* patch up a few backends
[official-gcc.git] / gcc / reg-stack.c
blobb02a0b70c88fb678ea08173167b2322c16331254
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
182 #ifdef STACK_REGS
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
220 EMIT_AFTER,
221 EMIT_BEFORE
224 /* The block we're currently working on. */
225 static basic_block current_block;
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
235 static rtx not_a_num;
237 /* Forward declarations */
239 static int stack_regs_mentioned_p (rtx pat);
240 static void straighten_stack (rtx, stack);
241 static void pop_stack (stack, int);
242 static rtx *get_true_reg (rtx *);
244 static int check_asm_stack_operands (rtx);
245 static int get_asm_operand_n_inputs (rtx);
246 static rtx stack_result (tree);
247 static void replace_reg (rtx *, int);
248 static void remove_regno_note (rtx, enum reg_note, unsigned int);
249 static int get_hard_regnum (stack, rtx);
250 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251 static void emit_swap_insn (rtx, stack, rtx);
252 static void swap_to_top(rtx, stack, rtx, rtx);
253 static bool move_for_stack_reg (rtx, stack, rtx);
254 static int swap_rtx_condition_1 (rtx);
255 static int swap_rtx_condition (rtx);
256 static void compare_for_stack_reg (rtx, stack, rtx);
257 static bool subst_stack_regs_pat (rtx, stack, rtx);
258 static void subst_asm_stack_regs (rtx, stack);
259 static bool subst_stack_regs (rtx, stack);
260 static void change_stack (rtx, stack, stack, enum emit_where);
261 static int convert_regs_entry (void);
262 static void convert_regs_exit (void);
263 static int convert_regs_1 (FILE *, basic_block);
264 static int convert_regs_2 (FILE *, basic_block);
265 static int convert_regs (FILE *);
266 static void print_stack (FILE *, stack);
267 static rtx next_flags_user (rtx);
268 static void record_label_references (rtx, rtx);
269 static bool compensate_edge (edge, FILE *);
271 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
273 static int
274 stack_regs_mentioned_p (rtx pat)
276 const char *fmt;
277 int i;
279 if (STACK_REG_P (pat))
280 return 1;
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
285 if (fmt[i] == 'E')
287 int j;
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
297 return 0;
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
303 stack_regs_mentioned (rtx insn)
305 unsigned int uid, max;
306 int test;
308 if (! INSN_P (insn) || !stack_regs_mentioned_data)
309 return 0;
311 uid = INSN_UID (insn);
312 max = VARRAY_SIZE (stack_regs_mentioned_data);
313 if (uid >= max)
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max = uid + uid / 20;
318 VARRAY_GROW (stack_regs_mentioned_data, max);
321 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
322 if (test == 0)
324 /* This insn has yet to be examined. Do so now. */
325 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
329 return test == 1;
332 static rtx ix86_flags_rtx;
334 static rtx
335 next_flags_user (rtx insn)
337 /* Search forward looking for the first use of this value.
338 Stop at block boundaries. */
340 while (insn != BB_END (current_block))
342 insn = NEXT_INSN (insn);
344 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
345 return insn;
347 if (CALL_P (insn))
348 return NULL_RTX;
350 return NULL_RTX;
353 /* Reorganize the stack into ascending numbers,
354 after this insn. */
356 static void
357 straighten_stack (rtx insn, stack regstack)
359 struct stack_def temp_stack;
360 int top;
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
374 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
377 /* Pop a register from the stack. */
379 static void
380 pop_stack (stack regstack, int regno)
382 int top = regstack->top;
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
401 /* Convert register usage from "flat" register file usage to a "stack
402 register file. FILE is the dump file, if used.
404 Construct a CFG and run life analysis. Then convert each insn one
405 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
406 code duplication created when the converter inserts pop insns on
407 the edges. */
409 bool
410 reg_to_stack (FILE *file)
412 basic_block bb;
413 int i;
414 int max_uid;
416 /* Clean up previous run. */
417 stack_regs_mentioned_data = 0;
419 /* See if there is something to do. Flow analysis is quite
420 expensive so we might save some compilation time. */
421 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
422 if (regs_ever_live[i])
423 break;
424 if (i > LAST_STACK_REG)
425 return false;
427 /* Ok, floating point instructions exist. If not optimizing,
428 build the CFG and run life analysis.
429 Also need to rebuild life when superblock scheduling is done
430 as it don't update liveness yet. */
431 if (!optimize
432 || (flag_sched2_use_superblocks
433 && flag_schedule_insns_after_reload))
435 count_or_remove_death_notes (NULL, 1);
436 life_analysis (file, PROP_DEATH_NOTES);
438 mark_dfs_back_edges ();
440 /* Set up block info for each basic block. */
441 alloc_aux_for_blocks (sizeof (struct block_info_def));
442 FOR_EACH_BB_REVERSE (bb)
444 edge e;
445 unsigned ix;
447 FOR_EACH_EDGE (e, bb->pred, ix)
448 if (!(e->flags & EDGE_DFS_BACK)
449 && e->src != ENTRY_BLOCK_PTR)
450 BLOCK_INFO (bb)->predecessors++;
453 /* Create the replacement registers up front. */
454 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
456 enum machine_mode mode;
457 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
458 mode != VOIDmode;
459 mode = GET_MODE_WIDER_MODE (mode))
460 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
461 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
462 mode != VOIDmode;
463 mode = GET_MODE_WIDER_MODE (mode))
464 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
467 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
469 /* A QNaN for initializing uninitialized variables.
471 ??? We can't load from constant memory in PIC mode, because
472 we're inserting these instructions before the prologue and
473 the PIC register hasn't been set up. In that case, fall back
474 on zero, which we can get from `ldz'. */
476 if (flag_pic)
477 not_a_num = CONST0_RTX (SFmode);
478 else
480 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
481 not_a_num = force_const_mem (SFmode, not_a_num);
484 /* Allocate a cache for stack_regs_mentioned. */
485 max_uid = get_max_uid ();
486 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
487 "stack_regs_mentioned cache");
489 convert_regs (file);
491 free_aux_for_blocks ();
492 return true;
495 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
496 label's chain of references, and note which insn contains each
497 reference. */
499 static void
500 record_label_references (rtx insn, rtx pat)
502 enum rtx_code code = GET_CODE (pat);
503 int i;
504 const char *fmt;
506 if (code == LABEL_REF)
508 rtx label = XEXP (pat, 0);
509 rtx ref;
511 if (!LABEL_P (label))
512 abort ();
514 /* If this is an undefined label, LABEL_REFS (label) contains
515 garbage. */
516 if (INSN_UID (label) == 0)
517 return;
519 /* Don't make a duplicate in the code_label's chain. */
521 for (ref = LABEL_REFS (label);
522 ref && ref != label;
523 ref = LABEL_NEXTREF (ref))
524 if (CONTAINING_INSN (ref) == insn)
525 return;
527 CONTAINING_INSN (pat) = insn;
528 LABEL_NEXTREF (pat) = LABEL_REFS (label);
529 LABEL_REFS (label) = pat;
531 return;
534 fmt = GET_RTX_FORMAT (code);
535 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
537 if (fmt[i] == 'e')
538 record_label_references (insn, XEXP (pat, i));
539 if (fmt[i] == 'E')
541 int j;
542 for (j = 0; j < XVECLEN (pat, i); j++)
543 record_label_references (insn, XVECEXP (pat, i, j));
548 /* Return a pointer to the REG expression within PAT. If PAT is not a
549 REG, possible enclosed by a conversion rtx, return the inner part of
550 PAT that stopped the search. */
552 static rtx *
553 get_true_reg (rtx *pat)
555 for (;;)
556 switch (GET_CODE (*pat))
558 case SUBREG:
559 /* Eliminate FP subregister accesses in favor of the
560 actual FP register in use. */
562 rtx subreg;
563 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
565 int regno_off = subreg_regno_offset (REGNO (subreg),
566 GET_MODE (subreg),
567 SUBREG_BYTE (*pat),
568 GET_MODE (*pat));
569 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
570 GET_MODE (subreg));
571 default:
572 return pat;
575 case FLOAT:
576 case FIX:
577 case FLOAT_EXTEND:
578 pat = & XEXP (*pat, 0);
579 break;
581 case FLOAT_TRUNCATE:
582 if (!flag_unsafe_math_optimizations)
583 return pat;
584 pat = & XEXP (*pat, 0);
585 break;
589 /* Set if we find any malformed asms in a block. */
590 static bool any_malformed_asm;
592 /* There are many rules that an asm statement for stack-like regs must
593 follow. Those rules are explained at the top of this file: the rule
594 numbers below refer to that explanation. */
596 static int
597 check_asm_stack_operands (rtx insn)
599 int i;
600 int n_clobbers;
601 int malformed_asm = 0;
602 rtx body = PATTERN (insn);
604 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
605 char implicitly_dies[FIRST_PSEUDO_REGISTER];
606 int alt;
608 rtx *clobber_reg = 0;
609 int n_inputs, n_outputs;
611 /* Find out what the constraints require. If no constraint
612 alternative matches, this asm is malformed. */
613 extract_insn (insn);
614 constrain_operands (1);
615 alt = which_alternative;
617 preprocess_constraints ();
619 n_inputs = get_asm_operand_n_inputs (body);
620 n_outputs = recog_data.n_operands - n_inputs;
622 if (alt < 0)
624 malformed_asm = 1;
625 /* Avoid further trouble with this insn. */
626 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
627 return 0;
630 /* Strip SUBREGs here to make the following code simpler. */
631 for (i = 0; i < recog_data.n_operands; i++)
632 if (GET_CODE (recog_data.operand[i]) == SUBREG
633 && REG_P (SUBREG_REG (recog_data.operand[i])))
634 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
636 /* Set up CLOBBER_REG. */
638 n_clobbers = 0;
640 if (GET_CODE (body) == PARALLEL)
642 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
644 for (i = 0; i < XVECLEN (body, 0); i++)
645 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
647 rtx clobber = XVECEXP (body, 0, i);
648 rtx reg = XEXP (clobber, 0);
650 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
651 reg = SUBREG_REG (reg);
653 if (STACK_REG_P (reg))
655 clobber_reg[n_clobbers] = reg;
656 n_clobbers++;
661 /* Enforce rule #4: Output operands must specifically indicate which
662 reg an output appears in after an asm. "=f" is not allowed: the
663 operand constraints must select a class with a single reg.
665 Also enforce rule #5: Output operands must start at the top of
666 the reg-stack: output operands may not "skip" a reg. */
668 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
669 for (i = 0; i < n_outputs; i++)
670 if (STACK_REG_P (recog_data.operand[i]))
672 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
674 error_for_asm (insn, "output constraint %d must specify a single register", i);
675 malformed_asm = 1;
677 else
679 int j;
681 for (j = 0; j < n_clobbers; j++)
682 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
684 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
685 i, reg_names [REGNO (clobber_reg[j])]);
686 malformed_asm = 1;
687 break;
689 if (j == n_clobbers)
690 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
695 /* Search for first non-popped reg. */
696 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
697 if (! reg_used_as_output[i])
698 break;
700 /* If there are any other popped regs, that's an error. */
701 for (; i < LAST_STACK_REG + 1; i++)
702 if (reg_used_as_output[i])
703 break;
705 if (i != LAST_STACK_REG + 1)
707 error_for_asm (insn, "output regs must be grouped at top of stack");
708 malformed_asm = 1;
711 /* Enforce rule #2: All implicitly popped input regs must be closer
712 to the top of the reg-stack than any input that is not implicitly
713 popped. */
715 memset (implicitly_dies, 0, sizeof (implicitly_dies));
716 for (i = n_outputs; i < n_outputs + n_inputs; i++)
717 if (STACK_REG_P (recog_data.operand[i]))
719 /* An input reg is implicitly popped if it is tied to an
720 output, or if there is a CLOBBER for it. */
721 int j;
723 for (j = 0; j < n_clobbers; j++)
724 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
725 break;
727 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
728 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
731 /* Search for first non-popped reg. */
732 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
733 if (! implicitly_dies[i])
734 break;
736 /* If there are any other popped regs, that's an error. */
737 for (; i < LAST_STACK_REG + 1; i++)
738 if (implicitly_dies[i])
739 break;
741 if (i != LAST_STACK_REG + 1)
743 error_for_asm (insn,
744 "implicitly popped regs must be grouped at top of stack");
745 malformed_asm = 1;
748 /* Enforce rule #3: If any input operand uses the "f" constraint, all
749 output constraints must use the "&" earlyclobber.
751 ??? Detect this more deterministically by having constrain_asm_operands
752 record any earlyclobber. */
754 for (i = n_outputs; i < n_outputs + n_inputs; i++)
755 if (recog_op_alt[i][alt].matches == -1)
757 int j;
759 for (j = 0; j < n_outputs; j++)
760 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
762 error_for_asm (insn,
763 "output operand %d must use `&' constraint", j);
764 malformed_asm = 1;
768 if (malformed_asm)
770 /* Avoid further trouble with this insn. */
771 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
772 any_malformed_asm = true;
773 return 0;
776 return 1;
779 /* Calculate the number of inputs and outputs in BODY, an
780 asm_operands. N_OPERANDS is the total number of operands, and
781 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
782 placed. */
784 static int
785 get_asm_operand_n_inputs (rtx body)
787 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
788 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
790 else if (GET_CODE (body) == ASM_OPERANDS)
791 return ASM_OPERANDS_INPUT_LENGTH (body);
793 else if (GET_CODE (body) == PARALLEL
794 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
795 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
797 else if (GET_CODE (body) == PARALLEL
798 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
799 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
801 abort ();
804 /* If current function returns its result in an fp stack register,
805 return the REG. Otherwise, return 0. */
807 static rtx
808 stack_result (tree decl)
810 rtx result;
812 /* If the value is supposed to be returned in memory, then clearly
813 it is not returned in a stack register. */
814 if (aggregate_value_p (DECL_RESULT (decl), decl))
815 return 0;
817 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
818 if (result != 0)
820 #ifdef FUNCTION_OUTGOING_VALUE
821 result
822 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
823 #else
824 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
825 #endif
828 return result != 0 && STACK_REG_P (result) ? result : 0;
833 * This section deals with stack register substitution, and forms the second
834 * pass over the RTL.
837 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
838 the desired hard REGNO. */
840 static void
841 replace_reg (rtx *reg, int regno)
843 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
844 || ! STACK_REG_P (*reg))
845 abort ();
847 switch (GET_MODE_CLASS (GET_MODE (*reg)))
849 default: abort ();
850 case MODE_FLOAT:
851 case MODE_COMPLEX_FLOAT:;
854 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
857 /* Remove a note of type NOTE, which must be found, for register
858 number REGNO from INSN. Remove only one such note. */
860 static void
861 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
863 rtx *note_link, this;
865 note_link = &REG_NOTES (insn);
866 for (this = *note_link; this; this = XEXP (this, 1))
867 if (REG_NOTE_KIND (this) == note
868 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
870 *note_link = XEXP (this, 1);
871 return;
873 else
874 note_link = &XEXP (this, 1);
876 abort ();
879 /* Find the hard register number of virtual register REG in REGSTACK.
880 The hard register number is relative to the top of the stack. -1 is
881 returned if the register is not found. */
883 static int
884 get_hard_regnum (stack regstack, rtx reg)
886 int i;
888 if (! STACK_REG_P (reg))
889 abort ();
891 for (i = regstack->top; i >= 0; i--)
892 if (regstack->reg[i] == REGNO (reg))
893 break;
895 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
898 /* Emit an insn to pop virtual register REG before or after INSN.
899 REGSTACK is the stack state after INSN and is updated to reflect this
900 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
901 is represented as a SET whose destination is the register to be popped
902 and source is the top of stack. A death note for the top of stack
903 cases the movdf pattern to pop. */
905 static rtx
906 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
908 rtx pop_insn, pop_rtx;
909 int hard_regno;
911 /* For complex types take care to pop both halves. These may survive in
912 CLOBBER and USE expressions. */
913 if (COMPLEX_MODE_P (GET_MODE (reg)))
915 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
916 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
918 pop_insn = NULL_RTX;
919 if (get_hard_regnum (regstack, reg1) >= 0)
920 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
921 if (get_hard_regnum (regstack, reg2) >= 0)
922 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
923 if (!pop_insn)
924 abort ();
925 return pop_insn;
928 hard_regno = get_hard_regnum (regstack, reg);
930 if (hard_regno < FIRST_STACK_REG)
931 abort ();
933 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
934 FP_MODE_REG (FIRST_STACK_REG, DFmode));
936 if (where == EMIT_AFTER)
937 pop_insn = emit_insn_after (pop_rtx, insn);
938 else
939 pop_insn = emit_insn_before (pop_rtx, insn);
941 REG_NOTES (pop_insn)
942 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
943 REG_NOTES (pop_insn));
945 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
946 = regstack->reg[regstack->top];
947 regstack->top -= 1;
948 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
950 return pop_insn;
953 /* Emit an insn before or after INSN to swap virtual register REG with
954 the top of stack. REGSTACK is the stack state before the swap, and
955 is updated to reflect the swap. A swap insn is represented as a
956 PARALLEL of two patterns: each pattern moves one reg to the other.
958 If REG is already at the top of the stack, no insn is emitted. */
960 static void
961 emit_swap_insn (rtx insn, stack regstack, rtx reg)
963 int hard_regno;
964 rtx swap_rtx;
965 int tmp, other_reg; /* swap regno temps */
966 rtx i1; /* the stack-reg insn prior to INSN */
967 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
969 hard_regno = get_hard_regnum (regstack, reg);
971 if (hard_regno < FIRST_STACK_REG)
972 abort ();
973 if (hard_regno == FIRST_STACK_REG)
974 return;
976 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
978 tmp = regstack->reg[other_reg];
979 regstack->reg[other_reg] = regstack->reg[regstack->top];
980 regstack->reg[regstack->top] = tmp;
982 /* Find the previous insn involving stack regs, but don't pass a
983 block boundary. */
984 i1 = NULL;
985 if (current_block && insn != BB_HEAD (current_block))
987 rtx tmp = PREV_INSN (insn);
988 rtx limit = PREV_INSN (BB_HEAD (current_block));
989 while (tmp != limit)
991 if (LABEL_P (tmp)
992 || CALL_P (tmp)
993 || NOTE_INSN_BASIC_BLOCK_P (tmp)
994 || (NONJUMP_INSN_P (tmp)
995 && stack_regs_mentioned (tmp)))
997 i1 = tmp;
998 break;
1000 tmp = PREV_INSN (tmp);
1004 if (i1 != NULL_RTX
1005 && (i1set = single_set (i1)) != NULL_RTX)
1007 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1008 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1010 /* If the previous register stack push was from the reg we are to
1011 swap with, omit the swap. */
1013 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
1014 && REG_P (i1src)
1015 && REGNO (i1src) == (unsigned) hard_regno - 1
1016 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1017 return;
1019 /* If the previous insn wrote to the reg we are to swap with,
1020 omit the swap. */
1022 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
1023 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
1024 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1025 return;
1028 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1029 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1031 if (i1)
1032 emit_insn_after (swap_rtx, i1);
1033 else if (current_block)
1034 emit_insn_before (swap_rtx, BB_HEAD (current_block));
1035 else
1036 emit_insn_before (swap_rtx, insn);
1039 /* Emit an insns before INSN to swap virtual register SRC1 with
1040 the top of stack and virtual register SRC2 with second stack
1041 slot. REGSTACK is the stack state before the swaps, and
1042 is updated to reflect the swaps. A swap insn is represented as a
1043 PARALLEL of two patterns: each pattern moves one reg to the other.
1045 If SRC1 and/or SRC2 are already at the right place, no swap insn
1046 is emitted. */
1048 static void
1049 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
1051 struct stack_def temp_stack;
1052 int regno, j, k, temp;
1054 temp_stack = *regstack;
1056 /* Place operand 1 at the top of stack. */
1057 regno = get_hard_regnum (&temp_stack, src1);
1058 if (regno < 0)
1059 abort ();
1060 if (regno != FIRST_STACK_REG)
1062 k = temp_stack.top - (regno - FIRST_STACK_REG);
1063 j = temp_stack.top;
1065 temp = temp_stack.reg[k];
1066 temp_stack.reg[k] = temp_stack.reg[j];
1067 temp_stack.reg[j] = temp;
1070 /* Place operand 2 next on the stack. */
1071 regno = get_hard_regnum (&temp_stack, src2);
1072 if (regno < 0)
1073 abort ();
1074 if (regno != FIRST_STACK_REG + 1)
1076 k = temp_stack.top - (regno - FIRST_STACK_REG);
1077 j = temp_stack.top - 1;
1079 temp = temp_stack.reg[k];
1080 temp_stack.reg[k] = temp_stack.reg[j];
1081 temp_stack.reg[j] = temp;
1084 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1087 /* Handle a move to or from a stack register in PAT, which is in INSN.
1088 REGSTACK is the current stack. Return whether a control flow insn
1089 was deleted in the process. */
1091 static bool
1092 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
1094 rtx *psrc = get_true_reg (&SET_SRC (pat));
1095 rtx *pdest = get_true_reg (&SET_DEST (pat));
1096 rtx src, dest;
1097 rtx note;
1098 bool control_flow_insn_deleted = false;
1100 src = *psrc; dest = *pdest;
1102 if (STACK_REG_P (src) && STACK_REG_P (dest))
1104 /* Write from one stack reg to another. If SRC dies here, then
1105 just change the register mapping and delete the insn. */
1107 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1108 if (note)
1110 int i;
1112 /* If this is a no-op move, there must not be a REG_DEAD note. */
1113 if (REGNO (src) == REGNO (dest))
1114 abort ();
1116 for (i = regstack->top; i >= 0; i--)
1117 if (regstack->reg[i] == REGNO (src))
1118 break;
1120 /* The source must be live, and the dest must be dead. */
1121 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1122 abort ();
1124 /* It is possible that the dest is unused after this insn.
1125 If so, just pop the src. */
1127 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1128 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1129 else
1131 regstack->reg[i] = REGNO (dest);
1132 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1133 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1136 control_flow_insn_deleted |= control_flow_insn_p (insn);
1137 delete_insn (insn);
1138 return control_flow_insn_deleted;
1141 /* The source reg does not die. */
1143 /* If this appears to be a no-op move, delete it, or else it
1144 will confuse the machine description output patterns. But if
1145 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1146 for REG_UNUSED will not work for deleted insns. */
1148 if (REGNO (src) == REGNO (dest))
1150 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1151 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1153 control_flow_insn_deleted |= control_flow_insn_p (insn);
1154 delete_insn (insn);
1155 return control_flow_insn_deleted;
1158 /* The destination ought to be dead. */
1159 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1160 abort ();
1162 replace_reg (psrc, get_hard_regnum (regstack, src));
1164 regstack->reg[++regstack->top] = REGNO (dest);
1165 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1166 replace_reg (pdest, FIRST_STACK_REG);
1168 else if (STACK_REG_P (src))
1170 /* Save from a stack reg to MEM, or possibly integer reg. Since
1171 only top of stack may be saved, emit an exchange first if
1172 needs be. */
1174 emit_swap_insn (insn, regstack, src);
1176 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1177 if (note)
1179 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1180 regstack->top--;
1181 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1183 else if ((GET_MODE (src) == XFmode)
1184 && regstack->top < REG_STACK_SIZE - 1)
1186 /* A 387 cannot write an XFmode value to a MEM without
1187 clobbering the source reg. The output code can handle
1188 this by reading back the value from the MEM.
1189 But it is more efficient to use a temp register if one is
1190 available. Push the source value here if the register
1191 stack is not full, and then write the value to memory via
1192 a pop. */
1193 rtx push_rtx, push_insn;
1194 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1196 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1197 push_insn = emit_insn_before (push_rtx, insn);
1198 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1199 REG_NOTES (insn));
1202 replace_reg (psrc, FIRST_STACK_REG);
1204 else if (STACK_REG_P (dest))
1206 /* Load from MEM, or possibly integer REG or constant, into the
1207 stack regs. The actual target is always the top of the
1208 stack. The stack mapping is changed to reflect that DEST is
1209 now at top of stack. */
1211 /* The destination ought to be dead. */
1212 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1213 abort ();
1215 if (regstack->top >= REG_STACK_SIZE)
1216 abort ();
1218 regstack->reg[++regstack->top] = REGNO (dest);
1219 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1220 replace_reg (pdest, FIRST_STACK_REG);
1222 else
1223 abort ();
1225 return control_flow_insn_deleted;
1228 /* Swap the condition on a branch, if there is one. Return true if we
1229 found a condition to swap. False if the condition was not used as
1230 such. */
1232 static int
1233 swap_rtx_condition_1 (rtx pat)
1235 const char *fmt;
1236 int i, r = 0;
1238 if (COMPARISON_P (pat))
1240 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1241 r = 1;
1243 else
1245 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1246 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1248 if (fmt[i] == 'E')
1250 int j;
1252 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1253 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1255 else if (fmt[i] == 'e')
1256 r |= swap_rtx_condition_1 (XEXP (pat, i));
1260 return r;
1263 static int
1264 swap_rtx_condition (rtx insn)
1266 rtx pat = PATTERN (insn);
1268 /* We're looking for a single set to cc0 or an HImode temporary. */
1270 if (GET_CODE (pat) == SET
1271 && REG_P (SET_DEST (pat))
1272 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1274 insn = next_flags_user (insn);
1275 if (insn == NULL_RTX)
1276 return 0;
1277 pat = PATTERN (insn);
1280 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1281 not doing anything with the cc value right now. We may be able to
1282 search for one though. */
1284 if (GET_CODE (pat) == SET
1285 && GET_CODE (SET_SRC (pat)) == UNSPEC
1286 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1288 rtx dest = SET_DEST (pat);
1290 /* Search forward looking for the first use of this value.
1291 Stop at block boundaries. */
1292 while (insn != BB_END (current_block))
1294 insn = NEXT_INSN (insn);
1295 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1296 break;
1297 if (CALL_P (insn))
1298 return 0;
1301 /* So we've found the insn using this value. If it is anything
1302 other than sahf, aka unspec 10, or the value does not die
1303 (meaning we'd have to search further), then we must give up. */
1304 pat = PATTERN (insn);
1305 if (GET_CODE (pat) != SET
1306 || GET_CODE (SET_SRC (pat)) != UNSPEC
1307 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1308 || ! dead_or_set_p (insn, dest))
1309 return 0;
1311 /* Now we are prepared to handle this as a normal cc0 setter. */
1312 insn = next_flags_user (insn);
1313 if (insn == NULL_RTX)
1314 return 0;
1315 pat = PATTERN (insn);
1318 if (swap_rtx_condition_1 (pat))
1320 int fail = 0;
1321 INSN_CODE (insn) = -1;
1322 if (recog_memoized (insn) == -1)
1323 fail = 1;
1324 /* In case the flags don't die here, recurse to try fix
1325 following user too. */
1326 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1328 insn = next_flags_user (insn);
1329 if (!insn || !swap_rtx_condition (insn))
1330 fail = 1;
1332 if (fail)
1334 swap_rtx_condition_1 (pat);
1335 return 0;
1337 return 1;
1339 return 0;
1342 /* Handle a comparison. Special care needs to be taken to avoid
1343 causing comparisons that a 387 cannot do correctly, such as EQ.
1345 Also, a pop insn may need to be emitted. The 387 does have an
1346 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1347 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1348 set up. */
1350 static void
1351 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1353 rtx *src1, *src2;
1354 rtx src1_note, src2_note;
1355 rtx flags_user;
1357 src1 = get_true_reg (&XEXP (pat_src, 0));
1358 src2 = get_true_reg (&XEXP (pat_src, 1));
1359 flags_user = next_flags_user (insn);
1361 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1362 registers that die in this insn - move those to stack top first. */
1363 if ((! STACK_REG_P (*src1)
1364 || (STACK_REG_P (*src2)
1365 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1366 && swap_rtx_condition (insn))
1368 rtx temp;
1369 temp = XEXP (pat_src, 0);
1370 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1371 XEXP (pat_src, 1) = temp;
1373 src1 = get_true_reg (&XEXP (pat_src, 0));
1374 src2 = get_true_reg (&XEXP (pat_src, 1));
1376 INSN_CODE (insn) = -1;
1379 /* We will fix any death note later. */
1381 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1383 if (STACK_REG_P (*src2))
1384 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1385 else
1386 src2_note = NULL_RTX;
1388 emit_swap_insn (insn, regstack, *src1);
1390 replace_reg (src1, FIRST_STACK_REG);
1392 if (STACK_REG_P (*src2))
1393 replace_reg (src2, get_hard_regnum (regstack, *src2));
1395 if (src1_note)
1397 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1398 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1401 /* If the second operand dies, handle that. But if the operands are
1402 the same stack register, don't bother, because only one death is
1403 needed, and it was just handled. */
1405 if (src2_note
1406 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1407 && REGNO (*src1) == REGNO (*src2)))
1409 /* As a special case, two regs may die in this insn if src2 is
1410 next to top of stack and the top of stack also dies. Since
1411 we have already popped src1, "next to top of stack" is really
1412 at top (FIRST_STACK_REG) now. */
1414 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1415 && src1_note)
1417 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1418 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1420 else
1422 /* The 386 can only represent death of the first operand in
1423 the case handled above. In all other cases, emit a separate
1424 pop and remove the death note from here. */
1426 /* link_cc0_insns (insn); */
1428 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1430 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1431 EMIT_AFTER);
1436 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1437 is the current register layout. Return whether a control flow insn
1438 was deleted in the process. */
1440 static bool
1441 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1443 rtx *dest, *src;
1444 bool control_flow_insn_deleted = false;
1446 switch (GET_CODE (pat))
1448 case USE:
1449 /* Deaths in USE insns can happen in non optimizing compilation.
1450 Handle them by popping the dying register. */
1451 src = get_true_reg (&XEXP (pat, 0));
1452 if (STACK_REG_P (*src)
1453 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1455 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1456 return control_flow_insn_deleted;
1458 /* ??? Uninitialized USE should not happen. */
1459 else if (get_hard_regnum (regstack, *src) == -1)
1460 abort ();
1461 break;
1463 case CLOBBER:
1465 rtx note;
1467 dest = get_true_reg (&XEXP (pat, 0));
1468 if (STACK_REG_P (*dest))
1470 note = find_reg_note (insn, REG_DEAD, *dest);
1472 if (pat != PATTERN (insn))
1474 /* The fix_truncdi_1 pattern wants to be able to allocate
1475 it's own scratch register. It does this by clobbering
1476 an fp reg so that it is assured of an empty reg-stack
1477 register. If the register is live, kill it now.
1478 Remove the DEAD/UNUSED note so we don't try to kill it
1479 later too. */
1481 if (note)
1482 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1483 else
1485 note = find_reg_note (insn, REG_UNUSED, *dest);
1486 if (!note)
1487 abort ();
1489 remove_note (insn, note);
1490 replace_reg (dest, FIRST_STACK_REG + 1);
1492 else
1494 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1495 indicates an uninitialized value. Because reload removed
1496 all other clobbers, this must be due to a function
1497 returning without a value. Load up a NaN. */
1499 if (! note
1500 && get_hard_regnum (regstack, *dest) == -1)
1502 pat = gen_rtx_SET (VOIDmode,
1503 FP_MODE_REG (REGNO (*dest), SFmode),
1504 not_a_num);
1505 PATTERN (insn) = pat;
1506 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1508 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1509 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1511 pat = gen_rtx_SET (VOIDmode,
1512 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1513 not_a_num);
1514 PATTERN (insn) = pat;
1515 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1519 break;
1522 case SET:
1524 rtx *src1 = (rtx *) 0, *src2;
1525 rtx src1_note, src2_note;
1526 rtx pat_src;
1528 dest = get_true_reg (&SET_DEST (pat));
1529 src = get_true_reg (&SET_SRC (pat));
1530 pat_src = SET_SRC (pat);
1532 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1533 if (STACK_REG_P (*src)
1534 || (STACK_REG_P (*dest)
1535 && (REG_P (*src) || MEM_P (*src)
1536 || GET_CODE (*src) == CONST_DOUBLE)))
1538 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1539 break;
1542 switch (GET_CODE (pat_src))
1544 case COMPARE:
1545 compare_for_stack_reg (insn, regstack, pat_src);
1546 break;
1548 case CALL:
1550 int count;
1551 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1552 --count >= 0;)
1554 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1555 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1558 replace_reg (dest, FIRST_STACK_REG);
1559 break;
1561 case REG:
1562 /* This is a `tstM2' case. */
1563 if (*dest != cc0_rtx)
1564 abort ();
1565 src1 = src;
1567 /* Fall through. */
1569 case FLOAT_TRUNCATE:
1570 case SQRT:
1571 case ABS:
1572 case NEG:
1573 /* These insns only operate on the top of the stack. DEST might
1574 be cc0_rtx if we're processing a tstM pattern. Also, it's
1575 possible that the tstM case results in a REG_DEAD note on the
1576 source. */
1578 if (src1 == 0)
1579 src1 = get_true_reg (&XEXP (pat_src, 0));
1581 emit_swap_insn (insn, regstack, *src1);
1583 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1585 if (STACK_REG_P (*dest))
1586 replace_reg (dest, FIRST_STACK_REG);
1588 if (src1_note)
1590 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1591 regstack->top--;
1592 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1595 replace_reg (src1, FIRST_STACK_REG);
1596 break;
1598 case MINUS:
1599 case DIV:
1600 /* On i386, reversed forms of subM3 and divM3 exist for
1601 MODE_FLOAT, so the same code that works for addM3 and mulM3
1602 can be used. */
1603 case MULT:
1604 case PLUS:
1605 /* These insns can accept the top of stack as a destination
1606 from a stack reg or mem, or can use the top of stack as a
1607 source and some other stack register (possibly top of stack)
1608 as a destination. */
1610 src1 = get_true_reg (&XEXP (pat_src, 0));
1611 src2 = get_true_reg (&XEXP (pat_src, 1));
1613 /* We will fix any death note later. */
1615 if (STACK_REG_P (*src1))
1616 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1617 else
1618 src1_note = NULL_RTX;
1619 if (STACK_REG_P (*src2))
1620 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1621 else
1622 src2_note = NULL_RTX;
1624 /* If either operand is not a stack register, then the dest
1625 must be top of stack. */
1627 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1628 emit_swap_insn (insn, regstack, *dest);
1629 else
1631 /* Both operands are REG. If neither operand is already
1632 at the top of stack, choose to make the one that is the dest
1633 the new top of stack. */
1635 int src1_hard_regnum, src2_hard_regnum;
1637 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1638 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1639 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1640 abort ();
1642 if (src1_hard_regnum != FIRST_STACK_REG
1643 && src2_hard_regnum != FIRST_STACK_REG)
1644 emit_swap_insn (insn, regstack, *dest);
1647 if (STACK_REG_P (*src1))
1648 replace_reg (src1, get_hard_regnum (regstack, *src1));
1649 if (STACK_REG_P (*src2))
1650 replace_reg (src2, get_hard_regnum (regstack, *src2));
1652 if (src1_note)
1654 rtx src1_reg = XEXP (src1_note, 0);
1656 /* If the register that dies is at the top of stack, then
1657 the destination is somewhere else - merely substitute it.
1658 But if the reg that dies is not at top of stack, then
1659 move the top of stack to the dead reg, as though we had
1660 done the insn and then a store-with-pop. */
1662 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1664 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1665 replace_reg (dest, get_hard_regnum (regstack, *dest));
1667 else
1669 int regno = get_hard_regnum (regstack, src1_reg);
1671 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1672 replace_reg (dest, regno);
1674 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1675 = regstack->reg[regstack->top];
1678 CLEAR_HARD_REG_BIT (regstack->reg_set,
1679 REGNO (XEXP (src1_note, 0)));
1680 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1681 regstack->top--;
1683 else if (src2_note)
1685 rtx src2_reg = XEXP (src2_note, 0);
1686 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1688 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1689 replace_reg (dest, get_hard_regnum (regstack, *dest));
1691 else
1693 int regno = get_hard_regnum (regstack, src2_reg);
1695 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1696 replace_reg (dest, regno);
1698 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1699 = regstack->reg[regstack->top];
1702 CLEAR_HARD_REG_BIT (regstack->reg_set,
1703 REGNO (XEXP (src2_note, 0)));
1704 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1705 regstack->top--;
1707 else
1709 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1710 replace_reg (dest, get_hard_regnum (regstack, *dest));
1713 /* Keep operand 1 matching with destination. */
1714 if (COMMUTATIVE_ARITH_P (pat_src)
1715 && REG_P (*src1) && REG_P (*src2)
1716 && REGNO (*src1) != REGNO (*dest))
1718 int tmp = REGNO (*src1);
1719 replace_reg (src1, REGNO (*src2));
1720 replace_reg (src2, tmp);
1722 break;
1724 case UNSPEC:
1725 switch (XINT (pat_src, 1))
1727 case UNSPEC_SIN:
1728 case UNSPEC_COS:
1729 case UNSPEC_FRNDINT:
1730 case UNSPEC_F2XM1:
1731 /* These insns only operate on the top of the stack. */
1733 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1735 emit_swap_insn (insn, regstack, *src1);
1737 /* Input should never die, it is
1738 replaced with output. */
1739 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1740 if (src1_note)
1741 abort();
1743 if (STACK_REG_P (*dest))
1744 replace_reg (dest, FIRST_STACK_REG);
1746 replace_reg (src1, FIRST_STACK_REG);
1747 break;
1749 case UNSPEC_FPATAN:
1750 case UNSPEC_FYL2X:
1751 case UNSPEC_FYL2XP1:
1752 /* These insns operate on the top two stack slots. */
1754 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1755 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1757 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1758 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1760 swap_to_top (insn, regstack, *src1, *src2);
1762 replace_reg (src1, FIRST_STACK_REG);
1763 replace_reg (src2, FIRST_STACK_REG + 1);
1765 if (src1_note)
1766 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1767 if (src2_note)
1768 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1770 /* Pop both input operands from the stack. */
1771 CLEAR_HARD_REG_BIT (regstack->reg_set,
1772 regstack->reg[regstack->top]);
1773 CLEAR_HARD_REG_BIT (regstack->reg_set,
1774 regstack->reg[regstack->top - 1]);
1775 regstack->top -= 2;
1777 /* Push the result back onto the stack. */
1778 regstack->reg[++regstack->top] = REGNO (*dest);
1779 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1780 replace_reg (dest, FIRST_STACK_REG);
1781 break;
1783 case UNSPEC_FSCALE_FRACT:
1784 case UNSPEC_FPREM_F:
1785 case UNSPEC_FPREM1_F:
1786 /* These insns operate on the top two stack slots.
1787 first part of double input, double output insn. */
1789 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1790 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1792 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1793 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1795 /* Inputs should never die, they are
1796 replaced with outputs. */
1797 if ((src1_note) || (src2_note))
1798 abort();
1800 swap_to_top (insn, regstack, *src1, *src2);
1802 /* Push the result back onto stack. Empty stack slot
1803 will be filled in second part of insn. */
1804 if (STACK_REG_P (*dest)) {
1805 regstack->reg[regstack->top] = REGNO (*dest);
1806 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1807 replace_reg (dest, FIRST_STACK_REG);
1810 replace_reg (src1, FIRST_STACK_REG);
1811 replace_reg (src2, FIRST_STACK_REG + 1);
1812 break;
1814 case UNSPEC_FSCALE_EXP:
1815 case UNSPEC_FPREM_U:
1816 case UNSPEC_FPREM1_U:
1817 /* These insns operate on the top two stack slots./
1818 second part of double input, double output insn. */
1820 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1821 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1823 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1824 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1826 /* Inputs should never die, they are
1827 replaced with outputs. */
1828 if ((src1_note) || (src2_note))
1829 abort();
1831 swap_to_top (insn, regstack, *src1, *src2);
1833 /* Push the result back onto stack. Fill empty slot from
1834 first part of insn and fix top of stack pointer. */
1835 if (STACK_REG_P (*dest)) {
1836 regstack->reg[regstack->top - 1] = REGNO (*dest);
1837 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1838 replace_reg (dest, FIRST_STACK_REG + 1);
1841 replace_reg (src1, FIRST_STACK_REG);
1842 replace_reg (src2, FIRST_STACK_REG + 1);
1843 break;
1845 case UNSPEC_SINCOS_COS:
1846 case UNSPEC_TAN_ONE:
1847 case UNSPEC_XTRACT_FRACT:
1848 /* These insns operate on the top two stack slots,
1849 first part of one input, double output insn. */
1851 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1853 emit_swap_insn (insn, regstack, *src1);
1855 /* Input should never die, it is
1856 replaced with output. */
1857 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1858 if (src1_note)
1859 abort();
1861 /* Push the result back onto stack. Empty stack slot
1862 will be filled in second part of insn. */
1863 if (STACK_REG_P (*dest)) {
1864 regstack->reg[regstack->top + 1] = REGNO (*dest);
1865 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1866 replace_reg (dest, FIRST_STACK_REG);
1869 replace_reg (src1, FIRST_STACK_REG);
1870 break;
1872 case UNSPEC_SINCOS_SIN:
1873 case UNSPEC_TAN_TAN:
1874 case UNSPEC_XTRACT_EXP:
1875 /* These insns operate on the top two stack slots,
1876 second part of one input, double output insn. */
1878 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1880 emit_swap_insn (insn, regstack, *src1);
1882 /* Input should never die, it is
1883 replaced with output. */
1884 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1885 if (src1_note)
1886 abort();
1888 /* Push the result back onto stack. Fill empty slot from
1889 first part of insn and fix top of stack pointer. */
1890 if (STACK_REG_P (*dest)) {
1891 regstack->reg[regstack->top] = REGNO (*dest);
1892 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1893 replace_reg (dest, FIRST_STACK_REG + 1);
1895 regstack->top++;
1898 replace_reg (src1, FIRST_STACK_REG);
1899 break;
1901 case UNSPEC_SAHF:
1902 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1903 The combination matches the PPRO fcomi instruction. */
1905 pat_src = XVECEXP (pat_src, 0, 0);
1906 if (GET_CODE (pat_src) != UNSPEC
1907 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1908 abort ();
1909 /* Fall through. */
1911 case UNSPEC_FNSTSW:
1912 /* Combined fcomp+fnstsw generated for doing well with
1913 CSE. When optimizing this would have been broken
1914 up before now. */
1916 pat_src = XVECEXP (pat_src, 0, 0);
1917 if (GET_CODE (pat_src) != COMPARE)
1918 abort ();
1920 compare_for_stack_reg (insn, regstack, pat_src);
1921 break;
1923 default:
1924 abort ();
1926 break;
1928 case IF_THEN_ELSE:
1929 /* This insn requires the top of stack to be the destination. */
1931 src1 = get_true_reg (&XEXP (pat_src, 1));
1932 src2 = get_true_reg (&XEXP (pat_src, 2));
1934 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1935 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1937 /* If the comparison operator is an FP comparison operator,
1938 it is handled correctly by compare_for_stack_reg () who
1939 will move the destination to the top of stack. But if the
1940 comparison operator is not an FP comparison operator, we
1941 have to handle it here. */
1942 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1943 && REGNO (*dest) != regstack->reg[regstack->top])
1945 /* In case one of operands is the top of stack and the operands
1946 dies, it is safe to make it the destination operand by
1947 reversing the direction of cmove and avoid fxch. */
1948 if ((REGNO (*src1) == regstack->reg[regstack->top]
1949 && src1_note)
1950 || (REGNO (*src2) == regstack->reg[regstack->top]
1951 && src2_note))
1953 int idx1 = (get_hard_regnum (regstack, *src1)
1954 - FIRST_STACK_REG);
1955 int idx2 = (get_hard_regnum (regstack, *src2)
1956 - FIRST_STACK_REG);
1958 /* Make reg-stack believe that the operands are already
1959 swapped on the stack */
1960 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1961 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1963 /* Reverse condition to compensate the operand swap.
1964 i386 do have comparison always reversible. */
1965 PUT_CODE (XEXP (pat_src, 0),
1966 reversed_comparison_code (XEXP (pat_src, 0), insn));
1968 else
1969 emit_swap_insn (insn, regstack, *dest);
1973 rtx src_note [3];
1974 int i;
1976 src_note[0] = 0;
1977 src_note[1] = src1_note;
1978 src_note[2] = src2_note;
1980 if (STACK_REG_P (*src1))
1981 replace_reg (src1, get_hard_regnum (regstack, *src1));
1982 if (STACK_REG_P (*src2))
1983 replace_reg (src2, get_hard_regnum (regstack, *src2));
1985 for (i = 1; i <= 2; i++)
1986 if (src_note [i])
1988 int regno = REGNO (XEXP (src_note[i], 0));
1990 /* If the register that dies is not at the top of
1991 stack, then move the top of stack to the dead reg */
1992 if (regno != regstack->reg[regstack->top])
1994 remove_regno_note (insn, REG_DEAD, regno);
1995 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1996 EMIT_AFTER);
1998 else
1999 /* Top of stack never dies, as it is the
2000 destination. */
2001 abort ();
2005 /* Make dest the top of stack. Add dest to regstack if
2006 not present. */
2007 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2008 regstack->reg[++regstack->top] = REGNO (*dest);
2009 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2010 replace_reg (dest, FIRST_STACK_REG);
2011 break;
2013 default:
2014 abort ();
2016 break;
2019 default:
2020 break;
2023 return control_flow_insn_deleted;
2026 /* Substitute hard regnums for any stack regs in INSN, which has
2027 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2028 before the insn, and is updated with changes made here.
2030 There are several requirements and assumptions about the use of
2031 stack-like regs in asm statements. These rules are enforced by
2032 record_asm_stack_regs; see comments there for details. Any
2033 asm_operands left in the RTL at this point may be assume to meet the
2034 requirements, since record_asm_stack_regs removes any problem asm. */
2036 static void
2037 subst_asm_stack_regs (rtx insn, stack regstack)
2039 rtx body = PATTERN (insn);
2040 int alt;
2042 rtx *note_reg; /* Array of note contents */
2043 rtx **note_loc; /* Address of REG field of each note */
2044 enum reg_note *note_kind; /* The type of each note */
2046 rtx *clobber_reg = 0;
2047 rtx **clobber_loc = 0;
2049 struct stack_def temp_stack;
2050 int n_notes;
2051 int n_clobbers;
2052 rtx note;
2053 int i;
2054 int n_inputs, n_outputs;
2056 if (! check_asm_stack_operands (insn))
2057 return;
2059 /* Find out what the constraints required. If no constraint
2060 alternative matches, that is a compiler bug: we should have caught
2061 such an insn in check_asm_stack_operands. */
2062 extract_insn (insn);
2063 constrain_operands (1);
2064 alt = which_alternative;
2066 preprocess_constraints ();
2068 n_inputs = get_asm_operand_n_inputs (body);
2069 n_outputs = recog_data.n_operands - n_inputs;
2071 if (alt < 0)
2072 abort ();
2074 /* Strip SUBREGs here to make the following code simpler. */
2075 for (i = 0; i < recog_data.n_operands; i++)
2076 if (GET_CODE (recog_data.operand[i]) == SUBREG
2077 && REG_P (SUBREG_REG (recog_data.operand[i])))
2079 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2080 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2083 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2085 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2086 i++;
2088 note_reg = alloca (i * sizeof (rtx));
2089 note_loc = alloca (i * sizeof (rtx *));
2090 note_kind = alloca (i * sizeof (enum reg_note));
2092 n_notes = 0;
2093 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2095 rtx reg = XEXP (note, 0);
2096 rtx *loc = & XEXP (note, 0);
2098 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2100 loc = & SUBREG_REG (reg);
2101 reg = SUBREG_REG (reg);
2104 if (STACK_REG_P (reg)
2105 && (REG_NOTE_KIND (note) == REG_DEAD
2106 || REG_NOTE_KIND (note) == REG_UNUSED))
2108 note_reg[n_notes] = reg;
2109 note_loc[n_notes] = loc;
2110 note_kind[n_notes] = REG_NOTE_KIND (note);
2111 n_notes++;
2115 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2117 n_clobbers = 0;
2119 if (GET_CODE (body) == PARALLEL)
2121 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2122 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2124 for (i = 0; i < XVECLEN (body, 0); i++)
2125 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2127 rtx clobber = XVECEXP (body, 0, i);
2128 rtx reg = XEXP (clobber, 0);
2129 rtx *loc = & XEXP (clobber, 0);
2131 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2133 loc = & SUBREG_REG (reg);
2134 reg = SUBREG_REG (reg);
2137 if (STACK_REG_P (reg))
2139 clobber_reg[n_clobbers] = reg;
2140 clobber_loc[n_clobbers] = loc;
2141 n_clobbers++;
2146 temp_stack = *regstack;
2148 /* Put the input regs into the desired place in TEMP_STACK. */
2150 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2151 if (STACK_REG_P (recog_data.operand[i])
2152 && reg_class_subset_p (recog_op_alt[i][alt].class,
2153 FLOAT_REGS)
2154 && recog_op_alt[i][alt].class != FLOAT_REGS)
2156 /* If an operand needs to be in a particular reg in
2157 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2158 these constraints are for single register classes, and
2159 reload guaranteed that operand[i] is already in that class,
2160 we can just use REGNO (recog_data.operand[i]) to know which
2161 actual reg this operand needs to be in. */
2163 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2165 if (regno < 0)
2166 abort ();
2168 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2170 /* recog_data.operand[i] is not in the right place. Find
2171 it and swap it with whatever is already in I's place.
2172 K is where recog_data.operand[i] is now. J is where it
2173 should be. */
2174 int j, k, temp;
2176 k = temp_stack.top - (regno - FIRST_STACK_REG);
2177 j = (temp_stack.top
2178 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2180 temp = temp_stack.reg[k];
2181 temp_stack.reg[k] = temp_stack.reg[j];
2182 temp_stack.reg[j] = temp;
2186 /* Emit insns before INSN to make sure the reg-stack is in the right
2187 order. */
2189 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2191 /* Make the needed input register substitutions. Do death notes and
2192 clobbers too, because these are for inputs, not outputs. */
2194 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2195 if (STACK_REG_P (recog_data.operand[i]))
2197 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2199 if (regnum < 0)
2200 abort ();
2202 replace_reg (recog_data.operand_loc[i], regnum);
2205 for (i = 0; i < n_notes; i++)
2206 if (note_kind[i] == REG_DEAD)
2208 int regnum = get_hard_regnum (regstack, note_reg[i]);
2210 if (regnum < 0)
2211 abort ();
2213 replace_reg (note_loc[i], regnum);
2216 for (i = 0; i < n_clobbers; i++)
2218 /* It's OK for a CLOBBER to reference a reg that is not live.
2219 Don't try to replace it in that case. */
2220 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2222 if (regnum >= 0)
2224 /* Sigh - clobbers always have QImode. But replace_reg knows
2225 that these regs can't be MODE_INT and will abort. Just put
2226 the right reg there without calling replace_reg. */
2228 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2232 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2234 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2235 if (STACK_REG_P (recog_data.operand[i]))
2237 /* An input reg is implicitly popped if it is tied to an
2238 output, or if there is a CLOBBER for it. */
2239 int j;
2241 for (j = 0; j < n_clobbers; j++)
2242 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2243 break;
2245 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2247 /* recog_data.operand[i] might not be at the top of stack.
2248 But that's OK, because all we need to do is pop the
2249 right number of regs off of the top of the reg-stack.
2250 record_asm_stack_regs guaranteed that all implicitly
2251 popped regs were grouped at the top of the reg-stack. */
2253 CLEAR_HARD_REG_BIT (regstack->reg_set,
2254 regstack->reg[regstack->top]);
2255 regstack->top--;
2259 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2260 Note that there isn't any need to substitute register numbers.
2261 ??? Explain why this is true. */
2263 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2265 /* See if there is an output for this hard reg. */
2266 int j;
2268 for (j = 0; j < n_outputs; j++)
2269 if (STACK_REG_P (recog_data.operand[j])
2270 && REGNO (recog_data.operand[j]) == (unsigned) i)
2272 regstack->reg[++regstack->top] = i;
2273 SET_HARD_REG_BIT (regstack->reg_set, i);
2274 break;
2278 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2279 input that the asm didn't implicitly pop. If the asm didn't
2280 implicitly pop an input reg, that reg will still be live.
2282 Note that we can't use find_regno_note here: the register numbers
2283 in the death notes have already been substituted. */
2285 for (i = 0; i < n_outputs; i++)
2286 if (STACK_REG_P (recog_data.operand[i]))
2288 int j;
2290 for (j = 0; j < n_notes; j++)
2291 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2292 && note_kind[j] == REG_UNUSED)
2294 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2295 EMIT_AFTER);
2296 break;
2300 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2301 if (STACK_REG_P (recog_data.operand[i]))
2303 int j;
2305 for (j = 0; j < n_notes; j++)
2306 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2307 && note_kind[j] == REG_DEAD
2308 && TEST_HARD_REG_BIT (regstack->reg_set,
2309 REGNO (recog_data.operand[i])))
2311 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2312 EMIT_AFTER);
2313 break;
2318 /* Substitute stack hard reg numbers for stack virtual registers in
2319 INSN. Non-stack register numbers are not changed. REGSTACK is the
2320 current stack content. Insns may be emitted as needed to arrange the
2321 stack for the 387 based on the contents of the insn. Return whether
2322 a control flow insn was deleted in the process. */
2324 static bool
2325 subst_stack_regs (rtx insn, stack regstack)
2327 rtx *note_link, note;
2328 bool control_flow_insn_deleted = false;
2329 int i;
2331 if (CALL_P (insn))
2333 int top = regstack->top;
2335 /* If there are any floating point parameters to be passed in
2336 registers for this call, make sure they are in the right
2337 order. */
2339 if (top >= 0)
2341 straighten_stack (PREV_INSN (insn), regstack);
2343 /* Now mark the arguments as dead after the call. */
2345 while (regstack->top >= 0)
2347 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2348 regstack->top--;
2353 /* Do the actual substitution if any stack regs are mentioned.
2354 Since we only record whether entire insn mentions stack regs, and
2355 subst_stack_regs_pat only works for patterns that contain stack regs,
2356 we must check each pattern in a parallel here. A call_value_pop could
2357 fail otherwise. */
2359 if (stack_regs_mentioned (insn))
2361 int n_operands = asm_noperands (PATTERN (insn));
2362 if (n_operands >= 0)
2364 /* This insn is an `asm' with operands. Decode the operands,
2365 decide how many are inputs, and do register substitution.
2366 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2368 subst_asm_stack_regs (insn, regstack);
2369 return control_flow_insn_deleted;
2372 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2373 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2375 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2377 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2378 XVECEXP (PATTERN (insn), 0, i)
2379 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2380 control_flow_insn_deleted
2381 |= subst_stack_regs_pat (insn, regstack,
2382 XVECEXP (PATTERN (insn), 0, i));
2385 else
2386 control_flow_insn_deleted
2387 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2390 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2391 REG_UNUSED will already have been dealt with, so just return. */
2393 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2394 return control_flow_insn_deleted;
2396 /* If there is a REG_UNUSED note on a stack register on this insn,
2397 the indicated reg must be popped. The REG_UNUSED note is removed,
2398 since the form of the newly emitted pop insn references the reg,
2399 making it no longer `unset'. */
2401 note_link = &REG_NOTES (insn);
2402 for (note = *note_link; note; note = XEXP (note, 1))
2403 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2405 *note_link = XEXP (note, 1);
2406 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2408 else
2409 note_link = &XEXP (note, 1);
2411 return control_flow_insn_deleted;
2414 /* Change the organization of the stack so that it fits a new basic
2415 block. Some registers might have to be popped, but there can never be
2416 a register live in the new block that is not now live.
2418 Insert any needed insns before or after INSN, as indicated by
2419 WHERE. OLD is the original stack layout, and NEW is the desired
2420 form. OLD is updated to reflect the code emitted, ie, it will be
2421 the same as NEW upon return.
2423 This function will not preserve block_end[]. But that information
2424 is no longer needed once this has executed. */
2426 static void
2427 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2429 int reg;
2430 int update_end = 0;
2432 /* We will be inserting new insns "backwards". If we are to insert
2433 after INSN, find the next insn, and insert before it. */
2435 if (where == EMIT_AFTER)
2437 if (current_block && BB_END (current_block) == insn)
2438 update_end = 1;
2439 insn = NEXT_INSN (insn);
2442 /* Pop any registers that are not needed in the new block. */
2444 for (reg = old->top; reg >= 0; reg--)
2445 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2446 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2447 EMIT_BEFORE);
2449 if (new->top == -2)
2451 /* If the new block has never been processed, then it can inherit
2452 the old stack order. */
2454 new->top = old->top;
2455 memcpy (new->reg, old->reg, sizeof (new->reg));
2457 else
2459 /* This block has been entered before, and we must match the
2460 previously selected stack order. */
2462 /* By now, the only difference should be the order of the stack,
2463 not their depth or liveliness. */
2465 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2466 abort ();
2467 win:
2468 if (old->top != new->top)
2469 abort ();
2471 /* If the stack is not empty (new->top != -1), loop here emitting
2472 swaps until the stack is correct.
2474 The worst case number of swaps emitted is N + 2, where N is the
2475 depth of the stack. In some cases, the reg at the top of
2476 stack may be correct, but swapped anyway in order to fix
2477 other regs. But since we never swap any other reg away from
2478 its correct slot, this algorithm will converge. */
2480 if (new->top != -1)
2483 /* Swap the reg at top of stack into the position it is
2484 supposed to be in, until the correct top of stack appears. */
2486 while (old->reg[old->top] != new->reg[new->top])
2488 for (reg = new->top; reg >= 0; reg--)
2489 if (new->reg[reg] == old->reg[old->top])
2490 break;
2492 if (reg == -1)
2493 abort ();
2495 emit_swap_insn (insn, old,
2496 FP_MODE_REG (old->reg[reg], DFmode));
2499 /* See if any regs remain incorrect. If so, bring an
2500 incorrect reg to the top of stack, and let the while loop
2501 above fix it. */
2503 for (reg = new->top; reg >= 0; reg--)
2504 if (new->reg[reg] != old->reg[reg])
2506 emit_swap_insn (insn, old,
2507 FP_MODE_REG (old->reg[reg], DFmode));
2508 break;
2510 } while (reg >= 0);
2512 /* At this point there must be no differences. */
2514 for (reg = old->top; reg >= 0; reg--)
2515 if (old->reg[reg] != new->reg[reg])
2516 abort ();
2519 if (update_end)
2520 BB_END (current_block) = PREV_INSN (insn);
2523 /* Print stack configuration. */
2525 static void
2526 print_stack (FILE *file, stack s)
2528 if (! file)
2529 return;
2531 if (s->top == -2)
2532 fprintf (file, "uninitialized\n");
2533 else if (s->top == -1)
2534 fprintf (file, "empty\n");
2535 else
2537 int i;
2538 fputs ("[ ", file);
2539 for (i = 0; i <= s->top; ++i)
2540 fprintf (file, "%d ", s->reg[i]);
2541 fputs ("]\n", file);
2545 /* This function was doing life analysis. We now let the regular live
2546 code do it's job, so we only need to check some extra invariants
2547 that reg-stack expects. Primary among these being that all registers
2548 are initialized before use.
2550 The function returns true when code was emitted to CFG edges and
2551 commit_edge_insertions needs to be called. */
2553 static int
2554 convert_regs_entry (void)
2556 int inserted = 0;
2557 edge e;
2558 basic_block block;
2559 unsigned ix;
2561 FOR_EACH_BB_REVERSE (block)
2563 block_info bi = BLOCK_INFO (block);
2564 int reg;
2566 /* Set current register status at last instruction `uninitialized'. */
2567 bi->stack_in.top = -2;
2569 /* Copy live_at_end and live_at_start into temporaries. */
2570 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2572 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2573 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2574 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2575 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2579 /* Load something into each stack register live at function entry.
2580 Such live registers can be caused by uninitialized variables or
2581 functions not returning values on all paths. In order to keep
2582 the push/pop code happy, and to not scrog the register stack, we
2583 must put something in these registers. Use a QNaN.
2585 Note that we are inserting converted code here. This code is
2586 never seen by the convert_regs pass. */
2588 FOR_EACH_EDGE (e, ENTRY_BLOCK_PTR->succ, ix)
2590 basic_block block = e->dest;
2591 block_info bi = BLOCK_INFO (block);
2592 int reg, top = -1;
2594 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2595 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2597 rtx init;
2599 bi->stack_in.reg[++top] = reg;
2601 init = gen_rtx_SET (VOIDmode,
2602 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2603 not_a_num);
2604 insert_insn_on_edge (init, e);
2605 inserted = 1;
2608 bi->stack_in.top = top;
2611 return inserted;
2614 /* Construct the desired stack for function exit. This will either
2615 be `empty', or the function return value at top-of-stack. */
2617 static void
2618 convert_regs_exit (void)
2620 int value_reg_low, value_reg_high;
2621 stack output_stack;
2622 rtx retvalue;
2624 retvalue = stack_result (current_function_decl);
2625 value_reg_low = value_reg_high = -1;
2626 if (retvalue)
2628 value_reg_low = REGNO (retvalue);
2629 value_reg_high = value_reg_low
2630 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2633 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2634 if (value_reg_low == -1)
2635 output_stack->top = -1;
2636 else
2638 int reg;
2640 output_stack->top = value_reg_high - value_reg_low;
2641 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2643 output_stack->reg[value_reg_high - reg] = reg;
2644 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2649 /* Adjust the stack of this block on exit to match the stack of the
2650 target block, or copy stack info into the stack of the successor
2651 of the successor hasn't been processed yet. */
2652 static bool
2653 compensate_edge (edge e, FILE *file)
2655 basic_block block = e->src, target = e->dest;
2656 block_info bi = BLOCK_INFO (block);
2657 struct stack_def regstack, tmpstack;
2658 stack target_stack = &BLOCK_INFO (target)->stack_in;
2659 int reg;
2661 current_block = block;
2662 regstack = bi->stack_out;
2663 if (file)
2664 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2666 if (target_stack->top == -2)
2668 /* The target block hasn't had a stack order selected.
2669 We need merely ensure that no pops are needed. */
2670 for (reg = regstack.top; reg >= 0; --reg)
2671 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2672 break;
2674 if (reg == -1)
2676 if (file)
2677 fprintf (file, "new block; copying stack position\n");
2679 /* change_stack kills values in regstack. */
2680 tmpstack = regstack;
2682 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
2683 return false;
2686 if (file)
2687 fprintf (file, "new block; pops needed\n");
2689 else
2691 if (target_stack->top == regstack.top)
2693 for (reg = target_stack->top; reg >= 0; --reg)
2694 if (target_stack->reg[reg] != regstack.reg[reg])
2695 break;
2697 if (reg == -1)
2699 if (file)
2700 fprintf (file, "no changes needed\n");
2701 return false;
2705 if (file)
2707 fprintf (file, "correcting stack to ");
2708 print_stack (file, target_stack);
2712 /* Care for non-call EH edges specially. The normal return path have
2713 values in registers. These will be popped en masse by the unwind
2714 library. */
2715 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2716 target_stack->top = -1;
2718 /* Other calls may appear to have values live in st(0), but the
2719 abnormal return path will not have actually loaded the values. */
2720 else if (e->flags & EDGE_ABNORMAL_CALL)
2722 /* Assert that the lifetimes are as we expect -- one value
2723 live at st(0) on the end of the source block, and no
2724 values live at the beginning of the destination block. */
2725 HARD_REG_SET tmp;
2727 CLEAR_HARD_REG_SET (tmp);
2728 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2729 abort ();
2730 eh1:
2732 /* We are sure that there is st(0) live, otherwise we won't compensate.
2733 For complex return values, we may have st(1) live as well. */
2734 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2735 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2736 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2737 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2738 abort ();
2739 eh2:
2741 target_stack->top = -1;
2744 /* It is better to output directly to the end of the block
2745 instead of to the edge, because emit_swap can do minimal
2746 insn scheduling. We can do this when there is only one
2747 edge out, and it is not abnormal. */
2748 else if (EDGE_COUNT (block->succ) == 1 && !(e->flags & EDGE_ABNORMAL))
2750 /* change_stack kills values in regstack. */
2751 tmpstack = regstack;
2753 change_stack (BB_END (block), &tmpstack, target_stack,
2754 (JUMP_P (BB_END (block))
2755 ? EMIT_BEFORE : EMIT_AFTER));
2757 else
2759 rtx seq, after;
2761 /* We don't support abnormal edges. Global takes care to
2762 avoid any live register across them, so we should never
2763 have to insert instructions on such edges. */
2764 if (e->flags & EDGE_ABNORMAL)
2765 abort ();
2767 current_block = NULL;
2768 start_sequence ();
2770 /* ??? change_stack needs some point to emit insns after. */
2771 after = emit_note (NOTE_INSN_DELETED);
2773 tmpstack = regstack;
2774 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2776 seq = get_insns ();
2777 end_sequence ();
2779 insert_insn_on_edge (seq, e);
2780 return true;
2782 return false;
2785 /* Convert stack register references in one block. */
2787 static int
2788 convert_regs_1 (FILE *file, basic_block block)
2790 struct stack_def regstack;
2791 block_info bi = BLOCK_INFO (block);
2792 int deleted, inserted, reg;
2793 rtx insn, next;
2794 edge e, beste = NULL;
2795 bool control_flow_insn_deleted = false;
2796 unsigned ix;
2798 inserted = 0;
2799 deleted = 0;
2800 any_malformed_asm = false;
2802 /* Find the edge we will copy stack from. It should be the most frequent
2803 one as it will get cheapest after compensation code is generated,
2804 if multiple such exists, take one with largest count, prefer critical
2805 one (as splitting critical edges is more expensive), or one with lowest
2806 index, to avoid random changes with different orders of the edges. */
2807 FOR_EACH_EDGE (e, block->pred, ix)
2809 if (e->flags & EDGE_DFS_BACK)
2811 else if (! beste)
2812 beste = e;
2813 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2814 beste = e;
2815 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2817 else if (beste->count < e->count)
2818 beste = e;
2819 else if (beste->count > e->count)
2821 else if ((EDGE_CRITICAL_P (e) != 0)
2822 != (EDGE_CRITICAL_P (beste) != 0))
2824 if (EDGE_CRITICAL_P (e))
2825 beste = e;
2827 else if (e->src->index < beste->src->index)
2828 beste = e;
2831 /* Initialize stack at block entry. */
2832 if (bi->stack_in.top == -2)
2834 if (beste)
2835 inserted |= compensate_edge (beste, file);
2836 else
2838 /* No predecessors. Create an arbitrary input stack. */
2839 int reg;
2841 bi->stack_in.top = -1;
2842 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2843 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2844 bi->stack_in.reg[++bi->stack_in.top] = reg;
2847 else
2848 /* Entry blocks do have stack already initialized. */
2849 beste = NULL;
2851 current_block = block;
2853 if (file)
2855 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2856 print_stack (file, &bi->stack_in);
2859 /* Process all insns in this block. Keep track of NEXT so that we
2860 don't process insns emitted while substituting in INSN. */
2861 next = BB_HEAD (block);
2862 regstack = bi->stack_in;
2865 insn = next;
2866 next = NEXT_INSN (insn);
2868 /* Ensure we have not missed a block boundary. */
2869 if (next == NULL)
2870 abort ();
2871 if (insn == BB_END (block))
2872 next = NULL;
2874 /* Don't bother processing unless there is a stack reg
2875 mentioned or if it's a CALL_INSN. */
2876 if (stack_regs_mentioned (insn)
2877 || CALL_P (insn))
2879 if (file)
2881 fprintf (file, " insn %d input stack: ",
2882 INSN_UID (insn));
2883 print_stack (file, &regstack);
2885 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2888 while (next);
2890 if (file)
2892 fprintf (file, "Expected live registers [");
2893 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2894 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2895 fprintf (file, " %d", reg);
2896 fprintf (file, " ]\nOutput stack: ");
2897 print_stack (file, &regstack);
2900 insn = BB_END (block);
2901 if (JUMP_P (insn))
2902 insn = PREV_INSN (insn);
2904 /* If the function is declared to return a value, but it returns one
2905 in only some cases, some registers might come live here. Emit
2906 necessary moves for them. */
2908 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2910 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2911 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2913 rtx set;
2915 if (file)
2917 fprintf (file, "Emitting insn initializing reg %d\n",
2918 reg);
2921 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2922 not_a_num);
2923 insn = emit_insn_after (set, insn);
2924 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2928 /* Amongst the insns possibly deleted during the substitution process above,
2929 might have been the only trapping insn in the block. We purge the now
2930 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2931 called at the end of convert_regs. The order in which we process the
2932 blocks ensures that we never delete an already processed edge.
2934 Note that, at this point, the CFG may have been damaged by the emission
2935 of instructions after an abnormal call, which moves the basic block end
2936 (and is the reason why we call fixup_abnormal_edges later). So we must
2937 be sure that the trapping insn has been deleted before trying to purge
2938 dead edges, otherwise we risk purging valid edges.
2940 ??? We are normally supposed not to delete trapping insns, so we pretend
2941 that the insns deleted above don't actually trap. It would have been
2942 better to detect this earlier and avoid creating the EH edge in the first
2943 place, still, but we don't have enough information at that time. */
2945 if (control_flow_insn_deleted)
2946 purge_dead_edges (block);
2948 /* Something failed if the stack lives don't match. If we had malformed
2949 asms, we zapped the instruction itself, but that didn't produce the
2950 same pattern of register kills as before. */
2951 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2952 if (!any_malformed_asm)
2953 abort ();
2954 win:
2955 bi->stack_out = regstack;
2957 /* Compensate the back edges, as those wasn't visited yet. */
2958 FOR_EACH_EDGE (e, block->succ, ix)
2960 if (e->flags & EDGE_DFS_BACK
2961 || (e->dest == EXIT_BLOCK_PTR))
2963 if (!BLOCK_INFO (e->dest)->done
2964 && e->dest != block)
2965 abort ();
2966 inserted |= compensate_edge (e, file);
2969 FOR_EACH_EDGE (e, block->pred, ix)
2971 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2972 && e->src != ENTRY_BLOCK_PTR)
2974 if (!BLOCK_INFO (e->src)->done)
2975 abort ();
2976 inserted |= compensate_edge (e, file);
2980 return inserted;
2983 /* Convert registers in all blocks reachable from BLOCK. */
2985 static int
2986 convert_regs_2 (FILE *file, basic_block block)
2988 basic_block *stack, *sp;
2989 int inserted;
2991 /* We process the blocks in a top-down manner, in a way such that one block
2992 is only processed after all its predecessors. The number of predecessors
2993 of every block has already been computed. */
2995 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
2996 sp = stack;
2998 *sp++ = block;
3000 inserted = 0;
3003 edge e;
3004 unsigned ix;
3006 block = *--sp;
3008 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3009 some dead EH outgoing edge after the deletion of the trapping
3010 insn inside the block. Since the number of predecessors of
3011 BLOCK's successors was computed based on the initial edge set,
3012 we check the necessity to process some of these successors
3013 before such an edge deletion may happen. However, there is
3014 a pitfall: if BLOCK is the only predecessor of a successor and
3015 the edge between them happens to be deleted, the successor
3016 becomes unreachable and should not be processed. The problem
3017 is that there is no way to preventively detect this case so we
3018 stack the successor in all cases and hand over the task of
3019 fixing up the discrepancy to convert_regs_1. */
3021 FOR_EACH_EDGE (e, block->succ, ix)
3022 if (! (e->flags & EDGE_DFS_BACK))
3024 BLOCK_INFO (e->dest)->predecessors--;
3025 if (!BLOCK_INFO (e->dest)->predecessors)
3026 *sp++ = e->dest;
3029 inserted |= convert_regs_1 (file, block);
3030 BLOCK_INFO (block)->done = 1;
3032 while (sp != stack);
3034 return inserted;
3037 /* Traverse all basic blocks in a function, converting the register
3038 references in each insn from the "flat" register file that gcc uses,
3039 to the stack-like registers the 387 uses. */
3041 static int
3042 convert_regs (FILE *file)
3044 int inserted;
3045 basic_block b;
3046 edge e;
3047 unsigned ix;
3049 /* Initialize uninitialized registers on function entry. */
3050 inserted = convert_regs_entry ();
3052 /* Construct the desired stack for function exit. */
3053 convert_regs_exit ();
3054 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3056 /* ??? Future: process inner loops first, and give them arbitrary
3057 initial stacks which emit_swap_insn can modify. This ought to
3058 prevent double fxch that often appears at the head of a loop. */
3060 /* Process all blocks reachable from all entry points. */
3062 FOR_EACH_EDGE (e, ENTRY_BLOCK_PTR->succ, ix)
3063 inserted |= convert_regs_2 (file, e->dest);
3065 /* ??? Process all unreachable blocks. Though there's no excuse
3066 for keeping these even when not optimizing. */
3067 FOR_EACH_BB (b)
3069 block_info bi = BLOCK_INFO (b);
3071 if (! bi->done)
3072 inserted |= convert_regs_2 (file, b);
3074 clear_aux_for_blocks ();
3076 fixup_abnormal_edges ();
3077 if (inserted)
3078 commit_edge_insertions ();
3080 if (file)
3081 fputc ('\n', file);
3083 return inserted;
3085 #endif /* STACK_REGS */
3087 #include "gt-reg-stack.h"