctx (&ctx
);
12163 fold_checksum_tree (op1
, &ctx
, &ht
);
12164 md5_finish_ctx (&ctx
, checksum_before_op1
);
12167 md5_init_ctx (&ctx
);
12168 fold_checksum_tree (op2
, &ctx
, &ht
);
12169 md5_finish_ctx (&ctx
, checksum_before_op2
);
12173 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12174 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12176 tem
= build3_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12178 #ifdef ENABLE_FOLD_CHECKING
12179 md5_init_ctx (&ctx
);
12180 fold_checksum_tree (op0
, &ctx
, &ht
);
12181 md5_finish_ctx (&ctx
, checksum_after_op0
);
12184 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12185 fold_check_failed (op0
, tem
);
12187 md5_init_ctx (&ctx
);
12188 fold_checksum_tree (op1
, &ctx
, &ht
);
12189 md5_finish_ctx (&ctx
, checksum_after_op1
);
12192 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12193 fold_check_failed (op1
, tem
);
12195 md5_init_ctx (&ctx
);
12196 fold_checksum_tree (op2
, &ctx
, &ht
);
12197 md5_finish_ctx (&ctx
, checksum_after_op2
);
12199 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12200 fold_check_failed (op2
, tem
);
12205 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12206 arguments in ARGARRAY, and a null static chain.
12207 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12208 of type TYPE from the given operands as constructed by build_call_array. */
12211 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12212 int nargs
, tree
*argarray
)
12215 #ifdef ENABLE_FOLD_CHECKING
12216 unsigned char checksum_before_fn
[16],
12217 checksum_before_arglist
[16],
12218 checksum_after_fn
[16],
12219 checksum_after_arglist
[16];
12220 struct md5_ctx ctx
;
12221 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12224 md5_init_ctx (&ctx
);
12225 fold_checksum_tree (fn
, &ctx
, &ht
);
12226 md5_finish_ctx (&ctx
, checksum_before_fn
);
12229 md5_init_ctx (&ctx
);
12230 for (i
= 0; i
< nargs
; i
++)
12231 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12232 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12236 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12238 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12240 #ifdef ENABLE_FOLD_CHECKING
12241 md5_init_ctx (&ctx
);
12242 fold_checksum_tree (fn
, &ctx
, &ht
);
12243 md5_finish_ctx (&ctx
, checksum_after_fn
);
12246 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12247 fold_check_failed (fn
, tem
);
12249 md5_init_ctx (&ctx
);
12250 for (i
= 0; i
< nargs
; i
++)
12251 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12252 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12254 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12255 fold_check_failed (NULL_TREE
, tem
);
12260 /* Perform constant folding and related simplification of initializer
12261 expression EXPR. These behave identically to "fold_buildN" but ignore
12262 potential run-time traps and exceptions that fold must preserve. */
12264 #define START_FOLD_INIT \
12265 int saved_signaling_nans = flag_signaling_nans;\
12266 int saved_trapping_math = flag_trapping_math;\
12267 int saved_rounding_math = flag_rounding_math;\
12268 int saved_trapv = flag_trapv;\
12269 int saved_folding_initializer = folding_initializer;\
12270 flag_signaling_nans = 0;\
12271 flag_trapping_math = 0;\
12272 flag_rounding_math = 0;\
12274 folding_initializer = 1;
12276 #define END_FOLD_INIT \
12277 flag_signaling_nans = saved_signaling_nans;\
12278 flag_trapping_math = saved_trapping_math;\
12279 flag_rounding_math = saved_rounding_math;\
12280 flag_trapv = saved_trapv;\
12281 folding_initializer = saved_folding_initializer;
12284 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12285 tree type
, tree op
)
12290 result
= fold_build1_loc (loc
, code
, type
, op
);
12297 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12298 tree type
, tree op0
, tree op1
)
12303 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12310 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12311 int nargs
, tree
*argarray
)
12316 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12322 #undef START_FOLD_INIT
12323 #undef END_FOLD_INIT
12325 /* Determine if first argument is a multiple of second argument. Return 0 if
12326 it is not, or we cannot easily determined it to be.
12328 An example of the sort of thing we care about (at this point; this routine
12329 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12330 fold cases do now) is discovering that
12332 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12338 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12340 This code also handles discovering that
12342 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12344 is a multiple of 8 so we don't have to worry about dealing with a
12345 possible remainder.
12347 Note that we *look* inside a SAVE_EXPR only to determine how it was
12348 calculated; it is not safe for fold to do much of anything else with the
12349 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12350 at run time. For example, the latter example above *cannot* be implemented
12351 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12352 evaluation time of the original SAVE_EXPR is not necessarily the same at
12353 the time the new expression is evaluated. The only optimization of this
12354 sort that would be valid is changing
12356 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12360 SAVE_EXPR (I) * SAVE_EXPR (J)
12362 (where the same SAVE_EXPR (J) is used in the original and the
12363 transformed version). */
12366 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12371 if (operand_equal_p (top
, bottom
, 0))
12374 if (TREE_CODE (type
) != INTEGER_TYPE
)
12377 switch (TREE_CODE (top
))
12380 /* Bitwise and provides a power of two multiple. If the mask is
12381 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12382 if (!integer_pow2p (bottom
))
12387 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12388 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12391 /* It is impossible to prove if op0 - op1 is multiple of bottom
12392 precisely, so be conservative here checking if both op0 and op1
12393 are multiple of bottom. Note we check the second operand first
12394 since it's usually simpler. */
12395 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12396 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12399 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12400 as op0 - 3 if the expression has unsigned type. For example,
12401 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12402 op1
= TREE_OPERAND (top
, 1);
12403 if (TYPE_UNSIGNED (type
)
12404 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12405 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12406 return (multiple_of_p (type
, op1
, bottom
)
12407 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12410 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12412 op1
= TREE_OPERAND (top
, 1);
12413 /* const_binop may not detect overflow correctly,
12414 so check for it explicitly here. */
12415 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
12417 && 0 != (t1
= fold_convert (type
,
12418 const_binop (LSHIFT_EXPR
,
12421 && !TREE_OVERFLOW (t1
))
12422 return multiple_of_p (type
, t1
, bottom
);
12427 /* Can't handle conversions from non-integral or wider integral type. */
12428 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12429 || (TYPE_PRECISION (type
)
12430 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12436 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12439 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12440 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12443 if (TREE_CODE (bottom
) != INTEGER_CST
12444 || integer_zerop (bottom
)
12445 || (TYPE_UNSIGNED (type
)
12446 && (tree_int_cst_sgn (top
) < 0
12447 || tree_int_cst_sgn (bottom
) < 0)))
12449 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12453 if (TREE_CODE (bottom
) == INTEGER_CST
12454 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12455 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12457 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12459 /* Check for special cases to see if top is defined as multiple
12462 top = (X & ~(bottom - 1) ; bottom is power of 2
12468 if (code
== BIT_AND_EXPR
12469 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12470 && TREE_CODE (op2
) == INTEGER_CST
12471 && integer_pow2p (bottom
)
12472 && wi::multiple_of_p (wi::to_widest (op2
),
12473 wi::to_widest (bottom
), UNSIGNED
))
12476 op1
= gimple_assign_rhs1 (stmt
);
12477 if (code
== MINUS_EXPR
12478 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12479 && TREE_CODE (op2
) == SSA_NAME
12480 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12481 && gimple_code (stmt
) == GIMPLE_ASSIGN
12482 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12483 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12484 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12495 #define tree_expr_nonnegative_warnv_p(X, Y) \
12496 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12498 #define RECURSE(X) \
12499 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12501 /* Return true if CODE or TYPE is known to be non-negative. */
12504 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12506 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12507 && truth_value_p (code
))
12508 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12509 have a signed:1 type (where the value is -1 and 0). */
12514 /* Return true if (CODE OP0) is known to be non-negative. If the return
12515 value is based on the assumption that signed overflow is undefined,
12516 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12517 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12520 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12521 bool *strict_overflow_p
, int depth
)
12523 if (TYPE_UNSIGNED (type
))
12529 /* We can't return 1 if flag_wrapv is set because
12530 ABS_EXPR<INT_MIN> = INT_MIN. */
12531 if (!ANY_INTEGRAL_TYPE_P (type
))
12533 if (TYPE_OVERFLOW_UNDEFINED (type
))
12535 *strict_overflow_p
= true;
12540 case NON_LVALUE_EXPR
:
12542 case FIX_TRUNC_EXPR
:
12543 return RECURSE (op0
);
12547 tree inner_type
= TREE_TYPE (op0
);
12548 tree outer_type
= type
;
12550 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12552 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12553 return RECURSE (op0
);
12554 if (INTEGRAL_TYPE_P (inner_type
))
12556 if (TYPE_UNSIGNED (inner_type
))
12558 return RECURSE (op0
);
12561 else if (INTEGRAL_TYPE_P (outer_type
))
12563 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12564 return RECURSE (op0
);
12565 if (INTEGRAL_TYPE_P (inner_type
))
12566 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12567 && TYPE_UNSIGNED (inner_type
);
12573 return tree_simple_nonnegative_warnv_p (code
, type
);
12576 /* We don't know sign of `t', so be conservative and return false. */
12580 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12581 value is based on the assumption that signed overflow is undefined,
12582 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12583 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12586 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12587 tree op1
, bool *strict_overflow_p
,
12590 if (TYPE_UNSIGNED (type
))
12595 case POINTER_PLUS_EXPR
:
12597 if (FLOAT_TYPE_P (type
))
12598 return RECURSE (op0
) && RECURSE (op1
);
12600 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12601 both unsigned and at least 2 bits shorter than the result. */
12602 if (TREE_CODE (type
) == INTEGER_TYPE
12603 && TREE_CODE (op0
) == NOP_EXPR
12604 && TREE_CODE (op1
) == NOP_EXPR
)
12606 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12607 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12608 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12609 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12611 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12612 TYPE_PRECISION (inner2
)) + 1;
12613 return prec
< TYPE_PRECISION (type
);
12619 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12621 /* x * x is always non-negative for floating point x
12622 or without overflow. */
12623 if (operand_equal_p (op0
, op1
, 0)
12624 || (RECURSE (op0
) && RECURSE (op1
)))
12626 if (ANY_INTEGRAL_TYPE_P (type
)
12627 && TYPE_OVERFLOW_UNDEFINED (type
))
12628 *strict_overflow_p
= true;
12633 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12634 both unsigned and their total bits is shorter than the result. */
12635 if (TREE_CODE (type
) == INTEGER_TYPE
12636 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12637 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12639 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12640 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12642 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12643 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12646 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12647 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12649 if (TREE_CODE (op0
) == INTEGER_CST
)
12650 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12652 if (TREE_CODE (op1
) == INTEGER_CST
)
12653 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12655 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12656 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12658 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12659 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12660 : TYPE_PRECISION (inner0
);
12662 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12663 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12664 : TYPE_PRECISION (inner1
);
12666 return precision0
+ precision1
< TYPE_PRECISION (type
);
12673 return RECURSE (op0
) || RECURSE (op1
);
12679 case TRUNC_DIV_EXPR
:
12680 case CEIL_DIV_EXPR
:
12681 case FLOOR_DIV_EXPR
:
12682 case ROUND_DIV_EXPR
:
12683 return RECURSE (op0
) && RECURSE (op1
);
12685 case TRUNC_MOD_EXPR
:
12686 return RECURSE (op0
);
12688 case FLOOR_MOD_EXPR
:
12689 return RECURSE (op1
);
12691 case CEIL_MOD_EXPR
:
12692 case ROUND_MOD_EXPR
:
12694 return tree_simple_nonnegative_warnv_p (code
, type
);
12697 /* We don't know sign of `t', so be conservative and return false. */
12701 /* Return true if T is known to be non-negative. If the return
12702 value is based on the assumption that signed overflow is undefined,
12703 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12704 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12707 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12709 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12712 switch (TREE_CODE (t
))
12715 return tree_int_cst_sgn (t
) >= 0;
12718 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12721 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12724 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12727 /* Limit the depth of recursion to avoid quadratic behavior.
12728 This is expected to catch almost all occurrences in practice.
12729 If this code misses important cases that unbounded recursion
12730 would not, passes that need this information could be revised
12731 to provide it through dataflow propagation. */
12732 return (!name_registered_for_update_p (t
)
12733 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
12734 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
12735 strict_overflow_p
, depth
));
12738 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
12742 /* Return true if T is known to be non-negative. If the return
12743 value is based on the assumption that signed overflow is undefined,
12744 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12745 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12748 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
12749 bool *strict_overflow_p
, int depth
)
12770 case CFN_BUILT_IN_BSWAP32
:
12771 case CFN_BUILT_IN_BSWAP64
:
12777 /* sqrt(-0.0) is -0.0. */
12778 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
12780 return RECURSE (arg0
);
12806 CASE_CFN_NEARBYINT
:
12813 CASE_CFN_SIGNIFICAND
:
12817 /* True if the 1st argument is nonnegative. */
12818 return RECURSE (arg0
);
12822 /* True if the 1st OR 2nd arguments are nonnegative. */
12823 return RECURSE (arg0
) || RECURSE (arg1
);
12827 /* True if the 1st AND 2nd arguments are nonnegative. */
12828 return RECURSE (arg0
) && RECURSE (arg1
);
12831 CASE_CFN_COPYSIGN_FN
:
12832 /* True if the 2nd argument is nonnegative. */
12833 return RECURSE (arg1
);
12836 /* True if the 1st argument is nonnegative or the second
12837 argument is an even integer. */
12838 if (TREE_CODE (arg1
) == INTEGER_CST
12839 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
12841 return RECURSE (arg0
);
12844 /* True if the 1st argument is nonnegative or the second
12845 argument is an even integer valued real. */
12846 if (TREE_CODE (arg1
) == REAL_CST
)
12851 c
= TREE_REAL_CST (arg1
);
12852 n
= real_to_integer (&c
);
12855 REAL_VALUE_TYPE cint
;
12856 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
12857 if (real_identical (&c
, &cint
))
12861 return RECURSE (arg0
);
12866 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
12869 /* Return true if T is known to be non-negative. If the return
12870 value is based on the assumption that signed overflow is undefined,
12871 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12872 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12875 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12877 enum tree_code code
= TREE_CODE (t
);
12878 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12885 tree temp
= TARGET_EXPR_SLOT (t
);
12886 t
= TARGET_EXPR_INITIAL (t
);
12888 /* If the initializer is non-void, then it's a normal expression
12889 that will be assigned to the slot. */
12890 if (!VOID_TYPE_P (t
))
12891 return RECURSE (t
);
12893 /* Otherwise, the initializer sets the slot in some way. One common
12894 way is an assignment statement at the end of the initializer. */
12897 if (TREE_CODE (t
) == BIND_EXPR
)
12898 t
= expr_last (BIND_EXPR_BODY (t
));
12899 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
12900 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
12901 t
= expr_last (TREE_OPERAND (t
, 0));
12902 else if (TREE_CODE (t
) == STATEMENT_LIST
)
12907 if (TREE_CODE (t
) == MODIFY_EXPR
12908 && TREE_OPERAND (t
, 0) == temp
)
12909 return RECURSE (TREE_OPERAND (t
, 1));
12916 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
12917 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
12919 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
12920 get_call_combined_fn (t
),
12923 strict_overflow_p
, depth
);
12925 case COMPOUND_EXPR
:
12927 return RECURSE (TREE_OPERAND (t
, 1));
12930 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
12933 return RECURSE (TREE_OPERAND (t
, 0));
12936 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
12941 #undef tree_expr_nonnegative_warnv_p
12943 /* Return true if T is known to be non-negative. If the return
12944 value is based on the assumption that signed overflow is undefined,
12945 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12946 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12949 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12951 enum tree_code code
;
12952 if (t
== error_mark_node
)
12955 code
= TREE_CODE (t
);
12956 switch (TREE_CODE_CLASS (code
))
12959 case tcc_comparison
:
12960 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
12962 TREE_OPERAND (t
, 0),
12963 TREE_OPERAND (t
, 1),
12964 strict_overflow_p
, depth
);
12967 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
12969 TREE_OPERAND (t
, 0),
12970 strict_overflow_p
, depth
);
12973 case tcc_declaration
:
12974 case tcc_reference
:
12975 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
12983 case TRUTH_AND_EXPR
:
12984 case TRUTH_OR_EXPR
:
12985 case TRUTH_XOR_EXPR
:
12986 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
12988 TREE_OPERAND (t
, 0),
12989 TREE_OPERAND (t
, 1),
12990 strict_overflow_p
, depth
);
12991 case TRUTH_NOT_EXPR
:
12992 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
12994 TREE_OPERAND (t
, 0),
12995 strict_overflow_p
, depth
);
13002 case WITH_SIZE_EXPR
:
13004 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13007 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13011 /* Return true if `t' is known to be non-negative. Handle warnings
13012 about undefined signed overflow. */
13015 tree_expr_nonnegative_p (tree t
)
13017 bool ret
, strict_overflow_p
;
13019 strict_overflow_p
= false;
13020 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13021 if (strict_overflow_p
)
13022 fold_overflow_warning (("assuming signed overflow does not occur when "
13023 "determining that expression is always "
13025 WARN_STRICT_OVERFLOW_MISC
);
13030 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13031 For floating point we further ensure that T is not denormal.
13032 Similar logic is present in nonzero_address in rtlanal.h.
13034 If the return value is based on the assumption that signed overflow
13035 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13036 change *STRICT_OVERFLOW_P. */
13039 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13040 bool *strict_overflow_p
)
13045 return tree_expr_nonzero_warnv_p (op0
,
13046 strict_overflow_p
);
13050 tree inner_type
= TREE_TYPE (op0
);
13051 tree outer_type
= type
;
13053 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13054 && tree_expr_nonzero_warnv_p (op0
,
13055 strict_overflow_p
));
13059 case NON_LVALUE_EXPR
:
13060 return tree_expr_nonzero_warnv_p (op0
,
13061 strict_overflow_p
);
13070 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13071 For floating point we further ensure that T is not denormal.
13072 Similar logic is present in nonzero_address in rtlanal.h.
13074 If the return value is based on the assumption that signed overflow
13075 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13076 change *STRICT_OVERFLOW_P. */
13079 tree_binary_nonzero_warnv_p (enum tree_code code
,
13082 tree op1
, bool *strict_overflow_p
)
13084 bool sub_strict_overflow_p
;
13087 case POINTER_PLUS_EXPR
:
13089 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13091 /* With the presence of negative values it is hard
13092 to say something. */
13093 sub_strict_overflow_p
= false;
13094 if (!tree_expr_nonnegative_warnv_p (op0
,
13095 &sub_strict_overflow_p
)
13096 || !tree_expr_nonnegative_warnv_p (op1
,
13097 &sub_strict_overflow_p
))
13099 /* One of operands must be positive and the other non-negative. */
13100 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13101 overflows, on a twos-complement machine the sum of two
13102 nonnegative numbers can never be zero. */
13103 return (tree_expr_nonzero_warnv_p (op0
,
13105 || tree_expr_nonzero_warnv_p (op1
,
13106 strict_overflow_p
));
13111 if (TYPE_OVERFLOW_UNDEFINED (type
))
13113 if (tree_expr_nonzero_warnv_p (op0
,
13115 && tree_expr_nonzero_warnv_p (op1
,
13116 strict_overflow_p
))
13118 *strict_overflow_p
= true;
13125 sub_strict_overflow_p
= false;
13126 if (tree_expr_nonzero_warnv_p (op0
,
13127 &sub_strict_overflow_p
)
13128 && tree_expr_nonzero_warnv_p (op1
,
13129 &sub_strict_overflow_p
))
13131 if (sub_strict_overflow_p
)
13132 *strict_overflow_p
= true;
13137 sub_strict_overflow_p
= false;
13138 if (tree_expr_nonzero_warnv_p (op0
,
13139 &sub_strict_overflow_p
))
13141 if (sub_strict_overflow_p
)
13142 *strict_overflow_p
= true;
13144 /* When both operands are nonzero, then MAX must be too. */
13145 if (tree_expr_nonzero_warnv_p (op1
,
13146 strict_overflow_p
))
13149 /* MAX where operand 0 is positive is positive. */
13150 return tree_expr_nonnegative_warnv_p (op0
,
13151 strict_overflow_p
);
13153 /* MAX where operand 1 is positive is positive. */
13154 else if (tree_expr_nonzero_warnv_p (op1
,
13155 &sub_strict_overflow_p
)
13156 && tree_expr_nonnegative_warnv_p (op1
,
13157 &sub_strict_overflow_p
))
13159 if (sub_strict_overflow_p
)
13160 *strict_overflow_p
= true;
13166 return (tree_expr_nonzero_warnv_p (op1
,
13168 || tree_expr_nonzero_warnv_p (op0
,
13169 strict_overflow_p
));
13178 /* Return true when T is an address and is known to be nonzero.
13179 For floating point we further ensure that T is not denormal.
13180 Similar logic is present in nonzero_address in rtlanal.h.
13182 If the return value is based on the assumption that signed overflow
13183 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13184 change *STRICT_OVERFLOW_P. */
13187 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13189 bool sub_strict_overflow_p
;
13190 switch (TREE_CODE (t
))
13193 return !integer_zerop (t
);
13197 tree base
= TREE_OPERAND (t
, 0);
13199 if (!DECL_P (base
))
13200 base
= get_base_address (base
);
13202 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13203 base
= TARGET_EXPR_SLOT (base
);
13208 /* For objects in symbol table check if we know they are non-zero.
13209 Don't do anything for variables and functions before symtab is built;
13210 it is quite possible that they will be declared weak later. */
13211 int nonzero_addr
= maybe_nonzero_address (base
);
13212 if (nonzero_addr
>= 0)
13213 return nonzero_addr
;
13215 /* Constants are never weak. */
13216 if (CONSTANT_CLASS_P (base
))
13223 sub_strict_overflow_p
= false;
13224 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13225 &sub_strict_overflow_p
)
13226 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13227 &sub_strict_overflow_p
))
13229 if (sub_strict_overflow_p
)
13230 *strict_overflow_p
= true;
13236 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13238 return expr_not_equal_to (t
, wi::zero (TYPE_PRECISION (TREE_TYPE (t
))));
13246 #define integer_valued_real_p(X) \
13247 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13249 #define RECURSE(X) \
13250 ((integer_valued_real_p) (X, depth + 1))
13252 /* Return true if the floating point result of (CODE OP0) has an
13253 integer value. We also allow +Inf, -Inf and NaN to be considered
13254 integer values. Return false for signaling NaN.
13256 DEPTH is the current nesting depth of the query. */
13259 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13267 return RECURSE (op0
);
13271 tree type
= TREE_TYPE (op0
);
13272 if (TREE_CODE (type
) == INTEGER_TYPE
)
13274 if (TREE_CODE (type
) == REAL_TYPE
)
13275 return RECURSE (op0
);
13285 /* Return true if the floating point result of (CODE OP0 OP1) has an
13286 integer value. We also allow +Inf, -Inf and NaN to be considered
13287 integer values. Return false for signaling NaN.
13289 DEPTH is the current nesting depth of the query. */
13292 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13301 return RECURSE (op0
) && RECURSE (op1
);
13309 /* Return true if the floating point result of calling FNDECL with arguments
13310 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13311 considered integer values. Return false for signaling NaN. If FNDECL
13312 takes fewer than 2 arguments, the remaining ARGn are null.
13314 DEPTH is the current nesting depth of the query. */
13317 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13323 CASE_CFN_NEARBYINT
:
13333 return RECURSE (arg0
) && RECURSE (arg1
);
13341 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13342 has an integer value. We also allow +Inf, -Inf and NaN to be
13343 considered integer values. Return false for signaling NaN.
13345 DEPTH is the current nesting depth of the query. */
13348 integer_valued_real_single_p (tree t
, int depth
)
13350 switch (TREE_CODE (t
))
13353 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13356 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13359 /* Limit the depth of recursion to avoid quadratic behavior.
13360 This is expected to catch almost all occurrences in practice.
13361 If this code misses important cases that unbounded recursion
13362 would not, passes that need this information could be revised
13363 to provide it through dataflow propagation. */
13364 return (!name_registered_for_update_p (t
)
13365 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13366 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13375 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13376 has an integer value. We also allow +Inf, -Inf and NaN to be
13377 considered integer values. Return false for signaling NaN.
13379 DEPTH is the current nesting depth of the query. */
13382 integer_valued_real_invalid_p (tree t
, int depth
)
13384 switch (TREE_CODE (t
))
13386 case COMPOUND_EXPR
:
13389 return RECURSE (TREE_OPERAND (t
, 1));
13392 return RECURSE (TREE_OPERAND (t
, 0));
13401 #undef integer_valued_real_p
13403 /* Return true if the floating point expression T has an integer value.
13404 We also allow +Inf, -Inf and NaN to be considered integer values.
13405 Return false for signaling NaN.
13407 DEPTH is the current nesting depth of the query. */
13410 integer_valued_real_p (tree t
, int depth
)
13412 if (t
== error_mark_node
)
13415 tree_code code
= TREE_CODE (t
);
13416 switch (TREE_CODE_CLASS (code
))
13419 case tcc_comparison
:
13420 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13421 TREE_OPERAND (t
, 1), depth
);
13424 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13427 case tcc_declaration
:
13428 case tcc_reference
:
13429 return integer_valued_real_single_p (t
, depth
);
13439 return integer_valued_real_single_p (t
, depth
);
13443 tree arg0
= (call_expr_nargs (t
) > 0
13444 ? CALL_EXPR_ARG (t
, 0)
13446 tree arg1
= (call_expr_nargs (t
) > 1
13447 ? CALL_EXPR_ARG (t
, 1)
13449 return integer_valued_real_call_p (get_call_combined_fn (t
),
13450 arg0
, arg1
, depth
);
13454 return integer_valued_real_invalid_p (t
, depth
);
13458 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13459 attempt to fold the expression to a constant without modifying TYPE,
13462 If the expression could be simplified to a constant, then return
13463 the constant. If the expression would not be simplified to a
13464 constant, then return NULL_TREE. */
13467 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13469 tree tem
= fold_binary (code
, type
, op0
, op1
);
13470 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13473 /* Given the components of a unary expression CODE, TYPE and OP0,
13474 attempt to fold the expression to a constant without modifying
13477 If the expression could be simplified to a constant, then return
13478 the constant. If the expression would not be simplified to a
13479 constant, then return NULL_TREE. */
13482 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13484 tree tem
= fold_unary (code
, type
, op0
);
13485 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13488 /* If EXP represents referencing an element in a constant string
13489 (either via pointer arithmetic or array indexing), return the
13490 tree representing the value accessed, otherwise return NULL. */
13493 fold_read_from_constant_string (tree exp
)
13495 if ((TREE_CODE (exp
) == INDIRECT_REF
13496 || TREE_CODE (exp
) == ARRAY_REF
)
13497 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13499 tree exp1
= TREE_OPERAND (exp
, 0);
13502 location_t loc
= EXPR_LOCATION (exp
);
13504 if (TREE_CODE (exp
) == INDIRECT_REF
)
13505 string
= string_constant (exp1
, &index
);
13508 tree low_bound
= array_ref_low_bound (exp
);
13509 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13511 /* Optimize the special-case of a zero lower bound.
13513 We convert the low_bound to sizetype to avoid some problems
13514 with constant folding. (E.g. suppose the lower bound is 1,
13515 and its mode is QI. Without the conversion,l (ARRAY
13516 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13517 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13518 if (! integer_zerop (low_bound
))
13519 index
= size_diffop_loc (loc
, index
,
13520 fold_convert_loc (loc
, sizetype
, low_bound
));
13525 scalar_int_mode char_mode
;
13527 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13528 && TREE_CODE (string
) == STRING_CST
13529 && TREE_CODE (index
) == INTEGER_CST
13530 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13531 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))),
13533 && GET_MODE_SIZE (char_mode
) == 1)
13534 return build_int_cst_type (TREE_TYPE (exp
),
13535 (TREE_STRING_POINTER (string
)
13536 [TREE_INT_CST_LOW (index
)]));
13541 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13542 an integer constant, real, or fixed-point constant.
13544 TYPE is the type of the result. */
13547 fold_negate_const (tree arg0
, tree type
)
13549 tree t
= NULL_TREE
;
13551 switch (TREE_CODE (arg0
))
13556 wide_int val
= wi::neg (wi::to_wide (arg0
), &overflow
);
13557 t
= force_fit_type (type
, val
, 1,
13558 (overflow
&& ! TYPE_UNSIGNED (type
))
13559 || TREE_OVERFLOW (arg0
));
13564 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13569 FIXED_VALUE_TYPE f
;
13570 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13571 &(TREE_FIXED_CST (arg0
)), NULL
,
13572 TYPE_SATURATING (type
));
13573 t
= build_fixed (type
, f
);
13574 /* Propagate overflow flags. */
13575 if (overflow_p
| TREE_OVERFLOW (arg0
))
13576 TREE_OVERFLOW (t
) = 1;
13581 gcc_unreachable ();
13587 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13588 an integer constant or real constant.
13590 TYPE is the type of the result. */
13593 fold_abs_const (tree arg0
, tree type
)
13595 tree t
= NULL_TREE
;
13597 switch (TREE_CODE (arg0
))
13601 /* If the value is unsigned or non-negative, then the absolute value
13602 is the same as the ordinary value. */
13603 if (!wi::neg_p (wi::to_wide (arg0
), TYPE_SIGN (type
)))
13606 /* If the value is negative, then the absolute value is
13611 wide_int val
= wi::neg (wi::to_wide (arg0
), &overflow
);
13612 t
= force_fit_type (type
, val
, -1,
13613 overflow
| TREE_OVERFLOW (arg0
));
13619 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13620 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13626 gcc_unreachable ();
13632 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13633 constant. TYPE is the type of the result. */
13636 fold_not_const (const_tree arg0
, tree type
)
13638 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13640 return force_fit_type (type
, ~wi::to_wide (arg0
), 0, TREE_OVERFLOW (arg0
));
13643 /* Given CODE, a relational operator, the target type, TYPE and two
13644 constant operands OP0 and OP1, return the result of the
13645 relational operation. If the result is not a compile time
13646 constant, then return NULL_TREE. */
13649 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13651 int result
, invert
;
13653 /* From here on, the only cases we handle are when the result is
13654 known to be a constant. */
13656 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13658 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13659 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13661 /* Handle the cases where either operand is a NaN. */
13662 if (real_isnan (c0
) || real_isnan (c1
))
13672 case UNORDERED_EXPR
:
13686 if (flag_trapping_math
)
13692 gcc_unreachable ();
13695 return constant_boolean_node (result
, type
);
13698 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13701 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13703 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13704 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13705 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13708 /* Handle equality/inequality of complex constants. */
13709 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13711 tree rcond
= fold_relational_const (code
, type
,
13712 TREE_REALPART (op0
),
13713 TREE_REALPART (op1
));
13714 tree icond
= fold_relational_const (code
, type
,
13715 TREE_IMAGPART (op0
),
13716 TREE_IMAGPART (op1
));
13717 if (code
== EQ_EXPR
)
13718 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13719 else if (code
== NE_EXPR
)
13720 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
13725 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
13727 if (!VECTOR_TYPE_P (type
))
13729 /* Have vector comparison with scalar boolean result. */
13730 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
13731 && VECTOR_CST_NELTS (op0
) == VECTOR_CST_NELTS (op1
));
13732 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (op0
); i
++)
13734 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13735 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13736 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
13737 if (tmp
== NULL_TREE
)
13739 if (integer_zerop (tmp
))
13740 return constant_boolean_node (false, type
);
13742 return constant_boolean_node (true, type
);
13744 unsigned count
= VECTOR_CST_NELTS (op0
);
13745 gcc_assert (VECTOR_CST_NELTS (op1
) == count
13746 && TYPE_VECTOR_SUBPARTS (type
) == count
);
13748 auto_vec
<tree
, 32> elts (count
);
13749 for (unsigned i
= 0; i
< count
; i
++)
13751 tree elem_type
= TREE_TYPE (type
);
13752 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13753 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13755 tree tem
= fold_relational_const (code
, elem_type
,
13758 if (tem
== NULL_TREE
)
13761 elts
.quick_push (build_int_cst (elem_type
,
13762 integer_zerop (tem
) ? 0 : -1));
13765 return build_vector (type
, elts
);
13768 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13770 To compute GT, swap the arguments and do LT.
13771 To compute GE, do LT and invert the result.
13772 To compute LE, swap the arguments, do LT and invert the result.
13773 To compute NE, do EQ and invert the result.
13775 Therefore, the code below must handle only EQ and LT. */
13777 if (code
== LE_EXPR
|| code
== GT_EXPR
)
13779 std::swap (op0
, op1
);
13780 code
= swap_tree_comparison (code
);
13783 /* Note that it is safe to invert for real values here because we
13784 have already handled the one case that it matters. */
13787 if (code
== NE_EXPR
|| code
== GE_EXPR
)
13790 code
= invert_tree_comparison (code
, false);
13793 /* Compute a result for LT or EQ if args permit;
13794 Otherwise return T. */
13795 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
13797 if (code
== EQ_EXPR
)
13798 result
= tree_int_cst_equal (op0
, op1
);
13800 result
= tree_int_cst_lt (op0
, op1
);
13807 return constant_boolean_node (result
, type
);
13810 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13811 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13815 fold_build_cleanup_point_expr (tree type
, tree expr
)
13817 /* If the expression does not have side effects then we don't have to wrap
13818 it with a cleanup point expression. */
13819 if (!TREE_SIDE_EFFECTS (expr
))
13822 /* If the expression is a return, check to see if the expression inside the
13823 return has no side effects or the right hand side of the modify expression
13824 inside the return. If either don't have side effects set we don't need to
13825 wrap the expression in a cleanup point expression. Note we don't check the
13826 left hand side of the modify because it should always be a return decl. */
13827 if (TREE_CODE (expr
) == RETURN_EXPR
)
13829 tree op
= TREE_OPERAND (expr
, 0);
13830 if (!op
|| !TREE_SIDE_EFFECTS (op
))
13832 op
= TREE_OPERAND (op
, 1);
13833 if (!TREE_SIDE_EFFECTS (op
))
13837 return build1_loc (EXPR_LOCATION (expr
), CLEANUP_POINT_EXPR
, type
, expr
);
13840 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13841 of an indirection through OP0, or NULL_TREE if no simplification is
13845 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
13851 subtype
= TREE_TYPE (sub
);
13852 if (!POINTER_TYPE_P (subtype
)
13853 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0
)))
13856 if (TREE_CODE (sub
) == ADDR_EXPR
)
13858 tree op
= TREE_OPERAND (sub
, 0);
13859 tree optype
= TREE_TYPE (op
);
13860 /* *&CONST_DECL -> to the value of the const decl. */
13861 if (TREE_CODE (op
) == CONST_DECL
)
13862 return DECL_INITIAL (op
);
13863 /* *&p => p; make sure to handle *&"str"[cst] here. */
13864 if (type
== optype
)
13866 tree fop
= fold_read_from_constant_string (op
);
13872 /* *(foo *)&fooarray => fooarray[0] */
13873 else if (TREE_CODE (optype
) == ARRAY_TYPE
13874 && type
== TREE_TYPE (optype
)
13875 && (!in_gimple_form
13876 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
13878 tree type_domain
= TYPE_DOMAIN (optype
);
13879 tree min_val
= size_zero_node
;
13880 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
13881 min_val
= TYPE_MIN_VALUE (type_domain
);
13883 && TREE_CODE (min_val
) != INTEGER_CST
)
13885 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
13886 NULL_TREE
, NULL_TREE
);
13888 /* *(foo *)&complexfoo => __real__ complexfoo */
13889 else if (TREE_CODE (optype
) == COMPLEX_TYPE
13890 && type
== TREE_TYPE (optype
))
13891 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
13892 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
13893 else if (TREE_CODE (optype
) == VECTOR_TYPE
13894 && type
== TREE_TYPE (optype
))
13896 tree part_width
= TYPE_SIZE (type
);
13897 tree index
= bitsize_int (0);
13898 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
, index
);
13902 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
13903 && TREE_CODE (TREE_OPERAND (sub
, 1)) == INTEGER_CST
)
13905 tree op00
= TREE_OPERAND (sub
, 0);
13906 tree op01
= TREE_OPERAND (sub
, 1);
13909 if (TREE_CODE (op00
) == ADDR_EXPR
)
13912 op00
= TREE_OPERAND (op00
, 0);
13913 op00type
= TREE_TYPE (op00
);
13915 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
13916 if (TREE_CODE (op00type
) == VECTOR_TYPE
13917 && type
== TREE_TYPE (op00type
))
13919 tree part_width
= TYPE_SIZE (type
);
13920 unsigned HOST_WIDE_INT max_offset
13921 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
13922 * TYPE_VECTOR_SUBPARTS (op00type
));
13923 if (tree_int_cst_sign_bit (op01
) == 0
13924 && compare_tree_int (op01
, max_offset
) == -1)
13926 unsigned HOST_WIDE_INT offset
= tree_to_uhwi (op01
);
13927 unsigned HOST_WIDE_INT indexi
= offset
* BITS_PER_UNIT
;
13928 tree index
= bitsize_int (indexi
);
13929 return fold_build3_loc (loc
,
13930 BIT_FIELD_REF
, type
, op00
,
13931 part_width
, index
);
13934 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
13935 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
13936 && type
== TREE_TYPE (op00type
))
13938 tree size
= TYPE_SIZE_UNIT (type
);
13939 if (tree_int_cst_equal (size
, op01
))
13940 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
13942 /* ((foo *)&fooarray)[1] => fooarray[1] */
13943 else if (TREE_CODE (op00type
) == ARRAY_TYPE
13944 && type
== TREE_TYPE (op00type
))
13946 tree type_domain
= TYPE_DOMAIN (op00type
);
13947 tree min
= size_zero_node
;
13948 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
13949 min
= TYPE_MIN_VALUE (type_domain
);
13950 offset_int off
= wi::to_offset (op01
);
13951 offset_int el_sz
= wi::to_offset (TYPE_SIZE_UNIT (type
));
13952 offset_int remainder
;
13953 off
= wi::divmod_trunc (off
, el_sz
, SIGNED
, &remainder
);
13954 if (remainder
== 0 && TREE_CODE (min
) == INTEGER_CST
)
13956 off
= off
+ wi::to_offset (min
);
13957 op01
= wide_int_to_tree (sizetype
, off
);
13958 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
13959 NULL_TREE
, NULL_TREE
);
13965 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
13966 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
13967 && type
== TREE_TYPE (TREE_TYPE (subtype
))
13968 && (!in_gimple_form
13969 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
13972 tree min_val
= size_zero_node
;
13973 sub
= build_fold_indirect_ref_loc (loc
, sub
);
13974 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
13975 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
13976 min_val
= TYPE_MIN_VALUE (type_domain
);
13978 && TREE_CODE (min_val
) != INTEGER_CST
)
13980 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
13987 /* Builds an expression for an indirection through T, simplifying some
13991 build_fold_indirect_ref_loc (location_t loc
, tree t
)
13993 tree type
= TREE_TYPE (TREE_TYPE (t
));
13994 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
13999 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14002 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14005 fold_indirect_ref_loc (location_t loc
, tree t
)
14007 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14015 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14016 whose result is ignored. The type of the returned tree need not be
14017 the same as the original expression. */
14020 fold_ignored_result (tree t
)
14022 if (!TREE_SIDE_EFFECTS (t
))
14023 return integer_zero_node
;
14026 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14029 t
= TREE_OPERAND (t
, 0);
14033 case tcc_comparison
:
14034 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14035 t
= TREE_OPERAND (t
, 0);
14036 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14037 t
= TREE_OPERAND (t
, 1);
14042 case tcc_expression
:
14043 switch (TREE_CODE (t
))
14045 case COMPOUND_EXPR
:
14046 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14048 t
= TREE_OPERAND (t
, 0);
14052 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14053 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14055 t
= TREE_OPERAND (t
, 0);
14068 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14071 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14073 tree div
= NULL_TREE
;
14078 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14079 have to do anything. Only do this when we are not given a const,
14080 because in that case, this check is more expensive than just
14082 if (TREE_CODE (value
) != INTEGER_CST
)
14084 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14086 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14090 /* If divisor is a power of two, simplify this to bit manipulation. */
14091 if (pow2_or_zerop (divisor
))
14093 if (TREE_CODE (value
) == INTEGER_CST
)
14095 wide_int val
= wi::to_wide (value
);
14098 if ((val
& (divisor
- 1)) == 0)
14101 overflow_p
= TREE_OVERFLOW (value
);
14102 val
+= divisor
- 1;
14103 val
&= (int) -divisor
;
14107 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14113 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14114 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14115 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14116 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14122 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14123 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14124 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14130 /* Likewise, but round down. */
14133 round_down_loc (location_t loc
, tree value
, int divisor
)
14135 tree div
= NULL_TREE
;
14137 gcc_assert (divisor
> 0);
14141 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14142 have to do anything. Only do this when we are not given a const,
14143 because in that case, this check is more expensive than just
14145 if (TREE_CODE (value
) != INTEGER_CST
)
14147 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14149 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14153 /* If divisor is a power of two, simplify this to bit manipulation. */
14154 if (pow2_or_zerop (divisor
))
14158 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14159 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14164 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14165 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14166 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14172 /* Returns the pointer to the base of the object addressed by EXP and
14173 extracts the information about the offset of the access, storing it
14174 to PBITPOS and POFFSET. */
14177 split_address_to_core_and_offset (tree exp
,
14178 HOST_WIDE_INT
*pbitpos
, tree
*poffset
)
14182 int unsignedp
, reversep
, volatilep
;
14183 HOST_WIDE_INT bitsize
;
14184 location_t loc
= EXPR_LOCATION (exp
);
14186 if (TREE_CODE (exp
) == ADDR_EXPR
)
14188 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14189 poffset
, &mode
, &unsignedp
, &reversep
,
14191 core
= build_fold_addr_expr_loc (loc
, core
);
14193 else if (TREE_CODE (exp
) == POINTER_PLUS_EXPR
)
14195 core
= TREE_OPERAND (exp
, 0);
14198 *poffset
= TREE_OPERAND (exp
, 1);
14199 if (TREE_CODE (*poffset
) == INTEGER_CST
)
14201 offset_int tem
= wi::sext (wi::to_offset (*poffset
),
14202 TYPE_PRECISION (TREE_TYPE (*poffset
)));
14203 tem
<<= LOG2_BITS_PER_UNIT
;
14204 if (wi::fits_shwi_p (tem
))
14206 *pbitpos
= tem
.to_shwi ();
14207 *poffset
= NULL_TREE
;
14215 *poffset
= NULL_TREE
;
14221 /* Returns true if addresses of E1 and E2 differ by a constant, false
14222 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14225 ptr_difference_const (tree e1
, tree e2
, HOST_WIDE_INT
*diff
)
14228 HOST_WIDE_INT bitpos1
, bitpos2
;
14229 tree toffset1
, toffset2
, tdiff
, type
;
14231 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14232 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14234 if (bitpos1
% BITS_PER_UNIT
!= 0
14235 || bitpos2
% BITS_PER_UNIT
!= 0
14236 || !operand_equal_p (core1
, core2
, 0))
14239 if (toffset1
&& toffset2
)
14241 type
= TREE_TYPE (toffset1
);
14242 if (type
!= TREE_TYPE (toffset2
))
14243 toffset2
= fold_convert (type
, toffset2
);
14245 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14246 if (!cst_and_fits_in_hwi (tdiff
))
14249 *diff
= int_cst_value (tdiff
);
14251 else if (toffset1
|| toffset2
)
14253 /* If only one of the offsets is non-constant, the difference cannot
14260 *diff
+= (bitpos1
- bitpos2
) / BITS_PER_UNIT
;
14264 /* Return OFF converted to a pointer offset type suitable as offset for
14265 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14267 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14269 return fold_convert_loc (loc
, sizetype
, off
);
14272 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14274 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14276 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14277 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14280 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14282 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14284 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14285 ptr
, size_int (off
));
14288 /* Return a char pointer for a C string if it is a string constant
14289 or sum of string constant and integer constant. We only support
14290 string constants properly terminated with '\0' character.
14291 If STRLEN is a valid pointer, length (including terminating character)
14292 of returned string is stored to the argument. */
14295 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
)
14302 src
= string_constant (src
, &offset_node
);
14306 unsigned HOST_WIDE_INT offset
= 0;
14307 if (offset_node
!= NULL_TREE
)
14309 if (!tree_fits_uhwi_p (offset_node
))
14312 offset
= tree_to_uhwi (offset_node
);
14315 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14316 const char *string
= TREE_STRING_POINTER (src
);
14318 /* Support only properly null-terminated strings. */
14319 if (string_length
== 0
14320 || string
[string_length
- 1] != '\0'
14321 || offset
>= string_length
)
14325 *strlen
= string_length
- offset
;
14326 return string
+ offset
;
14331 namespace selftest
{
14333 /* Helper functions for writing tests of folding trees. */
14335 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14338 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14341 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14344 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14345 wrapping WRAPPED_EXPR. */
14348 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14351 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14352 ASSERT_NE (wrapped_expr
, result
);
14353 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14354 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14357 /* Verify that various arithmetic binary operations are folded
14361 test_arithmetic_folding ()
14363 tree type
= integer_type_node
;
14364 tree x
= create_tmp_var_raw (type
, "x");
14365 tree zero
= build_zero_cst (type
);
14366 tree one
= build_int_cst (type
, 1);
14369 /* 1 <-- (0 + 1) */
14370 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14372 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14375 /* (nonlvalue)x <-- (x + 0) */
14376 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14380 /* 0 <-- (x - x) */
14381 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14383 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14386 /* Multiplication. */
14387 /* 0 <-- (x * 0) */
14388 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14391 /* (nonlvalue)x <-- (x * 1) */
14392 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14396 /* Verify that various binary operations on vectors are folded
14400 test_vector_folding ()
14402 tree inner_type
= integer_type_node
;
14403 tree type
= build_vector_type (inner_type
, 4);
14404 tree zero
= build_zero_cst (type
);
14405 tree one
= build_one_cst (type
);
14407 /* Verify equality tests that return a scalar boolean result. */
14408 tree res_type
= boolean_type_node
;
14409 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14410 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14411 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14412 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14415 /* Run all of the selftests within this file. */
14418 fold_const_c_tests ()
14420 test_arithmetic_folding ();
14421 test_vector_folding ();
14424 } // namespace selftest
14426 #endif /* CHECKING_P */