make noop_move_p take a rtx_insn *
[official-gcc.git] / gcc / rtlanal.c
blob9760babbe4ca60bc9dd7a86320b570d34c0ca354
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "hashtab.h"
36 #include "hash-set.h"
37 #include "vec.h"
38 #include "machmode.h"
39 #include "input.h"
40 #include "function.h"
41 #include "predict.h"
42 #include "basic-block.h"
43 #include "df.h"
44 #include "symtab.h"
45 #include "wide-int.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
49 #include "addresses.h"
50 #include "rtl-iter.h"
52 /* Forward declarations */
53 static void set_of_1 (rtx, const_rtx, void *);
54 static bool covers_regno_p (const_rtx, unsigned int);
55 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
56 static int computed_jump_p_1 (const_rtx);
57 static void parms_set (rtx, const_rtx, void *);
59 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
60 const_rtx, machine_mode,
61 unsigned HOST_WIDE_INT);
62 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
63 const_rtx, machine_mode,
64 unsigned HOST_WIDE_INT);
65 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
66 machine_mode,
67 unsigned int);
68 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
69 machine_mode, unsigned int);
71 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
72 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
74 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
75 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
76 SIGN_EXTEND then while narrowing we also have to enforce the
77 representation and sign-extend the value to mode DESTINATION_REP.
79 If the value is already sign-extended to DESTINATION_REP mode we
80 can just switch to DESTINATION mode on it. For each pair of
81 integral modes SOURCE and DESTINATION, when truncating from SOURCE
82 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
83 contains the number of high-order bits in SOURCE that have to be
84 copies of the sign-bit so that we can do this mode-switch to
85 DESTINATION. */
87 static unsigned int
88 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
90 /* Store X into index I of ARRAY. ARRAY is known to have at least I
91 elements. Return the new base of ARRAY. */
93 template <typename T>
94 typename T::value_type *
95 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
96 value_type *base,
97 size_t i, value_type x)
99 if (base == array.stack)
101 if (i < LOCAL_ELEMS)
103 base[i] = x;
104 return base;
106 gcc_checking_assert (i == LOCAL_ELEMS);
107 vec_safe_grow (array.heap, i + 1);
108 base = array.heap->address ();
109 memcpy (base, array.stack, sizeof (array.stack));
110 base[LOCAL_ELEMS] = x;
111 return base;
113 unsigned int length = array.heap->length ();
114 if (length > i)
116 gcc_checking_assert (base == array.heap->address ());
117 base[i] = x;
118 return base;
120 else
122 gcc_checking_assert (i == length);
123 vec_safe_push (array.heap, x);
124 return array.heap->address ();
128 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
129 number of elements added to the worklist. */
131 template <typename T>
132 size_t
133 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
134 value_type *base,
135 size_t end, rtx_type x)
137 enum rtx_code code = GET_CODE (x);
138 const char *format = GET_RTX_FORMAT (code);
139 size_t orig_end = end;
140 if (__builtin_expect (INSN_P (x), false))
142 /* Put the pattern at the top of the queue, since that's what
143 we're likely to want most. It also allows for the SEQUENCE
144 code below. */
145 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
146 if (format[i] == 'e')
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
155 else
156 for (int i = 0; format[i]; ++i)
157 if (format[i] == 'e')
159 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
160 if (__builtin_expect (end < LOCAL_ELEMS, true))
161 base[end++] = subx;
162 else
163 base = add_single_to_queue (array, base, end++, subx);
165 else if (format[i] == 'E')
167 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
168 rtx *vec = x->u.fld[i].rt_rtvec->elem;
169 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
170 for (unsigned int j = 0; j < length; j++)
171 base[end++] = T::get_value (vec[j]);
172 else
173 for (unsigned int j = 0; j < length; j++)
174 base = add_single_to_queue (array, base, end++,
175 T::get_value (vec[j]));
176 if (code == SEQUENCE && end == length)
177 /* If the subrtxes of the sequence fill the entire array then
178 we know that no other parts of a containing insn are queued.
179 The caller is therefore iterating over the sequence as a
180 PATTERN (...), so we also want the patterns of the
181 subinstructions. */
182 for (unsigned int j = 0; j < length; j++)
184 typename T::rtx_type x = T::get_rtx (base[j]);
185 if (INSN_P (x))
186 base[j] = T::get_value (PATTERN (x));
189 return end - orig_end;
192 template <typename T>
193 void
194 generic_subrtx_iterator <T>::free_array (array_type &array)
196 vec_free (array.heap);
199 template <typename T>
200 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
202 template class generic_subrtx_iterator <const_rtx_accessor>;
203 template class generic_subrtx_iterator <rtx_var_accessor>;
204 template class generic_subrtx_iterator <rtx_ptr_accessor>;
206 /* Return 1 if the value of X is unstable
207 (would be different at a different point in the program).
208 The frame pointer, arg pointer, etc. are considered stable
209 (within one function) and so is anything marked `unchanging'. */
212 rtx_unstable_p (const_rtx x)
214 const RTX_CODE code = GET_CODE (x);
215 int i;
216 const char *fmt;
218 switch (code)
220 case MEM:
221 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
223 case CONST:
224 CASE_CONST_ANY:
225 case SYMBOL_REF:
226 case LABEL_REF:
227 return 0;
229 case REG:
230 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
231 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
232 /* The arg pointer varies if it is not a fixed register. */
233 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
234 return 0;
235 /* ??? When call-clobbered, the value is stable modulo the restore
236 that must happen after a call. This currently screws up local-alloc
237 into believing that the restore is not needed. */
238 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
239 return 0;
240 return 1;
242 case ASM_OPERANDS:
243 if (MEM_VOLATILE_P (x))
244 return 1;
246 /* Fall through. */
248 default:
249 break;
252 fmt = GET_RTX_FORMAT (code);
253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
254 if (fmt[i] == 'e')
256 if (rtx_unstable_p (XEXP (x, i)))
257 return 1;
259 else if (fmt[i] == 'E')
261 int j;
262 for (j = 0; j < XVECLEN (x, i); j++)
263 if (rtx_unstable_p (XVECEXP (x, i, j)))
264 return 1;
267 return 0;
270 /* Return 1 if X has a value that can vary even between two
271 executions of the program. 0 means X can be compared reliably
272 against certain constants or near-constants.
273 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
274 zero, we are slightly more conservative.
275 The frame pointer and the arg pointer are considered constant. */
277 bool
278 rtx_varies_p (const_rtx x, bool for_alias)
280 RTX_CODE code;
281 int i;
282 const char *fmt;
284 if (!x)
285 return 0;
287 code = GET_CODE (x);
288 switch (code)
290 case MEM:
291 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
293 case CONST:
294 CASE_CONST_ANY:
295 case SYMBOL_REF:
296 case LABEL_REF:
297 return 0;
299 case REG:
300 /* Note that we have to test for the actual rtx used for the frame
301 and arg pointers and not just the register number in case we have
302 eliminated the frame and/or arg pointer and are using it
303 for pseudos. */
304 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
305 /* The arg pointer varies if it is not a fixed register. */
306 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
307 return 0;
308 if (x == pic_offset_table_rtx
309 /* ??? When call-clobbered, the value is stable modulo the restore
310 that must happen after a call. This currently screws up
311 local-alloc into believing that the restore is not needed, so we
312 must return 0 only if we are called from alias analysis. */
313 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
314 return 0;
315 return 1;
317 case LO_SUM:
318 /* The operand 0 of a LO_SUM is considered constant
319 (in fact it is related specifically to operand 1)
320 during alias analysis. */
321 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
322 || rtx_varies_p (XEXP (x, 1), for_alias);
324 case ASM_OPERANDS:
325 if (MEM_VOLATILE_P (x))
326 return 1;
328 /* Fall through. */
330 default:
331 break;
334 fmt = GET_RTX_FORMAT (code);
335 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
336 if (fmt[i] == 'e')
338 if (rtx_varies_p (XEXP (x, i), for_alias))
339 return 1;
341 else if (fmt[i] == 'E')
343 int j;
344 for (j = 0; j < XVECLEN (x, i); j++)
345 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
346 return 1;
349 return 0;
352 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
353 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
354 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
355 references on strict alignment machines. */
357 static int
358 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
359 machine_mode mode, bool unaligned_mems)
361 enum rtx_code code = GET_CODE (x);
363 /* The offset must be a multiple of the mode size if we are considering
364 unaligned memory references on strict alignment machines. */
365 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
367 HOST_WIDE_INT actual_offset = offset;
369 #ifdef SPARC_STACK_BOUNDARY_HACK
370 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
371 the real alignment of %sp. However, when it does this, the
372 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
373 if (SPARC_STACK_BOUNDARY_HACK
374 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
375 actual_offset -= STACK_POINTER_OFFSET;
376 #endif
378 if (actual_offset % GET_MODE_SIZE (mode) != 0)
379 return 1;
382 switch (code)
384 case SYMBOL_REF:
385 if (SYMBOL_REF_WEAK (x))
386 return 1;
387 if (!CONSTANT_POOL_ADDRESS_P (x))
389 tree decl;
390 HOST_WIDE_INT decl_size;
392 if (offset < 0)
393 return 1;
394 if (size == 0)
395 size = GET_MODE_SIZE (mode);
396 if (size == 0)
397 return offset != 0;
399 /* If the size of the access or of the symbol is unknown,
400 assume the worst. */
401 decl = SYMBOL_REF_DECL (x);
403 /* Else check that the access is in bounds. TODO: restructure
404 expr_size/tree_expr_size/int_expr_size and just use the latter. */
405 if (!decl)
406 decl_size = -1;
407 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
408 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
409 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
410 : -1);
411 else if (TREE_CODE (decl) == STRING_CST)
412 decl_size = TREE_STRING_LENGTH (decl);
413 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
414 decl_size = int_size_in_bytes (TREE_TYPE (decl));
415 else
416 decl_size = -1;
418 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
421 return 0;
423 case LABEL_REF:
424 return 0;
426 case REG:
427 /* Stack references are assumed not to trap, but we need to deal with
428 nonsensical offsets. */
429 if (x == frame_pointer_rtx)
431 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
432 if (size == 0)
433 size = GET_MODE_SIZE (mode);
434 if (FRAME_GROWS_DOWNWARD)
436 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
437 return 1;
439 else
441 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
442 return 1;
444 return 0;
446 /* ??? Need to add a similar guard for nonsensical offsets. */
447 if (x == hard_frame_pointer_rtx
448 || x == stack_pointer_rtx
449 /* The arg pointer varies if it is not a fixed register. */
450 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
451 return 0;
452 /* All of the virtual frame registers are stack references. */
453 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
454 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
455 return 0;
456 return 1;
458 case CONST:
459 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
460 mode, unaligned_mems);
462 case PLUS:
463 /* An address is assumed not to trap if:
464 - it is the pic register plus a constant. */
465 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
466 return 0;
468 /* - or it is an address that can't trap plus a constant integer. */
469 if (CONST_INT_P (XEXP (x, 1))
470 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
471 size, mode, unaligned_mems))
472 return 0;
474 return 1;
476 case LO_SUM:
477 case PRE_MODIFY:
478 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
479 mode, unaligned_mems);
481 case PRE_DEC:
482 case PRE_INC:
483 case POST_DEC:
484 case POST_INC:
485 case POST_MODIFY:
486 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
487 mode, unaligned_mems);
489 default:
490 break;
493 /* If it isn't one of the case above, it can cause a trap. */
494 return 1;
497 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
500 rtx_addr_can_trap_p (const_rtx x)
502 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
505 /* Return true if X is an address that is known to not be zero. */
507 bool
508 nonzero_address_p (const_rtx x)
510 const enum rtx_code code = GET_CODE (x);
512 switch (code)
514 case SYMBOL_REF:
515 return !SYMBOL_REF_WEAK (x);
517 case LABEL_REF:
518 return true;
520 case REG:
521 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
522 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
523 || x == stack_pointer_rtx
524 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
525 return true;
526 /* All of the virtual frame registers are stack references. */
527 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
528 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
529 return true;
530 return false;
532 case CONST:
533 return nonzero_address_p (XEXP (x, 0));
535 case PLUS:
536 /* Handle PIC references. */
537 if (XEXP (x, 0) == pic_offset_table_rtx
538 && CONSTANT_P (XEXP (x, 1)))
539 return true;
540 return false;
542 case PRE_MODIFY:
543 /* Similar to the above; allow positive offsets. Further, since
544 auto-inc is only allowed in memories, the register must be a
545 pointer. */
546 if (CONST_INT_P (XEXP (x, 1))
547 && INTVAL (XEXP (x, 1)) > 0)
548 return true;
549 return nonzero_address_p (XEXP (x, 0));
551 case PRE_INC:
552 /* Similarly. Further, the offset is always positive. */
553 return true;
555 case PRE_DEC:
556 case POST_DEC:
557 case POST_INC:
558 case POST_MODIFY:
559 return nonzero_address_p (XEXP (x, 0));
561 case LO_SUM:
562 return nonzero_address_p (XEXP (x, 1));
564 default:
565 break;
568 /* If it isn't one of the case above, might be zero. */
569 return false;
572 /* Return 1 if X refers to a memory location whose address
573 cannot be compared reliably with constant addresses,
574 or if X refers to a BLKmode memory object.
575 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
576 zero, we are slightly more conservative. */
578 bool
579 rtx_addr_varies_p (const_rtx x, bool for_alias)
581 enum rtx_code code;
582 int i;
583 const char *fmt;
585 if (x == 0)
586 return 0;
588 code = GET_CODE (x);
589 if (code == MEM)
590 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
592 fmt = GET_RTX_FORMAT (code);
593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
594 if (fmt[i] == 'e')
596 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
597 return 1;
599 else if (fmt[i] == 'E')
601 int j;
602 for (j = 0; j < XVECLEN (x, i); j++)
603 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
604 return 1;
606 return 0;
609 /* Return the CALL in X if there is one. */
612 get_call_rtx_from (rtx x)
614 if (INSN_P (x))
615 x = PATTERN (x);
616 if (GET_CODE (x) == PARALLEL)
617 x = XVECEXP (x, 0, 0);
618 if (GET_CODE (x) == SET)
619 x = SET_SRC (x);
620 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
621 return x;
622 return NULL_RTX;
625 /* Return the value of the integer term in X, if one is apparent;
626 otherwise return 0.
627 Only obvious integer terms are detected.
628 This is used in cse.c with the `related_value' field. */
630 HOST_WIDE_INT
631 get_integer_term (const_rtx x)
633 if (GET_CODE (x) == CONST)
634 x = XEXP (x, 0);
636 if (GET_CODE (x) == MINUS
637 && CONST_INT_P (XEXP (x, 1)))
638 return - INTVAL (XEXP (x, 1));
639 if (GET_CODE (x) == PLUS
640 && CONST_INT_P (XEXP (x, 1)))
641 return INTVAL (XEXP (x, 1));
642 return 0;
645 /* If X is a constant, return the value sans apparent integer term;
646 otherwise return 0.
647 Only obvious integer terms are detected. */
650 get_related_value (const_rtx x)
652 if (GET_CODE (x) != CONST)
653 return 0;
654 x = XEXP (x, 0);
655 if (GET_CODE (x) == PLUS
656 && CONST_INT_P (XEXP (x, 1)))
657 return XEXP (x, 0);
658 else if (GET_CODE (x) == MINUS
659 && CONST_INT_P (XEXP (x, 1)))
660 return XEXP (x, 0);
661 return 0;
664 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
665 to somewhere in the same object or object_block as SYMBOL. */
667 bool
668 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
670 tree decl;
672 if (GET_CODE (symbol) != SYMBOL_REF)
673 return false;
675 if (offset == 0)
676 return true;
678 if (offset > 0)
680 if (CONSTANT_POOL_ADDRESS_P (symbol)
681 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
682 return true;
684 decl = SYMBOL_REF_DECL (symbol);
685 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
686 return true;
689 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
690 && SYMBOL_REF_BLOCK (symbol)
691 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
692 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
693 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
694 return true;
696 return false;
699 /* Split X into a base and a constant offset, storing them in *BASE_OUT
700 and *OFFSET_OUT respectively. */
702 void
703 split_const (rtx x, rtx *base_out, rtx *offset_out)
705 if (GET_CODE (x) == CONST)
707 x = XEXP (x, 0);
708 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
710 *base_out = XEXP (x, 0);
711 *offset_out = XEXP (x, 1);
712 return;
715 *base_out = x;
716 *offset_out = const0_rtx;
719 /* Return the number of places FIND appears within X. If COUNT_DEST is
720 zero, we do not count occurrences inside the destination of a SET. */
723 count_occurrences (const_rtx x, const_rtx find, int count_dest)
725 int i, j;
726 enum rtx_code code;
727 const char *format_ptr;
728 int count;
730 if (x == find)
731 return 1;
733 code = GET_CODE (x);
735 switch (code)
737 case REG:
738 CASE_CONST_ANY:
739 case SYMBOL_REF:
740 case CODE_LABEL:
741 case PC:
742 case CC0:
743 return 0;
745 case EXPR_LIST:
746 count = count_occurrences (XEXP (x, 0), find, count_dest);
747 if (XEXP (x, 1))
748 count += count_occurrences (XEXP (x, 1), find, count_dest);
749 return count;
751 case MEM:
752 if (MEM_P (find) && rtx_equal_p (x, find))
753 return 1;
754 break;
756 case SET:
757 if (SET_DEST (x) == find && ! count_dest)
758 return count_occurrences (SET_SRC (x), find, count_dest);
759 break;
761 default:
762 break;
765 format_ptr = GET_RTX_FORMAT (code);
766 count = 0;
768 for (i = 0; i < GET_RTX_LENGTH (code); i++)
770 switch (*format_ptr++)
772 case 'e':
773 count += count_occurrences (XEXP (x, i), find, count_dest);
774 break;
776 case 'E':
777 for (j = 0; j < XVECLEN (x, i); j++)
778 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
779 break;
782 return count;
786 /* Return TRUE if OP is a register or subreg of a register that
787 holds an unsigned quantity. Otherwise, return FALSE. */
789 bool
790 unsigned_reg_p (rtx op)
792 if (REG_P (op)
793 && REG_EXPR (op)
794 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
795 return true;
797 if (GET_CODE (op) == SUBREG
798 && SUBREG_PROMOTED_SIGN (op))
799 return true;
801 return false;
805 /* Nonzero if register REG appears somewhere within IN.
806 Also works if REG is not a register; in this case it checks
807 for a subexpression of IN that is Lisp "equal" to REG. */
810 reg_mentioned_p (const_rtx reg, const_rtx in)
812 const char *fmt;
813 int i;
814 enum rtx_code code;
816 if (in == 0)
817 return 0;
819 if (reg == in)
820 return 1;
822 if (GET_CODE (in) == LABEL_REF)
823 return reg == LABEL_REF_LABEL (in);
825 code = GET_CODE (in);
827 switch (code)
829 /* Compare registers by number. */
830 case REG:
831 return REG_P (reg) && REGNO (in) == REGNO (reg);
833 /* These codes have no constituent expressions
834 and are unique. */
835 case SCRATCH:
836 case CC0:
837 case PC:
838 return 0;
840 CASE_CONST_ANY:
841 /* These are kept unique for a given value. */
842 return 0;
844 default:
845 break;
848 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
849 return 1;
851 fmt = GET_RTX_FORMAT (code);
853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
855 if (fmt[i] == 'E')
857 int j;
858 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
859 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
860 return 1;
862 else if (fmt[i] == 'e'
863 && reg_mentioned_p (reg, XEXP (in, i)))
864 return 1;
866 return 0;
869 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
870 no CODE_LABEL insn. */
873 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
875 rtx_insn *p;
876 if (beg == end)
877 return 0;
878 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
879 if (LABEL_P (p))
880 return 0;
881 return 1;
884 /* Nonzero if register REG is used in an insn between
885 FROM_INSN and TO_INSN (exclusive of those two). */
888 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
889 const rtx_insn *to_insn)
891 rtx_insn *insn;
893 if (from_insn == to_insn)
894 return 0;
896 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
897 if (NONDEBUG_INSN_P (insn)
898 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
899 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
900 return 1;
901 return 0;
904 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
905 is entirely replaced by a new value and the only use is as a SET_DEST,
906 we do not consider it a reference. */
909 reg_referenced_p (const_rtx x, const_rtx body)
911 int i;
913 switch (GET_CODE (body))
915 case SET:
916 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
917 return 1;
919 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
920 of a REG that occupies all of the REG, the insn references X if
921 it is mentioned in the destination. */
922 if (GET_CODE (SET_DEST (body)) != CC0
923 && GET_CODE (SET_DEST (body)) != PC
924 && !REG_P (SET_DEST (body))
925 && ! (GET_CODE (SET_DEST (body)) == SUBREG
926 && REG_P (SUBREG_REG (SET_DEST (body)))
927 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
928 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
929 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
930 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
931 && reg_overlap_mentioned_p (x, SET_DEST (body)))
932 return 1;
933 return 0;
935 case ASM_OPERANDS:
936 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
937 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
938 return 1;
939 return 0;
941 case CALL:
942 case USE:
943 case IF_THEN_ELSE:
944 return reg_overlap_mentioned_p (x, body);
946 case TRAP_IF:
947 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
949 case PREFETCH:
950 return reg_overlap_mentioned_p (x, XEXP (body, 0));
952 case UNSPEC:
953 case UNSPEC_VOLATILE:
954 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
955 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
956 return 1;
957 return 0;
959 case PARALLEL:
960 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
961 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
962 return 1;
963 return 0;
965 case CLOBBER:
966 if (MEM_P (XEXP (body, 0)))
967 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
968 return 1;
969 return 0;
971 case COND_EXEC:
972 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
973 return 1;
974 return reg_referenced_p (x, COND_EXEC_CODE (body));
976 default:
977 return 0;
981 /* Nonzero if register REG is set or clobbered in an insn between
982 FROM_INSN and TO_INSN (exclusive of those two). */
985 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
986 const rtx_insn *to_insn)
988 const rtx_insn *insn;
990 if (from_insn == to_insn)
991 return 0;
993 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
994 if (INSN_P (insn) && reg_set_p (reg, insn))
995 return 1;
996 return 0;
999 /* Internals of reg_set_between_p. */
1001 reg_set_p (const_rtx reg, const_rtx insn)
1003 /* After delay slot handling, call and branch insns might be in a
1004 sequence. Check all the elements there. */
1005 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1007 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1008 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1009 return true;
1011 return false;
1014 /* We can be passed an insn or part of one. If we are passed an insn,
1015 check if a side-effect of the insn clobbers REG. */
1016 if (INSN_P (insn)
1017 && (FIND_REG_INC_NOTE (insn, reg)
1018 || (CALL_P (insn)
1019 && ((REG_P (reg)
1020 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1021 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1022 GET_MODE (reg), REGNO (reg)))
1023 || MEM_P (reg)
1024 || find_reg_fusage (insn, CLOBBER, reg)))))
1025 return true;
1027 return set_of (reg, insn) != NULL_RTX;
1030 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1031 only if none of them are modified between START and END. Return 1 if
1032 X contains a MEM; this routine does use memory aliasing. */
1035 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1037 const enum rtx_code code = GET_CODE (x);
1038 const char *fmt;
1039 int i, j;
1040 rtx_insn *insn;
1042 if (start == end)
1043 return 0;
1045 switch (code)
1047 CASE_CONST_ANY:
1048 case CONST:
1049 case SYMBOL_REF:
1050 case LABEL_REF:
1051 return 0;
1053 case PC:
1054 case CC0:
1055 return 1;
1057 case MEM:
1058 if (modified_between_p (XEXP (x, 0), start, end))
1059 return 1;
1060 if (MEM_READONLY_P (x))
1061 return 0;
1062 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1063 if (memory_modified_in_insn_p (x, insn))
1064 return 1;
1065 return 0;
1066 break;
1068 case REG:
1069 return reg_set_between_p (x, start, end);
1071 default:
1072 break;
1075 fmt = GET_RTX_FORMAT (code);
1076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1078 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1079 return 1;
1081 else if (fmt[i] == 'E')
1082 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1083 if (modified_between_p (XVECEXP (x, i, j), start, end))
1084 return 1;
1087 return 0;
1090 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1091 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1092 does use memory aliasing. */
1095 modified_in_p (const_rtx x, const_rtx insn)
1097 const enum rtx_code code = GET_CODE (x);
1098 const char *fmt;
1099 int i, j;
1101 switch (code)
1103 CASE_CONST_ANY:
1104 case CONST:
1105 case SYMBOL_REF:
1106 case LABEL_REF:
1107 return 0;
1109 case PC:
1110 case CC0:
1111 return 1;
1113 case MEM:
1114 if (modified_in_p (XEXP (x, 0), insn))
1115 return 1;
1116 if (MEM_READONLY_P (x))
1117 return 0;
1118 if (memory_modified_in_insn_p (x, insn))
1119 return 1;
1120 return 0;
1121 break;
1123 case REG:
1124 return reg_set_p (x, insn);
1126 default:
1127 break;
1130 fmt = GET_RTX_FORMAT (code);
1131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1133 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1134 return 1;
1136 else if (fmt[i] == 'E')
1137 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1138 if (modified_in_p (XVECEXP (x, i, j), insn))
1139 return 1;
1142 return 0;
1145 /* Helper function for set_of. */
1146 struct set_of_data
1148 const_rtx found;
1149 const_rtx pat;
1152 static void
1153 set_of_1 (rtx x, const_rtx pat, void *data1)
1155 struct set_of_data *const data = (struct set_of_data *) (data1);
1156 if (rtx_equal_p (x, data->pat)
1157 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1158 data->found = pat;
1161 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1162 (either directly or via STRICT_LOW_PART and similar modifiers). */
1163 const_rtx
1164 set_of (const_rtx pat, const_rtx insn)
1166 struct set_of_data data;
1167 data.found = NULL_RTX;
1168 data.pat = pat;
1169 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1170 return data.found;
1173 /* Add all hard register in X to *PSET. */
1174 void
1175 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1177 subrtx_iterator::array_type array;
1178 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1180 const_rtx x = *iter;
1181 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1182 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1186 /* This function, called through note_stores, collects sets and
1187 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1188 by DATA. */
1189 void
1190 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1192 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1193 if (REG_P (x) && HARD_REGISTER_P (x))
1194 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1197 /* Examine INSN, and compute the set of hard registers written by it.
1198 Store it in *PSET. Should only be called after reload. */
1199 void
1200 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1202 rtx link;
1204 CLEAR_HARD_REG_SET (*pset);
1205 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1206 if (CALL_P (insn))
1208 if (implicit)
1209 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1211 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1212 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1214 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1215 if (REG_NOTE_KIND (link) == REG_INC)
1216 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1219 /* Like record_hard_reg_sets, but called through note_uses. */
1220 void
1221 record_hard_reg_uses (rtx *px, void *data)
1223 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1226 /* Given an INSN, return a SET expression if this insn has only a single SET.
1227 It may also have CLOBBERs, USEs, or SET whose output
1228 will not be used, which we ignore. */
1231 single_set_2 (const rtx_insn *insn, const_rtx pat)
1233 rtx set = NULL;
1234 int set_verified = 1;
1235 int i;
1237 if (GET_CODE (pat) == PARALLEL)
1239 for (i = 0; i < XVECLEN (pat, 0); i++)
1241 rtx sub = XVECEXP (pat, 0, i);
1242 switch (GET_CODE (sub))
1244 case USE:
1245 case CLOBBER:
1246 break;
1248 case SET:
1249 /* We can consider insns having multiple sets, where all
1250 but one are dead as single set insns. In common case
1251 only single set is present in the pattern so we want
1252 to avoid checking for REG_UNUSED notes unless necessary.
1254 When we reach set first time, we just expect this is
1255 the single set we are looking for and only when more
1256 sets are found in the insn, we check them. */
1257 if (!set_verified)
1259 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1260 && !side_effects_p (set))
1261 set = NULL;
1262 else
1263 set_verified = 1;
1265 if (!set)
1266 set = sub, set_verified = 0;
1267 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1268 || side_effects_p (sub))
1269 return NULL_RTX;
1270 break;
1272 default:
1273 return NULL_RTX;
1277 return set;
1280 /* Given an INSN, return nonzero if it has more than one SET, else return
1281 zero. */
1284 multiple_sets (const_rtx insn)
1286 int found;
1287 int i;
1289 /* INSN must be an insn. */
1290 if (! INSN_P (insn))
1291 return 0;
1293 /* Only a PARALLEL can have multiple SETs. */
1294 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1296 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1297 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1299 /* If we have already found a SET, then return now. */
1300 if (found)
1301 return 1;
1302 else
1303 found = 1;
1307 /* Either zero or one SET. */
1308 return 0;
1311 /* Return nonzero if the destination of SET equals the source
1312 and there are no side effects. */
1315 set_noop_p (const_rtx set)
1317 rtx src = SET_SRC (set);
1318 rtx dst = SET_DEST (set);
1320 if (dst == pc_rtx && src == pc_rtx)
1321 return 1;
1323 if (MEM_P (dst) && MEM_P (src))
1324 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1326 if (GET_CODE (dst) == ZERO_EXTRACT)
1327 return rtx_equal_p (XEXP (dst, 0), src)
1328 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1329 && !side_effects_p (src);
1331 if (GET_CODE (dst) == STRICT_LOW_PART)
1332 dst = XEXP (dst, 0);
1334 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1336 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1337 return 0;
1338 src = SUBREG_REG (src);
1339 dst = SUBREG_REG (dst);
1342 /* It is a NOOP if destination overlaps with selected src vector
1343 elements. */
1344 if (GET_CODE (src) == VEC_SELECT
1345 && REG_P (XEXP (src, 0)) && REG_P (dst)
1346 && HARD_REGISTER_P (XEXP (src, 0))
1347 && HARD_REGISTER_P (dst))
1349 int i;
1350 rtx par = XEXP (src, 1);
1351 rtx src0 = XEXP (src, 0);
1352 int c0 = INTVAL (XVECEXP (par, 0, 0));
1353 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1355 for (i = 1; i < XVECLEN (par, 0); i++)
1356 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1357 return 0;
1358 return
1359 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1360 offset, GET_MODE (dst)) == (int) REGNO (dst);
1363 return (REG_P (src) && REG_P (dst)
1364 && REGNO (src) == REGNO (dst));
1367 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1368 value to itself. */
1371 noop_move_p (const rtx_insn *insn)
1373 rtx pat = PATTERN (insn);
1375 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1376 return 1;
1378 /* Insns carrying these notes are useful later on. */
1379 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1380 return 0;
1382 /* Check the code to be executed for COND_EXEC. */
1383 if (GET_CODE (pat) == COND_EXEC)
1384 pat = COND_EXEC_CODE (pat);
1386 if (GET_CODE (pat) == SET && set_noop_p (pat))
1387 return 1;
1389 if (GET_CODE (pat) == PARALLEL)
1391 int i;
1392 /* If nothing but SETs of registers to themselves,
1393 this insn can also be deleted. */
1394 for (i = 0; i < XVECLEN (pat, 0); i++)
1396 rtx tem = XVECEXP (pat, 0, i);
1398 if (GET_CODE (tem) == USE
1399 || GET_CODE (tem) == CLOBBER)
1400 continue;
1402 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1403 return 0;
1406 return 1;
1408 return 0;
1412 /* Return nonzero if register in range [REGNO, ENDREGNO)
1413 appears either explicitly or implicitly in X
1414 other than being stored into.
1416 References contained within the substructure at LOC do not count.
1417 LOC may be zero, meaning don't ignore anything. */
1419 bool
1420 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1421 rtx *loc)
1423 int i;
1424 unsigned int x_regno;
1425 RTX_CODE code;
1426 const char *fmt;
1428 repeat:
1429 /* The contents of a REG_NONNEG note is always zero, so we must come here
1430 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1431 if (x == 0)
1432 return false;
1434 code = GET_CODE (x);
1436 switch (code)
1438 case REG:
1439 x_regno = REGNO (x);
1441 /* If we modifying the stack, frame, or argument pointer, it will
1442 clobber a virtual register. In fact, we could be more precise,
1443 but it isn't worth it. */
1444 if ((x_regno == STACK_POINTER_REGNUM
1445 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1446 || x_regno == ARG_POINTER_REGNUM
1447 #endif
1448 || x_regno == FRAME_POINTER_REGNUM)
1449 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1450 return true;
1452 return endregno > x_regno && regno < END_REGNO (x);
1454 case SUBREG:
1455 /* If this is a SUBREG of a hard reg, we can see exactly which
1456 registers are being modified. Otherwise, handle normally. */
1457 if (REG_P (SUBREG_REG (x))
1458 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1460 unsigned int inner_regno = subreg_regno (x);
1461 unsigned int inner_endregno
1462 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1463 ? subreg_nregs (x) : 1);
1465 return endregno > inner_regno && regno < inner_endregno;
1467 break;
1469 case CLOBBER:
1470 case SET:
1471 if (&SET_DEST (x) != loc
1472 /* Note setting a SUBREG counts as referring to the REG it is in for
1473 a pseudo but not for hard registers since we can
1474 treat each word individually. */
1475 && ((GET_CODE (SET_DEST (x)) == SUBREG
1476 && loc != &SUBREG_REG (SET_DEST (x))
1477 && REG_P (SUBREG_REG (SET_DEST (x)))
1478 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1479 && refers_to_regno_p (regno, endregno,
1480 SUBREG_REG (SET_DEST (x)), loc))
1481 || (!REG_P (SET_DEST (x))
1482 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1483 return true;
1485 if (code == CLOBBER || loc == &SET_SRC (x))
1486 return false;
1487 x = SET_SRC (x);
1488 goto repeat;
1490 default:
1491 break;
1494 /* X does not match, so try its subexpressions. */
1496 fmt = GET_RTX_FORMAT (code);
1497 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1499 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1501 if (i == 0)
1503 x = XEXP (x, 0);
1504 goto repeat;
1506 else
1507 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1508 return true;
1510 else if (fmt[i] == 'E')
1512 int j;
1513 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1514 if (loc != &XVECEXP (x, i, j)
1515 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1516 return true;
1519 return false;
1522 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1523 we check if any register number in X conflicts with the relevant register
1524 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1525 contains a MEM (we don't bother checking for memory addresses that can't
1526 conflict because we expect this to be a rare case. */
1529 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1531 unsigned int regno, endregno;
1533 /* If either argument is a constant, then modifying X can not
1534 affect IN. Here we look at IN, we can profitably combine
1535 CONSTANT_P (x) with the switch statement below. */
1536 if (CONSTANT_P (in))
1537 return 0;
1539 recurse:
1540 switch (GET_CODE (x))
1542 case STRICT_LOW_PART:
1543 case ZERO_EXTRACT:
1544 case SIGN_EXTRACT:
1545 /* Overly conservative. */
1546 x = XEXP (x, 0);
1547 goto recurse;
1549 case SUBREG:
1550 regno = REGNO (SUBREG_REG (x));
1551 if (regno < FIRST_PSEUDO_REGISTER)
1552 regno = subreg_regno (x);
1553 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1554 ? subreg_nregs (x) : 1);
1555 goto do_reg;
1557 case REG:
1558 regno = REGNO (x);
1559 endregno = END_REGNO (x);
1560 do_reg:
1561 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1563 case MEM:
1565 const char *fmt;
1566 int i;
1568 if (MEM_P (in))
1569 return 1;
1571 fmt = GET_RTX_FORMAT (GET_CODE (in));
1572 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1573 if (fmt[i] == 'e')
1575 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1576 return 1;
1578 else if (fmt[i] == 'E')
1580 int j;
1581 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1582 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1583 return 1;
1586 return 0;
1589 case SCRATCH:
1590 case PC:
1591 case CC0:
1592 return reg_mentioned_p (x, in);
1594 case PARALLEL:
1596 int i;
1598 /* If any register in here refers to it we return true. */
1599 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1600 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1601 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1602 return 1;
1603 return 0;
1606 default:
1607 gcc_assert (CONSTANT_P (x));
1608 return 0;
1612 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1613 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1614 ignored by note_stores, but passed to FUN.
1616 FUN receives three arguments:
1617 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1618 2. the SET or CLOBBER rtx that does the store,
1619 3. the pointer DATA provided to note_stores.
1621 If the item being stored in or clobbered is a SUBREG of a hard register,
1622 the SUBREG will be passed. */
1624 void
1625 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1627 int i;
1629 if (GET_CODE (x) == COND_EXEC)
1630 x = COND_EXEC_CODE (x);
1632 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1634 rtx dest = SET_DEST (x);
1636 while ((GET_CODE (dest) == SUBREG
1637 && (!REG_P (SUBREG_REG (dest))
1638 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1639 || GET_CODE (dest) == ZERO_EXTRACT
1640 || GET_CODE (dest) == STRICT_LOW_PART)
1641 dest = XEXP (dest, 0);
1643 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1644 each of whose first operand is a register. */
1645 if (GET_CODE (dest) == PARALLEL)
1647 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1648 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1649 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1651 else
1652 (*fun) (dest, x, data);
1655 else if (GET_CODE (x) == PARALLEL)
1656 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1657 note_stores (XVECEXP (x, 0, i), fun, data);
1660 /* Like notes_stores, but call FUN for each expression that is being
1661 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1662 FUN for each expression, not any interior subexpressions. FUN receives a
1663 pointer to the expression and the DATA passed to this function.
1665 Note that this is not quite the same test as that done in reg_referenced_p
1666 since that considers something as being referenced if it is being
1667 partially set, while we do not. */
1669 void
1670 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1672 rtx body = *pbody;
1673 int i;
1675 switch (GET_CODE (body))
1677 case COND_EXEC:
1678 (*fun) (&COND_EXEC_TEST (body), data);
1679 note_uses (&COND_EXEC_CODE (body), fun, data);
1680 return;
1682 case PARALLEL:
1683 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1684 note_uses (&XVECEXP (body, 0, i), fun, data);
1685 return;
1687 case SEQUENCE:
1688 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1689 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1690 return;
1692 case USE:
1693 (*fun) (&XEXP (body, 0), data);
1694 return;
1696 case ASM_OPERANDS:
1697 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1698 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1699 return;
1701 case TRAP_IF:
1702 (*fun) (&TRAP_CONDITION (body), data);
1703 return;
1705 case PREFETCH:
1706 (*fun) (&XEXP (body, 0), data);
1707 return;
1709 case UNSPEC:
1710 case UNSPEC_VOLATILE:
1711 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1712 (*fun) (&XVECEXP (body, 0, i), data);
1713 return;
1715 case CLOBBER:
1716 if (MEM_P (XEXP (body, 0)))
1717 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1718 return;
1720 case SET:
1722 rtx dest = SET_DEST (body);
1724 /* For sets we replace everything in source plus registers in memory
1725 expression in store and operands of a ZERO_EXTRACT. */
1726 (*fun) (&SET_SRC (body), data);
1728 if (GET_CODE (dest) == ZERO_EXTRACT)
1730 (*fun) (&XEXP (dest, 1), data);
1731 (*fun) (&XEXP (dest, 2), data);
1734 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1735 dest = XEXP (dest, 0);
1737 if (MEM_P (dest))
1738 (*fun) (&XEXP (dest, 0), data);
1740 return;
1742 default:
1743 /* All the other possibilities never store. */
1744 (*fun) (pbody, data);
1745 return;
1749 /* Return nonzero if X's old contents don't survive after INSN.
1750 This will be true if X is (cc0) or if X is a register and
1751 X dies in INSN or because INSN entirely sets X.
1753 "Entirely set" means set directly and not through a SUBREG, or
1754 ZERO_EXTRACT, so no trace of the old contents remains.
1755 Likewise, REG_INC does not count.
1757 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1758 but for this use that makes no difference, since regs don't overlap
1759 during their lifetimes. Therefore, this function may be used
1760 at any time after deaths have been computed.
1762 If REG is a hard reg that occupies multiple machine registers, this
1763 function will only return 1 if each of those registers will be replaced
1764 by INSN. */
1767 dead_or_set_p (const_rtx insn, const_rtx x)
1769 unsigned int regno, end_regno;
1770 unsigned int i;
1772 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1773 if (GET_CODE (x) == CC0)
1774 return 1;
1776 gcc_assert (REG_P (x));
1778 regno = REGNO (x);
1779 end_regno = END_REGNO (x);
1780 for (i = regno; i < end_regno; i++)
1781 if (! dead_or_set_regno_p (insn, i))
1782 return 0;
1784 return 1;
1787 /* Return TRUE iff DEST is a register or subreg of a register and
1788 doesn't change the number of words of the inner register, and any
1789 part of the register is TEST_REGNO. */
1791 static bool
1792 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1794 unsigned int regno, endregno;
1796 if (GET_CODE (dest) == SUBREG
1797 && (((GET_MODE_SIZE (GET_MODE (dest))
1798 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1799 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1800 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1801 dest = SUBREG_REG (dest);
1803 if (!REG_P (dest))
1804 return false;
1806 regno = REGNO (dest);
1807 endregno = END_REGNO (dest);
1808 return (test_regno >= regno && test_regno < endregno);
1811 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1812 any member matches the covers_regno_no_parallel_p criteria. */
1814 static bool
1815 covers_regno_p (const_rtx dest, unsigned int test_regno)
1817 if (GET_CODE (dest) == PARALLEL)
1819 /* Some targets place small structures in registers for return
1820 values of functions, and those registers are wrapped in
1821 PARALLELs that we may see as the destination of a SET. */
1822 int i;
1824 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1826 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1827 if (inner != NULL_RTX
1828 && covers_regno_no_parallel_p (inner, test_regno))
1829 return true;
1832 return false;
1834 else
1835 return covers_regno_no_parallel_p (dest, test_regno);
1838 /* Utility function for dead_or_set_p to check an individual register. */
1841 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1843 const_rtx pattern;
1845 /* See if there is a death note for something that includes TEST_REGNO. */
1846 if (find_regno_note (insn, REG_DEAD, test_regno))
1847 return 1;
1849 if (CALL_P (insn)
1850 && find_regno_fusage (insn, CLOBBER, test_regno))
1851 return 1;
1853 pattern = PATTERN (insn);
1855 /* If a COND_EXEC is not executed, the value survives. */
1856 if (GET_CODE (pattern) == COND_EXEC)
1857 return 0;
1859 if (GET_CODE (pattern) == SET)
1860 return covers_regno_p (SET_DEST (pattern), test_regno);
1861 else if (GET_CODE (pattern) == PARALLEL)
1863 int i;
1865 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1867 rtx body = XVECEXP (pattern, 0, i);
1869 if (GET_CODE (body) == COND_EXEC)
1870 body = COND_EXEC_CODE (body);
1872 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1873 && covers_regno_p (SET_DEST (body), test_regno))
1874 return 1;
1878 return 0;
1881 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1882 If DATUM is nonzero, look for one whose datum is DATUM. */
1885 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1887 rtx link;
1889 gcc_checking_assert (insn);
1891 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1892 if (! INSN_P (insn))
1893 return 0;
1894 if (datum == 0)
1896 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1897 if (REG_NOTE_KIND (link) == kind)
1898 return link;
1899 return 0;
1902 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1903 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1904 return link;
1905 return 0;
1908 /* Return the reg-note of kind KIND in insn INSN which applies to register
1909 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1910 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1911 it might be the case that the note overlaps REGNO. */
1914 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1916 rtx link;
1918 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1919 if (! INSN_P (insn))
1920 return 0;
1922 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1923 if (REG_NOTE_KIND (link) == kind
1924 /* Verify that it is a register, so that scratch and MEM won't cause a
1925 problem here. */
1926 && REG_P (XEXP (link, 0))
1927 && REGNO (XEXP (link, 0)) <= regno
1928 && END_REGNO (XEXP (link, 0)) > regno)
1929 return link;
1930 return 0;
1933 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1934 has such a note. */
1937 find_reg_equal_equiv_note (const_rtx insn)
1939 rtx link;
1941 if (!INSN_P (insn))
1942 return 0;
1944 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1945 if (REG_NOTE_KIND (link) == REG_EQUAL
1946 || REG_NOTE_KIND (link) == REG_EQUIV)
1948 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1949 insns that have multiple sets. Checking single_set to
1950 make sure of this is not the proper check, as explained
1951 in the comment in set_unique_reg_note.
1953 This should be changed into an assert. */
1954 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1955 return 0;
1956 return link;
1958 return NULL;
1961 /* Check whether INSN is a single_set whose source is known to be
1962 equivalent to a constant. Return that constant if so, otherwise
1963 return null. */
1966 find_constant_src (const rtx_insn *insn)
1968 rtx note, set, x;
1970 set = single_set (insn);
1971 if (set)
1973 x = avoid_constant_pool_reference (SET_SRC (set));
1974 if (CONSTANT_P (x))
1975 return x;
1978 note = find_reg_equal_equiv_note (insn);
1979 if (note && CONSTANT_P (XEXP (note, 0)))
1980 return XEXP (note, 0);
1982 return NULL_RTX;
1985 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1986 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1989 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1991 /* If it's not a CALL_INSN, it can't possibly have a
1992 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1993 if (!CALL_P (insn))
1994 return 0;
1996 gcc_assert (datum);
1998 if (!REG_P (datum))
2000 rtx link;
2002 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2003 link;
2004 link = XEXP (link, 1))
2005 if (GET_CODE (XEXP (link, 0)) == code
2006 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2007 return 1;
2009 else
2011 unsigned int regno = REGNO (datum);
2013 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2014 to pseudo registers, so don't bother checking. */
2016 if (regno < FIRST_PSEUDO_REGISTER)
2018 unsigned int end_regno = END_HARD_REGNO (datum);
2019 unsigned int i;
2021 for (i = regno; i < end_regno; i++)
2022 if (find_regno_fusage (insn, code, i))
2023 return 1;
2027 return 0;
2030 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2031 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2034 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2036 rtx link;
2038 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2039 to pseudo registers, so don't bother checking. */
2041 if (regno >= FIRST_PSEUDO_REGISTER
2042 || !CALL_P (insn) )
2043 return 0;
2045 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2047 rtx op, reg;
2049 if (GET_CODE (op = XEXP (link, 0)) == code
2050 && REG_P (reg = XEXP (op, 0))
2051 && REGNO (reg) <= regno
2052 && END_HARD_REGNO (reg) > regno)
2053 return 1;
2056 return 0;
2060 /* Return true if KIND is an integer REG_NOTE. */
2062 static bool
2063 int_reg_note_p (enum reg_note kind)
2065 return kind == REG_BR_PROB;
2068 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2069 stored as the pointer to the next register note. */
2072 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2074 rtx note;
2076 gcc_checking_assert (!int_reg_note_p (kind));
2077 switch (kind)
2079 case REG_CC_SETTER:
2080 case REG_CC_USER:
2081 case REG_LABEL_TARGET:
2082 case REG_LABEL_OPERAND:
2083 case REG_TM:
2084 /* These types of register notes use an INSN_LIST rather than an
2085 EXPR_LIST, so that copying is done right and dumps look
2086 better. */
2087 note = alloc_INSN_LIST (datum, list);
2088 PUT_REG_NOTE_KIND (note, kind);
2089 break;
2091 default:
2092 note = alloc_EXPR_LIST (kind, datum, list);
2093 break;
2096 return note;
2099 /* Add register note with kind KIND and datum DATUM to INSN. */
2101 void
2102 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2104 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2107 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2109 void
2110 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2112 gcc_checking_assert (int_reg_note_p (kind));
2113 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2114 datum, REG_NOTES (insn));
2117 /* Add a register note like NOTE to INSN. */
2119 void
2120 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2122 if (GET_CODE (note) == INT_LIST)
2123 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2124 else
2125 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2128 /* Remove register note NOTE from the REG_NOTES of INSN. */
2130 void
2131 remove_note (rtx insn, const_rtx note)
2133 rtx link;
2135 if (note == NULL_RTX)
2136 return;
2138 if (REG_NOTES (insn) == note)
2139 REG_NOTES (insn) = XEXP (note, 1);
2140 else
2141 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2142 if (XEXP (link, 1) == note)
2144 XEXP (link, 1) = XEXP (note, 1);
2145 break;
2148 switch (REG_NOTE_KIND (note))
2150 case REG_EQUAL:
2151 case REG_EQUIV:
2152 df_notes_rescan (as_a <rtx_insn *> (insn));
2153 break;
2154 default:
2155 break;
2159 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2161 void
2162 remove_reg_equal_equiv_notes (rtx_insn *insn)
2164 rtx *loc;
2166 loc = &REG_NOTES (insn);
2167 while (*loc)
2169 enum reg_note kind = REG_NOTE_KIND (*loc);
2170 if (kind == REG_EQUAL || kind == REG_EQUIV)
2171 *loc = XEXP (*loc, 1);
2172 else
2173 loc = &XEXP (*loc, 1);
2177 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2179 void
2180 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2182 df_ref eq_use;
2184 if (!df)
2185 return;
2187 /* This loop is a little tricky. We cannot just go down the chain because
2188 it is being modified by some actions in the loop. So we just iterate
2189 over the head. We plan to drain the list anyway. */
2190 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2192 rtx_insn *insn = DF_REF_INSN (eq_use);
2193 rtx note = find_reg_equal_equiv_note (insn);
2195 /* This assert is generally triggered when someone deletes a REG_EQUAL
2196 or REG_EQUIV note by hacking the list manually rather than calling
2197 remove_note. */
2198 gcc_assert (note);
2200 remove_note (insn, note);
2204 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2205 return 1 if it is found. A simple equality test is used to determine if
2206 NODE matches. */
2208 bool
2209 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2211 const_rtx x;
2213 for (x = listp; x; x = XEXP (x, 1))
2214 if (node == XEXP (x, 0))
2215 return true;
2217 return false;
2220 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2221 remove that entry from the list if it is found.
2223 A simple equality test is used to determine if NODE matches. */
2225 void
2226 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2228 rtx_expr_list *temp = *listp;
2229 rtx prev = NULL_RTX;
2231 while (temp)
2233 if (node == temp->element ())
2235 /* Splice the node out of the list. */
2236 if (prev)
2237 XEXP (prev, 1) = temp->next ();
2238 else
2239 *listp = temp->next ();
2241 return;
2244 prev = temp;
2245 temp = temp->next ();
2249 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2250 remove that entry from the list if it is found.
2252 A simple equality test is used to determine if NODE matches. */
2254 void
2255 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2257 rtx_insn_list *temp = *listp;
2258 rtx prev = NULL;
2260 while (temp)
2262 if (node == temp->insn ())
2264 /* Splice the node out of the list. */
2265 if (prev)
2266 XEXP (prev, 1) = temp->next ();
2267 else
2268 *listp = temp->next ();
2270 return;
2273 prev = temp;
2274 temp = temp->next ();
2278 /* Nonzero if X contains any volatile instructions. These are instructions
2279 which may cause unpredictable machine state instructions, and thus no
2280 instructions or register uses should be moved or combined across them.
2281 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2284 volatile_insn_p (const_rtx x)
2286 const RTX_CODE code = GET_CODE (x);
2287 switch (code)
2289 case LABEL_REF:
2290 case SYMBOL_REF:
2291 case CONST:
2292 CASE_CONST_ANY:
2293 case CC0:
2294 case PC:
2295 case REG:
2296 case SCRATCH:
2297 case CLOBBER:
2298 case ADDR_VEC:
2299 case ADDR_DIFF_VEC:
2300 case CALL:
2301 case MEM:
2302 return 0;
2304 case UNSPEC_VOLATILE:
2305 return 1;
2307 case ASM_INPUT:
2308 case ASM_OPERANDS:
2309 if (MEM_VOLATILE_P (x))
2310 return 1;
2312 default:
2313 break;
2316 /* Recursively scan the operands of this expression. */
2319 const char *const fmt = GET_RTX_FORMAT (code);
2320 int i;
2322 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2324 if (fmt[i] == 'e')
2326 if (volatile_insn_p (XEXP (x, i)))
2327 return 1;
2329 else if (fmt[i] == 'E')
2331 int j;
2332 for (j = 0; j < XVECLEN (x, i); j++)
2333 if (volatile_insn_p (XVECEXP (x, i, j)))
2334 return 1;
2338 return 0;
2341 /* Nonzero if X contains any volatile memory references
2342 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2345 volatile_refs_p (const_rtx x)
2347 const RTX_CODE code = GET_CODE (x);
2348 switch (code)
2350 case LABEL_REF:
2351 case SYMBOL_REF:
2352 case CONST:
2353 CASE_CONST_ANY:
2354 case CC0:
2355 case PC:
2356 case REG:
2357 case SCRATCH:
2358 case CLOBBER:
2359 case ADDR_VEC:
2360 case ADDR_DIFF_VEC:
2361 return 0;
2363 case UNSPEC_VOLATILE:
2364 return 1;
2366 case MEM:
2367 case ASM_INPUT:
2368 case ASM_OPERANDS:
2369 if (MEM_VOLATILE_P (x))
2370 return 1;
2372 default:
2373 break;
2376 /* Recursively scan the operands of this expression. */
2379 const char *const fmt = GET_RTX_FORMAT (code);
2380 int i;
2382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2384 if (fmt[i] == 'e')
2386 if (volatile_refs_p (XEXP (x, i)))
2387 return 1;
2389 else if (fmt[i] == 'E')
2391 int j;
2392 for (j = 0; j < XVECLEN (x, i); j++)
2393 if (volatile_refs_p (XVECEXP (x, i, j)))
2394 return 1;
2398 return 0;
2401 /* Similar to above, except that it also rejects register pre- and post-
2402 incrementing. */
2405 side_effects_p (const_rtx x)
2407 const RTX_CODE code = GET_CODE (x);
2408 switch (code)
2410 case LABEL_REF:
2411 case SYMBOL_REF:
2412 case CONST:
2413 CASE_CONST_ANY:
2414 case CC0:
2415 case PC:
2416 case REG:
2417 case SCRATCH:
2418 case ADDR_VEC:
2419 case ADDR_DIFF_VEC:
2420 case VAR_LOCATION:
2421 return 0;
2423 case CLOBBER:
2424 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2425 when some combination can't be done. If we see one, don't think
2426 that we can simplify the expression. */
2427 return (GET_MODE (x) != VOIDmode);
2429 case PRE_INC:
2430 case PRE_DEC:
2431 case POST_INC:
2432 case POST_DEC:
2433 case PRE_MODIFY:
2434 case POST_MODIFY:
2435 case CALL:
2436 case UNSPEC_VOLATILE:
2437 return 1;
2439 case MEM:
2440 case ASM_INPUT:
2441 case ASM_OPERANDS:
2442 if (MEM_VOLATILE_P (x))
2443 return 1;
2445 default:
2446 break;
2449 /* Recursively scan the operands of this expression. */
2452 const char *fmt = GET_RTX_FORMAT (code);
2453 int i;
2455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2457 if (fmt[i] == 'e')
2459 if (side_effects_p (XEXP (x, i)))
2460 return 1;
2462 else if (fmt[i] == 'E')
2464 int j;
2465 for (j = 0; j < XVECLEN (x, i); j++)
2466 if (side_effects_p (XVECEXP (x, i, j)))
2467 return 1;
2471 return 0;
2474 /* Return nonzero if evaluating rtx X might cause a trap.
2475 FLAGS controls how to consider MEMs. A nonzero means the context
2476 of the access may have changed from the original, such that the
2477 address may have become invalid. */
2480 may_trap_p_1 (const_rtx x, unsigned flags)
2482 int i;
2483 enum rtx_code code;
2484 const char *fmt;
2486 /* We make no distinction currently, but this function is part of
2487 the internal target-hooks ABI so we keep the parameter as
2488 "unsigned flags". */
2489 bool code_changed = flags != 0;
2491 if (x == 0)
2492 return 0;
2493 code = GET_CODE (x);
2494 switch (code)
2496 /* Handle these cases quickly. */
2497 CASE_CONST_ANY:
2498 case SYMBOL_REF:
2499 case LABEL_REF:
2500 case CONST:
2501 case PC:
2502 case CC0:
2503 case REG:
2504 case SCRATCH:
2505 return 0;
2507 case UNSPEC:
2508 return targetm.unspec_may_trap_p (x, flags);
2510 case UNSPEC_VOLATILE:
2511 case ASM_INPUT:
2512 case TRAP_IF:
2513 return 1;
2515 case ASM_OPERANDS:
2516 return MEM_VOLATILE_P (x);
2518 /* Memory ref can trap unless it's a static var or a stack slot. */
2519 case MEM:
2520 /* Recognize specific pattern of stack checking probes. */
2521 if (flag_stack_check
2522 && MEM_VOLATILE_P (x)
2523 && XEXP (x, 0) == stack_pointer_rtx)
2524 return 1;
2525 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2526 reference; moving it out of context such as when moving code
2527 when optimizing, might cause its address to become invalid. */
2528 code_changed
2529 || !MEM_NOTRAP_P (x))
2531 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2532 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2533 GET_MODE (x), code_changed);
2536 return 0;
2538 /* Division by a non-constant might trap. */
2539 case DIV:
2540 case MOD:
2541 case UDIV:
2542 case UMOD:
2543 if (HONOR_SNANS (x))
2544 return 1;
2545 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2546 return flag_trapping_math;
2547 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2548 return 1;
2549 break;
2551 case EXPR_LIST:
2552 /* An EXPR_LIST is used to represent a function call. This
2553 certainly may trap. */
2554 return 1;
2556 case GE:
2557 case GT:
2558 case LE:
2559 case LT:
2560 case LTGT:
2561 case COMPARE:
2562 /* Some floating point comparisons may trap. */
2563 if (!flag_trapping_math)
2564 break;
2565 /* ??? There is no machine independent way to check for tests that trap
2566 when COMPARE is used, though many targets do make this distinction.
2567 For instance, sparc uses CCFPE for compares which generate exceptions
2568 and CCFP for compares which do not generate exceptions. */
2569 if (HONOR_NANS (x))
2570 return 1;
2571 /* But often the compare has some CC mode, so check operand
2572 modes as well. */
2573 if (HONOR_NANS (XEXP (x, 0))
2574 || HONOR_NANS (XEXP (x, 1)))
2575 return 1;
2576 break;
2578 case EQ:
2579 case NE:
2580 if (HONOR_SNANS (x))
2581 return 1;
2582 /* Often comparison is CC mode, so check operand modes. */
2583 if (HONOR_SNANS (XEXP (x, 0))
2584 || HONOR_SNANS (XEXP (x, 1)))
2585 return 1;
2586 break;
2588 case FIX:
2589 /* Conversion of floating point might trap. */
2590 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2591 return 1;
2592 break;
2594 case NEG:
2595 case ABS:
2596 case SUBREG:
2597 /* These operations don't trap even with floating point. */
2598 break;
2600 default:
2601 /* Any floating arithmetic may trap. */
2602 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2603 return 1;
2606 fmt = GET_RTX_FORMAT (code);
2607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2609 if (fmt[i] == 'e')
2611 if (may_trap_p_1 (XEXP (x, i), flags))
2612 return 1;
2614 else if (fmt[i] == 'E')
2616 int j;
2617 for (j = 0; j < XVECLEN (x, i); j++)
2618 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2619 return 1;
2622 return 0;
2625 /* Return nonzero if evaluating rtx X might cause a trap. */
2628 may_trap_p (const_rtx x)
2630 return may_trap_p_1 (x, 0);
2633 /* Same as above, but additionally return nonzero if evaluating rtx X might
2634 cause a fault. We define a fault for the purpose of this function as a
2635 erroneous execution condition that cannot be encountered during the normal
2636 execution of a valid program; the typical example is an unaligned memory
2637 access on a strict alignment machine. The compiler guarantees that it
2638 doesn't generate code that will fault from a valid program, but this
2639 guarantee doesn't mean anything for individual instructions. Consider
2640 the following example:
2642 struct S { int d; union { char *cp; int *ip; }; };
2644 int foo(struct S *s)
2646 if (s->d == 1)
2647 return *s->ip;
2648 else
2649 return *s->cp;
2652 on a strict alignment machine. In a valid program, foo will never be
2653 invoked on a structure for which d is equal to 1 and the underlying
2654 unique field of the union not aligned on a 4-byte boundary, but the
2655 expression *s->ip might cause a fault if considered individually.
2657 At the RTL level, potentially problematic expressions will almost always
2658 verify may_trap_p; for example, the above dereference can be emitted as
2659 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2660 However, suppose that foo is inlined in a caller that causes s->cp to
2661 point to a local character variable and guarantees that s->d is not set
2662 to 1; foo may have been effectively translated into pseudo-RTL as:
2664 if ((reg:SI) == 1)
2665 (set (reg:SI) (mem:SI (%fp - 7)))
2666 else
2667 (set (reg:QI) (mem:QI (%fp - 7)))
2669 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2670 memory reference to a stack slot, but it will certainly cause a fault
2671 on a strict alignment machine. */
2674 may_trap_or_fault_p (const_rtx x)
2676 return may_trap_p_1 (x, 1);
2679 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2680 i.e., an inequality. */
2683 inequality_comparisons_p (const_rtx x)
2685 const char *fmt;
2686 int len, i;
2687 const enum rtx_code code = GET_CODE (x);
2689 switch (code)
2691 case REG:
2692 case SCRATCH:
2693 case PC:
2694 case CC0:
2695 CASE_CONST_ANY:
2696 case CONST:
2697 case LABEL_REF:
2698 case SYMBOL_REF:
2699 return 0;
2701 case LT:
2702 case LTU:
2703 case GT:
2704 case GTU:
2705 case LE:
2706 case LEU:
2707 case GE:
2708 case GEU:
2709 return 1;
2711 default:
2712 break;
2715 len = GET_RTX_LENGTH (code);
2716 fmt = GET_RTX_FORMAT (code);
2718 for (i = 0; i < len; i++)
2720 if (fmt[i] == 'e')
2722 if (inequality_comparisons_p (XEXP (x, i)))
2723 return 1;
2725 else if (fmt[i] == 'E')
2727 int j;
2728 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2729 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2730 return 1;
2734 return 0;
2737 /* Replace any occurrence of FROM in X with TO. The function does
2738 not enter into CONST_DOUBLE for the replace.
2740 Note that copying is not done so X must not be shared unless all copies
2741 are to be modified. */
2744 replace_rtx (rtx x, rtx from, rtx to)
2746 int i, j;
2747 const char *fmt;
2749 if (x == from)
2750 return to;
2752 /* Allow this function to make replacements in EXPR_LISTs. */
2753 if (x == 0)
2754 return 0;
2756 if (GET_CODE (x) == SUBREG)
2758 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2760 if (CONST_INT_P (new_rtx))
2762 x = simplify_subreg (GET_MODE (x), new_rtx,
2763 GET_MODE (SUBREG_REG (x)),
2764 SUBREG_BYTE (x));
2765 gcc_assert (x);
2767 else
2768 SUBREG_REG (x) = new_rtx;
2770 return x;
2772 else if (GET_CODE (x) == ZERO_EXTEND)
2774 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2776 if (CONST_INT_P (new_rtx))
2778 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2779 new_rtx, GET_MODE (XEXP (x, 0)));
2780 gcc_assert (x);
2782 else
2783 XEXP (x, 0) = new_rtx;
2785 return x;
2788 fmt = GET_RTX_FORMAT (GET_CODE (x));
2789 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2791 if (fmt[i] == 'e')
2792 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2793 else if (fmt[i] == 'E')
2794 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2795 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2798 return x;
2801 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2802 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2804 void
2805 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2807 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2808 rtx x = *loc;
2809 if (JUMP_TABLE_DATA_P (x))
2811 x = PATTERN (x);
2812 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2813 int len = GET_NUM_ELEM (vec);
2814 for (int i = 0; i < len; ++i)
2816 rtx ref = RTVEC_ELT (vec, i);
2817 if (XEXP (ref, 0) == old_label)
2819 XEXP (ref, 0) = new_label;
2820 if (update_label_nuses)
2822 ++LABEL_NUSES (new_label);
2823 --LABEL_NUSES (old_label);
2827 return;
2830 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2831 field. This is not handled by the iterator because it doesn't
2832 handle unprinted ('0') fields. */
2833 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2834 JUMP_LABEL (x) = new_label;
2836 subrtx_ptr_iterator::array_type array;
2837 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2839 rtx *loc = *iter;
2840 if (rtx x = *loc)
2842 if (GET_CODE (x) == SYMBOL_REF
2843 && CONSTANT_POOL_ADDRESS_P (x))
2845 rtx c = get_pool_constant (x);
2846 if (rtx_referenced_p (old_label, c))
2848 /* Create a copy of constant C; replace the label inside
2849 but do not update LABEL_NUSES because uses in constant pool
2850 are not counted. */
2851 rtx new_c = copy_rtx (c);
2852 replace_label (&new_c, old_label, new_label, false);
2854 /* Add the new constant NEW_C to constant pool and replace
2855 the old reference to constant by new reference. */
2856 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2857 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2861 if ((GET_CODE (x) == LABEL_REF
2862 || GET_CODE (x) == INSN_LIST)
2863 && XEXP (x, 0) == old_label)
2865 XEXP (x, 0) = new_label;
2866 if (update_label_nuses)
2868 ++LABEL_NUSES (new_label);
2869 --LABEL_NUSES (old_label);
2876 void
2877 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2878 bool update_label_nuses)
2880 rtx insn_as_rtx = insn;
2881 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2882 gcc_checking_assert (insn_as_rtx == insn);
2885 /* Return true if X is referenced in BODY. */
2887 bool
2888 rtx_referenced_p (const_rtx x, const_rtx body)
2890 subrtx_iterator::array_type array;
2891 FOR_EACH_SUBRTX (iter, array, body, ALL)
2892 if (const_rtx y = *iter)
2894 /* Check if a label_ref Y refers to label X. */
2895 if (GET_CODE (y) == LABEL_REF
2896 && LABEL_P (x)
2897 && LABEL_REF_LABEL (y) == x)
2898 return true;
2900 if (rtx_equal_p (x, y))
2901 return true;
2903 /* If Y is a reference to pool constant traverse the constant. */
2904 if (GET_CODE (y) == SYMBOL_REF
2905 && CONSTANT_POOL_ADDRESS_P (y))
2906 iter.substitute (get_pool_constant (y));
2908 return false;
2911 /* If INSN is a tablejump return true and store the label (before jump table) to
2912 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2914 bool
2915 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
2917 rtx label, table;
2919 if (!JUMP_P (insn))
2920 return false;
2922 label = JUMP_LABEL (insn);
2923 if (label != NULL_RTX && !ANY_RETURN_P (label)
2924 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
2925 && JUMP_TABLE_DATA_P (table))
2927 if (labelp)
2928 *labelp = label;
2929 if (tablep)
2930 *tablep = as_a <rtx_jump_table_data *> (table);
2931 return true;
2933 return false;
2936 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2937 constant that is not in the constant pool and not in the condition
2938 of an IF_THEN_ELSE. */
2940 static int
2941 computed_jump_p_1 (const_rtx x)
2943 const enum rtx_code code = GET_CODE (x);
2944 int i, j;
2945 const char *fmt;
2947 switch (code)
2949 case LABEL_REF:
2950 case PC:
2951 return 0;
2953 case CONST:
2954 CASE_CONST_ANY:
2955 case SYMBOL_REF:
2956 case REG:
2957 return 1;
2959 case MEM:
2960 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2961 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2963 case IF_THEN_ELSE:
2964 return (computed_jump_p_1 (XEXP (x, 1))
2965 || computed_jump_p_1 (XEXP (x, 2)));
2967 default:
2968 break;
2971 fmt = GET_RTX_FORMAT (code);
2972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2974 if (fmt[i] == 'e'
2975 && computed_jump_p_1 (XEXP (x, i)))
2976 return 1;
2978 else if (fmt[i] == 'E')
2979 for (j = 0; j < XVECLEN (x, i); j++)
2980 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2981 return 1;
2984 return 0;
2987 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2989 Tablejumps and casesi insns are not considered indirect jumps;
2990 we can recognize them by a (use (label_ref)). */
2993 computed_jump_p (const rtx_insn *insn)
2995 int i;
2996 if (JUMP_P (insn))
2998 rtx pat = PATTERN (insn);
3000 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3001 if (JUMP_LABEL (insn) != NULL)
3002 return 0;
3004 if (GET_CODE (pat) == PARALLEL)
3006 int len = XVECLEN (pat, 0);
3007 int has_use_labelref = 0;
3009 for (i = len - 1; i >= 0; i--)
3010 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3011 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3012 == LABEL_REF))
3014 has_use_labelref = 1;
3015 break;
3018 if (! has_use_labelref)
3019 for (i = len - 1; i >= 0; i--)
3020 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3021 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3022 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3023 return 1;
3025 else if (GET_CODE (pat) == SET
3026 && SET_DEST (pat) == pc_rtx
3027 && computed_jump_p_1 (SET_SRC (pat)))
3028 return 1;
3030 return 0;
3035 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3036 the equivalent add insn and pass the result to FN, using DATA as the
3037 final argument. */
3039 static int
3040 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3042 rtx x = XEXP (mem, 0);
3043 switch (GET_CODE (x))
3045 case PRE_INC:
3046 case POST_INC:
3048 int size = GET_MODE_SIZE (GET_MODE (mem));
3049 rtx r1 = XEXP (x, 0);
3050 rtx c = gen_int_mode (size, GET_MODE (r1));
3051 return fn (mem, x, r1, r1, c, data);
3054 case PRE_DEC:
3055 case POST_DEC:
3057 int size = GET_MODE_SIZE (GET_MODE (mem));
3058 rtx r1 = XEXP (x, 0);
3059 rtx c = gen_int_mode (-size, GET_MODE (r1));
3060 return fn (mem, x, r1, r1, c, data);
3063 case PRE_MODIFY:
3064 case POST_MODIFY:
3066 rtx r1 = XEXP (x, 0);
3067 rtx add = XEXP (x, 1);
3068 return fn (mem, x, r1, add, NULL, data);
3071 default:
3072 gcc_unreachable ();
3076 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3077 For each such autoinc operation found, call FN, passing it
3078 the innermost enclosing MEM, the operation itself, the RTX modified
3079 by the operation, two RTXs (the second may be NULL) that, once
3080 added, represent the value to be held by the modified RTX
3081 afterwards, and DATA. FN is to return 0 to continue the
3082 traversal or any other value to have it returned to the caller of
3083 for_each_inc_dec. */
3086 for_each_inc_dec (rtx x,
3087 for_each_inc_dec_fn fn,
3088 void *data)
3090 subrtx_var_iterator::array_type array;
3091 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3093 rtx mem = *iter;
3094 if (mem
3095 && MEM_P (mem)
3096 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3098 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3099 if (res != 0)
3100 return res;
3101 iter.skip_subrtxes ();
3104 return 0;
3108 /* Searches X for any reference to REGNO, returning the rtx of the
3109 reference found if any. Otherwise, returns NULL_RTX. */
3112 regno_use_in (unsigned int regno, rtx x)
3114 const char *fmt;
3115 int i, j;
3116 rtx tem;
3118 if (REG_P (x) && REGNO (x) == regno)
3119 return x;
3121 fmt = GET_RTX_FORMAT (GET_CODE (x));
3122 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3124 if (fmt[i] == 'e')
3126 if ((tem = regno_use_in (regno, XEXP (x, i))))
3127 return tem;
3129 else if (fmt[i] == 'E')
3130 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3131 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3132 return tem;
3135 return NULL_RTX;
3138 /* Return a value indicating whether OP, an operand of a commutative
3139 operation, is preferred as the first or second operand. The higher
3140 the value, the stronger the preference for being the first operand.
3141 We use negative values to indicate a preference for the first operand
3142 and positive values for the second operand. */
3145 commutative_operand_precedence (rtx op)
3147 enum rtx_code code = GET_CODE (op);
3149 /* Constants always come the second operand. Prefer "nice" constants. */
3150 if (code == CONST_INT)
3151 return -8;
3152 if (code == CONST_WIDE_INT)
3153 return -8;
3154 if (code == CONST_DOUBLE)
3155 return -7;
3156 if (code == CONST_FIXED)
3157 return -7;
3158 op = avoid_constant_pool_reference (op);
3159 code = GET_CODE (op);
3161 switch (GET_RTX_CLASS (code))
3163 case RTX_CONST_OBJ:
3164 if (code == CONST_INT)
3165 return -6;
3166 if (code == CONST_WIDE_INT)
3167 return -6;
3168 if (code == CONST_DOUBLE)
3169 return -5;
3170 if (code == CONST_FIXED)
3171 return -5;
3172 return -4;
3174 case RTX_EXTRA:
3175 /* SUBREGs of objects should come second. */
3176 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3177 return -3;
3178 return 0;
3180 case RTX_OBJ:
3181 /* Complex expressions should be the first, so decrease priority
3182 of objects. Prefer pointer objects over non pointer objects. */
3183 if ((REG_P (op) && REG_POINTER (op))
3184 || (MEM_P (op) && MEM_POINTER (op)))
3185 return -1;
3186 return -2;
3188 case RTX_COMM_ARITH:
3189 /* Prefer operands that are themselves commutative to be first.
3190 This helps to make things linear. In particular,
3191 (and (and (reg) (reg)) (not (reg))) is canonical. */
3192 return 4;
3194 case RTX_BIN_ARITH:
3195 /* If only one operand is a binary expression, it will be the first
3196 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3197 is canonical, although it will usually be further simplified. */
3198 return 2;
3200 case RTX_UNARY:
3201 /* Then prefer NEG and NOT. */
3202 if (code == NEG || code == NOT)
3203 return 1;
3205 default:
3206 return 0;
3210 /* Return 1 iff it is necessary to swap operands of commutative operation
3211 in order to canonicalize expression. */
3213 bool
3214 swap_commutative_operands_p (rtx x, rtx y)
3216 return (commutative_operand_precedence (x)
3217 < commutative_operand_precedence (y));
3220 /* Return 1 if X is an autoincrement side effect and the register is
3221 not the stack pointer. */
3223 auto_inc_p (const_rtx x)
3225 switch (GET_CODE (x))
3227 case PRE_INC:
3228 case POST_INC:
3229 case PRE_DEC:
3230 case POST_DEC:
3231 case PRE_MODIFY:
3232 case POST_MODIFY:
3233 /* There are no REG_INC notes for SP. */
3234 if (XEXP (x, 0) != stack_pointer_rtx)
3235 return 1;
3236 default:
3237 break;
3239 return 0;
3242 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3244 loc_mentioned_in_p (rtx *loc, const_rtx in)
3246 enum rtx_code code;
3247 const char *fmt;
3248 int i, j;
3250 if (!in)
3251 return 0;
3253 code = GET_CODE (in);
3254 fmt = GET_RTX_FORMAT (code);
3255 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3257 if (fmt[i] == 'e')
3259 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3260 return 1;
3262 else if (fmt[i] == 'E')
3263 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3264 if (loc == &XVECEXP (in, i, j)
3265 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3266 return 1;
3268 return 0;
3271 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3272 and SUBREG_BYTE, return the bit offset where the subreg begins
3273 (counting from the least significant bit of the operand). */
3275 unsigned int
3276 subreg_lsb_1 (machine_mode outer_mode,
3277 machine_mode inner_mode,
3278 unsigned int subreg_byte)
3280 unsigned int bitpos;
3281 unsigned int byte;
3282 unsigned int word;
3284 /* A paradoxical subreg begins at bit position 0. */
3285 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3286 return 0;
3288 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3289 /* If the subreg crosses a word boundary ensure that
3290 it also begins and ends on a word boundary. */
3291 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3292 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3293 && (subreg_byte % UNITS_PER_WORD
3294 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3296 if (WORDS_BIG_ENDIAN)
3297 word = (GET_MODE_SIZE (inner_mode)
3298 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3299 else
3300 word = subreg_byte / UNITS_PER_WORD;
3301 bitpos = word * BITS_PER_WORD;
3303 if (BYTES_BIG_ENDIAN)
3304 byte = (GET_MODE_SIZE (inner_mode)
3305 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3306 else
3307 byte = subreg_byte % UNITS_PER_WORD;
3308 bitpos += byte * BITS_PER_UNIT;
3310 return bitpos;
3313 /* Given a subreg X, return the bit offset where the subreg begins
3314 (counting from the least significant bit of the reg). */
3316 unsigned int
3317 subreg_lsb (const_rtx x)
3319 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3320 SUBREG_BYTE (x));
3323 /* Fill in information about a subreg of a hard register.
3324 xregno - A regno of an inner hard subreg_reg (or what will become one).
3325 xmode - The mode of xregno.
3326 offset - The byte offset.
3327 ymode - The mode of a top level SUBREG (or what may become one).
3328 info - Pointer to structure to fill in.
3330 Rather than considering one particular inner register (and thus one
3331 particular "outer" register) in isolation, this function really uses
3332 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3333 function does not check whether adding INFO->offset to XREGNO gives
3334 a valid hard register; even if INFO->offset + XREGNO is out of range,
3335 there might be another register of the same type that is in range.
3336 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3337 register, since that can depend on things like whether the final
3338 register number is even or odd. Callers that want to check whether
3339 this particular subreg can be replaced by a simple (reg ...) should
3340 use simplify_subreg_regno. */
3342 void
3343 subreg_get_info (unsigned int xregno, machine_mode xmode,
3344 unsigned int offset, machine_mode ymode,
3345 struct subreg_info *info)
3347 int nregs_xmode, nregs_ymode;
3348 int mode_multiple, nregs_multiple;
3349 int offset_adj, y_offset, y_offset_adj;
3350 int regsize_xmode, regsize_ymode;
3351 bool rknown;
3353 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3355 rknown = false;
3357 /* If there are holes in a non-scalar mode in registers, we expect
3358 that it is made up of its units concatenated together. */
3359 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3361 machine_mode xmode_unit;
3363 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3364 if (GET_MODE_INNER (xmode) == VOIDmode)
3365 xmode_unit = xmode;
3366 else
3367 xmode_unit = GET_MODE_INNER (xmode);
3368 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3369 gcc_assert (nregs_xmode
3370 == (GET_MODE_NUNITS (xmode)
3371 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3372 gcc_assert (hard_regno_nregs[xregno][xmode]
3373 == (hard_regno_nregs[xregno][xmode_unit]
3374 * GET_MODE_NUNITS (xmode)));
3376 /* You can only ask for a SUBREG of a value with holes in the middle
3377 if you don't cross the holes. (Such a SUBREG should be done by
3378 picking a different register class, or doing it in memory if
3379 necessary.) An example of a value with holes is XCmode on 32-bit
3380 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3381 3 for each part, but in memory it's two 128-bit parts.
3382 Padding is assumed to be at the end (not necessarily the 'high part')
3383 of each unit. */
3384 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3385 < GET_MODE_NUNITS (xmode))
3386 && (offset / GET_MODE_SIZE (xmode_unit)
3387 != ((offset + GET_MODE_SIZE (ymode) - 1)
3388 / GET_MODE_SIZE (xmode_unit))))
3390 info->representable_p = false;
3391 rknown = true;
3394 else
3395 nregs_xmode = hard_regno_nregs[xregno][xmode];
3397 nregs_ymode = hard_regno_nregs[xregno][ymode];
3399 /* Paradoxical subregs are otherwise valid. */
3400 if (!rknown
3401 && offset == 0
3402 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3404 info->representable_p = true;
3405 /* If this is a big endian paradoxical subreg, which uses more
3406 actual hard registers than the original register, we must
3407 return a negative offset so that we find the proper highpart
3408 of the register. */
3409 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3410 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3411 info->offset = nregs_xmode - nregs_ymode;
3412 else
3413 info->offset = 0;
3414 info->nregs = nregs_ymode;
3415 return;
3418 /* If registers store different numbers of bits in the different
3419 modes, we cannot generally form this subreg. */
3420 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3421 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3422 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3423 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3425 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3426 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3427 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3429 info->representable_p = false;
3430 info->nregs
3431 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3432 info->offset = offset / regsize_xmode;
3433 return;
3435 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3437 info->representable_p = false;
3438 info->nregs
3439 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3440 info->offset = offset / regsize_xmode;
3441 return;
3443 /* Quick exit for the simple and common case of extracting whole
3444 subregisters from a multiregister value. */
3445 /* ??? It would be better to integrate this into the code below,
3446 if we can generalize the concept enough and figure out how
3447 odd-sized modes can coexist with the other weird cases we support. */
3448 if (!rknown
3449 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3450 && regsize_xmode == regsize_ymode
3451 && (offset % regsize_ymode) == 0)
3453 info->representable_p = true;
3454 info->nregs = nregs_ymode;
3455 info->offset = offset / regsize_ymode;
3456 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3457 return;
3461 /* Lowpart subregs are otherwise valid. */
3462 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3464 info->representable_p = true;
3465 rknown = true;
3467 if (offset == 0 || nregs_xmode == nregs_ymode)
3469 info->offset = 0;
3470 info->nregs = nregs_ymode;
3471 return;
3475 /* This should always pass, otherwise we don't know how to verify
3476 the constraint. These conditions may be relaxed but
3477 subreg_regno_offset would need to be redesigned. */
3478 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3479 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3481 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3482 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3484 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3485 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3486 HOST_WIDE_INT off_low = offset & (ysize - 1);
3487 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3488 offset = (xsize - ysize - off_high) | off_low;
3490 /* The XMODE value can be seen as a vector of NREGS_XMODE
3491 values. The subreg must represent a lowpart of given field.
3492 Compute what field it is. */
3493 offset_adj = offset;
3494 offset_adj -= subreg_lowpart_offset (ymode,
3495 mode_for_size (GET_MODE_BITSIZE (xmode)
3496 / nregs_xmode,
3497 MODE_INT, 0));
3499 /* Size of ymode must not be greater than the size of xmode. */
3500 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3501 gcc_assert (mode_multiple != 0);
3503 y_offset = offset / GET_MODE_SIZE (ymode);
3504 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3505 nregs_multiple = nregs_xmode / nregs_ymode;
3507 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3508 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3510 if (!rknown)
3512 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3513 rknown = true;
3515 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3516 info->nregs = nregs_ymode;
3519 /* This function returns the regno offset of a subreg expression.
3520 xregno - A regno of an inner hard subreg_reg (or what will become one).
3521 xmode - The mode of xregno.
3522 offset - The byte offset.
3523 ymode - The mode of a top level SUBREG (or what may become one).
3524 RETURN - The regno offset which would be used. */
3525 unsigned int
3526 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3527 unsigned int offset, machine_mode ymode)
3529 struct subreg_info info;
3530 subreg_get_info (xregno, xmode, offset, ymode, &info);
3531 return info.offset;
3534 /* This function returns true when the offset is representable via
3535 subreg_offset in the given regno.
3536 xregno - A regno of an inner hard subreg_reg (or what will become one).
3537 xmode - The mode of xregno.
3538 offset - The byte offset.
3539 ymode - The mode of a top level SUBREG (or what may become one).
3540 RETURN - Whether the offset is representable. */
3541 bool
3542 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3543 unsigned int offset, machine_mode ymode)
3545 struct subreg_info info;
3546 subreg_get_info (xregno, xmode, offset, ymode, &info);
3547 return info.representable_p;
3550 /* Return the number of a YMODE register to which
3552 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3554 can be simplified. Return -1 if the subreg can't be simplified.
3556 XREGNO is a hard register number. */
3559 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3560 unsigned int offset, machine_mode ymode)
3562 struct subreg_info info;
3563 unsigned int yregno;
3565 #ifdef CANNOT_CHANGE_MODE_CLASS
3566 /* Give the backend a chance to disallow the mode change. */
3567 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3568 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3569 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3570 /* We can use mode change in LRA for some transformations. */
3571 && ! lra_in_progress)
3572 return -1;
3573 #endif
3575 /* We shouldn't simplify stack-related registers. */
3576 if ((!reload_completed || frame_pointer_needed)
3577 && xregno == FRAME_POINTER_REGNUM)
3578 return -1;
3580 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3581 && xregno == ARG_POINTER_REGNUM)
3582 return -1;
3584 if (xregno == STACK_POINTER_REGNUM
3585 /* We should convert hard stack register in LRA if it is
3586 possible. */
3587 && ! lra_in_progress)
3588 return -1;
3590 /* Try to get the register offset. */
3591 subreg_get_info (xregno, xmode, offset, ymode, &info);
3592 if (!info.representable_p)
3593 return -1;
3595 /* Make sure that the offsetted register value is in range. */
3596 yregno = xregno + info.offset;
3597 if (!HARD_REGISTER_NUM_P (yregno))
3598 return -1;
3600 /* See whether (reg:YMODE YREGNO) is valid.
3602 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3603 This is a kludge to work around how complex FP arguments are passed
3604 on IA-64 and should be fixed. See PR target/49226. */
3605 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3606 && HARD_REGNO_MODE_OK (xregno, xmode))
3607 return -1;
3609 return (int) yregno;
3612 /* Return the final regno that a subreg expression refers to. */
3613 unsigned int
3614 subreg_regno (const_rtx x)
3616 unsigned int ret;
3617 rtx subreg = SUBREG_REG (x);
3618 int regno = REGNO (subreg);
3620 ret = regno + subreg_regno_offset (regno,
3621 GET_MODE (subreg),
3622 SUBREG_BYTE (x),
3623 GET_MODE (x));
3624 return ret;
3628 /* Return the number of registers that a subreg expression refers
3629 to. */
3630 unsigned int
3631 subreg_nregs (const_rtx x)
3633 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3636 /* Return the number of registers that a subreg REG with REGNO
3637 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3638 changed so that the regno can be passed in. */
3640 unsigned int
3641 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3643 struct subreg_info info;
3644 rtx subreg = SUBREG_REG (x);
3646 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3647 &info);
3648 return info.nregs;
3652 struct parms_set_data
3654 int nregs;
3655 HARD_REG_SET regs;
3658 /* Helper function for noticing stores to parameter registers. */
3659 static void
3660 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3662 struct parms_set_data *const d = (struct parms_set_data *) data;
3663 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3664 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3666 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3667 d->nregs--;
3671 /* Look backward for first parameter to be loaded.
3672 Note that loads of all parameters will not necessarily be
3673 found if CSE has eliminated some of them (e.g., an argument
3674 to the outer function is passed down as a parameter).
3675 Do not skip BOUNDARY. */
3676 rtx_insn *
3677 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3679 struct parms_set_data parm;
3680 rtx p;
3681 rtx_insn *before, *first_set;
3683 /* Since different machines initialize their parameter registers
3684 in different orders, assume nothing. Collect the set of all
3685 parameter registers. */
3686 CLEAR_HARD_REG_SET (parm.regs);
3687 parm.nregs = 0;
3688 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3689 if (GET_CODE (XEXP (p, 0)) == USE
3690 && REG_P (XEXP (XEXP (p, 0), 0)))
3692 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3694 /* We only care about registers which can hold function
3695 arguments. */
3696 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3697 continue;
3699 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3700 parm.nregs++;
3702 before = call_insn;
3703 first_set = call_insn;
3705 /* Search backward for the first set of a register in this set. */
3706 while (parm.nregs && before != boundary)
3708 before = PREV_INSN (before);
3710 /* It is possible that some loads got CSEed from one call to
3711 another. Stop in that case. */
3712 if (CALL_P (before))
3713 break;
3715 /* Our caller needs either ensure that we will find all sets
3716 (in case code has not been optimized yet), or take care
3717 for possible labels in a way by setting boundary to preceding
3718 CODE_LABEL. */
3719 if (LABEL_P (before))
3721 gcc_assert (before == boundary);
3722 break;
3725 if (INSN_P (before))
3727 int nregs_old = parm.nregs;
3728 note_stores (PATTERN (before), parms_set, &parm);
3729 /* If we found something that did not set a parameter reg,
3730 we're done. Do not keep going, as that might result
3731 in hoisting an insn before the setting of a pseudo
3732 that is used by the hoisted insn. */
3733 if (nregs_old != parm.nregs)
3734 first_set = before;
3735 else
3736 break;
3739 return first_set;
3742 /* Return true if we should avoid inserting code between INSN and preceding
3743 call instruction. */
3745 bool
3746 keep_with_call_p (const rtx_insn *insn)
3748 rtx set;
3750 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3752 if (REG_P (SET_DEST (set))
3753 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3754 && fixed_regs[REGNO (SET_DEST (set))]
3755 && general_operand (SET_SRC (set), VOIDmode))
3756 return true;
3757 if (REG_P (SET_SRC (set))
3758 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3759 && REG_P (SET_DEST (set))
3760 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3761 return true;
3762 /* There may be a stack pop just after the call and before the store
3763 of the return register. Search for the actual store when deciding
3764 if we can break or not. */
3765 if (SET_DEST (set) == stack_pointer_rtx)
3767 /* This CONST_CAST is okay because next_nonnote_insn just
3768 returns its argument and we assign it to a const_rtx
3769 variable. */
3770 const rtx_insn *i2
3771 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3772 if (i2 && keep_with_call_p (i2))
3773 return true;
3776 return false;
3779 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3780 to non-complex jumps. That is, direct unconditional, conditional,
3781 and tablejumps, but not computed jumps or returns. It also does
3782 not apply to the fallthru case of a conditional jump. */
3784 bool
3785 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3787 rtx tmp = JUMP_LABEL (jump_insn);
3788 rtx_jump_table_data *table;
3790 if (label == tmp)
3791 return true;
3793 if (tablejump_p (jump_insn, NULL, &table))
3795 rtvec vec = table->get_labels ();
3796 int i, veclen = GET_NUM_ELEM (vec);
3798 for (i = 0; i < veclen; ++i)
3799 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3800 return true;
3803 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3804 return true;
3806 return false;
3810 /* Return an estimate of the cost of computing rtx X.
3811 One use is in cse, to decide which expression to keep in the hash table.
3812 Another is in rtl generation, to pick the cheapest way to multiply.
3813 Other uses like the latter are expected in the future.
3815 X appears as operand OPNO in an expression with code OUTER_CODE.
3816 SPEED specifies whether costs optimized for speed or size should
3817 be returned. */
3820 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3822 int i, j;
3823 enum rtx_code code;
3824 const char *fmt;
3825 int total;
3826 int factor;
3828 if (x == 0)
3829 return 0;
3831 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3832 many insns, taking N times as long. */
3833 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3834 if (factor == 0)
3835 factor = 1;
3837 /* Compute the default costs of certain things.
3838 Note that targetm.rtx_costs can override the defaults. */
3840 code = GET_CODE (x);
3841 switch (code)
3843 case MULT:
3844 /* Multiplication has time-complexity O(N*N), where N is the
3845 number of units (translated from digits) when using
3846 schoolbook long multiplication. */
3847 total = factor * factor * COSTS_N_INSNS (5);
3848 break;
3849 case DIV:
3850 case UDIV:
3851 case MOD:
3852 case UMOD:
3853 /* Similarly, complexity for schoolbook long division. */
3854 total = factor * factor * COSTS_N_INSNS (7);
3855 break;
3856 case USE:
3857 /* Used in combine.c as a marker. */
3858 total = 0;
3859 break;
3860 case SET:
3861 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3862 the mode for the factor. */
3863 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3864 if (factor == 0)
3865 factor = 1;
3866 /* Pass through. */
3867 default:
3868 total = factor * COSTS_N_INSNS (1);
3871 switch (code)
3873 case REG:
3874 return 0;
3876 case SUBREG:
3877 total = 0;
3878 /* If we can't tie these modes, make this expensive. The larger
3879 the mode, the more expensive it is. */
3880 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3881 return COSTS_N_INSNS (2 + factor);
3882 break;
3884 default:
3885 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3886 return total;
3887 break;
3890 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3891 which is already in total. */
3893 fmt = GET_RTX_FORMAT (code);
3894 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3895 if (fmt[i] == 'e')
3896 total += rtx_cost (XEXP (x, i), code, i, speed);
3897 else if (fmt[i] == 'E')
3898 for (j = 0; j < XVECLEN (x, i); j++)
3899 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3901 return total;
3904 /* Fill in the structure C with information about both speed and size rtx
3905 costs for X, which is operand OPNO in an expression with code OUTER. */
3907 void
3908 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3909 struct full_rtx_costs *c)
3911 c->speed = rtx_cost (x, outer, opno, true);
3912 c->size = rtx_cost (x, outer, opno, false);
3916 /* Return cost of address expression X.
3917 Expect that X is properly formed address reference.
3919 SPEED parameter specify whether costs optimized for speed or size should
3920 be returned. */
3923 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
3925 /* We may be asked for cost of various unusual addresses, such as operands
3926 of push instruction. It is not worthwhile to complicate writing
3927 of the target hook by such cases. */
3929 if (!memory_address_addr_space_p (mode, x, as))
3930 return 1000;
3932 return targetm.address_cost (x, mode, as, speed);
3935 /* If the target doesn't override, compute the cost as with arithmetic. */
3938 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
3940 return rtx_cost (x, MEM, 0, speed);
3944 unsigned HOST_WIDE_INT
3945 nonzero_bits (const_rtx x, machine_mode mode)
3947 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3950 unsigned int
3951 num_sign_bit_copies (const_rtx x, machine_mode mode)
3953 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3956 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3957 It avoids exponential behavior in nonzero_bits1 when X has
3958 identical subexpressions on the first or the second level. */
3960 static unsigned HOST_WIDE_INT
3961 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
3962 machine_mode known_mode,
3963 unsigned HOST_WIDE_INT known_ret)
3965 if (x == known_x && mode == known_mode)
3966 return known_ret;
3968 /* Try to find identical subexpressions. If found call
3969 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3970 precomputed value for the subexpression as KNOWN_RET. */
3972 if (ARITHMETIC_P (x))
3974 rtx x0 = XEXP (x, 0);
3975 rtx x1 = XEXP (x, 1);
3977 /* Check the first level. */
3978 if (x0 == x1)
3979 return nonzero_bits1 (x, mode, x0, mode,
3980 cached_nonzero_bits (x0, mode, known_x,
3981 known_mode, known_ret));
3983 /* Check the second level. */
3984 if (ARITHMETIC_P (x0)
3985 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3986 return nonzero_bits1 (x, mode, x1, mode,
3987 cached_nonzero_bits (x1, mode, known_x,
3988 known_mode, known_ret));
3990 if (ARITHMETIC_P (x1)
3991 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3992 return nonzero_bits1 (x, mode, x0, mode,
3993 cached_nonzero_bits (x0, mode, known_x,
3994 known_mode, known_ret));
3997 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4000 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4001 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4002 is less useful. We can't allow both, because that results in exponential
4003 run time recursion. There is a nullstone testcase that triggered
4004 this. This macro avoids accidental uses of num_sign_bit_copies. */
4005 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4007 /* Given an expression, X, compute which bits in X can be nonzero.
4008 We don't care about bits outside of those defined in MODE.
4010 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4011 an arithmetic operation, we can do better. */
4013 static unsigned HOST_WIDE_INT
4014 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4015 machine_mode known_mode,
4016 unsigned HOST_WIDE_INT known_ret)
4018 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4019 unsigned HOST_WIDE_INT inner_nz;
4020 enum rtx_code code;
4021 machine_mode inner_mode;
4022 unsigned int mode_width = GET_MODE_PRECISION (mode);
4024 /* For floating-point and vector values, assume all bits are needed. */
4025 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4026 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4027 return nonzero;
4029 /* If X is wider than MODE, use its mode instead. */
4030 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4032 mode = GET_MODE (x);
4033 nonzero = GET_MODE_MASK (mode);
4034 mode_width = GET_MODE_PRECISION (mode);
4037 if (mode_width > HOST_BITS_PER_WIDE_INT)
4038 /* Our only callers in this case look for single bit values. So
4039 just return the mode mask. Those tests will then be false. */
4040 return nonzero;
4042 #ifndef WORD_REGISTER_OPERATIONS
4043 /* If MODE is wider than X, but both are a single word for both the host
4044 and target machines, we can compute this from which bits of the
4045 object might be nonzero in its own mode, taking into account the fact
4046 that on many CISC machines, accessing an object in a wider mode
4047 causes the high-order bits to become undefined. So they are
4048 not known to be zero. */
4050 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4051 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4052 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4053 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4055 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4056 known_x, known_mode, known_ret);
4057 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4058 return nonzero;
4060 #endif
4062 code = GET_CODE (x);
4063 switch (code)
4065 case REG:
4066 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4067 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4068 all the bits above ptr_mode are known to be zero. */
4069 /* As we do not know which address space the pointer is referring to,
4070 we can do this only if the target does not support different pointer
4071 or address modes depending on the address space. */
4072 if (target_default_pointer_address_modes_p ()
4073 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4074 && REG_POINTER (x))
4075 nonzero &= GET_MODE_MASK (ptr_mode);
4076 #endif
4078 /* Include declared information about alignment of pointers. */
4079 /* ??? We don't properly preserve REG_POINTER changes across
4080 pointer-to-integer casts, so we can't trust it except for
4081 things that we know must be pointers. See execute/960116-1.c. */
4082 if ((x == stack_pointer_rtx
4083 || x == frame_pointer_rtx
4084 || x == arg_pointer_rtx)
4085 && REGNO_POINTER_ALIGN (REGNO (x)))
4087 unsigned HOST_WIDE_INT alignment
4088 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4090 #ifdef PUSH_ROUNDING
4091 /* If PUSH_ROUNDING is defined, it is possible for the
4092 stack to be momentarily aligned only to that amount,
4093 so we pick the least alignment. */
4094 if (x == stack_pointer_rtx && PUSH_ARGS)
4095 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4096 alignment);
4097 #endif
4099 nonzero &= ~(alignment - 1);
4103 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4104 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4105 known_mode, known_ret,
4106 &nonzero_for_hook);
4108 if (new_rtx)
4109 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4110 known_mode, known_ret);
4112 return nonzero_for_hook;
4115 case CONST_INT:
4116 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4117 /* If X is negative in MODE, sign-extend the value. */
4118 if (INTVAL (x) > 0
4119 && mode_width < BITS_PER_WORD
4120 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4121 != 0)
4122 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4123 #endif
4125 return UINTVAL (x);
4127 case MEM:
4128 #ifdef LOAD_EXTEND_OP
4129 /* In many, if not most, RISC machines, reading a byte from memory
4130 zeros the rest of the register. Noticing that fact saves a lot
4131 of extra zero-extends. */
4132 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4133 nonzero &= GET_MODE_MASK (GET_MODE (x));
4134 #endif
4135 break;
4137 case EQ: case NE:
4138 case UNEQ: case LTGT:
4139 case GT: case GTU: case UNGT:
4140 case LT: case LTU: case UNLT:
4141 case GE: case GEU: case UNGE:
4142 case LE: case LEU: case UNLE:
4143 case UNORDERED: case ORDERED:
4144 /* If this produces an integer result, we know which bits are set.
4145 Code here used to clear bits outside the mode of X, but that is
4146 now done above. */
4147 /* Mind that MODE is the mode the caller wants to look at this
4148 operation in, and not the actual operation mode. We can wind
4149 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4150 that describes the results of a vector compare. */
4151 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4152 && mode_width <= HOST_BITS_PER_WIDE_INT)
4153 nonzero = STORE_FLAG_VALUE;
4154 break;
4156 case NEG:
4157 #if 0
4158 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4159 and num_sign_bit_copies. */
4160 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4161 == GET_MODE_PRECISION (GET_MODE (x)))
4162 nonzero = 1;
4163 #endif
4165 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4166 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4167 break;
4169 case ABS:
4170 #if 0
4171 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4172 and num_sign_bit_copies. */
4173 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4174 == GET_MODE_PRECISION (GET_MODE (x)))
4175 nonzero = 1;
4176 #endif
4177 break;
4179 case TRUNCATE:
4180 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4181 known_x, known_mode, known_ret)
4182 & GET_MODE_MASK (mode));
4183 break;
4185 case ZERO_EXTEND:
4186 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4187 known_x, known_mode, known_ret);
4188 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4189 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4190 break;
4192 case SIGN_EXTEND:
4193 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4194 Otherwise, show all the bits in the outer mode but not the inner
4195 may be nonzero. */
4196 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4197 known_x, known_mode, known_ret);
4198 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4200 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4201 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4202 inner_nz |= (GET_MODE_MASK (mode)
4203 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4206 nonzero &= inner_nz;
4207 break;
4209 case AND:
4210 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4211 known_x, known_mode, known_ret)
4212 & cached_nonzero_bits (XEXP (x, 1), mode,
4213 known_x, known_mode, known_ret);
4214 break;
4216 case XOR: case IOR:
4217 case UMIN: case UMAX: case SMIN: case SMAX:
4219 unsigned HOST_WIDE_INT nonzero0
4220 = cached_nonzero_bits (XEXP (x, 0), mode,
4221 known_x, known_mode, known_ret);
4223 /* Don't call nonzero_bits for the second time if it cannot change
4224 anything. */
4225 if ((nonzero & nonzero0) != nonzero)
4226 nonzero &= nonzero0
4227 | cached_nonzero_bits (XEXP (x, 1), mode,
4228 known_x, known_mode, known_ret);
4230 break;
4232 case PLUS: case MINUS:
4233 case MULT:
4234 case DIV: case UDIV:
4235 case MOD: case UMOD:
4236 /* We can apply the rules of arithmetic to compute the number of
4237 high- and low-order zero bits of these operations. We start by
4238 computing the width (position of the highest-order nonzero bit)
4239 and the number of low-order zero bits for each value. */
4241 unsigned HOST_WIDE_INT nz0
4242 = cached_nonzero_bits (XEXP (x, 0), mode,
4243 known_x, known_mode, known_ret);
4244 unsigned HOST_WIDE_INT nz1
4245 = cached_nonzero_bits (XEXP (x, 1), mode,
4246 known_x, known_mode, known_ret);
4247 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4248 int width0 = floor_log2 (nz0) + 1;
4249 int width1 = floor_log2 (nz1) + 1;
4250 int low0 = floor_log2 (nz0 & -nz0);
4251 int low1 = floor_log2 (nz1 & -nz1);
4252 unsigned HOST_WIDE_INT op0_maybe_minusp
4253 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4254 unsigned HOST_WIDE_INT op1_maybe_minusp
4255 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4256 unsigned int result_width = mode_width;
4257 int result_low = 0;
4259 switch (code)
4261 case PLUS:
4262 result_width = MAX (width0, width1) + 1;
4263 result_low = MIN (low0, low1);
4264 break;
4265 case MINUS:
4266 result_low = MIN (low0, low1);
4267 break;
4268 case MULT:
4269 result_width = width0 + width1;
4270 result_low = low0 + low1;
4271 break;
4272 case DIV:
4273 if (width1 == 0)
4274 break;
4275 if (!op0_maybe_minusp && !op1_maybe_minusp)
4276 result_width = width0;
4277 break;
4278 case UDIV:
4279 if (width1 == 0)
4280 break;
4281 result_width = width0;
4282 break;
4283 case MOD:
4284 if (width1 == 0)
4285 break;
4286 if (!op0_maybe_minusp && !op1_maybe_minusp)
4287 result_width = MIN (width0, width1);
4288 result_low = MIN (low0, low1);
4289 break;
4290 case UMOD:
4291 if (width1 == 0)
4292 break;
4293 result_width = MIN (width0, width1);
4294 result_low = MIN (low0, low1);
4295 break;
4296 default:
4297 gcc_unreachable ();
4300 if (result_width < mode_width)
4301 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4303 if (result_low > 0)
4304 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4306 break;
4308 case ZERO_EXTRACT:
4309 if (CONST_INT_P (XEXP (x, 1))
4310 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4311 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4312 break;
4314 case SUBREG:
4315 /* If this is a SUBREG formed for a promoted variable that has
4316 been zero-extended, we know that at least the high-order bits
4317 are zero, though others might be too. */
4319 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4320 nonzero = GET_MODE_MASK (GET_MODE (x))
4321 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4322 known_x, known_mode, known_ret);
4324 inner_mode = GET_MODE (SUBREG_REG (x));
4325 /* If the inner mode is a single word for both the host and target
4326 machines, we can compute this from which bits of the inner
4327 object might be nonzero. */
4328 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4329 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4331 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4332 known_x, known_mode, known_ret);
4334 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4335 /* If this is a typical RISC machine, we only have to worry
4336 about the way loads are extended. */
4337 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4338 ? val_signbit_known_set_p (inner_mode, nonzero)
4339 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4340 || !MEM_P (SUBREG_REG (x)))
4341 #endif
4343 /* On many CISC machines, accessing an object in a wider mode
4344 causes the high-order bits to become undefined. So they are
4345 not known to be zero. */
4346 if (GET_MODE_PRECISION (GET_MODE (x))
4347 > GET_MODE_PRECISION (inner_mode))
4348 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4349 & ~GET_MODE_MASK (inner_mode));
4352 break;
4354 case ASHIFTRT:
4355 case LSHIFTRT:
4356 case ASHIFT:
4357 case ROTATE:
4358 /* The nonzero bits are in two classes: any bits within MODE
4359 that aren't in GET_MODE (x) are always significant. The rest of the
4360 nonzero bits are those that are significant in the operand of
4361 the shift when shifted the appropriate number of bits. This
4362 shows that high-order bits are cleared by the right shift and
4363 low-order bits by left shifts. */
4364 if (CONST_INT_P (XEXP (x, 1))
4365 && INTVAL (XEXP (x, 1)) >= 0
4366 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4367 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4369 machine_mode inner_mode = GET_MODE (x);
4370 unsigned int width = GET_MODE_PRECISION (inner_mode);
4371 int count = INTVAL (XEXP (x, 1));
4372 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4373 unsigned HOST_WIDE_INT op_nonzero
4374 = cached_nonzero_bits (XEXP (x, 0), mode,
4375 known_x, known_mode, known_ret);
4376 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4377 unsigned HOST_WIDE_INT outer = 0;
4379 if (mode_width > width)
4380 outer = (op_nonzero & nonzero & ~mode_mask);
4382 if (code == LSHIFTRT)
4383 inner >>= count;
4384 else if (code == ASHIFTRT)
4386 inner >>= count;
4388 /* If the sign bit may have been nonzero before the shift, we
4389 need to mark all the places it could have been copied to
4390 by the shift as possibly nonzero. */
4391 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4392 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4393 << (width - count);
4395 else if (code == ASHIFT)
4396 inner <<= count;
4397 else
4398 inner = ((inner << (count % width)
4399 | (inner >> (width - (count % width)))) & mode_mask);
4401 nonzero &= (outer | inner);
4403 break;
4405 case FFS:
4406 case POPCOUNT:
4407 /* This is at most the number of bits in the mode. */
4408 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4409 break;
4411 case CLZ:
4412 /* If CLZ has a known value at zero, then the nonzero bits are
4413 that value, plus the number of bits in the mode minus one. */
4414 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4415 nonzero
4416 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4417 else
4418 nonzero = -1;
4419 break;
4421 case CTZ:
4422 /* If CTZ has a known value at zero, then the nonzero bits are
4423 that value, plus the number of bits in the mode minus one. */
4424 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4425 nonzero
4426 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4427 else
4428 nonzero = -1;
4429 break;
4431 case CLRSB:
4432 /* This is at most the number of bits in the mode minus 1. */
4433 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4434 break;
4436 case PARITY:
4437 nonzero = 1;
4438 break;
4440 case IF_THEN_ELSE:
4442 unsigned HOST_WIDE_INT nonzero_true
4443 = cached_nonzero_bits (XEXP (x, 1), mode,
4444 known_x, known_mode, known_ret);
4446 /* Don't call nonzero_bits for the second time if it cannot change
4447 anything. */
4448 if ((nonzero & nonzero_true) != nonzero)
4449 nonzero &= nonzero_true
4450 | cached_nonzero_bits (XEXP (x, 2), mode,
4451 known_x, known_mode, known_ret);
4453 break;
4455 default:
4456 break;
4459 return nonzero;
4462 /* See the macro definition above. */
4463 #undef cached_num_sign_bit_copies
4466 /* The function cached_num_sign_bit_copies is a wrapper around
4467 num_sign_bit_copies1. It avoids exponential behavior in
4468 num_sign_bit_copies1 when X has identical subexpressions on the
4469 first or the second level. */
4471 static unsigned int
4472 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4473 machine_mode known_mode,
4474 unsigned int known_ret)
4476 if (x == known_x && mode == known_mode)
4477 return known_ret;
4479 /* Try to find identical subexpressions. If found call
4480 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4481 the precomputed value for the subexpression as KNOWN_RET. */
4483 if (ARITHMETIC_P (x))
4485 rtx x0 = XEXP (x, 0);
4486 rtx x1 = XEXP (x, 1);
4488 /* Check the first level. */
4489 if (x0 == x1)
4490 return
4491 num_sign_bit_copies1 (x, mode, x0, mode,
4492 cached_num_sign_bit_copies (x0, mode, known_x,
4493 known_mode,
4494 known_ret));
4496 /* Check the second level. */
4497 if (ARITHMETIC_P (x0)
4498 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4499 return
4500 num_sign_bit_copies1 (x, mode, x1, mode,
4501 cached_num_sign_bit_copies (x1, mode, known_x,
4502 known_mode,
4503 known_ret));
4505 if (ARITHMETIC_P (x1)
4506 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4507 return
4508 num_sign_bit_copies1 (x, mode, x0, mode,
4509 cached_num_sign_bit_copies (x0, mode, known_x,
4510 known_mode,
4511 known_ret));
4514 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4517 /* Return the number of bits at the high-order end of X that are known to
4518 be equal to the sign bit. X will be used in mode MODE; if MODE is
4519 VOIDmode, X will be used in its own mode. The returned value will always
4520 be between 1 and the number of bits in MODE. */
4522 static unsigned int
4523 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4524 machine_mode known_mode,
4525 unsigned int known_ret)
4527 enum rtx_code code = GET_CODE (x);
4528 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4529 int num0, num1, result;
4530 unsigned HOST_WIDE_INT nonzero;
4532 /* If we weren't given a mode, use the mode of X. If the mode is still
4533 VOIDmode, we don't know anything. Likewise if one of the modes is
4534 floating-point. */
4536 if (mode == VOIDmode)
4537 mode = GET_MODE (x);
4539 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4540 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4541 return 1;
4543 /* For a smaller object, just ignore the high bits. */
4544 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4546 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4547 known_x, known_mode, known_ret);
4548 return MAX (1,
4549 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4552 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4554 #ifndef WORD_REGISTER_OPERATIONS
4555 /* If this machine does not do all register operations on the entire
4556 register and MODE is wider than the mode of X, we can say nothing
4557 at all about the high-order bits. */
4558 return 1;
4559 #else
4560 /* Likewise on machines that do, if the mode of the object is smaller
4561 than a word and loads of that size don't sign extend, we can say
4562 nothing about the high order bits. */
4563 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4564 #ifdef LOAD_EXTEND_OP
4565 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4566 #endif
4568 return 1;
4569 #endif
4572 switch (code)
4574 case REG:
4576 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4577 /* If pointers extend signed and this is a pointer in Pmode, say that
4578 all the bits above ptr_mode are known to be sign bit copies. */
4579 /* As we do not know which address space the pointer is referring to,
4580 we can do this only if the target does not support different pointer
4581 or address modes depending on the address space. */
4582 if (target_default_pointer_address_modes_p ()
4583 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4584 && mode == Pmode && REG_POINTER (x))
4585 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4586 #endif
4589 unsigned int copies_for_hook = 1, copies = 1;
4590 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4591 known_mode, known_ret,
4592 &copies_for_hook);
4594 if (new_rtx)
4595 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4596 known_mode, known_ret);
4598 if (copies > 1 || copies_for_hook > 1)
4599 return MAX (copies, copies_for_hook);
4601 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4603 break;
4605 case MEM:
4606 #ifdef LOAD_EXTEND_OP
4607 /* Some RISC machines sign-extend all loads of smaller than a word. */
4608 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4609 return MAX (1, ((int) bitwidth
4610 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4611 #endif
4612 break;
4614 case CONST_INT:
4615 /* If the constant is negative, take its 1's complement and remask.
4616 Then see how many zero bits we have. */
4617 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4618 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4619 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4620 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4622 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4624 case SUBREG:
4625 /* If this is a SUBREG for a promoted object that is sign-extended
4626 and we are looking at it in a wider mode, we know that at least the
4627 high-order bits are known to be sign bit copies. */
4629 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4631 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4632 known_x, known_mode, known_ret);
4633 return MAX ((int) bitwidth
4634 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4635 num0);
4638 /* For a smaller object, just ignore the high bits. */
4639 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4641 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4642 known_x, known_mode, known_ret);
4643 return MAX (1, (num0
4644 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4645 - bitwidth)));
4648 #ifdef WORD_REGISTER_OPERATIONS
4649 #ifdef LOAD_EXTEND_OP
4650 /* For paradoxical SUBREGs on machines where all register operations
4651 affect the entire register, just look inside. Note that we are
4652 passing MODE to the recursive call, so the number of sign bit copies
4653 will remain relative to that mode, not the inner mode. */
4655 /* This works only if loads sign extend. Otherwise, if we get a
4656 reload for the inner part, it may be loaded from the stack, and
4657 then we lose all sign bit copies that existed before the store
4658 to the stack. */
4660 if (paradoxical_subreg_p (x)
4661 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4662 && MEM_P (SUBREG_REG (x)))
4663 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4664 known_x, known_mode, known_ret);
4665 #endif
4666 #endif
4667 break;
4669 case SIGN_EXTRACT:
4670 if (CONST_INT_P (XEXP (x, 1)))
4671 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4672 break;
4674 case SIGN_EXTEND:
4675 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4676 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4677 known_x, known_mode, known_ret));
4679 case TRUNCATE:
4680 /* For a smaller object, just ignore the high bits. */
4681 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4682 known_x, known_mode, known_ret);
4683 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4684 - bitwidth)));
4686 case NOT:
4687 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4688 known_x, known_mode, known_ret);
4690 case ROTATE: case ROTATERT:
4691 /* If we are rotating left by a number of bits less than the number
4692 of sign bit copies, we can just subtract that amount from the
4693 number. */
4694 if (CONST_INT_P (XEXP (x, 1))
4695 && INTVAL (XEXP (x, 1)) >= 0
4696 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4698 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4699 known_x, known_mode, known_ret);
4700 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4701 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4703 break;
4705 case NEG:
4706 /* In general, this subtracts one sign bit copy. But if the value
4707 is known to be positive, the number of sign bit copies is the
4708 same as that of the input. Finally, if the input has just one bit
4709 that might be nonzero, all the bits are copies of the sign bit. */
4710 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4711 known_x, known_mode, known_ret);
4712 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4713 return num0 > 1 ? num0 - 1 : 1;
4715 nonzero = nonzero_bits (XEXP (x, 0), mode);
4716 if (nonzero == 1)
4717 return bitwidth;
4719 if (num0 > 1
4720 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4721 num0--;
4723 return num0;
4725 case IOR: case AND: case XOR:
4726 case SMIN: case SMAX: case UMIN: case UMAX:
4727 /* Logical operations will preserve the number of sign-bit copies.
4728 MIN and MAX operations always return one of the operands. */
4729 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4730 known_x, known_mode, known_ret);
4731 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4732 known_x, known_mode, known_ret);
4734 /* If num1 is clearing some of the top bits then regardless of
4735 the other term, we are guaranteed to have at least that many
4736 high-order zero bits. */
4737 if (code == AND
4738 && num1 > 1
4739 && bitwidth <= HOST_BITS_PER_WIDE_INT
4740 && CONST_INT_P (XEXP (x, 1))
4741 && (UINTVAL (XEXP (x, 1))
4742 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4743 return num1;
4745 /* Similarly for IOR when setting high-order bits. */
4746 if (code == IOR
4747 && num1 > 1
4748 && bitwidth <= HOST_BITS_PER_WIDE_INT
4749 && CONST_INT_P (XEXP (x, 1))
4750 && (UINTVAL (XEXP (x, 1))
4751 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4752 return num1;
4754 return MIN (num0, num1);
4756 case PLUS: case MINUS:
4757 /* For addition and subtraction, we can have a 1-bit carry. However,
4758 if we are subtracting 1 from a positive number, there will not
4759 be such a carry. Furthermore, if the positive number is known to
4760 be 0 or 1, we know the result is either -1 or 0. */
4762 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4763 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4765 nonzero = nonzero_bits (XEXP (x, 0), mode);
4766 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4767 return (nonzero == 1 || nonzero == 0 ? bitwidth
4768 : bitwidth - floor_log2 (nonzero) - 1);
4771 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4772 known_x, known_mode, known_ret);
4773 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4774 known_x, known_mode, known_ret);
4775 result = MAX (1, MIN (num0, num1) - 1);
4777 return result;
4779 case MULT:
4780 /* The number of bits of the product is the sum of the number of
4781 bits of both terms. However, unless one of the terms if known
4782 to be positive, we must allow for an additional bit since negating
4783 a negative number can remove one sign bit copy. */
4785 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4786 known_x, known_mode, known_ret);
4787 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4788 known_x, known_mode, known_ret);
4790 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4791 if (result > 0
4792 && (bitwidth > HOST_BITS_PER_WIDE_INT
4793 || (((nonzero_bits (XEXP (x, 0), mode)
4794 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4795 && ((nonzero_bits (XEXP (x, 1), mode)
4796 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4797 != 0))))
4798 result--;
4800 return MAX (1, result);
4802 case UDIV:
4803 /* The result must be <= the first operand. If the first operand
4804 has the high bit set, we know nothing about the number of sign
4805 bit copies. */
4806 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4807 return 1;
4808 else if ((nonzero_bits (XEXP (x, 0), mode)
4809 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4810 return 1;
4811 else
4812 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4813 known_x, known_mode, known_ret);
4815 case UMOD:
4816 /* The result must be <= the second operand. If the second operand
4817 has (or just might have) the high bit set, we know nothing about
4818 the number of sign bit copies. */
4819 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4820 return 1;
4821 else if ((nonzero_bits (XEXP (x, 1), mode)
4822 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4823 return 1;
4824 else
4825 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4826 known_x, known_mode, known_ret);
4828 case DIV:
4829 /* Similar to unsigned division, except that we have to worry about
4830 the case where the divisor is negative, in which case we have
4831 to add 1. */
4832 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4833 known_x, known_mode, known_ret);
4834 if (result > 1
4835 && (bitwidth > HOST_BITS_PER_WIDE_INT
4836 || (nonzero_bits (XEXP (x, 1), mode)
4837 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4838 result--;
4840 return result;
4842 case MOD:
4843 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4844 known_x, known_mode, known_ret);
4845 if (result > 1
4846 && (bitwidth > HOST_BITS_PER_WIDE_INT
4847 || (nonzero_bits (XEXP (x, 1), mode)
4848 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4849 result--;
4851 return result;
4853 case ASHIFTRT:
4854 /* Shifts by a constant add to the number of bits equal to the
4855 sign bit. */
4856 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4857 known_x, known_mode, known_ret);
4858 if (CONST_INT_P (XEXP (x, 1))
4859 && INTVAL (XEXP (x, 1)) > 0
4860 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4861 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4863 return num0;
4865 case ASHIFT:
4866 /* Left shifts destroy copies. */
4867 if (!CONST_INT_P (XEXP (x, 1))
4868 || INTVAL (XEXP (x, 1)) < 0
4869 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4870 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4871 return 1;
4873 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4874 known_x, known_mode, known_ret);
4875 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4877 case IF_THEN_ELSE:
4878 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4879 known_x, known_mode, known_ret);
4880 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4881 known_x, known_mode, known_ret);
4882 return MIN (num0, num1);
4884 case EQ: case NE: case GE: case GT: case LE: case LT:
4885 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4886 case GEU: case GTU: case LEU: case LTU:
4887 case UNORDERED: case ORDERED:
4888 /* If the constant is negative, take its 1's complement and remask.
4889 Then see how many zero bits we have. */
4890 nonzero = STORE_FLAG_VALUE;
4891 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4892 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4893 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4895 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4897 default:
4898 break;
4901 /* If we haven't been able to figure it out by one of the above rules,
4902 see if some of the high-order bits are known to be zero. If so,
4903 count those bits and return one less than that amount. If we can't
4904 safely compute the mask for this mode, always return BITWIDTH. */
4906 bitwidth = GET_MODE_PRECISION (mode);
4907 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4908 return 1;
4910 nonzero = nonzero_bits (x, mode);
4911 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4912 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4915 /* Calculate the rtx_cost of a single instruction. A return value of
4916 zero indicates an instruction pattern without a known cost. */
4919 insn_rtx_cost (rtx pat, bool speed)
4921 int i, cost;
4922 rtx set;
4924 /* Extract the single set rtx from the instruction pattern.
4925 We can't use single_set since we only have the pattern. */
4926 if (GET_CODE (pat) == SET)
4927 set = pat;
4928 else if (GET_CODE (pat) == PARALLEL)
4930 set = NULL_RTX;
4931 for (i = 0; i < XVECLEN (pat, 0); i++)
4933 rtx x = XVECEXP (pat, 0, i);
4934 if (GET_CODE (x) == SET)
4936 if (set)
4937 return 0;
4938 set = x;
4941 if (!set)
4942 return 0;
4944 else
4945 return 0;
4947 cost = set_src_cost (SET_SRC (set), speed);
4948 return cost > 0 ? cost : COSTS_N_INSNS (1);
4951 /* Returns estimate on cost of computing SEQ. */
4953 unsigned
4954 seq_cost (const rtx_insn *seq, bool speed)
4956 unsigned cost = 0;
4957 rtx set;
4959 for (; seq; seq = NEXT_INSN (seq))
4961 set = single_set (seq);
4962 if (set)
4963 cost += set_rtx_cost (set, speed);
4964 else
4965 cost++;
4968 return cost;
4971 /* Given an insn INSN and condition COND, return the condition in a
4972 canonical form to simplify testing by callers. Specifically:
4974 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4975 (2) Both operands will be machine operands; (cc0) will have been replaced.
4976 (3) If an operand is a constant, it will be the second operand.
4977 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4978 for GE, GEU, and LEU.
4980 If the condition cannot be understood, or is an inequality floating-point
4981 comparison which needs to be reversed, 0 will be returned.
4983 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4985 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4986 insn used in locating the condition was found. If a replacement test
4987 of the condition is desired, it should be placed in front of that
4988 insn and we will be sure that the inputs are still valid.
4990 If WANT_REG is nonzero, we wish the condition to be relative to that
4991 register, if possible. Therefore, do not canonicalize the condition
4992 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4993 to be a compare to a CC mode register.
4995 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4996 and at INSN. */
4999 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5000 rtx_insn **earliest,
5001 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5003 enum rtx_code code;
5004 rtx_insn *prev = insn;
5005 const_rtx set;
5006 rtx tem;
5007 rtx op0, op1;
5008 int reverse_code = 0;
5009 machine_mode mode;
5010 basic_block bb = BLOCK_FOR_INSN (insn);
5012 code = GET_CODE (cond);
5013 mode = GET_MODE (cond);
5014 op0 = XEXP (cond, 0);
5015 op1 = XEXP (cond, 1);
5017 if (reverse)
5018 code = reversed_comparison_code (cond, insn);
5019 if (code == UNKNOWN)
5020 return 0;
5022 if (earliest)
5023 *earliest = insn;
5025 /* If we are comparing a register with zero, see if the register is set
5026 in the previous insn to a COMPARE or a comparison operation. Perform
5027 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5028 in cse.c */
5030 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5031 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5032 && op1 == CONST0_RTX (GET_MODE (op0))
5033 && op0 != want_reg)
5035 /* Set nonzero when we find something of interest. */
5036 rtx x = 0;
5038 /* If comparison with cc0, import actual comparison from compare
5039 insn. */
5040 if (op0 == cc0_rtx)
5042 if ((prev = prev_nonnote_insn (prev)) == 0
5043 || !NONJUMP_INSN_P (prev)
5044 || (set = single_set (prev)) == 0
5045 || SET_DEST (set) != cc0_rtx)
5046 return 0;
5048 op0 = SET_SRC (set);
5049 op1 = CONST0_RTX (GET_MODE (op0));
5050 if (earliest)
5051 *earliest = prev;
5054 /* If this is a COMPARE, pick up the two things being compared. */
5055 if (GET_CODE (op0) == COMPARE)
5057 op1 = XEXP (op0, 1);
5058 op0 = XEXP (op0, 0);
5059 continue;
5061 else if (!REG_P (op0))
5062 break;
5064 /* Go back to the previous insn. Stop if it is not an INSN. We also
5065 stop if it isn't a single set or if it has a REG_INC note because
5066 we don't want to bother dealing with it. */
5068 prev = prev_nonnote_nondebug_insn (prev);
5070 if (prev == 0
5071 || !NONJUMP_INSN_P (prev)
5072 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5073 /* In cfglayout mode, there do not have to be labels at the
5074 beginning of a block, or jumps at the end, so the previous
5075 conditions would not stop us when we reach bb boundary. */
5076 || BLOCK_FOR_INSN (prev) != bb)
5077 break;
5079 set = set_of (op0, prev);
5081 if (set
5082 && (GET_CODE (set) != SET
5083 || !rtx_equal_p (SET_DEST (set), op0)))
5084 break;
5086 /* If this is setting OP0, get what it sets it to if it looks
5087 relevant. */
5088 if (set)
5090 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5091 #ifdef FLOAT_STORE_FLAG_VALUE
5092 REAL_VALUE_TYPE fsfv;
5093 #endif
5095 /* ??? We may not combine comparisons done in a CCmode with
5096 comparisons not done in a CCmode. This is to aid targets
5097 like Alpha that have an IEEE compliant EQ instruction, and
5098 a non-IEEE compliant BEQ instruction. The use of CCmode is
5099 actually artificial, simply to prevent the combination, but
5100 should not affect other platforms.
5102 However, we must allow VOIDmode comparisons to match either
5103 CCmode or non-CCmode comparison, because some ports have
5104 modeless comparisons inside branch patterns.
5106 ??? This mode check should perhaps look more like the mode check
5107 in simplify_comparison in combine. */
5108 if (((GET_MODE_CLASS (mode) == MODE_CC)
5109 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5110 && mode != VOIDmode
5111 && inner_mode != VOIDmode)
5112 break;
5113 if (GET_CODE (SET_SRC (set)) == COMPARE
5114 || (((code == NE
5115 || (code == LT
5116 && val_signbit_known_set_p (inner_mode,
5117 STORE_FLAG_VALUE))
5118 #ifdef FLOAT_STORE_FLAG_VALUE
5119 || (code == LT
5120 && SCALAR_FLOAT_MODE_P (inner_mode)
5121 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5122 REAL_VALUE_NEGATIVE (fsfv)))
5123 #endif
5125 && COMPARISON_P (SET_SRC (set))))
5126 x = SET_SRC (set);
5127 else if (((code == EQ
5128 || (code == GE
5129 && val_signbit_known_set_p (inner_mode,
5130 STORE_FLAG_VALUE))
5131 #ifdef FLOAT_STORE_FLAG_VALUE
5132 || (code == GE
5133 && SCALAR_FLOAT_MODE_P (inner_mode)
5134 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5135 REAL_VALUE_NEGATIVE (fsfv)))
5136 #endif
5138 && COMPARISON_P (SET_SRC (set)))
5140 reverse_code = 1;
5141 x = SET_SRC (set);
5143 else if ((code == EQ || code == NE)
5144 && GET_CODE (SET_SRC (set)) == XOR)
5145 /* Handle sequences like:
5147 (set op0 (xor X Y))
5148 ...(eq|ne op0 (const_int 0))...
5150 in which case:
5152 (eq op0 (const_int 0)) reduces to (eq X Y)
5153 (ne op0 (const_int 0)) reduces to (ne X Y)
5155 This is the form used by MIPS16, for example. */
5156 x = SET_SRC (set);
5157 else
5158 break;
5161 else if (reg_set_p (op0, prev))
5162 /* If this sets OP0, but not directly, we have to give up. */
5163 break;
5165 if (x)
5167 /* If the caller is expecting the condition to be valid at INSN,
5168 make sure X doesn't change before INSN. */
5169 if (valid_at_insn_p)
5170 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5171 break;
5172 if (COMPARISON_P (x))
5173 code = GET_CODE (x);
5174 if (reverse_code)
5176 code = reversed_comparison_code (x, prev);
5177 if (code == UNKNOWN)
5178 return 0;
5179 reverse_code = 0;
5182 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5183 if (earliest)
5184 *earliest = prev;
5188 /* If constant is first, put it last. */
5189 if (CONSTANT_P (op0))
5190 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5192 /* If OP0 is the result of a comparison, we weren't able to find what
5193 was really being compared, so fail. */
5194 if (!allow_cc_mode
5195 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5196 return 0;
5198 /* Canonicalize any ordered comparison with integers involving equality
5199 if we can do computations in the relevant mode and we do not
5200 overflow. */
5202 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5203 && CONST_INT_P (op1)
5204 && GET_MODE (op0) != VOIDmode
5205 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5207 HOST_WIDE_INT const_val = INTVAL (op1);
5208 unsigned HOST_WIDE_INT uconst_val = const_val;
5209 unsigned HOST_WIDE_INT max_val
5210 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5212 switch (code)
5214 case LE:
5215 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5216 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5217 break;
5219 /* When cross-compiling, const_val might be sign-extended from
5220 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5221 case GE:
5222 if ((const_val & max_val)
5223 != ((unsigned HOST_WIDE_INT) 1
5224 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5225 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5226 break;
5228 case LEU:
5229 if (uconst_val < max_val)
5230 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5231 break;
5233 case GEU:
5234 if (uconst_val != 0)
5235 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5236 break;
5238 default:
5239 break;
5243 /* Never return CC0; return zero instead. */
5244 if (CC0_P (op0))
5245 return 0;
5247 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5250 /* Given a jump insn JUMP, return the condition that will cause it to branch
5251 to its JUMP_LABEL. If the condition cannot be understood, or is an
5252 inequality floating-point comparison which needs to be reversed, 0 will
5253 be returned.
5255 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5256 insn used in locating the condition was found. If a replacement test
5257 of the condition is desired, it should be placed in front of that
5258 insn and we will be sure that the inputs are still valid. If EARLIEST
5259 is null, the returned condition will be valid at INSN.
5261 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5262 compare CC mode register.
5264 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5267 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5268 int valid_at_insn_p)
5270 rtx cond;
5271 int reverse;
5272 rtx set;
5274 /* If this is not a standard conditional jump, we can't parse it. */
5275 if (!JUMP_P (jump)
5276 || ! any_condjump_p (jump))
5277 return 0;
5278 set = pc_set (jump);
5280 cond = XEXP (SET_SRC (set), 0);
5282 /* If this branches to JUMP_LABEL when the condition is false, reverse
5283 the condition. */
5284 reverse
5285 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5286 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5288 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5289 allow_cc_mode, valid_at_insn_p);
5292 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5293 TARGET_MODE_REP_EXTENDED.
5295 Note that we assume that the property of
5296 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5297 narrower than mode B. I.e., if A is a mode narrower than B then in
5298 order to be able to operate on it in mode B, mode A needs to
5299 satisfy the requirements set by the representation of mode B. */
5301 static void
5302 init_num_sign_bit_copies_in_rep (void)
5304 machine_mode mode, in_mode;
5306 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5307 in_mode = GET_MODE_WIDER_MODE (mode))
5308 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5309 mode = GET_MODE_WIDER_MODE (mode))
5311 machine_mode i;
5313 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5314 extends to the next widest mode. */
5315 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5316 || GET_MODE_WIDER_MODE (mode) == in_mode);
5318 /* We are in in_mode. Count how many bits outside of mode
5319 have to be copies of the sign-bit. */
5320 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5322 machine_mode wider = GET_MODE_WIDER_MODE (i);
5324 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5325 /* We can only check sign-bit copies starting from the
5326 top-bit. In order to be able to check the bits we
5327 have already seen we pretend that subsequent bits
5328 have to be sign-bit copies too. */
5329 || num_sign_bit_copies_in_rep [in_mode][mode])
5330 num_sign_bit_copies_in_rep [in_mode][mode]
5331 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5336 /* Suppose that truncation from the machine mode of X to MODE is not a
5337 no-op. See if there is anything special about X so that we can
5338 assume it already contains a truncated value of MODE. */
5340 bool
5341 truncated_to_mode (machine_mode mode, const_rtx x)
5343 /* This register has already been used in MODE without explicit
5344 truncation. */
5345 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5346 return true;
5348 /* See if we already satisfy the requirements of MODE. If yes we
5349 can just switch to MODE. */
5350 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5351 && (num_sign_bit_copies (x, GET_MODE (x))
5352 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5353 return true;
5355 return false;
5358 /* Return true if RTX code CODE has a single sequence of zero or more
5359 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5360 entry in that case. */
5362 static bool
5363 setup_reg_subrtx_bounds (unsigned int code)
5365 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5366 unsigned int i = 0;
5367 for (; format[i] != 'e'; ++i)
5369 if (!format[i])
5370 /* No subrtxes. Leave start and count as 0. */
5371 return true;
5372 if (format[i] == 'E' || format[i] == 'V')
5373 return false;
5376 /* Record the sequence of 'e's. */
5377 rtx_all_subrtx_bounds[code].start = i;
5379 ++i;
5380 while (format[i] == 'e');
5381 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5382 /* rtl-iter.h relies on this. */
5383 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5385 for (; format[i]; ++i)
5386 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5387 return false;
5389 return true;
5392 /* Initialize rtx_all_subrtx_bounds. */
5393 void
5394 init_rtlanal (void)
5396 int i;
5397 for (i = 0; i < NUM_RTX_CODE; i++)
5399 if (!setup_reg_subrtx_bounds (i))
5400 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5401 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5402 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5405 init_num_sign_bit_copies_in_rep ();
5408 /* Check whether this is a constant pool constant. */
5409 bool
5410 constant_pool_constant_p (rtx x)
5412 x = avoid_constant_pool_reference (x);
5413 return CONST_DOUBLE_P (x);
5416 /* If M is a bitmask that selects a field of low-order bits within an item but
5417 not the entire word, return the length of the field. Return -1 otherwise.
5418 M is used in machine mode MODE. */
5421 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5423 if (mode != VOIDmode)
5425 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5426 return -1;
5427 m &= GET_MODE_MASK (mode);
5430 return exact_log2 (m + 1);
5433 /* Return the mode of MEM's address. */
5435 machine_mode
5436 get_address_mode (rtx mem)
5438 machine_mode mode;
5440 gcc_assert (MEM_P (mem));
5441 mode = GET_MODE (XEXP (mem, 0));
5442 if (mode != VOIDmode)
5443 return mode;
5444 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5447 /* Split up a CONST_DOUBLE or integer constant rtx
5448 into two rtx's for single words,
5449 storing in *FIRST the word that comes first in memory in the target
5450 and in *SECOND the other.
5452 TODO: This function needs to be rewritten to work on any size
5453 integer. */
5455 void
5456 split_double (rtx value, rtx *first, rtx *second)
5458 if (CONST_INT_P (value))
5460 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5462 /* In this case the CONST_INT holds both target words.
5463 Extract the bits from it into two word-sized pieces.
5464 Sign extend each half to HOST_WIDE_INT. */
5465 unsigned HOST_WIDE_INT low, high;
5466 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5467 unsigned bits_per_word = BITS_PER_WORD;
5469 /* Set sign_bit to the most significant bit of a word. */
5470 sign_bit = 1;
5471 sign_bit <<= bits_per_word - 1;
5473 /* Set mask so that all bits of the word are set. We could
5474 have used 1 << BITS_PER_WORD instead of basing the
5475 calculation on sign_bit. However, on machines where
5476 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5477 compiler warning, even though the code would never be
5478 executed. */
5479 mask = sign_bit << 1;
5480 mask--;
5482 /* Set sign_extend as any remaining bits. */
5483 sign_extend = ~mask;
5485 /* Pick the lower word and sign-extend it. */
5486 low = INTVAL (value);
5487 low &= mask;
5488 if (low & sign_bit)
5489 low |= sign_extend;
5491 /* Pick the higher word, shifted to the least significant
5492 bits, and sign-extend it. */
5493 high = INTVAL (value);
5494 high >>= bits_per_word - 1;
5495 high >>= 1;
5496 high &= mask;
5497 if (high & sign_bit)
5498 high |= sign_extend;
5500 /* Store the words in the target machine order. */
5501 if (WORDS_BIG_ENDIAN)
5503 *first = GEN_INT (high);
5504 *second = GEN_INT (low);
5506 else
5508 *first = GEN_INT (low);
5509 *second = GEN_INT (high);
5512 else
5514 /* The rule for using CONST_INT for a wider mode
5515 is that we regard the value as signed.
5516 So sign-extend it. */
5517 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5518 if (WORDS_BIG_ENDIAN)
5520 *first = high;
5521 *second = value;
5523 else
5525 *first = value;
5526 *second = high;
5530 else if (GET_CODE (value) == CONST_WIDE_INT)
5532 /* All of this is scary code and needs to be converted to
5533 properly work with any size integer. */
5534 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5535 if (WORDS_BIG_ENDIAN)
5537 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5538 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5540 else
5542 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5543 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5546 else if (!CONST_DOUBLE_P (value))
5548 if (WORDS_BIG_ENDIAN)
5550 *first = const0_rtx;
5551 *second = value;
5553 else
5555 *first = value;
5556 *second = const0_rtx;
5559 else if (GET_MODE (value) == VOIDmode
5560 /* This is the old way we did CONST_DOUBLE integers. */
5561 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5563 /* In an integer, the words are defined as most and least significant.
5564 So order them by the target's convention. */
5565 if (WORDS_BIG_ENDIAN)
5567 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5568 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5570 else
5572 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5573 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5576 else
5578 REAL_VALUE_TYPE r;
5579 long l[2];
5580 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5582 /* Note, this converts the REAL_VALUE_TYPE to the target's
5583 format, splits up the floating point double and outputs
5584 exactly 32 bits of it into each of l[0] and l[1] --
5585 not necessarily BITS_PER_WORD bits. */
5586 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5588 /* If 32 bits is an entire word for the target, but not for the host,
5589 then sign-extend on the host so that the number will look the same
5590 way on the host that it would on the target. See for instance
5591 simplify_unary_operation. The #if is needed to avoid compiler
5592 warnings. */
5594 #if HOST_BITS_PER_LONG > 32
5595 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5597 if (l[0] & ((long) 1 << 31))
5598 l[0] |= ((long) (-1) << 32);
5599 if (l[1] & ((long) 1 << 31))
5600 l[1] |= ((long) (-1) << 32);
5602 #endif
5604 *first = GEN_INT (l[0]);
5605 *second = GEN_INT (l[1]);
5609 /* Return true if X is a sign_extract or zero_extract from the least
5610 significant bit. */
5612 static bool
5613 lsb_bitfield_op_p (rtx x)
5615 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5617 machine_mode mode = GET_MODE (XEXP (x, 0));
5618 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5619 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5621 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5623 return false;
5626 /* Strip outer address "mutations" from LOC and return a pointer to the
5627 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5628 stripped expression there.
5630 "Mutations" either convert between modes or apply some kind of
5631 extension, truncation or alignment. */
5633 rtx *
5634 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5636 for (;;)
5638 enum rtx_code code = GET_CODE (*loc);
5639 if (GET_RTX_CLASS (code) == RTX_UNARY)
5640 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5641 used to convert between pointer sizes. */
5642 loc = &XEXP (*loc, 0);
5643 else if (lsb_bitfield_op_p (*loc))
5644 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5645 acts as a combined truncation and extension. */
5646 loc = &XEXP (*loc, 0);
5647 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5648 /* (and ... (const_int -X)) is used to align to X bytes. */
5649 loc = &XEXP (*loc, 0);
5650 else if (code == SUBREG
5651 && !OBJECT_P (SUBREG_REG (*loc))
5652 && subreg_lowpart_p (*loc))
5653 /* (subreg (operator ...) ...) inside and is used for mode
5654 conversion too. */
5655 loc = &SUBREG_REG (*loc);
5656 else
5657 return loc;
5658 if (outer_code)
5659 *outer_code = code;
5663 /* Return true if CODE applies some kind of scale. The scaled value is
5664 is the first operand and the scale is the second. */
5666 static bool
5667 binary_scale_code_p (enum rtx_code code)
5669 return (code == MULT
5670 || code == ASHIFT
5671 /* Needed by ARM targets. */
5672 || code == ASHIFTRT
5673 || code == LSHIFTRT
5674 || code == ROTATE
5675 || code == ROTATERT);
5678 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5679 (see address_info). Return null otherwise. */
5681 static rtx *
5682 get_base_term (rtx *inner)
5684 if (GET_CODE (*inner) == LO_SUM)
5685 inner = strip_address_mutations (&XEXP (*inner, 0));
5686 if (REG_P (*inner)
5687 || MEM_P (*inner)
5688 || GET_CODE (*inner) == SUBREG
5689 || GET_CODE (*inner) == SCRATCH)
5690 return inner;
5691 return 0;
5694 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5695 (see address_info). Return null otherwise. */
5697 static rtx *
5698 get_index_term (rtx *inner)
5700 /* At present, only constant scales are allowed. */
5701 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5702 inner = strip_address_mutations (&XEXP (*inner, 0));
5703 if (REG_P (*inner)
5704 || MEM_P (*inner)
5705 || GET_CODE (*inner) == SUBREG
5706 || GET_CODE (*inner) == SCRATCH)
5707 return inner;
5708 return 0;
5711 /* Set the segment part of address INFO to LOC, given that INNER is the
5712 unmutated value. */
5714 static void
5715 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5717 gcc_assert (!info->segment);
5718 info->segment = loc;
5719 info->segment_term = inner;
5722 /* Set the base part of address INFO to LOC, given that INNER is the
5723 unmutated value. */
5725 static void
5726 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5728 gcc_assert (!info->base);
5729 info->base = loc;
5730 info->base_term = inner;
5733 /* Set the index part of address INFO to LOC, given that INNER is the
5734 unmutated value. */
5736 static void
5737 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5739 gcc_assert (!info->index);
5740 info->index = loc;
5741 info->index_term = inner;
5744 /* Set the displacement part of address INFO to LOC, given that INNER
5745 is the constant term. */
5747 static void
5748 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5750 gcc_assert (!info->disp);
5751 info->disp = loc;
5752 info->disp_term = inner;
5755 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5756 rest of INFO accordingly. */
5758 static void
5759 decompose_incdec_address (struct address_info *info)
5761 info->autoinc_p = true;
5763 rtx *base = &XEXP (*info->inner, 0);
5764 set_address_base (info, base, base);
5765 gcc_checking_assert (info->base == info->base_term);
5767 /* These addresses are only valid when the size of the addressed
5768 value is known. */
5769 gcc_checking_assert (info->mode != VOIDmode);
5772 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5773 of INFO accordingly. */
5775 static void
5776 decompose_automod_address (struct address_info *info)
5778 info->autoinc_p = true;
5780 rtx *base = &XEXP (*info->inner, 0);
5781 set_address_base (info, base, base);
5782 gcc_checking_assert (info->base == info->base_term);
5784 rtx plus = XEXP (*info->inner, 1);
5785 gcc_assert (GET_CODE (plus) == PLUS);
5787 info->base_term2 = &XEXP (plus, 0);
5788 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5790 rtx *step = &XEXP (plus, 1);
5791 rtx *inner_step = strip_address_mutations (step);
5792 if (CONSTANT_P (*inner_step))
5793 set_address_disp (info, step, inner_step);
5794 else
5795 set_address_index (info, step, inner_step);
5798 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5799 values in [PTR, END). Return a pointer to the end of the used array. */
5801 static rtx **
5802 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5804 rtx x = *loc;
5805 if (GET_CODE (x) == PLUS)
5807 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5808 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5810 else
5812 gcc_assert (ptr != end);
5813 *ptr++ = loc;
5815 return ptr;
5818 /* Evaluate the likelihood of X being a base or index value, returning
5819 positive if it is likely to be a base, negative if it is likely to be
5820 an index, and 0 if we can't tell. Make the magnitude of the return
5821 value reflect the amount of confidence we have in the answer.
5823 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5825 static int
5826 baseness (rtx x, machine_mode mode, addr_space_t as,
5827 enum rtx_code outer_code, enum rtx_code index_code)
5829 /* Believe *_POINTER unless the address shape requires otherwise. */
5830 if (REG_P (x) && REG_POINTER (x))
5831 return 2;
5832 if (MEM_P (x) && MEM_POINTER (x))
5833 return 2;
5835 if (REG_P (x) && HARD_REGISTER_P (x))
5837 /* X is a hard register. If it only fits one of the base
5838 or index classes, choose that interpretation. */
5839 int regno = REGNO (x);
5840 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5841 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5842 if (base_p != index_p)
5843 return base_p ? 1 : -1;
5845 return 0;
5848 /* INFO->INNER describes a normal, non-automodified address.
5849 Fill in the rest of INFO accordingly. */
5851 static void
5852 decompose_normal_address (struct address_info *info)
5854 /* Treat the address as the sum of up to four values. */
5855 rtx *ops[4];
5856 size_t n_ops = extract_plus_operands (info->inner, ops,
5857 ops + ARRAY_SIZE (ops)) - ops;
5859 /* If there is more than one component, any base component is in a PLUS. */
5860 if (n_ops > 1)
5861 info->base_outer_code = PLUS;
5863 /* Try to classify each sum operand now. Leave those that could be
5864 either a base or an index in OPS. */
5865 rtx *inner_ops[4];
5866 size_t out = 0;
5867 for (size_t in = 0; in < n_ops; ++in)
5869 rtx *loc = ops[in];
5870 rtx *inner = strip_address_mutations (loc);
5871 if (CONSTANT_P (*inner))
5872 set_address_disp (info, loc, inner);
5873 else if (GET_CODE (*inner) == UNSPEC)
5874 set_address_segment (info, loc, inner);
5875 else
5877 /* The only other possibilities are a base or an index. */
5878 rtx *base_term = get_base_term (inner);
5879 rtx *index_term = get_index_term (inner);
5880 gcc_assert (base_term || index_term);
5881 if (!base_term)
5882 set_address_index (info, loc, index_term);
5883 else if (!index_term)
5884 set_address_base (info, loc, base_term);
5885 else
5887 gcc_assert (base_term == index_term);
5888 ops[out] = loc;
5889 inner_ops[out] = base_term;
5890 ++out;
5895 /* Classify the remaining OPS members as bases and indexes. */
5896 if (out == 1)
5898 /* If we haven't seen a base or an index yet, assume that this is
5899 the base. If we were confident that another term was the base
5900 or index, treat the remaining operand as the other kind. */
5901 if (!info->base)
5902 set_address_base (info, ops[0], inner_ops[0]);
5903 else
5904 set_address_index (info, ops[0], inner_ops[0]);
5906 else if (out == 2)
5908 /* In the event of a tie, assume the base comes first. */
5909 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5910 GET_CODE (*ops[1]))
5911 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5912 GET_CODE (*ops[0])))
5914 set_address_base (info, ops[0], inner_ops[0]);
5915 set_address_index (info, ops[1], inner_ops[1]);
5917 else
5919 set_address_base (info, ops[1], inner_ops[1]);
5920 set_address_index (info, ops[0], inner_ops[0]);
5923 else
5924 gcc_assert (out == 0);
5927 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5928 or VOIDmode if not known. AS is the address space associated with LOC.
5929 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5931 void
5932 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
5933 addr_space_t as, enum rtx_code outer_code)
5935 memset (info, 0, sizeof (*info));
5936 info->mode = mode;
5937 info->as = as;
5938 info->addr_outer_code = outer_code;
5939 info->outer = loc;
5940 info->inner = strip_address_mutations (loc, &outer_code);
5941 info->base_outer_code = outer_code;
5942 switch (GET_CODE (*info->inner))
5944 case PRE_DEC:
5945 case PRE_INC:
5946 case POST_DEC:
5947 case POST_INC:
5948 decompose_incdec_address (info);
5949 break;
5951 case PRE_MODIFY:
5952 case POST_MODIFY:
5953 decompose_automod_address (info);
5954 break;
5956 default:
5957 decompose_normal_address (info);
5958 break;
5962 /* Describe address operand LOC in INFO. */
5964 void
5965 decompose_lea_address (struct address_info *info, rtx *loc)
5967 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5970 /* Describe the address of MEM X in INFO. */
5972 void
5973 decompose_mem_address (struct address_info *info, rtx x)
5975 gcc_assert (MEM_P (x));
5976 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5977 MEM_ADDR_SPACE (x), MEM);
5980 /* Update INFO after a change to the address it describes. */
5982 void
5983 update_address (struct address_info *info)
5985 decompose_address (info, info->outer, info->mode, info->as,
5986 info->addr_outer_code);
5989 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5990 more complicated than that. */
5992 HOST_WIDE_INT
5993 get_index_scale (const struct address_info *info)
5995 rtx index = *info->index;
5996 if (GET_CODE (index) == MULT
5997 && CONST_INT_P (XEXP (index, 1))
5998 && info->index_term == &XEXP (index, 0))
5999 return INTVAL (XEXP (index, 1));
6001 if (GET_CODE (index) == ASHIFT
6002 && CONST_INT_P (XEXP (index, 1))
6003 && info->index_term == &XEXP (index, 0))
6004 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6006 if (info->index == info->index_term)
6007 return 1;
6009 return 0;
6012 /* Return the "index code" of INFO, in the form required by
6013 ok_for_base_p_1. */
6015 enum rtx_code
6016 get_index_code (const struct address_info *info)
6018 if (info->index)
6019 return GET_CODE (*info->index);
6021 if (info->disp)
6022 return GET_CODE (*info->disp);
6024 return SCRATCH;
6027 /* Return true if X contains a thread-local symbol. */
6029 bool
6030 tls_referenced_p (const_rtx x)
6032 if (!targetm.have_tls)
6033 return false;
6035 subrtx_iterator::array_type array;
6036 FOR_EACH_SUBRTX (iter, array, x, ALL)
6037 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6038 return true;
6039 return false;