tree-ssa-threadupdate.c: Include tree-cfg.h and tree-pass.h
[official-gcc.git] / gcc / ipa-profile.c
blob7ae001cc5e204a763ea5a0efd00b383012b9c33d
1 /* Basic IPA optimizations based on profile.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* ipa-profile pass implements the following analysis propagating profille
21 inter-procedurally.
23 - Count histogram construction. This is a histogram analyzing how much
24 time is spent executing statements with a given execution count read
25 from profile feedback. This histogram is complette only with LTO,
26 otherwise it contains information only about the current unit.
28 Similar histogram is also estimated by coverage runtime. This histogram
29 is not dependent on LTO, but it suffers from various defects; first
30 gcov runtime is not weighting individual basic block by estimated execution
31 time and second the merging of multiple runs makes assumption that the
32 histogram distribution did not change. Consequentely histogram constructed
33 here may be more precise.
35 The information is used to set hot/cold thresholds.
36 - Next speculative indirect call resolution is performed: the local
37 profile pass assigns profile-id to each function and provide us with a
38 histogram specifying the most common target. We look up the callgraph
39 node corresponding to the target and produce a speculative call.
41 This call may or may not survive through IPA optimization based on decision
42 of inliner.
43 - Finally we propagate the following flags: unlikely executed, executed
44 once, executed at startup and executed at exit. These flags are used to
45 control code size/performance threshold and and code placement (by producing
46 .text.unlikely/.text.hot/.text.startup/.text.exit subsections). */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51 #include "tree.h"
52 #include "cgraph.h"
53 #include "tree-pass.h"
54 #include "gimple.h"
55 #include "gimple-iterator.h"
56 #include "ggc.h"
57 #include "flags.h"
58 #include "target.h"
59 #include "tree-iterator.h"
60 #include "ipa-utils.h"
61 #include "hash-table.h"
62 #include "profile.h"
63 #include "params.h"
64 #include "value-prof.h"
65 #include "alloc-pool.h"
66 #include "tree-inline.h"
67 #include "lto-streamer.h"
68 #include "data-streamer.h"
69 #include "ipa-inline.h"
71 /* Entry in the histogram. */
73 struct histogram_entry
75 gcov_type count;
76 int time;
77 int size;
80 /* Histogram of profile values.
81 The histogram is represented as an ordered vector of entries allocated via
82 histogram_pool. During construction a separate hashtable is kept to lookup
83 duplicate entries. */
85 vec<histogram_entry *> histogram;
86 static alloc_pool histogram_pool;
88 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
90 struct histogram_hash : typed_noop_remove <histogram_entry>
92 typedef histogram_entry value_type;
93 typedef histogram_entry compare_type;
94 static inline hashval_t hash (const value_type *);
95 static inline int equal (const value_type *, const compare_type *);
98 inline hashval_t
99 histogram_hash::hash (const histogram_entry *val)
101 return val->count;
104 inline int
105 histogram_hash::equal (const histogram_entry *val, const histogram_entry *val2)
107 return val->count == val2->count;
110 /* Account TIME and SIZE executed COUNT times into HISTOGRAM.
111 HASHTABLE is the on-side hash kept to avoid duplicates. */
113 static void
114 account_time_size (hash_table <histogram_hash> hashtable,
115 vec<histogram_entry *> &histogram,
116 gcov_type count, int time, int size)
118 histogram_entry key = {count, 0, 0};
119 histogram_entry **val = hashtable.find_slot (&key, INSERT);
121 if (!*val)
123 *val = (histogram_entry *) pool_alloc (histogram_pool);
124 **val = key;
125 histogram.safe_push (*val);
127 (*val)->time += time;
128 (*val)->size += size;
132 cmp_counts (const void *v1, const void *v2)
134 const histogram_entry *h1 = *(const histogram_entry * const *)v1;
135 const histogram_entry *h2 = *(const histogram_entry * const *)v2;
136 if (h1->count < h2->count)
137 return 1;
138 if (h1->count > h2->count)
139 return -1;
140 return 0;
143 /* Dump HISTOGRAM to FILE. */
145 static void
146 dump_histogram (FILE *file, vec<histogram_entry *> histogram)
148 unsigned int i;
149 gcov_type overall_time = 0, cumulated_time = 0, cumulated_size = 0, overall_size = 0;
151 fprintf (dump_file, "Histogram:\n");
152 for (i = 0; i < histogram.length (); i++)
154 overall_time += histogram[i]->count * histogram[i]->time;
155 overall_size += histogram[i]->size;
157 if (!overall_time)
158 overall_time = 1;
159 if (!overall_size)
160 overall_size = 1;
161 for (i = 0; i < histogram.length (); i++)
163 cumulated_time += histogram[i]->count * histogram[i]->time;
164 cumulated_size += histogram[i]->size;
165 fprintf (file, " "HOST_WIDEST_INT_PRINT_DEC": time:%i (%2.2f) size:%i (%2.2f)\n",
166 (HOST_WIDEST_INT) histogram[i]->count,
167 histogram[i]->time,
168 cumulated_time * 100.0 / overall_time,
169 histogram[i]->size,
170 cumulated_size * 100.0 / overall_size);
174 /* Collect histogram from CFG profiles. */
176 static void
177 ipa_profile_generate_summary (void)
179 struct cgraph_node *node;
180 gimple_stmt_iterator gsi;
181 hash_table <histogram_hash> hashtable;
182 basic_block bb;
184 hashtable.create (10);
185 histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
186 10);
188 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
189 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
191 int time = 0;
192 int size = 0;
193 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
195 gimple stmt = gsi_stmt (gsi);
196 if (gimple_code (stmt) == GIMPLE_CALL
197 && !gimple_call_fndecl (stmt))
199 histogram_value h;
200 h = gimple_histogram_value_of_type
201 (DECL_STRUCT_FUNCTION (node->decl),
202 stmt, HIST_TYPE_INDIR_CALL);
203 /* No need to do sanity check: gimple_ic_transform already
204 takes away bad histograms. */
205 if (h)
207 /* counter 0 is target, counter 1 is number of execution we called target,
208 counter 2 is total number of executions. */
209 if (h->hvalue.counters[2])
211 struct cgraph_edge * e = cgraph_edge (node, stmt);
212 e->indirect_info->common_target_id
213 = h->hvalue.counters [0];
214 e->indirect_info->common_target_probability
215 = GCOV_COMPUTE_SCALE (h->hvalue.counters [1], h->hvalue.counters [2]);
216 if (e->indirect_info->common_target_probability > REG_BR_PROB_BASE)
218 if (dump_file)
219 fprintf (dump_file, "Probability capped to 1\n");
220 e->indirect_info->common_target_probability = REG_BR_PROB_BASE;
223 gimple_remove_histogram_value (DECL_STRUCT_FUNCTION (node->decl),
224 stmt, h);
227 time += estimate_num_insns (stmt, &eni_time_weights);
228 size += estimate_num_insns (stmt, &eni_size_weights);
230 account_time_size (hashtable, histogram, bb->count, time, size);
232 hashtable.dispose ();
233 histogram.qsort (cmp_counts);
236 /* Serialize the ipa info for lto. */
238 static void
239 ipa_profile_write_summary (void)
241 struct lto_simple_output_block *ob
242 = lto_create_simple_output_block (LTO_section_ipa_profile);
243 unsigned int i;
245 streamer_write_uhwi_stream (ob->main_stream, histogram.length ());
246 for (i = 0; i < histogram.length (); i++)
248 streamer_write_gcov_count_stream (ob->main_stream, histogram[i]->count);
249 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->time);
250 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->size);
252 lto_destroy_simple_output_block (ob);
255 /* Deserialize the ipa info for lto. */
257 static void
258 ipa_profile_read_summary (void)
260 struct lto_file_decl_data ** file_data_vec
261 = lto_get_file_decl_data ();
262 struct lto_file_decl_data * file_data;
263 hash_table <histogram_hash> hashtable;
264 int j = 0;
266 hashtable.create (10);
267 histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
268 10);
270 while ((file_data = file_data_vec[j++]))
272 const char *data;
273 size_t len;
274 struct lto_input_block *ib
275 = lto_create_simple_input_block (file_data,
276 LTO_section_ipa_profile,
277 &data, &len);
278 if (ib)
280 unsigned int num = streamer_read_uhwi (ib);
281 unsigned int n;
282 for (n = 0; n < num; n++)
284 gcov_type count = streamer_read_gcov_count (ib);
285 int time = streamer_read_uhwi (ib);
286 int size = streamer_read_uhwi (ib);
287 account_time_size (hashtable, histogram,
288 count, time, size);
290 lto_destroy_simple_input_block (file_data,
291 LTO_section_ipa_profile,
292 ib, data, len);
295 hashtable.dispose ();
296 histogram.qsort (cmp_counts);
299 /* Data used by ipa_propagate_frequency. */
301 struct ipa_propagate_frequency_data
303 bool maybe_unlikely_executed;
304 bool maybe_executed_once;
305 bool only_called_at_startup;
306 bool only_called_at_exit;
309 /* Worker for ipa_propagate_frequency_1. */
311 static bool
312 ipa_propagate_frequency_1 (struct cgraph_node *node, void *data)
314 struct ipa_propagate_frequency_data *d;
315 struct cgraph_edge *edge;
317 d = (struct ipa_propagate_frequency_data *)data;
318 for (edge = node->callers;
319 edge && (d->maybe_unlikely_executed || d->maybe_executed_once
320 || d->only_called_at_startup || d->only_called_at_exit);
321 edge = edge->next_caller)
323 if (edge->caller != node)
325 d->only_called_at_startup &= edge->caller->only_called_at_startup;
326 /* It makes sense to put main() together with the static constructors.
327 It will be executed for sure, but rest of functions called from
328 main are definitely not at startup only. */
329 if (MAIN_NAME_P (DECL_NAME (edge->caller->decl)))
330 d->only_called_at_startup = 0;
331 d->only_called_at_exit &= edge->caller->only_called_at_exit;
334 /* When profile feedback is available, do not try to propagate too hard;
335 counts are already good guide on function frequencies and roundoff
336 errors can make us to push function into unlikely section even when
337 it is executed by the train run. Transfer the function only if all
338 callers are unlikely executed. */
339 if (profile_info && flag_branch_probabilities
340 && (edge->caller->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED
341 || (edge->caller->global.inlined_to
342 && edge->caller->global.inlined_to->frequency
343 != NODE_FREQUENCY_UNLIKELY_EXECUTED)))
344 d->maybe_unlikely_executed = false;
345 if (!edge->frequency)
346 continue;
347 switch (edge->caller->frequency)
349 case NODE_FREQUENCY_UNLIKELY_EXECUTED:
350 break;
351 case NODE_FREQUENCY_EXECUTED_ONCE:
352 if (dump_file && (dump_flags & TDF_DETAILS))
353 fprintf (dump_file, " Called by %s that is executed once\n",
354 edge->caller->name ());
355 d->maybe_unlikely_executed = false;
356 if (inline_edge_summary (edge)->loop_depth)
358 d->maybe_executed_once = false;
359 if (dump_file && (dump_flags & TDF_DETAILS))
360 fprintf (dump_file, " Called in loop\n");
362 break;
363 case NODE_FREQUENCY_HOT:
364 case NODE_FREQUENCY_NORMAL:
365 if (dump_file && (dump_flags & TDF_DETAILS))
366 fprintf (dump_file, " Called by %s that is normal or hot\n",
367 edge->caller->name ());
368 d->maybe_unlikely_executed = false;
369 d->maybe_executed_once = false;
370 break;
373 return edge != NULL;
376 /* Return ture if NODE contains hot calls. */
378 bool
379 contains_hot_call_p (struct cgraph_node *node)
381 struct cgraph_edge *e;
382 for (e = node->callees; e; e = e->next_callee)
383 if (cgraph_maybe_hot_edge_p (e))
384 return true;
385 else if (!e->inline_failed
386 && contains_hot_call_p (e->callee))
387 return true;
388 for (e = node->indirect_calls; e; e = e->next_callee)
389 if (cgraph_maybe_hot_edge_p (e))
390 return true;
391 return false;
394 /* See if the frequency of NODE can be updated based on frequencies of its
395 callers. */
396 bool
397 ipa_propagate_frequency (struct cgraph_node *node)
399 struct ipa_propagate_frequency_data d = {true, true, true, true};
400 bool changed = false;
402 /* We can not propagate anything useful about externally visible functions
403 nor about virtuals. */
404 if (!node->local.local
405 || node->alias
406 || (flag_devirtualize && DECL_VIRTUAL_P (node->decl)))
407 return false;
408 gcc_assert (node->analyzed);
409 if (dump_file && (dump_flags & TDF_DETAILS))
410 fprintf (dump_file, "Processing frequency %s\n", node->name ());
412 cgraph_for_node_and_aliases (node, ipa_propagate_frequency_1, &d, true);
414 if ((d.only_called_at_startup && !d.only_called_at_exit)
415 && !node->only_called_at_startup)
417 node->only_called_at_startup = true;
418 if (dump_file)
419 fprintf (dump_file, "Node %s promoted to only called at startup.\n",
420 node->name ());
421 changed = true;
423 if ((d.only_called_at_exit && !d.only_called_at_startup)
424 && !node->only_called_at_exit)
426 node->only_called_at_exit = true;
427 if (dump_file)
428 fprintf (dump_file, "Node %s promoted to only called at exit.\n",
429 node->name ());
430 changed = true;
433 /* With profile we can decide on hot/normal based on count. */
434 if (node->count)
436 bool hot = false;
437 if (node->count >= get_hot_bb_threshold ())
438 hot = true;
439 if (!hot)
440 hot |= contains_hot_call_p (node);
441 if (hot)
443 if (node->frequency != NODE_FREQUENCY_HOT)
445 if (dump_file)
446 fprintf (dump_file, "Node %s promoted to hot.\n",
447 node->name ());
448 node->frequency = NODE_FREQUENCY_HOT;
449 return true;
451 return false;
453 else if (node->frequency == NODE_FREQUENCY_HOT)
455 if (dump_file)
456 fprintf (dump_file, "Node %s reduced to normal.\n",
457 node->name ());
458 node->frequency = NODE_FREQUENCY_NORMAL;
459 changed = true;
462 /* These come either from profile or user hints; never update them. */
463 if (node->frequency == NODE_FREQUENCY_HOT
464 || node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
465 return changed;
466 if (d.maybe_unlikely_executed)
468 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
469 if (dump_file)
470 fprintf (dump_file, "Node %s promoted to unlikely executed.\n",
471 node->name ());
472 changed = true;
474 else if (d.maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
476 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
477 if (dump_file)
478 fprintf (dump_file, "Node %s promoted to executed once.\n",
479 node->name ());
480 changed = true;
482 return changed;
485 /* Simple ipa profile pass propagating frequencies across the callgraph. */
487 static unsigned int
488 ipa_profile (void)
490 struct cgraph_node **order;
491 struct cgraph_edge *e;
492 int order_pos;
493 bool something_changed = false;
494 int i;
495 gcov_type overall_time = 0, cutoff = 0, cumulated = 0, overall_size = 0;
496 struct cgraph_node *n,*n2;
497 int nindirect = 0, ncommon = 0, nunknown = 0, nuseless = 0, nconverted = 0;
498 bool node_map_initialized = false;
500 if (dump_file)
501 dump_histogram (dump_file, histogram);
502 for (i = 0; i < (int)histogram.length (); i++)
504 overall_time += histogram[i]->count * histogram[i]->time;
505 overall_size += histogram[i]->size;
507 if (overall_time)
509 gcov_type threshold;
511 gcc_assert (overall_size);
512 if (dump_file)
514 gcov_type min, cumulated_time = 0, cumulated_size = 0;
516 fprintf (dump_file, "Overall time: "HOST_WIDEST_INT_PRINT_DEC"\n",
517 (HOST_WIDEST_INT)overall_time);
518 min = get_hot_bb_threshold ();
519 for (i = 0; i < (int)histogram.length () && histogram[i]->count >= min;
520 i++)
522 cumulated_time += histogram[i]->count * histogram[i]->time;
523 cumulated_size += histogram[i]->size;
525 fprintf (dump_file, "GCOV min count: "HOST_WIDEST_INT_PRINT_DEC
526 " Time:%3.2f%% Size:%3.2f%%\n",
527 (HOST_WIDEST_INT)min,
528 cumulated_time * 100.0 / overall_time,
529 cumulated_size * 100.0 / overall_size);
531 cutoff = (overall_time * PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE) + 500) / 1000;
532 threshold = 0;
533 for (i = 0; cumulated < cutoff; i++)
535 cumulated += histogram[i]->count * histogram[i]->time;
536 threshold = histogram[i]->count;
538 if (!threshold)
539 threshold = 1;
540 if (dump_file)
542 gcov_type cumulated_time = 0, cumulated_size = 0;
544 for (i = 0;
545 i < (int)histogram.length () && histogram[i]->count >= threshold;
546 i++)
548 cumulated_time += histogram[i]->count * histogram[i]->time;
549 cumulated_size += histogram[i]->size;
551 fprintf (dump_file, "Determined min count: "HOST_WIDEST_INT_PRINT_DEC
552 " Time:%3.2f%% Size:%3.2f%%\n",
553 (HOST_WIDEST_INT)threshold,
554 cumulated_time * 100.0 / overall_time,
555 cumulated_size * 100.0 / overall_size);
557 if (threshold > get_hot_bb_threshold ()
558 || in_lto_p)
560 if (dump_file)
561 fprintf (dump_file, "Threshold updated.\n");
562 set_hot_bb_threshold (threshold);
565 histogram.release ();
566 free_alloc_pool (histogram_pool);
568 /* Produce speculative calls: we saved common traget from porfiling into
569 e->common_target_id. Now, at link time, we can look up corresponding
570 function node and produce speculative call. */
572 FOR_EACH_DEFINED_FUNCTION (n)
574 bool update = false;
576 for (e = n->indirect_calls; e; e = e->next_callee)
578 if (n->count)
579 nindirect++;
580 if (e->indirect_info->common_target_id)
582 if (!node_map_initialized)
583 init_node_map (false);
584 node_map_initialized = true;
585 ncommon++;
586 n2 = find_func_by_profile_id (e->indirect_info->common_target_id);
587 if (n2)
589 if (dump_file)
591 fprintf (dump_file, "Indirect call -> direct call from"
592 " other module %s/%i => %s/%i, prob %3.2f\n",
593 xstrdup (n->name ()), n->order,
594 xstrdup (n2->name ()), n2->order,
595 e->indirect_info->common_target_probability
596 / (float)REG_BR_PROB_BASE);
598 if (e->indirect_info->common_target_probability
599 < REG_BR_PROB_BASE / 2)
601 nuseless++;
602 if (dump_file)
603 fprintf (dump_file,
604 "Not speculating: probability is too low.\n");
606 else if (!cgraph_maybe_hot_edge_p (e))
608 nuseless++;
609 if (dump_file)
610 fprintf (dump_file,
611 "Not speculating: call is cold.\n");
613 else if (cgraph_function_body_availability (n2)
614 <= AVAIL_OVERWRITABLE
615 && symtab_can_be_discarded (n2))
617 nuseless++;
618 if (dump_file)
619 fprintf (dump_file,
620 "Not speculating: target is overwritable "
621 "and can be discarded.\n");
623 else
625 /* Target may be overwritable, but profile says that
626 control flow goes to this particular implementation
627 of N2. Speculate on the local alias to allow inlining.
629 if (!symtab_can_be_discarded (n2))
631 cgraph_node *alias;
632 alias = cgraph (symtab_nonoverwritable_alias
633 (n2));
634 if (alias)
635 n2 = alias;
637 nconverted++;
638 cgraph_turn_edge_to_speculative
639 (e, n2,
640 apply_scale (e->count,
641 e->indirect_info->common_target_probability),
642 apply_scale (e->frequency,
643 e->indirect_info->common_target_probability));
644 update = true;
647 else
649 if (dump_file)
650 fprintf (dump_file, "Function with profile-id %i not found.\n",
651 e->indirect_info->common_target_id);
652 nunknown++;
656 if (update)
657 inline_update_overall_summary (n);
659 if (node_map_initialized)
660 del_node_map ();
661 if (dump_file && nindirect)
662 fprintf (dump_file,
663 "%i indirect calls trained.\n"
664 "%i (%3.2f%%) have common target.\n"
665 "%i (%3.2f%%) targets was not found.\n"
666 "%i (%3.2f%%) speculations seems useless.\n"
667 "%i (%3.2f%%) speculations produced.\n",
668 nindirect,
669 ncommon, ncommon * 100.0 / nindirect,
670 nunknown, nunknown * 100.0 / nindirect,
671 nuseless, nuseless * 100.0 / nindirect,
672 nconverted, nconverted * 100.0 / nindirect);
674 order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
675 order_pos = ipa_reverse_postorder (order);
676 for (i = order_pos - 1; i >= 0; i--)
678 if (order[i]->local.local && ipa_propagate_frequency (order[i]))
680 for (e = order[i]->callees; e; e = e->next_callee)
681 if (e->callee->local.local && !e->callee->aux)
683 something_changed = true;
684 e->callee->aux = (void *)1;
687 order[i]->aux = NULL;
690 while (something_changed)
692 something_changed = false;
693 for (i = order_pos - 1; i >= 0; i--)
695 if (order[i]->aux && ipa_propagate_frequency (order[i]))
697 for (e = order[i]->callees; e; e = e->next_callee)
698 if (e->callee->local.local && !e->callee->aux)
700 something_changed = true;
701 e->callee->aux = (void *)1;
704 order[i]->aux = NULL;
707 free (order);
708 return 0;
711 static bool
712 gate_ipa_profile (void)
714 return flag_ipa_profile;
717 namespace {
719 const pass_data pass_data_ipa_profile =
721 IPA_PASS, /* type */
722 "profile_estimate", /* name */
723 OPTGROUP_NONE, /* optinfo_flags */
724 true, /* has_gate */
725 true, /* has_execute */
726 TV_IPA_PROFILE, /* tv_id */
727 0, /* properties_required */
728 0, /* properties_provided */
729 0, /* properties_destroyed */
730 0, /* todo_flags_start */
731 0, /* todo_flags_finish */
734 class pass_ipa_profile : public ipa_opt_pass_d
736 public:
737 pass_ipa_profile (gcc::context *ctxt)
738 : ipa_opt_pass_d (pass_data_ipa_profile, ctxt,
739 ipa_profile_generate_summary, /* generate_summary */
740 ipa_profile_write_summary, /* write_summary */
741 ipa_profile_read_summary, /* read_summary */
742 NULL, /* write_optimization_summary */
743 NULL, /* read_optimization_summary */
744 NULL, /* stmt_fixup */
745 0, /* function_transform_todo_flags_start */
746 NULL, /* function_transform */
747 NULL) /* variable_transform */
750 /* opt_pass methods: */
751 bool gate () { return gate_ipa_profile (); }
752 unsigned int execute () { return ipa_profile (); }
754 }; // class pass_ipa_profile
756 } // anon namespace
758 ipa_opt_pass_d *
759 make_pass_ipa_profile (gcc::context *ctxt)
761 return new pass_ipa_profile (ctxt);