[NDS32] New option -malways-align and -malign-functions.
[official-gcc.git] / gcc / config / nds32 / nds32.h
blobdc82c0a94948446bcda0c4229be8969c0544e88d
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* ------------------------------------------------------------------------ */
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
27 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
28 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
30 /* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
31 It is used in nds32_encode_section_info() to store flag in symbol_ref
32 in case the symbol should be placed in .rodata section.
33 So that we can check it in nds32_legitimate_address_p(). */
34 #define NDS32_SYMBOL_FLAG_RODATA \
35 (SYMBOL_FLAG_MACH_DEP << 0)
36 #define NDS32_SYMBOL_REF_RODATA_P(x) \
37 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
39 /* Classifies expand result for expand helper function. */
40 enum nds32_expand_result_type
42 EXPAND_DONE,
43 EXPAND_FAIL,
44 EXPAND_CREATE_TEMPLATE
47 /* Classifies address type to distinguish 16-bit/32-bit format. */
48 enum nds32_16bit_address_type
50 /* [reg]: 45 format address. */
51 ADDRESS_REG,
52 /* [lo_reg + imm3u]: 333 format address. */
53 ADDRESS_LO_REG_IMM3U,
54 /* post_inc [lo_reg + imm3u]: 333 format address. */
55 ADDRESS_POST_INC_LO_REG_IMM3U,
56 /* post_modify [lo_reg + imm3u]: 333 format address. */
57 ADDRESS_POST_MODIFY_LO_REG_IMM3U,
58 /* [$r8 + imm7u]: r8 imply address. */
59 ADDRESS_R8_IMM7U,
60 /* [$fp + imm7u]: fp imply address. */
61 ADDRESS_FP_IMM7U,
62 /* [$sp + imm7u]: sp imply address. */
63 ADDRESS_SP_IMM7U,
64 /* Other address format. */
65 ADDRESS_NOT_16BIT_FORMAT
69 /* ------------------------------------------------------------------------ */
71 /* Define maximum numbers of registers for passing arguments. */
72 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
73 #define NDS32_MAX_FPR_REGS_FOR_ARGS 6
75 /* Define the register number for first argument. */
76 #define NDS32_GPR_ARG_FIRST_REGNUM 0
77 #define NDS32_FPR_ARG_FIRST_REGNUM 34
79 /* Define the register number for return value. */
80 #define NDS32_GPR_RET_FIRST_REGNUM 0
81 #define NDS32_FPR_RET_FIRST_REGNUM 34
83 /* Define the first integer register number. */
84 #define NDS32_FIRST_GPR_REGNUM 0
85 /* Define the last integer register number. */
86 #define NDS32_LAST_GPR_REGNUM 31
88 #define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
89 #define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
90 (TARGET_REDUCED_REGS ? 10 : 14)
92 /* Define the floating-point number of registers. */
93 #define NDS32_FLOAT_REGISTER_NUMBER \
94 (((nds32_fp_regnum == NDS32_CONFIG_FPU_0) \
95 || (nds32_fp_regnum == NDS32_CONFIG_FPU_4)) ? 8 \
96 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_1) \
97 || (nds32_fp_regnum == NDS32_CONFIG_FPU_5)) ? 16 \
98 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_2) \
99 || (nds32_fp_regnum == NDS32_CONFIG_FPU_6)) ? 32 \
100 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_3) \
101 || (nds32_fp_regnum == NDS32_CONFIG_FPU_7)) ? 64 \
102 : 32)
104 #define NDS32_EXT_FPU_DOT_E (nds32_fp_regnum >= 4)
106 /* Define the first floating-point register number. */
107 #define NDS32_FIRST_FPR_REGNUM 34
108 /* Define the last floating-point register number. */
109 #define NDS32_LAST_FPR_REGNUM \
110 (NDS32_FIRST_FPR_REGNUM + NDS32_FLOAT_REGISTER_NUMBER - 1)
113 #define NDS32_IS_EXT_FPR_REGNUM(regno) \
114 (((regno) >= NDS32_FIRST_FPR_REGNUM + 32) \
115 && ((regno) < NDS32_FIRST_FPR_REGNUM + 64))
117 #define NDS32_IS_FPR_REGNUM(regno) \
118 (((regno) >= NDS32_FIRST_FPR_REGNUM) \
119 && ((regno) <= NDS32_LAST_FPR_REGNUM))
121 #define NDS32_FPR_REGNO_OK_FOR_SINGLE(regno) \
122 ((regno) <= NDS32_LAST_FPR_REGNUM)
124 #define NDS32_FPR_REGNO_OK_FOR_DOUBLE(regno) \
125 ((((regno) - NDS32_FIRST_FPR_REGNUM) & 1) == 0)
127 #define NDS32_IS_GPR_REGNUM(regno) \
128 (((regno) <= NDS32_LAST_GPR_REGNUM))
130 /* Define double word alignment bits. */
131 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
133 /* Define alignment checking macros for convenience. */
134 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
135 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
136 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
138 /* Determine whether we would like to have code generation strictly aligned.
139 We set it strictly aligned when -malways-align is enabled.
140 Check gcc/common/config/nds32/nds32-common.c for the optimizations that
141 apply -malways-align. */
142 #define NDS32_ALIGN_P() (TARGET_ALWAYS_ALIGN)
143 /* Get alignment according to mode or type information.
144 When 'type' is nonnull, there is no need to look at 'mode'. */
145 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
146 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
148 /* Round X up to the nearest double word. */
149 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
152 /* This macro is used to calculate the numbers of registers for
153 containing 'size' bytes of the argument.
154 The size of a register is a word in nds32 target.
155 So we use UNITS_PER_WORD to do the calculation. */
156 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
157 ((mode == BLKmode) \
158 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
159 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
161 /* This macro is used to return the register number for passing argument.
162 We need to obey the following rules:
163 1. If it is required MORE THAN one register,
164 we need to further check if it really needs to be
165 aligned on double words.
166 a) If double word alignment is necessary,
167 the register number must be even value.
168 b) Otherwise, the register number can be odd or even value.
169 2. If it is required ONLY one register,
170 the register number can be odd or even value. */
171 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
172 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
173 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
174 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
175 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
176 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
178 #define NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG(reg_offset, mode, type) \
179 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
180 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
181 ? (((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM + 1) & ~1) \
182 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM)) \
183 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM))
185 /* These two macros are to check if there are still available registers
186 for passing argument, which must be entirely in registers. */
187 #define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
188 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
189 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
190 <= (NDS32_GPR_ARG_FIRST_REGNUM \
191 + NDS32_MAX_GPR_REGS_FOR_ARGS))
193 #define NDS32_ARG_ENTIRE_IN_FPR_REG_P(reg_offset, mode, type) \
194 ((NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
195 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
196 <= (NDS32_FPR_ARG_FIRST_REGNUM \
197 + NDS32_MAX_FPR_REGS_FOR_ARGS))
199 /* These two macros are to check if there are still available registers
200 for passing argument, either entirely in registers or partially
201 in registers. */
202 #define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
203 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
204 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
206 #define NDS32_ARG_PARTIAL_IN_FPR_REG_P(reg_offset, mode, type) \
207 (NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
208 < NDS32_FPR_ARG_FIRST_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
210 /* This macro is to check if the register is required to be saved on stack.
211 If call_used_regs[regno] == 0, regno is the callee-saved register.
212 If df_regs_ever_live_p(regno) == true, it is used in the current function.
213 As long as the register satisfies both criteria above,
214 it is required to be saved. */
215 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
216 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
218 /* This macro is to check if the push25/pop25 are available to be used
219 for code generation. Because pop25 also performs return behavior,
220 the instructions may not be available for some cases.
221 If we want to use push25/pop25, all the following conditions must
222 be satisfied:
223 1. TARGET_V3PUSH is set.
224 2. Current function is not an ISR function.
225 3. Current function is not a variadic function.*/
226 #define NDS32_V3PUSH_AVAILABLE_P \
227 (TARGET_V3PUSH \
228 && !nds32_isr_function_p (current_function_decl) \
229 && (cfun->machine->va_args_size == 0))
231 /* ------------------------------------------------------------------------ */
233 /* A C structure for machine-specific, per-function data.
234 This is added to the cfun structure. */
235 struct GTY(()) machine_function
237 /* Number of bytes allocated on the stack for variadic args
238 if we want to push them into stack as pretend arguments by ourself. */
239 int va_args_size;
240 /* Number of bytes reserved on the stack for
241 local and temporary variables. */
242 int local_size;
243 /* Number of bytes allocated on the stack for outgoing arguments. */
244 int out_args_size;
246 /* Number of bytes on the stack for saving $fp. */
247 int fp_size;
248 /* Number of bytes on the stack for saving $gp. */
249 int gp_size;
250 /* Number of bytes on the stack for saving $lp. */
251 int lp_size;
253 /* Number of bytes on the stack for saving general purpose
254 callee-saved registers. */
255 int callee_saved_gpr_regs_size;
257 /* Number of bytes on the stack for saving floating-point
258 callee-saved registers. */
259 int callee_saved_fpr_regs_size;
261 /* The padding bytes in callee-saved area may be required. */
262 int callee_saved_area_gpr_padding_bytes;
264 /* The first required general purpose callee-saved register. */
265 int callee_saved_first_gpr_regno;
266 /* The last required general purpose callee-saved register. */
267 int callee_saved_last_gpr_regno;
269 /* The first required floating-point callee-saved register. */
270 int callee_saved_first_fpr_regno;
271 /* The last required floating-point callee-saved register. */
272 int callee_saved_last_fpr_regno;
274 /* The padding bytes in varargs area may be required. */
275 int va_args_area_padding_bytes;
277 /* The first required register that should be saved on stack for va_args. */
278 int va_args_first_regno;
279 /* The last required register that should be saved on stack for va_args. */
280 int va_args_last_regno;
282 /* Number of bytes on the stack for saving exception handling registers. */
283 int eh_return_data_regs_size;
284 /* The first register of passing exception handling information. */
285 int eh_return_data_first_regno;
286 /* The last register of passing exception handling information. */
287 int eh_return_data_last_regno;
289 /* Indicate that whether this function
290 calls __builtin_eh_return. */
291 int use_eh_return_p;
293 /* Indicate that whether this function needs
294 prologue/epilogue code generation. */
295 int naked_p;
296 /* Indicate that whether this function
297 uses fp_as_gp optimization. */
298 int fp_as_gp_p;
301 /* A C structure that contains the arguments information. */
302 typedef struct
304 unsigned int gpr_offset;
305 unsigned int fpr_offset;
306 } nds32_cumulative_args;
308 /* ------------------------------------------------------------------------ */
310 /* The following we define C-ISR related stuff.
311 In nds32 architecture, we have 73 vectors for interrupt/exception.
312 For each vector (except for vector 0, which is used for reset behavior),
313 we allow users to set its register saving scheme and interrupt level. */
315 /* There are 73 vectors in nds32 architecture.
316 0 for reset handler,
317 1-8 for exception handler,
318 and 9-72 for interrupt handler.
319 We use an array, which is defined in nds32.c, to record
320 essential information for each vector. */
321 #define NDS32_N_ISR_VECTORS 73
323 /* Define possible isr category. */
324 enum nds32_isr_category
326 NDS32_ISR_NONE,
327 NDS32_ISR_INTERRUPT,
328 NDS32_ISR_EXCEPTION,
329 NDS32_ISR_RESET
332 /* Define isr register saving scheme. */
333 enum nds32_isr_save_reg
335 NDS32_SAVE_ALL,
336 NDS32_PARTIAL_SAVE
339 /* Define isr nested type. */
340 enum nds32_isr_nested_type
342 NDS32_NESTED,
343 NDS32_NOT_NESTED,
344 NDS32_NESTED_READY
347 /* Define structure to record isr information.
348 The isr vector array 'isr_vectors[]' with this structure
349 is defined in nds32.c. */
350 struct nds32_isr_info
352 /* The field to identify isr category.
353 It should be set to NDS32_ISR_NONE by default.
354 If user specifies a function as isr by using attribute,
355 this field will be set accordingly. */
356 enum nds32_isr_category category;
358 /* A string for the applied function name.
359 It should be set to empty string by default. */
360 char func_name[100];
362 /* The register saving scheme.
363 It should be set to NDS32_PARTIAL_SAVE by default
364 unless user specifies attribute to change it. */
365 enum nds32_isr_save_reg save_reg;
367 /* The nested type.
368 It should be set to NDS32_NOT_NESTED by default
369 unless user specifies attribute to change it. */
370 enum nds32_isr_nested_type nested_type;
372 /* Total vectors.
373 The total vectors = interrupt + exception numbers + reset.
374 It should be set to 0 by default.
375 This field is ONLY used in NDS32_ISR_RESET category. */
376 unsigned int total_n_vectors;
378 /* A string for nmi handler name.
379 It should be set to empty string by default.
380 This field is ONLY used in NDS32_ISR_RESET category. */
381 char nmi_name[100];
383 /* A string for warm handler name.
384 It should be set to empty string by default.
385 This field is ONLY used in NDS32_ISR_RESET category. */
386 char warm_name[100];
389 /* ------------------------------------------------------------------------ */
391 /* Define code for all nds32 builtins. */
392 enum nds32_builtins
394 NDS32_BUILTIN_ISYNC,
395 NDS32_BUILTIN_ISB,
396 NDS32_BUILTIN_DSB,
397 NDS32_BUILTIN_MSYNC_ALL,
398 NDS32_BUILTIN_MSYNC_STORE,
399 NDS32_BUILTIN_MFSR,
400 NDS32_BUILTIN_MFUSR,
401 NDS32_BUILTIN_MTSR,
402 NDS32_BUILTIN_MTSR_ISB,
403 NDS32_BUILTIN_MTSR_DSB,
404 NDS32_BUILTIN_MTUSR,
405 NDS32_BUILTIN_SETGIE_EN,
406 NDS32_BUILTIN_SETGIE_DIS,
407 NDS32_BUILTIN_FMFCFG,
408 NDS32_BUILTIN_FMFCSR,
409 NDS32_BUILTIN_FMTCSR,
410 NDS32_BUILTIN_FCPYNSS,
411 NDS32_BUILTIN_FCPYSS,
412 NDS32_BUILTIN_FCPYNSD,
413 NDS32_BUILTIN_FCPYSD,
414 NDS32_BUILTIN_ABS,
415 NDS32_BUILTIN_AVE,
416 NDS32_BUILTIN_BCLR,
417 NDS32_BUILTIN_BSET,
418 NDS32_BUILTIN_BTGL,
419 NDS32_BUILTIN_BTST,
420 NDS32_BUILTIN_CLIP,
421 NDS32_BUILTIN_CLIPS,
422 NDS32_BUILTIN_CLZ,
423 NDS32_BUILTIN_CLO,
424 NDS32_BUILTIN_MAX,
425 NDS32_BUILTIN_MIN,
426 NDS32_BUILTIN_PBSAD,
427 NDS32_BUILTIN_PBSADA,
428 NDS32_BUILTIN_BSE,
429 NDS32_BUILTIN_BSP,
430 NDS32_BUILTIN_FFB,
431 NDS32_BUILTIN_FFMISM,
432 NDS32_BUILTIN_FLMISM,
434 NDS32_BUILTIN_ROTR,
435 NDS32_BUILTIN_SVA,
436 NDS32_BUILTIN_SVS,
437 NDS32_BUILTIN_WSBH,
438 NDS32_BUILTIN_JR_ITOFF,
439 NDS32_BUILTIN_JR_TOFF,
440 NDS32_BUILTIN_JRAL_ITON,
441 NDS32_BUILTIN_JRAL_TON,
442 NDS32_BUILTIN_RET_ITOFF,
443 NDS32_BUILTIN_RET_TOFF,
444 NDS32_BUILTIN_STANDBY_NO_WAKE_GRANT,
445 NDS32_BUILTIN_STANDBY_WAKE_GRANT,
446 NDS32_BUILTIN_STANDBY_WAKE_DONE,
447 NDS32_BUILTIN_TEQZ,
448 NDS32_BUILTIN_TNEZ,
449 NDS32_BUILTIN_TRAP,
450 NDS32_BUILTIN_SETEND_BIG,
451 NDS32_BUILTIN_SETEND_LITTLE,
452 NDS32_BUILTIN_SYSCALL,
453 NDS32_BUILTIN_BREAK,
454 NDS32_BUILTIN_NOP,
455 NDS32_BUILTIN_SCHE_BARRIER,
456 NDS32_BUILTIN_GET_CURRENT_SP,
457 NDS32_BUILTIN_SET_CURRENT_SP,
458 NDS32_BUILTIN_RETURN_ADDRESS,
459 NDS32_BUILTIN_LLW,
460 NDS32_BUILTIN_LWUP,
461 NDS32_BUILTIN_LBUP,
462 NDS32_BUILTIN_SCW,
463 NDS32_BUILTIN_SWUP,
464 NDS32_BUILTIN_SBUP,
465 NDS32_BUILTIN_CCTL_VA_LCK,
466 NDS32_BUILTIN_CCTL_IDX_WBINVAL,
467 NDS32_BUILTIN_CCTL_VA_WBINVAL_L1,
468 NDS32_BUILTIN_CCTL_VA_WBINVAL_LA,
469 NDS32_BUILTIN_CCTL_IDX_READ,
470 NDS32_BUILTIN_CCTL_IDX_WRITE,
471 NDS32_BUILTIN_CCTL_L1D_INVALALL,
472 NDS32_BUILTIN_CCTL_L1D_WBALL_ALVL,
473 NDS32_BUILTIN_CCTL_L1D_WBALL_ONE_LVL,
474 NDS32_BUILTIN_DPREF_QW,
475 NDS32_BUILTIN_DPREF_HW,
476 NDS32_BUILTIN_DPREF_W,
477 NDS32_BUILTIN_DPREF_DW,
478 NDS32_BUILTIN_TLBOP_TRD,
479 NDS32_BUILTIN_TLBOP_TWR,
480 NDS32_BUILTIN_TLBOP_RWR,
481 NDS32_BUILTIN_TLBOP_RWLK,
482 NDS32_BUILTIN_TLBOP_UNLK,
483 NDS32_BUILTIN_TLBOP_PB,
484 NDS32_BUILTIN_TLBOP_INV,
485 NDS32_BUILTIN_TLBOP_FLUA,
486 NDS32_BUILTIN_UALOAD_HW,
487 NDS32_BUILTIN_UALOAD_W,
488 NDS32_BUILTIN_UALOAD_DW,
489 NDS32_BUILTIN_UASTORE_HW,
490 NDS32_BUILTIN_UASTORE_W,
491 NDS32_BUILTIN_UASTORE_DW,
492 NDS32_BUILTIN_COUNT
495 /* ------------------------------------------------------------------------ */
497 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
499 #define TARGET_ISA_V3 \
500 (nds32_arch_option == ARCH_V3 \
501 || nds32_arch_option == ARCH_V3F \
502 || nds32_arch_option == ARCH_V3S)
503 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
505 #define TARGET_CMODEL_SMALL \
506 (nds32_cmodel_option == CMODEL_SMALL)
507 #define TARGET_CMODEL_MEDIUM \
508 (nds32_cmodel_option == CMODEL_MEDIUM)
509 #define TARGET_CMODEL_LARGE \
510 (nds32_cmodel_option == CMODEL_LARGE)
512 /* When -mcmodel=small or -mcmodel=medium,
513 compiler may generate gp-base instruction directly. */
514 #define TARGET_GP_DIRECT \
515 (nds32_cmodel_option == CMODEL_SMALL\
516 || nds32_cmodel_option == CMODEL_MEDIUM)
519 /* Run-time Target Specification. */
520 #define TARGET_SOFT_FLOAT (nds32_abi == NDS32_ABI_V2)
521 /* Use hardware floating point calling convention. */
522 #define TARGET_HARD_FLOAT (nds32_abi == NDS32_ABI_V2_FP_PLUS)
524 /* Record arch version in TARGET_ARCH_DEFAULT. 0 means soft ABI,
525 1 means hard ABI and using full floating-point instruction,
526 2 means hard ABI and only using single-precision floating-point
527 instruction */
528 #if TARGET_ARCH_DEFAULT == 1
529 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
530 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_DOUBLE | MASK_FPU_SINGLE
531 # define TARGET_DEFAULT_FPU_FMA 0
532 #else
533 # if TARGET_ARCH_DEFAULT == 2
534 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
535 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_SINGLE
536 # define TARGET_DEFAULT_FPU_FMA 0
537 # else
538 # define TARGET_DEFAULT_ABI NDS32_ABI_V2
539 # define TARGET_DEFAULT_FPU_ISA 0
540 # define TARGET_DEFAULT_FPU_FMA 0
541 # endif
542 #endif
544 #define TARGET_CONFIG_FPU_DEFAULT NDS32_CONFIG_FPU_2
545 /* ------------------------------------------------------------------------ */
547 /* Controlling the Compilation Driver. */
549 #define OPTION_DEFAULT_SPECS \
550 {"arch", " %{!march=*:-march=%(VALUE)}" \
551 " %{march=v3f:%{!mfloat-abi=*:-mfloat-abi=hard}" \
552 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}" \
553 " %{!mno-ext-fpu-dp:%{!mext-fpu-dp:-mext-fpu-dp}}}" \
554 " %{march=v3s:%{!mfloat-abi=*:-mfloat-abi=hard}" \
555 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}}" }, \
556 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }
558 #define CC1_SPEC \
561 #define ASM_SPEC \
562 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
563 " %{march=*:-march=%*}" \
564 " %{mabi=*:-mabi=v%*}" \
565 " %{mconfig-fpu=*:-mfpu-freg=%*}" \
566 " %{mext-fpu-mac:-mmac}" \
567 " %{mno-ext-fpu-mac:-mno-mac}" \
568 " %{mext-fpu-sp:-mfpu-sp-ext}" \
569 " %{mno-ext-fpu-sp:-mno-fpu-sp-ext}" \
570 " %{mext-fpu-dp:-mfpu-dp-ext}" \
571 " %{mno-ext-fpu-sp:-mno-fpu-dp-ext}"
573 /* If user issues -mrelax, we need to pass '--relax' to linker. */
574 #define LINK_SPEC \
575 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
576 " %{mrelax:--relax}"
578 #define LIB_SPEC \
579 " -lc -lgloss"
581 /* The option -mno-ctor-dtor can disable constructor/destructor feature
582 by applying different crt stuff. In the convention, crt0.o is the
583 startup file without constructor/destructor;
584 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
585 startup files with constructor/destructor.
586 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
587 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
588 currently provided by GCC for nds32 target.
590 For nds32 target so far:
591 If -mno-ctor-dtor, we are going to link
592 "crt0.o [user objects]".
593 If general cases, we are going to link
594 "crt1.o crtbegin1.o [user objects] crtend1.o". */
595 #define STARTFILE_SPEC \
596 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
597 " %{!mno-ctor-dtor:crtbegin1.o%s}"
598 #define ENDFILE_SPEC \
599 " %{!mno-ctor-dtor:crtend1.o%s}"
601 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
602 configure gcc with --target=nds32be-* setting.
603 Check gcc/config.gcc for more information. */
604 #ifdef TARGET_BIG_ENDIAN_DEFAULT
605 # define NDS32_ENDIAN_DEFAULT "mbig-endian"
606 #else
607 # define NDS32_ENDIAN_DEFAULT "mlittle-endian"
608 #endif
610 /* Currently we only have elf toolchain,
611 where -mcmodel=medium is always the default. */
612 #define NDS32_CMODEL_DEFAULT "mcmodel=medium"
614 #define MULTILIB_DEFAULTS \
615 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
618 /* Run-time Target Specification. */
620 #define TARGET_CPU_CPP_BUILTINS() \
621 nds32_cpu_cpp_builtins (pfile)
624 /* Defining Data Structures for Per-function Information. */
626 /* This macro is called once per function,
627 before generation of any RTL has begun. */
628 #define INIT_EXPANDERS nds32_init_expanders ()
631 /* Storage Layout. */
633 #define BITS_BIG_ENDIAN 0
635 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
637 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
639 #define UNITS_PER_WORD 4
641 #define PROMOTE_MODE(m, unsignedp, type) \
642 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
644 (m) = SImode; \
647 #define PARM_BOUNDARY 32
649 #define STACK_BOUNDARY 64
651 #define FUNCTION_BOUNDARY \
652 ((NDS32_ALIGN_P () || TARGET_ALIGN_FUNCTION) ? 32 : 16)
654 #define BIGGEST_ALIGNMENT 64
656 #define EMPTY_FIELD_BOUNDARY 32
658 #define STRUCTURE_SIZE_BOUNDARY 8
660 #define STRICT_ALIGNMENT 1
662 #define PCC_BITFIELD_TYPE_MATTERS 1
665 /* Layout of Source Language Data Types. */
667 #define INT_TYPE_SIZE 32
668 #define SHORT_TYPE_SIZE 16
669 #define LONG_TYPE_SIZE 32
670 #define LONG_LONG_TYPE_SIZE 64
672 #define FLOAT_TYPE_SIZE 32
673 #define DOUBLE_TYPE_SIZE 64
674 #define LONG_DOUBLE_TYPE_SIZE 64
676 #define DEFAULT_SIGNED_CHAR 1
678 #define SIZE_TYPE "long unsigned int"
679 #define PTRDIFF_TYPE "long int"
680 #define WCHAR_TYPE "unsigned int"
681 #define WCHAR_TYPE_SIZE 32
684 /* Register Usage. */
686 /* Number of actual hardware registers.
687 The hardware registers are assigned numbers for the compiler
688 from 0 to just below FIRST_PSEUDO_REGISTER.
689 All registers that the compiler knows about must be given numbers,
690 even those that are not normally considered general registers. */
691 #define FIRST_PSEUDO_REGISTER 101
693 /* An initializer that says which registers are used for fixed
694 purposes all throughout the compiled code and are therefore
695 not available for general allocation.
697 $r28 : $fp
698 $r29 : $gp
699 $r30 : $lp
700 $r31 : $sp
702 caller-save registers: $r0 ~ $r5, $r16 ~ $r23, $fs0 ~ $fs5, $fs22 ~ $fs47
703 callee-save registers: $r6 ~ $r10, $r11 ~ $r14, $fs6 ~ $fs21, $fs48 ~ $fs63
705 reserved for assembler : $r15
706 reserved for other use : $r24, $r25, $r26, $r27 */
707 #define FIXED_REGISTERS \
708 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
709 0, 0, 0, 0, 0, 0, 0, 0, \
710 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
711 0, 0, 0, 0, 0, 0, 0, 1, \
712 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
713 0, 0, 0, 0, 0, 0, 0, 0, \
714 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
715 1, 1, 1, 1, 0, 1, 0, 1, \
716 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
717 1, 1, 1, 1, 1, 1, 1, 1, \
718 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
719 1, 1, 1, 1, 1, 1, 1, 1, \
720 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
721 1, 1, 1, 1, 1, 1, 1, 1, \
722 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
723 1, 1, 1, 1, 1, 1, 1, 1, \
724 /* fs30 fs31 fd16 fd17 fd18 */ \
725 1, 1, 1, 1, 1, 1, 1, 1, \
726 /* fd19 fd20 fd21 fd22 */ \
727 1, 1, 1, 1, 1, 1, 1, 1, \
728 /* fd23 fd24 fd25 fd26 */ \
729 1, 1, 1, 1, 1, 1, 1, 1, \
730 /* fd27 fd28 fd29 fd30 */ \
731 1, 1, 1, 1, 1, 1, 1, 1, \
732 /* fd31 Reserved..................... */ \
733 1, 1, 1, 1, 1 \
736 /* Identifies the registers that are not available for
737 general allocation of values that must live across
738 function calls -- so they are caller-save registers.
740 0 : callee-save registers
741 1 : caller-save registers */
742 #define CALL_USED_REGISTERS \
743 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
744 1, 1, 1, 1, 1, 1, 0, 0, \
745 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
746 0, 0, 0, 0, 0, 0, 0, 1, \
747 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
748 1, 1, 1, 1, 1, 1, 1, 1, \
749 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
750 1, 1, 1, 1, 0, 1, 0, 1, \
751 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
752 1, 1, 1, 1, 1, 1, 1, 1, \
753 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
754 1, 1, 1, 1, 1, 1, 1, 1, \
755 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
756 1, 1, 1, 1, 1, 1, 1, 1, \
757 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
758 1, 1, 1, 1, 1, 1, 1, 1, \
759 /* fs30 fs31 fd16 fd17 fd18 */ \
760 1, 1, 1, 1, 1, 1, 1, 1, \
761 /* fd19 fd20 fd21 fd22 */ \
762 1, 1, 1, 1, 1, 1, 1, 1, \
763 /* fd23 fd24 fd25 fd26 */ \
764 1, 1, 1, 1, 1, 1, 1, 1, \
765 /* fd27 fd28 fd29 fd30 */ \
766 1, 1, 1, 1, 1, 1, 1, 1, \
767 /* fd31 Reserved..................... */ \
768 1, 1, 1, 1, 1 \
771 /* In nds32 target, we have three levels of registers:
772 LOW_COST_REGS : $r0 ~ $r7
773 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
774 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
775 #define REG_ALLOC_ORDER \
776 { 0, 1, 2, 3, 4, 5, 6, 7, \
777 16, 17, 18, 19, 9, 10, 11, 12, \
778 13, 14, 8, 15, 20, 21, 22, 23, \
779 24, 25, 26, 27, 28, 29, 30, 31, \
780 32, 33, 34, 35, 36, 37, 38, 39, \
781 40, 41, 42, 43, 44, 45, 46, 47, \
782 48, 49, 50, 51, 52, 53, 54, 55, \
783 56, 57, 58, 59, 60, 61, 62, 63, \
784 64, 65, 66, 67, 68, 69, 70, 71, \
785 72, 73, 74, 75, 76, 77, 78, 79, \
786 80, 81, 82, 83, 84, 85, 86, 87, \
787 88, 89, 90, 91, 92, 93, 94, 95, \
788 96, 97, 98, 99, 100, \
791 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
792 to be rearranged based on optimizing for speed or size. */
793 #define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
795 /* Tell IRA to use the order we define rather than messing it up with its
796 own cost calculations. */
797 #define HONOR_REG_ALLOC_ORDER optimize_size
800 /* Register Classes. */
802 /* In nds32 target, we have three levels of registers:
803 Low cost regsiters : $r0 ~ $r7
804 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
805 High cost registers : $r12 ~ $r14, $r20 ~ $r31
807 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
808 so that it provides more chance to use low cost registers. */
809 enum reg_class
811 NO_REGS,
812 R5_REG,
813 R8_REG,
814 R15_TA_REG,
815 STACK_REG,
816 FRAME_POINTER_REG,
817 LOW_REGS,
818 MIDDLE_REGS,
819 HIGH_REGS,
820 GENERAL_REGS,
821 FRAME_REGS,
822 FP_REGS,
823 ALL_REGS,
824 LIM_REG_CLASSES
827 #define N_REG_CLASSES (int) LIM_REG_CLASSES
829 #define REG_CLASS_NAMES \
831 "NO_REGS", \
832 "R5_REG", \
833 "R8_REG", \
834 "R15_TA_REG", \
835 "STACK_REG", \
836 "FRAME_POINTER_REG", \
837 "LOW_REGS", \
838 "MIDDLE_REGS", \
839 "HIGH_REGS", \
840 "GENERAL_REGS", \
841 "FRAME_REGS", \
842 "FP_REGS", \
843 "ALL_REGS" \
846 #define REG_CLASS_CONTENTS \
847 { /* NO_REGS */ \
848 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
849 /* R5_REG : 5 */ \
850 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
851 /* R8_REG : 8 */ \
852 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
853 /* R15_TA_REG : 15 */ \
854 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
855 /* STACK_REG : 31 */ \
856 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
857 /* FRAME_POINTER_REG : 28 */ \
858 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
859 /* LOW_REGS : 0-7 */ \
860 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
861 /* MIDDLE_REGS : 0-11, 16-19 */ \
862 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
863 /* HIGH_REGS : 12-14, 20-31 */ \
864 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
865 /* GENERAL_REGS : 0-31 */ \
866 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
867 /* FRAME_REGS : 32, 33 */ \
868 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
869 /* FP_REGS : 34-98 */ \
870 {0x00000000, 0xfffffffc, 0xffffffff, 0x00000003}, \
871 /* ALL_REGS : 0-100 */ \
872 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
875 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
877 #define BASE_REG_CLASS GENERAL_REGS
878 #define INDEX_REG_CLASS GENERAL_REGS
880 #define TEST_REGNO(R, TEST, VALUE) \
881 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
883 /* Return nonzero if it is suitable for use as a
884 base register in operand addresses.
885 So far, we return nonzero only if "num" is a hard reg
886 of the suitable class or a pseudo register which is
887 allocated to a suitable hard reg. */
888 #define REGNO_OK_FOR_BASE_P(num) \
889 (TEST_REGNO (num, <, 32) \
890 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
891 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
893 /* Return nonzero if it is suitable for use as a
894 index register in operand addresses.
895 So far, we return nonzero only if "num" is a hard reg
896 of the suitable class or a pseudo register which is
897 allocated to a suitable hard reg.
898 The difference between an index register and a base register is that
899 the index register may be scaled. */
900 #define REGNO_OK_FOR_INDEX_P(num) \
901 (TEST_REGNO (num, <, 32) \
902 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
903 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
906 /* Obsolete Macros for Defining Constraints. */
909 /* Stack Layout and Calling Conventions. */
911 #define STACK_GROWS_DOWNWARD 1
913 #define FRAME_GROWS_DOWNWARD 1
915 #define STACK_POINTER_OFFSET 0
917 #define FIRST_PARM_OFFSET(fundecl) \
918 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
920 /* A C expression whose value is RTL representing the address in a stack frame
921 where the pointer to the caller's frame is stored. */
922 #define DYNAMIC_CHAIN_ADDRESS(frameaddr) \
923 nds32_dynamic_chain_address (frameaddr)
925 #define RETURN_ADDR_RTX(count, frameaddr) \
926 nds32_return_addr_rtx (count, frameaddr)
928 /* A C expression whose value is RTL representing the location
929 of the incoming return address at the beginning of any function
930 before the prologue.
931 If this RTL is REG, you should also define
932 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
933 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
934 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
936 /* Use $r0 $r1 to pass exception handling information. */
937 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) : INVALID_REGNUM)
938 /* The register $r2 that represents a location in which to store a stack
939 adjustment to be applied before function return.
940 This is used to unwind the stack to an exception handler's call frame. */
941 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
943 #define DBX_REGISTER_NUMBER(REGNO) nds32_dbx_register_number (REGNO)
945 #define STACK_POINTER_REGNUM SP_REGNUM
947 #define FRAME_POINTER_REGNUM 33
949 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
951 #define ARG_POINTER_REGNUM 32
953 #define STATIC_CHAIN_REGNUM 16
955 #define ELIMINABLE_REGS \
956 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
957 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
958 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
959 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
961 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
962 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
964 #define ACCUMULATE_OUTGOING_ARGS 1
966 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
968 #define CUMULATIVE_ARGS nds32_cumulative_args
970 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
971 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
973 #define FUNCTION_ARG_REGNO_P(regno) \
974 (IN_RANGE ((regno), NDS32_FIRST_GPR_REGNUM, NDS32_MAX_GPR_REGS_FOR_ARGS - 1) \
975 || ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE) \
976 && IN_RANGE ((regno), NDS32_FPR_ARG_FIRST_REGNUM, \
977 NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS - 1)))
979 #define DEFAULT_PCC_STRUCT_RETURN 0
981 /* EXIT_IGNORE_STACK should be nonzero if, when returning
982 from a function, the stack pointer does not matter.
983 The value is tested only in functions that have frame pointers.
984 In nds32 target, the function epilogue recovers the
985 stack pointer from the frame. */
986 #define EXIT_IGNORE_STACK 1
988 #define FUNCTION_PROFILER(file, labelno) \
989 fprintf (file, "/* profiler %d */\n", (labelno))
991 #define PROFILE_HOOK(LABEL) \
993 rtx fun, lp; \
994 lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
995 fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
996 emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
1000 /* Implementing the Varargs Macros. */
1003 /* Trampolines for Nested Functions. */
1005 /* Giving A-function and B-function,
1006 if B-function wants to call A-function's nested function,
1007 we need to fill trampoline code into A-function's stack
1008 so that B-function can execute the code in stack to indirectly
1009 jump to (like 'trampoline' action) desired nested function.
1011 The trampoline code for nds32 target must contains following parts:
1013 1. instructions (4 * 4 = 16 bytes):
1014 get $pc first
1015 load chain_value to static chain register via $pc
1016 load nested function address to $r15 via $pc
1017 jump to desired nested function via $r15
1018 2. data (4 * 2 = 8 bytes):
1019 chain_value
1020 nested function address
1022 Please check nds32.c implementation for more information. */
1023 #define TRAMPOLINE_SIZE 24
1025 /* Because all instructions/data in trampoline template are 4-byte size,
1026 we set trampoline alignment 8*4=32 bits. */
1027 #define TRAMPOLINE_ALIGNMENT 32
1030 /* Implicit Calls to Library Routines. */
1033 /* Addressing Modes. */
1035 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
1036 #define HAVE_POST_INCREMENT 1
1037 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
1038 #define HAVE_POST_DECREMENT 1
1040 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
1041 #define HAVE_POST_MODIFY_DISP 1
1042 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
1043 #define HAVE_POST_MODIFY_REG 1
1045 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
1047 #define MAX_REGS_PER_ADDRESS 3
1050 /* Anchored Addresses. */
1053 /* Condition Code Status. */
1056 /* Describing Relative Costs of Operations. */
1058 /* A C expression for the cost of a branch instruction.
1059 A value of 1 is the default;
1060 other values are interpreted relative to that. */
1061 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
1063 /* Override BRANCH_COST heuristic which empirically produces worse
1064 performance for removing short circuiting from the logical ops. */
1065 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1067 #define SLOW_BYTE_ACCESS 1
1069 #define NO_FUNCTION_CSE 1
1072 /* Adjusting the Instruction Scheduler. */
1075 /* Dividing the Output into Sections (Texts, Data, . . . ). */
1077 #define TEXT_SECTION_ASM_OP "\t.text"
1078 #define DATA_SECTION_ASM_OP "\t.data"
1080 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
1081 So we use '.section .bss' alternatively. */
1082 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1084 /* Define this macro to be an expression with a nonzero value if jump tables
1085 (for tablejump insns) should be output in the text section,
1086 along with the assembler instructions.
1087 Otherwise, the readonly data section is used. */
1088 #define JUMP_TABLES_IN_TEXT_SECTION 1
1091 /* Position Independent Code. */
1093 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
1096 /* Defining the Output Assembler Language. */
1098 #define ASM_COMMENT_START "!"
1100 #define ASM_APP_ON "! #APP"
1102 #define ASM_APP_OFF "! #NO_APP\n"
1104 #define ASM_OUTPUT_LABELREF(stream, name) \
1105 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
1107 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
1108 assemble_name (stream, XSTR (sym, 0))
1110 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
1111 assemble_name (stream, buf)
1113 #define LOCAL_LABEL_PREFIX "."
1115 #define REGISTER_NAMES \
1116 { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
1117 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
1118 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
1119 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
1120 "$AP", "$SFP", "$fs0", "$fs1", "$fs2", "$fs3", "$fs4", "$fs5", \
1121 "$fs6", "$fs7", "$fs8", "$fs9", "$fs10","$fs11","$fs12","$fs13",\
1122 "$fs14","$fs15","$fs16","$fs17","$fs18","$fs19","$fs20","$fs21",\
1123 "$fs22","$fs23","$fs24","$fs25","$fs26","$fs27","$fs28","$fs29",\
1124 "$fs30","$fs31","$fs32","$fs33","$fs34","$fs35","$fs36","$fs37",\
1125 "$fs38","$fs39","$fs40","$fs41","$fs42","$fs43","$fs44","$fs45",\
1126 "$fs46","$fs47","$fs48","$fs49","$fs50","$fs51","$fs52","$fs53",\
1127 "$fs54","$fs55","$fs56","$fs57","$fs58","$fs59","$fs60","$fs61",\
1128 "$fs62","$fs63", "LB", "LE", "LC" \
1131 #define ADDITIONAL_REGISTER_NAMES \
1133 {"$r15", 15}, \
1134 {"$r28", 28}, {"$r29", 29}, {"$r30", 30}, {"$r31", 31}, \
1135 {"$a0", 0}, {"$a1", 1}, {"$a2", 2}, \
1136 {"$a3", 3}, {"$a4", 4}, {"$a5", 5}, \
1137 {"$s0", 6}, {"$s1", 7}, {"$s2", 8}, {"$s3", 9}, \
1138 {"$s4", 10}, {"$s5", 11}, {"$s6", 12}, {"$s7", 13}, \
1139 {"$s8", 14}, \
1140 {"$t0", 16}, {"$t1", 17}, {"$t2", 18}, {"$t3", 19}, \
1141 {"$t4", 20}, {"$t5", 21}, {"$t6", 22}, {"$t7", 23}, \
1142 {"$t8", 24}, {"$t9", 25}, \
1143 {"$p0", 26}, {"$p1", 27}, \
1144 {"$h0", 0}, {"$h1", 1}, {"$h2", 2}, {"$h3", 3}, \
1145 {"$h4", 4}, {"$h5", 5}, {"$h6", 6}, {"$h7", 7}, \
1146 {"$h8", 8}, {"$h9", 9}, {"$h10", 10}, {"$h11", 11}, \
1147 {"$h12", 16}, {"$h13", 17}, {"$h14", 18}, {"$h15", 19}, \
1148 {"$o0", 0}, {"$o1", 1}, {"$o2", 2}, {"$o3", 3}, \
1149 {"$o4", 4}, {"$o5", 5}, {"$o6", 6}, {"$o7", 7}, \
1152 #define OVERLAPPING_REGISTER_NAMES \
1154 {"$fd0", NDS32_FIRST_FPR_REGNUM + 0, 2}, \
1155 {"$fd1", NDS32_FIRST_FPR_REGNUM + 2, 2}, \
1156 {"$fd2", NDS32_FIRST_FPR_REGNUM + 4, 2}, \
1157 {"$fd3", NDS32_FIRST_FPR_REGNUM + 6, 2}, \
1158 {"$fd4", NDS32_FIRST_FPR_REGNUM + 8, 2}, \
1159 {"$fd5", NDS32_FIRST_FPR_REGNUM + 10, 2}, \
1160 {"$fd6", NDS32_FIRST_FPR_REGNUM + 12, 2}, \
1161 {"$fd7", NDS32_FIRST_FPR_REGNUM + 14, 2}, \
1162 {"$fd8", NDS32_FIRST_FPR_REGNUM + 16, 2}, \
1163 {"$fd9", NDS32_FIRST_FPR_REGNUM + 18, 2}, \
1164 {"$fd10", NDS32_FIRST_FPR_REGNUM + 20, 2}, \
1165 {"$fd11", NDS32_FIRST_FPR_REGNUM + 22, 2}, \
1166 {"$fd12", NDS32_FIRST_FPR_REGNUM + 24, 2}, \
1167 {"$fd13", NDS32_FIRST_FPR_REGNUM + 26, 2}, \
1168 {"$fd14", NDS32_FIRST_FPR_REGNUM + 28, 2}, \
1169 {"$fd15", NDS32_FIRST_FPR_REGNUM + 30, 2}, \
1170 {"$fd16", NDS32_FIRST_FPR_REGNUM + 32, 2}, \
1171 {"$fd17", NDS32_FIRST_FPR_REGNUM + 34, 2}, \
1172 {"$fd18", NDS32_FIRST_FPR_REGNUM + 36, 2}, \
1173 {"$fd19", NDS32_FIRST_FPR_REGNUM + 38, 2}, \
1174 {"$fd20", NDS32_FIRST_FPR_REGNUM + 40, 2}, \
1175 {"$fd21", NDS32_FIRST_FPR_REGNUM + 42, 2}, \
1176 {"$fd22", NDS32_FIRST_FPR_REGNUM + 44, 2}, \
1177 {"$fd23", NDS32_FIRST_FPR_REGNUM + 46, 2}, \
1178 {"$fd24", NDS32_FIRST_FPR_REGNUM + 48, 2}, \
1179 {"$fd25", NDS32_FIRST_FPR_REGNUM + 50, 2}, \
1180 {"$fd26", NDS32_FIRST_FPR_REGNUM + 52, 2}, \
1181 {"$fd27", NDS32_FIRST_FPR_REGNUM + 54, 2}, \
1182 {"$fd28", NDS32_FIRST_FPR_REGNUM + 56, 2}, \
1183 {"$fd29", NDS32_FIRST_FPR_REGNUM + 58, 2}, \
1184 {"$fd30", NDS32_FIRST_FPR_REGNUM + 60, 2}, \
1185 {"$fd31", NDS32_FIRST_FPR_REGNUM + 62, 2}, \
1188 /* Output normal jump table entry. */
1189 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
1190 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
1192 /* Output pc relative jump table entry. */
1193 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
1194 do \
1196 switch (GET_MODE (body)) \
1198 case E_QImode: \
1199 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
1200 break; \
1201 case E_HImode: \
1202 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
1203 break; \
1204 case E_SImode: \
1205 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
1206 break; \
1207 default: \
1208 gcc_unreachable(); \
1210 } while (0)
1212 /* We have to undef it first because elfos.h formerly define it
1213 check gcc/config.gcc and gcc/config/elfos.h for more information. */
1214 #undef ASM_OUTPUT_CASE_LABEL
1215 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
1216 do \
1218 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
1219 (*targetm.asm_out.internal_label) (stream, prefix, num); \
1220 } while (0)
1222 #define ASM_OUTPUT_CASE_END(stream, num, table) \
1223 do \
1225 /* Because our jump table is in text section, \
1226 we need to make sure 2-byte alignment after \
1227 the jump table for instructions fetch. */ \
1228 if (GET_MODE (PATTERN (table)) == QImode) \
1229 ASM_OUTPUT_ALIGN (stream, 1); \
1230 asm_fprintf (stream, "\t! Jump Table End\n"); \
1231 } while (0)
1233 /* This macro is not documented yet.
1234 But we do need it to make jump table vector aligned. */
1235 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
1237 #define DWARF2_UNWIND_INFO 1
1239 #define JUMP_ALIGN(x) \
1240 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
1242 #define LOOP_ALIGN(x) \
1243 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
1245 #define LABEL_ALIGN(x) \
1246 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
1248 #define ASM_OUTPUT_ALIGN(stream, power) \
1249 fprintf (stream, "\t.align\t%d\n", power)
1252 /* Controlling Debugging Information Format. */
1254 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1256 #define DWARF2_DEBUGGING_INFO 1
1258 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1261 /* Cross Compilation and Floating Point. */
1264 /* Mode Switching Instructions. */
1267 /* Defining target-specific uses of __attribute__. */
1270 /* Emulating TLS. */
1273 /* Defining coprocessor specifics for MIPS targets. */
1276 /* Parameters for Precompiled Header Validity Checking. */
1279 /* C++ ABI parameters. */
1282 /* Adding support for named address spaces. */
1285 /* Miscellaneous Parameters. */
1287 /* This is the machine mode that elements of a jump-table should have. */
1288 #define CASE_VECTOR_MODE Pmode
1290 /* Return the preferred mode for and addr_diff_vec when the mininum
1291 and maximum offset are known. */
1292 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1293 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1294 : (max_offset >= 100) ? HImode \
1295 : QImode)
1297 /* Generate pc relative jump table when -fpic or -Os. */
1298 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1300 /* Define this macro if operations between registers with integral mode
1301 smaller than a word are always performed on the entire register. */
1302 #define WORD_REGISTER_OPERATIONS 1
1304 /* A C expression indicating when insns that read memory in mem_mode,
1305 an integral mode narrower than a word, set the bits outside of mem_mode
1306 to be either the sign-extension or the zero-extension of the data read. */
1307 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1309 /* The maximum number of bytes that a single instruction can move quickly
1310 between memory and registers or between two memory locations. */
1311 #define MOVE_MAX 4
1313 /* A C expression that is nonzero if on this machine the number of bits
1314 actually used for the count of a shift operation is equal to the number
1315 of bits needed to represent the size of the object being shifted. */
1316 #define SHIFT_COUNT_TRUNCATED 1
1318 /* A C expression describing the value returned by a comparison operator with
1319 an integral mode and stored by a store-flag instruction ('cstoremode4')
1320 when the condition is true. */
1321 #define STORE_FLAG_VALUE 1
1323 /* A C expression that indicates whether the architecture defines a value for
1324 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1325 in ISA spec */
1326 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1328 /* An alias for the machine mode for pointers. */
1329 #define Pmode SImode
1331 /* An alias for the machine mode used for memory references to functions
1332 being called, in call RTL expressions. */
1333 #define FUNCTION_MODE SImode
1335 /* ------------------------------------------------------------------------ */