Mark ChangeLog
[official-gcc.git] / gcc / reload1.c
blob340c462e095e2f7933032d6b4271d3d7bdf5aaa3
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "target.h"
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
83 /* During reload_as_needed, element N contains a REG rtx for the hard reg
84 into which reg N has been reloaded (perhaps for a previous insn). */
85 static rtx *reg_last_reload_reg;
87 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
88 for an output reload that stores into reg N. */
89 static regset_head reg_has_output_reload;
91 /* Indicates which hard regs are reload-registers for an output reload
92 in the current insn. */
93 static HARD_REG_SET reg_is_output_reload;
95 /* Element N is the constant value to which pseudo reg N is equivalent,
96 or zero if pseudo reg N is not equivalent to a constant.
97 find_reloads looks at this in order to replace pseudo reg N
98 with the constant it stands for. */
99 rtx *reg_equiv_constant;
101 /* Element N is an invariant value to which pseudo reg N is equivalent.
102 eliminate_regs_in_insn uses this to replace pseudos in particular
103 contexts. */
104 rtx *reg_equiv_invariant;
106 /* Element N is a memory location to which pseudo reg N is equivalent,
107 prior to any register elimination (such as frame pointer to stack
108 pointer). Depending on whether or not it is a valid address, this value
109 is transferred to either reg_equiv_address or reg_equiv_mem. */
110 rtx *reg_equiv_memory_loc;
112 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
113 collector can keep track of what is inside. */
114 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
116 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
117 This is used when the address is not valid as a memory address
118 (because its displacement is too big for the machine.) */
119 rtx *reg_equiv_address;
121 /* Element N is the memory slot to which pseudo reg N is equivalent,
122 or zero if pseudo reg N is not equivalent to a memory slot. */
123 rtx *reg_equiv_mem;
125 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
126 alternate representations of the location of pseudo reg N. */
127 rtx *reg_equiv_alt_mem_list;
129 /* Widest width in which each pseudo reg is referred to (via subreg). */
130 static unsigned int *reg_max_ref_width;
132 /* Element N is the list of insns that initialized reg N from its equivalent
133 constant or memory slot. */
134 rtx *reg_equiv_init;
135 int reg_equiv_init_size;
137 /* Vector to remember old contents of reg_renumber before spilling. */
138 static short *reg_old_renumber;
140 /* During reload_as_needed, element N contains the last pseudo regno reloaded
141 into hard register N. If that pseudo reg occupied more than one register,
142 reg_reloaded_contents points to that pseudo for each spill register in
143 use; all of these must remain set for an inheritance to occur. */
144 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
146 /* During reload_as_needed, element N contains the insn for which
147 hard register N was last used. Its contents are significant only
148 when reg_reloaded_valid is set for this register. */
149 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
151 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
152 static HARD_REG_SET reg_reloaded_valid;
153 /* Indicate if the register was dead at the end of the reload.
154 This is only valid if reg_reloaded_contents is set and valid. */
155 static HARD_REG_SET reg_reloaded_dead;
157 /* Indicate whether the register's current value is one that is not
158 safe to retain across a call, even for registers that are normally
159 call-saved. */
160 static HARD_REG_SET reg_reloaded_call_part_clobbered;
162 /* Number of spill-regs so far; number of valid elements of spill_regs. */
163 static int n_spills;
165 /* In parallel with spill_regs, contains REG rtx's for those regs.
166 Holds the last rtx used for any given reg, or 0 if it has never
167 been used for spilling yet. This rtx is reused, provided it has
168 the proper mode. */
169 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
171 /* In parallel with spill_regs, contains nonzero for a spill reg
172 that was stored after the last time it was used.
173 The precise value is the insn generated to do the store. */
174 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
176 /* This is the register that was stored with spill_reg_store. This is a
177 copy of reload_out / reload_out_reg when the value was stored; if
178 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
179 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
181 /* This table is the inverse mapping of spill_regs:
182 indexed by hard reg number,
183 it contains the position of that reg in spill_regs,
184 or -1 for something that is not in spill_regs.
186 ?!? This is no longer accurate. */
187 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
189 /* This reg set indicates registers that can't be used as spill registers for
190 the currently processed insn. These are the hard registers which are live
191 during the insn, but not allocated to pseudos, as well as fixed
192 registers. */
193 static HARD_REG_SET bad_spill_regs;
195 /* These are the hard registers that can't be used as spill register for any
196 insn. This includes registers used for user variables and registers that
197 we can't eliminate. A register that appears in this set also can't be used
198 to retry register allocation. */
199 static HARD_REG_SET bad_spill_regs_global;
201 /* Describes order of use of registers for reloading
202 of spilled pseudo-registers. `n_spills' is the number of
203 elements that are actually valid; new ones are added at the end.
205 Both spill_regs and spill_reg_order are used on two occasions:
206 once during find_reload_regs, where they keep track of the spill registers
207 for a single insn, but also during reload_as_needed where they show all
208 the registers ever used by reload. For the latter case, the information
209 is calculated during finish_spills. */
210 static short spill_regs[FIRST_PSEUDO_REGISTER];
212 /* This vector of reg sets indicates, for each pseudo, which hard registers
213 may not be used for retrying global allocation because the register was
214 formerly spilled from one of them. If we allowed reallocating a pseudo to
215 a register that it was already allocated to, reload might not
216 terminate. */
217 static HARD_REG_SET *pseudo_previous_regs;
219 /* This vector of reg sets indicates, for each pseudo, which hard
220 registers may not be used for retrying global allocation because they
221 are used as spill registers during one of the insns in which the
222 pseudo is live. */
223 static HARD_REG_SET *pseudo_forbidden_regs;
225 /* All hard regs that have been used as spill registers for any insn are
226 marked in this set. */
227 static HARD_REG_SET used_spill_regs;
229 /* Index of last register assigned as a spill register. We allocate in
230 a round-robin fashion. */
231 static int last_spill_reg;
233 /* Nonzero if indirect addressing is supported on the machine; this means
234 that spilling (REG n) does not require reloading it into a register in
235 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
236 value indicates the level of indirect addressing supported, e.g., two
237 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
238 a hard register. */
239 static char spill_indirect_levels;
241 /* Nonzero if indirect addressing is supported when the innermost MEM is
242 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
243 which these are valid is the same as spill_indirect_levels, above. */
244 char indirect_symref_ok;
246 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
247 char double_reg_address_ok;
249 /* Record the stack slot for each spilled hard register. */
250 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
252 /* Width allocated so far for that stack slot. */
253 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
255 /* Record which pseudos needed to be spilled. */
256 static regset_head spilled_pseudos;
258 /* Used for communication between order_regs_for_reload and count_pseudo.
259 Used to avoid counting one pseudo twice. */
260 static regset_head pseudos_counted;
262 /* First uid used by insns created by reload in this function.
263 Used in find_equiv_reg. */
264 int reload_first_uid;
266 /* Flag set by local-alloc or global-alloc if anything is live in
267 a call-clobbered reg across calls. */
268 int caller_save_needed;
270 /* Set to 1 while reload_as_needed is operating.
271 Required by some machines to handle any generated moves differently. */
272 int reload_in_progress = 0;
274 /* These arrays record the insn_code of insns that may be needed to
275 perform input and output reloads of special objects. They provide a
276 place to pass a scratch register. */
277 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
278 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
280 /* This obstack is used for allocation of rtl during register elimination.
281 The allocated storage can be freed once find_reloads has processed the
282 insn. */
283 static struct obstack reload_obstack;
285 /* Points to the beginning of the reload_obstack. All insn_chain structures
286 are allocated first. */
287 static char *reload_startobj;
289 /* The point after all insn_chain structures. Used to quickly deallocate
290 memory allocated in copy_reloads during calculate_needs_all_insns. */
291 static char *reload_firstobj;
293 /* This points before all local rtl generated by register elimination.
294 Used to quickly free all memory after processing one insn. */
295 static char *reload_insn_firstobj;
297 /* List of insn_chain instructions, one for every insn that reload needs to
298 examine. */
299 struct insn_chain *reload_insn_chain;
301 /* List of all insns needing reloads. */
302 static struct insn_chain *insns_need_reload;
304 /* This structure is used to record information about register eliminations.
305 Each array entry describes one possible way of eliminating a register
306 in favor of another. If there is more than one way of eliminating a
307 particular register, the most preferred should be specified first. */
309 struct elim_table
311 int from; /* Register number to be eliminated. */
312 int to; /* Register number used as replacement. */
313 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
314 int can_eliminate; /* Nonzero if this elimination can be done. */
315 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
316 insns made by reload. */
317 HOST_WIDE_INT offset; /* Current offset between the two regs. */
318 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
319 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
320 rtx from_rtx; /* REG rtx for the register to be eliminated.
321 We cannot simply compare the number since
322 we might then spuriously replace a hard
323 register corresponding to a pseudo
324 assigned to the reg to be eliminated. */
325 rtx to_rtx; /* REG rtx for the replacement. */
328 static struct elim_table *reg_eliminate = 0;
330 /* This is an intermediate structure to initialize the table. It has
331 exactly the members provided by ELIMINABLE_REGS. */
332 static const struct elim_table_1
334 const int from;
335 const int to;
336 } reg_eliminate_1[] =
338 /* If a set of eliminable registers was specified, define the table from it.
339 Otherwise, default to the normal case of the frame pointer being
340 replaced by the stack pointer. */
342 #ifdef ELIMINABLE_REGS
343 ELIMINABLE_REGS;
344 #else
345 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
346 #endif
348 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
350 /* Record the number of pending eliminations that have an offset not equal
351 to their initial offset. If nonzero, we use a new copy of each
352 replacement result in any insns encountered. */
353 int num_not_at_initial_offset;
355 /* Count the number of registers that we may be able to eliminate. */
356 static int num_eliminable;
357 /* And the number of registers that are equivalent to a constant that
358 can be eliminated to frame_pointer / arg_pointer + constant. */
359 static int num_eliminable_invariants;
361 /* For each label, we record the offset of each elimination. If we reach
362 a label by more than one path and an offset differs, we cannot do the
363 elimination. This information is indexed by the difference of the
364 number of the label and the first label number. We can't offset the
365 pointer itself as this can cause problems on machines with segmented
366 memory. The first table is an array of flags that records whether we
367 have yet encountered a label and the second table is an array of arrays,
368 one entry in the latter array for each elimination. */
370 static int first_label_num;
371 static char *offsets_known_at;
372 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
374 /* Number of labels in the current function. */
376 static int num_labels;
378 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
379 static void maybe_fix_stack_asms (void);
380 static void copy_reloads (struct insn_chain *);
381 static void calculate_needs_all_insns (int);
382 static int find_reg (struct insn_chain *, int);
383 static void find_reload_regs (struct insn_chain *);
384 static void select_reload_regs (void);
385 static void delete_caller_save_insns (void);
387 static void spill_failure (rtx, enum reg_class);
388 static void count_spilled_pseudo (int, int, int);
389 static void delete_dead_insn (rtx);
390 static void alter_reg (int, int);
391 static void set_label_offsets (rtx, rtx, int);
392 static void check_eliminable_occurrences (rtx);
393 static void elimination_effects (rtx, enum machine_mode);
394 static int eliminate_regs_in_insn (rtx, int);
395 static void update_eliminable_offsets (void);
396 static void mark_not_eliminable (rtx, rtx, void *);
397 static void set_initial_elim_offsets (void);
398 static bool verify_initial_elim_offsets (void);
399 static void set_initial_label_offsets (void);
400 static void set_offsets_for_label (rtx);
401 static void init_elim_table (void);
402 static void update_eliminables (HARD_REG_SET *);
403 static void spill_hard_reg (unsigned int, int);
404 static int finish_spills (int);
405 static void scan_paradoxical_subregs (rtx);
406 static void count_pseudo (int);
407 static void order_regs_for_reload (struct insn_chain *);
408 static void reload_as_needed (int);
409 static void forget_old_reloads_1 (rtx, rtx, void *);
410 static void forget_marked_reloads (regset);
411 static int reload_reg_class_lower (const void *, const void *);
412 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
413 enum machine_mode);
414 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
415 enum machine_mode);
416 static int reload_reg_free_p (unsigned int, int, enum reload_type);
417 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
418 rtx, rtx, int, int);
419 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
420 rtx, rtx, int, int);
421 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
422 static int allocate_reload_reg (struct insn_chain *, int, int);
423 static int conflicts_with_override (rtx);
424 static void failed_reload (rtx, int);
425 static int set_reload_reg (int, int);
426 static void choose_reload_regs_init (struct insn_chain *, rtx *);
427 static void choose_reload_regs (struct insn_chain *);
428 static void merge_assigned_reloads (rtx);
429 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
430 rtx, int);
431 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
432 int);
433 static void do_input_reload (struct insn_chain *, struct reload *, int);
434 static void do_output_reload (struct insn_chain *, struct reload *, int);
435 static bool inherit_piecemeal_p (int, int);
436 static void emit_reload_insns (struct insn_chain *);
437 static void delete_output_reload (rtx, int, int);
438 static void delete_address_reloads (rtx, rtx);
439 static void delete_address_reloads_1 (rtx, rtx, rtx);
440 static rtx inc_for_reload (rtx, rtx, rtx, int);
441 #ifdef AUTO_INC_DEC
442 static void add_auto_inc_notes (rtx, rtx);
443 #endif
444 static void copy_eh_notes (rtx, rtx);
445 static int reloads_conflict (int, int);
446 static rtx gen_reload (rtx, rtx, int, enum reload_type);
447 static rtx emit_insn_if_valid_for_reload (rtx);
449 /* Initialize the reload pass once per compilation. */
451 void
452 init_reload (void)
454 int i;
456 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
457 Set spill_indirect_levels to the number of levels such addressing is
458 permitted, zero if it is not permitted at all. */
460 rtx tem
461 = gen_rtx_MEM (Pmode,
462 gen_rtx_PLUS (Pmode,
463 gen_rtx_REG (Pmode,
464 LAST_VIRTUAL_REGISTER + 1),
465 GEN_INT (4)));
466 spill_indirect_levels = 0;
468 while (memory_address_p (QImode, tem))
470 spill_indirect_levels++;
471 tem = gen_rtx_MEM (Pmode, tem);
474 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
476 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
477 indirect_symref_ok = memory_address_p (QImode, tem);
479 /* See if reg+reg is a valid (and offsettable) address. */
481 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 tem = gen_rtx_PLUS (Pmode,
484 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
485 gen_rtx_REG (Pmode, i));
487 /* This way, we make sure that reg+reg is an offsettable address. */
488 tem = plus_constant (tem, 4);
490 if (memory_address_p (QImode, tem))
492 double_reg_address_ok = 1;
493 break;
497 /* Initialize obstack for our rtl allocation. */
498 gcc_obstack_init (&reload_obstack);
499 reload_startobj = obstack_alloc (&reload_obstack, 0);
501 INIT_REG_SET (&spilled_pseudos);
502 INIT_REG_SET (&pseudos_counted);
505 /* List of insn chains that are currently unused. */
506 static struct insn_chain *unused_insn_chains = 0;
508 /* Allocate an empty insn_chain structure. */
509 struct insn_chain *
510 new_insn_chain (void)
512 struct insn_chain *c;
514 if (unused_insn_chains == 0)
516 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
517 INIT_REG_SET (&c->live_throughout);
518 INIT_REG_SET (&c->dead_or_set);
520 else
522 c = unused_insn_chains;
523 unused_insn_chains = c->next;
525 c->is_caller_save_insn = 0;
526 c->need_operand_change = 0;
527 c->need_reload = 0;
528 c->need_elim = 0;
529 return c;
532 /* Small utility function to set all regs in hard reg set TO which are
533 allocated to pseudos in regset FROM. */
535 void
536 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
538 unsigned int regno;
539 reg_set_iterator rsi;
541 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
543 int r = reg_renumber[regno];
544 int nregs;
546 if (r < 0)
548 /* reload_combine uses the information from
549 BASIC_BLOCK->global_live_at_start, which might still
550 contain registers that have not actually been allocated
551 since they have an equivalence. */
552 gcc_assert (reload_completed);
554 else
556 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
557 while (nregs-- > 0)
558 SET_HARD_REG_BIT (*to, r + nregs);
563 /* Replace all pseudos found in LOC with their corresponding
564 equivalences. */
566 static void
567 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
569 rtx x = *loc;
570 enum rtx_code code;
571 const char *fmt;
572 int i, j;
574 if (! x)
575 return;
577 code = GET_CODE (x);
578 if (code == REG)
580 unsigned int regno = REGNO (x);
582 if (regno < FIRST_PSEUDO_REGISTER)
583 return;
585 x = eliminate_regs (x, mem_mode, usage);
586 if (x != *loc)
588 *loc = x;
589 replace_pseudos_in (loc, mem_mode, usage);
590 return;
593 if (reg_equiv_constant[regno])
594 *loc = reg_equiv_constant[regno];
595 else if (reg_equiv_mem[regno])
596 *loc = reg_equiv_mem[regno];
597 else if (reg_equiv_address[regno])
598 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
599 else
601 gcc_assert (!REG_P (regno_reg_rtx[regno])
602 || REGNO (regno_reg_rtx[regno]) != regno);
603 *loc = regno_reg_rtx[regno];
606 return;
608 else if (code == MEM)
610 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
611 return;
614 /* Process each of our operands recursively. */
615 fmt = GET_RTX_FORMAT (code);
616 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
617 if (*fmt == 'e')
618 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
619 else if (*fmt == 'E')
620 for (j = 0; j < XVECLEN (x, i); j++)
621 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
625 /* Global variables used by reload and its subroutines. */
627 /* Set during calculate_needs if an insn needs register elimination. */
628 static int something_needs_elimination;
629 /* Set during calculate_needs if an insn needs an operand changed. */
630 static int something_needs_operands_changed;
632 /* Nonzero means we couldn't get enough spill regs. */
633 static int failure;
635 /* Main entry point for the reload pass.
637 FIRST is the first insn of the function being compiled.
639 GLOBAL nonzero means we were called from global_alloc
640 and should attempt to reallocate any pseudoregs that we
641 displace from hard regs we will use for reloads.
642 If GLOBAL is zero, we do not have enough information to do that,
643 so any pseudo reg that is spilled must go to the stack.
645 Return value is nonzero if reload failed
646 and we must not do any more for this function. */
649 reload (rtx first, int global)
651 int i;
652 rtx insn;
653 struct elim_table *ep;
654 basic_block bb;
656 /* Make sure even insns with volatile mem refs are recognizable. */
657 init_recog ();
659 failure = 0;
661 reload_firstobj = obstack_alloc (&reload_obstack, 0);
663 /* Make sure that the last insn in the chain
664 is not something that needs reloading. */
665 emit_note (NOTE_INSN_DELETED);
667 /* Enable find_equiv_reg to distinguish insns made by reload. */
668 reload_first_uid = get_max_uid ();
670 #ifdef SECONDARY_MEMORY_NEEDED
671 /* Initialize the secondary memory table. */
672 clear_secondary_mem ();
673 #endif
675 /* We don't have a stack slot for any spill reg yet. */
676 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
677 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
679 /* Initialize the save area information for caller-save, in case some
680 are needed. */
681 init_save_areas ();
683 /* Compute which hard registers are now in use
684 as homes for pseudo registers.
685 This is done here rather than (eg) in global_alloc
686 because this point is reached even if not optimizing. */
687 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
688 mark_home_live (i);
690 /* A function that receives a nonlocal goto must save all call-saved
691 registers. */
692 if (current_function_has_nonlocal_label)
693 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
694 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
695 regs_ever_live[i] = 1;
697 /* Find all the pseudo registers that didn't get hard regs
698 but do have known equivalent constants or memory slots.
699 These include parameters (known equivalent to parameter slots)
700 and cse'd or loop-moved constant memory addresses.
702 Record constant equivalents in reg_equiv_constant
703 so they will be substituted by find_reloads.
704 Record memory equivalents in reg_mem_equiv so they can
705 be substituted eventually by altering the REG-rtx's. */
707 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
708 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
709 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
710 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
711 reg_equiv_address = XCNEWVEC (rtx, max_regno);
712 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
713 reg_old_renumber = XCNEWVEC (short, max_regno);
714 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
715 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
716 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
718 CLEAR_HARD_REG_SET (bad_spill_regs_global);
720 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
721 to. Also find all paradoxical subregs and find largest such for
722 each pseudo. */
724 num_eliminable_invariants = 0;
725 for (insn = first; insn; insn = NEXT_INSN (insn))
727 rtx set = single_set (insn);
729 /* We may introduce USEs that we want to remove at the end, so
730 we'll mark them with QImode. Make sure there are no
731 previously-marked insns left by say regmove. */
732 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
733 && GET_MODE (insn) != VOIDmode)
734 PUT_MODE (insn, VOIDmode);
736 if (INSN_P (insn))
737 scan_paradoxical_subregs (PATTERN (insn));
739 if (set != 0 && REG_P (SET_DEST (set)))
741 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
742 rtx x;
744 if (! note)
745 continue;
747 i = REGNO (SET_DEST (set));
748 x = XEXP (note, 0);
750 if (i <= LAST_VIRTUAL_REGISTER)
751 continue;
753 if (! function_invariant_p (x)
754 || ! flag_pic
755 /* A function invariant is often CONSTANT_P but may
756 include a register. We promise to only pass
757 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
758 || (CONSTANT_P (x)
759 && LEGITIMATE_PIC_OPERAND_P (x)))
761 /* It can happen that a REG_EQUIV note contains a MEM
762 that is not a legitimate memory operand. As later
763 stages of reload assume that all addresses found
764 in the reg_equiv_* arrays were originally legitimate,
765 we ignore such REG_EQUIV notes. */
766 if (memory_operand (x, VOIDmode))
768 /* Always unshare the equivalence, so we can
769 substitute into this insn without touching the
770 equivalence. */
771 reg_equiv_memory_loc[i] = copy_rtx (x);
773 else if (function_invariant_p (x))
775 if (GET_CODE (x) == PLUS)
777 /* This is PLUS of frame pointer and a constant,
778 and might be shared. Unshare it. */
779 reg_equiv_invariant[i] = copy_rtx (x);
780 num_eliminable_invariants++;
782 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
784 reg_equiv_invariant[i] = x;
785 num_eliminable_invariants++;
787 else if (LEGITIMATE_CONSTANT_P (x))
788 reg_equiv_constant[i] = x;
789 else
791 reg_equiv_memory_loc[i]
792 = force_const_mem (GET_MODE (SET_DEST (set)), x);
793 if (! reg_equiv_memory_loc[i])
794 reg_equiv_init[i] = NULL_RTX;
797 else
799 reg_equiv_init[i] = NULL_RTX;
800 continue;
803 else
804 reg_equiv_init[i] = NULL_RTX;
808 if (dump_file)
809 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
810 if (reg_equiv_init[i])
812 fprintf (dump_file, "init_insns for %u: ", i);
813 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
814 fprintf (dump_file, "\n");
817 init_elim_table ();
819 first_label_num = get_first_label_num ();
820 num_labels = max_label_num () - first_label_num;
822 /* Allocate the tables used to store offset information at labels. */
823 /* We used to use alloca here, but the size of what it would try to
824 allocate would occasionally cause it to exceed the stack limit and
825 cause a core dump. */
826 offsets_known_at = XNEWVEC (char, num_labels);
827 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
829 /* Alter each pseudo-reg rtx to contain its hard reg number.
830 Assign stack slots to the pseudos that lack hard regs or equivalents.
831 Do not touch virtual registers. */
833 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
834 alter_reg (i, -1);
836 /* If we have some registers we think can be eliminated, scan all insns to
837 see if there is an insn that sets one of these registers to something
838 other than itself plus a constant. If so, the register cannot be
839 eliminated. Doing this scan here eliminates an extra pass through the
840 main reload loop in the most common case where register elimination
841 cannot be done. */
842 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
843 if (INSN_P (insn))
844 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
846 maybe_fix_stack_asms ();
848 insns_need_reload = 0;
849 something_needs_elimination = 0;
851 /* Initialize to -1, which means take the first spill register. */
852 last_spill_reg = -1;
854 /* Spill any hard regs that we know we can't eliminate. */
855 CLEAR_HARD_REG_SET (used_spill_regs);
856 /* There can be multiple ways to eliminate a register;
857 they should be listed adjacently.
858 Elimination for any register fails only if all possible ways fail. */
859 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
861 int from = ep->from;
862 int can_eliminate = 0;
865 can_eliminate |= ep->can_eliminate;
866 ep++;
868 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
869 if (! can_eliminate)
870 spill_hard_reg (from, 1);
873 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
874 if (frame_pointer_needed)
875 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
876 #endif
877 finish_spills (global);
879 /* From now on, we may need to generate moves differently. We may also
880 allow modifications of insns which cause them to not be recognized.
881 Any such modifications will be cleaned up during reload itself. */
882 reload_in_progress = 1;
884 /* This loop scans the entire function each go-round
885 and repeats until one repetition spills no additional hard regs. */
886 for (;;)
888 int something_changed;
889 int did_spill;
891 HOST_WIDE_INT starting_frame_size;
893 /* Round size of stack frame to stack_alignment_needed. This must be done
894 here because the stack size may be a part of the offset computation
895 for register elimination, and there might have been new stack slots
896 created in the last iteration of this loop. */
897 if (cfun->stack_alignment_needed)
898 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
900 starting_frame_size = get_frame_size ();
902 set_initial_elim_offsets ();
903 set_initial_label_offsets ();
905 /* For each pseudo register that has an equivalent location defined,
906 try to eliminate any eliminable registers (such as the frame pointer)
907 assuming initial offsets for the replacement register, which
908 is the normal case.
910 If the resulting location is directly addressable, substitute
911 the MEM we just got directly for the old REG.
913 If it is not addressable but is a constant or the sum of a hard reg
914 and constant, it is probably not addressable because the constant is
915 out of range, in that case record the address; we will generate
916 hairy code to compute the address in a register each time it is
917 needed. Similarly if it is a hard register, but one that is not
918 valid as an address register.
920 If the location is not addressable, but does not have one of the
921 above forms, assign a stack slot. We have to do this to avoid the
922 potential of producing lots of reloads if, e.g., a location involves
923 a pseudo that didn't get a hard register and has an equivalent memory
924 location that also involves a pseudo that didn't get a hard register.
926 Perhaps at some point we will improve reload_when_needed handling
927 so this problem goes away. But that's very hairy. */
929 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
930 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
932 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
934 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
935 XEXP (x, 0)))
936 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
937 else if (CONSTANT_P (XEXP (x, 0))
938 || (REG_P (XEXP (x, 0))
939 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
940 || (GET_CODE (XEXP (x, 0)) == PLUS
941 && REG_P (XEXP (XEXP (x, 0), 0))
942 && (REGNO (XEXP (XEXP (x, 0), 0))
943 < FIRST_PSEUDO_REGISTER)
944 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
945 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
946 else
948 /* Make a new stack slot. Then indicate that something
949 changed so we go back and recompute offsets for
950 eliminable registers because the allocation of memory
951 below might change some offset. reg_equiv_{mem,address}
952 will be set up for this pseudo on the next pass around
953 the loop. */
954 reg_equiv_memory_loc[i] = 0;
955 reg_equiv_init[i] = 0;
956 alter_reg (i, -1);
960 if (caller_save_needed)
961 setup_save_areas ();
963 /* If we allocated another stack slot, redo elimination bookkeeping. */
964 if (starting_frame_size != get_frame_size ())
965 continue;
967 if (caller_save_needed)
969 save_call_clobbered_regs ();
970 /* That might have allocated new insn_chain structures. */
971 reload_firstobj = obstack_alloc (&reload_obstack, 0);
974 calculate_needs_all_insns (global);
976 CLEAR_REG_SET (&spilled_pseudos);
977 did_spill = 0;
979 something_changed = 0;
981 /* If we allocated any new memory locations, make another pass
982 since it might have changed elimination offsets. */
983 if (starting_frame_size != get_frame_size ())
984 something_changed = 1;
986 /* Even if the frame size remained the same, we might still have
987 changed elimination offsets, e.g. if find_reloads called
988 force_const_mem requiring the back end to allocate a constant
989 pool base register that needs to be saved on the stack. */
990 else if (!verify_initial_elim_offsets ())
991 something_changed = 1;
994 HARD_REG_SET to_spill;
995 CLEAR_HARD_REG_SET (to_spill);
996 update_eliminables (&to_spill);
997 AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
999 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1000 if (TEST_HARD_REG_BIT (to_spill, i))
1002 spill_hard_reg (i, 1);
1003 did_spill = 1;
1005 /* Regardless of the state of spills, if we previously had
1006 a register that we thought we could eliminate, but now can
1007 not eliminate, we must run another pass.
1009 Consider pseudos which have an entry in reg_equiv_* which
1010 reference an eliminable register. We must make another pass
1011 to update reg_equiv_* so that we do not substitute in the
1012 old value from when we thought the elimination could be
1013 performed. */
1014 something_changed = 1;
1018 select_reload_regs ();
1019 if (failure)
1020 goto failed;
1022 if (insns_need_reload != 0 || did_spill)
1023 something_changed |= finish_spills (global);
1025 if (! something_changed)
1026 break;
1028 if (caller_save_needed)
1029 delete_caller_save_insns ();
1031 obstack_free (&reload_obstack, reload_firstobj);
1034 /* If global-alloc was run, notify it of any register eliminations we have
1035 done. */
1036 if (global)
1037 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1038 if (ep->can_eliminate)
1039 mark_elimination (ep->from, ep->to);
1041 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1042 If that insn didn't set the register (i.e., it copied the register to
1043 memory), just delete that insn instead of the equivalencing insn plus
1044 anything now dead. If we call delete_dead_insn on that insn, we may
1045 delete the insn that actually sets the register if the register dies
1046 there and that is incorrect. */
1048 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1050 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1052 rtx list;
1053 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1055 rtx equiv_insn = XEXP (list, 0);
1057 /* If we already deleted the insn or if it may trap, we can't
1058 delete it. The latter case shouldn't happen, but can
1059 if an insn has a variable address, gets a REG_EH_REGION
1060 note added to it, and then gets converted into a load
1061 from a constant address. */
1062 if (NOTE_P (equiv_insn)
1063 || can_throw_internal (equiv_insn))
1065 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1066 delete_dead_insn (equiv_insn);
1067 else
1068 SET_INSN_DELETED (equiv_insn);
1073 /* Use the reload registers where necessary
1074 by generating move instructions to move the must-be-register
1075 values into or out of the reload registers. */
1077 if (insns_need_reload != 0 || something_needs_elimination
1078 || something_needs_operands_changed)
1080 HOST_WIDE_INT old_frame_size = get_frame_size ();
1082 reload_as_needed (global);
1084 gcc_assert (old_frame_size == get_frame_size ());
1086 gcc_assert (verify_initial_elim_offsets ());
1089 /* If we were able to eliminate the frame pointer, show that it is no
1090 longer live at the start of any basic block. If it ls live by
1091 virtue of being in a pseudo, that pseudo will be marked live
1092 and hence the frame pointer will be known to be live via that
1093 pseudo. */
1095 if (! frame_pointer_needed)
1096 FOR_EACH_BB (bb)
1097 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1098 HARD_FRAME_POINTER_REGNUM);
1100 /* Come here (with failure set nonzero) if we can't get enough spill
1101 regs. */
1102 failed:
1104 CLEAR_REG_SET (&spilled_pseudos);
1105 reload_in_progress = 0;
1107 /* Now eliminate all pseudo regs by modifying them into
1108 their equivalent memory references.
1109 The REG-rtx's for the pseudos are modified in place,
1110 so all insns that used to refer to them now refer to memory.
1112 For a reg that has a reg_equiv_address, all those insns
1113 were changed by reloading so that no insns refer to it any longer;
1114 but the DECL_RTL of a variable decl may refer to it,
1115 and if so this causes the debugging info to mention the variable. */
1117 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1119 rtx addr = 0;
1121 if (reg_equiv_mem[i])
1122 addr = XEXP (reg_equiv_mem[i], 0);
1124 if (reg_equiv_address[i])
1125 addr = reg_equiv_address[i];
1127 if (addr)
1129 if (reg_renumber[i] < 0)
1131 rtx reg = regno_reg_rtx[i];
1133 REG_USERVAR_P (reg) = 0;
1134 PUT_CODE (reg, MEM);
1135 XEXP (reg, 0) = addr;
1136 if (reg_equiv_memory_loc[i])
1137 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1138 else
1140 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1141 MEM_ATTRS (reg) = 0;
1143 MEM_NOTRAP_P (reg) = 1;
1145 else if (reg_equiv_mem[i])
1146 XEXP (reg_equiv_mem[i], 0) = addr;
1150 /* We must set reload_completed now since the cleanup_subreg_operands call
1151 below will re-recognize each insn and reload may have generated insns
1152 which are only valid during and after reload. */
1153 reload_completed = 1;
1155 /* Make a pass over all the insns and delete all USEs which we inserted
1156 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1157 notes. Delete all CLOBBER insns, except those that refer to the return
1158 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1159 from misarranging variable-array code, and simplify (subreg (reg))
1160 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1161 are no longer useful or accurate. Strip and regenerate REG_INC notes
1162 that may have been moved around. */
1164 for (insn = first; insn; insn = NEXT_INSN (insn))
1165 if (INSN_P (insn))
1167 rtx *pnote;
1169 if (CALL_P (insn))
1170 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1171 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1173 if ((GET_CODE (PATTERN (insn)) == USE
1174 /* We mark with QImode USEs introduced by reload itself. */
1175 && (GET_MODE (insn) == QImode
1176 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1177 || (GET_CODE (PATTERN (insn)) == CLOBBER
1178 && (!MEM_P (XEXP (PATTERN (insn), 0))
1179 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1180 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1181 && XEXP (XEXP (PATTERN (insn), 0), 0)
1182 != stack_pointer_rtx))
1183 && (!REG_P (XEXP (PATTERN (insn), 0))
1184 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1186 delete_insn (insn);
1187 continue;
1190 /* Some CLOBBERs may survive until here and still reference unassigned
1191 pseudos with const equivalent, which may in turn cause ICE in later
1192 passes if the reference remains in place. */
1193 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1194 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1195 VOIDmode, PATTERN (insn));
1197 /* Discard obvious no-ops, even without -O. This optimization
1198 is fast and doesn't interfere with debugging. */
1199 if (NONJUMP_INSN_P (insn)
1200 && GET_CODE (PATTERN (insn)) == SET
1201 && REG_P (SET_SRC (PATTERN (insn)))
1202 && REG_P (SET_DEST (PATTERN (insn)))
1203 && (REGNO (SET_SRC (PATTERN (insn)))
1204 == REGNO (SET_DEST (PATTERN (insn)))))
1206 delete_insn (insn);
1207 continue;
1210 pnote = &REG_NOTES (insn);
1211 while (*pnote != 0)
1213 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1214 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1215 || REG_NOTE_KIND (*pnote) == REG_INC
1216 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1217 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1218 *pnote = XEXP (*pnote, 1);
1219 else
1220 pnote = &XEXP (*pnote, 1);
1223 #ifdef AUTO_INC_DEC
1224 add_auto_inc_notes (insn, PATTERN (insn));
1225 #endif
1227 /* Simplify (subreg (reg)) if it appears as an operand. */
1228 cleanup_subreg_operands (insn);
1230 /* Clean up invalid ASMs so that they don't confuse later passes.
1231 See PR 21299. */
1232 if (asm_noperands (PATTERN (insn)) >= 0)
1234 extract_insn (insn);
1235 if (!constrain_operands (1))
1237 error_for_asm (insn,
1238 "%<asm%> operand has impossible constraints");
1239 delete_insn (insn);
1240 continue;
1245 /* If we are doing stack checking, give a warning if this function's
1246 frame size is larger than we expect. */
1247 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1249 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1250 static int verbose_warned = 0;
1252 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1253 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1254 size += UNITS_PER_WORD;
1256 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1258 warning (0, "frame size too large for reliable stack checking");
1259 if (! verbose_warned)
1261 warning (0, "try reducing the number of local variables");
1262 verbose_warned = 1;
1267 /* Indicate that we no longer have known memory locations or constants. */
1268 if (reg_equiv_constant)
1269 free (reg_equiv_constant);
1270 if (reg_equiv_invariant)
1271 free (reg_equiv_invariant);
1272 reg_equiv_constant = 0;
1273 reg_equiv_invariant = 0;
1274 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1275 reg_equiv_memory_loc = 0;
1277 if (offsets_known_at)
1278 free (offsets_known_at);
1279 if (offsets_at)
1280 free (offsets_at);
1282 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1283 if (reg_equiv_alt_mem_list[i])
1284 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1285 free (reg_equiv_alt_mem_list);
1287 free (reg_equiv_mem);
1288 reg_equiv_init = 0;
1289 free (reg_equiv_address);
1290 free (reg_max_ref_width);
1291 free (reg_old_renumber);
1292 free (pseudo_previous_regs);
1293 free (pseudo_forbidden_regs);
1295 CLEAR_HARD_REG_SET (used_spill_regs);
1296 for (i = 0; i < n_spills; i++)
1297 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1299 /* Free all the insn_chain structures at once. */
1300 obstack_free (&reload_obstack, reload_startobj);
1301 unused_insn_chains = 0;
1302 fixup_abnormal_edges ();
1304 /* Replacing pseudos with their memory equivalents might have
1305 created shared rtx. Subsequent passes would get confused
1306 by this, so unshare everything here. */
1307 unshare_all_rtl_again (first);
1309 #ifdef STACK_BOUNDARY
1310 /* init_emit has set the alignment of the hard frame pointer
1311 to STACK_BOUNDARY. It is very likely no longer valid if
1312 the hard frame pointer was used for register allocation. */
1313 if (!frame_pointer_needed)
1314 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1315 #endif
1317 return failure;
1320 /* Yet another special case. Unfortunately, reg-stack forces people to
1321 write incorrect clobbers in asm statements. These clobbers must not
1322 cause the register to appear in bad_spill_regs, otherwise we'll call
1323 fatal_insn later. We clear the corresponding regnos in the live
1324 register sets to avoid this.
1325 The whole thing is rather sick, I'm afraid. */
1327 static void
1328 maybe_fix_stack_asms (void)
1330 #ifdef STACK_REGS
1331 const char *constraints[MAX_RECOG_OPERANDS];
1332 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1333 struct insn_chain *chain;
1335 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1337 int i, noperands;
1338 HARD_REG_SET clobbered, allowed;
1339 rtx pat;
1341 if (! INSN_P (chain->insn)
1342 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1343 continue;
1344 pat = PATTERN (chain->insn);
1345 if (GET_CODE (pat) != PARALLEL)
1346 continue;
1348 CLEAR_HARD_REG_SET (clobbered);
1349 CLEAR_HARD_REG_SET (allowed);
1351 /* First, make a mask of all stack regs that are clobbered. */
1352 for (i = 0; i < XVECLEN (pat, 0); i++)
1354 rtx t = XVECEXP (pat, 0, i);
1355 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1356 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1359 /* Get the operand values and constraints out of the insn. */
1360 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1361 constraints, operand_mode);
1363 /* For every operand, see what registers are allowed. */
1364 for (i = 0; i < noperands; i++)
1366 const char *p = constraints[i];
1367 /* For every alternative, we compute the class of registers allowed
1368 for reloading in CLS, and merge its contents into the reg set
1369 ALLOWED. */
1370 int cls = (int) NO_REGS;
1372 for (;;)
1374 char c = *p;
1376 if (c == '\0' || c == ',' || c == '#')
1378 /* End of one alternative - mark the regs in the current
1379 class, and reset the class. */
1380 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1381 cls = NO_REGS;
1382 p++;
1383 if (c == '#')
1384 do {
1385 c = *p++;
1386 } while (c != '\0' && c != ',');
1387 if (c == '\0')
1388 break;
1389 continue;
1392 switch (c)
1394 case '=': case '+': case '*': case '%': case '?': case '!':
1395 case '0': case '1': case '2': case '3': case '4': case 'm':
1396 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1397 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1398 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1399 case 'P':
1400 break;
1402 case 'p':
1403 cls = (int) reg_class_subunion[cls]
1404 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1405 break;
1407 case 'g':
1408 case 'r':
1409 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1410 break;
1412 default:
1413 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1414 cls = (int) reg_class_subunion[cls]
1415 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1416 else
1417 cls = (int) reg_class_subunion[cls]
1418 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1420 p += CONSTRAINT_LEN (c, p);
1423 /* Those of the registers which are clobbered, but allowed by the
1424 constraints, must be usable as reload registers. So clear them
1425 out of the life information. */
1426 AND_HARD_REG_SET (allowed, clobbered);
1427 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1428 if (TEST_HARD_REG_BIT (allowed, i))
1430 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1431 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1435 #endif
1438 /* Copy the global variables n_reloads and rld into the corresponding elts
1439 of CHAIN. */
1440 static void
1441 copy_reloads (struct insn_chain *chain)
1443 chain->n_reloads = n_reloads;
1444 chain->rld = obstack_alloc (&reload_obstack,
1445 n_reloads * sizeof (struct reload));
1446 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1447 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1450 /* Walk the chain of insns, and determine for each whether it needs reloads
1451 and/or eliminations. Build the corresponding insns_need_reload list, and
1452 set something_needs_elimination as appropriate. */
1453 static void
1454 calculate_needs_all_insns (int global)
1456 struct insn_chain **pprev_reload = &insns_need_reload;
1457 struct insn_chain *chain, *next = 0;
1459 something_needs_elimination = 0;
1461 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1462 for (chain = reload_insn_chain; chain != 0; chain = next)
1464 rtx insn = chain->insn;
1466 next = chain->next;
1468 /* Clear out the shortcuts. */
1469 chain->n_reloads = 0;
1470 chain->need_elim = 0;
1471 chain->need_reload = 0;
1472 chain->need_operand_change = 0;
1474 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1475 include REG_LABEL), we need to see what effects this has on the
1476 known offsets at labels. */
1478 if (LABEL_P (insn) || JUMP_P (insn)
1479 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1480 set_label_offsets (insn, insn, 0);
1482 if (INSN_P (insn))
1484 rtx old_body = PATTERN (insn);
1485 int old_code = INSN_CODE (insn);
1486 rtx old_notes = REG_NOTES (insn);
1487 int did_elimination = 0;
1488 int operands_changed = 0;
1489 rtx set = single_set (insn);
1491 /* Skip insns that only set an equivalence. */
1492 if (set && REG_P (SET_DEST (set))
1493 && reg_renumber[REGNO (SET_DEST (set))] < 0
1494 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1495 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1496 && reg_equiv_init[REGNO (SET_DEST (set))])
1497 continue;
1499 /* If needed, eliminate any eliminable registers. */
1500 if (num_eliminable || num_eliminable_invariants)
1501 did_elimination = eliminate_regs_in_insn (insn, 0);
1503 /* Analyze the instruction. */
1504 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1505 global, spill_reg_order);
1507 /* If a no-op set needs more than one reload, this is likely
1508 to be something that needs input address reloads. We
1509 can't get rid of this cleanly later, and it is of no use
1510 anyway, so discard it now.
1511 We only do this when expensive_optimizations is enabled,
1512 since this complements reload inheritance / output
1513 reload deletion, and it can make debugging harder. */
1514 if (flag_expensive_optimizations && n_reloads > 1)
1516 rtx set = single_set (insn);
1517 if (set
1518 && SET_SRC (set) == SET_DEST (set)
1519 && REG_P (SET_SRC (set))
1520 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1522 delete_insn (insn);
1523 /* Delete it from the reload chain. */
1524 if (chain->prev)
1525 chain->prev->next = next;
1526 else
1527 reload_insn_chain = next;
1528 if (next)
1529 next->prev = chain->prev;
1530 chain->next = unused_insn_chains;
1531 unused_insn_chains = chain;
1532 continue;
1535 if (num_eliminable)
1536 update_eliminable_offsets ();
1538 /* Remember for later shortcuts which insns had any reloads or
1539 register eliminations. */
1540 chain->need_elim = did_elimination;
1541 chain->need_reload = n_reloads > 0;
1542 chain->need_operand_change = operands_changed;
1544 /* Discard any register replacements done. */
1545 if (did_elimination)
1547 obstack_free (&reload_obstack, reload_insn_firstobj);
1548 PATTERN (insn) = old_body;
1549 INSN_CODE (insn) = old_code;
1550 REG_NOTES (insn) = old_notes;
1551 something_needs_elimination = 1;
1554 something_needs_operands_changed |= operands_changed;
1556 if (n_reloads != 0)
1558 copy_reloads (chain);
1559 *pprev_reload = chain;
1560 pprev_reload = &chain->next_need_reload;
1564 *pprev_reload = 0;
1567 /* Comparison function for qsort to decide which of two reloads
1568 should be handled first. *P1 and *P2 are the reload numbers. */
1570 static int
1571 reload_reg_class_lower (const void *r1p, const void *r2p)
1573 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1574 int t;
1576 /* Consider required reloads before optional ones. */
1577 t = rld[r1].optional - rld[r2].optional;
1578 if (t != 0)
1579 return t;
1581 /* Count all solitary classes before non-solitary ones. */
1582 t = ((reg_class_size[(int) rld[r2].class] == 1)
1583 - (reg_class_size[(int) rld[r1].class] == 1));
1584 if (t != 0)
1585 return t;
1587 /* Aside from solitaires, consider all multi-reg groups first. */
1588 t = rld[r2].nregs - rld[r1].nregs;
1589 if (t != 0)
1590 return t;
1592 /* Consider reloads in order of increasing reg-class number. */
1593 t = (int) rld[r1].class - (int) rld[r2].class;
1594 if (t != 0)
1595 return t;
1597 /* If reloads are equally urgent, sort by reload number,
1598 so that the results of qsort leave nothing to chance. */
1599 return r1 - r2;
1602 /* The cost of spilling each hard reg. */
1603 static int spill_cost[FIRST_PSEUDO_REGISTER];
1605 /* When spilling multiple hard registers, we use SPILL_COST for the first
1606 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1607 only the first hard reg for a multi-reg pseudo. */
1608 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1610 /* Update the spill cost arrays, considering that pseudo REG is live. */
1612 static void
1613 count_pseudo (int reg)
1615 int freq = REG_FREQ (reg);
1616 int r = reg_renumber[reg];
1617 int nregs;
1619 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1620 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1621 return;
1623 SET_REGNO_REG_SET (&pseudos_counted, reg);
1625 gcc_assert (r >= 0);
1627 spill_add_cost[r] += freq;
1629 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1630 while (nregs-- > 0)
1631 spill_cost[r + nregs] += freq;
1634 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1635 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1637 static void
1638 order_regs_for_reload (struct insn_chain *chain)
1640 unsigned i;
1641 HARD_REG_SET used_by_pseudos;
1642 HARD_REG_SET used_by_pseudos2;
1643 reg_set_iterator rsi;
1645 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1647 memset (spill_cost, 0, sizeof spill_cost);
1648 memset (spill_add_cost, 0, sizeof spill_add_cost);
1650 /* Count number of uses of each hard reg by pseudo regs allocated to it
1651 and then order them by decreasing use. First exclude hard registers
1652 that are live in or across this insn. */
1654 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1655 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1656 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1657 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1659 /* Now find out which pseudos are allocated to it, and update
1660 hard_reg_n_uses. */
1661 CLEAR_REG_SET (&pseudos_counted);
1663 EXECUTE_IF_SET_IN_REG_SET
1664 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1666 count_pseudo (i);
1668 EXECUTE_IF_SET_IN_REG_SET
1669 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1671 count_pseudo (i);
1673 CLEAR_REG_SET (&pseudos_counted);
1676 /* Vector of reload-numbers showing the order in which the reloads should
1677 be processed. */
1678 static short reload_order[MAX_RELOADS];
1680 /* This is used to keep track of the spill regs used in one insn. */
1681 static HARD_REG_SET used_spill_regs_local;
1683 /* We decided to spill hard register SPILLED, which has a size of
1684 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1685 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1686 update SPILL_COST/SPILL_ADD_COST. */
1688 static void
1689 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1691 int r = reg_renumber[reg];
1692 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1694 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1695 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1696 return;
1698 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1700 spill_add_cost[r] -= REG_FREQ (reg);
1701 while (nregs-- > 0)
1702 spill_cost[r + nregs] -= REG_FREQ (reg);
1705 /* Find reload register to use for reload number ORDER. */
1707 static int
1708 find_reg (struct insn_chain *chain, int order)
1710 int rnum = reload_order[order];
1711 struct reload *rl = rld + rnum;
1712 int best_cost = INT_MAX;
1713 int best_reg = -1;
1714 unsigned int i, j;
1715 int k;
1716 HARD_REG_SET not_usable;
1717 HARD_REG_SET used_by_other_reload;
1718 reg_set_iterator rsi;
1720 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1721 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1722 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1724 CLEAR_HARD_REG_SET (used_by_other_reload);
1725 for (k = 0; k < order; k++)
1727 int other = reload_order[k];
1729 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1730 for (j = 0; j < rld[other].nregs; j++)
1731 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1734 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736 unsigned int regno = i;
1738 if (! TEST_HARD_REG_BIT (not_usable, regno)
1739 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1740 && HARD_REGNO_MODE_OK (regno, rl->mode))
1742 int this_cost = spill_cost[regno];
1743 int ok = 1;
1744 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1746 for (j = 1; j < this_nregs; j++)
1748 this_cost += spill_add_cost[regno + j];
1749 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1750 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1751 ok = 0;
1753 if (! ok)
1754 continue;
1755 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1756 this_cost--;
1757 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1758 this_cost--;
1759 if (this_cost < best_cost
1760 /* Among registers with equal cost, prefer caller-saved ones, or
1761 use REG_ALLOC_ORDER if it is defined. */
1762 || (this_cost == best_cost
1763 #ifdef REG_ALLOC_ORDER
1764 && (inv_reg_alloc_order[regno]
1765 < inv_reg_alloc_order[best_reg])
1766 #else
1767 && call_used_regs[regno]
1768 && ! call_used_regs[best_reg]
1769 #endif
1772 best_reg = regno;
1773 best_cost = this_cost;
1777 if (best_reg == -1)
1778 return 0;
1780 if (dump_file)
1781 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1783 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1784 rl->regno = best_reg;
1786 EXECUTE_IF_SET_IN_REG_SET
1787 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1789 count_spilled_pseudo (best_reg, rl->nregs, j);
1792 EXECUTE_IF_SET_IN_REG_SET
1793 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1795 count_spilled_pseudo (best_reg, rl->nregs, j);
1798 for (i = 0; i < rl->nregs; i++)
1800 gcc_assert (spill_cost[best_reg + i] == 0);
1801 gcc_assert (spill_add_cost[best_reg + i] == 0);
1802 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1804 return 1;
1807 /* Find more reload regs to satisfy the remaining need of an insn, which
1808 is given by CHAIN.
1809 Do it by ascending class number, since otherwise a reg
1810 might be spilled for a big class and might fail to count
1811 for a smaller class even though it belongs to that class. */
1813 static void
1814 find_reload_regs (struct insn_chain *chain)
1816 int i;
1818 /* In order to be certain of getting the registers we need,
1819 we must sort the reloads into order of increasing register class.
1820 Then our grabbing of reload registers will parallel the process
1821 that provided the reload registers. */
1822 for (i = 0; i < chain->n_reloads; i++)
1824 /* Show whether this reload already has a hard reg. */
1825 if (chain->rld[i].reg_rtx)
1827 int regno = REGNO (chain->rld[i].reg_rtx);
1828 chain->rld[i].regno = regno;
1829 chain->rld[i].nregs
1830 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1832 else
1833 chain->rld[i].regno = -1;
1834 reload_order[i] = i;
1837 n_reloads = chain->n_reloads;
1838 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1840 CLEAR_HARD_REG_SET (used_spill_regs_local);
1842 if (dump_file)
1843 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1845 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1847 /* Compute the order of preference for hard registers to spill. */
1849 order_regs_for_reload (chain);
1851 for (i = 0; i < n_reloads; i++)
1853 int r = reload_order[i];
1855 /* Ignore reloads that got marked inoperative. */
1856 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1857 && ! rld[r].optional
1858 && rld[r].regno == -1)
1859 if (! find_reg (chain, i))
1861 if (dump_file)
1862 fprintf(dump_file, "reload failure for reload %d\n", r);
1863 spill_failure (chain->insn, rld[r].class);
1864 failure = 1;
1865 return;
1869 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1870 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1872 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1875 static void
1876 select_reload_regs (void)
1878 struct insn_chain *chain;
1880 /* Try to satisfy the needs for each insn. */
1881 for (chain = insns_need_reload; chain != 0;
1882 chain = chain->next_need_reload)
1883 find_reload_regs (chain);
1886 /* Delete all insns that were inserted by emit_caller_save_insns during
1887 this iteration. */
1888 static void
1889 delete_caller_save_insns (void)
1891 struct insn_chain *c = reload_insn_chain;
1893 while (c != 0)
1895 while (c != 0 && c->is_caller_save_insn)
1897 struct insn_chain *next = c->next;
1898 rtx insn = c->insn;
1900 if (c == reload_insn_chain)
1901 reload_insn_chain = next;
1902 delete_insn (insn);
1904 if (next)
1905 next->prev = c->prev;
1906 if (c->prev)
1907 c->prev->next = next;
1908 c->next = unused_insn_chains;
1909 unused_insn_chains = c;
1910 c = next;
1912 if (c != 0)
1913 c = c->next;
1917 /* Handle the failure to find a register to spill.
1918 INSN should be one of the insns which needed this particular spill reg. */
1920 static void
1921 spill_failure (rtx insn, enum reg_class class)
1923 if (asm_noperands (PATTERN (insn)) >= 0)
1924 error_for_asm (insn, "can't find a register in class %qs while "
1925 "reloading %<asm%>",
1926 reg_class_names[class]);
1927 else
1929 error ("unable to find a register to spill in class %qs",
1930 reg_class_names[class]);
1932 if (dump_file)
1934 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1935 debug_reload_to_stream (dump_file);
1937 fatal_insn ("this is the insn:", insn);
1941 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1942 data that is dead in INSN. */
1944 static void
1945 delete_dead_insn (rtx insn)
1947 rtx prev = prev_real_insn (insn);
1948 rtx prev_dest;
1950 /* If the previous insn sets a register that dies in our insn, delete it
1951 too. */
1952 if (prev && GET_CODE (PATTERN (prev)) == SET
1953 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1954 && reg_mentioned_p (prev_dest, PATTERN (insn))
1955 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1956 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1957 delete_dead_insn (prev);
1959 SET_INSN_DELETED (insn);
1962 /* Modify the home of pseudo-reg I.
1963 The new home is present in reg_renumber[I].
1965 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1966 or it may be -1, meaning there is none or it is not relevant.
1967 This is used so that all pseudos spilled from a given hard reg
1968 can share one stack slot. */
1970 static void
1971 alter_reg (int i, int from_reg)
1973 /* When outputting an inline function, this can happen
1974 for a reg that isn't actually used. */
1975 if (regno_reg_rtx[i] == 0)
1976 return;
1978 /* If the reg got changed to a MEM at rtl-generation time,
1979 ignore it. */
1980 if (!REG_P (regno_reg_rtx[i]))
1981 return;
1983 /* Modify the reg-rtx to contain the new hard reg
1984 number or else to contain its pseudo reg number. */
1985 REGNO (regno_reg_rtx[i])
1986 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1988 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1989 allocate a stack slot for it. */
1991 if (reg_renumber[i] < 0
1992 && REG_N_REFS (i) > 0
1993 && reg_equiv_constant[i] == 0
1994 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1995 && reg_equiv_memory_loc[i] == 0)
1997 rtx x;
1998 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1999 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2000 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2001 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2002 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2003 int adjust = 0;
2005 /* Each pseudo reg has an inherent size which comes from its own mode,
2006 and a total size which provides room for paradoxical subregs
2007 which refer to the pseudo reg in wider modes.
2009 We can use a slot already allocated if it provides both
2010 enough inherent space and enough total space.
2011 Otherwise, we allocate a new slot, making sure that it has no less
2012 inherent space, and no less total space, then the previous slot. */
2013 if (from_reg == -1)
2015 /* No known place to spill from => no slot to reuse. */
2016 x = assign_stack_local (mode, total_size,
2017 min_align > inherent_align
2018 || total_size > inherent_size ? -1 : 0);
2019 if (BYTES_BIG_ENDIAN)
2020 /* Cancel the big-endian correction done in assign_stack_local.
2021 Get the address of the beginning of the slot.
2022 This is so we can do a big-endian correction unconditionally
2023 below. */
2024 adjust = inherent_size - total_size;
2026 /* Nothing can alias this slot except this pseudo. */
2027 set_mem_alias_set (x, new_alias_set ());
2030 /* Reuse a stack slot if possible. */
2031 else if (spill_stack_slot[from_reg] != 0
2032 && spill_stack_slot_width[from_reg] >= total_size
2033 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2034 >= inherent_size)
2035 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2036 x = spill_stack_slot[from_reg];
2038 /* Allocate a bigger slot. */
2039 else
2041 /* Compute maximum size needed, both for inherent size
2042 and for total size. */
2043 rtx stack_slot;
2045 if (spill_stack_slot[from_reg])
2047 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2048 > inherent_size)
2049 mode = GET_MODE (spill_stack_slot[from_reg]);
2050 if (spill_stack_slot_width[from_reg] > total_size)
2051 total_size = spill_stack_slot_width[from_reg];
2052 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2053 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2056 /* Make a slot with that size. */
2057 x = assign_stack_local (mode, total_size,
2058 min_align > inherent_align
2059 || total_size > inherent_size ? -1 : 0);
2060 stack_slot = x;
2062 /* All pseudos mapped to this slot can alias each other. */
2063 if (spill_stack_slot[from_reg])
2064 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2065 else
2066 set_mem_alias_set (x, new_alias_set ());
2068 if (BYTES_BIG_ENDIAN)
2070 /* Cancel the big-endian correction done in assign_stack_local.
2071 Get the address of the beginning of the slot.
2072 This is so we can do a big-endian correction unconditionally
2073 below. */
2074 adjust = GET_MODE_SIZE (mode) - total_size;
2075 if (adjust)
2076 stack_slot
2077 = adjust_address_nv (x, mode_for_size (total_size
2078 * BITS_PER_UNIT,
2079 MODE_INT, 1),
2080 adjust);
2083 spill_stack_slot[from_reg] = stack_slot;
2084 spill_stack_slot_width[from_reg] = total_size;
2087 /* On a big endian machine, the "address" of the slot
2088 is the address of the low part that fits its inherent mode. */
2089 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2090 adjust += (total_size - inherent_size);
2092 /* If we have any adjustment to make, or if the stack slot is the
2093 wrong mode, make a new stack slot. */
2094 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2096 /* If we have a decl for the original register, set it for the
2097 memory. If this is a shared MEM, make a copy. */
2098 if (REG_EXPR (regno_reg_rtx[i])
2099 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2101 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2103 /* We can do this only for the DECLs home pseudo, not for
2104 any copies of it, since otherwise when the stack slot
2105 is reused, nonoverlapping_memrefs_p might think they
2106 cannot overlap. */
2107 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2109 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2110 x = copy_rtx (x);
2112 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2116 /* Save the stack slot for later. */
2117 reg_equiv_memory_loc[i] = x;
2121 /* Mark the slots in regs_ever_live for the hard regs
2122 used by pseudo-reg number REGNO. */
2124 void
2125 mark_home_live (int regno)
2127 int i, lim;
2129 i = reg_renumber[regno];
2130 if (i < 0)
2131 return;
2132 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2133 while (i < lim)
2134 regs_ever_live[i++] = 1;
2137 /* This function handles the tracking of elimination offsets around branches.
2139 X is a piece of RTL being scanned.
2141 INSN is the insn that it came from, if any.
2143 INITIAL_P is nonzero if we are to set the offset to be the initial
2144 offset and zero if we are setting the offset of the label to be the
2145 current offset. */
2147 static void
2148 set_label_offsets (rtx x, rtx insn, int initial_p)
2150 enum rtx_code code = GET_CODE (x);
2151 rtx tem;
2152 unsigned int i;
2153 struct elim_table *p;
2155 switch (code)
2157 case LABEL_REF:
2158 if (LABEL_REF_NONLOCAL_P (x))
2159 return;
2161 x = XEXP (x, 0);
2163 /* ... fall through ... */
2165 case CODE_LABEL:
2166 /* If we know nothing about this label, set the desired offsets. Note
2167 that this sets the offset at a label to be the offset before a label
2168 if we don't know anything about the label. This is not correct for
2169 the label after a BARRIER, but is the best guess we can make. If
2170 we guessed wrong, we will suppress an elimination that might have
2171 been possible had we been able to guess correctly. */
2173 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2175 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2176 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2177 = (initial_p ? reg_eliminate[i].initial_offset
2178 : reg_eliminate[i].offset);
2179 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2182 /* Otherwise, if this is the definition of a label and it is
2183 preceded by a BARRIER, set our offsets to the known offset of
2184 that label. */
2186 else if (x == insn
2187 && (tem = prev_nonnote_insn (insn)) != 0
2188 && BARRIER_P (tem))
2189 set_offsets_for_label (insn);
2190 else
2191 /* If neither of the above cases is true, compare each offset
2192 with those previously recorded and suppress any eliminations
2193 where the offsets disagree. */
2195 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2196 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2197 != (initial_p ? reg_eliminate[i].initial_offset
2198 : reg_eliminate[i].offset))
2199 reg_eliminate[i].can_eliminate = 0;
2201 return;
2203 case JUMP_INSN:
2204 set_label_offsets (PATTERN (insn), insn, initial_p);
2206 /* ... fall through ... */
2208 case INSN:
2209 case CALL_INSN:
2210 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2211 and hence must have all eliminations at their initial offsets. */
2212 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2213 if (REG_NOTE_KIND (tem) == REG_LABEL)
2214 set_label_offsets (XEXP (tem, 0), insn, 1);
2215 return;
2217 case PARALLEL:
2218 case ADDR_VEC:
2219 case ADDR_DIFF_VEC:
2220 /* Each of the labels in the parallel or address vector must be
2221 at their initial offsets. We want the first field for PARALLEL
2222 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2224 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2225 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2226 insn, initial_p);
2227 return;
2229 case SET:
2230 /* We only care about setting PC. If the source is not RETURN,
2231 IF_THEN_ELSE, or a label, disable any eliminations not at
2232 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2233 isn't one of those possibilities. For branches to a label,
2234 call ourselves recursively.
2236 Note that this can disable elimination unnecessarily when we have
2237 a non-local goto since it will look like a non-constant jump to
2238 someplace in the current function. This isn't a significant
2239 problem since such jumps will normally be when all elimination
2240 pairs are back to their initial offsets. */
2242 if (SET_DEST (x) != pc_rtx)
2243 return;
2245 switch (GET_CODE (SET_SRC (x)))
2247 case PC:
2248 case RETURN:
2249 return;
2251 case LABEL_REF:
2252 set_label_offsets (SET_SRC (x), insn, initial_p);
2253 return;
2255 case IF_THEN_ELSE:
2256 tem = XEXP (SET_SRC (x), 1);
2257 if (GET_CODE (tem) == LABEL_REF)
2258 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2259 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2260 break;
2262 tem = XEXP (SET_SRC (x), 2);
2263 if (GET_CODE (tem) == LABEL_REF)
2264 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2265 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2266 break;
2267 return;
2269 default:
2270 break;
2273 /* If we reach here, all eliminations must be at their initial
2274 offset because we are doing a jump to a variable address. */
2275 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2276 if (p->offset != p->initial_offset)
2277 p->can_eliminate = 0;
2278 break;
2280 default:
2281 break;
2285 /* Scan X and replace any eliminable registers (such as fp) with a
2286 replacement (such as sp), plus an offset.
2288 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2289 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2290 MEM, we are allowed to replace a sum of a register and the constant zero
2291 with the register, which we cannot do outside a MEM. In addition, we need
2292 to record the fact that a register is referenced outside a MEM.
2294 If INSN is an insn, it is the insn containing X. If we replace a REG
2295 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2296 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2297 the REG is being modified.
2299 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2300 That's used when we eliminate in expressions stored in notes.
2301 This means, do not set ref_outside_mem even if the reference
2302 is outside of MEMs.
2304 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2305 replacements done assuming all offsets are at their initial values. If
2306 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2307 encounter, return the actual location so that find_reloads will do
2308 the proper thing. */
2310 static rtx
2311 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2312 bool may_use_invariant)
2314 enum rtx_code code = GET_CODE (x);
2315 struct elim_table *ep;
2316 int regno;
2317 rtx new;
2318 int i, j;
2319 const char *fmt;
2320 int copied = 0;
2322 if (! current_function_decl)
2323 return x;
2325 switch (code)
2327 case CONST_INT:
2328 case CONST_DOUBLE:
2329 case CONST_VECTOR:
2330 case CONST:
2331 case SYMBOL_REF:
2332 case CODE_LABEL:
2333 case PC:
2334 case CC0:
2335 case ASM_INPUT:
2336 case ADDR_VEC:
2337 case ADDR_DIFF_VEC:
2338 case RETURN:
2339 return x;
2341 case REG:
2342 regno = REGNO (x);
2344 /* First handle the case where we encounter a bare register that
2345 is eliminable. Replace it with a PLUS. */
2346 if (regno < FIRST_PSEUDO_REGISTER)
2348 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2349 ep++)
2350 if (ep->from_rtx == x && ep->can_eliminate)
2351 return plus_constant (ep->to_rtx, ep->previous_offset);
2354 else if (reg_renumber && reg_renumber[regno] < 0
2355 && reg_equiv_invariant && reg_equiv_invariant[regno])
2357 if (may_use_invariant)
2358 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2359 mem_mode, insn, true);
2360 /* There exists at least one use of REGNO that cannot be
2361 eliminated. Prevent the defining insn from being deleted. */
2362 reg_equiv_init[regno] = NULL_RTX;
2363 alter_reg (regno, -1);
2365 return x;
2367 /* You might think handling MINUS in a manner similar to PLUS is a
2368 good idea. It is not. It has been tried multiple times and every
2369 time the change has had to have been reverted.
2371 Other parts of reload know a PLUS is special (gen_reload for example)
2372 and require special code to handle code a reloaded PLUS operand.
2374 Also consider backends where the flags register is clobbered by a
2375 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2376 lea instruction comes to mind). If we try to reload a MINUS, we
2377 may kill the flags register that was holding a useful value.
2379 So, please before trying to handle MINUS, consider reload as a
2380 whole instead of this little section as well as the backend issues. */
2381 case PLUS:
2382 /* If this is the sum of an eliminable register and a constant, rework
2383 the sum. */
2384 if (REG_P (XEXP (x, 0))
2385 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2386 && CONSTANT_P (XEXP (x, 1)))
2388 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2389 ep++)
2390 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2392 /* The only time we want to replace a PLUS with a REG (this
2393 occurs when the constant operand of the PLUS is the negative
2394 of the offset) is when we are inside a MEM. We won't want
2395 to do so at other times because that would change the
2396 structure of the insn in a way that reload can't handle.
2397 We special-case the commonest situation in
2398 eliminate_regs_in_insn, so just replace a PLUS with a
2399 PLUS here, unless inside a MEM. */
2400 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2401 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2402 return ep->to_rtx;
2403 else
2404 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2405 plus_constant (XEXP (x, 1),
2406 ep->previous_offset));
2409 /* If the register is not eliminable, we are done since the other
2410 operand is a constant. */
2411 return x;
2414 /* If this is part of an address, we want to bring any constant to the
2415 outermost PLUS. We will do this by doing register replacement in
2416 our operands and seeing if a constant shows up in one of them.
2418 Note that there is no risk of modifying the structure of the insn,
2419 since we only get called for its operands, thus we are either
2420 modifying the address inside a MEM, or something like an address
2421 operand of a load-address insn. */
2424 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2425 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2427 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2429 /* If one side is a PLUS and the other side is a pseudo that
2430 didn't get a hard register but has a reg_equiv_constant,
2431 we must replace the constant here since it may no longer
2432 be in the position of any operand. */
2433 if (GET_CODE (new0) == PLUS && REG_P (new1)
2434 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2435 && reg_renumber[REGNO (new1)] < 0
2436 && reg_equiv_constant != 0
2437 && reg_equiv_constant[REGNO (new1)] != 0)
2438 new1 = reg_equiv_constant[REGNO (new1)];
2439 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2440 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2441 && reg_renumber[REGNO (new0)] < 0
2442 && reg_equiv_constant[REGNO (new0)] != 0)
2443 new0 = reg_equiv_constant[REGNO (new0)];
2445 new = form_sum (new0, new1);
2447 /* As above, if we are not inside a MEM we do not want to
2448 turn a PLUS into something else. We might try to do so here
2449 for an addition of 0 if we aren't optimizing. */
2450 if (! mem_mode && GET_CODE (new) != PLUS)
2451 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2452 else
2453 return new;
2456 return x;
2458 case MULT:
2459 /* If this is the product of an eliminable register and a
2460 constant, apply the distribute law and move the constant out
2461 so that we have (plus (mult ..) ..). This is needed in order
2462 to keep load-address insns valid. This case is pathological.
2463 We ignore the possibility of overflow here. */
2464 if (REG_P (XEXP (x, 0))
2465 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2466 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2467 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2468 ep++)
2469 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2471 if (! mem_mode
2472 /* Refs inside notes don't count for this purpose. */
2473 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2474 || GET_CODE (insn) == INSN_LIST)))
2475 ep->ref_outside_mem = 1;
2477 return
2478 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2479 ep->previous_offset * INTVAL (XEXP (x, 1)));
2482 /* ... fall through ... */
2484 case CALL:
2485 case COMPARE:
2486 /* See comments before PLUS about handling MINUS. */
2487 case MINUS:
2488 case DIV: case UDIV:
2489 case MOD: case UMOD:
2490 case AND: case IOR: case XOR:
2491 case ROTATERT: case ROTATE:
2492 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2493 case NE: case EQ:
2494 case GE: case GT: case GEU: case GTU:
2495 case LE: case LT: case LEU: case LTU:
2497 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2498 rtx new1 = XEXP (x, 1)
2499 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2501 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2502 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2504 return x;
2506 case EXPR_LIST:
2507 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2508 if (XEXP (x, 0))
2510 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2511 if (new != XEXP (x, 0))
2513 /* If this is a REG_DEAD note, it is not valid anymore.
2514 Using the eliminated version could result in creating a
2515 REG_DEAD note for the stack or frame pointer. */
2516 if (GET_MODE (x) == REG_DEAD)
2517 return (XEXP (x, 1)
2518 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2519 : NULL_RTX);
2521 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2525 /* ... fall through ... */
2527 case INSN_LIST:
2528 /* Now do eliminations in the rest of the chain. If this was
2529 an EXPR_LIST, this might result in allocating more memory than is
2530 strictly needed, but it simplifies the code. */
2531 if (XEXP (x, 1))
2533 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2534 if (new != XEXP (x, 1))
2535 return
2536 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2538 return x;
2540 case PRE_INC:
2541 case POST_INC:
2542 case PRE_DEC:
2543 case POST_DEC:
2544 case STRICT_LOW_PART:
2545 case NEG: case NOT:
2546 case SIGN_EXTEND: case ZERO_EXTEND:
2547 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2548 case FLOAT: case FIX:
2549 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2550 case ABS:
2551 case SQRT:
2552 case FFS:
2553 case CLZ:
2554 case CTZ:
2555 case POPCOUNT:
2556 case PARITY:
2557 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2558 if (new != XEXP (x, 0))
2559 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2560 return x;
2562 case SUBREG:
2563 /* Similar to above processing, but preserve SUBREG_BYTE.
2564 Convert (subreg (mem)) to (mem) if not paradoxical.
2565 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2566 pseudo didn't get a hard reg, we must replace this with the
2567 eliminated version of the memory location because push_reload
2568 may do the replacement in certain circumstances. */
2569 if (REG_P (SUBREG_REG (x))
2570 && (GET_MODE_SIZE (GET_MODE (x))
2571 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2572 && reg_equiv_memory_loc != 0
2573 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2575 new = SUBREG_REG (x);
2577 else
2578 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2580 if (new != SUBREG_REG (x))
2582 int x_size = GET_MODE_SIZE (GET_MODE (x));
2583 int new_size = GET_MODE_SIZE (GET_MODE (new));
2585 if (MEM_P (new)
2586 && ((x_size < new_size
2587 #ifdef WORD_REGISTER_OPERATIONS
2588 /* On these machines, combine can create rtl of the form
2589 (set (subreg:m1 (reg:m2 R) 0) ...)
2590 where m1 < m2, and expects something interesting to
2591 happen to the entire word. Moreover, it will use the
2592 (reg:m2 R) later, expecting all bits to be preserved.
2593 So if the number of words is the same, preserve the
2594 subreg so that push_reload can see it. */
2595 && ! ((x_size - 1) / UNITS_PER_WORD
2596 == (new_size -1 ) / UNITS_PER_WORD)
2597 #endif
2599 || x_size == new_size)
2601 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2602 else
2603 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2606 return x;
2608 case MEM:
2609 /* Our only special processing is to pass the mode of the MEM to our
2610 recursive call and copy the flags. While we are here, handle this
2611 case more efficiently. */
2612 return
2613 replace_equiv_address_nv (x,
2614 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2615 insn, true));
2617 case USE:
2618 /* Handle insn_list USE that a call to a pure function may generate. */
2619 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2620 if (new != XEXP (x, 0))
2621 return gen_rtx_USE (GET_MODE (x), new);
2622 return x;
2624 case CLOBBER:
2625 case ASM_OPERANDS:
2626 case SET:
2627 gcc_unreachable ();
2629 default:
2630 break;
2633 /* Process each of our operands recursively. If any have changed, make a
2634 copy of the rtx. */
2635 fmt = GET_RTX_FORMAT (code);
2636 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2638 if (*fmt == 'e')
2640 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2641 if (new != XEXP (x, i) && ! copied)
2643 x = shallow_copy_rtx (x);
2644 copied = 1;
2646 XEXP (x, i) = new;
2648 else if (*fmt == 'E')
2650 int copied_vec = 0;
2651 for (j = 0; j < XVECLEN (x, i); j++)
2653 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2654 if (new != XVECEXP (x, i, j) && ! copied_vec)
2656 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2657 XVEC (x, i)->elem);
2658 if (! copied)
2660 x = shallow_copy_rtx (x);
2661 copied = 1;
2663 XVEC (x, i) = new_v;
2664 copied_vec = 1;
2666 XVECEXP (x, i, j) = new;
2671 return x;
2675 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2677 return eliminate_regs_1 (x, mem_mode, insn, false);
2680 /* Scan rtx X for modifications of elimination target registers. Update
2681 the table of eliminables to reflect the changed state. MEM_MODE is
2682 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2684 static void
2685 elimination_effects (rtx x, enum machine_mode mem_mode)
2687 enum rtx_code code = GET_CODE (x);
2688 struct elim_table *ep;
2689 int regno;
2690 int i, j;
2691 const char *fmt;
2693 switch (code)
2695 case CONST_INT:
2696 case CONST_DOUBLE:
2697 case CONST_VECTOR:
2698 case CONST:
2699 case SYMBOL_REF:
2700 case CODE_LABEL:
2701 case PC:
2702 case CC0:
2703 case ASM_INPUT:
2704 case ADDR_VEC:
2705 case ADDR_DIFF_VEC:
2706 case RETURN:
2707 return;
2709 case REG:
2710 regno = REGNO (x);
2712 /* First handle the case where we encounter a bare register that
2713 is eliminable. Replace it with a PLUS. */
2714 if (regno < FIRST_PSEUDO_REGISTER)
2716 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2717 ep++)
2718 if (ep->from_rtx == x && ep->can_eliminate)
2720 if (! mem_mode)
2721 ep->ref_outside_mem = 1;
2722 return;
2726 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2727 && reg_equiv_constant[regno]
2728 && ! function_invariant_p (reg_equiv_constant[regno]))
2729 elimination_effects (reg_equiv_constant[regno], mem_mode);
2730 return;
2732 case PRE_INC:
2733 case POST_INC:
2734 case PRE_DEC:
2735 case POST_DEC:
2736 case POST_MODIFY:
2737 case PRE_MODIFY:
2738 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2739 if (ep->to_rtx == XEXP (x, 0))
2741 int size = GET_MODE_SIZE (mem_mode);
2743 /* If more bytes than MEM_MODE are pushed, account for them. */
2744 #ifdef PUSH_ROUNDING
2745 if (ep->to_rtx == stack_pointer_rtx)
2746 size = PUSH_ROUNDING (size);
2747 #endif
2748 if (code == PRE_DEC || code == POST_DEC)
2749 ep->offset += size;
2750 else if (code == PRE_INC || code == POST_INC)
2751 ep->offset -= size;
2752 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2753 && GET_CODE (XEXP (x, 1)) == PLUS
2754 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2755 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2756 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2759 /* These two aren't unary operators. */
2760 if (code == POST_MODIFY || code == PRE_MODIFY)
2761 break;
2763 /* Fall through to generic unary operation case. */
2764 case STRICT_LOW_PART:
2765 case NEG: case NOT:
2766 case SIGN_EXTEND: case ZERO_EXTEND:
2767 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2768 case FLOAT: case FIX:
2769 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2770 case ABS:
2771 case SQRT:
2772 case FFS:
2773 case CLZ:
2774 case CTZ:
2775 case POPCOUNT:
2776 case PARITY:
2777 elimination_effects (XEXP (x, 0), mem_mode);
2778 return;
2780 case SUBREG:
2781 if (REG_P (SUBREG_REG (x))
2782 && (GET_MODE_SIZE (GET_MODE (x))
2783 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2784 && reg_equiv_memory_loc != 0
2785 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2786 return;
2788 elimination_effects (SUBREG_REG (x), mem_mode);
2789 return;
2791 case USE:
2792 /* If using a register that is the source of an eliminate we still
2793 think can be performed, note it cannot be performed since we don't
2794 know how this register is used. */
2795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2796 if (ep->from_rtx == XEXP (x, 0))
2797 ep->can_eliminate = 0;
2799 elimination_effects (XEXP (x, 0), mem_mode);
2800 return;
2802 case CLOBBER:
2803 /* If clobbering a register that is the replacement register for an
2804 elimination we still think can be performed, note that it cannot
2805 be performed. Otherwise, we need not be concerned about it. */
2806 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2807 if (ep->to_rtx == XEXP (x, 0))
2808 ep->can_eliminate = 0;
2810 elimination_effects (XEXP (x, 0), mem_mode);
2811 return;
2813 case SET:
2814 /* Check for setting a register that we know about. */
2815 if (REG_P (SET_DEST (x)))
2817 /* See if this is setting the replacement register for an
2818 elimination.
2820 If DEST is the hard frame pointer, we do nothing because we
2821 assume that all assignments to the frame pointer are for
2822 non-local gotos and are being done at a time when they are valid
2823 and do not disturb anything else. Some machines want to
2824 eliminate a fake argument pointer (or even a fake frame pointer)
2825 with either the real frame or the stack pointer. Assignments to
2826 the hard frame pointer must not prevent this elimination. */
2828 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2829 ep++)
2830 if (ep->to_rtx == SET_DEST (x)
2831 && SET_DEST (x) != hard_frame_pointer_rtx)
2833 /* If it is being incremented, adjust the offset. Otherwise,
2834 this elimination can't be done. */
2835 rtx src = SET_SRC (x);
2837 if (GET_CODE (src) == PLUS
2838 && XEXP (src, 0) == SET_DEST (x)
2839 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2840 ep->offset -= INTVAL (XEXP (src, 1));
2841 else
2842 ep->can_eliminate = 0;
2846 elimination_effects (SET_DEST (x), 0);
2847 elimination_effects (SET_SRC (x), 0);
2848 return;
2850 case MEM:
2851 /* Our only special processing is to pass the mode of the MEM to our
2852 recursive call. */
2853 elimination_effects (XEXP (x, 0), GET_MODE (x));
2854 return;
2856 default:
2857 break;
2860 fmt = GET_RTX_FORMAT (code);
2861 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2863 if (*fmt == 'e')
2864 elimination_effects (XEXP (x, i), mem_mode);
2865 else if (*fmt == 'E')
2866 for (j = 0; j < XVECLEN (x, i); j++)
2867 elimination_effects (XVECEXP (x, i, j), mem_mode);
2871 /* Descend through rtx X and verify that no references to eliminable registers
2872 remain. If any do remain, mark the involved register as not
2873 eliminable. */
2875 static void
2876 check_eliminable_occurrences (rtx x)
2878 const char *fmt;
2879 int i;
2880 enum rtx_code code;
2882 if (x == 0)
2883 return;
2885 code = GET_CODE (x);
2887 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2889 struct elim_table *ep;
2891 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2892 if (ep->from_rtx == x)
2893 ep->can_eliminate = 0;
2894 return;
2897 fmt = GET_RTX_FORMAT (code);
2898 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2900 if (*fmt == 'e')
2901 check_eliminable_occurrences (XEXP (x, i));
2902 else if (*fmt == 'E')
2904 int j;
2905 for (j = 0; j < XVECLEN (x, i); j++)
2906 check_eliminable_occurrences (XVECEXP (x, i, j));
2911 /* Scan INSN and eliminate all eliminable registers in it.
2913 If REPLACE is nonzero, do the replacement destructively. Also
2914 delete the insn as dead it if it is setting an eliminable register.
2916 If REPLACE is zero, do all our allocations in reload_obstack.
2918 If no eliminations were done and this insn doesn't require any elimination
2919 processing (these are not identical conditions: it might be updating sp,
2920 but not referencing fp; this needs to be seen during reload_as_needed so
2921 that the offset between fp and sp can be taken into consideration), zero
2922 is returned. Otherwise, 1 is returned. */
2924 static int
2925 eliminate_regs_in_insn (rtx insn, int replace)
2927 int icode = recog_memoized (insn);
2928 rtx old_body = PATTERN (insn);
2929 int insn_is_asm = asm_noperands (old_body) >= 0;
2930 rtx old_set = single_set (insn);
2931 rtx new_body;
2932 int val = 0;
2933 int i;
2934 rtx substed_operand[MAX_RECOG_OPERANDS];
2935 rtx orig_operand[MAX_RECOG_OPERANDS];
2936 struct elim_table *ep;
2937 rtx plus_src, plus_cst_src;
2939 if (! insn_is_asm && icode < 0)
2941 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2942 || GET_CODE (PATTERN (insn)) == CLOBBER
2943 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2944 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2945 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2946 return 0;
2949 if (old_set != 0 && REG_P (SET_DEST (old_set))
2950 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2952 /* Check for setting an eliminable register. */
2953 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2954 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2956 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2957 /* If this is setting the frame pointer register to the
2958 hardware frame pointer register and this is an elimination
2959 that will be done (tested above), this insn is really
2960 adjusting the frame pointer downward to compensate for
2961 the adjustment done before a nonlocal goto. */
2962 if (ep->from == FRAME_POINTER_REGNUM
2963 && ep->to == HARD_FRAME_POINTER_REGNUM)
2965 rtx base = SET_SRC (old_set);
2966 rtx base_insn = insn;
2967 HOST_WIDE_INT offset = 0;
2969 while (base != ep->to_rtx)
2971 rtx prev_insn, prev_set;
2973 if (GET_CODE (base) == PLUS
2974 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2976 offset += INTVAL (XEXP (base, 1));
2977 base = XEXP (base, 0);
2979 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2980 && (prev_set = single_set (prev_insn)) != 0
2981 && rtx_equal_p (SET_DEST (prev_set), base))
2983 base = SET_SRC (prev_set);
2984 base_insn = prev_insn;
2986 else
2987 break;
2990 if (base == ep->to_rtx)
2992 rtx src
2993 = plus_constant (ep->to_rtx, offset - ep->offset);
2995 new_body = old_body;
2996 if (! replace)
2998 new_body = copy_insn (old_body);
2999 if (REG_NOTES (insn))
3000 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3002 PATTERN (insn) = new_body;
3003 old_set = single_set (insn);
3005 /* First see if this insn remains valid when we
3006 make the change. If not, keep the INSN_CODE
3007 the same and let reload fit it up. */
3008 validate_change (insn, &SET_SRC (old_set), src, 1);
3009 validate_change (insn, &SET_DEST (old_set),
3010 ep->to_rtx, 1);
3011 if (! apply_change_group ())
3013 SET_SRC (old_set) = src;
3014 SET_DEST (old_set) = ep->to_rtx;
3017 val = 1;
3018 goto done;
3021 #endif
3023 /* In this case this insn isn't serving a useful purpose. We
3024 will delete it in reload_as_needed once we know that this
3025 elimination is, in fact, being done.
3027 If REPLACE isn't set, we can't delete this insn, but needn't
3028 process it since it won't be used unless something changes. */
3029 if (replace)
3031 delete_dead_insn (insn);
3032 return 1;
3034 val = 1;
3035 goto done;
3039 /* We allow one special case which happens to work on all machines we
3040 currently support: a single set with the source or a REG_EQUAL
3041 note being a PLUS of an eliminable register and a constant. */
3042 plus_src = plus_cst_src = 0;
3043 if (old_set && REG_P (SET_DEST (old_set)))
3045 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3046 plus_src = SET_SRC (old_set);
3047 /* First see if the source is of the form (plus (...) CST). */
3048 if (plus_src
3049 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3050 plus_cst_src = plus_src;
3051 else if (REG_P (SET_SRC (old_set))
3052 || plus_src)
3054 /* Otherwise, see if we have a REG_EQUAL note of the form
3055 (plus (...) CST). */
3056 rtx links;
3057 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3059 if (REG_NOTE_KIND (links) == REG_EQUAL
3060 && GET_CODE (XEXP (links, 0)) == PLUS
3061 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3063 plus_cst_src = XEXP (links, 0);
3064 break;
3069 /* Check that the first operand of the PLUS is a hard reg or
3070 the lowpart subreg of one. */
3071 if (plus_cst_src)
3073 rtx reg = XEXP (plus_cst_src, 0);
3074 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3075 reg = SUBREG_REG (reg);
3077 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3078 plus_cst_src = 0;
3081 if (plus_cst_src)
3083 rtx reg = XEXP (plus_cst_src, 0);
3084 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3086 if (GET_CODE (reg) == SUBREG)
3087 reg = SUBREG_REG (reg);
3089 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3090 if (ep->from_rtx == reg && ep->can_eliminate)
3092 rtx to_rtx = ep->to_rtx;
3093 offset += ep->offset;
3094 offset = trunc_int_for_mode (offset, GET_MODE (reg));
3096 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3097 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3098 to_rtx);
3099 /* If we have a nonzero offset, and the source is already
3100 a simple REG, the following transformation would
3101 increase the cost of the insn by replacing a simple REG
3102 with (plus (reg sp) CST). So try only when we already
3103 had a PLUS before. */
3104 if (offset == 0 || plus_src)
3106 rtx new_src = plus_constant (to_rtx, offset);
3108 new_body = old_body;
3109 if (! replace)
3111 new_body = copy_insn (old_body);
3112 if (REG_NOTES (insn))
3113 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3115 PATTERN (insn) = new_body;
3116 old_set = single_set (insn);
3118 /* First see if this insn remains valid when we make the
3119 change. If not, try to replace the whole pattern with
3120 a simple set (this may help if the original insn was a
3121 PARALLEL that was only recognized as single_set due to
3122 REG_UNUSED notes). If this isn't valid either, keep
3123 the INSN_CODE the same and let reload fix it up. */
3124 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3126 rtx new_pat = gen_rtx_SET (VOIDmode,
3127 SET_DEST (old_set), new_src);
3129 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3130 SET_SRC (old_set) = new_src;
3133 else
3134 break;
3136 val = 1;
3137 /* This can't have an effect on elimination offsets, so skip right
3138 to the end. */
3139 goto done;
3143 /* Determine the effects of this insn on elimination offsets. */
3144 elimination_effects (old_body, 0);
3146 /* Eliminate all eliminable registers occurring in operands that
3147 can be handled by reload. */
3148 extract_insn (insn);
3149 for (i = 0; i < recog_data.n_operands; i++)
3151 orig_operand[i] = recog_data.operand[i];
3152 substed_operand[i] = recog_data.operand[i];
3154 /* For an asm statement, every operand is eliminable. */
3155 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3157 bool is_set_src, in_plus;
3159 /* Check for setting a register that we know about. */
3160 if (recog_data.operand_type[i] != OP_IN
3161 && REG_P (orig_operand[i]))
3163 /* If we are assigning to a register that can be eliminated, it
3164 must be as part of a PARALLEL, since the code above handles
3165 single SETs. We must indicate that we can no longer
3166 eliminate this reg. */
3167 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3168 ep++)
3169 if (ep->from_rtx == orig_operand[i])
3170 ep->can_eliminate = 0;
3173 /* Companion to the above plus substitution, we can allow
3174 invariants as the source of a plain move. */
3175 is_set_src = false;
3176 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3177 is_set_src = true;
3178 in_plus = false;
3179 if (plus_src
3180 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3181 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3182 in_plus = true;
3184 substed_operand[i]
3185 = eliminate_regs_1 (recog_data.operand[i], 0,
3186 replace ? insn : NULL_RTX,
3187 is_set_src || in_plus);
3188 if (substed_operand[i] != orig_operand[i])
3189 val = 1;
3190 /* Terminate the search in check_eliminable_occurrences at
3191 this point. */
3192 *recog_data.operand_loc[i] = 0;
3194 /* If an output operand changed from a REG to a MEM and INSN is an
3195 insn, write a CLOBBER insn. */
3196 if (recog_data.operand_type[i] != OP_IN
3197 && REG_P (orig_operand[i])
3198 && MEM_P (substed_operand[i])
3199 && replace)
3200 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3201 insn);
3205 for (i = 0; i < recog_data.n_dups; i++)
3206 *recog_data.dup_loc[i]
3207 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3209 /* If any eliminable remain, they aren't eliminable anymore. */
3210 check_eliminable_occurrences (old_body);
3212 /* Substitute the operands; the new values are in the substed_operand
3213 array. */
3214 for (i = 0; i < recog_data.n_operands; i++)
3215 *recog_data.operand_loc[i] = substed_operand[i];
3216 for (i = 0; i < recog_data.n_dups; i++)
3217 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3219 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3220 re-recognize the insn. We do this in case we had a simple addition
3221 but now can do this as a load-address. This saves an insn in this
3222 common case.
3223 If re-recognition fails, the old insn code number will still be used,
3224 and some register operands may have changed into PLUS expressions.
3225 These will be handled by find_reloads by loading them into a register
3226 again. */
3228 if (val)
3230 /* If we aren't replacing things permanently and we changed something,
3231 make another copy to ensure that all the RTL is new. Otherwise
3232 things can go wrong if find_reload swaps commutative operands
3233 and one is inside RTL that has been copied while the other is not. */
3234 new_body = old_body;
3235 if (! replace)
3237 new_body = copy_insn (old_body);
3238 if (REG_NOTES (insn))
3239 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3241 PATTERN (insn) = new_body;
3243 /* If we had a move insn but now we don't, rerecognize it. This will
3244 cause spurious re-recognition if the old move had a PARALLEL since
3245 the new one still will, but we can't call single_set without
3246 having put NEW_BODY into the insn and the re-recognition won't
3247 hurt in this rare case. */
3248 /* ??? Why this huge if statement - why don't we just rerecognize the
3249 thing always? */
3250 if (! insn_is_asm
3251 && old_set != 0
3252 && ((REG_P (SET_SRC (old_set))
3253 && (GET_CODE (new_body) != SET
3254 || !REG_P (SET_SRC (new_body))))
3255 /* If this was a load from or store to memory, compare
3256 the MEM in recog_data.operand to the one in the insn.
3257 If they are not equal, then rerecognize the insn. */
3258 || (old_set != 0
3259 && ((MEM_P (SET_SRC (old_set))
3260 && SET_SRC (old_set) != recog_data.operand[1])
3261 || (MEM_P (SET_DEST (old_set))
3262 && SET_DEST (old_set) != recog_data.operand[0])))
3263 /* If this was an add insn before, rerecognize. */
3264 || GET_CODE (SET_SRC (old_set)) == PLUS))
3266 int new_icode = recog (PATTERN (insn), insn, 0);
3267 if (new_icode >= 0)
3268 INSN_CODE (insn) = new_icode;
3272 /* Restore the old body. If there were any changes to it, we made a copy
3273 of it while the changes were still in place, so we'll correctly return
3274 a modified insn below. */
3275 if (! replace)
3277 /* Restore the old body. */
3278 for (i = 0; i < recog_data.n_operands; i++)
3279 *recog_data.operand_loc[i] = orig_operand[i];
3280 for (i = 0; i < recog_data.n_dups; i++)
3281 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3284 /* Update all elimination pairs to reflect the status after the current
3285 insn. The changes we make were determined by the earlier call to
3286 elimination_effects.
3288 We also detect cases where register elimination cannot be done,
3289 namely, if a register would be both changed and referenced outside a MEM
3290 in the resulting insn since such an insn is often undefined and, even if
3291 not, we cannot know what meaning will be given to it. Note that it is
3292 valid to have a register used in an address in an insn that changes it
3293 (presumably with a pre- or post-increment or decrement).
3295 If anything changes, return nonzero. */
3297 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3299 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3300 ep->can_eliminate = 0;
3302 ep->ref_outside_mem = 0;
3304 if (ep->previous_offset != ep->offset)
3305 val = 1;
3308 done:
3309 /* If we changed something, perform elimination in REG_NOTES. This is
3310 needed even when REPLACE is zero because a REG_DEAD note might refer
3311 to a register that we eliminate and could cause a different number
3312 of spill registers to be needed in the final reload pass than in
3313 the pre-passes. */
3314 if (val && REG_NOTES (insn) != 0)
3315 REG_NOTES (insn)
3316 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3318 return val;
3321 /* Loop through all elimination pairs.
3322 Recalculate the number not at initial offset.
3324 Compute the maximum offset (minimum offset if the stack does not
3325 grow downward) for each elimination pair. */
3327 static void
3328 update_eliminable_offsets (void)
3330 struct elim_table *ep;
3332 num_not_at_initial_offset = 0;
3333 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3335 ep->previous_offset = ep->offset;
3336 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3337 num_not_at_initial_offset++;
3341 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3342 replacement we currently believe is valid, mark it as not eliminable if X
3343 modifies DEST in any way other than by adding a constant integer to it.
3345 If DEST is the frame pointer, we do nothing because we assume that
3346 all assignments to the hard frame pointer are nonlocal gotos and are being
3347 done at a time when they are valid and do not disturb anything else.
3348 Some machines want to eliminate a fake argument pointer with either the
3349 frame or stack pointer. Assignments to the hard frame pointer must not
3350 prevent this elimination.
3352 Called via note_stores from reload before starting its passes to scan
3353 the insns of the function. */
3355 static void
3356 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3358 unsigned int i;
3360 /* A SUBREG of a hard register here is just changing its mode. We should
3361 not see a SUBREG of an eliminable hard register, but check just in
3362 case. */
3363 if (GET_CODE (dest) == SUBREG)
3364 dest = SUBREG_REG (dest);
3366 if (dest == hard_frame_pointer_rtx)
3367 return;
3369 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3370 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3371 && (GET_CODE (x) != SET
3372 || GET_CODE (SET_SRC (x)) != PLUS
3373 || XEXP (SET_SRC (x), 0) != dest
3374 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3376 reg_eliminate[i].can_eliminate_previous
3377 = reg_eliminate[i].can_eliminate = 0;
3378 num_eliminable--;
3382 /* Verify that the initial elimination offsets did not change since the
3383 last call to set_initial_elim_offsets. This is used to catch cases
3384 where something illegal happened during reload_as_needed that could
3385 cause incorrect code to be generated if we did not check for it. */
3387 static bool
3388 verify_initial_elim_offsets (void)
3390 HOST_WIDE_INT t;
3392 if (!num_eliminable)
3393 return true;
3395 #ifdef ELIMINABLE_REGS
3397 struct elim_table *ep;
3399 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3401 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3402 if (t != ep->initial_offset)
3403 return false;
3406 #else
3407 INITIAL_FRAME_POINTER_OFFSET (t);
3408 if (t != reg_eliminate[0].initial_offset)
3409 return false;
3410 #endif
3412 return true;
3415 /* Reset all offsets on eliminable registers to their initial values. */
3417 static void
3418 set_initial_elim_offsets (void)
3420 struct elim_table *ep = reg_eliminate;
3422 #ifdef ELIMINABLE_REGS
3423 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3425 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3426 ep->previous_offset = ep->offset = ep->initial_offset;
3428 #else
3429 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3430 ep->previous_offset = ep->offset = ep->initial_offset;
3431 #endif
3433 num_not_at_initial_offset = 0;
3436 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3438 static void
3439 set_initial_eh_label_offset (rtx label)
3441 set_label_offsets (label, NULL_RTX, 1);
3444 /* Initialize the known label offsets.
3445 Set a known offset for each forced label to be at the initial offset
3446 of each elimination. We do this because we assume that all
3447 computed jumps occur from a location where each elimination is
3448 at its initial offset.
3449 For all other labels, show that we don't know the offsets. */
3451 static void
3452 set_initial_label_offsets (void)
3454 rtx x;
3455 memset (offsets_known_at, 0, num_labels);
3457 for (x = forced_labels; x; x = XEXP (x, 1))
3458 if (XEXP (x, 0))
3459 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3461 for_each_eh_label (set_initial_eh_label_offset);
3464 /* Set all elimination offsets to the known values for the code label given
3465 by INSN. */
3467 static void
3468 set_offsets_for_label (rtx insn)
3470 unsigned int i;
3471 int label_nr = CODE_LABEL_NUMBER (insn);
3472 struct elim_table *ep;
3474 num_not_at_initial_offset = 0;
3475 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3477 ep->offset = ep->previous_offset
3478 = offsets_at[label_nr - first_label_num][i];
3479 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3480 num_not_at_initial_offset++;
3484 /* See if anything that happened changes which eliminations are valid.
3485 For example, on the SPARC, whether or not the frame pointer can
3486 be eliminated can depend on what registers have been used. We need
3487 not check some conditions again (such as flag_omit_frame_pointer)
3488 since they can't have changed. */
3490 static void
3491 update_eliminables (HARD_REG_SET *pset)
3493 int previous_frame_pointer_needed = frame_pointer_needed;
3494 struct elim_table *ep;
3496 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3497 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3498 #ifdef ELIMINABLE_REGS
3499 || ! CAN_ELIMINATE (ep->from, ep->to)
3500 #endif
3502 ep->can_eliminate = 0;
3504 /* Look for the case where we have discovered that we can't replace
3505 register A with register B and that means that we will now be
3506 trying to replace register A with register C. This means we can
3507 no longer replace register C with register B and we need to disable
3508 such an elimination, if it exists. This occurs often with A == ap,
3509 B == sp, and C == fp. */
3511 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3513 struct elim_table *op;
3514 int new_to = -1;
3516 if (! ep->can_eliminate && ep->can_eliminate_previous)
3518 /* Find the current elimination for ep->from, if there is a
3519 new one. */
3520 for (op = reg_eliminate;
3521 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3522 if (op->from == ep->from && op->can_eliminate)
3524 new_to = op->to;
3525 break;
3528 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3529 disable it. */
3530 for (op = reg_eliminate;
3531 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3532 if (op->from == new_to && op->to == ep->to)
3533 op->can_eliminate = 0;
3537 /* See if any registers that we thought we could eliminate the previous
3538 time are no longer eliminable. If so, something has changed and we
3539 must spill the register. Also, recompute the number of eliminable
3540 registers and see if the frame pointer is needed; it is if there is
3541 no elimination of the frame pointer that we can perform. */
3543 frame_pointer_needed = 1;
3544 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3546 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3547 && ep->to != HARD_FRAME_POINTER_REGNUM)
3548 frame_pointer_needed = 0;
3550 if (! ep->can_eliminate && ep->can_eliminate_previous)
3552 ep->can_eliminate_previous = 0;
3553 SET_HARD_REG_BIT (*pset, ep->from);
3554 num_eliminable--;
3558 /* If we didn't need a frame pointer last time, but we do now, spill
3559 the hard frame pointer. */
3560 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3561 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3564 /* Initialize the table of registers to eliminate. */
3566 static void
3567 init_elim_table (void)
3569 struct elim_table *ep;
3570 #ifdef ELIMINABLE_REGS
3571 const struct elim_table_1 *ep1;
3572 #endif
3574 if (!reg_eliminate)
3575 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3577 /* Does this function require a frame pointer? */
3579 frame_pointer_needed = (! flag_omit_frame_pointer
3580 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3581 and restore sp for alloca. So we can't eliminate
3582 the frame pointer in that case. At some point,
3583 we should improve this by emitting the
3584 sp-adjusting insns for this case. */
3585 || (current_function_calls_alloca
3586 && EXIT_IGNORE_STACK)
3587 || current_function_accesses_prior_frames
3588 || FRAME_POINTER_REQUIRED);
3590 num_eliminable = 0;
3592 #ifdef ELIMINABLE_REGS
3593 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3594 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3596 ep->from = ep1->from;
3597 ep->to = ep1->to;
3598 ep->can_eliminate = ep->can_eliminate_previous
3599 = (CAN_ELIMINATE (ep->from, ep->to)
3600 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3602 #else
3603 reg_eliminate[0].from = reg_eliminate_1[0].from;
3604 reg_eliminate[0].to = reg_eliminate_1[0].to;
3605 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3606 = ! frame_pointer_needed;
3607 #endif
3609 /* Count the number of eliminable registers and build the FROM and TO
3610 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3611 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3612 We depend on this. */
3613 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3615 num_eliminable += ep->can_eliminate;
3616 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3617 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3621 /* Kick all pseudos out of hard register REGNO.
3623 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3624 because we found we can't eliminate some register. In the case, no pseudos
3625 are allowed to be in the register, even if they are only in a block that
3626 doesn't require spill registers, unlike the case when we are spilling this
3627 hard reg to produce another spill register.
3629 Return nonzero if any pseudos needed to be kicked out. */
3631 static void
3632 spill_hard_reg (unsigned int regno, int cant_eliminate)
3634 int i;
3636 if (cant_eliminate)
3638 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3639 regs_ever_live[regno] = 1;
3642 /* Spill every pseudo reg that was allocated to this reg
3643 or to something that overlaps this reg. */
3645 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3646 if (reg_renumber[i] >= 0
3647 && (unsigned int) reg_renumber[i] <= regno
3648 && ((unsigned int) reg_renumber[i]
3649 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3650 [PSEUDO_REGNO_MODE (i)]
3651 > regno))
3652 SET_REGNO_REG_SET (&spilled_pseudos, i);
3655 /* After find_reload_regs has been run for all insn that need reloads,
3656 and/or spill_hard_regs was called, this function is used to actually
3657 spill pseudo registers and try to reallocate them. It also sets up the
3658 spill_regs array for use by choose_reload_regs. */
3660 static int
3661 finish_spills (int global)
3663 struct insn_chain *chain;
3664 int something_changed = 0;
3665 unsigned i;
3666 reg_set_iterator rsi;
3668 /* Build the spill_regs array for the function. */
3669 /* If there are some registers still to eliminate and one of the spill regs
3670 wasn't ever used before, additional stack space may have to be
3671 allocated to store this register. Thus, we may have changed the offset
3672 between the stack and frame pointers, so mark that something has changed.
3674 One might think that we need only set VAL to 1 if this is a call-used
3675 register. However, the set of registers that must be saved by the
3676 prologue is not identical to the call-used set. For example, the
3677 register used by the call insn for the return PC is a call-used register,
3678 but must be saved by the prologue. */
3680 n_spills = 0;
3681 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3682 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3684 spill_reg_order[i] = n_spills;
3685 spill_regs[n_spills++] = i;
3686 if (num_eliminable && ! regs_ever_live[i])
3687 something_changed = 1;
3688 regs_ever_live[i] = 1;
3690 else
3691 spill_reg_order[i] = -1;
3693 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3695 /* Record the current hard register the pseudo is allocated to in
3696 pseudo_previous_regs so we avoid reallocating it to the same
3697 hard reg in a later pass. */
3698 gcc_assert (reg_renumber[i] >= 0);
3700 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3701 /* Mark it as no longer having a hard register home. */
3702 reg_renumber[i] = -1;
3703 /* We will need to scan everything again. */
3704 something_changed = 1;
3707 /* Retry global register allocation if possible. */
3708 if (global)
3710 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3711 /* For every insn that needs reloads, set the registers used as spill
3712 regs in pseudo_forbidden_regs for every pseudo live across the
3713 insn. */
3714 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3716 EXECUTE_IF_SET_IN_REG_SET
3717 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3719 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3720 chain->used_spill_regs);
3722 EXECUTE_IF_SET_IN_REG_SET
3723 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3725 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3726 chain->used_spill_regs);
3730 /* Retry allocating the spilled pseudos. For each reg, merge the
3731 various reg sets that indicate which hard regs can't be used,
3732 and call retry_global_alloc.
3733 We change spill_pseudos here to only contain pseudos that did not
3734 get a new hard register. */
3735 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3736 if (reg_old_renumber[i] != reg_renumber[i])
3738 HARD_REG_SET forbidden;
3739 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3740 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3741 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3742 retry_global_alloc (i, forbidden);
3743 if (reg_renumber[i] >= 0)
3744 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3748 /* Fix up the register information in the insn chain.
3749 This involves deleting those of the spilled pseudos which did not get
3750 a new hard register home from the live_{before,after} sets. */
3751 for (chain = reload_insn_chain; chain; chain = chain->next)
3753 HARD_REG_SET used_by_pseudos;
3754 HARD_REG_SET used_by_pseudos2;
3756 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3757 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3759 /* Mark any unallocated hard regs as available for spills. That
3760 makes inheritance work somewhat better. */
3761 if (chain->need_reload)
3763 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3764 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3765 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3767 /* Save the old value for the sanity test below. */
3768 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3770 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3771 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3772 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3773 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3775 /* Make sure we only enlarge the set. */
3776 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3777 gcc_unreachable ();
3778 ok:;
3782 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3783 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3785 int regno = reg_renumber[i];
3786 if (reg_old_renumber[i] == regno)
3787 continue;
3789 alter_reg (i, reg_old_renumber[i]);
3790 reg_old_renumber[i] = regno;
3791 if (dump_file)
3793 if (regno == -1)
3794 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3795 else
3796 fprintf (dump_file, " Register %d now in %d.\n\n",
3797 i, reg_renumber[i]);
3801 return something_changed;
3804 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3806 static void
3807 scan_paradoxical_subregs (rtx x)
3809 int i;
3810 const char *fmt;
3811 enum rtx_code code = GET_CODE (x);
3813 switch (code)
3815 case REG:
3816 case CONST_INT:
3817 case CONST:
3818 case SYMBOL_REF:
3819 case LABEL_REF:
3820 case CONST_DOUBLE:
3821 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3822 case CC0:
3823 case PC:
3824 case USE:
3825 case CLOBBER:
3826 return;
3828 case SUBREG:
3829 if (REG_P (SUBREG_REG (x))
3830 && (GET_MODE_SIZE (GET_MODE (x))
3831 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3832 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3833 = GET_MODE_SIZE (GET_MODE (x));
3834 return;
3836 default:
3837 break;
3840 fmt = GET_RTX_FORMAT (code);
3841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3843 if (fmt[i] == 'e')
3844 scan_paradoxical_subregs (XEXP (x, i));
3845 else if (fmt[i] == 'E')
3847 int j;
3848 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3849 scan_paradoxical_subregs (XVECEXP (x, i, j));
3854 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3855 examine all of the reload insns between PREV and NEXT exclusive, and
3856 annotate all that may trap. */
3858 static void
3859 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3861 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3862 unsigned int trap_count;
3863 rtx i;
3865 if (note == NULL)
3866 return;
3868 if (may_trap_p (PATTERN (insn)))
3869 trap_count = 1;
3870 else
3872 remove_note (insn, note);
3873 trap_count = 0;
3876 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3877 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3879 trap_count++;
3880 REG_NOTES (i)
3881 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3885 /* Reload pseudo-registers into hard regs around each insn as needed.
3886 Additional register load insns are output before the insn that needs it
3887 and perhaps store insns after insns that modify the reloaded pseudo reg.
3889 reg_last_reload_reg and reg_reloaded_contents keep track of
3890 which registers are already available in reload registers.
3891 We update these for the reloads that we perform,
3892 as the insns are scanned. */
3894 static void
3895 reload_as_needed (int live_known)
3897 struct insn_chain *chain;
3898 #if defined (AUTO_INC_DEC)
3899 int i;
3900 #endif
3901 rtx x;
3903 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3904 memset (spill_reg_store, 0, sizeof spill_reg_store);
3905 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
3906 INIT_REG_SET (&reg_has_output_reload);
3907 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3908 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3910 set_initial_elim_offsets ();
3912 for (chain = reload_insn_chain; chain; chain = chain->next)
3914 rtx prev = 0;
3915 rtx insn = chain->insn;
3916 rtx old_next = NEXT_INSN (insn);
3918 /* If we pass a label, copy the offsets from the label information
3919 into the current offsets of each elimination. */
3920 if (LABEL_P (insn))
3921 set_offsets_for_label (insn);
3923 else if (INSN_P (insn))
3925 regset_head regs_to_forget;
3926 INIT_REG_SET (&regs_to_forget);
3927 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
3929 /* If this is a USE and CLOBBER of a MEM, ensure that any
3930 references to eliminable registers have been removed. */
3932 if ((GET_CODE (PATTERN (insn)) == USE
3933 || GET_CODE (PATTERN (insn)) == CLOBBER)
3934 && MEM_P (XEXP (PATTERN (insn), 0)))
3935 XEXP (XEXP (PATTERN (insn), 0), 0)
3936 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3937 GET_MODE (XEXP (PATTERN (insn), 0)),
3938 NULL_RTX);
3940 /* If we need to do register elimination processing, do so.
3941 This might delete the insn, in which case we are done. */
3942 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3944 eliminate_regs_in_insn (insn, 1);
3945 if (NOTE_P (insn))
3947 update_eliminable_offsets ();
3948 CLEAR_REG_SET (&regs_to_forget);
3949 continue;
3953 /* If need_elim is nonzero but need_reload is zero, one might think
3954 that we could simply set n_reloads to 0. However, find_reloads
3955 could have done some manipulation of the insn (such as swapping
3956 commutative operands), and these manipulations are lost during
3957 the first pass for every insn that needs register elimination.
3958 So the actions of find_reloads must be redone here. */
3960 if (! chain->need_elim && ! chain->need_reload
3961 && ! chain->need_operand_change)
3962 n_reloads = 0;
3963 /* First find the pseudo regs that must be reloaded for this insn.
3964 This info is returned in the tables reload_... (see reload.h).
3965 Also modify the body of INSN by substituting RELOAD
3966 rtx's for those pseudo regs. */
3967 else
3969 CLEAR_REG_SET (&reg_has_output_reload);
3970 CLEAR_HARD_REG_SET (reg_is_output_reload);
3972 find_reloads (insn, 1, spill_indirect_levels, live_known,
3973 spill_reg_order);
3976 if (n_reloads > 0)
3978 rtx next = NEXT_INSN (insn);
3979 rtx p;
3981 prev = PREV_INSN (insn);
3983 /* Now compute which reload regs to reload them into. Perhaps
3984 reusing reload regs from previous insns, or else output
3985 load insns to reload them. Maybe output store insns too.
3986 Record the choices of reload reg in reload_reg_rtx. */
3987 choose_reload_regs (chain);
3989 /* Merge any reloads that we didn't combine for fear of
3990 increasing the number of spill registers needed but now
3991 discover can be safely merged. */
3992 if (SMALL_REGISTER_CLASSES)
3993 merge_assigned_reloads (insn);
3995 /* Generate the insns to reload operands into or out of
3996 their reload regs. */
3997 emit_reload_insns (chain);
3999 /* Substitute the chosen reload regs from reload_reg_rtx
4000 into the insn's body (or perhaps into the bodies of other
4001 load and store insn that we just made for reloading
4002 and that we moved the structure into). */
4003 subst_reloads (insn);
4005 /* Adjust the exception region notes for loads and stores. */
4006 if (flag_non_call_exceptions && !CALL_P (insn))
4007 fixup_eh_region_note (insn, prev, next);
4009 /* If this was an ASM, make sure that all the reload insns
4010 we have generated are valid. If not, give an error
4011 and delete them. */
4012 if (asm_noperands (PATTERN (insn)) >= 0)
4013 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4014 if (p != insn && INSN_P (p)
4015 && GET_CODE (PATTERN (p)) != USE
4016 && (recog_memoized (p) < 0
4017 || (extract_insn (p), ! constrain_operands (1))))
4019 error_for_asm (insn,
4020 "%<asm%> operand requires "
4021 "impossible reload");
4022 delete_insn (p);
4026 if (num_eliminable && chain->need_elim)
4027 update_eliminable_offsets ();
4029 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4030 is no longer validly lying around to save a future reload.
4031 Note that this does not detect pseudos that were reloaded
4032 for this insn in order to be stored in
4033 (obeying register constraints). That is correct; such reload
4034 registers ARE still valid. */
4035 forget_marked_reloads (&regs_to_forget);
4036 CLEAR_REG_SET (&regs_to_forget);
4038 /* There may have been CLOBBER insns placed after INSN. So scan
4039 between INSN and NEXT and use them to forget old reloads. */
4040 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4041 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4042 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4044 #ifdef AUTO_INC_DEC
4045 /* Likewise for regs altered by auto-increment in this insn.
4046 REG_INC notes have been changed by reloading:
4047 find_reloads_address_1 records substitutions for them,
4048 which have been performed by subst_reloads above. */
4049 for (i = n_reloads - 1; i >= 0; i--)
4051 rtx in_reg = rld[i].in_reg;
4052 if (in_reg)
4054 enum rtx_code code = GET_CODE (in_reg);
4055 /* PRE_INC / PRE_DEC will have the reload register ending up
4056 with the same value as the stack slot, but that doesn't
4057 hold true for POST_INC / POST_DEC. Either we have to
4058 convert the memory access to a true POST_INC / POST_DEC,
4059 or we can't use the reload register for inheritance. */
4060 if ((code == POST_INC || code == POST_DEC)
4061 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4062 REGNO (rld[i].reg_rtx))
4063 /* Make sure it is the inc/dec pseudo, and not
4064 some other (e.g. output operand) pseudo. */
4065 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4066 == REGNO (XEXP (in_reg, 0))))
4069 rtx reload_reg = rld[i].reg_rtx;
4070 enum machine_mode mode = GET_MODE (reload_reg);
4071 int n = 0;
4072 rtx p;
4074 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4076 /* We really want to ignore REG_INC notes here, so
4077 use PATTERN (p) as argument to reg_set_p . */
4078 if (reg_set_p (reload_reg, PATTERN (p)))
4079 break;
4080 n = count_occurrences (PATTERN (p), reload_reg, 0);
4081 if (! n)
4082 continue;
4083 if (n == 1)
4085 n = validate_replace_rtx (reload_reg,
4086 gen_rtx_fmt_e (code,
4087 mode,
4088 reload_reg),
4091 /* We must also verify that the constraints
4092 are met after the replacement. */
4093 extract_insn (p);
4094 if (n)
4095 n = constrain_operands (1);
4096 else
4097 break;
4099 /* If the constraints were not met, then
4100 undo the replacement. */
4101 if (!n)
4103 validate_replace_rtx (gen_rtx_fmt_e (code,
4104 mode,
4105 reload_reg),
4106 reload_reg, p);
4107 break;
4111 break;
4113 if (n == 1)
4115 REG_NOTES (p)
4116 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4117 REG_NOTES (p));
4118 /* Mark this as having an output reload so that the
4119 REG_INC processing code below won't invalidate
4120 the reload for inheritance. */
4121 SET_HARD_REG_BIT (reg_is_output_reload,
4122 REGNO (reload_reg));
4123 SET_REGNO_REG_SET (&reg_has_output_reload,
4124 REGNO (XEXP (in_reg, 0)));
4126 else
4127 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4128 NULL);
4130 else if ((code == PRE_INC || code == PRE_DEC)
4131 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4132 REGNO (rld[i].reg_rtx))
4133 /* Make sure it is the inc/dec pseudo, and not
4134 some other (e.g. output operand) pseudo. */
4135 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4136 == REGNO (XEXP (in_reg, 0))))
4138 SET_HARD_REG_BIT (reg_is_output_reload,
4139 REGNO (rld[i].reg_rtx));
4140 SET_REGNO_REG_SET (&reg_has_output_reload,
4141 REGNO (XEXP (in_reg, 0)));
4145 /* If a pseudo that got a hard register is auto-incremented,
4146 we must purge records of copying it into pseudos without
4147 hard registers. */
4148 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4149 if (REG_NOTE_KIND (x) == REG_INC)
4151 /* See if this pseudo reg was reloaded in this insn.
4152 If so, its last-reload info is still valid
4153 because it is based on this insn's reload. */
4154 for (i = 0; i < n_reloads; i++)
4155 if (rld[i].out == XEXP (x, 0))
4156 break;
4158 if (i == n_reloads)
4159 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4161 #endif
4163 /* A reload reg's contents are unknown after a label. */
4164 if (LABEL_P (insn))
4165 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4167 /* Don't assume a reload reg is still good after a call insn
4168 if it is a call-used reg, or if it contains a value that will
4169 be partially clobbered by the call. */
4170 else if (CALL_P (insn))
4172 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4173 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4177 /* Clean up. */
4178 free (reg_last_reload_reg);
4179 CLEAR_REG_SET (&reg_has_output_reload);
4182 /* Discard all record of any value reloaded from X,
4183 or reloaded in X from someplace else;
4184 unless X is an output reload reg of the current insn.
4186 X may be a hard reg (the reload reg)
4187 or it may be a pseudo reg that was reloaded from.
4189 When DATA is non-NULL just mark the registers in regset
4190 to be forgotten later. */
4192 static void
4193 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4194 void *data)
4196 unsigned int regno;
4197 unsigned int nr;
4198 regset regs = (regset) data;
4200 /* note_stores does give us subregs of hard regs,
4201 subreg_regno_offset requires a hard reg. */
4202 while (GET_CODE (x) == SUBREG)
4204 /* We ignore the subreg offset when calculating the regno,
4205 because we are using the entire underlying hard register
4206 below. */
4207 x = SUBREG_REG (x);
4210 if (!REG_P (x))
4211 return;
4213 regno = REGNO (x);
4215 if (regno >= FIRST_PSEUDO_REGISTER)
4216 nr = 1;
4217 else
4219 unsigned int i;
4221 nr = hard_regno_nregs[regno][GET_MODE (x)];
4222 /* Storing into a spilled-reg invalidates its contents.
4223 This can happen if a block-local pseudo is allocated to that reg
4224 and it wasn't spilled because this block's total need is 0.
4225 Then some insn might have an optional reload and use this reg. */
4226 if (!regs)
4227 for (i = 0; i < nr; i++)
4228 /* But don't do this if the reg actually serves as an output
4229 reload reg in the current instruction. */
4230 if (n_reloads == 0
4231 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4233 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4234 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4235 spill_reg_store[regno + i] = 0;
4239 if (regs)
4240 while (nr-- > 0)
4241 SET_REGNO_REG_SET (regs, regno + nr);
4242 else
4244 /* Since value of X has changed,
4245 forget any value previously copied from it. */
4247 while (nr-- > 0)
4248 /* But don't forget a copy if this is the output reload
4249 that establishes the copy's validity. */
4250 if (n_reloads == 0
4251 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4252 reg_last_reload_reg[regno + nr] = 0;
4256 /* Forget the reloads marked in regset by previous function. */
4257 static void
4258 forget_marked_reloads (regset regs)
4260 unsigned int reg;
4261 reg_set_iterator rsi;
4262 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4264 if (reg < FIRST_PSEUDO_REGISTER
4265 /* But don't do this if the reg actually serves as an output
4266 reload reg in the current instruction. */
4267 && (n_reloads == 0
4268 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4270 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4271 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
4272 spill_reg_store[reg] = 0;
4274 if (n_reloads == 0
4275 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4276 reg_last_reload_reg[reg] = 0;
4280 /* The following HARD_REG_SETs indicate when each hard register is
4281 used for a reload of various parts of the current insn. */
4283 /* If reg is unavailable for all reloads. */
4284 static HARD_REG_SET reload_reg_unavailable;
4285 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4286 static HARD_REG_SET reload_reg_used;
4287 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4288 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4289 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4290 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4291 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4292 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4293 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4294 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4295 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4296 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4297 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4298 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4299 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4300 static HARD_REG_SET reload_reg_used_in_op_addr;
4301 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4302 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4303 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4304 static HARD_REG_SET reload_reg_used_in_insn;
4305 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4306 static HARD_REG_SET reload_reg_used_in_other_addr;
4308 /* If reg is in use as a reload reg for any sort of reload. */
4309 static HARD_REG_SET reload_reg_used_at_all;
4311 /* If reg is use as an inherited reload. We just mark the first register
4312 in the group. */
4313 static HARD_REG_SET reload_reg_used_for_inherit;
4315 /* Records which hard regs are used in any way, either as explicit use or
4316 by being allocated to a pseudo during any point of the current insn. */
4317 static HARD_REG_SET reg_used_in_insn;
4319 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4320 TYPE. MODE is used to indicate how many consecutive regs are
4321 actually used. */
4323 static void
4324 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4325 enum machine_mode mode)
4327 unsigned int nregs = hard_regno_nregs[regno][mode];
4328 unsigned int i;
4330 for (i = regno; i < nregs + regno; i++)
4332 switch (type)
4334 case RELOAD_OTHER:
4335 SET_HARD_REG_BIT (reload_reg_used, i);
4336 break;
4338 case RELOAD_FOR_INPUT_ADDRESS:
4339 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4340 break;
4342 case RELOAD_FOR_INPADDR_ADDRESS:
4343 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4344 break;
4346 case RELOAD_FOR_OUTPUT_ADDRESS:
4347 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4348 break;
4350 case RELOAD_FOR_OUTADDR_ADDRESS:
4351 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4352 break;
4354 case RELOAD_FOR_OPERAND_ADDRESS:
4355 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4356 break;
4358 case RELOAD_FOR_OPADDR_ADDR:
4359 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4360 break;
4362 case RELOAD_FOR_OTHER_ADDRESS:
4363 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4364 break;
4366 case RELOAD_FOR_INPUT:
4367 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4368 break;
4370 case RELOAD_FOR_OUTPUT:
4371 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4372 break;
4374 case RELOAD_FOR_INSN:
4375 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4376 break;
4379 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4383 /* Similarly, but show REGNO is no longer in use for a reload. */
4385 static void
4386 clear_reload_reg_in_use (unsigned int regno, int opnum,
4387 enum reload_type type, enum machine_mode mode)
4389 unsigned int nregs = hard_regno_nregs[regno][mode];
4390 unsigned int start_regno, end_regno, r;
4391 int i;
4392 /* A complication is that for some reload types, inheritance might
4393 allow multiple reloads of the same types to share a reload register.
4394 We set check_opnum if we have to check only reloads with the same
4395 operand number, and check_any if we have to check all reloads. */
4396 int check_opnum = 0;
4397 int check_any = 0;
4398 HARD_REG_SET *used_in_set;
4400 switch (type)
4402 case RELOAD_OTHER:
4403 used_in_set = &reload_reg_used;
4404 break;
4406 case RELOAD_FOR_INPUT_ADDRESS:
4407 used_in_set = &reload_reg_used_in_input_addr[opnum];
4408 break;
4410 case RELOAD_FOR_INPADDR_ADDRESS:
4411 check_opnum = 1;
4412 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4413 break;
4415 case RELOAD_FOR_OUTPUT_ADDRESS:
4416 used_in_set = &reload_reg_used_in_output_addr[opnum];
4417 break;
4419 case RELOAD_FOR_OUTADDR_ADDRESS:
4420 check_opnum = 1;
4421 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4422 break;
4424 case RELOAD_FOR_OPERAND_ADDRESS:
4425 used_in_set = &reload_reg_used_in_op_addr;
4426 break;
4428 case RELOAD_FOR_OPADDR_ADDR:
4429 check_any = 1;
4430 used_in_set = &reload_reg_used_in_op_addr_reload;
4431 break;
4433 case RELOAD_FOR_OTHER_ADDRESS:
4434 used_in_set = &reload_reg_used_in_other_addr;
4435 check_any = 1;
4436 break;
4438 case RELOAD_FOR_INPUT:
4439 used_in_set = &reload_reg_used_in_input[opnum];
4440 break;
4442 case RELOAD_FOR_OUTPUT:
4443 used_in_set = &reload_reg_used_in_output[opnum];
4444 break;
4446 case RELOAD_FOR_INSN:
4447 used_in_set = &reload_reg_used_in_insn;
4448 break;
4449 default:
4450 gcc_unreachable ();
4452 /* We resolve conflicts with remaining reloads of the same type by
4453 excluding the intervals of reload registers by them from the
4454 interval of freed reload registers. Since we only keep track of
4455 one set of interval bounds, we might have to exclude somewhat
4456 more than what would be necessary if we used a HARD_REG_SET here.
4457 But this should only happen very infrequently, so there should
4458 be no reason to worry about it. */
4460 start_regno = regno;
4461 end_regno = regno + nregs;
4462 if (check_opnum || check_any)
4464 for (i = n_reloads - 1; i >= 0; i--)
4466 if (rld[i].when_needed == type
4467 && (check_any || rld[i].opnum == opnum)
4468 && rld[i].reg_rtx)
4470 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4471 unsigned int conflict_end
4472 = (conflict_start
4473 + hard_regno_nregs[conflict_start][rld[i].mode]);
4475 /* If there is an overlap with the first to-be-freed register,
4476 adjust the interval start. */
4477 if (conflict_start <= start_regno && conflict_end > start_regno)
4478 start_regno = conflict_end;
4479 /* Otherwise, if there is a conflict with one of the other
4480 to-be-freed registers, adjust the interval end. */
4481 if (conflict_start > start_regno && conflict_start < end_regno)
4482 end_regno = conflict_start;
4487 for (r = start_regno; r < end_regno; r++)
4488 CLEAR_HARD_REG_BIT (*used_in_set, r);
4491 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4492 specified by OPNUM and TYPE. */
4494 static int
4495 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4497 int i;
4499 /* In use for a RELOAD_OTHER means it's not available for anything. */
4500 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4501 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4502 return 0;
4504 switch (type)
4506 case RELOAD_OTHER:
4507 /* In use for anything means we can't use it for RELOAD_OTHER. */
4508 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4509 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4510 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4511 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4512 return 0;
4514 for (i = 0; i < reload_n_operands; i++)
4515 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4516 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4517 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4518 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4519 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4520 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4521 return 0;
4523 return 1;
4525 case RELOAD_FOR_INPUT:
4526 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4527 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4528 return 0;
4530 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4531 return 0;
4533 /* If it is used for some other input, can't use it. */
4534 for (i = 0; i < reload_n_operands; i++)
4535 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4536 return 0;
4538 /* If it is used in a later operand's address, can't use it. */
4539 for (i = opnum + 1; i < reload_n_operands; i++)
4540 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4541 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4542 return 0;
4544 return 1;
4546 case RELOAD_FOR_INPUT_ADDRESS:
4547 /* Can't use a register if it is used for an input address for this
4548 operand or used as an input in an earlier one. */
4549 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4550 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4551 return 0;
4553 for (i = 0; i < opnum; i++)
4554 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4555 return 0;
4557 return 1;
4559 case RELOAD_FOR_INPADDR_ADDRESS:
4560 /* Can't use a register if it is used for an input address
4561 for this operand or used as an input in an earlier
4562 one. */
4563 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4564 return 0;
4566 for (i = 0; i < opnum; i++)
4567 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4568 return 0;
4570 return 1;
4572 case RELOAD_FOR_OUTPUT_ADDRESS:
4573 /* Can't use a register if it is used for an output address for this
4574 operand or used as an output in this or a later operand. Note
4575 that multiple output operands are emitted in reverse order, so
4576 the conflicting ones are those with lower indices. */
4577 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4578 return 0;
4580 for (i = 0; i <= opnum; i++)
4581 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4582 return 0;
4584 return 1;
4586 case RELOAD_FOR_OUTADDR_ADDRESS:
4587 /* Can't use a register if it is used for an output address
4588 for this operand or used as an output in this or a
4589 later operand. Note that multiple output operands are
4590 emitted in reverse order, so the conflicting ones are
4591 those with lower indices. */
4592 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4593 return 0;
4595 for (i = 0; i <= opnum; i++)
4596 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4597 return 0;
4599 return 1;
4601 case RELOAD_FOR_OPERAND_ADDRESS:
4602 for (i = 0; i < reload_n_operands; i++)
4603 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4604 return 0;
4606 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4607 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4609 case RELOAD_FOR_OPADDR_ADDR:
4610 for (i = 0; i < reload_n_operands; i++)
4611 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4612 return 0;
4614 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4616 case RELOAD_FOR_OUTPUT:
4617 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4618 outputs, or an operand address for this or an earlier output.
4619 Note that multiple output operands are emitted in reverse order,
4620 so the conflicting ones are those with higher indices. */
4621 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4622 return 0;
4624 for (i = 0; i < reload_n_operands; i++)
4625 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4626 return 0;
4628 for (i = opnum; i < reload_n_operands; i++)
4629 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4630 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4631 return 0;
4633 return 1;
4635 case RELOAD_FOR_INSN:
4636 for (i = 0; i < reload_n_operands; i++)
4637 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4638 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4639 return 0;
4641 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4642 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4644 case RELOAD_FOR_OTHER_ADDRESS:
4645 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4647 default:
4648 gcc_unreachable ();
4652 /* Return 1 if the value in reload reg REGNO, as used by a reload
4653 needed for the part of the insn specified by OPNUM and TYPE,
4654 is still available in REGNO at the end of the insn.
4656 We can assume that the reload reg was already tested for availability
4657 at the time it is needed, and we should not check this again,
4658 in case the reg has already been marked in use. */
4660 static int
4661 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4663 int i;
4665 switch (type)
4667 case RELOAD_OTHER:
4668 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4669 its value must reach the end. */
4670 return 1;
4672 /* If this use is for part of the insn,
4673 its value reaches if no subsequent part uses the same register.
4674 Just like the above function, don't try to do this with lots
4675 of fallthroughs. */
4677 case RELOAD_FOR_OTHER_ADDRESS:
4678 /* Here we check for everything else, since these don't conflict
4679 with anything else and everything comes later. */
4681 for (i = 0; i < reload_n_operands; i++)
4682 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4683 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4684 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4685 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4686 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4687 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4688 return 0;
4690 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4691 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4692 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4693 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4695 case RELOAD_FOR_INPUT_ADDRESS:
4696 case RELOAD_FOR_INPADDR_ADDRESS:
4697 /* Similar, except that we check only for this and subsequent inputs
4698 and the address of only subsequent inputs and we do not need
4699 to check for RELOAD_OTHER objects since they are known not to
4700 conflict. */
4702 for (i = opnum; i < reload_n_operands; i++)
4703 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4704 return 0;
4706 for (i = opnum + 1; i < reload_n_operands; i++)
4707 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4708 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4709 return 0;
4711 for (i = 0; i < reload_n_operands; i++)
4712 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4713 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4714 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4715 return 0;
4717 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4718 return 0;
4720 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4721 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4722 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4724 case RELOAD_FOR_INPUT:
4725 /* Similar to input address, except we start at the next operand for
4726 both input and input address and we do not check for
4727 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4728 would conflict. */
4730 for (i = opnum + 1; i < reload_n_operands; i++)
4731 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4732 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4733 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4734 return 0;
4736 /* ... fall through ... */
4738 case RELOAD_FOR_OPERAND_ADDRESS:
4739 /* Check outputs and their addresses. */
4741 for (i = 0; i < reload_n_operands; i++)
4742 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4743 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4744 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4745 return 0;
4747 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4749 case RELOAD_FOR_OPADDR_ADDR:
4750 for (i = 0; i < reload_n_operands; i++)
4751 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4752 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4753 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4754 return 0;
4756 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4757 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4758 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4760 case RELOAD_FOR_INSN:
4761 /* These conflict with other outputs with RELOAD_OTHER. So
4762 we need only check for output addresses. */
4764 opnum = reload_n_operands;
4766 /* ... fall through ... */
4768 case RELOAD_FOR_OUTPUT:
4769 case RELOAD_FOR_OUTPUT_ADDRESS:
4770 case RELOAD_FOR_OUTADDR_ADDRESS:
4771 /* We already know these can't conflict with a later output. So the
4772 only thing to check are later output addresses.
4773 Note that multiple output operands are emitted in reverse order,
4774 so the conflicting ones are those with lower indices. */
4775 for (i = 0; i < opnum; i++)
4776 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4777 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4778 return 0;
4780 return 1;
4782 default:
4783 gcc_unreachable ();
4787 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4788 Return 0 otherwise.
4790 This function uses the same algorithm as reload_reg_free_p above. */
4792 static int
4793 reloads_conflict (int r1, int r2)
4795 enum reload_type r1_type = rld[r1].when_needed;
4796 enum reload_type r2_type = rld[r2].when_needed;
4797 int r1_opnum = rld[r1].opnum;
4798 int r2_opnum = rld[r2].opnum;
4800 /* RELOAD_OTHER conflicts with everything. */
4801 if (r2_type == RELOAD_OTHER)
4802 return 1;
4804 /* Otherwise, check conflicts differently for each type. */
4806 switch (r1_type)
4808 case RELOAD_FOR_INPUT:
4809 return (r2_type == RELOAD_FOR_INSN
4810 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4811 || r2_type == RELOAD_FOR_OPADDR_ADDR
4812 || r2_type == RELOAD_FOR_INPUT
4813 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4814 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4815 && r2_opnum > r1_opnum));
4817 case RELOAD_FOR_INPUT_ADDRESS:
4818 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4819 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4821 case RELOAD_FOR_INPADDR_ADDRESS:
4822 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4823 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4825 case RELOAD_FOR_OUTPUT_ADDRESS:
4826 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4827 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4829 case RELOAD_FOR_OUTADDR_ADDRESS:
4830 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4831 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4833 case RELOAD_FOR_OPERAND_ADDRESS:
4834 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4835 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4837 case RELOAD_FOR_OPADDR_ADDR:
4838 return (r2_type == RELOAD_FOR_INPUT
4839 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4841 case RELOAD_FOR_OUTPUT:
4842 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4843 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4844 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4845 && r2_opnum >= r1_opnum));
4847 case RELOAD_FOR_INSN:
4848 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4849 || r2_type == RELOAD_FOR_INSN
4850 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4852 case RELOAD_FOR_OTHER_ADDRESS:
4853 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4855 case RELOAD_OTHER:
4856 return 1;
4858 default:
4859 gcc_unreachable ();
4863 /* Indexed by reload number, 1 if incoming value
4864 inherited from previous insns. */
4865 static char reload_inherited[MAX_RELOADS];
4867 /* For an inherited reload, this is the insn the reload was inherited from,
4868 if we know it. Otherwise, this is 0. */
4869 static rtx reload_inheritance_insn[MAX_RELOADS];
4871 /* If nonzero, this is a place to get the value of the reload,
4872 rather than using reload_in. */
4873 static rtx reload_override_in[MAX_RELOADS];
4875 /* For each reload, the hard register number of the register used,
4876 or -1 if we did not need a register for this reload. */
4877 static int reload_spill_index[MAX_RELOADS];
4879 /* Subroutine of free_for_value_p, used to check a single register.
4880 START_REGNO is the starting regno of the full reload register
4881 (possibly comprising multiple hard registers) that we are considering. */
4883 static int
4884 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4885 enum reload_type type, rtx value, rtx out,
4886 int reloadnum, int ignore_address_reloads)
4888 int time1;
4889 /* Set if we see an input reload that must not share its reload register
4890 with any new earlyclobber, but might otherwise share the reload
4891 register with an output or input-output reload. */
4892 int check_earlyclobber = 0;
4893 int i;
4894 int copy = 0;
4896 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4897 return 0;
4899 if (out == const0_rtx)
4901 copy = 1;
4902 out = NULL_RTX;
4905 /* We use some pseudo 'time' value to check if the lifetimes of the
4906 new register use would overlap with the one of a previous reload
4907 that is not read-only or uses a different value.
4908 The 'time' used doesn't have to be linear in any shape or form, just
4909 monotonic.
4910 Some reload types use different 'buckets' for each operand.
4911 So there are MAX_RECOG_OPERANDS different time values for each
4912 such reload type.
4913 We compute TIME1 as the time when the register for the prospective
4914 new reload ceases to be live, and TIME2 for each existing
4915 reload as the time when that the reload register of that reload
4916 becomes live.
4917 Where there is little to be gained by exact lifetime calculations,
4918 we just make conservative assumptions, i.e. a longer lifetime;
4919 this is done in the 'default:' cases. */
4920 switch (type)
4922 case RELOAD_FOR_OTHER_ADDRESS:
4923 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4924 time1 = copy ? 0 : 1;
4925 break;
4926 case RELOAD_OTHER:
4927 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4928 break;
4929 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4930 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4931 respectively, to the time values for these, we get distinct time
4932 values. To get distinct time values for each operand, we have to
4933 multiply opnum by at least three. We round that up to four because
4934 multiply by four is often cheaper. */
4935 case RELOAD_FOR_INPADDR_ADDRESS:
4936 time1 = opnum * 4 + 2;
4937 break;
4938 case RELOAD_FOR_INPUT_ADDRESS:
4939 time1 = opnum * 4 + 3;
4940 break;
4941 case RELOAD_FOR_INPUT:
4942 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4943 executes (inclusive). */
4944 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4945 break;
4946 case RELOAD_FOR_OPADDR_ADDR:
4947 /* opnum * 4 + 4
4948 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4949 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4950 break;
4951 case RELOAD_FOR_OPERAND_ADDRESS:
4952 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4953 is executed. */
4954 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4955 break;
4956 case RELOAD_FOR_OUTADDR_ADDRESS:
4957 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4958 break;
4959 case RELOAD_FOR_OUTPUT_ADDRESS:
4960 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4961 break;
4962 default:
4963 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4966 for (i = 0; i < n_reloads; i++)
4968 rtx reg = rld[i].reg_rtx;
4969 if (reg && REG_P (reg)
4970 && ((unsigned) regno - true_regnum (reg)
4971 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4972 && i != reloadnum)
4974 rtx other_input = rld[i].in;
4976 /* If the other reload loads the same input value, that
4977 will not cause a conflict only if it's loading it into
4978 the same register. */
4979 if (true_regnum (reg) != start_regno)
4980 other_input = NULL_RTX;
4981 if (! other_input || ! rtx_equal_p (other_input, value)
4982 || rld[i].out || out)
4984 int time2;
4985 switch (rld[i].when_needed)
4987 case RELOAD_FOR_OTHER_ADDRESS:
4988 time2 = 0;
4989 break;
4990 case RELOAD_FOR_INPADDR_ADDRESS:
4991 /* find_reloads makes sure that a
4992 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4993 by at most one - the first -
4994 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4995 address reload is inherited, the address address reload
4996 goes away, so we can ignore this conflict. */
4997 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4998 && ignore_address_reloads
4999 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5000 Then the address address is still needed to store
5001 back the new address. */
5002 && ! rld[reloadnum].out)
5003 continue;
5004 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5005 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5006 reloads go away. */
5007 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5008 && ignore_address_reloads
5009 /* Unless we are reloading an auto_inc expression. */
5010 && ! rld[reloadnum].out)
5011 continue;
5012 time2 = rld[i].opnum * 4 + 2;
5013 break;
5014 case RELOAD_FOR_INPUT_ADDRESS:
5015 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5016 && ignore_address_reloads
5017 && ! rld[reloadnum].out)
5018 continue;
5019 time2 = rld[i].opnum * 4 + 3;
5020 break;
5021 case RELOAD_FOR_INPUT:
5022 time2 = rld[i].opnum * 4 + 4;
5023 check_earlyclobber = 1;
5024 break;
5025 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5026 == MAX_RECOG_OPERAND * 4 */
5027 case RELOAD_FOR_OPADDR_ADDR:
5028 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5029 && ignore_address_reloads
5030 && ! rld[reloadnum].out)
5031 continue;
5032 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5033 break;
5034 case RELOAD_FOR_OPERAND_ADDRESS:
5035 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5036 check_earlyclobber = 1;
5037 break;
5038 case RELOAD_FOR_INSN:
5039 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5040 break;
5041 case RELOAD_FOR_OUTPUT:
5042 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5043 instruction is executed. */
5044 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5045 break;
5046 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5047 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5048 value. */
5049 case RELOAD_FOR_OUTADDR_ADDRESS:
5050 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5051 && ignore_address_reloads
5052 && ! rld[reloadnum].out)
5053 continue;
5054 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5055 break;
5056 case RELOAD_FOR_OUTPUT_ADDRESS:
5057 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5058 break;
5059 case RELOAD_OTHER:
5060 /* If there is no conflict in the input part, handle this
5061 like an output reload. */
5062 if (! rld[i].in || rtx_equal_p (other_input, value))
5064 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5065 /* Earlyclobbered outputs must conflict with inputs. */
5066 if (earlyclobber_operand_p (rld[i].out))
5067 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5069 break;
5071 time2 = 1;
5072 /* RELOAD_OTHER might be live beyond instruction execution,
5073 but this is not obvious when we set time2 = 1. So check
5074 here if there might be a problem with the new reload
5075 clobbering the register used by the RELOAD_OTHER. */
5076 if (out)
5077 return 0;
5078 break;
5079 default:
5080 return 0;
5082 if ((time1 >= time2
5083 && (! rld[i].in || rld[i].out
5084 || ! rtx_equal_p (other_input, value)))
5085 || (out && rld[reloadnum].out_reg
5086 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5087 return 0;
5092 /* Earlyclobbered outputs must conflict with inputs. */
5093 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5094 return 0;
5096 return 1;
5099 /* Return 1 if the value in reload reg REGNO, as used by a reload
5100 needed for the part of the insn specified by OPNUM and TYPE,
5101 may be used to load VALUE into it.
5103 MODE is the mode in which the register is used, this is needed to
5104 determine how many hard regs to test.
5106 Other read-only reloads with the same value do not conflict
5107 unless OUT is nonzero and these other reloads have to live while
5108 output reloads live.
5109 If OUT is CONST0_RTX, this is a special case: it means that the
5110 test should not be for using register REGNO as reload register, but
5111 for copying from register REGNO into the reload register.
5113 RELOADNUM is the number of the reload we want to load this value for;
5114 a reload does not conflict with itself.
5116 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5117 reloads that load an address for the very reload we are considering.
5119 The caller has to make sure that there is no conflict with the return
5120 register. */
5122 static int
5123 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5124 enum reload_type type, rtx value, rtx out, int reloadnum,
5125 int ignore_address_reloads)
5127 int nregs = hard_regno_nregs[regno][mode];
5128 while (nregs-- > 0)
5129 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5130 value, out, reloadnum,
5131 ignore_address_reloads))
5132 return 0;
5133 return 1;
5136 /* Return nonzero if the rtx X is invariant over the current function. */
5137 /* ??? Actually, the places where we use this expect exactly what is
5138 tested here, and not everything that is function invariant. In
5139 particular, the frame pointer and arg pointer are special cased;
5140 pic_offset_table_rtx is not, and we must not spill these things to
5141 memory. */
5144 function_invariant_p (rtx x)
5146 if (CONSTANT_P (x))
5147 return 1;
5148 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5149 return 1;
5150 if (GET_CODE (x) == PLUS
5151 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5152 && CONSTANT_P (XEXP (x, 1)))
5153 return 1;
5154 return 0;
5157 /* Determine whether the reload reg X overlaps any rtx'es used for
5158 overriding inheritance. Return nonzero if so. */
5160 static int
5161 conflicts_with_override (rtx x)
5163 int i;
5164 for (i = 0; i < n_reloads; i++)
5165 if (reload_override_in[i]
5166 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5167 return 1;
5168 return 0;
5171 /* Give an error message saying we failed to find a reload for INSN,
5172 and clear out reload R. */
5173 static void
5174 failed_reload (rtx insn, int r)
5176 if (asm_noperands (PATTERN (insn)) < 0)
5177 /* It's the compiler's fault. */
5178 fatal_insn ("could not find a spill register", insn);
5180 /* It's the user's fault; the operand's mode and constraint
5181 don't match. Disable this reload so we don't crash in final. */
5182 error_for_asm (insn,
5183 "%<asm%> operand constraint incompatible with operand size");
5184 rld[r].in = 0;
5185 rld[r].out = 0;
5186 rld[r].reg_rtx = 0;
5187 rld[r].optional = 1;
5188 rld[r].secondary_p = 1;
5191 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5192 for reload R. If it's valid, get an rtx for it. Return nonzero if
5193 successful. */
5194 static int
5195 set_reload_reg (int i, int r)
5197 int regno;
5198 rtx reg = spill_reg_rtx[i];
5200 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5201 spill_reg_rtx[i] = reg
5202 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5204 regno = true_regnum (reg);
5206 /* Detect when the reload reg can't hold the reload mode.
5207 This used to be one `if', but Sequent compiler can't handle that. */
5208 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5210 enum machine_mode test_mode = VOIDmode;
5211 if (rld[r].in)
5212 test_mode = GET_MODE (rld[r].in);
5213 /* If rld[r].in has VOIDmode, it means we will load it
5214 in whatever mode the reload reg has: to wit, rld[r].mode.
5215 We have already tested that for validity. */
5216 /* Aside from that, we need to test that the expressions
5217 to reload from or into have modes which are valid for this
5218 reload register. Otherwise the reload insns would be invalid. */
5219 if (! (rld[r].in != 0 && test_mode != VOIDmode
5220 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5221 if (! (rld[r].out != 0
5222 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5224 /* The reg is OK. */
5225 last_spill_reg = i;
5227 /* Mark as in use for this insn the reload regs we use
5228 for this. */
5229 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5230 rld[r].when_needed, rld[r].mode);
5232 rld[r].reg_rtx = reg;
5233 reload_spill_index[r] = spill_regs[i];
5234 return 1;
5237 return 0;
5240 /* Find a spill register to use as a reload register for reload R.
5241 LAST_RELOAD is nonzero if this is the last reload for the insn being
5242 processed.
5244 Set rld[R].reg_rtx to the register allocated.
5246 We return 1 if successful, or 0 if we couldn't find a spill reg and
5247 we didn't change anything. */
5249 static int
5250 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5251 int last_reload)
5253 int i, pass, count;
5255 /* If we put this reload ahead, thinking it is a group,
5256 then insist on finding a group. Otherwise we can grab a
5257 reg that some other reload needs.
5258 (That can happen when we have a 68000 DATA_OR_FP_REG
5259 which is a group of data regs or one fp reg.)
5260 We need not be so restrictive if there are no more reloads
5261 for this insn.
5263 ??? Really it would be nicer to have smarter handling
5264 for that kind of reg class, where a problem like this is normal.
5265 Perhaps those classes should be avoided for reloading
5266 by use of more alternatives. */
5268 int force_group = rld[r].nregs > 1 && ! last_reload;
5270 /* If we want a single register and haven't yet found one,
5271 take any reg in the right class and not in use.
5272 If we want a consecutive group, here is where we look for it.
5274 We use two passes so we can first look for reload regs to
5275 reuse, which are already in use for other reloads in this insn,
5276 and only then use additional registers.
5277 I think that maximizing reuse is needed to make sure we don't
5278 run out of reload regs. Suppose we have three reloads, and
5279 reloads A and B can share regs. These need two regs.
5280 Suppose A and B are given different regs.
5281 That leaves none for C. */
5282 for (pass = 0; pass < 2; pass++)
5284 /* I is the index in spill_regs.
5285 We advance it round-robin between insns to use all spill regs
5286 equally, so that inherited reloads have a chance
5287 of leapfrogging each other. */
5289 i = last_spill_reg;
5291 for (count = 0; count < n_spills; count++)
5293 int class = (int) rld[r].class;
5294 int regnum;
5296 i++;
5297 if (i >= n_spills)
5298 i -= n_spills;
5299 regnum = spill_regs[i];
5301 if ((reload_reg_free_p (regnum, rld[r].opnum,
5302 rld[r].when_needed)
5303 || (rld[r].in
5304 /* We check reload_reg_used to make sure we
5305 don't clobber the return register. */
5306 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5307 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5308 rld[r].when_needed, rld[r].in,
5309 rld[r].out, r, 1)))
5310 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5311 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5312 /* Look first for regs to share, then for unshared. But
5313 don't share regs used for inherited reloads; they are
5314 the ones we want to preserve. */
5315 && (pass
5316 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5317 regnum)
5318 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5319 regnum))))
5321 int nr = hard_regno_nregs[regnum][rld[r].mode];
5322 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5323 (on 68000) got us two FP regs. If NR is 1,
5324 we would reject both of them. */
5325 if (force_group)
5326 nr = rld[r].nregs;
5327 /* If we need only one reg, we have already won. */
5328 if (nr == 1)
5330 /* But reject a single reg if we demand a group. */
5331 if (force_group)
5332 continue;
5333 break;
5335 /* Otherwise check that as many consecutive regs as we need
5336 are available here. */
5337 while (nr > 1)
5339 int regno = regnum + nr - 1;
5340 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5341 && spill_reg_order[regno] >= 0
5342 && reload_reg_free_p (regno, rld[r].opnum,
5343 rld[r].when_needed)))
5344 break;
5345 nr--;
5347 if (nr == 1)
5348 break;
5352 /* If we found something on pass 1, omit pass 2. */
5353 if (count < n_spills)
5354 break;
5357 /* We should have found a spill register by now. */
5358 if (count >= n_spills)
5359 return 0;
5361 /* I is the index in SPILL_REG_RTX of the reload register we are to
5362 allocate. Get an rtx for it and find its register number. */
5364 return set_reload_reg (i, r);
5367 /* Initialize all the tables needed to allocate reload registers.
5368 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5369 is the array we use to restore the reg_rtx field for every reload. */
5371 static void
5372 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5374 int i;
5376 for (i = 0; i < n_reloads; i++)
5377 rld[i].reg_rtx = save_reload_reg_rtx[i];
5379 memset (reload_inherited, 0, MAX_RELOADS);
5380 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5381 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5383 CLEAR_HARD_REG_SET (reload_reg_used);
5384 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5385 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5386 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5387 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5388 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5390 CLEAR_HARD_REG_SET (reg_used_in_insn);
5392 HARD_REG_SET tmp;
5393 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5394 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5395 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5396 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5397 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5398 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5401 for (i = 0; i < reload_n_operands; i++)
5403 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5404 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5405 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5406 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5407 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5408 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5411 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5413 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5415 for (i = 0; i < n_reloads; i++)
5416 /* If we have already decided to use a certain register,
5417 don't use it in another way. */
5418 if (rld[i].reg_rtx)
5419 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5420 rld[i].when_needed, rld[i].mode);
5423 /* Assign hard reg targets for the pseudo-registers we must reload
5424 into hard regs for this insn.
5425 Also output the instructions to copy them in and out of the hard regs.
5427 For machines with register classes, we are responsible for
5428 finding a reload reg in the proper class. */
5430 static void
5431 choose_reload_regs (struct insn_chain *chain)
5433 rtx insn = chain->insn;
5434 int i, j;
5435 unsigned int max_group_size = 1;
5436 enum reg_class group_class = NO_REGS;
5437 int pass, win, inheritance;
5439 rtx save_reload_reg_rtx[MAX_RELOADS];
5441 /* In order to be certain of getting the registers we need,
5442 we must sort the reloads into order of increasing register class.
5443 Then our grabbing of reload registers will parallel the process
5444 that provided the reload registers.
5446 Also note whether any of the reloads wants a consecutive group of regs.
5447 If so, record the maximum size of the group desired and what
5448 register class contains all the groups needed by this insn. */
5450 for (j = 0; j < n_reloads; j++)
5452 reload_order[j] = j;
5453 if (rld[j].reg_rtx != NULL_RTX)
5455 gcc_assert (REG_P (rld[j].reg_rtx)
5456 && HARD_REGISTER_P (rld[j].reg_rtx));
5457 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5459 else
5460 reload_spill_index[j] = -1;
5462 if (rld[j].nregs > 1)
5464 max_group_size = MAX (rld[j].nregs, max_group_size);
5465 group_class
5466 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5469 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5472 if (n_reloads > 1)
5473 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5475 /* If -O, try first with inheritance, then turning it off.
5476 If not -O, don't do inheritance.
5477 Using inheritance when not optimizing leads to paradoxes
5478 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5479 because one side of the comparison might be inherited. */
5480 win = 0;
5481 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5483 choose_reload_regs_init (chain, save_reload_reg_rtx);
5485 /* Process the reloads in order of preference just found.
5486 Beyond this point, subregs can be found in reload_reg_rtx.
5488 This used to look for an existing reloaded home for all of the
5489 reloads, and only then perform any new reloads. But that could lose
5490 if the reloads were done out of reg-class order because a later
5491 reload with a looser constraint might have an old home in a register
5492 needed by an earlier reload with a tighter constraint.
5494 To solve this, we make two passes over the reloads, in the order
5495 described above. In the first pass we try to inherit a reload
5496 from a previous insn. If there is a later reload that needs a
5497 class that is a proper subset of the class being processed, we must
5498 also allocate a spill register during the first pass.
5500 Then make a second pass over the reloads to allocate any reloads
5501 that haven't been given registers yet. */
5503 for (j = 0; j < n_reloads; j++)
5505 int r = reload_order[j];
5506 rtx search_equiv = NULL_RTX;
5508 /* Ignore reloads that got marked inoperative. */
5509 if (rld[r].out == 0 && rld[r].in == 0
5510 && ! rld[r].secondary_p)
5511 continue;
5513 /* If find_reloads chose to use reload_in or reload_out as a reload
5514 register, we don't need to chose one. Otherwise, try even if it
5515 found one since we might save an insn if we find the value lying
5516 around.
5517 Try also when reload_in is a pseudo without a hard reg. */
5518 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5519 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5520 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5521 && !MEM_P (rld[r].in)
5522 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5523 continue;
5525 #if 0 /* No longer needed for correct operation.
5526 It might give better code, or might not; worth an experiment? */
5527 /* If this is an optional reload, we can't inherit from earlier insns
5528 until we are sure that any non-optional reloads have been allocated.
5529 The following code takes advantage of the fact that optional reloads
5530 are at the end of reload_order. */
5531 if (rld[r].optional != 0)
5532 for (i = 0; i < j; i++)
5533 if ((rld[reload_order[i]].out != 0
5534 || rld[reload_order[i]].in != 0
5535 || rld[reload_order[i]].secondary_p)
5536 && ! rld[reload_order[i]].optional
5537 && rld[reload_order[i]].reg_rtx == 0)
5538 allocate_reload_reg (chain, reload_order[i], 0);
5539 #endif
5541 /* First see if this pseudo is already available as reloaded
5542 for a previous insn. We cannot try to inherit for reloads
5543 that are smaller than the maximum number of registers needed
5544 for groups unless the register we would allocate cannot be used
5545 for the groups.
5547 We could check here to see if this is a secondary reload for
5548 an object that is already in a register of the desired class.
5549 This would avoid the need for the secondary reload register.
5550 But this is complex because we can't easily determine what
5551 objects might want to be loaded via this reload. So let a
5552 register be allocated here. In `emit_reload_insns' we suppress
5553 one of the loads in the case described above. */
5555 if (inheritance)
5557 int byte = 0;
5558 int regno = -1;
5559 enum machine_mode mode = VOIDmode;
5561 if (rld[r].in == 0)
5563 else if (REG_P (rld[r].in))
5565 regno = REGNO (rld[r].in);
5566 mode = GET_MODE (rld[r].in);
5568 else if (REG_P (rld[r].in_reg))
5570 regno = REGNO (rld[r].in_reg);
5571 mode = GET_MODE (rld[r].in_reg);
5573 else if (GET_CODE (rld[r].in_reg) == SUBREG
5574 && REG_P (SUBREG_REG (rld[r].in_reg)))
5576 byte = SUBREG_BYTE (rld[r].in_reg);
5577 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5578 if (regno < FIRST_PSEUDO_REGISTER)
5579 regno = subreg_regno (rld[r].in_reg);
5580 mode = GET_MODE (rld[r].in_reg);
5582 #ifdef AUTO_INC_DEC
5583 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5584 && REG_P (XEXP (rld[r].in_reg, 0)))
5586 regno = REGNO (XEXP (rld[r].in_reg, 0));
5587 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5588 rld[r].out = rld[r].in;
5590 #endif
5591 #if 0
5592 /* This won't work, since REGNO can be a pseudo reg number.
5593 Also, it takes much more hair to keep track of all the things
5594 that can invalidate an inherited reload of part of a pseudoreg. */
5595 else if (GET_CODE (rld[r].in) == SUBREG
5596 && REG_P (SUBREG_REG (rld[r].in)))
5597 regno = subreg_regno (rld[r].in);
5598 #endif
5600 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5602 enum reg_class class = rld[r].class, last_class;
5603 rtx last_reg = reg_last_reload_reg[regno];
5604 enum machine_mode need_mode;
5606 i = REGNO (last_reg);
5607 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5608 last_class = REGNO_REG_CLASS (i);
5610 if (byte == 0)
5611 need_mode = mode;
5612 else
5613 need_mode
5614 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5615 + byte * BITS_PER_UNIT,
5616 GET_MODE_CLASS (mode));
5618 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5619 >= GET_MODE_SIZE (need_mode))
5620 #ifdef CANNOT_CHANGE_MODE_CLASS
5621 /* Verify that the register in "i" can be obtained
5622 from LAST_REG. */
5623 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5624 GET_MODE (last_reg),
5625 mode)
5626 #endif
5627 && reg_reloaded_contents[i] == regno
5628 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5629 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5630 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5631 /* Even if we can't use this register as a reload
5632 register, we might use it for reload_override_in,
5633 if copying it to the desired class is cheap
5634 enough. */
5635 || ((REGISTER_MOVE_COST (mode, last_class, class)
5636 < MEMORY_MOVE_COST (mode, class, 1))
5637 && (secondary_reload_class (1, class, mode,
5638 last_reg)
5639 == NO_REGS)
5640 #ifdef SECONDARY_MEMORY_NEEDED
5641 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5642 mode)
5643 #endif
5646 && (rld[r].nregs == max_group_size
5647 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5649 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5650 rld[r].when_needed, rld[r].in,
5651 const0_rtx, r, 1))
5653 /* If a group is needed, verify that all the subsequent
5654 registers still have their values intact. */
5655 int nr = hard_regno_nregs[i][rld[r].mode];
5656 int k;
5658 for (k = 1; k < nr; k++)
5659 if (reg_reloaded_contents[i + k] != regno
5660 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5661 break;
5663 if (k == nr)
5665 int i1;
5666 int bad_for_class;
5668 last_reg = (GET_MODE (last_reg) == mode
5669 ? last_reg : gen_rtx_REG (mode, i));
5671 bad_for_class = 0;
5672 for (k = 0; k < nr; k++)
5673 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5674 i+k);
5676 /* We found a register that contains the
5677 value we need. If this register is the
5678 same as an `earlyclobber' operand of the
5679 current insn, just mark it as a place to
5680 reload from since we can't use it as the
5681 reload register itself. */
5683 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5684 if (reg_overlap_mentioned_for_reload_p
5685 (reg_last_reload_reg[regno],
5686 reload_earlyclobbers[i1]))
5687 break;
5689 if (i1 != n_earlyclobbers
5690 || ! (free_for_value_p (i, rld[r].mode,
5691 rld[r].opnum,
5692 rld[r].when_needed, rld[r].in,
5693 rld[r].out, r, 1))
5694 /* Don't use it if we'd clobber a pseudo reg. */
5695 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5696 && rld[r].out
5697 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5698 /* Don't clobber the frame pointer. */
5699 || (i == HARD_FRAME_POINTER_REGNUM
5700 && frame_pointer_needed
5701 && rld[r].out)
5702 /* Don't really use the inherited spill reg
5703 if we need it wider than we've got it. */
5704 || (GET_MODE_SIZE (rld[r].mode)
5705 > GET_MODE_SIZE (mode))
5706 || bad_for_class
5708 /* If find_reloads chose reload_out as reload
5709 register, stay with it - that leaves the
5710 inherited register for subsequent reloads. */
5711 || (rld[r].out && rld[r].reg_rtx
5712 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5714 if (! rld[r].optional)
5716 reload_override_in[r] = last_reg;
5717 reload_inheritance_insn[r]
5718 = reg_reloaded_insn[i];
5721 else
5723 int k;
5724 /* We can use this as a reload reg. */
5725 /* Mark the register as in use for this part of
5726 the insn. */
5727 mark_reload_reg_in_use (i,
5728 rld[r].opnum,
5729 rld[r].when_needed,
5730 rld[r].mode);
5731 rld[r].reg_rtx = last_reg;
5732 reload_inherited[r] = 1;
5733 reload_inheritance_insn[r]
5734 = reg_reloaded_insn[i];
5735 reload_spill_index[r] = i;
5736 for (k = 0; k < nr; k++)
5737 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5738 i + k);
5745 /* Here's another way to see if the value is already lying around. */
5746 if (inheritance
5747 && rld[r].in != 0
5748 && ! reload_inherited[r]
5749 && rld[r].out == 0
5750 && (CONSTANT_P (rld[r].in)
5751 || GET_CODE (rld[r].in) == PLUS
5752 || REG_P (rld[r].in)
5753 || MEM_P (rld[r].in))
5754 && (rld[r].nregs == max_group_size
5755 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5756 search_equiv = rld[r].in;
5757 /* If this is an output reload from a simple move insn, look
5758 if an equivalence for the input is available. */
5759 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5761 rtx set = single_set (insn);
5763 if (set
5764 && rtx_equal_p (rld[r].out, SET_DEST (set))
5765 && CONSTANT_P (SET_SRC (set)))
5766 search_equiv = SET_SRC (set);
5769 if (search_equiv)
5771 rtx equiv
5772 = find_equiv_reg (search_equiv, insn, rld[r].class,
5773 -1, NULL, 0, rld[r].mode);
5774 int regno = 0;
5776 if (equiv != 0)
5778 if (REG_P (equiv))
5779 regno = REGNO (equiv);
5780 else
5782 /* This must be a SUBREG of a hard register.
5783 Make a new REG since this might be used in an
5784 address and not all machines support SUBREGs
5785 there. */
5786 gcc_assert (GET_CODE (equiv) == SUBREG);
5787 regno = subreg_regno (equiv);
5788 equiv = gen_rtx_REG (rld[r].mode, regno);
5789 /* If we choose EQUIV as the reload register, but the
5790 loop below decides to cancel the inheritance, we'll
5791 end up reloading EQUIV in rld[r].mode, not the mode
5792 it had originally. That isn't safe when EQUIV isn't
5793 available as a spill register since its value might
5794 still be live at this point. */
5795 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5796 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5797 equiv = 0;
5801 /* If we found a spill reg, reject it unless it is free
5802 and of the desired class. */
5803 if (equiv != 0)
5805 int regs_used = 0;
5806 int bad_for_class = 0;
5807 int max_regno = regno + rld[r].nregs;
5809 for (i = regno; i < max_regno; i++)
5811 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5813 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5817 if ((regs_used
5818 && ! free_for_value_p (regno, rld[r].mode,
5819 rld[r].opnum, rld[r].when_needed,
5820 rld[r].in, rld[r].out, r, 1))
5821 || bad_for_class)
5822 equiv = 0;
5825 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5826 equiv = 0;
5828 /* We found a register that contains the value we need.
5829 If this register is the same as an `earlyclobber' operand
5830 of the current insn, just mark it as a place to reload from
5831 since we can't use it as the reload register itself. */
5833 if (equiv != 0)
5834 for (i = 0; i < n_earlyclobbers; i++)
5835 if (reg_overlap_mentioned_for_reload_p (equiv,
5836 reload_earlyclobbers[i]))
5838 if (! rld[r].optional)
5839 reload_override_in[r] = equiv;
5840 equiv = 0;
5841 break;
5844 /* If the equiv register we have found is explicitly clobbered
5845 in the current insn, it depends on the reload type if we
5846 can use it, use it for reload_override_in, or not at all.
5847 In particular, we then can't use EQUIV for a
5848 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5850 if (equiv != 0)
5852 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5853 switch (rld[r].when_needed)
5855 case RELOAD_FOR_OTHER_ADDRESS:
5856 case RELOAD_FOR_INPADDR_ADDRESS:
5857 case RELOAD_FOR_INPUT_ADDRESS:
5858 case RELOAD_FOR_OPADDR_ADDR:
5859 break;
5860 case RELOAD_OTHER:
5861 case RELOAD_FOR_INPUT:
5862 case RELOAD_FOR_OPERAND_ADDRESS:
5863 if (! rld[r].optional)
5864 reload_override_in[r] = equiv;
5865 /* Fall through. */
5866 default:
5867 equiv = 0;
5868 break;
5870 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5871 switch (rld[r].when_needed)
5873 case RELOAD_FOR_OTHER_ADDRESS:
5874 case RELOAD_FOR_INPADDR_ADDRESS:
5875 case RELOAD_FOR_INPUT_ADDRESS:
5876 case RELOAD_FOR_OPADDR_ADDR:
5877 case RELOAD_FOR_OPERAND_ADDRESS:
5878 case RELOAD_FOR_INPUT:
5879 break;
5880 case RELOAD_OTHER:
5881 if (! rld[r].optional)
5882 reload_override_in[r] = equiv;
5883 /* Fall through. */
5884 default:
5885 equiv = 0;
5886 break;
5890 /* If we found an equivalent reg, say no code need be generated
5891 to load it, and use it as our reload reg. */
5892 if (equiv != 0
5893 && (regno != HARD_FRAME_POINTER_REGNUM
5894 || !frame_pointer_needed))
5896 int nr = hard_regno_nregs[regno][rld[r].mode];
5897 int k;
5898 rld[r].reg_rtx = equiv;
5899 reload_inherited[r] = 1;
5901 /* If reg_reloaded_valid is not set for this register,
5902 there might be a stale spill_reg_store lying around.
5903 We must clear it, since otherwise emit_reload_insns
5904 might delete the store. */
5905 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5906 spill_reg_store[regno] = NULL_RTX;
5907 /* If any of the hard registers in EQUIV are spill
5908 registers, mark them as in use for this insn. */
5909 for (k = 0; k < nr; k++)
5911 i = spill_reg_order[regno + k];
5912 if (i >= 0)
5914 mark_reload_reg_in_use (regno, rld[r].opnum,
5915 rld[r].when_needed,
5916 rld[r].mode);
5917 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5918 regno + k);
5924 /* If we found a register to use already, or if this is an optional
5925 reload, we are done. */
5926 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5927 continue;
5929 #if 0
5930 /* No longer needed for correct operation. Might or might
5931 not give better code on the average. Want to experiment? */
5933 /* See if there is a later reload that has a class different from our
5934 class that intersects our class or that requires less register
5935 than our reload. If so, we must allocate a register to this
5936 reload now, since that reload might inherit a previous reload
5937 and take the only available register in our class. Don't do this
5938 for optional reloads since they will force all previous reloads
5939 to be allocated. Also don't do this for reloads that have been
5940 turned off. */
5942 for (i = j + 1; i < n_reloads; i++)
5944 int s = reload_order[i];
5946 if ((rld[s].in == 0 && rld[s].out == 0
5947 && ! rld[s].secondary_p)
5948 || rld[s].optional)
5949 continue;
5951 if ((rld[s].class != rld[r].class
5952 && reg_classes_intersect_p (rld[r].class,
5953 rld[s].class))
5954 || rld[s].nregs < rld[r].nregs)
5955 break;
5958 if (i == n_reloads)
5959 continue;
5961 allocate_reload_reg (chain, r, j == n_reloads - 1);
5962 #endif
5965 /* Now allocate reload registers for anything non-optional that
5966 didn't get one yet. */
5967 for (j = 0; j < n_reloads; j++)
5969 int r = reload_order[j];
5971 /* Ignore reloads that got marked inoperative. */
5972 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5973 continue;
5975 /* Skip reloads that already have a register allocated or are
5976 optional. */
5977 if (rld[r].reg_rtx != 0 || rld[r].optional)
5978 continue;
5980 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5981 break;
5984 /* If that loop got all the way, we have won. */
5985 if (j == n_reloads)
5987 win = 1;
5988 break;
5991 /* Loop around and try without any inheritance. */
5994 if (! win)
5996 /* First undo everything done by the failed attempt
5997 to allocate with inheritance. */
5998 choose_reload_regs_init (chain, save_reload_reg_rtx);
6000 /* Some sanity tests to verify that the reloads found in the first
6001 pass are identical to the ones we have now. */
6002 gcc_assert (chain->n_reloads == n_reloads);
6004 for (i = 0; i < n_reloads; i++)
6006 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6007 continue;
6008 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6009 for (j = 0; j < n_spills; j++)
6010 if (spill_regs[j] == chain->rld[i].regno)
6011 if (! set_reload_reg (j, i))
6012 failed_reload (chain->insn, i);
6016 /* If we thought we could inherit a reload, because it seemed that
6017 nothing else wanted the same reload register earlier in the insn,
6018 verify that assumption, now that all reloads have been assigned.
6019 Likewise for reloads where reload_override_in has been set. */
6021 /* If doing expensive optimizations, do one preliminary pass that doesn't
6022 cancel any inheritance, but removes reloads that have been needed only
6023 for reloads that we know can be inherited. */
6024 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6026 for (j = 0; j < n_reloads; j++)
6028 int r = reload_order[j];
6029 rtx check_reg;
6030 if (reload_inherited[r] && rld[r].reg_rtx)
6031 check_reg = rld[r].reg_rtx;
6032 else if (reload_override_in[r]
6033 && (REG_P (reload_override_in[r])
6034 || GET_CODE (reload_override_in[r]) == SUBREG))
6035 check_reg = reload_override_in[r];
6036 else
6037 continue;
6038 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6039 rld[r].opnum, rld[r].when_needed, rld[r].in,
6040 (reload_inherited[r]
6041 ? rld[r].out : const0_rtx),
6042 r, 1))
6044 if (pass)
6045 continue;
6046 reload_inherited[r] = 0;
6047 reload_override_in[r] = 0;
6049 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6050 reload_override_in, then we do not need its related
6051 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6052 likewise for other reload types.
6053 We handle this by removing a reload when its only replacement
6054 is mentioned in reload_in of the reload we are going to inherit.
6055 A special case are auto_inc expressions; even if the input is
6056 inherited, we still need the address for the output. We can
6057 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6058 If we succeeded removing some reload and we are doing a preliminary
6059 pass just to remove such reloads, make another pass, since the
6060 removal of one reload might allow us to inherit another one. */
6061 else if (rld[r].in
6062 && rld[r].out != rld[r].in
6063 && remove_address_replacements (rld[r].in) && pass)
6064 pass = 2;
6068 /* Now that reload_override_in is known valid,
6069 actually override reload_in. */
6070 for (j = 0; j < n_reloads; j++)
6071 if (reload_override_in[j])
6072 rld[j].in = reload_override_in[j];
6074 /* If this reload won't be done because it has been canceled or is
6075 optional and not inherited, clear reload_reg_rtx so other
6076 routines (such as subst_reloads) don't get confused. */
6077 for (j = 0; j < n_reloads; j++)
6078 if (rld[j].reg_rtx != 0
6079 && ((rld[j].optional && ! reload_inherited[j])
6080 || (rld[j].in == 0 && rld[j].out == 0
6081 && ! rld[j].secondary_p)))
6083 int regno = true_regnum (rld[j].reg_rtx);
6085 if (spill_reg_order[regno] >= 0)
6086 clear_reload_reg_in_use (regno, rld[j].opnum,
6087 rld[j].when_needed, rld[j].mode);
6088 rld[j].reg_rtx = 0;
6089 reload_spill_index[j] = -1;
6092 /* Record which pseudos and which spill regs have output reloads. */
6093 for (j = 0; j < n_reloads; j++)
6095 int r = reload_order[j];
6097 i = reload_spill_index[r];
6099 /* I is nonneg if this reload uses a register.
6100 If rld[r].reg_rtx is 0, this is an optional reload
6101 that we opted to ignore. */
6102 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6103 && rld[r].reg_rtx != 0)
6105 int nregno = REGNO (rld[r].out_reg);
6106 int nr = 1;
6108 if (nregno < FIRST_PSEUDO_REGISTER)
6109 nr = hard_regno_nregs[nregno][rld[r].mode];
6111 while (--nr >= 0)
6112 SET_REGNO_REG_SET (&reg_has_output_reload,
6113 nregno + nr);
6115 if (i >= 0)
6117 nr = hard_regno_nregs[i][rld[r].mode];
6118 while (--nr >= 0)
6119 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6122 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6123 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6124 || rld[r].when_needed == RELOAD_FOR_INSN);
6129 /* Deallocate the reload register for reload R. This is called from
6130 remove_address_replacements. */
6132 void
6133 deallocate_reload_reg (int r)
6135 int regno;
6137 if (! rld[r].reg_rtx)
6138 return;
6139 regno = true_regnum (rld[r].reg_rtx);
6140 rld[r].reg_rtx = 0;
6141 if (spill_reg_order[regno] >= 0)
6142 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6143 rld[r].mode);
6144 reload_spill_index[r] = -1;
6147 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6148 reloads of the same item for fear that we might not have enough reload
6149 registers. However, normally they will get the same reload register
6150 and hence actually need not be loaded twice.
6152 Here we check for the most common case of this phenomenon: when we have
6153 a number of reloads for the same object, each of which were allocated
6154 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6155 reload, and is not modified in the insn itself. If we find such,
6156 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6157 This will not increase the number of spill registers needed and will
6158 prevent redundant code. */
6160 static void
6161 merge_assigned_reloads (rtx insn)
6163 int i, j;
6165 /* Scan all the reloads looking for ones that only load values and
6166 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6167 assigned and not modified by INSN. */
6169 for (i = 0; i < n_reloads; i++)
6171 int conflicting_input = 0;
6172 int max_input_address_opnum = -1;
6173 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6175 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6176 || rld[i].out != 0 || rld[i].reg_rtx == 0
6177 || reg_set_p (rld[i].reg_rtx, insn))
6178 continue;
6180 /* Look at all other reloads. Ensure that the only use of this
6181 reload_reg_rtx is in a reload that just loads the same value
6182 as we do. Note that any secondary reloads must be of the identical
6183 class since the values, modes, and result registers are the
6184 same, so we need not do anything with any secondary reloads. */
6186 for (j = 0; j < n_reloads; j++)
6188 if (i == j || rld[j].reg_rtx == 0
6189 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6190 rld[i].reg_rtx))
6191 continue;
6193 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6194 && rld[j].opnum > max_input_address_opnum)
6195 max_input_address_opnum = rld[j].opnum;
6197 /* If the reload regs aren't exactly the same (e.g, different modes)
6198 or if the values are different, we can't merge this reload.
6199 But if it is an input reload, we might still merge
6200 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6202 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6203 || rld[j].out != 0 || rld[j].in == 0
6204 || ! rtx_equal_p (rld[i].in, rld[j].in))
6206 if (rld[j].when_needed != RELOAD_FOR_INPUT
6207 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6208 || rld[i].opnum > rld[j].opnum)
6209 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6210 break;
6211 conflicting_input = 1;
6212 if (min_conflicting_input_opnum > rld[j].opnum)
6213 min_conflicting_input_opnum = rld[j].opnum;
6217 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6218 we, in fact, found any matching reloads. */
6220 if (j == n_reloads
6221 && max_input_address_opnum <= min_conflicting_input_opnum)
6223 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6225 for (j = 0; j < n_reloads; j++)
6226 if (i != j && rld[j].reg_rtx != 0
6227 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6228 && (! conflicting_input
6229 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6230 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6232 rld[i].when_needed = RELOAD_OTHER;
6233 rld[j].in = 0;
6234 reload_spill_index[j] = -1;
6235 transfer_replacements (i, j);
6238 /* If this is now RELOAD_OTHER, look for any reloads that load
6239 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6240 if they were for inputs, RELOAD_OTHER for outputs. Note that
6241 this test is equivalent to looking for reloads for this operand
6242 number. */
6243 /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
6244 share registers with a RELOAD_FOR_INPUT, so we can not change it
6245 to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
6246 do not modify RELOAD_FOR_OUTPUT. */
6248 if (rld[i].when_needed == RELOAD_OTHER)
6249 for (j = 0; j < n_reloads; j++)
6250 if (rld[j].in != 0
6251 && rld[j].when_needed != RELOAD_OTHER
6252 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6253 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6254 && (! conflicting_input
6255 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6256 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6257 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6258 rld[i].in))
6260 int k;
6262 rld[j].when_needed
6263 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6264 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6265 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6267 /* Check to see if we accidentally converted two
6268 reloads that use the same reload register with
6269 different inputs to the same type. If so, the
6270 resulting code won't work. */
6271 if (rld[j].reg_rtx)
6272 for (k = 0; k < j; k++)
6273 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6274 || rld[k].when_needed != rld[j].when_needed
6275 || !rtx_equal_p (rld[k].reg_rtx,
6276 rld[j].reg_rtx)
6277 || rtx_equal_p (rld[k].in,
6278 rld[j].in));
6284 /* These arrays are filled by emit_reload_insns and its subroutines. */
6285 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6286 static rtx other_input_address_reload_insns = 0;
6287 static rtx other_input_reload_insns = 0;
6288 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6289 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6290 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6291 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6292 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6293 static rtx operand_reload_insns = 0;
6294 static rtx other_operand_reload_insns = 0;
6295 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6297 /* Values to be put in spill_reg_store are put here first. */
6298 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6299 static HARD_REG_SET reg_reloaded_died;
6301 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6302 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6303 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6304 adjusted register, and return true. Otherwise, return false. */
6305 static bool
6306 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6307 enum reg_class new_class,
6308 enum machine_mode new_mode)
6311 rtx reg;
6313 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6315 unsigned regno = REGNO (reg);
6317 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6318 continue;
6319 if (GET_MODE (reg) != new_mode)
6321 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6322 continue;
6323 if (hard_regno_nregs[regno][new_mode]
6324 > hard_regno_nregs[regno][GET_MODE (reg)])
6325 continue;
6326 reg = reload_adjust_reg_for_mode (reg, new_mode);
6328 *reload_reg = reg;
6329 return true;
6331 return false;
6334 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6335 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6336 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6337 adjusted register, and return true. Otherwise, return false. */
6338 static bool
6339 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6340 enum insn_code icode)
6343 enum reg_class new_class = scratch_reload_class (icode);
6344 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6346 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6347 new_class, new_mode);
6350 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6351 has the number J. OLD contains the value to be used as input. */
6353 static void
6354 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6355 rtx old, int j)
6357 rtx insn = chain->insn;
6358 rtx reloadreg = rl->reg_rtx;
6359 rtx oldequiv_reg = 0;
6360 rtx oldequiv = 0;
6361 int special = 0;
6362 enum machine_mode mode;
6363 rtx *where;
6365 /* Determine the mode to reload in.
6366 This is very tricky because we have three to choose from.
6367 There is the mode the insn operand wants (rl->inmode).
6368 There is the mode of the reload register RELOADREG.
6369 There is the intrinsic mode of the operand, which we could find
6370 by stripping some SUBREGs.
6371 It turns out that RELOADREG's mode is irrelevant:
6372 we can change that arbitrarily.
6374 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6375 then the reload reg may not support QImode moves, so use SImode.
6376 If foo is in memory due to spilling a pseudo reg, this is safe,
6377 because the QImode value is in the least significant part of a
6378 slot big enough for a SImode. If foo is some other sort of
6379 memory reference, then it is impossible to reload this case,
6380 so previous passes had better make sure this never happens.
6382 Then consider a one-word union which has SImode and one of its
6383 members is a float, being fetched as (SUBREG:SF union:SI).
6384 We must fetch that as SFmode because we could be loading into
6385 a float-only register. In this case OLD's mode is correct.
6387 Consider an immediate integer: it has VOIDmode. Here we need
6388 to get a mode from something else.
6390 In some cases, there is a fourth mode, the operand's
6391 containing mode. If the insn specifies a containing mode for
6392 this operand, it overrides all others.
6394 I am not sure whether the algorithm here is always right,
6395 but it does the right things in those cases. */
6397 mode = GET_MODE (old);
6398 if (mode == VOIDmode)
6399 mode = rl->inmode;
6401 /* delete_output_reload is only invoked properly if old contains
6402 the original pseudo register. Since this is replaced with a
6403 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6404 find the pseudo in RELOAD_IN_REG. */
6405 if (reload_override_in[j]
6406 && REG_P (rl->in_reg))
6408 oldequiv = old;
6409 old = rl->in_reg;
6411 if (oldequiv == 0)
6412 oldequiv = old;
6413 else if (REG_P (oldequiv))
6414 oldequiv_reg = oldequiv;
6415 else if (GET_CODE (oldequiv) == SUBREG)
6416 oldequiv_reg = SUBREG_REG (oldequiv);
6418 /* If we are reloading from a register that was recently stored in
6419 with an output-reload, see if we can prove there was
6420 actually no need to store the old value in it. */
6422 if (optimize && REG_P (oldequiv)
6423 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6424 && spill_reg_store[REGNO (oldequiv)]
6425 && REG_P (old)
6426 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6427 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6428 rl->out_reg)))
6429 delete_output_reload (insn, j, REGNO (oldequiv));
6431 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6432 then load RELOADREG from OLDEQUIV. Note that we cannot use
6433 gen_lowpart_common since it can do the wrong thing when
6434 RELOADREG has a multi-word mode. Note that RELOADREG
6435 must always be a REG here. */
6437 if (GET_MODE (reloadreg) != mode)
6438 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6439 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6440 oldequiv = SUBREG_REG (oldequiv);
6441 if (GET_MODE (oldequiv) != VOIDmode
6442 && mode != GET_MODE (oldequiv))
6443 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6445 /* Switch to the right place to emit the reload insns. */
6446 switch (rl->when_needed)
6448 case RELOAD_OTHER:
6449 where = &other_input_reload_insns;
6450 break;
6451 case RELOAD_FOR_INPUT:
6452 where = &input_reload_insns[rl->opnum];
6453 break;
6454 case RELOAD_FOR_INPUT_ADDRESS:
6455 where = &input_address_reload_insns[rl->opnum];
6456 break;
6457 case RELOAD_FOR_INPADDR_ADDRESS:
6458 where = &inpaddr_address_reload_insns[rl->opnum];
6459 break;
6460 case RELOAD_FOR_OUTPUT_ADDRESS:
6461 where = &output_address_reload_insns[rl->opnum];
6462 break;
6463 case RELOAD_FOR_OUTADDR_ADDRESS:
6464 where = &outaddr_address_reload_insns[rl->opnum];
6465 break;
6466 case RELOAD_FOR_OPERAND_ADDRESS:
6467 where = &operand_reload_insns;
6468 break;
6469 case RELOAD_FOR_OPADDR_ADDR:
6470 where = &other_operand_reload_insns;
6471 break;
6472 case RELOAD_FOR_OTHER_ADDRESS:
6473 where = &other_input_address_reload_insns;
6474 break;
6475 default:
6476 gcc_unreachable ();
6479 push_to_sequence (*where);
6481 /* Auto-increment addresses must be reloaded in a special way. */
6482 if (rl->out && ! rl->out_reg)
6484 /* We are not going to bother supporting the case where a
6485 incremented register can't be copied directly from
6486 OLDEQUIV since this seems highly unlikely. */
6487 gcc_assert (rl->secondary_in_reload < 0);
6489 if (reload_inherited[j])
6490 oldequiv = reloadreg;
6492 old = XEXP (rl->in_reg, 0);
6494 if (optimize && REG_P (oldequiv)
6495 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6496 && spill_reg_store[REGNO (oldequiv)]
6497 && REG_P (old)
6498 && (dead_or_set_p (insn,
6499 spill_reg_stored_to[REGNO (oldequiv)])
6500 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6501 old)))
6502 delete_output_reload (insn, j, REGNO (oldequiv));
6504 /* Prevent normal processing of this reload. */
6505 special = 1;
6506 /* Output a special code sequence for this case. */
6507 new_spill_reg_store[REGNO (reloadreg)]
6508 = inc_for_reload (reloadreg, oldequiv, rl->out,
6509 rl->inc);
6512 /* If we are reloading a pseudo-register that was set by the previous
6513 insn, see if we can get rid of that pseudo-register entirely
6514 by redirecting the previous insn into our reload register. */
6516 else if (optimize && REG_P (old)
6517 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6518 && dead_or_set_p (insn, old)
6519 /* This is unsafe if some other reload
6520 uses the same reg first. */
6521 && ! conflicts_with_override (reloadreg)
6522 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6523 rl->when_needed, old, rl->out, j, 0))
6525 rtx temp = PREV_INSN (insn);
6526 while (temp && NOTE_P (temp))
6527 temp = PREV_INSN (temp);
6528 if (temp
6529 && NONJUMP_INSN_P (temp)
6530 && GET_CODE (PATTERN (temp)) == SET
6531 && SET_DEST (PATTERN (temp)) == old
6532 /* Make sure we can access insn_operand_constraint. */
6533 && asm_noperands (PATTERN (temp)) < 0
6534 /* This is unsafe if operand occurs more than once in current
6535 insn. Perhaps some occurrences aren't reloaded. */
6536 && count_occurrences (PATTERN (insn), old, 0) == 1)
6538 rtx old = SET_DEST (PATTERN (temp));
6539 /* Store into the reload register instead of the pseudo. */
6540 SET_DEST (PATTERN (temp)) = reloadreg;
6542 /* Verify that resulting insn is valid. */
6543 extract_insn (temp);
6544 if (constrain_operands (1))
6546 /* If the previous insn is an output reload, the source is
6547 a reload register, and its spill_reg_store entry will
6548 contain the previous destination. This is now
6549 invalid. */
6550 if (REG_P (SET_SRC (PATTERN (temp)))
6551 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6553 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6554 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6557 /* If these are the only uses of the pseudo reg,
6558 pretend for GDB it lives in the reload reg we used. */
6559 if (REG_N_DEATHS (REGNO (old)) == 1
6560 && REG_N_SETS (REGNO (old)) == 1)
6562 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6563 alter_reg (REGNO (old), -1);
6565 special = 1;
6567 else
6569 SET_DEST (PATTERN (temp)) = old;
6574 /* We can't do that, so output an insn to load RELOADREG. */
6576 /* If we have a secondary reload, pick up the secondary register
6577 and icode, if any. If OLDEQUIV and OLD are different or
6578 if this is an in-out reload, recompute whether or not we
6579 still need a secondary register and what the icode should
6580 be. If we still need a secondary register and the class or
6581 icode is different, go back to reloading from OLD if using
6582 OLDEQUIV means that we got the wrong type of register. We
6583 cannot have different class or icode due to an in-out reload
6584 because we don't make such reloads when both the input and
6585 output need secondary reload registers. */
6587 if (! special && rl->secondary_in_reload >= 0)
6589 rtx second_reload_reg = 0;
6590 rtx third_reload_reg = 0;
6591 int secondary_reload = rl->secondary_in_reload;
6592 rtx real_oldequiv = oldequiv;
6593 rtx real_old = old;
6594 rtx tmp;
6595 enum insn_code icode;
6596 enum insn_code tertiary_icode = CODE_FOR_nothing;
6598 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6599 and similarly for OLD.
6600 See comments in get_secondary_reload in reload.c. */
6601 /* If it is a pseudo that cannot be replaced with its
6602 equivalent MEM, we must fall back to reload_in, which
6603 will have all the necessary substitutions registered.
6604 Likewise for a pseudo that can't be replaced with its
6605 equivalent constant.
6607 Take extra care for subregs of such pseudos. Note that
6608 we cannot use reg_equiv_mem in this case because it is
6609 not in the right mode. */
6611 tmp = oldequiv;
6612 if (GET_CODE (tmp) == SUBREG)
6613 tmp = SUBREG_REG (tmp);
6614 if (REG_P (tmp)
6615 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6616 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6617 || reg_equiv_constant[REGNO (tmp)] != 0))
6619 if (! reg_equiv_mem[REGNO (tmp)]
6620 || num_not_at_initial_offset
6621 || GET_CODE (oldequiv) == SUBREG)
6622 real_oldequiv = rl->in;
6623 else
6624 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6627 tmp = old;
6628 if (GET_CODE (tmp) == SUBREG)
6629 tmp = SUBREG_REG (tmp);
6630 if (REG_P (tmp)
6631 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6632 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6633 || reg_equiv_constant[REGNO (tmp)] != 0))
6635 if (! reg_equiv_mem[REGNO (tmp)]
6636 || num_not_at_initial_offset
6637 || GET_CODE (old) == SUBREG)
6638 real_old = rl->in;
6639 else
6640 real_old = reg_equiv_mem[REGNO (tmp)];
6643 second_reload_reg = rld[secondary_reload].reg_rtx;
6644 if (rld[secondary_reload].secondary_in_reload >= 0)
6646 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6648 third_reload_reg = rld[tertiary_reload].reg_rtx;
6649 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6650 /* We'd have to add more code for quartary reloads. */
6651 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6653 icode = rl->secondary_in_icode;
6655 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6656 || (rl->in != 0 && rl->out != 0))
6658 secondary_reload_info sri, sri2;
6659 enum reg_class new_class, new_t_class;
6661 sri.icode = CODE_FOR_nothing;
6662 sri.prev_sri = NULL;
6663 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6664 mode, &sri);
6666 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6667 second_reload_reg = 0;
6668 else if (new_class == NO_REGS)
6670 if (reload_adjust_reg_for_icode (&second_reload_reg,
6671 third_reload_reg, sri.icode))
6672 icode = sri.icode, third_reload_reg = 0;
6673 else
6674 oldequiv = old, real_oldequiv = real_old;
6676 else if (sri.icode != CODE_FOR_nothing)
6677 /* We currently lack a way to express this in reloads. */
6678 gcc_unreachable ();
6679 else
6681 sri2.icode = CODE_FOR_nothing;
6682 sri2.prev_sri = &sri;
6683 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6684 new_class, mode, &sri);
6685 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6687 if (reload_adjust_reg_for_temp (&second_reload_reg,
6688 third_reload_reg,
6689 new_class, mode))
6690 third_reload_reg = 0, tertiary_icode = sri2.icode;
6691 else
6692 oldequiv = old, real_oldequiv = real_old;
6694 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6696 rtx intermediate = second_reload_reg;
6698 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6699 new_class, mode)
6700 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6701 sri2.icode))
6703 second_reload_reg = intermediate;
6704 tertiary_icode = sri2.icode;
6706 else
6707 oldequiv = old, real_oldequiv = real_old;
6709 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6711 rtx intermediate = second_reload_reg;
6713 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6714 new_class, mode)
6715 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6716 new_t_class, mode))
6718 second_reload_reg = intermediate;
6719 tertiary_icode = sri2.icode;
6721 else
6722 oldequiv = old, real_oldequiv = real_old;
6724 else
6725 /* This could be handled more intelligently too. */
6726 oldequiv = old, real_oldequiv = real_old;
6730 /* If we still need a secondary reload register, check
6731 to see if it is being used as a scratch or intermediate
6732 register and generate code appropriately. If we need
6733 a scratch register, use REAL_OLDEQUIV since the form of
6734 the insn may depend on the actual address if it is
6735 a MEM. */
6737 if (second_reload_reg)
6739 if (icode != CODE_FOR_nothing)
6741 /* We'd have to add extra code to handle this case. */
6742 gcc_assert (!third_reload_reg);
6744 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6745 second_reload_reg));
6746 special = 1;
6748 else
6750 /* See if we need a scratch register to load the
6751 intermediate register (a tertiary reload). */
6752 if (tertiary_icode != CODE_FOR_nothing)
6754 emit_insn ((GEN_FCN (tertiary_icode)
6755 (second_reload_reg, real_oldequiv,
6756 third_reload_reg)));
6758 else if (third_reload_reg)
6760 gen_reload (third_reload_reg, real_oldequiv,
6761 rl->opnum,
6762 rl->when_needed);
6763 gen_reload (second_reload_reg, third_reload_reg,
6764 rl->opnum,
6765 rl->when_needed);
6767 else
6768 gen_reload (second_reload_reg, real_oldequiv,
6769 rl->opnum,
6770 rl->when_needed);
6772 oldequiv = second_reload_reg;
6777 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6779 rtx real_oldequiv = oldequiv;
6781 if ((REG_P (oldequiv)
6782 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6783 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6784 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6785 || (GET_CODE (oldequiv) == SUBREG
6786 && REG_P (SUBREG_REG (oldequiv))
6787 && (REGNO (SUBREG_REG (oldequiv))
6788 >= FIRST_PSEUDO_REGISTER)
6789 && ((reg_equiv_memory_loc
6790 [REGNO (SUBREG_REG (oldequiv))] != 0)
6791 || (reg_equiv_constant
6792 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6793 || (CONSTANT_P (oldequiv)
6794 && (PREFERRED_RELOAD_CLASS (oldequiv,
6795 REGNO_REG_CLASS (REGNO (reloadreg)))
6796 == NO_REGS)))
6797 real_oldequiv = rl->in;
6798 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6799 rl->when_needed);
6802 if (flag_non_call_exceptions)
6803 copy_eh_notes (insn, get_insns ());
6805 /* End this sequence. */
6806 *where = get_insns ();
6807 end_sequence ();
6809 /* Update reload_override_in so that delete_address_reloads_1
6810 can see the actual register usage. */
6811 if (oldequiv_reg)
6812 reload_override_in[j] = oldequiv;
6815 /* Generate insns to for the output reload RL, which is for the insn described
6816 by CHAIN and has the number J. */
6817 static void
6818 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6819 int j)
6821 rtx reloadreg = rl->reg_rtx;
6822 rtx insn = chain->insn;
6823 int special = 0;
6824 rtx old = rl->out;
6825 enum machine_mode mode = GET_MODE (old);
6826 rtx p;
6828 if (rl->when_needed == RELOAD_OTHER)
6829 start_sequence ();
6830 else
6831 push_to_sequence (output_reload_insns[rl->opnum]);
6833 /* Determine the mode to reload in.
6834 See comments above (for input reloading). */
6836 if (mode == VOIDmode)
6838 /* VOIDmode should never happen for an output. */
6839 if (asm_noperands (PATTERN (insn)) < 0)
6840 /* It's the compiler's fault. */
6841 fatal_insn ("VOIDmode on an output", insn);
6842 error_for_asm (insn, "output operand is constant in %<asm%>");
6843 /* Prevent crash--use something we know is valid. */
6844 mode = word_mode;
6845 old = gen_rtx_REG (mode, REGNO (reloadreg));
6848 if (GET_MODE (reloadreg) != mode)
6849 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6851 /* If we need two reload regs, set RELOADREG to the intermediate
6852 one, since it will be stored into OLD. We might need a secondary
6853 register only for an input reload, so check again here. */
6855 if (rl->secondary_out_reload >= 0)
6857 rtx real_old = old;
6858 int secondary_reload = rl->secondary_out_reload;
6859 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
6861 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6862 && reg_equiv_mem[REGNO (old)] != 0)
6863 real_old = reg_equiv_mem[REGNO (old)];
6865 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
6867 rtx second_reloadreg = reloadreg;
6868 reloadreg = rld[secondary_reload].reg_rtx;
6870 /* See if RELOADREG is to be used as a scratch register
6871 or as an intermediate register. */
6872 if (rl->secondary_out_icode != CODE_FOR_nothing)
6874 /* We'd have to add extra code to handle this case. */
6875 gcc_assert (tertiary_reload < 0);
6877 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6878 (real_old, second_reloadreg, reloadreg)));
6879 special = 1;
6881 else
6883 /* See if we need both a scratch and intermediate reload
6884 register. */
6886 enum insn_code tertiary_icode
6887 = rld[secondary_reload].secondary_out_icode;
6889 /* We'd have to add more code for quartary reloads. */
6890 gcc_assert (tertiary_reload < 0
6891 || rld[tertiary_reload].secondary_out_reload < 0);
6893 if (GET_MODE (reloadreg) != mode)
6894 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6896 if (tertiary_icode != CODE_FOR_nothing)
6898 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6899 rtx tem;
6901 /* Copy primary reload reg to secondary reload reg.
6902 (Note that these have been swapped above, then
6903 secondary reload reg to OLD using our insn.) */
6905 /* If REAL_OLD is a paradoxical SUBREG, remove it
6906 and try to put the opposite SUBREG on
6907 RELOADREG. */
6908 if (GET_CODE (real_old) == SUBREG
6909 && (GET_MODE_SIZE (GET_MODE (real_old))
6910 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6911 && 0 != (tem = gen_lowpart_common
6912 (GET_MODE (SUBREG_REG (real_old)),
6913 reloadreg)))
6914 real_old = SUBREG_REG (real_old), reloadreg = tem;
6916 gen_reload (reloadreg, second_reloadreg,
6917 rl->opnum, rl->when_needed);
6918 emit_insn ((GEN_FCN (tertiary_icode)
6919 (real_old, reloadreg, third_reloadreg)));
6920 special = 1;
6923 else
6925 /* Copy between the reload regs here and then to
6926 OUT later. */
6928 gen_reload (reloadreg, second_reloadreg,
6929 rl->opnum, rl->when_needed);
6930 if (tertiary_reload >= 0)
6932 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6934 gen_reload (third_reloadreg, reloadreg,
6935 rl->opnum, rl->when_needed);
6936 reloadreg = third_reloadreg;
6943 /* Output the last reload insn. */
6944 if (! special)
6946 rtx set;
6948 /* Don't output the last reload if OLD is not the dest of
6949 INSN and is in the src and is clobbered by INSN. */
6950 if (! flag_expensive_optimizations
6951 || !REG_P (old)
6952 || !(set = single_set (insn))
6953 || rtx_equal_p (old, SET_DEST (set))
6954 || !reg_mentioned_p (old, SET_SRC (set))
6955 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6956 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6957 gen_reload (old, reloadreg, rl->opnum,
6958 rl->when_needed);
6961 /* Look at all insns we emitted, just to be safe. */
6962 for (p = get_insns (); p; p = NEXT_INSN (p))
6963 if (INSN_P (p))
6965 rtx pat = PATTERN (p);
6967 /* If this output reload doesn't come from a spill reg,
6968 clear any memory of reloaded copies of the pseudo reg.
6969 If this output reload comes from a spill reg,
6970 reg_has_output_reload will make this do nothing. */
6971 note_stores (pat, forget_old_reloads_1, NULL);
6973 if (reg_mentioned_p (rl->reg_rtx, pat))
6975 rtx set = single_set (insn);
6976 if (reload_spill_index[j] < 0
6977 && set
6978 && SET_SRC (set) == rl->reg_rtx)
6980 int src = REGNO (SET_SRC (set));
6982 reload_spill_index[j] = src;
6983 SET_HARD_REG_BIT (reg_is_output_reload, src);
6984 if (find_regno_note (insn, REG_DEAD, src))
6985 SET_HARD_REG_BIT (reg_reloaded_died, src);
6987 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6989 int s = rl->secondary_out_reload;
6990 set = single_set (p);
6991 /* If this reload copies only to the secondary reload
6992 register, the secondary reload does the actual
6993 store. */
6994 if (s >= 0 && set == NULL_RTX)
6995 /* We can't tell what function the secondary reload
6996 has and where the actual store to the pseudo is
6997 made; leave new_spill_reg_store alone. */
6999 else if (s >= 0
7000 && SET_SRC (set) == rl->reg_rtx
7001 && SET_DEST (set) == rld[s].reg_rtx)
7003 /* Usually the next instruction will be the
7004 secondary reload insn; if we can confirm
7005 that it is, setting new_spill_reg_store to
7006 that insn will allow an extra optimization. */
7007 rtx s_reg = rld[s].reg_rtx;
7008 rtx next = NEXT_INSN (p);
7009 rld[s].out = rl->out;
7010 rld[s].out_reg = rl->out_reg;
7011 set = single_set (next);
7012 if (set && SET_SRC (set) == s_reg
7013 && ! new_spill_reg_store[REGNO (s_reg)])
7015 SET_HARD_REG_BIT (reg_is_output_reload,
7016 REGNO (s_reg));
7017 new_spill_reg_store[REGNO (s_reg)] = next;
7020 else
7021 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
7026 if (rl->when_needed == RELOAD_OTHER)
7028 emit_insn (other_output_reload_insns[rl->opnum]);
7029 other_output_reload_insns[rl->opnum] = get_insns ();
7031 else
7032 output_reload_insns[rl->opnum] = get_insns ();
7034 if (flag_non_call_exceptions)
7035 copy_eh_notes (insn, get_insns ());
7037 end_sequence ();
7040 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7041 and has the number J. */
7042 static void
7043 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7045 rtx insn = chain->insn;
7046 rtx old = (rl->in && MEM_P (rl->in)
7047 ? rl->in_reg : rl->in);
7049 if (old != 0
7050 /* AUTO_INC reloads need to be handled even if inherited. We got an
7051 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7052 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7053 && ! rtx_equal_p (rl->reg_rtx, old)
7054 && rl->reg_rtx != 0)
7055 emit_input_reload_insns (chain, rld + j, old, j);
7057 /* When inheriting a wider reload, we have a MEM in rl->in,
7058 e.g. inheriting a SImode output reload for
7059 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7060 if (optimize && reload_inherited[j] && rl->in
7061 && MEM_P (rl->in)
7062 && MEM_P (rl->in_reg)
7063 && reload_spill_index[j] >= 0
7064 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7065 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7067 /* If we are reloading a register that was recently stored in with an
7068 output-reload, see if we can prove there was
7069 actually no need to store the old value in it. */
7071 if (optimize
7072 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
7073 that there may be multiple uses of the previous output reload.
7074 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
7075 && rl->when_needed == RELOAD_FOR_INPUT
7076 && (reload_inherited[j] || reload_override_in[j])
7077 && rl->reg_rtx
7078 && REG_P (rl->reg_rtx)
7079 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7080 #if 0
7081 /* There doesn't seem to be any reason to restrict this to pseudos
7082 and doing so loses in the case where we are copying from a
7083 register of the wrong class. */
7084 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7085 >= FIRST_PSEUDO_REGISTER)
7086 #endif
7087 /* The insn might have already some references to stackslots
7088 replaced by MEMs, while reload_out_reg still names the
7089 original pseudo. */
7090 && (dead_or_set_p (insn,
7091 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7092 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7093 rl->out_reg)))
7094 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7097 /* Do output reloading for reload RL, which is for the insn described by
7098 CHAIN and has the number J.
7099 ??? At some point we need to support handling output reloads of
7100 JUMP_INSNs or insns that set cc0. */
7101 static void
7102 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7104 rtx note, old;
7105 rtx insn = chain->insn;
7106 /* If this is an output reload that stores something that is
7107 not loaded in this same reload, see if we can eliminate a previous
7108 store. */
7109 rtx pseudo = rl->out_reg;
7111 if (pseudo
7112 && optimize
7113 && REG_P (pseudo)
7114 && ! rtx_equal_p (rl->in_reg, pseudo)
7115 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7116 && reg_last_reload_reg[REGNO (pseudo)])
7118 int pseudo_no = REGNO (pseudo);
7119 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7121 /* We don't need to test full validity of last_regno for
7122 inherit here; we only want to know if the store actually
7123 matches the pseudo. */
7124 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7125 && reg_reloaded_contents[last_regno] == pseudo_no
7126 && spill_reg_store[last_regno]
7127 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7128 delete_output_reload (insn, j, last_regno);
7131 old = rl->out_reg;
7132 if (old == 0
7133 || rl->reg_rtx == old
7134 || rl->reg_rtx == 0)
7135 return;
7137 /* An output operand that dies right away does need a reload,
7138 but need not be copied from it. Show the new location in the
7139 REG_UNUSED note. */
7140 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7141 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7143 XEXP (note, 0) = rl->reg_rtx;
7144 return;
7146 /* Likewise for a SUBREG of an operand that dies. */
7147 else if (GET_CODE (old) == SUBREG
7148 && REG_P (SUBREG_REG (old))
7149 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7150 SUBREG_REG (old))))
7152 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7153 rl->reg_rtx);
7154 return;
7156 else if (GET_CODE (old) == SCRATCH)
7157 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7158 but we don't want to make an output reload. */
7159 return;
7161 /* If is a JUMP_INSN, we can't support output reloads yet. */
7162 gcc_assert (NONJUMP_INSN_P (insn));
7164 emit_output_reload_insns (chain, rld + j, j);
7167 /* Reload number R reloads from or to a group of hard registers starting at
7168 register REGNO. Return true if it can be treated for inheritance purposes
7169 like a group of reloads, each one reloading a single hard register.
7170 The caller has already checked that the spill register and REGNO use
7171 the same number of registers to store the reload value. */
7173 static bool
7174 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7176 #ifdef CANNOT_CHANGE_MODE_CLASS
7177 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7178 GET_MODE (rld[r].reg_rtx),
7179 reg_raw_mode[reload_spill_index[r]])
7180 && !REG_CANNOT_CHANGE_MODE_P (regno,
7181 GET_MODE (rld[r].reg_rtx),
7182 reg_raw_mode[regno]));
7183 #else
7184 return true;
7185 #endif
7188 /* Output insns to reload values in and out of the chosen reload regs. */
7190 static void
7191 emit_reload_insns (struct insn_chain *chain)
7193 rtx insn = chain->insn;
7195 int j;
7197 CLEAR_HARD_REG_SET (reg_reloaded_died);
7199 for (j = 0; j < reload_n_operands; j++)
7200 input_reload_insns[j] = input_address_reload_insns[j]
7201 = inpaddr_address_reload_insns[j]
7202 = output_reload_insns[j] = output_address_reload_insns[j]
7203 = outaddr_address_reload_insns[j]
7204 = other_output_reload_insns[j] = 0;
7205 other_input_address_reload_insns = 0;
7206 other_input_reload_insns = 0;
7207 operand_reload_insns = 0;
7208 other_operand_reload_insns = 0;
7210 /* Dump reloads into the dump file. */
7211 if (dump_file)
7213 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7214 debug_reload_to_stream (dump_file);
7217 /* Now output the instructions to copy the data into and out of the
7218 reload registers. Do these in the order that the reloads were reported,
7219 since reloads of base and index registers precede reloads of operands
7220 and the operands may need the base and index registers reloaded. */
7222 for (j = 0; j < n_reloads; j++)
7224 if (rld[j].reg_rtx
7225 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7226 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7228 do_input_reload (chain, rld + j, j);
7229 do_output_reload (chain, rld + j, j);
7232 /* Now write all the insns we made for reloads in the order expected by
7233 the allocation functions. Prior to the insn being reloaded, we write
7234 the following reloads:
7236 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7238 RELOAD_OTHER reloads.
7240 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7241 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7242 RELOAD_FOR_INPUT reload for the operand.
7244 RELOAD_FOR_OPADDR_ADDRS reloads.
7246 RELOAD_FOR_OPERAND_ADDRESS reloads.
7248 After the insn being reloaded, we write the following:
7250 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7251 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7252 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7253 reloads for the operand. The RELOAD_OTHER output reloads are
7254 output in descending order by reload number. */
7256 emit_insn_before (other_input_address_reload_insns, insn);
7257 emit_insn_before (other_input_reload_insns, insn);
7259 for (j = 0; j < reload_n_operands; j++)
7261 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7262 emit_insn_before (input_address_reload_insns[j], insn);
7263 emit_insn_before (input_reload_insns[j], insn);
7266 emit_insn_before (other_operand_reload_insns, insn);
7267 emit_insn_before (operand_reload_insns, insn);
7269 for (j = 0; j < reload_n_operands; j++)
7271 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7272 x = emit_insn_after (output_address_reload_insns[j], x);
7273 x = emit_insn_after (output_reload_insns[j], x);
7274 emit_insn_after (other_output_reload_insns[j], x);
7277 /* For all the spill regs newly reloaded in this instruction,
7278 record what they were reloaded from, so subsequent instructions
7279 can inherit the reloads.
7281 Update spill_reg_store for the reloads of this insn.
7282 Copy the elements that were updated in the loop above. */
7284 for (j = 0; j < n_reloads; j++)
7286 int r = reload_order[j];
7287 int i = reload_spill_index[r];
7289 /* If this is a non-inherited input reload from a pseudo, we must
7290 clear any memory of a previous store to the same pseudo. Only do
7291 something if there will not be an output reload for the pseudo
7292 being reloaded. */
7293 if (rld[r].in_reg != 0
7294 && ! (reload_inherited[r] || reload_override_in[r]))
7296 rtx reg = rld[r].in_reg;
7298 if (GET_CODE (reg) == SUBREG)
7299 reg = SUBREG_REG (reg);
7301 if (REG_P (reg)
7302 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7303 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7305 int nregno = REGNO (reg);
7307 if (reg_last_reload_reg[nregno])
7309 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7311 if (reg_reloaded_contents[last_regno] == nregno)
7312 spill_reg_store[last_regno] = 0;
7317 /* I is nonneg if this reload used a register.
7318 If rld[r].reg_rtx is 0, this is an optional reload
7319 that we opted to ignore. */
7321 if (i >= 0 && rld[r].reg_rtx != 0)
7323 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7324 int k;
7325 int part_reaches_end = 0;
7326 int all_reaches_end = 1;
7328 /* For a multi register reload, we need to check if all or part
7329 of the value lives to the end. */
7330 for (k = 0; k < nr; k++)
7332 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7333 rld[r].when_needed))
7334 part_reaches_end = 1;
7335 else
7336 all_reaches_end = 0;
7339 /* Ignore reloads that don't reach the end of the insn in
7340 entirety. */
7341 if (all_reaches_end)
7343 /* First, clear out memory of what used to be in this spill reg.
7344 If consecutive registers are used, clear them all. */
7346 for (k = 0; k < nr; k++)
7348 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7349 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7352 /* Maybe the spill reg contains a copy of reload_out. */
7353 if (rld[r].out != 0
7354 && (REG_P (rld[r].out)
7355 #ifdef AUTO_INC_DEC
7356 || ! rld[r].out_reg
7357 #endif
7358 || REG_P (rld[r].out_reg)))
7360 rtx out = (REG_P (rld[r].out)
7361 ? rld[r].out
7362 : rld[r].out_reg
7363 ? rld[r].out_reg
7364 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7365 int nregno = REGNO (out);
7366 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7367 : hard_regno_nregs[nregno]
7368 [GET_MODE (rld[r].reg_rtx)]);
7369 bool piecemeal;
7371 spill_reg_store[i] = new_spill_reg_store[i];
7372 spill_reg_stored_to[i] = out;
7373 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7375 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7376 && nr == nnr
7377 && inherit_piecemeal_p (r, nregno));
7379 /* If NREGNO is a hard register, it may occupy more than
7380 one register. If it does, say what is in the
7381 rest of the registers assuming that both registers
7382 agree on how many words the object takes. If not,
7383 invalidate the subsequent registers. */
7385 if (nregno < FIRST_PSEUDO_REGISTER)
7386 for (k = 1; k < nnr; k++)
7387 reg_last_reload_reg[nregno + k]
7388 = (piecemeal
7389 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7390 : 0);
7392 /* Now do the inverse operation. */
7393 for (k = 0; k < nr; k++)
7395 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7396 reg_reloaded_contents[i + k]
7397 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7398 ? nregno
7399 : nregno + k);
7400 reg_reloaded_insn[i + k] = insn;
7401 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7402 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7403 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7407 /* Maybe the spill reg contains a copy of reload_in. Only do
7408 something if there will not be an output reload for
7409 the register being reloaded. */
7410 else if (rld[r].out_reg == 0
7411 && rld[r].in != 0
7412 && ((REG_P (rld[r].in)
7413 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7414 && !REGNO_REG_SET_P (&reg_has_output_reload,
7415 REGNO (rld[r].in)))
7416 || (REG_P (rld[r].in_reg)
7417 && !REGNO_REG_SET_P (&reg_has_output_reload,
7418 REGNO (rld[r].in_reg))))
7419 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7421 int nregno;
7422 int nnr;
7423 rtx in;
7424 bool piecemeal;
7426 if (REG_P (rld[r].in)
7427 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7428 in = rld[r].in;
7429 else if (REG_P (rld[r].in_reg))
7430 in = rld[r].in_reg;
7431 else
7432 in = XEXP (rld[r].in_reg, 0);
7433 nregno = REGNO (in);
7435 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7436 : hard_regno_nregs[nregno]
7437 [GET_MODE (rld[r].reg_rtx)]);
7439 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7441 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7442 && nr == nnr
7443 && inherit_piecemeal_p (r, nregno));
7445 if (nregno < FIRST_PSEUDO_REGISTER)
7446 for (k = 1; k < nnr; k++)
7447 reg_last_reload_reg[nregno + k]
7448 = (piecemeal
7449 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7450 : 0);
7452 /* Unless we inherited this reload, show we haven't
7453 recently done a store.
7454 Previous stores of inherited auto_inc expressions
7455 also have to be discarded. */
7456 if (! reload_inherited[r]
7457 || (rld[r].out && ! rld[r].out_reg))
7458 spill_reg_store[i] = 0;
7460 for (k = 0; k < nr; k++)
7462 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7463 reg_reloaded_contents[i + k]
7464 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7465 ? nregno
7466 : nregno + k);
7467 reg_reloaded_insn[i + k] = insn;
7468 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7469 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7470 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7475 /* However, if part of the reload reaches the end, then we must
7476 invalidate the old info for the part that survives to the end. */
7477 else if (part_reaches_end)
7479 for (k = 0; k < nr; k++)
7480 if (reload_reg_reaches_end_p (i + k,
7481 rld[r].opnum,
7482 rld[r].when_needed))
7483 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7487 /* The following if-statement was #if 0'd in 1.34 (or before...).
7488 It's reenabled in 1.35 because supposedly nothing else
7489 deals with this problem. */
7491 /* If a register gets output-reloaded from a non-spill register,
7492 that invalidates any previous reloaded copy of it.
7493 But forget_old_reloads_1 won't get to see it, because
7494 it thinks only about the original insn. So invalidate it here.
7495 Also do the same thing for RELOAD_OTHER constraints where the
7496 output is discarded. */
7497 if (i < 0
7498 && ((rld[r].out != 0
7499 && (REG_P (rld[r].out)
7500 || (MEM_P (rld[r].out)
7501 && REG_P (rld[r].out_reg))))
7502 || (rld[r].out == 0 && rld[r].out_reg
7503 && REG_P (rld[r].out_reg))))
7505 rtx out = ((rld[r].out && REG_P (rld[r].out))
7506 ? rld[r].out : rld[r].out_reg);
7507 int nregno = REGNO (out);
7508 if (nregno >= FIRST_PSEUDO_REGISTER)
7510 rtx src_reg, store_insn = NULL_RTX;
7512 reg_last_reload_reg[nregno] = 0;
7514 /* If we can find a hard register that is stored, record
7515 the storing insn so that we may delete this insn with
7516 delete_output_reload. */
7517 src_reg = rld[r].reg_rtx;
7519 /* If this is an optional reload, try to find the source reg
7520 from an input reload. */
7521 if (! src_reg)
7523 rtx set = single_set (insn);
7524 if (set && SET_DEST (set) == rld[r].out)
7526 int k;
7528 src_reg = SET_SRC (set);
7529 store_insn = insn;
7530 for (k = 0; k < n_reloads; k++)
7532 if (rld[k].in == src_reg)
7534 src_reg = rld[k].reg_rtx;
7535 break;
7540 else
7541 store_insn = new_spill_reg_store[REGNO (src_reg)];
7542 if (src_reg && REG_P (src_reg)
7543 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7545 int src_regno = REGNO (src_reg);
7546 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7547 /* The place where to find a death note varies with
7548 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7549 necessarily checked exactly in the code that moves
7550 notes, so just check both locations. */
7551 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7552 if (! note && store_insn)
7553 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7554 while (nr-- > 0)
7556 spill_reg_store[src_regno + nr] = store_insn;
7557 spill_reg_stored_to[src_regno + nr] = out;
7558 reg_reloaded_contents[src_regno + nr] = nregno;
7559 reg_reloaded_insn[src_regno + nr] = store_insn;
7560 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7561 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7562 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7563 GET_MODE (src_reg)))
7564 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7565 src_regno + nr);
7566 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7567 if (note)
7568 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7569 else
7570 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7572 reg_last_reload_reg[nregno] = src_reg;
7573 /* We have to set reg_has_output_reload here, or else
7574 forget_old_reloads_1 will clear reg_last_reload_reg
7575 right away. */
7576 SET_REGNO_REG_SET (&reg_has_output_reload,
7577 nregno);
7580 else
7582 int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7584 while (num_regs-- > 0)
7585 reg_last_reload_reg[nregno + num_regs] = 0;
7589 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7592 /* Go through the motions to emit INSN and test if it is strictly valid.
7593 Return the emitted insn if valid, else return NULL. */
7595 static rtx
7596 emit_insn_if_valid_for_reload (rtx insn)
7598 rtx last = get_last_insn ();
7599 int code;
7601 insn = emit_insn (insn);
7602 code = recog_memoized (insn);
7604 if (code >= 0)
7606 extract_insn (insn);
7607 /* We want constrain operands to treat this insn strictly in its
7608 validity determination, i.e., the way it would after reload has
7609 completed. */
7610 if (constrain_operands (1))
7611 return insn;
7614 delete_insns_since (last);
7615 return NULL;
7618 /* Emit code to perform a reload from IN (which may be a reload register) to
7619 OUT (which may also be a reload register). IN or OUT is from operand
7620 OPNUM with reload type TYPE.
7622 Returns first insn emitted. */
7624 static rtx
7625 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7627 rtx last = get_last_insn ();
7628 rtx tem;
7630 /* If IN is a paradoxical SUBREG, remove it and try to put the
7631 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7632 if (GET_CODE (in) == SUBREG
7633 && (GET_MODE_SIZE (GET_MODE (in))
7634 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7635 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7636 in = SUBREG_REG (in), out = tem;
7637 else if (GET_CODE (out) == SUBREG
7638 && (GET_MODE_SIZE (GET_MODE (out))
7639 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7640 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7641 out = SUBREG_REG (out), in = tem;
7643 /* How to do this reload can get quite tricky. Normally, we are being
7644 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7645 register that didn't get a hard register. In that case we can just
7646 call emit_move_insn.
7648 We can also be asked to reload a PLUS that adds a register or a MEM to
7649 another register, constant or MEM. This can occur during frame pointer
7650 elimination and while reloading addresses. This case is handled by
7651 trying to emit a single insn to perform the add. If it is not valid,
7652 we use a two insn sequence.
7654 Or we can be asked to reload an unary operand that was a fragment of
7655 an addressing mode, into a register. If it isn't recognized as-is,
7656 we try making the unop operand and the reload-register the same:
7657 (set reg:X (unop:X expr:Y))
7658 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7660 Finally, we could be called to handle an 'o' constraint by putting
7661 an address into a register. In that case, we first try to do this
7662 with a named pattern of "reload_load_address". If no such pattern
7663 exists, we just emit a SET insn and hope for the best (it will normally
7664 be valid on machines that use 'o').
7666 This entire process is made complex because reload will never
7667 process the insns we generate here and so we must ensure that
7668 they will fit their constraints and also by the fact that parts of
7669 IN might be being reloaded separately and replaced with spill registers.
7670 Because of this, we are, in some sense, just guessing the right approach
7671 here. The one listed above seems to work.
7673 ??? At some point, this whole thing needs to be rethought. */
7675 if (GET_CODE (in) == PLUS
7676 && (REG_P (XEXP (in, 0))
7677 || GET_CODE (XEXP (in, 0)) == SUBREG
7678 || MEM_P (XEXP (in, 0)))
7679 && (REG_P (XEXP (in, 1))
7680 || GET_CODE (XEXP (in, 1)) == SUBREG
7681 || CONSTANT_P (XEXP (in, 1))
7682 || MEM_P (XEXP (in, 1))))
7684 /* We need to compute the sum of a register or a MEM and another
7685 register, constant, or MEM, and put it into the reload
7686 register. The best possible way of doing this is if the machine
7687 has a three-operand ADD insn that accepts the required operands.
7689 The simplest approach is to try to generate such an insn and see if it
7690 is recognized and matches its constraints. If so, it can be used.
7692 It might be better not to actually emit the insn unless it is valid,
7693 but we need to pass the insn as an operand to `recog' and
7694 `extract_insn' and it is simpler to emit and then delete the insn if
7695 not valid than to dummy things up. */
7697 rtx op0, op1, tem, insn;
7698 int code;
7700 op0 = find_replacement (&XEXP (in, 0));
7701 op1 = find_replacement (&XEXP (in, 1));
7703 /* Since constraint checking is strict, commutativity won't be
7704 checked, so we need to do that here to avoid spurious failure
7705 if the add instruction is two-address and the second operand
7706 of the add is the same as the reload reg, which is frequently
7707 the case. If the insn would be A = B + A, rearrange it so
7708 it will be A = A + B as constrain_operands expects. */
7710 if (REG_P (XEXP (in, 1))
7711 && REGNO (out) == REGNO (XEXP (in, 1)))
7712 tem = op0, op0 = op1, op1 = tem;
7714 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7715 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7717 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7718 if (insn)
7719 return insn;
7721 /* If that failed, we must use a conservative two-insn sequence.
7723 Use a move to copy one operand into the reload register. Prefer
7724 to reload a constant, MEM or pseudo since the move patterns can
7725 handle an arbitrary operand. If OP1 is not a constant, MEM or
7726 pseudo and OP1 is not a valid operand for an add instruction, then
7727 reload OP1.
7729 After reloading one of the operands into the reload register, add
7730 the reload register to the output register.
7732 If there is another way to do this for a specific machine, a
7733 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7734 we emit below. */
7736 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7738 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7739 || (REG_P (op1)
7740 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7741 || (code != CODE_FOR_nothing
7742 && ! ((*insn_data[code].operand[2].predicate)
7743 (op1, insn_data[code].operand[2].mode))))
7744 tem = op0, op0 = op1, op1 = tem;
7746 gen_reload (out, op0, opnum, type);
7748 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7749 This fixes a problem on the 32K where the stack pointer cannot
7750 be used as an operand of an add insn. */
7752 if (rtx_equal_p (op0, op1))
7753 op1 = out;
7755 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7756 if (insn)
7758 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7759 REG_NOTES (insn)
7760 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7761 return insn;
7764 /* If that failed, copy the address register to the reload register.
7765 Then add the constant to the reload register. */
7767 gen_reload (out, op1, opnum, type);
7768 insn = emit_insn (gen_add2_insn (out, op0));
7769 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7772 #ifdef SECONDARY_MEMORY_NEEDED
7773 /* If we need a memory location to do the move, do it that way. */
7774 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7775 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7776 && (REG_P (out) || GET_CODE (out) == SUBREG)
7777 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7778 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7779 REGNO_REG_CLASS (reg_or_subregno (out)),
7780 GET_MODE (out)))
7782 /* Get the memory to use and rewrite both registers to its mode. */
7783 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7785 if (GET_MODE (loc) != GET_MODE (out))
7786 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7788 if (GET_MODE (loc) != GET_MODE (in))
7789 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7791 gen_reload (loc, in, opnum, type);
7792 gen_reload (out, loc, opnum, type);
7794 #endif
7795 else if (REG_P (out) && UNARY_P (in))
7797 rtx insn;
7798 rtx op1;
7799 rtx out_moded;
7800 rtx set;
7802 op1 = find_replacement (&XEXP (in, 0));
7803 if (op1 != XEXP (in, 0))
7804 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7806 /* First, try a plain SET. */
7807 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7808 if (set)
7809 return set;
7811 /* If that failed, move the inner operand to the reload
7812 register, and try the same unop with the inner expression
7813 replaced with the reload register. */
7815 if (GET_MODE (op1) != GET_MODE (out))
7816 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7817 else
7818 out_moded = out;
7820 gen_reload (out_moded, op1, opnum, type);
7822 insn
7823 = gen_rtx_SET (VOIDmode, out,
7824 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7825 out_moded));
7826 insn = emit_insn_if_valid_for_reload (insn);
7827 if (insn)
7829 REG_NOTES (insn)
7830 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7831 return insn;
7834 fatal_insn ("Failure trying to reload:", set);
7836 /* If IN is a simple operand, use gen_move_insn. */
7837 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7839 tem = emit_insn (gen_move_insn (out, in));
7840 /* IN may contain a LABEL_REF, if so add a REG_LABEL note. */
7841 mark_jump_label (in, tem, 0);
7844 #ifdef HAVE_reload_load_address
7845 else if (HAVE_reload_load_address)
7846 emit_insn (gen_reload_load_address (out, in));
7847 #endif
7849 /* Otherwise, just write (set OUT IN) and hope for the best. */
7850 else
7851 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7853 /* Return the first insn emitted.
7854 We can not just return get_last_insn, because there may have
7855 been multiple instructions emitted. Also note that gen_move_insn may
7856 emit more than one insn itself, so we can not assume that there is one
7857 insn emitted per emit_insn_before call. */
7859 return last ? NEXT_INSN (last) : get_insns ();
7862 /* Delete a previously made output-reload whose result we now believe
7863 is not needed. First we double-check.
7865 INSN is the insn now being processed.
7866 LAST_RELOAD_REG is the hard register number for which we want to delete
7867 the last output reload.
7868 J is the reload-number that originally used REG. The caller has made
7869 certain that reload J doesn't use REG any longer for input. */
7871 static void
7872 delete_output_reload (rtx insn, int j, int last_reload_reg)
7874 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7875 rtx reg = spill_reg_stored_to[last_reload_reg];
7876 int k;
7877 int n_occurrences;
7878 int n_inherited = 0;
7879 rtx i1;
7880 rtx substed;
7882 /* It is possible that this reload has been only used to set another reload
7883 we eliminated earlier and thus deleted this instruction too. */
7884 if (INSN_DELETED_P (output_reload_insn))
7885 return;
7887 /* Get the raw pseudo-register referred to. */
7889 while (GET_CODE (reg) == SUBREG)
7890 reg = SUBREG_REG (reg);
7891 substed = reg_equiv_memory_loc[REGNO (reg)];
7893 /* This is unsafe if the operand occurs more often in the current
7894 insn than it is inherited. */
7895 for (k = n_reloads - 1; k >= 0; k--)
7897 rtx reg2 = rld[k].in;
7898 if (! reg2)
7899 continue;
7900 if (MEM_P (reg2) || reload_override_in[k])
7901 reg2 = rld[k].in_reg;
7902 #ifdef AUTO_INC_DEC
7903 if (rld[k].out && ! rld[k].out_reg)
7904 reg2 = XEXP (rld[k].in_reg, 0);
7905 #endif
7906 while (GET_CODE (reg2) == SUBREG)
7907 reg2 = SUBREG_REG (reg2);
7908 if (rtx_equal_p (reg2, reg))
7910 if (reload_inherited[k] || reload_override_in[k] || k == j)
7912 n_inherited++;
7913 reg2 = rld[k].out_reg;
7914 if (! reg2)
7915 continue;
7916 while (GET_CODE (reg2) == SUBREG)
7917 reg2 = XEXP (reg2, 0);
7918 if (rtx_equal_p (reg2, reg))
7919 n_inherited++;
7921 else
7922 return;
7925 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7926 if (substed)
7927 n_occurrences += count_occurrences (PATTERN (insn),
7928 eliminate_regs (substed, 0,
7929 NULL_RTX), 0);
7930 for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
7932 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
7933 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
7935 if (n_occurrences > n_inherited)
7936 return;
7938 /* If the pseudo-reg we are reloading is no longer referenced
7939 anywhere between the store into it and here,
7940 and we're within the same basic block, then the value can only
7941 pass through the reload reg and end up here.
7942 Otherwise, give up--return. */
7943 for (i1 = NEXT_INSN (output_reload_insn);
7944 i1 != insn; i1 = NEXT_INSN (i1))
7946 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7947 return;
7948 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7949 && reg_mentioned_p (reg, PATTERN (i1)))
7951 /* If this is USE in front of INSN, we only have to check that
7952 there are no more references than accounted for by inheritance. */
7953 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7955 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7956 i1 = NEXT_INSN (i1);
7958 if (n_occurrences <= n_inherited && i1 == insn)
7959 break;
7960 return;
7964 /* We will be deleting the insn. Remove the spill reg information. */
7965 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7967 spill_reg_store[last_reload_reg + k] = 0;
7968 spill_reg_stored_to[last_reload_reg + k] = 0;
7971 /* The caller has already checked that REG dies or is set in INSN.
7972 It has also checked that we are optimizing, and thus some
7973 inaccuracies in the debugging information are acceptable.
7974 So we could just delete output_reload_insn. But in some cases
7975 we can improve the debugging information without sacrificing
7976 optimization - maybe even improving the code: See if the pseudo
7977 reg has been completely replaced with reload regs. If so, delete
7978 the store insn and forget we had a stack slot for the pseudo. */
7979 if (rld[j].out != rld[j].in
7980 && REG_N_DEATHS (REGNO (reg)) == 1
7981 && REG_N_SETS (REGNO (reg)) == 1
7982 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7983 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7985 rtx i2;
7987 /* We know that it was used only between here and the beginning of
7988 the current basic block. (We also know that the last use before
7989 INSN was the output reload we are thinking of deleting, but never
7990 mind that.) Search that range; see if any ref remains. */
7991 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7993 rtx set = single_set (i2);
7995 /* Uses which just store in the pseudo don't count,
7996 since if they are the only uses, they are dead. */
7997 if (set != 0 && SET_DEST (set) == reg)
7998 continue;
7999 if (LABEL_P (i2)
8000 || JUMP_P (i2))
8001 break;
8002 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8003 && reg_mentioned_p (reg, PATTERN (i2)))
8005 /* Some other ref remains; just delete the output reload we
8006 know to be dead. */
8007 delete_address_reloads (output_reload_insn, insn);
8008 delete_insn (output_reload_insn);
8009 return;
8013 /* Delete the now-dead stores into this pseudo. Note that this
8014 loop also takes care of deleting output_reload_insn. */
8015 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8017 rtx set = single_set (i2);
8019 if (set != 0 && SET_DEST (set) == reg)
8021 delete_address_reloads (i2, insn);
8022 delete_insn (i2);
8024 if (LABEL_P (i2)
8025 || JUMP_P (i2))
8026 break;
8029 /* For the debugging info, say the pseudo lives in this reload reg. */
8030 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
8031 alter_reg (REGNO (reg), -1);
8033 else
8035 delete_address_reloads (output_reload_insn, insn);
8036 delete_insn (output_reload_insn);
8040 /* We are going to delete DEAD_INSN. Recursively delete loads of
8041 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8042 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8043 static void
8044 delete_address_reloads (rtx dead_insn, rtx current_insn)
8046 rtx set = single_set (dead_insn);
8047 rtx set2, dst, prev, next;
8048 if (set)
8050 rtx dst = SET_DEST (set);
8051 if (MEM_P (dst))
8052 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8054 /* If we deleted the store from a reloaded post_{in,de}c expression,
8055 we can delete the matching adds. */
8056 prev = PREV_INSN (dead_insn);
8057 next = NEXT_INSN (dead_insn);
8058 if (! prev || ! next)
8059 return;
8060 set = single_set (next);
8061 set2 = single_set (prev);
8062 if (! set || ! set2
8063 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8064 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8065 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8066 return;
8067 dst = SET_DEST (set);
8068 if (! rtx_equal_p (dst, SET_DEST (set2))
8069 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8070 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8071 || (INTVAL (XEXP (SET_SRC (set), 1))
8072 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8073 return;
8074 delete_related_insns (prev);
8075 delete_related_insns (next);
8078 /* Subfunction of delete_address_reloads: process registers found in X. */
8079 static void
8080 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8082 rtx prev, set, dst, i2;
8083 int i, j;
8084 enum rtx_code code = GET_CODE (x);
8086 if (code != REG)
8088 const char *fmt = GET_RTX_FORMAT (code);
8089 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8091 if (fmt[i] == 'e')
8092 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8093 else if (fmt[i] == 'E')
8095 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8096 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8097 current_insn);
8100 return;
8103 if (spill_reg_order[REGNO (x)] < 0)
8104 return;
8106 /* Scan backwards for the insn that sets x. This might be a way back due
8107 to inheritance. */
8108 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8110 code = GET_CODE (prev);
8111 if (code == CODE_LABEL || code == JUMP_INSN)
8112 return;
8113 if (!INSN_P (prev))
8114 continue;
8115 if (reg_set_p (x, PATTERN (prev)))
8116 break;
8117 if (reg_referenced_p (x, PATTERN (prev)))
8118 return;
8120 if (! prev || INSN_UID (prev) < reload_first_uid)
8121 return;
8122 /* Check that PREV only sets the reload register. */
8123 set = single_set (prev);
8124 if (! set)
8125 return;
8126 dst = SET_DEST (set);
8127 if (!REG_P (dst)
8128 || ! rtx_equal_p (dst, x))
8129 return;
8130 if (! reg_set_p (dst, PATTERN (dead_insn)))
8132 /* Check if DST was used in a later insn -
8133 it might have been inherited. */
8134 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8136 if (LABEL_P (i2))
8137 break;
8138 if (! INSN_P (i2))
8139 continue;
8140 if (reg_referenced_p (dst, PATTERN (i2)))
8142 /* If there is a reference to the register in the current insn,
8143 it might be loaded in a non-inherited reload. If no other
8144 reload uses it, that means the register is set before
8145 referenced. */
8146 if (i2 == current_insn)
8148 for (j = n_reloads - 1; j >= 0; j--)
8149 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8150 || reload_override_in[j] == dst)
8151 return;
8152 for (j = n_reloads - 1; j >= 0; j--)
8153 if (rld[j].in && rld[j].reg_rtx == dst)
8154 break;
8155 if (j >= 0)
8156 break;
8158 return;
8160 if (JUMP_P (i2))
8161 break;
8162 /* If DST is still live at CURRENT_INSN, check if it is used for
8163 any reload. Note that even if CURRENT_INSN sets DST, we still
8164 have to check the reloads. */
8165 if (i2 == current_insn)
8167 for (j = n_reloads - 1; j >= 0; j--)
8168 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8169 || reload_override_in[j] == dst)
8170 return;
8171 /* ??? We can't finish the loop here, because dst might be
8172 allocated to a pseudo in this block if no reload in this
8173 block needs any of the classes containing DST - see
8174 spill_hard_reg. There is no easy way to tell this, so we
8175 have to scan till the end of the basic block. */
8177 if (reg_set_p (dst, PATTERN (i2)))
8178 break;
8181 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8182 reg_reloaded_contents[REGNO (dst)] = -1;
8183 delete_insn (prev);
8186 /* Output reload-insns to reload VALUE into RELOADREG.
8187 VALUE is an autoincrement or autodecrement RTX whose operand
8188 is a register or memory location;
8189 so reloading involves incrementing that location.
8190 IN is either identical to VALUE, or some cheaper place to reload from.
8192 INC_AMOUNT is the number to increment or decrement by (always positive).
8193 This cannot be deduced from VALUE.
8195 Return the instruction that stores into RELOADREG. */
8197 static rtx
8198 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8200 /* REG or MEM to be copied and incremented. */
8201 rtx incloc = find_replacement (&XEXP (value, 0));
8202 /* Nonzero if increment after copying. */
8203 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8204 || GET_CODE (value) == POST_MODIFY);
8205 rtx last;
8206 rtx inc;
8207 rtx add_insn;
8208 int code;
8209 rtx store;
8210 rtx real_in = in == value ? incloc : in;
8212 /* No hard register is equivalent to this register after
8213 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8214 we could inc/dec that register as well (maybe even using it for
8215 the source), but I'm not sure it's worth worrying about. */
8216 if (REG_P (incloc))
8217 reg_last_reload_reg[REGNO (incloc)] = 0;
8219 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8221 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8222 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8224 else
8226 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8227 inc_amount = -inc_amount;
8229 inc = GEN_INT (inc_amount);
8232 /* If this is post-increment, first copy the location to the reload reg. */
8233 if (post && real_in != reloadreg)
8234 emit_insn (gen_move_insn (reloadreg, real_in));
8236 if (in == value)
8238 /* See if we can directly increment INCLOC. Use a method similar to
8239 that in gen_reload. */
8241 last = get_last_insn ();
8242 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8243 gen_rtx_PLUS (GET_MODE (incloc),
8244 incloc, inc)));
8246 code = recog_memoized (add_insn);
8247 if (code >= 0)
8249 extract_insn (add_insn);
8250 if (constrain_operands (1))
8252 /* If this is a pre-increment and we have incremented the value
8253 where it lives, copy the incremented value to RELOADREG to
8254 be used as an address. */
8256 if (! post)
8257 emit_insn (gen_move_insn (reloadreg, incloc));
8259 return add_insn;
8262 delete_insns_since (last);
8265 /* If couldn't do the increment directly, must increment in RELOADREG.
8266 The way we do this depends on whether this is pre- or post-increment.
8267 For pre-increment, copy INCLOC to the reload register, increment it
8268 there, then save back. */
8270 if (! post)
8272 if (in != reloadreg)
8273 emit_insn (gen_move_insn (reloadreg, real_in));
8274 emit_insn (gen_add2_insn (reloadreg, inc));
8275 store = emit_insn (gen_move_insn (incloc, reloadreg));
8277 else
8279 /* Postincrement.
8280 Because this might be a jump insn or a compare, and because RELOADREG
8281 may not be available after the insn in an input reload, we must do
8282 the incrementation before the insn being reloaded for.
8284 We have already copied IN to RELOADREG. Increment the copy in
8285 RELOADREG, save that back, then decrement RELOADREG so it has
8286 the original value. */
8288 emit_insn (gen_add2_insn (reloadreg, inc));
8289 store = emit_insn (gen_move_insn (incloc, reloadreg));
8290 if (GET_CODE (inc) == CONST_INT)
8291 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
8292 else
8293 emit_insn (gen_sub2_insn (reloadreg, inc));
8296 return store;
8299 #ifdef AUTO_INC_DEC
8300 static void
8301 add_auto_inc_notes (rtx insn, rtx x)
8303 enum rtx_code code = GET_CODE (x);
8304 const char *fmt;
8305 int i, j;
8307 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8309 REG_NOTES (insn)
8310 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8311 return;
8314 /* Scan all the operand sub-expressions. */
8315 fmt = GET_RTX_FORMAT (code);
8316 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8318 if (fmt[i] == 'e')
8319 add_auto_inc_notes (insn, XEXP (x, i));
8320 else if (fmt[i] == 'E')
8321 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8322 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8325 #endif
8327 /* Copy EH notes from an insn to its reloads. */
8328 static void
8329 copy_eh_notes (rtx insn, rtx x)
8331 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8332 if (eh_note)
8334 for (; x != 0; x = NEXT_INSN (x))
8336 if (may_trap_p (PATTERN (x)))
8337 REG_NOTES (x)
8338 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8339 REG_NOTES (x));
8344 /* This is used by reload pass, that does emit some instructions after
8345 abnormal calls moving basic block end, but in fact it wants to emit
8346 them on the edge. Looks for abnormal call edges, find backward the
8347 proper call and fix the damage.
8349 Similar handle instructions throwing exceptions internally. */
8350 void
8351 fixup_abnormal_edges (void)
8353 bool inserted = false;
8354 basic_block bb;
8356 FOR_EACH_BB (bb)
8358 edge e;
8359 edge_iterator ei;
8361 /* Look for cases we are interested in - calls or instructions causing
8362 exceptions. */
8363 FOR_EACH_EDGE (e, ei, bb->succs)
8365 if (e->flags & EDGE_ABNORMAL_CALL)
8366 break;
8367 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8368 == (EDGE_ABNORMAL | EDGE_EH))
8369 break;
8371 if (e && !CALL_P (BB_END (bb))
8372 && !can_throw_internal (BB_END (bb)))
8374 rtx insn;
8376 /* Get past the new insns generated. Allow notes, as the insns
8377 may be already deleted. */
8378 insn = BB_END (bb);
8379 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8380 && !can_throw_internal (insn)
8381 && insn != BB_HEAD (bb))
8382 insn = PREV_INSN (insn);
8384 if (CALL_P (insn) || can_throw_internal (insn))
8386 rtx stop, next;
8388 stop = NEXT_INSN (BB_END (bb));
8389 BB_END (bb) = insn;
8390 insn = NEXT_INSN (insn);
8392 FOR_EACH_EDGE (e, ei, bb->succs)
8393 if (e->flags & EDGE_FALLTHRU)
8394 break;
8396 while (insn && insn != stop)
8398 next = NEXT_INSN (insn);
8399 if (INSN_P (insn))
8401 delete_insn (insn);
8403 /* Sometimes there's still the return value USE.
8404 If it's placed after a trapping call (i.e. that
8405 call is the last insn anyway), we have no fallthru
8406 edge. Simply delete this use and don't try to insert
8407 on the non-existent edge. */
8408 if (GET_CODE (PATTERN (insn)) != USE)
8410 /* We're not deleting it, we're moving it. */
8411 INSN_DELETED_P (insn) = 0;
8412 PREV_INSN (insn) = NULL_RTX;
8413 NEXT_INSN (insn) = NULL_RTX;
8415 insert_insn_on_edge (insn, e);
8416 inserted = true;
8419 insn = next;
8423 /* It may be that we don't find any such trapping insn. In this
8424 case we discovered quite late that the insn that had been
8425 marked as can_throw_internal in fact couldn't trap at all.
8426 So we should in fact delete the EH edges out of the block. */
8427 else
8428 purge_dead_edges (bb);
8432 /* We've possibly turned single trapping insn into multiple ones. */
8433 if (flag_non_call_exceptions)
8435 sbitmap blocks;
8436 blocks = sbitmap_alloc (last_basic_block);
8437 sbitmap_ones (blocks);
8438 find_many_sub_basic_blocks (blocks);
8441 if (inserted)
8442 commit_edge_insertions ();
8444 #ifdef ENABLE_CHECKING
8445 /* Verify that we didn't turn one trapping insn into many, and that
8446 we found and corrected all of the problems wrt fixups on the
8447 fallthru edge. */
8448 verify_flow_info ();
8449 #endif