1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
35 #include "tree-dump.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-pass.h"
43 #include "value-prof.h"
44 #include "pointer-set.h"
51 #include "graphite-ppl.h"
53 #include "graphite-poly.h"
55 /* Builds a linear expression, of dimension DIM, representing PDR's
58 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
60 For an array A[10][20] with two subscript locations s0 and s1, the
61 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
62 corresponds to a memory stride of 20.
64 OFFSET is a number of dimensions to prepend before the
65 subscript dimensions: s_0, s_1, ..., s_n.
67 Thus, the final linear expression has the following format:
68 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
69 where the expression itself is:
70 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
72 static ppl_Linear_Expression_t
73 build_linearized_memory_access (ppl_dimension_type offset
, poly_dr_p pdr
)
75 ppl_Linear_Expression_t res
;
76 ppl_Linear_Expression_t le
;
78 ppl_dimension_type first
= pdr_subscript_dim (pdr
, 0);
79 ppl_dimension_type last
= pdr_subscript_dim (pdr
, PDR_NB_SUBSCRIPTS (pdr
));
81 graphite_dim_t dim
= offset
+ pdr_dim (pdr
);
83 ppl_new_Linear_Expression_with_dimension (&res
, dim
);
88 mpz_set_si (sub_size
, 1);
90 for (i
= last
- 1; i
>= first
; i
--)
92 ppl_set_coef_gmp (res
, i
+ offset
, size
);
94 ppl_new_Linear_Expression_with_dimension (&le
, dim
- offset
);
95 ppl_set_coef (le
, i
, 1);
96 ppl_max_for_le_pointset (PDR_ACCESSES (pdr
), le
, sub_size
);
97 mpz_mul (size
, size
, sub_size
);
98 ppl_delete_Linear_Expression (le
);
101 mpz_clear (sub_size
);
106 /* Builds a partial difference equations and inserts them
107 into pointset powerset polyhedron P. Polyhedron is assumed
108 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
110 TIME_DEPTH is the time dimension w.r.t. which we are
112 OFFSET represents the number of dimensions between
113 columns t_{time_depth} and t'_{time_depth}.
114 DIM_SCTR is the number of scattering dimensions. It is
115 essentially the dimensionality of the T vector.
117 The following equations are inserted into the polyhedron P:
120 | t_{time_depth-1} = t'_{time_depth-1}
121 | t_{time_depth} = t'_{time_depth} + 1
122 | t_{time_depth+1} = t'_{time_depth + 1}
124 | t_{dim_sctr} = t'_{dim_sctr}. */
127 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t
*p
,
128 ppl_dimension_type time_depth
,
129 ppl_dimension_type offset
,
130 ppl_dimension_type dim_sctr
)
132 ppl_Constraint_t new_cstr
;
133 ppl_Linear_Expression_t le
;
134 ppl_dimension_type i
;
135 ppl_dimension_type dim
;
136 ppl_Pointset_Powerset_C_Polyhedron_t temp
;
138 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
139 This is the core part of this alogrithm, since this
140 constraint asks for the memory access stride (difference)
141 between two consecutive points in time dimensions. */
143 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p
, &dim
);
144 ppl_new_Linear_Expression_with_dimension (&le
, dim
);
145 ppl_set_coef (le
, time_depth
, 1);
146 ppl_set_coef (le
, time_depth
+ offset
, -1);
147 ppl_set_inhomogeneous (le
, 1);
148 ppl_new_Constraint (&new_cstr
, le
, PPL_CONSTRAINT_TYPE_EQUAL
);
149 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p
, new_cstr
);
150 ppl_delete_Linear_Expression (le
);
151 ppl_delete_Constraint (new_cstr
);
156 | t_{time_depth-1} = t'_{time_depth-1}
157 | t_{time_depth+1} = t'_{time_depth+1}
159 | t_{dim_sctr} = t'_{dim_sctr}
161 This means that all the time dimensions are equal except for
162 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
163 step. More to this: we should be carefull not to add equalities
164 to the 'coupled' dimensions, which happens when the one dimension
165 is stripmined dimension, and the other dimension corresponds
166 to the point loop inside stripmined dimension. */
168 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp
, *p
);
170 for (i
= 0; i
< dim_sctr
; i
++)
173 ppl_new_Linear_Expression_with_dimension (&le
, dim
);
174 ppl_set_coef (le
, i
, 1);
175 ppl_set_coef (le
, i
+ offset
, -1);
176 ppl_new_Constraint (&new_cstr
, le
, PPL_CONSTRAINT_TYPE_EQUAL
);
177 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp
, new_cstr
);
179 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp
))
181 ppl_delete_Pointset_Powerset_C_Polyhedron (temp
);
182 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp
, *p
);
185 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p
, new_cstr
);
186 ppl_delete_Linear_Expression (le
);
187 ppl_delete_Constraint (new_cstr
);
190 ppl_delete_Pointset_Powerset_C_Polyhedron (temp
);
194 /* Set STRIDE to the stride of PDR in memory by advancing by one in
195 the loop at DEPTH. */
198 pdr_stride_in_loop (mpz_t stride
, graphite_dim_t depth
, poly_dr_p pdr
)
200 ppl_dimension_type time_depth
;
201 ppl_Linear_Expression_t le
, lma
;
202 ppl_Constraint_t new_cstr
;
203 ppl_dimension_type i
, *map
;
204 ppl_Pointset_Powerset_C_Polyhedron_t p1
, p2
, sctr
;
205 graphite_dim_t nb_subscripts
= PDR_NB_SUBSCRIPTS (pdr
) + 1;
206 poly_bb_p pbb
= PDR_PBB (pdr
);
207 ppl_dimension_type offset
= pbb_nb_scattering_transform (pbb
)
208 + pbb_nb_local_vars (pbb
)
209 + pbb_dim_iter_domain (pbb
);
210 ppl_dimension_type offsetg
= offset
+ pbb_nb_params (pbb
);
211 ppl_dimension_type dim_sctr
= pbb_nb_scattering_transform (pbb
)
212 + pbb_nb_local_vars (pbb
);
213 ppl_dimension_type dim_L1
= offset
+ offsetg
+ 2 * nb_subscripts
;
214 ppl_dimension_type dim_L2
= offset
+ offsetg
+ 2 * nb_subscripts
+ 1;
215 ppl_dimension_type new_dim
= offset
+ offsetg
+ 2 * nb_subscripts
+ 2;
217 /* The resulting polyhedron should have the following format:
218 T|I|T'|I'|G|S|S'|l1|l2
220 | T = t_1..t_{dim_sctr}
221 | I = i_1..i_{dim_iter_domain}
222 | T'= t'_1..t'_{dim_sctr}
223 | I'= i'_1..i'_{dim_iter_domain}
224 | G = g_1..g_{nb_params}
225 | S = s_1..s_{nb_subscripts}
226 | S'= s'_1..s'_{nb_subscripts}
227 | l1 and l2 are scalars.
230 offset = dim_sctr + dim_iter_domain + nb_local_vars
231 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
233 /* Construct the T|I|0|0|G|0|0|0|0 part. */
235 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
236 (&sctr
, PBB_TRANSFORMED_SCATTERING (pbb
));
237 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
238 (sctr
, 2 * nb_subscripts
+ 2);
239 ppl_insert_dimensions_pointset (sctr
, offset
, offset
);
242 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
244 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
245 (&p1
, PDR_ACCESSES (pdr
));
246 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
247 (p1
, nb_subscripts
+ 2);
248 ppl_insert_dimensions_pointset (p1
, 0, dim_sctr
);
249 ppl_insert_dimensions_pointset (p1
, offset
, offset
);
252 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
254 lma
= build_linearized_memory_access (offset
+ dim_sctr
, pdr
);
255 ppl_set_coef (lma
, dim_L1
, -1);
256 ppl_new_Constraint (&new_cstr
, lma
, PPL_CONSTRAINT_TYPE_EQUAL
);
257 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1
, new_cstr
);
258 ppl_delete_Linear_Expression (lma
);
259 ppl_delete_Constraint (new_cstr
);
262 /* Now intersect all the parts to get the polyhedron P1:
267 T|I|0|0|G|S|0|l1|0. */
269 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1
, sctr
);
270 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr
);
272 /* Build P2, which would have the following form:
273 0|0|T'|I'|G|0|S'|0|l2
275 P2 is built, by remapping the P1 polyhedron:
278 using the following mapping:
284 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
287 map
= ppl_new_id_map (new_dim
);
290 for (i
= 0; i
< offset
; i
++)
291 ppl_interchange (map
, i
, i
+ offset
);
294 ppl_interchange (map
, dim_L1
, dim_L2
);
297 for (i
= 0; i
< nb_subscripts
; i
++)
298 ppl_interchange (map
, offset
+ offsetg
+ i
,
299 offset
+ offsetg
+ nb_subscripts
+ i
);
301 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2
, map
, new_dim
);
305 time_depth
= psct_dynamic_dim (pbb
, depth
);
307 /* P1 = P1 inter P2. */
308 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1
, p2
);
309 build_partial_difference (&p1
, time_depth
, offset
, dim_sctr
);
311 /* Maximise the expression L2 - L1. */
313 ppl_new_Linear_Expression_with_dimension (&le
, new_dim
);
314 ppl_set_coef (le
, dim_L2
, 1);
315 ppl_set_coef (le
, dim_L1
, -1);
316 ppl_max_for_le_pointset (p1
, le
, stride
);
319 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
322 void (*gmp_free
) (void *, size_t);
324 fprintf (dump_file
, "\nStride in BB_%d, DR_%d, depth %d:",
325 pbb_index (pbb
), PDR_ID (pdr
), (int) depth
);
326 str
= mpz_get_str (0, 10, stride
);
327 fprintf (dump_file
, " %s ", str
);
328 mp_get_memory_functions (NULL
, NULL
, &gmp_free
);
329 (*gmp_free
) (str
, strlen (str
) + 1);
332 ppl_delete_Pointset_Powerset_C_Polyhedron (p1
);
333 ppl_delete_Pointset_Powerset_C_Polyhedron (p2
);
334 ppl_delete_Linear_Expression (le
);
338 /* Sets STRIDES to the sum of all the strides of the data references
339 accessed in LOOP at DEPTH. */
342 memory_strides_in_loop_1 (lst_p loop
, graphite_dim_t depth
, mpz_t strides
)
352 FOR_EACH_VEC_ELT (lst_p
, LST_SEQ (loop
), j
, l
)
354 memory_strides_in_loop_1 (l
, depth
, strides
);
356 FOR_EACH_VEC_ELT (poly_dr_p
, PBB_DRS (LST_PBB (l
)), i
, pdr
)
358 pdr_stride_in_loop (s
, depth
, pdr
);
359 mpz_set_si (n
, PDR_NB_REFS (pdr
));
361 mpz_add (strides
, strides
, s
);
368 /* Sets STRIDES to the sum of all the strides of the data references
369 accessed in LOOP at DEPTH. */
372 memory_strides_in_loop (lst_p loop
, graphite_dim_t depth
, mpz_t strides
)
374 if (mpz_cmp_si (loop
->memory_strides
, -1) == 0)
376 mpz_set_si (strides
, 0);
377 memory_strides_in_loop_1 (loop
, depth
, strides
);
380 mpz_set (strides
, loop
->memory_strides
);
383 /* Return true when the interchange of loops LOOP1 and LOOP2 is
396 | for (i = 0; i < N; i++)
397 | for (j = 0; j < N; j++)
403 The data access A[j][i] is described like this:
411 | 0 0 0 0 -1 0 100 >= 0
412 | 0 0 0 0 0 -1 100 >= 0
414 The linearized memory access L to A[100][100] is:
419 TODO: the shown format is not valid as it does not show the fact
420 that the iteration domain "i j" is transformed using the scattering.
422 Next, to measure the impact of iterating once in loop "i", we build
423 a maximization problem: first, we add to DR accesses the dimensions
424 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
425 L1 and L2 are the linearized memory access functions.
427 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
428 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
429 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
430 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
431 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
432 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
433 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
434 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
435 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
437 Then, we generate the polyhedron P2 by interchanging the dimensions
438 (s0, s2), (s1, s3), (L1, L2), (k, i)
440 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
441 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
442 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
443 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
444 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
445 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
446 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
447 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
448 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
450 then we add to P2 the equality k = i + 1:
452 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
454 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
456 Similarly, to determine the impact of one iteration on loop "j", we
457 interchange (k, j), we add "k = j + 1", and we compute D2 the
458 maximal value of the difference.
460 Finally, the profitability test is D1 < D2: if in the outer loop
461 the strides are smaller than in the inner loop, then it is
462 profitable to interchange the loops at DEPTH1 and DEPTH2. */
465 lst_interchange_profitable_p (lst_p loop1
, lst_p loop2
)
470 gcc_assert (loop1
&& loop2
471 && LST_LOOP_P (loop1
) && LST_LOOP_P (loop2
)
472 && lst_depth (loop1
) < lst_depth (loop2
));
477 memory_strides_in_loop (loop1
, lst_depth (loop1
), d1
);
478 memory_strides_in_loop (loop2
, lst_depth (loop2
), d2
);
480 res
= mpz_cmp (d1
, d2
) < 0;
488 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
489 scattering and assigns the resulting polyhedron to the transformed
493 pbb_interchange_loop_depths (graphite_dim_t depth1
, graphite_dim_t depth2
,
496 ppl_dimension_type i
, dim
;
497 ppl_dimension_type
*map
;
498 ppl_Polyhedron_t poly
= PBB_TRANSFORMED_SCATTERING (pbb
);
499 ppl_dimension_type dim1
= psct_dynamic_dim (pbb
, depth1
);
500 ppl_dimension_type dim2
= psct_dynamic_dim (pbb
, depth2
);
502 ppl_Polyhedron_space_dimension (poly
, &dim
);
503 map
= (ppl_dimension_type
*) XNEWVEC (ppl_dimension_type
, dim
);
505 for (i
= 0; i
< dim
; i
++)
511 ppl_Polyhedron_map_space_dimensions (poly
, map
, dim
);
515 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
516 the statements below LST. */
519 lst_apply_interchange (lst_p lst
, int depth1
, int depth2
)
524 if (LST_LOOP_P (lst
))
529 FOR_EACH_VEC_ELT (lst_p
, LST_SEQ (lst
), i
, l
)
530 lst_apply_interchange (l
, depth1
, depth2
);
533 pbb_interchange_loop_depths (depth1
, depth2
, LST_PBB (lst
));
536 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
537 perfect: i.e. there are no sequence of statements. */
540 lst_perfectly_nested_p (lst_p loop1
, lst_p loop2
)
545 if (!LST_LOOP_P (loop1
))
548 return VEC_length (lst_p
, LST_SEQ (loop1
)) == 1
549 && lst_perfectly_nested_p (VEC_index (lst_p
, LST_SEQ (loop1
), 0), loop2
);
552 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
553 nest. To continue the naming tradition, this function is called
554 after perfect_nestify. NEST is set to the perfectly nested loop
555 that is created. BEFORE/AFTER are set to the loops distributed
556 before/after the loop NEST. */
559 lst_perfect_nestify (lst_p loop1
, lst_p loop2
, lst_p
*before
,
560 lst_p
*nest
, lst_p
*after
)
562 poly_bb_p first
, last
;
564 gcc_assert (loop1
&& loop2
566 && LST_LOOP_P (loop1
) && LST_LOOP_P (loop2
));
568 first
= LST_PBB (lst_find_first_pbb (loop2
));
569 last
= LST_PBB (lst_find_last_pbb (loop2
));
571 *before
= copy_lst (loop1
);
572 *nest
= copy_lst (loop1
);
573 *after
= copy_lst (loop1
);
575 lst_remove_all_before_including_pbb (*before
, first
, false);
576 lst_remove_all_before_including_pbb (*after
, last
, true);
578 lst_remove_all_before_excluding_pbb (*nest
, first
, true);
579 lst_remove_all_before_excluding_pbb (*nest
, last
, false);
581 if (lst_empty_p (*before
))
586 if (lst_empty_p (*after
))
591 if (lst_empty_p (*nest
))
598 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
599 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
603 lst_try_interchange_loops (scop_p scop
, lst_p loop1
, lst_p loop2
)
605 int depth1
= lst_depth (loop1
);
606 int depth2
= lst_depth (loop2
);
609 lst_p before
= NULL
, nest
= NULL
, after
= NULL
;
611 if (!lst_interchange_profitable_p (loop1
, loop2
))
614 if (!lst_perfectly_nested_p (loop1
, loop2
))
615 lst_perfect_nestify (loop1
, loop2
, &before
, &nest
, &after
);
617 lst_apply_interchange (loop2
, depth1
, depth2
);
619 /* Sync the transformed LST information and the PBB scatterings
620 before using the scatterings in the data dependence analysis. */
621 if (before
|| nest
|| after
)
623 transformed
= lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop
), loop1
,
624 before
, nest
, after
);
625 lst_update_scattering (transformed
);
626 free_lst (transformed
);
629 if (graphite_legal_transform (scop
))
631 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
633 "Loops at depths %d and %d will be interchanged.\n",
636 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
637 lst_insert_in_sequence (before
, loop1
, true);
638 lst_insert_in_sequence (after
, loop1
, false);
642 lst_replace (loop1
, nest
);
649 /* Undo the transform. */
653 lst_apply_interchange (loop2
, depth2
, depth1
);
657 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
658 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
661 lst_interchange_select_inner (scop_p scop
, lst_p outer_father
, int outer
,
667 gcc_assert (outer_father
668 && LST_LOOP_P (outer_father
)
669 && LST_LOOP_P (VEC_index (lst_p
, LST_SEQ (outer_father
), outer
))
671 && LST_LOOP_P (inner_father
));
673 loop1
= VEC_index (lst_p
, LST_SEQ (outer_father
), outer
);
675 FOR_EACH_VEC_ELT (lst_p
, LST_SEQ (inner_father
), inner
, loop2
)
676 if (LST_LOOP_P (loop2
)
677 && (lst_try_interchange_loops (scop
, loop1
, loop2
)
678 || lst_interchange_select_inner (scop
, outer_father
, outer
, loop2
)))
684 /* Interchanges all the loops of LOOP and the loops of its body that
685 are considered profitable to interchange. Return true if it did
686 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
687 points to the next outer loop to be considered for interchange. */
690 lst_interchange_select_outer (scop_p scop
, lst_p loop
, int outer
)
697 if (!loop
|| !LST_LOOP_P (loop
))
700 father
= LST_LOOP_FATHER (loop
);
703 while (lst_interchange_select_inner (scop
, father
, outer
, loop
))
706 loop
= VEC_index (lst_p
, LST_SEQ (father
), outer
);
710 if (LST_LOOP_P (loop
))
711 FOR_EACH_VEC_ELT (lst_p
, LST_SEQ (loop
), i
, l
)
713 res
|= lst_interchange_select_outer (scop
, l
, i
);
718 /* Interchanges all the loop depths that are considered profitable for SCOP. */
721 scop_do_interchange (scop_p scop
)
723 bool res
= lst_interchange_select_outer
724 (scop
, SCOP_TRANSFORMED_SCHEDULE (scop
), 0);
726 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop
));