Mark ChangeLog
[official-gcc.git] / gcc / tree-ssa-live.c
blob2c25fa8ffdf8905c3013e42d05459efc3465e3c7
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "diagnostic.h"
30 #include "bitmap.h"
31 #include "tree-flow.h"
32 #include "tree-gimple.h"
33 #include "tree-inline.h"
34 #include "varray.h"
35 #include "timevar.h"
36 #include "hashtab.h"
37 #include "tree-dump.h"
38 #include "tree-ssa-live.h"
39 #include "toplev.h"
40 #include "vecprim.h"
42 static void live_worklist (tree_live_info_p, int *, int);
43 static tree_live_info_p new_tree_live_info (var_map);
44 static inline void set_if_valid (var_map, bitmap, tree);
45 static inline void add_livein_if_notdef (tree_live_info_p, bitmap,
46 tree, basic_block);
47 static inline void register_ssa_partition (var_map, tree, bool);
48 static inline void add_conflicts_if_valid (tpa_p, conflict_graph,
49 var_map, bitmap, tree);
50 static partition_pair_p find_partition_pair (coalesce_list_p, int, int, bool);
52 /* This is where the mapping from SSA version number to real storage variable
53 is tracked.
55 All SSA versions of the same variable may not ultimately be mapped back to
56 the same real variable. In that instance, we need to detect the live
57 range overlap, and give one of the variable new storage. The vector
58 'partition_to_var' tracks which partition maps to which variable.
60 Given a VAR, it is sometimes desirable to know which partition that VAR
61 represents. There is an additional field in the variable annotation to
62 track that information. */
64 /* Create a variable partition map of SIZE, initialize and return it. */
66 var_map
67 init_var_map (int size)
69 var_map map;
71 map = (var_map) xmalloc (sizeof (struct _var_map));
72 map->var_partition = partition_new (size);
73 map->partition_to_var
74 = (tree *)xmalloc (size * sizeof (tree));
75 memset (map->partition_to_var, 0, size * sizeof (tree));
77 map->partition_to_compact = NULL;
78 map->compact_to_partition = NULL;
79 map->num_partitions = size;
80 map->partition_size = size;
81 map->ref_count = NULL;
82 return map;
86 /* Free memory associated with MAP. */
88 void
89 delete_var_map (var_map map)
91 free (map->partition_to_var);
92 partition_delete (map->var_partition);
93 if (map->partition_to_compact)
94 free (map->partition_to_compact);
95 if (map->compact_to_partition)
96 free (map->compact_to_partition);
97 if (map->ref_count)
98 free (map->ref_count);
99 free (map);
103 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
104 Returns the partition which represents the new partition. If the two
105 partitions cannot be combined, NO_PARTITION is returned. */
108 var_union (var_map map, tree var1, tree var2)
110 int p1, p2, p3;
111 tree root_var = NULL_TREE;
112 tree other_var = NULL_TREE;
114 /* This is independent of partition_to_compact. If partition_to_compact is
115 on, then whichever one of these partitions is absorbed will never have a
116 dereference into the partition_to_compact array any more. */
118 if (TREE_CODE (var1) == SSA_NAME)
119 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
120 else
122 p1 = var_to_partition (map, var1);
123 if (map->compact_to_partition)
124 p1 = map->compact_to_partition[p1];
125 root_var = var1;
128 if (TREE_CODE (var2) == SSA_NAME)
129 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
130 else
132 p2 = var_to_partition (map, var2);
133 if (map->compact_to_partition)
134 p2 = map->compact_to_partition[p2];
136 /* If there is no root_var set, or it's not a user variable, set the
137 root_var to this one. */
138 if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
140 other_var = root_var;
141 root_var = var2;
143 else
144 other_var = var2;
147 gcc_assert (p1 != NO_PARTITION);
148 gcc_assert (p2 != NO_PARTITION);
150 if (p1 == p2)
151 p3 = p1;
152 else
153 p3 = partition_union (map->var_partition, p1, p2);
155 if (map->partition_to_compact)
156 p3 = map->partition_to_compact[p3];
158 if (root_var)
159 change_partition_var (map, root_var, p3);
160 if (other_var)
161 change_partition_var (map, other_var, p3);
163 return p3;
167 /* Compress the partition numbers in MAP such that they fall in the range
168 0..(num_partitions-1) instead of wherever they turned out during
169 the partitioning exercise. This removes any references to unused
170 partitions, thereby allowing bitmaps and other vectors to be much
171 denser. Compression type is controlled by FLAGS.
173 This is implemented such that compaction doesn't affect partitioning.
174 Ie., once partitions are created and possibly merged, running one
175 or more different kind of compaction will not affect the partitions
176 themselves. Their index might change, but all the same variables will
177 still be members of the same partition group. This allows work on reduced
178 sets, and no loss of information when a larger set is later desired.
180 In particular, coalescing can work on partitions which have 2 or more
181 definitions, and then 'recompact' later to include all the single
182 definitions for assignment to program variables. */
184 void
185 compact_var_map (var_map map, int flags)
187 sbitmap used;
188 int tmp, root, root_i;
189 unsigned int x, limit, count;
190 tree var;
191 root_var_p rv = NULL;
193 limit = map->partition_size;
194 used = sbitmap_alloc (limit);
195 sbitmap_zero (used);
197 /* Already compressed? Abandon the old one. */
198 if (map->partition_to_compact)
200 free (map->partition_to_compact);
201 map->partition_to_compact = NULL;
203 if (map->compact_to_partition)
205 free (map->compact_to_partition);
206 map->compact_to_partition = NULL;
209 map->num_partitions = map->partition_size;
211 if (flags & VARMAP_NO_SINGLE_DEFS)
212 rv = root_var_init (map);
214 map->partition_to_compact = (int *)xmalloc (limit * sizeof (int));
215 memset (map->partition_to_compact, 0xff, (limit * sizeof (int)));
217 /* Find out which partitions are actually referenced. */
218 count = 0;
219 for (x = 0; x < limit; x++)
221 tmp = partition_find (map->var_partition, x);
222 if (!TEST_BIT (used, tmp) && map->partition_to_var[tmp] != NULL_TREE)
224 /* It is referenced, check to see if there is more than one version
225 in the root_var table, if one is available. */
226 if (rv)
228 root = root_var_find (rv, tmp);
229 root_i = root_var_first_partition (rv, root);
230 /* If there is only one, don't include this in the compaction. */
231 if (root_var_next_partition (rv, root_i) == ROOT_VAR_NONE)
232 continue;
234 SET_BIT (used, tmp);
235 count++;
239 /* Build a compacted partitioning. */
240 if (count != limit)
242 sbitmap_iterator sbi;
244 map->compact_to_partition = (int *)xmalloc (count * sizeof (int));
245 count = 0;
246 /* SSA renaming begins at 1, so skip 0 when compacting. */
247 EXECUTE_IF_SET_IN_SBITMAP (used, 1, x, sbi)
249 map->partition_to_compact[x] = count;
250 map->compact_to_partition[count] = x;
251 var = map->partition_to_var[x];
252 if (TREE_CODE (var) != SSA_NAME)
253 change_partition_var (map, var, count);
254 count++;
257 else
259 free (map->partition_to_compact);
260 map->partition_to_compact = NULL;
263 map->num_partitions = count;
265 if (rv)
266 root_var_delete (rv);
267 sbitmap_free (used);
271 /* This function is used to change the representative variable in MAP for VAR's
272 partition from an SSA_NAME variable to a regular variable. This allows
273 partitions to be mapped back to real variables. */
275 void
276 change_partition_var (var_map map, tree var, int part)
278 var_ann_t ann;
280 gcc_assert (TREE_CODE (var) != SSA_NAME);
282 ann = var_ann (var);
283 ann->out_of_ssa_tag = 1;
284 VAR_ANN_PARTITION (ann) = part;
285 if (map->compact_to_partition)
286 map->partition_to_var[map->compact_to_partition[part]] = var;
289 static inline void mark_all_vars_used (tree *);
291 /* Helper function for mark_all_vars_used, called via walk_tree. */
293 static tree
294 mark_all_vars_used_1 (tree *tp, int *walk_subtrees,
295 void *data ATTRIBUTE_UNUSED)
297 tree t = *tp;
299 if (TREE_CODE (t) == SSA_NAME)
300 t = SSA_NAME_VAR (t);
302 /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
303 fields that do not contain vars. */
304 if (TREE_CODE (t) == TARGET_MEM_REF)
306 mark_all_vars_used (&TMR_SYMBOL (t));
307 mark_all_vars_used (&TMR_BASE (t));
308 mark_all_vars_used (&TMR_INDEX (t));
309 *walk_subtrees = 0;
310 return NULL;
313 /* Only need to mark VAR_DECLS; parameters and return results are not
314 eliminated as unused. */
315 if (TREE_CODE (t) == VAR_DECL)
316 set_is_used (t);
318 if (IS_TYPE_OR_DECL_P (t))
319 *walk_subtrees = 0;
321 return NULL;
324 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
325 eliminated during the tree->rtl conversion process. */
327 static inline void
328 mark_all_vars_used (tree *expr_p)
330 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
334 /* Remove local variables that are not referenced in the IL. */
336 void
337 remove_unused_locals (void)
339 basic_block bb;
340 tree t, *cell;
342 /* Assume all locals are unused. */
343 for (t = cfun->unexpanded_var_list; t; t = TREE_CHAIN (t))
345 tree var = TREE_VALUE (t);
346 if (TREE_CODE (var) != FUNCTION_DECL
347 && var_ann (var))
348 var_ann (var)->used = false;
351 /* Walk the CFG marking all referenced symbols. */
352 FOR_EACH_BB (bb)
354 block_stmt_iterator bsi;
355 tree phi, def;
357 /* Walk the statements. */
358 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
359 mark_all_vars_used (bsi_stmt_ptr (bsi));
361 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
363 use_operand_p arg_p;
364 ssa_op_iter i;
366 /* No point processing globals. */
367 if (is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
368 continue;
370 def = PHI_RESULT (phi);
371 mark_all_vars_used (&def);
373 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
375 tree arg = USE_FROM_PTR (arg_p);
376 mark_all_vars_used (&arg);
381 /* Remove unmarked vars and clear used flag. */
382 for (cell = &cfun->unexpanded_var_list; *cell; )
384 tree var = TREE_VALUE (*cell);
385 var_ann_t ann;
387 if (TREE_CODE (var) != FUNCTION_DECL
388 && (!(ann = var_ann (var))
389 || !ann->used))
391 *cell = TREE_CHAIN (*cell);
392 continue;
395 cell = &TREE_CHAIN (*cell);
399 /* This function looks through the program and uses FLAGS to determine what
400 SSA versioned variables are given entries in a new partition table. This
401 new partition map is returned. */
403 var_map
404 create_ssa_var_map (int flags)
406 block_stmt_iterator bsi;
407 basic_block bb;
408 tree dest, use;
409 tree stmt;
410 var_map map;
411 ssa_op_iter iter;
412 #ifdef ENABLE_CHECKING
413 bitmap used_in_real_ops;
414 bitmap used_in_virtual_ops;
415 #endif
417 map = init_var_map (num_ssa_names + 1);
419 #ifdef ENABLE_CHECKING
420 used_in_real_ops = BITMAP_ALLOC (NULL);
421 used_in_virtual_ops = BITMAP_ALLOC (NULL);
422 #endif
424 if (flags & SSA_VAR_MAP_REF_COUNT)
426 map->ref_count
427 = (int *)xmalloc (((num_ssa_names + 1) * sizeof (int)));
428 memset (map->ref_count, 0, (num_ssa_names + 1) * sizeof (int));
431 FOR_EACH_BB (bb)
433 tree phi, arg;
435 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
437 int i;
438 register_ssa_partition (map, PHI_RESULT (phi), false);
439 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
441 arg = PHI_ARG_DEF (phi, i);
442 if (TREE_CODE (arg) == SSA_NAME)
443 register_ssa_partition (map, arg, true);
445 mark_all_vars_used (&PHI_ARG_DEF_TREE (phi, i));
449 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
451 stmt = bsi_stmt (bsi);
453 /* Register USE and DEF operands in each statement. */
454 FOR_EACH_SSA_TREE_OPERAND (use , stmt, iter, SSA_OP_USE)
456 register_ssa_partition (map, use, true);
458 #ifdef ENABLE_CHECKING
459 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (use)));
460 #endif
463 FOR_EACH_SSA_TREE_OPERAND (dest, stmt, iter, SSA_OP_DEF)
465 register_ssa_partition (map, dest, false);
467 #ifdef ENABLE_CHECKING
468 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (dest)));
469 #endif
472 #ifdef ENABLE_CHECKING
473 /* Validate that virtual ops don't get used in funny ways. */
474 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter,
475 SSA_OP_VIRTUAL_USES | SSA_OP_VMUSTDEF)
477 bitmap_set_bit (used_in_virtual_ops,
478 DECL_UID (SSA_NAME_VAR (use)));
481 #endif /* ENABLE_CHECKING */
483 mark_all_vars_used (bsi_stmt_ptr (bsi));
487 #if defined ENABLE_CHECKING
489 unsigned i;
490 bitmap both = BITMAP_ALLOC (NULL);
491 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
492 if (!bitmap_empty_p (both))
494 bitmap_iterator bi;
496 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
497 fprintf (stderr, "Variable %s used in real and virtual operands\n",
498 get_name (referenced_var (i)));
499 internal_error ("SSA corruption");
502 BITMAP_FREE (used_in_real_ops);
503 BITMAP_FREE (used_in_virtual_ops);
504 BITMAP_FREE (both);
506 #endif
508 return map;
512 /* Allocate and return a new live range information object base on MAP. */
514 static tree_live_info_p
515 new_tree_live_info (var_map map)
517 tree_live_info_p live;
518 unsigned x;
520 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
521 live->map = map;
522 live->num_blocks = last_basic_block;
524 live->global = BITMAP_ALLOC (NULL);
526 live->livein = (bitmap *)xmalloc (num_var_partitions (map) * sizeof (bitmap));
527 for (x = 0; x < num_var_partitions (map); x++)
528 live->livein[x] = BITMAP_ALLOC (NULL);
530 /* liveout is deferred until it is actually requested. */
531 live->liveout = NULL;
532 return live;
536 /* Free storage for live range info object LIVE. */
538 void
539 delete_tree_live_info (tree_live_info_p live)
541 int x;
542 if (live->liveout)
544 for (x = live->num_blocks - 1; x >= 0; x--)
545 BITMAP_FREE (live->liveout[x]);
546 free (live->liveout);
548 if (live->livein)
550 for (x = num_var_partitions (live->map) - 1; x >= 0; x--)
551 BITMAP_FREE (live->livein[x]);
552 free (live->livein);
554 if (live->global)
555 BITMAP_FREE (live->global);
557 free (live);
561 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
562 for partition I. STACK is a varray used for temporary memory which is
563 passed in rather than being allocated on every call. */
565 static void
566 live_worklist (tree_live_info_p live, int *stack, int i)
568 unsigned b;
569 tree var;
570 basic_block def_bb = NULL;
571 edge e;
572 var_map map = live->map;
573 edge_iterator ei;
574 bitmap_iterator bi;
575 int *tos = stack;
577 var = partition_to_var (map, i);
578 if (SSA_NAME_DEF_STMT (var))
579 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
581 EXECUTE_IF_SET_IN_BITMAP (live->livein[i], 0, b, bi)
583 *tos++ = b;
586 while (tos != stack)
588 b = *--tos;
590 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (b)->preds)
591 if (e->src != ENTRY_BLOCK_PTR)
593 /* Its not live on entry to the block its defined in. */
594 if (e->src == def_bb)
595 continue;
596 if (!bitmap_bit_p (live->livein[i], e->src->index))
598 bitmap_set_bit (live->livein[i], e->src->index);
599 *tos++ = e->src->index;
606 /* If VAR is in a partition of MAP, set the bit for that partition in VEC. */
608 static inline void
609 set_if_valid (var_map map, bitmap vec, tree var)
611 int p = var_to_partition (map, var);
612 if (p != NO_PARTITION)
613 bitmap_set_bit (vec, p);
617 /* If VAR is in a partition and it isn't defined in DEF_VEC, set the livein and
618 global bit for it in the LIVE object. BB is the block being processed. */
620 static inline void
621 add_livein_if_notdef (tree_live_info_p live, bitmap def_vec,
622 tree var, basic_block bb)
624 int p = var_to_partition (live->map, var);
625 if (p == NO_PARTITION || bb == ENTRY_BLOCK_PTR)
626 return;
627 if (!bitmap_bit_p (def_vec, p))
629 bitmap_set_bit (live->livein[p], bb->index);
630 bitmap_set_bit (live->global, p);
635 /* Given partition map MAP, calculate all the live on entry bitmaps for
636 each basic block. Return a live info object. */
638 tree_live_info_p
639 calculate_live_on_entry (var_map map)
641 tree_live_info_p live;
642 unsigned i;
643 basic_block bb;
644 bitmap saw_def;
645 tree phi, var, stmt;
646 tree op;
647 edge e;
648 int *stack;
649 block_stmt_iterator bsi;
650 ssa_op_iter iter;
651 bitmap_iterator bi;
652 #ifdef ENABLE_CHECKING
653 int num;
654 edge_iterator ei;
655 #endif
657 saw_def = BITMAP_ALLOC (NULL);
659 live = new_tree_live_info (map);
661 FOR_EACH_BB (bb)
663 bitmap_clear (saw_def);
665 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
667 for (i = 0; i < (unsigned)PHI_NUM_ARGS (phi); i++)
669 var = PHI_ARG_DEF (phi, i);
670 if (!phi_ssa_name_p (var))
671 continue;
672 stmt = SSA_NAME_DEF_STMT (var);
673 e = EDGE_PRED (bb, i);
675 /* Any uses in PHIs which either don't have def's or are not
676 defined in the block from which the def comes, will be live
677 on entry to that block. */
678 if (!stmt || e->src != bb_for_stmt (stmt))
679 add_livein_if_notdef (live, saw_def, var, e->src);
683 /* Don't mark PHI results as defined until all the PHI nodes have
684 been processed. If the PHI sequence is:
685 a_3 = PHI <a_1, a_2>
686 b_3 = PHI <b_1, a_3>
687 The a_3 referred to in b_3's PHI node is the one incoming on the
688 edge, *not* the PHI node just seen. */
690 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
692 var = PHI_RESULT (phi);
693 set_if_valid (map, saw_def, var);
696 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
698 stmt = bsi_stmt (bsi);
700 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
702 add_livein_if_notdef (live, saw_def, op, bb);
705 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
707 set_if_valid (map, saw_def, op);
712 stack = XNEWVEC (int, last_basic_block);
713 EXECUTE_IF_SET_IN_BITMAP (live->global, 0, i, bi)
715 live_worklist (live, stack, i);
717 free (stack);
719 #ifdef ENABLE_CHECKING
720 /* Check for live on entry partitions and report those with a DEF in
721 the program. This will typically mean an optimization has done
722 something wrong. */
724 bb = ENTRY_BLOCK_PTR;
725 num = 0;
726 FOR_EACH_EDGE (e, ei, bb->succs)
728 int entry_block = e->dest->index;
729 if (e->dest == EXIT_BLOCK_PTR)
730 continue;
731 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
733 basic_block tmp;
734 tree d;
735 var = partition_to_var (map, i);
736 stmt = SSA_NAME_DEF_STMT (var);
737 tmp = bb_for_stmt (stmt);
738 d = default_def (SSA_NAME_VAR (var));
740 if (bitmap_bit_p (live_entry_blocks (live, i), entry_block))
742 if (!IS_EMPTY_STMT (stmt))
744 num++;
745 print_generic_expr (stderr, var, TDF_SLIM);
746 fprintf (stderr, " is defined ");
747 if (tmp)
748 fprintf (stderr, " in BB%d, ", tmp->index);
749 fprintf (stderr, "by:\n");
750 print_generic_expr (stderr, stmt, TDF_SLIM);
751 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
752 entry_block);
753 fprintf (stderr, " So it appears to have multiple defs.\n");
755 else
757 if (d != var)
759 num++;
760 print_generic_expr (stderr, var, TDF_SLIM);
761 fprintf (stderr, " is live-on-entry to BB%d ",entry_block);
762 if (d)
764 fprintf (stderr, " but is not the default def of ");
765 print_generic_expr (stderr, d, TDF_SLIM);
766 fprintf (stderr, "\n");
768 else
769 fprintf (stderr, " and there is no default def.\n");
773 else
774 if (d == var)
776 /* The only way this var shouldn't be marked live on entry is
777 if it occurs in a PHI argument of the block. */
778 int z, ok = 0;
779 for (phi = phi_nodes (e->dest);
780 phi && !ok;
781 phi = PHI_CHAIN (phi))
783 for (z = 0; z < PHI_NUM_ARGS (phi); z++)
784 if (var == PHI_ARG_DEF (phi, z))
786 ok = 1;
787 break;
790 if (ok)
791 continue;
792 num++;
793 print_generic_expr (stderr, var, TDF_SLIM);
794 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
795 entry_block);
796 fprintf (stderr, "but it is a default def so it should be.\n");
800 gcc_assert (num <= 0);
801 #endif
803 BITMAP_FREE (saw_def);
805 return live;
809 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
811 void
812 calculate_live_on_exit (tree_live_info_p liveinfo)
814 unsigned b;
815 unsigned i, x;
816 bitmap *on_exit;
817 basic_block bb;
818 edge e;
819 tree t, phi;
820 bitmap on_entry;
821 var_map map = liveinfo->map;
823 on_exit = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
824 for (x = 0; x < (unsigned)last_basic_block; x++)
825 on_exit[x] = BITMAP_ALLOC (NULL);
827 /* Set all the live-on-exit bits for uses in PHIs. */
828 FOR_EACH_BB (bb)
830 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
831 for (i = 0; i < (unsigned)PHI_NUM_ARGS (phi); i++)
833 t = PHI_ARG_DEF (phi, i);
834 e = PHI_ARG_EDGE (phi, i);
835 if (!phi_ssa_name_p (t) || e->src == ENTRY_BLOCK_PTR)
836 continue;
837 set_if_valid (map, on_exit[e->src->index], t);
841 /* Set live on exit for all predecessors of live on entry's. */
842 for (i = 0; i < num_var_partitions (map); i++)
844 bitmap_iterator bi;
846 on_entry = live_entry_blocks (liveinfo, i);
847 EXECUTE_IF_SET_IN_BITMAP (on_entry, 0, b, bi)
849 edge_iterator ei;
850 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (b)->preds)
851 if (e->src != ENTRY_BLOCK_PTR)
852 bitmap_set_bit (on_exit[e->src->index], i);
856 liveinfo->liveout = on_exit;
860 /* Initialize a tree_partition_associator object using MAP. */
862 static tpa_p
863 tpa_init (var_map map)
865 tpa_p tpa;
866 int num_partitions = num_var_partitions (map);
867 int x;
869 if (num_partitions == 0)
870 return NULL;
872 tpa = (tpa_p) xmalloc (sizeof (struct tree_partition_associator_d));
873 tpa->num_trees = 0;
874 tpa->uncompressed_num = -1;
875 tpa->map = map;
876 tpa->next_partition = (int *)xmalloc (num_partitions * sizeof (int));
877 memset (tpa->next_partition, TPA_NONE, num_partitions * sizeof (int));
879 tpa->partition_to_tree_map = (int *)xmalloc (num_partitions * sizeof (int));
880 memset (tpa->partition_to_tree_map, TPA_NONE, num_partitions * sizeof (int));
882 x = MAX (40, (num_partitions / 20));
883 tpa->trees = VEC_alloc (tree, heap, x);
884 tpa->first_partition = VEC_alloc (int, heap, x);
886 return tpa;
891 /* Remove PARTITION_INDEX from TREE_INDEX's list in the tpa structure TPA. */
893 void
894 tpa_remove_partition (tpa_p tpa, int tree_index, int partition_index)
896 int i;
898 i = tpa_first_partition (tpa, tree_index);
899 if (i == partition_index)
901 VEC_replace (int, tpa->first_partition, tree_index,
902 tpa->next_partition[i]);
904 else
906 for ( ; i != TPA_NONE; i = tpa_next_partition (tpa, i))
908 if (tpa->next_partition[i] == partition_index)
910 tpa->next_partition[i] = tpa->next_partition[partition_index];
911 break;
918 /* Free the memory used by tree_partition_associator object TPA. */
920 void
921 tpa_delete (tpa_p tpa)
923 if (!tpa)
924 return;
926 VEC_free (tree, heap, tpa->trees);
927 VEC_free (int, heap, tpa->first_partition);
928 free (tpa->partition_to_tree_map);
929 free (tpa->next_partition);
930 free (tpa);
934 /* This function will remove any tree entries from TPA which have only a single
935 element. This will help keep the size of the conflict graph down. The
936 function returns the number of remaining tree lists. */
938 int
939 tpa_compact (tpa_p tpa)
941 int last, x, y, first, swap_i;
942 tree swap_t;
944 /* Find the last list which has more than 1 partition. */
945 for (last = tpa->num_trees - 1; last > 0; last--)
947 first = tpa_first_partition (tpa, last);
948 if (tpa_next_partition (tpa, first) != NO_PARTITION)
949 break;
952 x = 0;
953 while (x < last)
955 first = tpa_first_partition (tpa, x);
957 /* If there is not more than one partition, swap with the current end
958 of the tree list. */
959 if (tpa_next_partition (tpa, first) == NO_PARTITION)
961 swap_t = VEC_index (tree, tpa->trees, last);
962 swap_i = VEC_index (int, tpa->first_partition, last);
964 /* Update the last entry. Since it is known to only have one
965 partition, there is nothing else to update. */
966 VEC_replace (tree, tpa->trees, last,
967 VEC_index (tree, tpa->trees, x));
968 VEC_replace (int, tpa->first_partition, last,
969 VEC_index (int, tpa->first_partition, x));
970 tpa->partition_to_tree_map[tpa_first_partition (tpa, last)] = last;
972 /* Since this list is known to have more than one partition, update
973 the list owner entries. */
974 VEC_replace (tree, tpa->trees, x, swap_t);
975 VEC_replace (int, tpa->first_partition, x, swap_i);
976 for (y = tpa_first_partition (tpa, x);
977 y != NO_PARTITION;
978 y = tpa_next_partition (tpa, y))
979 tpa->partition_to_tree_map[y] = x;
981 /* Ensure last is a list with more than one partition. */
982 last--;
983 for (; last > x; last--)
985 first = tpa_first_partition (tpa, last);
986 if (tpa_next_partition (tpa, first) != NO_PARTITION)
987 break;
990 x++;
993 first = tpa_first_partition (tpa, x);
994 if (tpa_next_partition (tpa, first) != NO_PARTITION)
995 x++;
996 tpa->uncompressed_num = tpa->num_trees;
997 tpa->num_trees = x;
998 return last;
1002 /* Initialize a root_var object with SSA partitions from MAP which are based
1003 on each root variable. */
1005 root_var_p
1006 root_var_init (var_map map)
1008 root_var_p rv;
1009 int num_partitions = num_var_partitions (map);
1010 int x, p;
1011 tree t;
1012 var_ann_t ann;
1013 sbitmap seen;
1015 rv = tpa_init (map);
1016 if (!rv)
1017 return NULL;
1019 seen = sbitmap_alloc (num_partitions);
1020 sbitmap_zero (seen);
1022 /* Start at the end and work towards the front. This will provide a list
1023 that is ordered from smallest to largest. */
1024 for (x = num_partitions - 1; x >= 0; x--)
1026 t = partition_to_var (map, x);
1028 /* The var map may not be compacted yet, so check for NULL. */
1029 if (!t)
1030 continue;
1032 p = var_to_partition (map, t);
1034 gcc_assert (p != NO_PARTITION);
1036 /* Make sure we only put coalesced partitions into the list once. */
1037 if (TEST_BIT (seen, p))
1038 continue;
1039 SET_BIT (seen, p);
1040 if (TREE_CODE (t) == SSA_NAME)
1041 t = SSA_NAME_VAR (t);
1042 ann = var_ann (t);
1043 if (ann->root_var_processed)
1045 rv->next_partition[p] = VEC_index (int, rv->first_partition,
1046 VAR_ANN_ROOT_INDEX (ann));
1047 VEC_replace (int, rv->first_partition, VAR_ANN_ROOT_INDEX (ann), p);
1049 else
1051 ann->root_var_processed = 1;
1052 VAR_ANN_ROOT_INDEX (ann) = rv->num_trees++;
1053 VEC_safe_push (tree, heap, rv->trees, t);
1054 VEC_safe_push (int, heap, rv->first_partition, p);
1056 rv->partition_to_tree_map[p] = VAR_ANN_ROOT_INDEX (ann);
1059 /* Reset the out_of_ssa_tag flag on each variable for later use. */
1060 for (x = 0; x < rv->num_trees; x++)
1062 t = VEC_index (tree, rv->trees, x);
1063 var_ann (t)->root_var_processed = 0;
1066 sbitmap_free (seen);
1067 return rv;
1071 /* Initialize a type_var structure which associates all the partitions in MAP
1072 of the same type to the type node's index. Volatiles are ignored. */
1074 type_var_p
1075 type_var_init (var_map map)
1077 type_var_p tv;
1078 int x, y, p;
1079 int num_partitions = num_var_partitions (map);
1080 tree t;
1081 sbitmap seen;
1083 tv = tpa_init (map);
1084 if (!tv)
1085 return NULL;
1087 seen = sbitmap_alloc (num_partitions);
1088 sbitmap_zero (seen);
1090 for (x = num_partitions - 1; x >= 0; x--)
1092 t = partition_to_var (map, x);
1094 /* Disallow coalescing of these types of variables. */
1095 if (!t
1096 || TREE_THIS_VOLATILE (t)
1097 || TREE_CODE (t) == RESULT_DECL
1098 || TREE_CODE (t) == PARM_DECL
1099 || (DECL_P (t)
1100 && (DECL_REGISTER (t)
1101 || !DECL_IGNORED_P (t)
1102 || DECL_RTL_SET_P (t))))
1103 continue;
1105 p = var_to_partition (map, t);
1107 gcc_assert (p != NO_PARTITION);
1109 /* If partitions have been coalesced, only add the representative
1110 for the partition to the list once. */
1111 if (TEST_BIT (seen, p))
1112 continue;
1113 SET_BIT (seen, p);
1114 t = TREE_TYPE (t);
1116 /* Find the list for this type. */
1117 for (y = 0; y < tv->num_trees; y++)
1118 if (t == VEC_index (tree, tv->trees, y))
1119 break;
1120 if (y == tv->num_trees)
1122 tv->num_trees++;
1123 VEC_safe_push (tree, heap, tv->trees, t);
1124 VEC_safe_push (int, heap, tv->first_partition, p);
1126 else
1128 tv->next_partition[p] = VEC_index (int, tv->first_partition, y);
1129 VEC_replace (int, tv->first_partition, y, p);
1131 tv->partition_to_tree_map[p] = y;
1133 sbitmap_free (seen);
1134 return tv;
1138 /* Create a new coalesce list object from MAP and return it. */
1140 coalesce_list_p
1141 create_coalesce_list (var_map map)
1143 coalesce_list_p list;
1145 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
1147 list->map = map;
1148 list->add_mode = true;
1149 list->list = (partition_pair_p *) xcalloc (num_var_partitions (map),
1150 sizeof (struct partition_pair_d));
1151 return list;
1155 /* Delete coalesce list CL. */
1157 void
1158 delete_coalesce_list (coalesce_list_p cl)
1160 free (cl->list);
1161 free (cl);
1165 /* Find a matching coalesce pair object in CL for partitions P1 and P2. If
1166 one isn't found, return NULL if CREATE is false, otherwise create a new
1167 coalesce pair object and return it. */
1169 static partition_pair_p
1170 find_partition_pair (coalesce_list_p cl, int p1, int p2, bool create)
1172 partition_pair_p node, tmp;
1173 int s;
1175 /* Normalize so that p1 is the smaller value. */
1176 if (p2 < p1)
1178 s = p1;
1179 p1 = p2;
1180 p2 = s;
1183 tmp = NULL;
1185 /* The list is sorted such that if we find a value greater than p2,
1186 p2 is not in the list. */
1187 for (node = cl->list[p1]; node; node = node->next)
1189 if (node->second_partition == p2)
1190 return node;
1191 else
1192 if (node->second_partition > p2)
1193 break;
1194 tmp = node;
1197 if (!create)
1198 return NULL;
1200 node = (partition_pair_p) xmalloc (sizeof (struct partition_pair_d));
1201 node->first_partition = p1;
1202 node->second_partition = p2;
1203 node->cost = 0;
1205 if (tmp != NULL)
1207 node->next = tmp->next;
1208 tmp->next = node;
1210 else
1212 /* This is now the first node in the list. */
1213 node->next = cl->list[p1];
1214 cl->list[p1] = node;
1217 return node;
1220 /* Return cost of execution of copy instruction with FREQUENCY
1221 possibly on CRITICAL edge and in HOT basic block. */
1223 coalesce_cost (int frequency, bool hot, bool critical)
1225 /* Base costs on BB frequencies bounded by 1. */
1226 int cost = frequency;
1228 if (!cost)
1229 cost = 1;
1230 if (optimize_size || hot)
1231 cost = 1;
1232 /* Inserting copy on critical edge costs more
1233 than inserting it elsewhere. */
1234 if (critical)
1235 cost *= 2;
1236 return cost;
1239 /* Add a potential coalesce between P1 and P2 in CL with a cost of VALUE. */
1241 void
1242 add_coalesce (coalesce_list_p cl, int p1, int p2,
1243 int value)
1245 partition_pair_p node;
1247 gcc_assert (cl->add_mode);
1249 if (p1 == p2)
1250 return;
1252 node = find_partition_pair (cl, p1, p2, true);
1254 node->cost += value;
1258 /* Comparison function to allow qsort to sort P1 and P2 in descending order. */
1260 static
1261 int compare_pairs (const void *p1, const void *p2)
1263 #if 0
1264 partition_pair_p * pp1 = (partition_pair_p *) p1;
1265 partition_pair_p * pp2 = (partition_pair_p *) p2;
1266 int result;
1268 result = (* pp2)->cost - (* pp1)->cost;
1269 /* Issue 128204: Cygwin vs Linux host differences:
1270 If the costs are the same, use the partition indicies in order to
1271 obtain a stable, reproducible sort. Otherwise the ordering will
1272 be at the mercy of the host's qsort library function implementation. */
1273 if (result == 0)
1275 result = (* pp2)->first_partition - (* pp1)->first_partition;
1276 if (result == 0)
1277 result = (* pp2)->second_partition - (* pp1)->second_partition;
1280 return result;
1281 #else
1282 return (*(partition_pair_p *)p2)->cost - (*(partition_pair_p *)p1)->cost;
1283 #endif
1287 /* Prepare CL for removal of preferred pairs. When finished, list element
1288 0 has all the coalesce pairs, sorted in order from most important coalesce
1289 to least important. */
1291 void
1292 sort_coalesce_list (coalesce_list_p cl)
1294 unsigned x, num, count;
1295 partition_pair_p chain, p;
1296 partition_pair_p *list;
1298 gcc_assert (cl->add_mode);
1300 cl->add_mode = false;
1302 /* Compact the array of lists to a single list, and count the elements. */
1303 num = 0;
1304 chain = NULL;
1305 for (x = 0; x < num_var_partitions (cl->map); x++)
1306 if (cl->list[x] != NULL)
1308 for (p = cl->list[x]; p->next != NULL; p = p->next)
1309 num++;
1310 num++;
1311 p->next = chain;
1312 chain = cl->list[x];
1313 cl->list[x] = NULL;
1316 /* Only call qsort if there are more than 2 items. */
1317 if (num > 2)
1319 list = XNEWVEC (partition_pair_p, num);
1320 count = 0;
1321 for (p = chain; p != NULL; p = p->next)
1322 list[count++] = p;
1324 gcc_assert (count == num);
1326 qsort (list, count, sizeof (partition_pair_p), compare_pairs);
1328 p = list[0];
1329 for (x = 1; x < num; x++)
1331 p->next = list[x];
1332 p = list[x];
1334 p->next = NULL;
1335 cl->list[0] = list[0];
1336 free (list);
1338 else
1340 cl->list[0] = chain;
1341 if (num == 2)
1343 /* Simply swap the two elements if they are in the wrong order. */
1344 if (chain->cost < chain->next->cost)
1346 cl->list[0] = chain->next;
1347 cl->list[0]->next = chain;
1348 chain->next = NULL;
1355 /* Retrieve the best remaining pair to coalesce from CL. Returns the 2
1356 partitions via P1 and P2. Their calculated cost is returned by the function.
1357 NO_BEST_COALESCE is returned if the coalesce list is empty. */
1359 static int
1360 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
1362 partition_pair_p node;
1363 int ret;
1365 gcc_assert (!cl->add_mode);
1367 node = cl->list[0];
1368 if (!node)
1369 return NO_BEST_COALESCE;
1371 cl->list[0] = node->next;
1373 *p1 = node->first_partition;
1374 *p2 = node->second_partition;
1375 ret = node->cost;
1376 free (node);
1378 return ret;
1382 /* If variable VAR is in a partition in MAP, add a conflict in GRAPH between
1383 VAR and any other live partitions in VEC which are associated via TPA.
1384 Reset the live bit in VEC. */
1386 static inline void
1387 add_conflicts_if_valid (tpa_p tpa, conflict_graph graph,
1388 var_map map, bitmap vec, tree var)
1390 int p, y, first;
1391 p = var_to_partition (map, var);
1392 if (p != NO_PARTITION)
1394 bitmap_clear_bit (vec, p);
1395 first = tpa_find_tree (tpa, p);
1396 /* If find returns nothing, this object isn't interesting. */
1397 if (first == TPA_NONE)
1398 return;
1399 /* Only add interferences between objects in the same list. */
1400 for (y = tpa_first_partition (tpa, first);
1401 y != TPA_NONE;
1402 y = tpa_next_partition (tpa, y))
1404 if (bitmap_bit_p (vec, y))
1405 conflict_graph_add (graph, p, y);
1410 /* Return a conflict graph for the information contained in LIVE_INFO. Only
1411 conflicts between items in the same TPA list are added. If optional
1412 coalesce list CL is passed in, any copies encountered are added. */
1414 conflict_graph
1415 build_tree_conflict_graph (tree_live_info_p liveinfo, tpa_p tpa,
1416 coalesce_list_p cl)
1418 conflict_graph graph;
1419 var_map map;
1420 bitmap live;
1421 unsigned x, y, i;
1422 basic_block bb;
1423 int *partition_link, *tpa_nodes;
1424 VEC(int,heap) *tpa_to_clear;
1425 unsigned l;
1426 ssa_op_iter iter;
1427 bitmap_iterator bi;
1429 map = live_var_map (liveinfo);
1430 graph = conflict_graph_new (num_var_partitions (map));
1432 if (tpa_num_trees (tpa) == 0)
1433 return graph;
1435 live = BITMAP_ALLOC (NULL);
1437 partition_link = XCNEWVEC (int, num_var_partitions (map) + 1);
1438 tpa_nodes = XCNEWVEC (int, tpa_num_trees (tpa));
1439 tpa_to_clear = VEC_alloc (int, heap, 50);
1441 FOR_EACH_BB (bb)
1443 block_stmt_iterator bsi;
1444 tree phi;
1445 int idx;
1447 /* Start with live on exit temporaries. */
1448 bitmap_copy (live, live_on_exit (liveinfo, bb));
1450 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
1452 bool is_a_copy = false;
1453 tree stmt = bsi_stmt (bsi);
1455 /* A copy between 2 partitions does not introduce an interference
1456 by itself. If they did, you would never be able to coalesce
1457 two things which are copied. If the two variables really do
1458 conflict, they will conflict elsewhere in the program.
1460 This is handled specially here since we may also be interested
1461 in copies between real variables and SSA_NAME variables. We may
1462 be interested in trying to coalesce SSA_NAME variables with
1463 root variables in some cases. */
1465 if (TREE_CODE (stmt) == MODIFY_EXPR)
1467 tree lhs = TREE_OPERAND (stmt, 0);
1468 tree rhs = TREE_OPERAND (stmt, 1);
1469 int p1, p2;
1470 int bit;
1472 if (DECL_P (lhs) || TREE_CODE (lhs) == SSA_NAME)
1473 p1 = var_to_partition (map, lhs);
1474 else
1475 p1 = NO_PARTITION;
1477 if (DECL_P (rhs) || TREE_CODE (rhs) == SSA_NAME)
1478 p2 = var_to_partition (map, rhs);
1479 else
1480 p2 = NO_PARTITION;
1482 if (p1 != NO_PARTITION && p2 != NO_PARTITION)
1484 is_a_copy = true;
1485 bit = bitmap_bit_p (live, p2);
1486 /* If the RHS is live, make it not live while we add
1487 the conflicts, then make it live again. */
1488 if (bit)
1489 bitmap_clear_bit (live, p2);
1490 add_conflicts_if_valid (tpa, graph, map, live, lhs);
1491 if (bit)
1492 bitmap_set_bit (live, p2);
1493 if (cl)
1494 add_coalesce (cl, p1, p2,
1495 coalesce_cost (bb->frequency,
1496 maybe_hot_bb_p (bb), false));
1497 set_if_valid (map, live, rhs);
1501 if (!is_a_copy)
1503 tree var;
1504 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
1506 add_conflicts_if_valid (tpa, graph, map, live, var);
1509 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1511 set_if_valid (map, live, var);
1516 /* If result of a PHI is unused, then the loops over the statements
1517 will not record any conflicts. However, since the PHI node is
1518 going to be translated out of SSA form we must record a conflict
1519 between the result of the PHI and any variables with are live.
1520 Otherwise the out-of-ssa translation may create incorrect code. */
1521 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1523 tree result = PHI_RESULT (phi);
1524 int p = var_to_partition (map, result);
1526 if (p != NO_PARTITION && ! bitmap_bit_p (live, p))
1527 add_conflicts_if_valid (tpa, graph, map, live, result);
1530 /* Anything which is still live at this point interferes.
1531 In order to implement this efficiently, only conflicts between
1532 partitions which have the same TPA root need be added.
1533 TPA roots which have been seen are tracked in 'tpa_nodes'. A nonzero
1534 entry points to an index into 'partition_link', which then indexes
1535 into itself forming a linked list of partitions sharing a tpa root
1536 which have been seen as live up to this point. Since partitions start
1537 at index zero, all entries in partition_link are (partition + 1).
1539 Conflicts are added between the current partition and any already seen.
1540 tpa_clear contains all the tpa_roots processed, and these are the only
1541 entries which need to be zero'd out for a clean restart. */
1543 EXECUTE_IF_SET_IN_BITMAP (live, 0, x, bi)
1545 i = tpa_find_tree (tpa, x);
1546 if (i != (unsigned)TPA_NONE)
1548 int start = tpa_nodes[i];
1549 /* If start is 0, a new root reference list is being started.
1550 Register it to be cleared. */
1551 if (!start)
1552 VEC_safe_push (int, heap, tpa_to_clear, i);
1554 /* Add interferences to other tpa members seen. */
1555 for (y = start; y != 0; y = partition_link[y])
1556 conflict_graph_add (graph, x, y - 1);
1557 tpa_nodes[i] = x + 1;
1558 partition_link[x + 1] = start;
1562 /* Now clear the used tpa root references. */
1563 for (l = 0; VEC_iterate (int, tpa_to_clear, l, idx); l++)
1564 tpa_nodes[idx] = 0;
1565 VEC_truncate (int, tpa_to_clear, 0);
1568 free (tpa_nodes);
1569 free (partition_link);
1570 VEC_free (int, heap, tpa_to_clear);
1571 BITMAP_FREE (live);
1572 return graph;
1576 /* This routine will attempt to coalesce the elements in TPA subject to the
1577 conflicts found in GRAPH. If optional coalesce_list CL is provided,
1578 only coalesces specified within the coalesce list are attempted. Otherwise
1579 an attempt is made to coalesce as many partitions within each TPA grouping
1580 as possible. If DEBUG is provided, debug output will be sent there. */
1582 void
1583 coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
1584 coalesce_list_p cl, FILE *debug)
1586 int x, y, z, w;
1587 tree var, tmp;
1589 /* Attempt to coalesce any items in a coalesce list. */
1590 if (cl)
1592 while (pop_best_coalesce (cl, &x, &y) != NO_BEST_COALESCE)
1594 if (debug)
1596 fprintf (debug, "Coalesce list: (%d)", x);
1597 print_generic_expr (debug, partition_to_var (map, x), TDF_SLIM);
1598 fprintf (debug, " & (%d)", y);
1599 print_generic_expr (debug, partition_to_var (map, y), TDF_SLIM);
1602 w = tpa_find_tree (tpa, x);
1603 z = tpa_find_tree (tpa, y);
1604 if (w != z || w == TPA_NONE || z == TPA_NONE)
1606 if (debug)
1608 if (w != z)
1609 fprintf (debug, ": Fail, Non-matching TPA's\n");
1610 if (w == TPA_NONE)
1611 fprintf (debug, ": Fail %d non TPA.\n", x);
1612 else
1613 fprintf (debug, ": Fail %d non TPA.\n", y);
1615 continue;
1617 var = partition_to_var (map, x);
1618 tmp = partition_to_var (map, y);
1619 x = var_to_partition (map, var);
1620 y = var_to_partition (map, tmp);
1621 if (debug)
1622 fprintf (debug, " [map: %d, %d] ", x, y);
1623 if (x == y)
1625 if (debug)
1626 fprintf (debug, ": Already Coalesced.\n");
1627 continue;
1629 if (!conflict_graph_conflict_p (graph, x, y))
1631 z = var_union (map, var, tmp);
1632 if (z == NO_PARTITION)
1634 if (debug)
1635 fprintf (debug, ": Unable to perform partition union.\n");
1636 continue;
1639 /* z is the new combined partition. We need to remove the other
1640 partition from the list. Set x to be that other partition. */
1641 if (z == x)
1643 conflict_graph_merge_regs (graph, x, y);
1644 w = tpa_find_tree (tpa, y);
1645 tpa_remove_partition (tpa, w, y);
1647 else
1649 conflict_graph_merge_regs (graph, y, x);
1650 w = tpa_find_tree (tpa, x);
1651 tpa_remove_partition (tpa, w, x);
1654 if (debug)
1655 fprintf (debug, ": Success -> %d\n", z);
1657 else
1658 if (debug)
1659 fprintf (debug, ": Fail due to conflict\n");
1661 /* If using a coalesce list, don't try to coalesce anything else. */
1662 return;
1665 for (x = 0; x < tpa_num_trees (tpa); x++)
1667 while (tpa_first_partition (tpa, x) != TPA_NONE)
1669 int p1, p2;
1670 /* Coalesce first partition with anything that doesn't conflict. */
1671 y = tpa_first_partition (tpa, x);
1672 tpa_remove_partition (tpa, x, y);
1674 var = partition_to_var (map, y);
1675 /* p1 is the partition representative to which y belongs. */
1676 p1 = var_to_partition (map, var);
1678 for (z = tpa_next_partition (tpa, y);
1679 z != TPA_NONE;
1680 z = tpa_next_partition (tpa, z))
1682 tmp = partition_to_var (map, z);
1683 /* p2 is the partition representative to which z belongs. */
1684 p2 = var_to_partition (map, tmp);
1685 if (debug)
1687 fprintf (debug, "Coalesce : ");
1688 print_generic_expr (debug, var, TDF_SLIM);
1689 fprintf (debug, " &");
1690 print_generic_expr (debug, tmp, TDF_SLIM);
1691 fprintf (debug, " (%d ,%d)", p1, p2);
1694 /* If partitions are already merged, don't check for conflict. */
1695 if (tmp == var)
1697 tpa_remove_partition (tpa, x, z);
1698 if (debug)
1699 fprintf (debug, ": Already coalesced\n");
1701 else
1702 if (!conflict_graph_conflict_p (graph, p1, p2))
1704 int v;
1705 if (tpa_find_tree (tpa, y) == TPA_NONE
1706 || tpa_find_tree (tpa, z) == TPA_NONE)
1708 if (debug)
1709 fprintf (debug, ": Fail non-TPA member\n");
1710 continue;
1712 if ((v = var_union (map, var, tmp)) == NO_PARTITION)
1714 if (debug)
1715 fprintf (debug, ": Fail cannot combine partitions\n");
1716 continue;
1719 tpa_remove_partition (tpa, x, z);
1720 if (v == p1)
1721 conflict_graph_merge_regs (graph, v, z);
1722 else
1724 /* Update the first partition's representative. */
1725 conflict_graph_merge_regs (graph, v, y);
1726 p1 = v;
1729 /* The root variable of the partition may be changed
1730 now. */
1731 var = partition_to_var (map, p1);
1733 if (debug)
1734 fprintf (debug, ": Success -> %d\n", v);
1736 else
1737 if (debug)
1738 fprintf (debug, ": Fail, Conflict\n");
1745 /* Send debug info for coalesce list CL to file F. */
1747 void
1748 dump_coalesce_list (FILE *f, coalesce_list_p cl)
1750 partition_pair_p node;
1751 int x, num;
1752 tree var;
1754 if (cl->add_mode)
1756 fprintf (f, "Coalesce List:\n");
1757 num = num_var_partitions (cl->map);
1758 for (x = 0; x < num; x++)
1760 node = cl->list[x];
1761 if (node)
1763 fprintf (f, "[");
1764 print_generic_expr (f, partition_to_var (cl->map, x), TDF_SLIM);
1765 fprintf (f, "] - ");
1766 for ( ; node; node = node->next)
1768 var = partition_to_var (cl->map, node->second_partition);
1769 print_generic_expr (f, var, TDF_SLIM);
1770 fprintf (f, "(%1d), ", node->cost);
1772 fprintf (f, "\n");
1776 else
1778 fprintf (f, "Sorted Coalesce list:\n");
1779 for (node = cl->list[0]; node; node = node->next)
1781 fprintf (f, "(%d) ", node->cost);
1782 var = partition_to_var (cl->map, node->first_partition);
1783 print_generic_expr (f, var, TDF_SLIM);
1784 fprintf (f, " : ");
1785 var = partition_to_var (cl->map, node->second_partition);
1786 print_generic_expr (f, var, TDF_SLIM);
1787 fprintf (f, "\n");
1793 /* Output tree_partition_associator object TPA to file F.. */
1795 void
1796 tpa_dump (FILE *f, tpa_p tpa)
1798 int x, i;
1800 if (!tpa)
1801 return;
1803 for (x = 0; x < tpa_num_trees (tpa); x++)
1805 print_generic_expr (f, tpa_tree (tpa, x), TDF_SLIM);
1806 fprintf (f, " : (");
1807 for (i = tpa_first_partition (tpa, x);
1808 i != TPA_NONE;
1809 i = tpa_next_partition (tpa, i))
1811 fprintf (f, "(%d)",i);
1812 print_generic_expr (f, partition_to_var (tpa->map, i), TDF_SLIM);
1813 fprintf (f, " ");
1815 #ifdef ENABLE_CHECKING
1816 if (tpa_find_tree (tpa, i) != x)
1817 fprintf (f, "**find tree incorrectly set** ");
1818 #endif
1821 fprintf (f, ")\n");
1823 fflush (f);
1827 /* Output partition map MAP to file F. */
1829 void
1830 dump_var_map (FILE *f, var_map map)
1832 int t;
1833 unsigned x, y;
1834 int p;
1836 fprintf (f, "\nPartition map \n\n");
1838 for (x = 0; x < map->num_partitions; x++)
1840 if (map->compact_to_partition != NULL)
1841 p = map->compact_to_partition[x];
1842 else
1843 p = x;
1845 if (map->partition_to_var[p] == NULL_TREE)
1846 continue;
1848 t = 0;
1849 for (y = 1; y < num_ssa_names; y++)
1851 p = partition_find (map->var_partition, y);
1852 if (map->partition_to_compact)
1853 p = map->partition_to_compact[p];
1854 if (p == (int)x)
1856 if (t++ == 0)
1858 fprintf(f, "Partition %d (", x);
1859 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1860 fprintf (f, " - ");
1862 fprintf (f, "%d ", y);
1865 if (t != 0)
1866 fprintf (f, ")\n");
1868 fprintf (f, "\n");
1872 /* Output live range info LIVE to file F, controlled by FLAG. */
1874 void
1875 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1877 basic_block bb;
1878 unsigned i;
1879 var_map map = live->map;
1880 bitmap_iterator bi;
1882 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1884 FOR_EACH_BB (bb)
1886 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1887 for (i = 0; i < num_var_partitions (map); i++)
1889 if (bitmap_bit_p (live_entry_blocks (live, i), bb->index))
1891 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1892 fprintf (f, " ");
1895 fprintf (f, "\n");
1899 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1901 FOR_EACH_BB (bb)
1903 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1904 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1906 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1907 fprintf (f, " ");
1909 fprintf (f, "\n");
1914 #ifdef ENABLE_CHECKING
1915 void
1916 register_ssa_partition_check (tree ssa_var)
1918 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1919 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1921 fprintf (stderr, "Illegally registering a virtual SSA name :");
1922 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1923 fprintf (stderr, " in the SSA->Normal phase.\n");
1924 internal_error ("SSA corruption");
1927 #endif