Merge trunk version 195330 into gupc branch.
[official-gcc.git] / gcc / testsuite / lib / target-supports.exp
blob0cc1edc67435a562a8636d2890f91327b0467913
1 # Copyright (C) 1999-2013 Free Software Foundation, Inc.
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with GCC; see the file COPYING3. If not see
15 # <http://www.gnu.org/licenses/>.
17 # Please email any bugs, comments, and/or additions to this file to:
18 # gcc-patches@gcc.gnu.org
20 # This file defines procs for determining features supported by the target.
22 # Try to compile the code given by CONTENTS into an output file of
23 # type TYPE, where TYPE is as for target_compile. Return a list
24 # whose first element contains the compiler messages and whose
25 # second element is the name of the output file.
27 # BASENAME is a prefix to use for source and output files.
28 # If ARGS is not empty, its first element is a string that
29 # should be added to the command line.
31 # Assume by default that CONTENTS is C code.
32 # Otherwise, code should contain:
33 # "// C++" for c++,
34 # "! Fortran" for Fortran code,
35 # "/* ObjC", for ObjC
36 # "// ObjC++" for ObjC++
37 # and "// Go" for Go
38 # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
39 # allow for ObjC/ObjC++ specific flags.
40 proc check_compile {basename type contents args} {
41 global tool
42 verbose "check_compile tool: $tool for $basename"
44 if { [llength $args] > 0 } {
45 set options [list "additional_flags=[lindex $args 0]"]
46 } else {
47 set options ""
49 switch -glob -- $contents {
50 "*! Fortran*" { set src ${basename}[pid].f90 }
51 "*// C++*" { set src ${basename}[pid].cc }
52 "*// ObjC++*" { set src ${basename}[pid].mm }
53 "*/* ObjC*" { set src ${basename}[pid].m }
54 "*// Go*" { set src ${basename}[pid].go }
55 default {
56 switch -- $tool {
57 "objc" { set src ${basename}[pid].m }
58 "obj-c++" { set src ${basename}[pid].mm }
59 default { set src ${basename}[pid].c }
64 set compile_type $type
65 switch -glob $type {
66 assembly { set output ${basename}[pid].s }
67 object { set output ${basename}[pid].o }
68 executable { set output ${basename}[pid].exe }
69 "rtl-*" {
70 set output ${basename}[pid].s
71 lappend options "additional_flags=-fdump-$type"
72 set compile_type assembly
75 set f [open $src "w"]
76 puts $f $contents
77 close $f
78 set lines [${tool}_target_compile $src $output $compile_type "$options"]
79 file delete $src
81 set scan_output $output
82 # Don't try folding this into the switch above; calling "glob" before the
83 # file is created won't work.
84 if [regexp "rtl-(.*)" $type dummy rtl_type] {
85 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
86 file delete $output
89 return [list $lines $scan_output]
92 proc current_target_name { } {
93 global target_info
94 if [info exists target_info(target,name)] {
95 set answer $target_info(target,name)
96 } else {
97 set answer ""
99 return $answer
102 # Implement an effective-target check for property PROP by invoking
103 # the Tcl command ARGS and seeing if it returns true.
105 proc check_cached_effective_target { prop args } {
106 global et_cache
108 set target [current_target_name]
109 if {![info exists et_cache($prop,target)]
110 || $et_cache($prop,target) != $target} {
111 verbose "check_cached_effective_target $prop: checking $target" 2
112 set et_cache($prop,target) $target
113 set et_cache($prop,value) [uplevel eval $args]
115 set value $et_cache($prop,value)
116 verbose "check_cached_effective_target $prop: returning $value for $target" 2
117 return $value
120 # Like check_compile, but delete the output file and return true if the
121 # compiler printed no messages.
122 proc check_no_compiler_messages_nocache {args} {
123 set result [eval check_compile $args]
124 set lines [lindex $result 0]
125 set output [lindex $result 1]
126 remote_file build delete $output
127 return [string match "" $lines]
130 # Like check_no_compiler_messages_nocache, but cache the result.
131 # PROP is the property we're checking, and doubles as a prefix for
132 # temporary filenames.
133 proc check_no_compiler_messages {prop args} {
134 return [check_cached_effective_target $prop {
135 eval [list check_no_compiler_messages_nocache $prop] $args
139 # Like check_compile, but return true if the compiler printed no
140 # messages and if the contents of the output file satisfy PATTERN.
141 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
142 # don't match regular expression REGEXP, otherwise they satisfy it
143 # if they do match regular expression PATTERN. (PATTERN can start
144 # with something like "[!]" if the regular expression needs to match
145 # "!" as the first character.)
147 # Delete the output file before returning. The other arguments are
148 # as for check_compile.
149 proc check_no_messages_and_pattern_nocache {basename pattern args} {
150 global tool
152 set result [eval [list check_compile $basename] $args]
153 set lines [lindex $result 0]
154 set output [lindex $result 1]
156 set ok 0
157 if { [string match "" $lines] } {
158 set chan [open "$output"]
159 set invert [regexp {^!(.*)} $pattern dummy pattern]
160 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
161 close $chan
164 remote_file build delete $output
165 return $ok
168 # Like check_no_messages_and_pattern_nocache, but cache the result.
169 # PROP is the property we're checking, and doubles as a prefix for
170 # temporary filenames.
171 proc check_no_messages_and_pattern {prop pattern args} {
172 return [check_cached_effective_target $prop {
173 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
177 # Try to compile and run an executable from code CONTENTS. Return true
178 # if the compiler reports no messages and if execution "passes" in the
179 # usual DejaGNU sense. The arguments are as for check_compile, with
180 # TYPE implicitly being "executable".
181 proc check_runtime_nocache {basename contents args} {
182 global tool
184 set result [eval [list check_compile $basename executable $contents] $args]
185 set lines [lindex $result 0]
186 set output [lindex $result 1]
188 set ok 0
189 if { [string match "" $lines] } {
190 # No error messages, everything is OK.
191 set result [remote_load target "./$output" "" ""]
192 set status [lindex $result 0]
193 verbose "check_runtime_nocache $basename: status is <$status>" 2
194 if { $status == "pass" } {
195 set ok 1
198 remote_file build delete $output
199 return $ok
202 # Like check_runtime_nocache, but cache the result. PROP is the
203 # property we're checking, and doubles as a prefix for temporary
204 # filenames.
205 proc check_runtime {prop args} {
206 global tool
208 return [check_cached_effective_target $prop {
209 eval [list check_runtime_nocache $prop] $args
213 ###############################
214 # proc check_weak_available { }
215 ###############################
217 # weak symbols are only supported in some configs/object formats
218 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
220 proc check_weak_available { } {
221 global target_cpu
223 # All mips targets should support it
225 if { [ string first "mips" $target_cpu ] >= 0 } {
226 return 1
229 # All solaris2 targets should support it
231 if { [istarget *-*-solaris2*] } {
232 return 1
235 # Windows targets Cygwin and MingW32 support it
237 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
238 return 1
241 # HP-UX 10.X doesn't support it
243 if { [istarget hppa*-*-hpux10*] } {
244 return 0
247 # ELF and ECOFF support it. a.out does with gas/gld but may also with
248 # other linkers, so we should try it
250 set objformat [gcc_target_object_format]
252 switch $objformat {
253 elf { return 1 }
254 ecoff { return 1 }
255 a.out { return 1 }
256 mach-o { return 1 }
257 som { return 1 }
258 unknown { return -1 }
259 default { return 0 }
263 ###############################
264 # proc check_weak_override_available { }
265 ###############################
267 # Like check_weak_available, but return 0 if weak symbol definitions
268 # cannot be overridden.
270 proc check_weak_override_available { } {
271 if { [istarget *-*-mingw*] } {
272 return 0
274 return [check_weak_available]
277 ###############################
278 # proc check_visibility_available { what_kind }
279 ###############################
281 # The visibility attribute is only support in some object formats
282 # This proc returns 1 if it is supported, 0 if not.
283 # The argument is the kind of visibility, default/protected/hidden/internal.
285 proc check_visibility_available { what_kind } {
286 if [string match "" $what_kind] { set what_kind "hidden" }
288 return [check_no_compiler_messages visibility_available_$what_kind object "
289 void f() __attribute__((visibility(\"$what_kind\")));
290 void f() {}
294 ###############################
295 # proc check_alias_available { }
296 ###############################
298 # Determine if the target toolchain supports the alias attribute.
300 # Returns 2 if the target supports aliases. Returns 1 if the target
301 # only supports weak aliased. Returns 0 if the target does not
302 # support aliases at all. Returns -1 if support for aliases could not
303 # be determined.
305 proc check_alias_available { } {
306 global alias_available_saved
307 global tool
309 if [info exists alias_available_saved] {
310 verbose "check_alias_available returning saved $alias_available_saved" 2
311 } else {
312 set src alias[pid].c
313 set obj alias[pid].o
314 verbose "check_alias_available compiling testfile $src" 2
315 set f [open $src "w"]
316 # Compile a small test program. The definition of "g" is
317 # necessary to keep the Solaris assembler from complaining
318 # about the program.
319 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
320 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
321 close $f
322 set lines [${tool}_target_compile $src $obj object ""]
323 file delete $src
324 remote_file build delete $obj
326 if [string match "" $lines] then {
327 # No error messages, everything is OK.
328 set alias_available_saved 2
329 } else {
330 if [regexp "alias definitions not supported" $lines] {
331 verbose "check_alias_available target does not support aliases" 2
333 set objformat [gcc_target_object_format]
335 if { $objformat == "elf" } {
336 verbose "check_alias_available but target uses ELF format, so it ought to" 2
337 set alias_available_saved -1
338 } else {
339 set alias_available_saved 0
341 } else {
342 if [regexp "only weak aliases are supported" $lines] {
343 verbose "check_alias_available target supports only weak aliases" 2
344 set alias_available_saved 1
345 } else {
346 set alias_available_saved -1
351 verbose "check_alias_available returning $alias_available_saved" 2
354 return $alias_available_saved
357 # Returns 1 if the target toolchain supports ifunc, 0 otherwise.
359 proc check_ifunc_available { } {
360 return [check_no_compiler_messages ifunc_available object {
361 #ifdef __cplusplus
362 extern "C"
363 #endif
364 void g() {}
365 void f() __attribute__((ifunc("g")));
369 # Returns true if --gc-sections is supported on the target.
371 proc check_gc_sections_available { } {
372 global gc_sections_available_saved
373 global tool
375 if {![info exists gc_sections_available_saved]} {
376 # Some targets don't support gc-sections despite whatever's
377 # advertised by ld's options.
378 if { [istarget alpha*-*-*]
379 || [istarget ia64-*-*] } {
380 set gc_sections_available_saved 0
381 return 0
384 # elf2flt uses -q (--emit-relocs), which is incompatible with
385 # --gc-sections.
386 if { [board_info target exists ldflags]
387 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
388 set gc_sections_available_saved 0
389 return 0
392 # VxWorks kernel modules are relocatable objects linked with -r,
393 # while RTP executables are linked with -q (--emit-relocs).
394 # Both of these options are incompatible with --gc-sections.
395 if { [istarget *-*-vxworks*] } {
396 set gc_sections_available_saved 0
397 return 0
400 # Check if the ld used by gcc supports --gc-sections.
401 set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
402 regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
403 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
404 set ld_output [remote_exec host "$gcc_ld" "--help"]
405 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
406 set gc_sections_available_saved 1
407 } else {
408 set gc_sections_available_saved 0
411 return $gc_sections_available_saved
414 # Return 1 if according to target_info struct and explicit target list
415 # target is supposed to support trampolines.
417 proc check_effective_target_trampolines { } {
418 if [target_info exists no_trampolines] {
419 return 0
421 if { [istarget avr-*-*]
422 || [istarget hppa2.0w-hp-hpux11.23]
423 || [istarget hppa64-hp-hpux11.23] } {
424 return 0;
426 return 1
429 # Return 1 if according to target_info struct and explicit target list
430 # target is supposed to keep null pointer checks. This could be due to
431 # use of option fno-delete-null-pointer-checks or hardwired in target.
433 proc check_effective_target_keeps_null_pointer_checks { } {
434 if [target_info exists keeps_null_pointer_checks] {
435 return 1
437 if { [istarget avr-*-*] } {
438 return 1;
440 return 0
443 # Return true if profiling is supported on the target.
445 proc check_profiling_available { test_what } {
446 global profiling_available_saved
448 verbose "Profiling argument is <$test_what>" 1
450 # These conditions depend on the argument so examine them before
451 # looking at the cache variable.
453 # Tree profiling requires TLS runtime support.
454 if { $test_what == "-fprofile-generate" } {
455 if { ![check_effective_target_tls_runtime] } {
456 return 0
460 # Support for -p on solaris2 relies on mcrt1.o which comes with the
461 # vendor compiler. We cannot reliably predict the directory where the
462 # vendor compiler (and thus mcrt1.o) is installed so we can't
463 # necessarily find mcrt1.o even if we have it.
464 if { [istarget *-*-solaris2*] && $test_what == "-p" } {
465 return 0
468 # We don't yet support profiling for MIPS16.
469 if { [istarget mips*-*-*]
470 && ![check_effective_target_nomips16]
471 && ($test_what == "-p" || $test_what == "-pg") } {
472 return 0
475 # MinGW does not support -p.
476 if { [istarget *-*-mingw*] && $test_what == "-p" } {
477 return 0
480 # We don't yet support profiling for AArch64.
481 if { [istarget aarch64*-*-*]
482 && ([lindex $test_what 1] == "-p"
483 || [lindex $test_what 1] == "-pg") } {
484 return 0
487 # cygwin does not support -p.
488 if { [istarget *-*-cygwin*] && $test_what == "-p" } {
489 return 0
492 # uClibc does not have gcrt1.o.
493 if { [check_effective_target_uclibc]
494 && ($test_what == "-p" || $test_what == "-pg") } {
495 return 0
498 # Now examine the cache variable.
499 if {![info exists profiling_available_saved]} {
500 # Some targets don't have any implementation of __bb_init_func or are
501 # missing other needed machinery.
502 if { [istarget aarch64*-*-elf]
503 || [istarget am3*-*-linux*]
504 || [istarget arm*-*-eabi*]
505 || [istarget arm*-*-elf]
506 || [istarget arm*-*-symbianelf*]
507 || [istarget avr-*-*]
508 || [istarget bfin-*-*]
509 || [istarget cris-*-*]
510 || [istarget crisv32-*-*]
511 || [istarget fido-*-elf]
512 || [istarget h8300-*-*]
513 || [istarget lm32-*-*]
514 || [istarget m32c-*-elf]
515 || [istarget m68k-*-elf]
516 || [istarget m68k-*-uclinux*]
517 || [istarget mep-*-elf]
518 || [istarget mips*-*-elf*]
519 || [istarget mmix-*-*]
520 || [istarget mn10300-*-elf*]
521 || [istarget moxie-*-elf*]
522 || [istarget picochip-*-*]
523 || [istarget powerpc-*-eabi*]
524 || [istarget powerpc-*-elf]
525 || [istarget rx-*-*]
526 || [istarget tic6x-*-elf]
527 || [istarget xstormy16-*]
528 || [istarget xtensa*-*-elf]
529 || [istarget *-*-rtems*]
530 || [istarget *-*-vxworks*] } {
531 set profiling_available_saved 0
532 } else {
533 set profiling_available_saved 1
537 return $profiling_available_saved
540 # Check to see if a target is "freestanding". This is as per the definition
541 # in Section 4 of C99 standard. Effectively, it is a target which supports no
542 # extra headers or libraries other than what is considered essential.
543 proc check_effective_target_freestanding { } {
544 if { [istarget picochip-*-*] } then {
545 return 1
546 } else {
547 return 0
551 # Return 1 if target has packed layout of structure members by
552 # default, 0 otherwise. Note that this is slightly different than
553 # whether the target has "natural alignment": both attributes may be
554 # false.
556 proc check_effective_target_default_packed { } {
557 return [check_no_compiler_messages default_packed assembly {
558 struct x { char a; long b; } c;
559 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
563 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
564 # documentation, where the test also comes from.
566 proc check_effective_target_pcc_bitfield_type_matters { } {
567 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
568 # bitfields, but let's stick to the example code from the docs.
569 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
570 struct foo1 { char x; char :0; char y; };
571 struct foo2 { char x; int :0; char y; };
572 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
576 # Add to FLAGS all the target-specific flags needed to use thread-local storage.
578 proc add_options_for_tls { flags } {
579 # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in
580 # libthread, so always pass -pthread for native TLS. Same for AIX.
581 # Need to duplicate native TLS check from
582 # check_effective_target_tls_native to avoid recursion.
583 if { ([istarget *-*-solaris2.9*] || [istarget powerpc-ibm-aix*]) &&
584 [check_no_messages_and_pattern tls_native "!emutls" assembly {
585 __thread int i;
586 int f (void) { return i; }
587 void g (int j) { i = j; }
588 }] } {
589 return "$flags -pthread"
591 return $flags
594 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
596 proc check_effective_target_tls {} {
597 return [check_no_compiler_messages tls assembly {
598 __thread int i;
599 int f (void) { return i; }
600 void g (int j) { i = j; }
604 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
606 proc check_effective_target_tls_native {} {
607 # VxWorks uses emulated TLS machinery, but with non-standard helper
608 # functions, so we fail to automatically detect it.
609 if { [istarget *-*-vxworks*] } {
610 return 0
613 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
614 __thread int i;
615 int f (void) { return i; }
616 void g (int j) { i = j; }
620 # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
622 proc check_effective_target_tls_emulated {} {
623 # VxWorks uses emulated TLS machinery, but with non-standard helper
624 # functions, so we fail to automatically detect it.
625 if { [istarget *-*-vxworks*] } {
626 return 1
629 return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
630 __thread int i;
631 int f (void) { return i; }
632 void g (int j) { i = j; }
636 # Return 1 if TLS executables can run correctly, 0 otherwise.
638 proc check_effective_target_tls_runtime {} {
639 return [check_runtime tls_runtime {
640 __thread int thr = 0;
641 int main (void) { return thr; }
642 } [add_options_for_tls ""]]
645 # Return 1 if atomic compare-and-swap is supported on 'int'
647 proc check_effective_target_cas_char {} {
648 return [check_no_compiler_messages cas_char assembly {
649 #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
650 #error unsupported
651 #endif
652 } ""]
655 proc check_effective_target_cas_int {} {
656 return [check_no_compiler_messages cas_int assembly {
657 #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
658 /* ok */
659 #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
660 /* ok */
661 #else
662 #error unsupported
663 #endif
664 } ""]
667 # Return 1 if -ffunction-sections is supported, 0 otherwise.
669 proc check_effective_target_function_sections {} {
670 # Darwin has its own scheme and silently accepts -ffunction-sections.
671 if { [istarget *-*-darwin*] } {
672 return 0
675 return [check_no_compiler_messages functionsections assembly {
676 void foo (void) { }
677 } "-ffunction-sections"]
680 # Return 1 if instruction scheduling is available, 0 otherwise.
682 proc check_effective_target_scheduling {} {
683 return [check_no_compiler_messages scheduling object {
684 void foo (void) { }
685 } "-fschedule-insns"]
688 # Return 1 if compilation with -fgraphite is error-free for trivial
689 # code, 0 otherwise.
691 proc check_effective_target_fgraphite {} {
692 return [check_no_compiler_messages fgraphite object {
693 void foo (void) { }
694 } "-O1 -fgraphite"]
697 # Return 1 if compilation with -fopenmp is error-free for trivial
698 # code, 0 otherwise.
700 proc check_effective_target_fopenmp {} {
701 return [check_no_compiler_messages fopenmp object {
702 void foo (void) { }
703 } "-fopenmp"]
706 # Return 1 if compilation with -fgnu-tm is error-free for trivial
707 # code, 0 otherwise.
709 proc check_effective_target_fgnu_tm {} {
710 return [check_no_compiler_messages fgnu_tm object {
711 void foo (void) { }
712 } "-fgnu-tm"]
715 # Return 1 if the target supports mmap, 0 otherwise.
717 proc check_effective_target_mmap {} {
718 return [check_function_available "mmap"]
721 # Return 1 if the target supports dlopen, 0 otherwise.
722 proc check_effective_target_dlopen {} {
723 return [check_function_available "dlopen"]
726 # Return 1 if the target supports clone, 0 otherwise.
727 proc check_effective_target_clone {} {
728 return [check_function_available "clone"]
731 # Return 1 if the target supports setrlimit, 0 otherwise.
732 proc check_effective_target_setrlimit {} {
733 # Darwin has non-posix compliant RLIMIT_AS
734 if { [istarget *-*-darwin*] } {
735 return 0
737 return [check_function_available "setrlimit"]
740 # Return 1 if the target supports swapcontext, 0 otherwise.
741 proc check_effective_target_swapcontext {} {
742 return [check_no_compiler_messages swapcontext executable {
743 #include <ucontext.h>
744 int main (void)
746 ucontext_t orig_context,child_context;
747 if (swapcontext(&child_context, &orig_context) < 0) { }
752 # Return 1 if compilation with -pthread is error-free for trivial
753 # code, 0 otherwise.
755 proc check_effective_target_pthread {} {
756 return [check_no_compiler_messages pthread object {
757 void foo (void) { }
758 } "-pthread"]
761 # Return 1 if compilation with -mpe-aligned-commons is error-free
762 # for trivial code, 0 otherwise.
764 proc check_effective_target_pe_aligned_commons {} {
765 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
766 return [check_no_compiler_messages pe_aligned_commons object {
767 int foo;
768 } "-mpe-aligned-commons"]
770 return 0
773 # Return 1 if the target supports -static
774 proc check_effective_target_static {} {
775 return [check_no_compiler_messages static executable {
776 int main (void) { return 0; }
777 } "-static"]
780 # Return 1 if the target supports -fstack-protector
781 proc check_effective_target_fstack_protector {} {
782 return [check_runtime fstack_protector {
783 int main (void) { return 0; }
784 } "-fstack-protector"]
787 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
788 # for trivial code, 0 otherwise.
790 proc check_effective_target_freorder {} {
791 return [check_no_compiler_messages freorder object {
792 void foo (void) { }
793 } "-freorder-blocks-and-partition"]
796 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
797 # emitted, 0 otherwise. Whether a shared library can actually be built is
798 # out of scope for this test.
800 proc check_effective_target_fpic { } {
801 # Note that M68K has a multilib that supports -fpic but not
802 # -fPIC, so we need to check both. We test with a program that
803 # requires GOT references.
804 foreach arg {fpic fPIC} {
805 if [check_no_compiler_messages $arg object {
806 extern int foo (void); extern int bar;
807 int baz (void) { return foo () + bar; }
808 } "-$arg"] {
809 return 1
812 return 0
815 # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
817 proc check_effective_target_pie { } {
818 if { [istarget *-*-darwin\[912\]*]
819 || [istarget *-*-linux*] } {
820 return 1;
822 return 0
825 # Return true if the target supports -mpaired-single (as used on MIPS).
827 proc check_effective_target_mpaired_single { } {
828 return [check_no_compiler_messages mpaired_single object {
829 void foo (void) { }
830 } "-mpaired-single"]
833 # Return true if the target has access to FPU instructions.
835 proc check_effective_target_hard_float { } {
836 if { [istarget mips*-*-*] } {
837 return [check_no_compiler_messages hard_float assembly {
838 #if (defined __mips_soft_float || defined __mips16)
839 #error FOO
840 #endif
844 # This proc is actually checking the availabilty of FPU
845 # support for doubles, so on the RX we must fail if the
846 # 64-bit double multilib has been selected.
847 if { [istarget rx-*-*] } {
848 return 0
849 # return [check_no_compiler_messages hard_float assembly {
850 #if defined __RX_64_BIT_DOUBLES__
851 #error FOO
852 #endif
853 # }]
856 # The generic test equates hard_float with "no call for adding doubles".
857 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
858 double a (double b, double c) { return b + c; }
862 # Return true if the target is a 64-bit MIPS target.
864 proc check_effective_target_mips64 { } {
865 return [check_no_compiler_messages mips64 assembly {
866 #ifndef __mips64
867 #error FOO
868 #endif
872 # Return true if the target is a MIPS target that does not produce
873 # MIPS16 code.
875 proc check_effective_target_nomips16 { } {
876 return [check_no_compiler_messages nomips16 object {
877 #ifndef __mips
878 #error FOO
879 #else
880 /* A cheap way of testing for -mflip-mips16. */
881 void foo (void) { asm ("addiu $20,$20,1"); }
882 void bar (void) { asm ("addiu $20,$20,1"); }
883 #endif
887 # Add the options needed for MIPS16 function attributes. At the moment,
888 # we don't support MIPS16 PIC.
890 proc add_options_for_mips16_attribute { flags } {
891 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
894 # Return true if we can force a mode that allows MIPS16 code generation.
895 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
896 # for o32 and o64.
898 proc check_effective_target_mips16_attribute { } {
899 return [check_no_compiler_messages mips16_attribute assembly {
900 #ifdef PIC
901 #error FOO
902 #endif
903 #if defined __mips_hard_float \
904 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
905 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
906 #error FOO
907 #endif
908 } [add_options_for_mips16_attribute ""]]
911 # Return 1 if the target supports long double larger than double when
912 # using the new ABI, 0 otherwise.
914 proc check_effective_target_mips_newabi_large_long_double { } {
915 return [check_no_compiler_messages mips_newabi_large_long_double object {
916 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
917 } "-mabi=64"]
920 # Return true if the target is a MIPS target that has access
921 # to the LL and SC instructions.
923 proc check_effective_target_mips_llsc { } {
924 if { ![istarget mips*-*-*] } {
925 return 0
927 # Assume that these instructions are always implemented for
928 # non-elf* targets, via emulation if necessary.
929 if { ![istarget *-*-elf*] } {
930 return 1
932 # Otherwise assume LL/SC support for everything but MIPS I.
933 return [check_no_compiler_messages mips_llsc assembly {
934 #if __mips == 1
935 #error FOO
936 #endif
940 # Return true if the target is a MIPS target that uses in-place relocations.
942 proc check_effective_target_mips_rel { } {
943 if { ![istarget mips*-*-*] } {
944 return 0
946 return [check_no_compiler_messages mips_rel object {
947 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
948 || (defined _ABI64 && _MIPS_SIM == _ABI64)
949 #error FOO
950 #endif
954 # Return true if the target is a MIPS target that uses the EABI.
956 proc check_effective_target_mips_eabi { } {
957 if { ![istarget mips*-*-*] } {
958 return 0
960 return [check_no_compiler_messages mips_eabi object {
961 #ifndef __mips_eabi
962 #error FOO
963 #endif
967 # Return 1 if the current multilib does not generate PIC by default.
969 proc check_effective_target_nonpic { } {
970 return [check_no_compiler_messages nonpic assembly {
971 #if __PIC__
972 #error FOO
973 #endif
977 # Return 1 if the target does not use a status wrapper.
979 proc check_effective_target_unwrapped { } {
980 if { [target_info needs_status_wrapper] != "" \
981 && [target_info needs_status_wrapper] != "0" } {
982 return 0
984 return 1
987 # Return true if iconv is supported on the target. In particular IBM1047.
989 proc check_iconv_available { test_what } {
990 global libiconv
992 # If the tool configuration file has not set libiconv, try "-liconv"
993 if { ![info exists libiconv] } {
994 set libiconv "-liconv"
996 set test_what [lindex $test_what 1]
997 return [check_runtime_nocache $test_what [subst {
998 #include <iconv.h>
999 int main (void)
1001 iconv_t cd;
1003 cd = iconv_open ("$test_what", "UTF-8");
1004 if (cd == (iconv_t) -1)
1005 return 1;
1006 return 0;
1008 }] $libiconv]
1011 # Return 1 if an ASCII locale is supported on this host, 0 otherwise.
1013 proc check_ascii_locale_available { } {
1014 return 1
1017 # Return true if named sections are supported on this target.
1019 proc check_named_sections_available { } {
1020 return [check_no_compiler_messages named_sections assembly {
1021 int __attribute__ ((section("whatever"))) foo;
1025 # Return true if the "naked" function attribute is supported on this target.
1027 proc check_effective_target_naked_functions { } {
1028 return [check_no_compiler_messages naked_functions assembly {
1029 void f() __attribute__((naked));
1033 # Return 1 if the target supports Fortran real kinds larger than real(8),
1034 # 0 otherwise.
1036 # When the target name changes, replace the cached result.
1038 proc check_effective_target_fortran_large_real { } {
1039 return [check_no_compiler_messages fortran_large_real executable {
1040 ! Fortran
1041 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
1042 real(kind=k) :: x
1043 x = cos (x)
1048 # Return 1 if the target supports Fortran real kind real(16),
1049 # 0 otherwise. Contrary to check_effective_target_fortran_large_real
1050 # this checks for Real(16) only; the other returned real(10) if
1051 # both real(10) and real(16) are available.
1053 # When the target name changes, replace the cached result.
1055 proc check_effective_target_fortran_real_16 { } {
1056 return [check_no_compiler_messages fortran_real_16 executable {
1057 ! Fortran
1058 real(kind=16) :: x
1059 x = cos (x)
1065 # Return 1 if the target supports SQRT for the largest floating-point
1066 # type. (Some targets lack the libm support for this FP type.)
1067 # On most targets, this check effectively checks either whether sqrtl is
1068 # available or on __float128 systems whether libquadmath is installed,
1069 # which provides sqrtq.
1071 # When the target name changes, replace the cached result.
1073 proc check_effective_target_fortran_largest_fp_has_sqrt { } {
1074 return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
1075 ! Fortran
1076 use iso_fortran_env, only: real_kinds
1077 integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
1078 real(kind=maxFP), volatile :: x
1079 x = 2.0_maxFP
1080 x = sqrt (x)
1086 # Return 1 if the target supports Fortran integer kinds larger than
1087 # integer(8), 0 otherwise.
1089 # When the target name changes, replace the cached result.
1091 proc check_effective_target_fortran_large_int { } {
1092 return [check_no_compiler_messages fortran_large_int executable {
1093 ! Fortran
1094 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
1095 integer(kind=k) :: i
1100 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
1102 # When the target name changes, replace the cached result.
1104 proc check_effective_target_fortran_integer_16 { } {
1105 return [check_no_compiler_messages fortran_integer_16 executable {
1106 ! Fortran
1107 integer(16) :: i
1112 # Return 1 if we can statically link libgfortran, 0 otherwise.
1114 # When the target name changes, replace the cached result.
1116 proc check_effective_target_static_libgfortran { } {
1117 return [check_no_compiler_messages static_libgfortran executable {
1118 ! Fortran
1119 print *, 'test'
1121 } "-static"]
1124 proc check_linker_plugin_available { } {
1125 return [check_no_compiler_messages_nocache linker_plugin executable {
1126 int main() { return 0; }
1127 } "-flto -fuse-linker-plugin"]
1130 # Return 1 if the target supports executing 750CL paired-single instructions, 0
1131 # otherwise. Cache the result.
1133 proc check_750cl_hw_available { } {
1134 return [check_cached_effective_target 750cl_hw_available {
1135 # If this is not the right target then we can skip the test.
1136 if { ![istarget powerpc-*paired*] } {
1137 expr 0
1138 } else {
1139 check_runtime_nocache 750cl_hw_available {
1140 int main()
1142 #ifdef __MACH__
1143 asm volatile ("ps_mul v0,v0,v0");
1144 #else
1145 asm volatile ("ps_mul 0,0,0");
1146 #endif
1147 return 0;
1149 } "-mpaired"
1154 # Return 1 if the target OS supports running SSE executables, 0
1155 # otherwise. Cache the result.
1157 proc check_sse_os_support_available { } {
1158 return [check_cached_effective_target sse_os_support_available {
1159 # If this is not the right target then we can skip the test.
1160 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1161 expr 0
1162 } elseif { [istarget i?86-*-solaris2*] } {
1163 # The Solaris 2 kernel doesn't save and restore SSE registers
1164 # before Solaris 9 4/04. Before that, executables die with SIGILL.
1165 check_runtime_nocache sse_os_support_available {
1166 int main ()
1168 asm volatile ("movaps %xmm0,%xmm0");
1169 return 0;
1171 } "-msse"
1172 } else {
1173 expr 1
1178 # Return 1 if the target OS supports running AVX executables, 0
1179 # otherwise. Cache the result.
1181 proc check_avx_os_support_available { } {
1182 return [check_cached_effective_target avx_os_support_available {
1183 # If this is not the right target then we can skip the test.
1184 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1185 expr 0
1186 } else {
1187 # Check that OS has AVX and SSE saving enabled.
1188 check_runtime_nocache avx_os_support_available {
1189 int main ()
1191 unsigned int eax, edx;
1193 asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1194 return (eax & 6) != 6;
1196 } ""
1201 # Return 1 if the target supports executing SSE instructions, 0
1202 # otherwise. Cache the result.
1204 proc check_sse_hw_available { } {
1205 return [check_cached_effective_target sse_hw_available {
1206 # If this is not the right target then we can skip the test.
1207 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1208 expr 0
1209 } else {
1210 check_runtime_nocache sse_hw_available {
1211 #include "cpuid.h"
1212 int main ()
1214 unsigned int eax, ebx, ecx, edx;
1215 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1216 return !(edx & bit_SSE);
1217 return 1;
1219 } ""
1224 # Return 1 if the target supports executing SSE2 instructions, 0
1225 # otherwise. Cache the result.
1227 proc check_sse2_hw_available { } {
1228 return [check_cached_effective_target sse2_hw_available {
1229 # If this is not the right target then we can skip the test.
1230 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1231 expr 0
1232 } else {
1233 check_runtime_nocache sse2_hw_available {
1234 #include "cpuid.h"
1235 int main ()
1237 unsigned int eax, ebx, ecx, edx;
1238 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1239 return !(edx & bit_SSE2);
1240 return 1;
1242 } ""
1247 # Return 1 if the target supports executing AVX instructions, 0
1248 # otherwise. Cache the result.
1250 proc check_avx_hw_available { } {
1251 return [check_cached_effective_target avx_hw_available {
1252 # If this is not the right target then we can skip the test.
1253 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1254 expr 0
1255 } else {
1256 check_runtime_nocache avx_hw_available {
1257 #include "cpuid.h"
1258 int main ()
1260 unsigned int eax, ebx, ecx, edx;
1261 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1262 return ((ecx & (bit_AVX | bit_OSXSAVE))
1263 != (bit_AVX | bit_OSXSAVE));
1264 return 1;
1266 } ""
1271 # Return 1 if the target supports running SSE executables, 0 otherwise.
1273 proc check_effective_target_sse_runtime { } {
1274 if { [check_effective_target_sse]
1275 && [check_sse_hw_available]
1276 && [check_sse_os_support_available] } {
1277 return 1
1279 return 0
1282 # Return 1 if the target supports running SSE2 executables, 0 otherwise.
1284 proc check_effective_target_sse2_runtime { } {
1285 if { [check_effective_target_sse2]
1286 && [check_sse2_hw_available]
1287 && [check_sse_os_support_available] } {
1288 return 1
1290 return 0
1293 # Return 1 if the target supports running AVX executables, 0 otherwise.
1295 proc check_effective_target_avx_runtime { } {
1296 if { [check_effective_target_avx]
1297 && [check_avx_hw_available]
1298 && [check_avx_os_support_available] } {
1299 return 1
1301 return 0
1304 # Return 1 if the target supports executing VSX instructions, 0
1305 # otherwise. Cache the result.
1307 proc check_vsx_hw_available { } {
1308 return [check_cached_effective_target vsx_hw_available {
1309 # Some simulators are known to not support VSX instructions.
1310 # For now, disable on Darwin
1311 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1312 expr 0
1313 } else {
1314 set options "-mvsx"
1315 check_runtime_nocache vsx_hw_available {
1316 int main()
1318 #ifdef __MACH__
1319 asm volatile ("xxlor vs0,vs0,vs0");
1320 #else
1321 asm volatile ("xxlor 0,0,0");
1322 #endif
1323 return 0;
1325 } $options
1330 # Return 1 if the target supports executing AltiVec instructions, 0
1331 # otherwise. Cache the result.
1333 proc check_vmx_hw_available { } {
1334 return [check_cached_effective_target vmx_hw_available {
1335 # Some simulators are known to not support VMX instructions.
1336 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
1337 expr 0
1338 } else {
1339 # Most targets don't require special flags for this test case, but
1340 # Darwin does. Just to be sure, make sure VSX is not enabled for
1341 # the altivec tests.
1342 if { [istarget *-*-darwin*]
1343 || [istarget *-*-aix*] } {
1344 set options "-maltivec -mno-vsx"
1345 } else {
1346 set options "-mno-vsx"
1348 check_runtime_nocache vmx_hw_available {
1349 int main()
1351 #ifdef __MACH__
1352 asm volatile ("vor v0,v0,v0");
1353 #else
1354 asm volatile ("vor 0,0,0");
1355 #endif
1356 return 0;
1358 } $options
1363 proc check_ppc_recip_hw_available { } {
1364 return [check_cached_effective_target ppc_recip_hw_available {
1365 # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
1366 # For now, disable on Darwin
1367 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1368 expr 0
1369 } else {
1370 set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
1371 check_runtime_nocache ppc_recip_hw_available {
1372 volatile double d_recip, d_rsqrt, d_four = 4.0;
1373 volatile float f_recip, f_rsqrt, f_four = 4.0f;
1374 int main()
1376 asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
1377 asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
1378 asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
1379 asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
1380 return 0;
1382 } $options
1387 # Return 1 if the target supports executing AltiVec and Cell PPU
1388 # instructions, 0 otherwise. Cache the result.
1390 proc check_effective_target_cell_hw { } {
1391 return [check_cached_effective_target cell_hw_available {
1392 # Some simulators are known to not support VMX and PPU instructions.
1393 if { [istarget powerpc-*-eabi*] } {
1394 expr 0
1395 } else {
1396 # Most targets don't require special flags for this test
1397 # case, but Darwin and AIX do.
1398 if { [istarget *-*-darwin*]
1399 || [istarget *-*-aix*] } {
1400 set options "-maltivec -mcpu=cell"
1401 } else {
1402 set options "-mcpu=cell"
1404 check_runtime_nocache cell_hw_available {
1405 int main()
1407 #ifdef __MACH__
1408 asm volatile ("vor v0,v0,v0");
1409 asm volatile ("lvlx v0,r0,r0");
1410 #else
1411 asm volatile ("vor 0,0,0");
1412 asm volatile ("lvlx 0,0,0");
1413 #endif
1414 return 0;
1416 } $options
1421 # Return 1 if the target supports executing 64-bit instructions, 0
1422 # otherwise. Cache the result.
1424 proc check_effective_target_powerpc64 { } {
1425 global powerpc64_available_saved
1426 global tool
1428 if [info exists powerpc64_available_saved] {
1429 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
1430 } else {
1431 set powerpc64_available_saved 0
1433 # Some simulators are known to not support powerpc64 instructions.
1434 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
1435 verbose "check_effective_target_powerpc64 returning 0" 2
1436 return $powerpc64_available_saved
1439 # Set up, compile, and execute a test program containing a 64-bit
1440 # instruction. Include the current process ID in the file
1441 # names to prevent conflicts with invocations for multiple
1442 # testsuites.
1443 set src ppc[pid].c
1444 set exe ppc[pid].x
1446 set f [open $src "w"]
1447 puts $f "int main() {"
1448 puts $f "#ifdef __MACH__"
1449 puts $f " asm volatile (\"extsw r0,r0\");"
1450 puts $f "#else"
1451 puts $f " asm volatile (\"extsw 0,0\");"
1452 puts $f "#endif"
1453 puts $f " return 0; }"
1454 close $f
1456 set opts "additional_flags=-mcpu=G5"
1458 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
1459 set lines [${tool}_target_compile $src $exe executable "$opts"]
1460 file delete $src
1462 if [string match "" $lines] then {
1463 # No error message, compilation succeeded.
1464 set result [${tool}_load "./$exe" "" ""]
1465 set status [lindex $result 0]
1466 remote_file build delete $exe
1467 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
1469 if { $status == "pass" } then {
1470 set powerpc64_available_saved 1
1472 } else {
1473 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
1477 return $powerpc64_available_saved
1480 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1481 # complex float arguments. This affects gfortran tests that call cabsf
1482 # in libm built by an earlier compiler. Return 1 if libm uses the same
1483 # argument passing as the compiler under test, 0 otherwise.
1485 # When the target name changes, replace the cached result.
1487 proc check_effective_target_broken_cplxf_arg { } {
1488 return [check_cached_effective_target broken_cplxf_arg {
1489 # Skip the work for targets known not to be affected.
1490 if { ![istarget powerpc64-*-linux*] } {
1491 expr 0
1492 } elseif { ![is-effective-target lp64] } {
1493 expr 0
1494 } else {
1495 check_runtime_nocache broken_cplxf_arg {
1496 #include <complex.h>
1497 extern void abort (void);
1498 float fabsf (float);
1499 float cabsf (_Complex float);
1500 int main ()
1502 _Complex float cf;
1503 float f;
1504 cf = 3 + 4.0fi;
1505 f = cabsf (cf);
1506 if (fabsf (f - 5.0) > 0.0001)
1507 abort ();
1508 return 0;
1510 } "-lm"
1515 # Return 1 is this is a TI C6X target supporting C67X instructions
1516 proc check_effective_target_ti_c67x { } {
1517 return [check_no_compiler_messages ti_c67x assembly {
1518 #if !defined(_TMS320C6700)
1519 #error FOO
1520 #endif
1524 # Return 1 is this is a TI C6X target supporting C64X+ instructions
1525 proc check_effective_target_ti_c64xp { } {
1526 return [check_no_compiler_messages ti_c64xp assembly {
1527 #if !defined(_TMS320C6400_PLUS)
1528 #error FOO
1529 #endif
1534 proc check_alpha_max_hw_available { } {
1535 return [check_runtime alpha_max_hw_available {
1536 int main() { return __builtin_alpha_amask(1<<8) != 0; }
1540 # Returns true iff the FUNCTION is available on the target system.
1541 # (This is essentially a Tcl implementation of Autoconf's
1542 # AC_CHECK_FUNC.)
1544 proc check_function_available { function } {
1545 return [check_no_compiler_messages ${function}_available \
1546 executable [subst {
1547 #ifdef __cplusplus
1548 extern "C"
1549 #endif
1550 char $function ();
1551 int main () { $function (); }
1552 }] "-fno-builtin" ]
1555 # Returns true iff "fork" is available on the target system.
1557 proc check_fork_available {} {
1558 return [check_function_available "fork"]
1561 # Returns true iff "mkfifo" is available on the target system.
1563 proc check_mkfifo_available {} {
1564 if { [istarget *-*-cygwin*] } {
1565 # Cygwin has mkfifo, but support is incomplete.
1566 return 0
1569 return [check_function_available "mkfifo"]
1572 # Returns true iff "__cxa_atexit" is used on the target system.
1574 proc check_cxa_atexit_available { } {
1575 return [check_cached_effective_target cxa_atexit_available {
1576 if { [istarget hppa*-*-hpux10*] } {
1577 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1578 expr 0
1579 } elseif { [istarget *-*-vxworks] } {
1580 # vxworks doesn't have __cxa_atexit but subsequent test passes.
1581 expr 0
1582 } else {
1583 check_runtime_nocache cxa_atexit_available {
1584 // C++
1585 #include <stdlib.h>
1586 static unsigned int count;
1587 struct X
1589 X() { count = 1; }
1590 ~X()
1592 if (count != 3)
1593 exit(1);
1594 count = 4;
1597 void f()
1599 static X x;
1601 struct Y
1603 Y() { f(); count = 2; }
1604 ~Y()
1606 if (count != 2)
1607 exit(1);
1608 count = 3;
1611 Y y;
1612 int main() { return 0; }
1618 proc check_effective_target_objc2 { } {
1619 return [check_no_compiler_messages objc2 object {
1620 #ifdef __OBJC2__
1621 int dummy[1];
1622 #else
1623 #error
1624 #endif
1628 proc check_effective_target_next_runtime { } {
1629 return [check_no_compiler_messages objc2 object {
1630 #ifdef __NEXT_RUNTIME__
1631 int dummy[1];
1632 #else
1633 #error
1634 #endif
1638 # Return 1 if we're generating 32-bit code using default options, 0
1639 # otherwise.
1641 proc check_effective_target_ilp32 { } {
1642 return [check_no_compiler_messages ilp32 object {
1643 int dummy[sizeof (int) == 4
1644 && sizeof (void *) == 4
1645 && sizeof (long) == 4 ? 1 : -1];
1649 # Return 1 if we're generating ia32 code using default options, 0
1650 # otherwise.
1652 proc check_effective_target_ia32 { } {
1653 return [check_no_compiler_messages ia32 object {
1654 int dummy[sizeof (int) == 4
1655 && sizeof (void *) == 4
1656 && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
1660 # Return 1 if we're generating x32 code using default options, 0
1661 # otherwise.
1663 proc check_effective_target_x32 { } {
1664 return [check_no_compiler_messages x32 object {
1665 int dummy[sizeof (int) == 4
1666 && sizeof (void *) == 4
1667 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
1671 # Return 1 if we're generating 32-bit or larger integers using default
1672 # options, 0 otherwise.
1674 proc check_effective_target_int32plus { } {
1675 return [check_no_compiler_messages int32plus object {
1676 int dummy[sizeof (int) >= 4 ? 1 : -1];
1680 # Return 1 if we're generating 32-bit or larger pointers using default
1681 # options, 0 otherwise.
1683 proc check_effective_target_ptr32plus { } {
1684 return [check_no_compiler_messages ptr32plus object {
1685 int dummy[sizeof (void *) >= 4 ? 1 : -1];
1689 # Return 1 if we support 32-bit or larger array and structure sizes
1690 # using default options, 0 otherwise.
1692 proc check_effective_target_size32plus { } {
1693 return [check_no_compiler_messages size32plus object {
1694 char dummy[65537];
1698 # Returns 1 if we're generating 16-bit or smaller integers with the
1699 # default options, 0 otherwise.
1701 proc check_effective_target_int16 { } {
1702 return [check_no_compiler_messages int16 object {
1703 int dummy[sizeof (int) < 4 ? 1 : -1];
1707 # Return 1 if we're generating 64-bit code using default options, 0
1708 # otherwise.
1710 proc check_effective_target_lp64 { } {
1711 return [check_no_compiler_messages lp64 object {
1712 int dummy[sizeof (int) == 4
1713 && sizeof (void *) == 8
1714 && sizeof (long) == 8 ? 1 : -1];
1718 # Return 1 if we're generating 64-bit code using default llp64 options,
1719 # 0 otherwise.
1721 proc check_effective_target_llp64 { } {
1722 return [check_no_compiler_messages llp64 object {
1723 int dummy[sizeof (int) == 4
1724 && sizeof (void *) == 8
1725 && sizeof (long long) == 8
1726 && sizeof (long) == 4 ? 1 : -1];
1730 # Return 1 if long and int have different sizes,
1731 # 0 otherwise.
1733 proc check_effective_target_long_neq_int { } {
1734 return [check_no_compiler_messages long_ne_int object {
1735 int dummy[sizeof (int) != sizeof (long) ? 1 : -1];
1739 # Return 1 if the target supports long double larger than double,
1740 # 0 otherwise.
1742 proc check_effective_target_large_long_double { } {
1743 return [check_no_compiler_messages large_long_double object {
1744 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1748 # Return 1 if the target supports double larger than float,
1749 # 0 otherwise.
1751 proc check_effective_target_large_double { } {
1752 return [check_no_compiler_messages large_double object {
1753 int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
1757 # Return 1 if the target supports double of 64 bits,
1758 # 0 otherwise.
1760 proc check_effective_target_double64 { } {
1761 return [check_no_compiler_messages double64 object {
1762 int dummy[sizeof(double) == 8 ? 1 : -1];
1766 # Return 1 if the target supports double of at least 64 bits,
1767 # 0 otherwise.
1769 proc check_effective_target_double64plus { } {
1770 return [check_no_compiler_messages double64plus object {
1771 int dummy[sizeof(double) >= 8 ? 1 : -1];
1775 # Return 1 if the target supports 'w' suffix on floating constant
1776 # 0 otherwise.
1778 proc check_effective_target_has_w_floating_suffix { } {
1779 set opts ""
1780 if [check_effective_target_c++] {
1781 append opts "-std=gnu++03"
1783 return [check_no_compiler_messages w_fp_suffix object {
1784 float dummy = 1.0w;
1785 } "$opts"]
1788 # Return 1 if the target supports 'q' suffix on floating constant
1789 # 0 otherwise.
1791 proc check_effective_target_has_q_floating_suffix { } {
1792 set opts ""
1793 if [check_effective_target_c++] {
1794 append opts "-std=gnu++03"
1796 return [check_no_compiler_messages q_fp_suffix object {
1797 float dummy = 1.0q;
1798 } "$opts"]
1800 # Return 1 if the target supports compiling fixed-point,
1801 # 0 otherwise.
1803 proc check_effective_target_fixed_point { } {
1804 return [check_no_compiler_messages fixed_point object {
1805 _Sat _Fract x; _Sat _Accum y;
1809 # Return 1 if the target supports compiling decimal floating point,
1810 # 0 otherwise.
1812 proc check_effective_target_dfp_nocache { } {
1813 verbose "check_effective_target_dfp_nocache: compiling source" 2
1814 set ret [check_no_compiler_messages_nocache dfp object {
1815 float x __attribute__((mode(DD)));
1817 verbose "check_effective_target_dfp_nocache: returning $ret" 2
1818 return $ret
1821 proc check_effective_target_dfprt_nocache { } {
1822 return [check_runtime_nocache dfprt {
1823 typedef float d64 __attribute__((mode(DD)));
1824 d64 x = 1.2df, y = 2.3dd, z;
1825 int main () { z = x + y; return 0; }
1829 # Return 1 if the target supports compiling Decimal Floating Point,
1830 # 0 otherwise.
1832 # This won't change for different subtargets so cache the result.
1834 proc check_effective_target_dfp { } {
1835 return [check_cached_effective_target dfp {
1836 check_effective_target_dfp_nocache
1840 # Return 1 if the target supports linking and executing Decimal Floating
1841 # Point, 0 otherwise.
1843 # This won't change for different subtargets so cache the result.
1845 proc check_effective_target_dfprt { } {
1846 return [check_cached_effective_target dfprt {
1847 check_effective_target_dfprt_nocache
1851 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1853 proc check_effective_target_ucn_nocache { } {
1854 # -std=c99 is only valid for C
1855 if [check_effective_target_c] {
1856 set ucnopts "-std=c99"
1858 append ucnopts " -fextended-identifiers"
1859 verbose "check_effective_target_ucn_nocache: compiling source" 2
1860 set ret [check_no_compiler_messages_nocache ucn object {
1861 int \u00C0;
1862 } $ucnopts]
1863 verbose "check_effective_target_ucn_nocache: returning $ret" 2
1864 return $ret
1867 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
1869 # This won't change for different subtargets, so cache the result.
1871 proc check_effective_target_ucn { } {
1872 return [check_cached_effective_target ucn {
1873 check_effective_target_ucn_nocache
1877 # Return 1 if the target needs a command line argument to enable a SIMD
1878 # instruction set.
1880 proc check_effective_target_vect_cmdline_needed { } {
1881 global et_vect_cmdline_needed_saved
1882 global et_vect_cmdline_needed_target_name
1884 if { ![info exists et_vect_cmdline_needed_target_name] } {
1885 set et_vect_cmdline_needed_target_name ""
1888 # If the target has changed since we set the cached value, clear it.
1889 set current_target [current_target_name]
1890 if { $current_target != $et_vect_cmdline_needed_target_name } {
1891 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
1892 set et_vect_cmdline_needed_target_name $current_target
1893 if { [info exists et_vect_cmdline_needed_saved] } {
1894 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
1895 unset et_vect_cmdline_needed_saved
1899 if [info exists et_vect_cmdline_needed_saved] {
1900 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
1901 } else {
1902 set et_vect_cmdline_needed_saved 1
1903 if { [istarget alpha*-*-*]
1904 || [istarget ia64-*-*]
1905 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
1906 && ([check_effective_target_x32]
1907 || [check_effective_target_lp64]))
1908 || ([istarget powerpc*-*-*]
1909 && ([check_effective_target_powerpc_spe]
1910 || [check_effective_target_powerpc_altivec]))
1911 || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
1912 || [istarget spu-*-*]
1913 || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
1914 set et_vect_cmdline_needed_saved 0
1918 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
1919 return $et_vect_cmdline_needed_saved
1922 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
1924 # This won't change for different subtargets so cache the result.
1926 proc check_effective_target_vect_int { } {
1927 global et_vect_int_saved
1929 if [info exists et_vect_int_saved] {
1930 verbose "check_effective_target_vect_int: using cached result" 2
1931 } else {
1932 set et_vect_int_saved 0
1933 if { [istarget i?86-*-*]
1934 || ([istarget powerpc*-*-*]
1935 && ![istarget powerpc-*-linux*paired*])
1936 || [istarget spu-*-*]
1937 || [istarget x86_64-*-*]
1938 || [istarget sparc*-*-*]
1939 || [istarget alpha*-*-*]
1940 || [istarget ia64-*-*]
1941 || [istarget aarch64*-*-*]
1942 || [check_effective_target_arm32]
1943 || ([istarget mips*-*-*]
1944 && [check_effective_target_mips_loongson]) } {
1945 set et_vect_int_saved 1
1949 verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
1950 return $et_vect_int_saved
1953 # Return 1 if the target supports signed int->float conversion
1956 proc check_effective_target_vect_intfloat_cvt { } {
1957 global et_vect_intfloat_cvt_saved
1959 if [info exists et_vect_intfloat_cvt_saved] {
1960 verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
1961 } else {
1962 set et_vect_intfloat_cvt_saved 0
1963 if { [istarget i?86-*-*]
1964 || ([istarget powerpc*-*-*]
1965 && ![istarget powerpc-*-linux*paired*])
1966 || [istarget x86_64-*-*]
1967 || ([istarget arm*-*-*]
1968 && [check_effective_target_arm_neon_ok])} {
1969 set et_vect_intfloat_cvt_saved 1
1973 verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
1974 return $et_vect_intfloat_cvt_saved
1977 #Return 1 if we're supporting __int128 for target, 0 otherwise.
1979 proc check_effective_target_int128 { } {
1980 return [check_no_compiler_messages int128 object {
1981 int dummy[
1982 #ifndef __SIZEOF_INT128__
1984 #else
1986 #endif
1991 # Return 1 if the target supports unsigned int->float conversion
1994 proc check_effective_target_vect_uintfloat_cvt { } {
1995 global et_vect_uintfloat_cvt_saved
1997 if [info exists et_vect_uintfloat_cvt_saved] {
1998 verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
1999 } else {
2000 set et_vect_uintfloat_cvt_saved 0
2001 if { [istarget i?86-*-*]
2002 || ([istarget powerpc*-*-*]
2003 && ![istarget powerpc-*-linux*paired*])
2004 || [istarget x86_64-*-*]
2005 || ([istarget arm*-*-*]
2006 && [check_effective_target_arm_neon_ok])} {
2007 set et_vect_uintfloat_cvt_saved 1
2011 verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
2012 return $et_vect_uintfloat_cvt_saved
2016 # Return 1 if the target supports signed float->int conversion
2019 proc check_effective_target_vect_floatint_cvt { } {
2020 global et_vect_floatint_cvt_saved
2022 if [info exists et_vect_floatint_cvt_saved] {
2023 verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
2024 } else {
2025 set et_vect_floatint_cvt_saved 0
2026 if { [istarget i?86-*-*]
2027 || ([istarget powerpc*-*-*]
2028 && ![istarget powerpc-*-linux*paired*])
2029 || [istarget x86_64-*-*]
2030 || ([istarget arm*-*-*]
2031 && [check_effective_target_arm_neon_ok])} {
2032 set et_vect_floatint_cvt_saved 1
2036 verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
2037 return $et_vect_floatint_cvt_saved
2040 # Return 1 if the target supports unsigned float->int conversion
2043 proc check_effective_target_vect_floatuint_cvt { } {
2044 global et_vect_floatuint_cvt_saved
2046 if [info exists et_vect_floatuint_cvt_saved] {
2047 verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
2048 } else {
2049 set et_vect_floatuint_cvt_saved 0
2050 if { ([istarget powerpc*-*-*]
2051 && ![istarget powerpc-*-linux*paired*])
2052 || ([istarget arm*-*-*]
2053 && [check_effective_target_arm_neon_ok])} {
2054 set et_vect_floatuint_cvt_saved 1
2058 verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
2059 return $et_vect_floatuint_cvt_saved
2062 # Return 1 if this is a AArch64 target supporting big endian
2063 proc check_effective_target_aarch64_big_endian { } {
2064 return [check_no_compiler_messages aarch64_big_endian assembly {
2065 #if !defined(__aarch64__) || !defined(__AARCH64EB__)
2066 #error FOO
2067 #endif
2071 # Return 1 is this is an arm target using 32-bit instructions
2072 proc check_effective_target_arm32 { } {
2073 return [check_no_compiler_messages arm32 assembly {
2074 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
2075 #error FOO
2076 #endif
2080 # Return 1 is this is an arm target not using Thumb
2081 proc check_effective_target_arm_nothumb { } {
2082 return [check_no_compiler_messages arm_nothumb assembly {
2083 #if (defined(__thumb__) || defined(__thumb2__))
2084 #error FOO
2085 #endif
2089 # Return 1 if this is a little-endian ARM target
2090 proc check_effective_target_arm_little_endian { } {
2091 return [check_no_compiler_messages arm_little_endian assembly {
2092 #if !defined(__arm__) || !defined(__ARMEL__)
2093 #error FOO
2094 #endif
2098 # Return 1 if this is an ARM target that only supports aligned vector accesses
2099 proc check_effective_target_arm_vect_no_misalign { } {
2100 return [check_no_compiler_messages arm_vect_no_misalign assembly {
2101 #if !defined(__arm__) \
2102 || (defined(__ARMEL__) \
2103 && (!defined(__thumb__) || defined(__thumb2__)))
2104 #error FOO
2105 #endif
2110 # Return 1 if this is an ARM target supporting -mfpu=vfp
2111 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
2112 # options.
2114 proc check_effective_target_arm_vfp_ok { } {
2115 if { [check_effective_target_arm32] } {
2116 return [check_no_compiler_messages arm_vfp_ok object {
2117 int dummy;
2118 } "-mfpu=vfp -mfloat-abi=softfp"]
2119 } else {
2120 return 0
2124 # Return 1 if this is an ARM target supporting -mfpu=fp-armv8
2125 # -mfloat-abi=softfp.
2126 proc check_effective_target_arm_v8_vfp_ok {} {
2127 if { [check_effective_target_arm32] } {
2128 return [check_no_compiler_messages arm_v8_vfp_ok object {
2129 int foo (void)
2131 __asm__ volatile ("vrinta.f32.f32 s0, s0");
2132 return 0;
2134 } "-mfpu=fp-armv8 -mfloat-abi=softfp"]
2135 } else {
2136 return 0
2140 # Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8
2141 # -mfloat-abi=softfp
2142 proc check_effective_target_arm_v8_neon_ok {} {
2143 if { [check_effective_target_arm32] } {
2144 return [check_no_compiler_messages arm_v8_neon_ok object {
2145 int foo (void)
2147 __asm__ volatile ("vrintn.f32 q0, q0");
2148 return 0;
2150 } "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"]
2151 } else {
2152 return 0
2156 # Return 1 if this is an ARM target supporting -mfpu=vfp
2157 # -mfloat-abi=hard. Some multilibs may be incompatible with these
2158 # options.
2160 proc check_effective_target_arm_hard_vfp_ok { } {
2161 if { [check_effective_target_arm32]
2162 && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
2163 return [check_no_compiler_messages arm_hard_vfp_ok executable {
2164 int main() { return 0;}
2165 } "-mfpu=vfp -mfloat-abi=hard"]
2166 } else {
2167 return 0
2171 # Return 1 if this is an ARM target that supports DSP multiply with
2172 # current multilib flags.
2174 proc check_effective_target_arm_dsp { } {
2175 return [check_no_compiler_messages arm_dsp assembly {
2176 #ifndef __ARM_FEATURE_DSP
2177 #error not DSP
2178 #endif
2179 int i;
2183 # Return 1 if this is an ARM target that supports unaligned word/halfword
2184 # load/store instructions.
2186 proc check_effective_target_arm_unaligned { } {
2187 return [check_no_compiler_messages arm_unaligned assembly {
2188 #ifndef __ARM_FEATURE_UNALIGNED
2189 #error no unaligned support
2190 #endif
2191 int i;
2195 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2196 # or -mfloat-abi=hard, but if one is already specified by the
2197 # multilib, use it. Similarly, if a -mfpu option already enables
2198 # NEON, do not add -mfpu=neon.
2200 proc add_options_for_arm_neon { flags } {
2201 if { ! [check_effective_target_arm_neon_ok] } {
2202 return "$flags"
2204 global et_arm_neon_flags
2205 return "$flags $et_arm_neon_flags"
2208 proc add_options_for_arm_v8_vfp { flags } {
2209 if { ! [check_effective_target_arm_v8_vfp_ok] } {
2210 return "$flags"
2212 return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
2215 proc add_options_for_arm_v8_neon { flags } {
2216 if { ! [check_effective_target_arm_v8_neon_ok] } {
2217 return "$flags"
2219 return "$flags -march=armv8-a -mfpu=neon-fp-armv8 -mfloat-abi=softfp"
2222 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2223 # or -mfloat-abi=hard, but if one is already specified by the
2224 # multilib, use it. Similarly, if a -mfpu option already enables
2225 # NEON, do not add -mfpu=neon.
2227 proc add_options_for_arm_neonv2 { flags } {
2228 if { ! [check_effective_target_arm_neonv2_ok] } {
2229 return "$flags"
2231 global et_arm_neonv2_flags
2232 return "$flags $et_arm_neonv2_flags"
2235 # Return 1 if this is an ARM target supporting -mfpu=neon
2236 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2237 # incompatible with these options. Also set et_arm_neon_flags to the
2238 # best options to add.
2240 proc check_effective_target_arm_neon_ok_nocache { } {
2241 global et_arm_neon_flags
2242 set et_arm_neon_flags ""
2243 if { [check_effective_target_arm32] } {
2244 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
2245 if { [check_no_compiler_messages_nocache arm_neon_ok object {
2246 #include "arm_neon.h"
2247 int dummy;
2248 } "$flags"] } {
2249 set et_arm_neon_flags $flags
2250 return 1
2255 return 0
2258 proc check_effective_target_arm_neon_ok { } {
2259 return [check_cached_effective_target arm_neon_ok \
2260 check_effective_target_arm_neon_ok_nocache]
2263 # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4
2264 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2265 # incompatible with these options. Also set et_arm_neonv2_flags to the
2266 # best options to add.
2268 proc check_effective_target_arm_neonv2_ok_nocache { } {
2269 global et_arm_neonv2_flags
2270 set et_arm_neonv2_flags ""
2271 if { [check_effective_target_arm32] } {
2272 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
2273 if { [check_no_compiler_messages_nocache arm_neonv2_ok object {
2274 #include "arm_neon.h"
2275 float32x2_t
2276 foo (float32x2_t a, float32x2_t b, float32x2_t c)
2278 return vfma_f32 (a, b, c);
2280 } "$flags"] } {
2281 set et_arm_neonv2_flags $flags
2282 return 1
2287 return 0
2290 proc check_effective_target_arm_neonv2_ok { } {
2291 return [check_cached_effective_target arm_neonv2_ok \
2292 check_effective_target_arm_neonv2_ok_nocache]
2295 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2296 # or -mfloat-abi=hard, but if one is already specified by the
2297 # multilib, use it.
2299 proc add_options_for_arm_fp16 { flags } {
2300 if { ! [check_effective_target_arm_fp16_ok] } {
2301 return "$flags"
2303 global et_arm_fp16_flags
2304 return "$flags $et_arm_fp16_flags"
2307 # Return 1 if this is an ARM target that can support a VFP fp16 variant.
2308 # Skip multilibs that are incompatible with these options and set
2309 # et_arm_fp16_flags to the best options to add.
2311 proc check_effective_target_arm_fp16_ok_nocache { } {
2312 global et_arm_fp16_flags
2313 set et_arm_fp16_flags ""
2314 if { ! [check_effective_target_arm32] } {
2315 return 0;
2317 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
2318 # Multilib flags would override -mfpu.
2319 return 0
2321 if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
2322 # Must generate floating-point instructions.
2323 return 0
2325 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
2326 # The existing -mfpu value is OK; use it, but add softfp.
2327 set et_arm_fp16_flags "-mfloat-abi=softfp"
2328 return 1;
2330 # Add -mfpu for a VFP fp16 variant since there is no preprocessor
2331 # macro to check for this support.
2332 set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
2333 if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
2334 int dummy;
2335 } "$flags"] } {
2336 set et_arm_fp16_flags "$flags"
2337 return 1
2340 return 0
2343 proc check_effective_target_arm_fp16_ok { } {
2344 return [check_cached_effective_target arm_fp16_ok \
2345 check_effective_target_arm_fp16_ok_nocache]
2348 # Creates a series of routines that return 1 if the given architecture
2349 # can be selected and a routine to give the flags to select that architecture
2350 # Note: Extra flags may be added to disable options from newer compilers
2351 # (Thumb in particular - but others may be added in the future)
2352 # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
2353 # /* { dg-add-options arm_arch_v5 } */
2354 # /* { dg-require-effective-target arm_arch_v5_multilib } */
2355 foreach { armfunc armflag armdef } { v4 "-march=armv4 -marm" __ARM_ARCH_4__
2356 v4t "-march=armv4t" __ARM_ARCH_4T__
2357 v5 "-march=armv5 -marm" __ARM_ARCH_5__
2358 v5t "-march=armv5t" __ARM_ARCH_5T__
2359 v5te "-march=armv5te" __ARM_ARCH_5TE__
2360 v6 "-march=armv6" __ARM_ARCH_6__
2361 v6k "-march=armv6k" __ARM_ARCH_6K__
2362 v6t2 "-march=armv6t2" __ARM_ARCH_6T2__
2363 v6z "-march=armv6z" __ARM_ARCH_6Z__
2364 v6m "-march=armv6-m -mthumb" __ARM_ARCH_6M__
2365 v7a "-march=armv7-a" __ARM_ARCH_7A__
2366 v7r "-march=armv7-r" __ARM_ARCH_7R__
2367 v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__
2368 v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
2369 v8a "-march=armv8-a" __ARM_ARCH_8A__ } {
2370 eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
2371 proc check_effective_target_arm_arch_FUNC_ok { } {
2372 if { [ string match "*-marm*" "FLAG" ] &&
2373 ![check_effective_target_arm_arm_ok] } {
2374 return 0
2376 return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
2377 #if !defined (DEF)
2378 #error FOO
2379 #endif
2380 } "FLAG" ]
2383 proc add_options_for_arm_arch_FUNC { flags } {
2384 return "$flags FLAG"
2387 proc check_effective_target_arm_arch_FUNC_multilib { } {
2388 return [check_runtime arm_arch_FUNC_multilib {
2390 main (void)
2392 return 0;
2394 } [add_options_for_arm_arch_FUNC ""]]
2399 # Return 1 if this is an ARM target where -marm causes ARM to be
2400 # used (not Thumb)
2402 proc check_effective_target_arm_arm_ok { } {
2403 return [check_no_compiler_messages arm_arm_ok assembly {
2404 #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
2405 #error FOO
2406 #endif
2407 } "-marm"]
2411 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
2412 # used.
2414 proc check_effective_target_arm_thumb1_ok { } {
2415 return [check_no_compiler_messages arm_thumb1_ok assembly {
2416 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2417 #error FOO
2418 #endif
2419 } "-mthumb"]
2422 # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
2423 # used.
2425 proc check_effective_target_arm_thumb2_ok { } {
2426 return [check_no_compiler_messages arm_thumb2_ok assembly {
2427 #if !defined(__thumb2__)
2428 #error FOO
2429 #endif
2430 } "-mthumb"]
2433 # Return 1 if this is an ARM target where Thumb-1 is used without options
2434 # added by the test.
2436 proc check_effective_target_arm_thumb1 { } {
2437 return [check_no_compiler_messages arm_thumb1 assembly {
2438 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2439 #error not thumb1
2440 #endif
2441 int i;
2442 } ""]
2445 # Return 1 if this is an ARM target where Thumb-2 is used without options
2446 # added by the test.
2448 proc check_effective_target_arm_thumb2 { } {
2449 return [check_no_compiler_messages arm_thumb2 assembly {
2450 #if !defined(__thumb2__)
2451 #error FOO
2452 #endif
2453 int i;
2454 } ""]
2457 # Return 1 if this is an ARM cortex-M profile cpu
2459 proc check_effective_target_arm_cortex_m { } {
2460 return [check_no_compiler_messages arm_cortex_m assembly {
2461 #if !defined(__ARM_ARCH_7M__) \
2462 && !defined (__ARM_ARCH_7EM__) \
2463 && !defined (__ARM_ARCH_6M__)
2464 #error FOO
2465 #endif
2466 int i;
2467 } "-mthumb"]
2470 # Return 1 if the target supports executing NEON instructions, 0
2471 # otherwise. Cache the result.
2473 proc check_effective_target_arm_neon_hw { } {
2474 return [check_runtime arm_neon_hw_available {
2476 main (void)
2478 long long a = 0, b = 1;
2479 asm ("vorr %P0, %P1, %P2"
2480 : "=w" (a)
2481 : "0" (a), "w" (b));
2482 return (a != 1);
2484 } [add_options_for_arm_neon ""]]
2487 proc check_effective_target_arm_neonv2_hw { } {
2488 return [check_runtime arm_neon_hwv2_available {
2489 #include "arm_neon.h"
2491 main (void)
2493 float32x2_t a, b, c;
2494 asm ("vfma.f32 %P0, %P1, %P2"
2495 : "=w" (a)
2496 : "w" (b), "w" (c));
2497 return 0;
2499 } [add_options_for_arm_neonv2 ""]]
2502 # Return 1 if this is a ARM target with NEON enabled.
2504 proc check_effective_target_arm_neon { } {
2505 if { [check_effective_target_arm32] } {
2506 return [check_no_compiler_messages arm_neon object {
2507 #ifndef __ARM_NEON__
2508 #error not NEON
2509 #else
2510 int dummy;
2511 #endif
2513 } else {
2514 return 0
2518 proc check_effective_target_arm_neonv2 { } {
2519 if { [check_effective_target_arm32] } {
2520 return [check_no_compiler_messages arm_neon object {
2521 #ifndef __ARM_NEON__
2522 #error not NEON
2523 #else
2524 #ifndef __ARM_FEATURE_FMA
2525 #error not NEONv2
2526 #else
2527 int dummy;
2528 #endif
2529 #endif
2531 } else {
2532 return 0
2536 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
2537 # the Loongson vector modes.
2539 proc check_effective_target_mips_loongson { } {
2540 return [check_no_compiler_messages loongson assembly {
2541 #if !defined(__mips_loongson_vector_rev)
2542 #error FOO
2543 #endif
2547 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
2548 # Architecture.
2550 proc check_effective_target_arm_eabi { } {
2551 return [check_no_compiler_messages arm_eabi object {
2552 #ifndef __ARM_EABI__
2553 #error not EABI
2554 #else
2555 int dummy;
2556 #endif
2560 # Return 1 if this is an ARM target that adheres to the hard-float variant of
2561 # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard).
2563 proc check_effective_target_arm_hf_eabi { } {
2564 return [check_no_compiler_messages arm_hf_eabi object {
2565 #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP)
2566 #error not hard-float EABI
2567 #else
2568 int dummy;
2569 #endif
2573 # Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
2574 # Some multilibs may be incompatible with this option.
2576 proc check_effective_target_arm_iwmmxt_ok { } {
2577 if { [check_effective_target_arm32] } {
2578 return [check_no_compiler_messages arm_iwmmxt_ok object {
2579 int dummy;
2580 } "-mcpu=iwmmxt"]
2581 } else {
2582 return 0
2586 # Return true if LDRD/STRD instructions are prefered over LDM/STM instructions
2587 # for an ARM target.
2588 proc check_effective_target_arm_prefer_ldrd_strd { } {
2589 if { ![check_effective_target_arm32] } {
2590 return 0;
2593 return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly {
2594 void foo (int *p) { p[0] = 1; p[1] = 0;}
2595 } "-O2 -mthumb" ]
2598 # Return 1 if this is a PowerPC target with floating-point registers.
2600 proc check_effective_target_powerpc_fprs { } {
2601 if { [istarget powerpc*-*-*]
2602 || [istarget rs6000-*-*] } {
2603 return [check_no_compiler_messages powerpc_fprs object {
2604 #ifdef __NO_FPRS__
2605 #error no FPRs
2606 #else
2607 int dummy;
2608 #endif
2610 } else {
2611 return 0
2615 # Return 1 if this is a PowerPC target with hardware double-precision
2616 # floating point.
2618 proc check_effective_target_powerpc_hard_double { } {
2619 if { [istarget powerpc*-*-*]
2620 || [istarget rs6000-*-*] } {
2621 return [check_no_compiler_messages powerpc_hard_double object {
2622 #ifdef _SOFT_DOUBLE
2623 #error soft double
2624 #else
2625 int dummy;
2626 #endif
2628 } else {
2629 return 0
2633 # Return 1 if this is a PowerPC target supporting -maltivec.
2635 proc check_effective_target_powerpc_altivec_ok { } {
2636 if { ([istarget powerpc*-*-*]
2637 && ![istarget powerpc-*-linux*paired*])
2638 || [istarget rs6000-*-*] } {
2639 # AltiVec is not supported on AIX before 5.3.
2640 if { [istarget powerpc*-*-aix4*]
2641 || [istarget powerpc*-*-aix5.1*]
2642 || [istarget powerpc*-*-aix5.2*] } {
2643 return 0
2645 return [check_no_compiler_messages powerpc_altivec_ok object {
2646 int dummy;
2647 } "-maltivec"]
2648 } else {
2649 return 0
2653 # Return 1 if this is a PowerPC target supporting -mvsx
2655 proc check_effective_target_powerpc_vsx_ok { } {
2656 if { ([istarget powerpc*-*-*]
2657 && ![istarget powerpc-*-linux*paired*])
2658 || [istarget rs6000-*-*] } {
2659 # VSX is not supported on AIX before 7.1.
2660 if { [istarget powerpc*-*-aix4*]
2661 || [istarget powerpc*-*-aix5*]
2662 || [istarget powerpc*-*-aix6*] } {
2663 return 0
2665 return [check_no_compiler_messages powerpc_vsx_ok object {
2666 int main (void) {
2667 #ifdef __MACH__
2668 asm volatile ("xxlor vs0,vs0,vs0");
2669 #else
2670 asm volatile ("xxlor 0,0,0");
2671 #endif
2672 return 0;
2674 } "-mvsx"]
2675 } else {
2676 return 0
2680 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
2682 proc check_effective_target_powerpc_ppu_ok { } {
2683 if [check_effective_target_powerpc_altivec_ok] {
2684 return [check_no_compiler_messages cell_asm_available object {
2685 int main (void) {
2686 #ifdef __MACH__
2687 asm volatile ("lvlx v0,v0,v0");
2688 #else
2689 asm volatile ("lvlx 0,0,0");
2690 #endif
2691 return 0;
2694 } else {
2695 return 0
2699 # Return 1 if this is a PowerPC target that supports SPU.
2701 proc check_effective_target_powerpc_spu { } {
2702 if { [istarget powerpc*-*-linux*] } {
2703 return [check_effective_target_powerpc_altivec_ok]
2704 } else {
2705 return 0
2709 # Return 1 if this is a PowerPC SPE target. The check includes options
2710 # specified by dg-options for this test, so don't cache the result.
2712 proc check_effective_target_powerpc_spe_nocache { } {
2713 if { [istarget powerpc*-*-*] } {
2714 return [check_no_compiler_messages_nocache powerpc_spe object {
2715 #ifndef __SPE__
2716 #error not SPE
2717 #else
2718 int dummy;
2719 #endif
2720 } [current_compiler_flags]]
2721 } else {
2722 return 0
2726 # Return 1 if this is a PowerPC target with SPE enabled.
2728 proc check_effective_target_powerpc_spe { } {
2729 if { [istarget powerpc*-*-*] } {
2730 return [check_no_compiler_messages powerpc_spe object {
2731 #ifndef __SPE__
2732 #error not SPE
2733 #else
2734 int dummy;
2735 #endif
2737 } else {
2738 return 0
2742 # Return 1 if this is a PowerPC target with Altivec enabled.
2744 proc check_effective_target_powerpc_altivec { } {
2745 if { [istarget powerpc*-*-*] } {
2746 return [check_no_compiler_messages powerpc_altivec object {
2747 #ifndef __ALTIVEC__
2748 #error not Altivec
2749 #else
2750 int dummy;
2751 #endif
2753 } else {
2754 return 0
2758 # Return 1 if this is a PowerPC 405 target. The check includes options
2759 # specified by dg-options for this test, so don't cache the result.
2761 proc check_effective_target_powerpc_405_nocache { } {
2762 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
2763 return [check_no_compiler_messages_nocache powerpc_405 object {
2764 #ifdef __PPC405__
2765 int dummy;
2766 #else
2767 #error not a PPC405
2768 #endif
2769 } [current_compiler_flags]]
2770 } else {
2771 return 0
2775 # Return 1 if this is a SPU target with a toolchain that
2776 # supports automatic overlay generation.
2778 proc check_effective_target_spu_auto_overlay { } {
2779 if { [istarget spu*-*-elf*] } {
2780 return [check_no_compiler_messages spu_auto_overlay executable {
2781 int main (void) { }
2782 } "-Wl,--auto-overlay" ]
2783 } else {
2784 return 0
2788 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
2789 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
2790 # test environment appears to run executables on such a simulator.
2792 proc check_effective_target_ultrasparc_hw { } {
2793 return [check_runtime ultrasparc_hw {
2794 int main() { return 0; }
2795 } "-mcpu=ultrasparc"]
2798 # Return 1 if the test environment supports executing UltraSPARC VIS2
2799 # instructions. We check this by attempting: "bmask %g0, %g0, %g0"
2801 proc check_effective_target_ultrasparc_vis2_hw { } {
2802 return [check_runtime ultrasparc_vis2_hw {
2803 int main() { __asm__(".word 0x81b00320"); return 0; }
2804 } "-mcpu=ultrasparc3"]
2807 # Return 1 if the test environment supports executing UltraSPARC VIS3
2808 # instructions. We check this by attempting: "addxc %g0, %g0, %g0"
2810 proc check_effective_target_ultrasparc_vis3_hw { } {
2811 return [check_runtime ultrasparc_vis3_hw {
2812 int main() { __asm__(".word 0x81b00220"); return 0; }
2813 } "-mcpu=niagara3"]
2816 # Return 1 if this is a SPARC-V9 target.
2818 proc check_effective_target_sparc_v9 { } {
2819 if { [istarget sparc*-*-*] } {
2820 return [check_no_compiler_messages sparc_v9 object {
2821 int main (void) {
2822 asm volatile ("return %i7+8");
2823 return 0;
2826 } else {
2827 return 0
2831 # Return 1 if this is a SPARC target with VIS enabled.
2833 proc check_effective_target_sparc_vis { } {
2834 if { [istarget sparc*-*-*] } {
2835 return [check_no_compiler_messages sparc_vis object {
2836 #ifndef __VIS__
2837 #error not VIS
2838 #else
2839 int dummy;
2840 #endif
2842 } else {
2843 return 0
2847 # Return 1 if the target supports hardware vector shift operation.
2849 proc check_effective_target_vect_shift { } {
2850 global et_vect_shift_saved
2852 if [info exists et_vect_shift_saved] {
2853 verbose "check_effective_target_vect_shift: using cached result" 2
2854 } else {
2855 set et_vect_shift_saved 0
2856 if { ([istarget powerpc*-*-*]
2857 && ![istarget powerpc-*-linux*paired*])
2858 || [istarget ia64-*-*]
2859 || [istarget i?86-*-*]
2860 || [istarget x86_64-*-*]
2861 || [istarget aarch64*-*-*]
2862 || [check_effective_target_arm32]
2863 || ([istarget mips*-*-*]
2864 && [check_effective_target_mips_loongson]) } {
2865 set et_vect_shift_saved 1
2869 verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
2870 return $et_vect_shift_saved
2873 # Return 1 if the target supports hardware vector shift operation for char.
2875 proc check_effective_target_vect_shift_char { } {
2876 global et_vect_shift_char_saved
2878 if [info exists et_vect_shift_char_saved] {
2879 verbose "check_effective_target_vect_shift_char: using cached result" 2
2880 } else {
2881 set et_vect_shift_char_saved 0
2882 if { ([istarget powerpc*-*-*]
2883 && ![istarget powerpc-*-linux*paired*])
2884 || [check_effective_target_arm32] } {
2885 set et_vect_shift_char_saved 1
2889 verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
2890 return $et_vect_shift_char_saved
2893 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
2895 # This can change for different subtargets so do not cache the result.
2897 proc check_effective_target_vect_long { } {
2898 if { [istarget i?86-*-*]
2899 || (([istarget powerpc*-*-*]
2900 && ![istarget powerpc-*-linux*paired*])
2901 && [check_effective_target_ilp32])
2902 || [istarget x86_64-*-*]
2903 || [check_effective_target_arm32]
2904 || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
2905 set answer 1
2906 } else {
2907 set answer 0
2910 verbose "check_effective_target_vect_long: returning $answer" 2
2911 return $answer
2914 # Return 1 if the target supports hardware vectors of float, 0 otherwise.
2916 # This won't change for different subtargets so cache the result.
2918 proc check_effective_target_vect_float { } {
2919 global et_vect_float_saved
2921 if [info exists et_vect_float_saved] {
2922 verbose "check_effective_target_vect_float: using cached result" 2
2923 } else {
2924 set et_vect_float_saved 0
2925 if { [istarget i?86-*-*]
2926 || [istarget powerpc*-*-*]
2927 || [istarget spu-*-*]
2928 || [istarget mipsisa64*-*-*]
2929 || [istarget x86_64-*-*]
2930 || [istarget ia64-*-*]
2931 || [istarget aarch64*-*-*]
2932 || [check_effective_target_arm32] } {
2933 set et_vect_float_saved 1
2937 verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
2938 return $et_vect_float_saved
2941 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
2943 # This won't change for different subtargets so cache the result.
2945 proc check_effective_target_vect_double { } {
2946 global et_vect_double_saved
2948 if [info exists et_vect_double_saved] {
2949 verbose "check_effective_target_vect_double: using cached result" 2
2950 } else {
2951 set et_vect_double_saved 0
2952 if { [istarget i?86-*-*]
2953 || [istarget aarch64*-*-*]
2954 || [istarget x86_64-*-*] } {
2955 if { [check_no_compiler_messages vect_double assembly {
2956 #ifdef __tune_atom__
2957 # error No double vectorizer support.
2958 #endif
2959 }] } {
2960 set et_vect_double_saved 1
2961 } else {
2962 set et_vect_double_saved 0
2964 } elseif { [istarget spu-*-*] } {
2965 set et_vect_double_saved 1
2969 verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
2970 return $et_vect_double_saved
2973 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
2975 # This won't change for different subtargets so cache the result.
2977 proc check_effective_target_vect_long_long { } {
2978 global et_vect_long_long_saved
2980 if [info exists et_vect_long_long_saved] {
2981 verbose "check_effective_target_vect_long_long: using cached result" 2
2982 } else {
2983 set et_vect_long_long_saved 0
2984 if { [istarget i?86-*-*]
2985 || [istarget x86_64-*-*] } {
2986 set et_vect_long_long_saved 1
2990 verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
2991 return $et_vect_long_long_saved
2995 # Return 1 if the target plus current options does not support a vector
2996 # max instruction on "int", 0 otherwise.
2998 # This won't change for different subtargets so cache the result.
3000 proc check_effective_target_vect_no_int_max { } {
3001 global et_vect_no_int_max_saved
3003 if [info exists et_vect_no_int_max_saved] {
3004 verbose "check_effective_target_vect_no_int_max: using cached result" 2
3005 } else {
3006 set et_vect_no_int_max_saved 0
3007 if { [istarget sparc*-*-*]
3008 || [istarget spu-*-*]
3009 || [istarget alpha*-*-*]
3010 || ([istarget mips*-*-*]
3011 && [check_effective_target_mips_loongson]) } {
3012 set et_vect_no_int_max_saved 1
3015 verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
3016 return $et_vect_no_int_max_saved
3019 # Return 1 if the target plus current options does not support a vector
3020 # add instruction on "int", 0 otherwise.
3022 # This won't change for different subtargets so cache the result.
3024 proc check_effective_target_vect_no_int_add { } {
3025 global et_vect_no_int_add_saved
3027 if [info exists et_vect_no_int_add_saved] {
3028 verbose "check_effective_target_vect_no_int_add: using cached result" 2
3029 } else {
3030 set et_vect_no_int_add_saved 0
3031 # Alpha only supports vector add on V8QI and V4HI.
3032 if { [istarget alpha*-*-*] } {
3033 set et_vect_no_int_add_saved 1
3036 verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
3037 return $et_vect_no_int_add_saved
3040 # Return 1 if the target plus current options does not support vector
3041 # bitwise instructions, 0 otherwise.
3043 # This won't change for different subtargets so cache the result.
3045 proc check_effective_target_vect_no_bitwise { } {
3046 global et_vect_no_bitwise_saved
3048 if [info exists et_vect_no_bitwise_saved] {
3049 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
3050 } else {
3051 set et_vect_no_bitwise_saved 0
3053 verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
3054 return $et_vect_no_bitwise_saved
3057 # Return 1 if the target plus current options supports vector permutation,
3058 # 0 otherwise.
3060 # This won't change for different subtargets so cache the result.
3062 proc check_effective_target_vect_perm { } {
3063 global et_vect_perm
3065 if [info exists et_vect_perm_saved] {
3066 verbose "check_effective_target_vect_perm: using cached result" 2
3067 } else {
3068 set et_vect_perm_saved 0
3069 if { [is-effective-target arm_neon_ok]
3070 || [istarget aarch64*-*-*]
3071 || [istarget powerpc*-*-*]
3072 || [istarget spu-*-*]
3073 || [istarget i?86-*-*]
3074 || [istarget x86_64-*-*]
3075 || ([istarget mips*-*-*]
3076 && [check_effective_target_mpaired_single]) } {
3077 set et_vect_perm_saved 1
3080 verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
3081 return $et_vect_perm_saved
3084 # Return 1 if the target plus current options supports vector permutation
3085 # on byte-sized elements, 0 otherwise.
3087 # This won't change for different subtargets so cache the result.
3089 proc check_effective_target_vect_perm_byte { } {
3090 global et_vect_perm_byte
3092 if [info exists et_vect_perm_byte_saved] {
3093 verbose "check_effective_target_vect_perm_byte: using cached result" 2
3094 } else {
3095 set et_vect_perm_byte_saved 0
3096 if { ([is-effective-target arm_neon_ok]
3097 && [is-effective-target arm_little_endian])
3098 || [istarget aarch64*-*-*]
3099 || [istarget powerpc*-*-*]
3100 || [istarget spu-*-*] } {
3101 set et_vect_perm_byte_saved 1
3104 verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
3105 return $et_vect_perm_byte_saved
3108 # Return 1 if the target plus current options supports vector permutation
3109 # on short-sized elements, 0 otherwise.
3111 # This won't change for different subtargets so cache the result.
3113 proc check_effective_target_vect_perm_short { } {
3114 global et_vect_perm_short
3116 if [info exists et_vect_perm_short_saved] {
3117 verbose "check_effective_target_vect_perm_short: using cached result" 2
3118 } else {
3119 set et_vect_perm_short_saved 0
3120 if { ([is-effective-target arm_neon_ok]
3121 && [is-effective-target arm_little_endian])
3122 || [istarget aarch64*-*-*]
3123 || [istarget powerpc*-*-*]
3124 || [istarget spu-*-*] } {
3125 set et_vect_perm_short_saved 1
3128 verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
3129 return $et_vect_perm_short_saved
3132 # Return 1 if the target plus current options supports a vector
3133 # widening summation of *short* args into *int* result, 0 otherwise.
3135 # This won't change for different subtargets so cache the result.
3137 proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
3138 global et_vect_widen_sum_hi_to_si_pattern
3140 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
3141 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
3142 } else {
3143 set et_vect_widen_sum_hi_to_si_pattern_saved 0
3144 if { [istarget powerpc*-*-*]
3145 || [istarget ia64-*-*] } {
3146 set et_vect_widen_sum_hi_to_si_pattern_saved 1
3149 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
3150 return $et_vect_widen_sum_hi_to_si_pattern_saved
3153 # Return 1 if the target plus current options supports a vector
3154 # widening summation of *short* args into *int* result, 0 otherwise.
3155 # A target can also support this widening summation if it can support
3156 # promotion (unpacking) from shorts to ints.
3158 # This won't change for different subtargets so cache the result.
3160 proc check_effective_target_vect_widen_sum_hi_to_si { } {
3161 global et_vect_widen_sum_hi_to_si
3163 if [info exists et_vect_widen_sum_hi_to_si_saved] {
3164 verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
3165 } else {
3166 set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
3167 if { [istarget powerpc*-*-*]
3168 || [istarget ia64-*-*] } {
3169 set et_vect_widen_sum_hi_to_si_saved 1
3172 verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
3173 return $et_vect_widen_sum_hi_to_si_saved
3176 # Return 1 if the target plus current options supports a vector
3177 # widening summation of *char* args into *short* result, 0 otherwise.
3178 # A target can also support this widening summation if it can support
3179 # promotion (unpacking) from chars to shorts.
3181 # This won't change for different subtargets so cache the result.
3183 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
3184 global et_vect_widen_sum_qi_to_hi
3186 if [info exists et_vect_widen_sum_qi_to_hi_saved] {
3187 verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
3188 } else {
3189 set et_vect_widen_sum_qi_to_hi_saved 0
3190 if { [check_effective_target_vect_unpack]
3191 || [check_effective_target_arm_neon_ok]
3192 || [istarget ia64-*-*] } {
3193 set et_vect_widen_sum_qi_to_hi_saved 1
3196 verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
3197 return $et_vect_widen_sum_qi_to_hi_saved
3200 # Return 1 if the target plus current options supports a vector
3201 # widening summation of *char* args into *int* result, 0 otherwise.
3203 # This won't change for different subtargets so cache the result.
3205 proc check_effective_target_vect_widen_sum_qi_to_si { } {
3206 global et_vect_widen_sum_qi_to_si
3208 if [info exists et_vect_widen_sum_qi_to_si_saved] {
3209 verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
3210 } else {
3211 set et_vect_widen_sum_qi_to_si_saved 0
3212 if { [istarget powerpc*-*-*] } {
3213 set et_vect_widen_sum_qi_to_si_saved 1
3216 verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
3217 return $et_vect_widen_sum_qi_to_si_saved
3220 # Return 1 if the target plus current options supports a vector
3221 # widening multiplication of *char* args into *short* result, 0 otherwise.
3222 # A target can also support this widening multplication if it can support
3223 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
3224 # multiplication of shorts).
3226 # This won't change for different subtargets so cache the result.
3229 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
3230 global et_vect_widen_mult_qi_to_hi
3232 if [info exists et_vect_widen_mult_qi_to_hi_saved] {
3233 verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
3234 } else {
3235 if { [check_effective_target_vect_unpack]
3236 && [check_effective_target_vect_short_mult] } {
3237 set et_vect_widen_mult_qi_to_hi_saved 1
3238 } else {
3239 set et_vect_widen_mult_qi_to_hi_saved 0
3241 if { [istarget powerpc*-*-*]
3242 || [istarget aarch64*-*-*]
3243 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3244 set et_vect_widen_mult_qi_to_hi_saved 1
3247 verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
3248 return $et_vect_widen_mult_qi_to_hi_saved
3251 # Return 1 if the target plus current options supports a vector
3252 # widening multiplication of *short* args into *int* result, 0 otherwise.
3253 # A target can also support this widening multplication if it can support
3254 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
3255 # multiplication of ints).
3257 # This won't change for different subtargets so cache the result.
3260 proc check_effective_target_vect_widen_mult_hi_to_si { } {
3261 global et_vect_widen_mult_hi_to_si
3263 if [info exists et_vect_widen_mult_hi_to_si_saved] {
3264 verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
3265 } else {
3266 if { [check_effective_target_vect_unpack]
3267 && [check_effective_target_vect_int_mult] } {
3268 set et_vect_widen_mult_hi_to_si_saved 1
3269 } else {
3270 set et_vect_widen_mult_hi_to_si_saved 0
3272 if { [istarget powerpc*-*-*]
3273 || [istarget spu-*-*]
3274 || [istarget ia64-*-*]
3275 || [istarget aarch64*-*-*]
3276 || [istarget i?86-*-*]
3277 || [istarget x86_64-*-*]
3278 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3279 set et_vect_widen_mult_hi_to_si_saved 1
3282 verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
3283 return $et_vect_widen_mult_hi_to_si_saved
3286 # Return 1 if the target plus current options supports a vector
3287 # widening multiplication of *char* args into *short* result, 0 otherwise.
3289 # This won't change for different subtargets so cache the result.
3291 proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
3292 global et_vect_widen_mult_qi_to_hi_pattern
3294 if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
3295 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
3296 } else {
3297 set et_vect_widen_mult_qi_to_hi_pattern_saved 0
3298 if { [istarget powerpc*-*-*]
3299 || ([istarget arm*-*-*]
3300 && [check_effective_target_arm_neon_ok]
3301 && [check_effective_target_arm_little_endian]) } {
3302 set et_vect_widen_mult_qi_to_hi_pattern_saved 1
3305 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
3306 return $et_vect_widen_mult_qi_to_hi_pattern_saved
3309 # Return 1 if the target plus current options supports a vector
3310 # widening multiplication of *short* args into *int* result, 0 otherwise.
3312 # This won't change for different subtargets so cache the result.
3314 proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
3315 global et_vect_widen_mult_hi_to_si_pattern
3317 if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
3318 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
3319 } else {
3320 set et_vect_widen_mult_hi_to_si_pattern_saved 0
3321 if { [istarget powerpc*-*-*]
3322 || [istarget spu-*-*]
3323 || [istarget ia64-*-*]
3324 || [istarget i?86-*-*]
3325 || [istarget x86_64-*-*]
3326 || ([istarget arm*-*-*]
3327 && [check_effective_target_arm_neon_ok]
3328 && [check_effective_target_arm_little_endian]) } {
3329 set et_vect_widen_mult_hi_to_si_pattern_saved 1
3332 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
3333 return $et_vect_widen_mult_hi_to_si_pattern_saved
3336 # Return 1 if the target plus current options supports a vector
3337 # widening shift, 0 otherwise.
3339 # This won't change for different subtargets so cache the result.
3341 proc check_effective_target_vect_widen_shift { } {
3342 global et_vect_widen_shift_saved
3344 if [info exists et_vect_shift_saved] {
3345 verbose "check_effective_target_vect_widen_shift: using cached result" 2
3346 } else {
3347 set et_vect_widen_shift_saved 0
3348 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3349 set et_vect_widen_shift_saved 1
3352 verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
3353 return $et_vect_widen_shift_saved
3356 # Return 1 if the target plus current options supports a vector
3357 # dot-product of signed chars, 0 otherwise.
3359 # This won't change for different subtargets so cache the result.
3361 proc check_effective_target_vect_sdot_qi { } {
3362 global et_vect_sdot_qi
3364 if [info exists et_vect_sdot_qi_saved] {
3365 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
3366 } else {
3367 set et_vect_sdot_qi_saved 0
3368 if { [istarget ia64-*-*] } {
3369 set et_vect_udot_qi_saved 1
3372 verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
3373 return $et_vect_sdot_qi_saved
3376 # Return 1 if the target plus current options supports a vector
3377 # dot-product of unsigned chars, 0 otherwise.
3379 # This won't change for different subtargets so cache the result.
3381 proc check_effective_target_vect_udot_qi { } {
3382 global et_vect_udot_qi
3384 if [info exists et_vect_udot_qi_saved] {
3385 verbose "check_effective_target_vect_udot_qi: using cached result" 2
3386 } else {
3387 set et_vect_udot_qi_saved 0
3388 if { [istarget powerpc*-*-*]
3389 || [istarget ia64-*-*] } {
3390 set et_vect_udot_qi_saved 1
3393 verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
3394 return $et_vect_udot_qi_saved
3397 # Return 1 if the target plus current options supports a vector
3398 # dot-product of signed shorts, 0 otherwise.
3400 # This won't change for different subtargets so cache the result.
3402 proc check_effective_target_vect_sdot_hi { } {
3403 global et_vect_sdot_hi
3405 if [info exists et_vect_sdot_hi_saved] {
3406 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
3407 } else {
3408 set et_vect_sdot_hi_saved 0
3409 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3410 || [istarget ia64-*-*]
3411 || [istarget i?86-*-*]
3412 || [istarget x86_64-*-*] } {
3413 set et_vect_sdot_hi_saved 1
3416 verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
3417 return $et_vect_sdot_hi_saved
3420 # Return 1 if the target plus current options supports a vector
3421 # dot-product of unsigned shorts, 0 otherwise.
3423 # This won't change for different subtargets so cache the result.
3425 proc check_effective_target_vect_udot_hi { } {
3426 global et_vect_udot_hi
3428 if [info exists et_vect_udot_hi_saved] {
3429 verbose "check_effective_target_vect_udot_hi: using cached result" 2
3430 } else {
3431 set et_vect_udot_hi_saved 0
3432 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
3433 set et_vect_udot_hi_saved 1
3436 verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
3437 return $et_vect_udot_hi_saved
3441 # Return 1 if the target plus current options supports a vector
3442 # demotion (packing) of shorts (to chars) and ints (to shorts)
3443 # using modulo arithmetic, 0 otherwise.
3445 # This won't change for different subtargets so cache the result.
3447 proc check_effective_target_vect_pack_trunc { } {
3448 global et_vect_pack_trunc
3450 if [info exists et_vect_pack_trunc_saved] {
3451 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
3452 } else {
3453 set et_vect_pack_trunc_saved 0
3454 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3455 || [istarget i?86-*-*]
3456 || [istarget x86_64-*-*]
3457 || [istarget aarch64*-*-*]
3458 || [istarget spu-*-*]
3459 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
3460 && [check_effective_target_arm_little_endian]) } {
3461 set et_vect_pack_trunc_saved 1
3464 verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
3465 return $et_vect_pack_trunc_saved
3468 # Return 1 if the target plus current options supports a vector
3469 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
3471 # This won't change for different subtargets so cache the result.
3473 proc check_effective_target_vect_unpack { } {
3474 global et_vect_unpack
3476 if [info exists et_vect_unpack_saved] {
3477 verbose "check_effective_target_vect_unpack: using cached result" 2
3478 } else {
3479 set et_vect_unpack_saved 0
3480 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
3481 || [istarget i?86-*-*]
3482 || [istarget x86_64-*-*]
3483 || [istarget spu-*-*]
3484 || [istarget ia64-*-*]
3485 || [istarget aarch64*-*-*]
3486 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
3487 && [check_effective_target_arm_little_endian]) } {
3488 set et_vect_unpack_saved 1
3491 verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
3492 return $et_vect_unpack_saved
3495 # Return 1 if the target plus current options does not guarantee
3496 # that its STACK_BOUNDARY is >= the reguired vector alignment.
3498 # This won't change for different subtargets so cache the result.
3500 proc check_effective_target_unaligned_stack { } {
3501 global et_unaligned_stack_saved
3503 if [info exists et_unaligned_stack_saved] {
3504 verbose "check_effective_target_unaligned_stack: using cached result" 2
3505 } else {
3506 set et_unaligned_stack_saved 0
3508 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
3509 return $et_unaligned_stack_saved
3512 # Return 1 if the target plus current options does not support a vector
3513 # alignment mechanism, 0 otherwise.
3515 # This won't change for different subtargets so cache the result.
3517 proc check_effective_target_vect_no_align { } {
3518 global et_vect_no_align_saved
3520 if [info exists et_vect_no_align_saved] {
3521 verbose "check_effective_target_vect_no_align: using cached result" 2
3522 } else {
3523 set et_vect_no_align_saved 0
3524 if { [istarget mipsisa64*-*-*]
3525 || [istarget sparc*-*-*]
3526 || [istarget ia64-*-*]
3527 || [check_effective_target_arm_vect_no_misalign]
3528 || ([istarget mips*-*-*]
3529 && [check_effective_target_mips_loongson]) } {
3530 set et_vect_no_align_saved 1
3533 verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
3534 return $et_vect_no_align_saved
3537 # Return 1 if the target supports a vector misalign access, 0 otherwise.
3539 # This won't change for different subtargets so cache the result.
3541 proc check_effective_target_vect_hw_misalign { } {
3542 global et_vect_hw_misalign_saved
3544 if [info exists et_vect_hw_misalign_saved] {
3545 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
3546 } else {
3547 set et_vect_hw_misalign_saved 0
3548 if { ([istarget x86_64-*-*]
3549 || [istarget aarch64*-*-*]
3550 || [istarget i?86-*-*]) } {
3551 set et_vect_hw_misalign_saved 1
3554 verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
3555 return $et_vect_hw_misalign_saved
3559 # Return 1 if arrays are aligned to the vector alignment
3560 # boundary, 0 otherwise.
3562 # This won't change for different subtargets so cache the result.
3564 proc check_effective_target_vect_aligned_arrays { } {
3565 global et_vect_aligned_arrays
3567 if [info exists et_vect_aligned_arrays_saved] {
3568 verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
3569 } else {
3570 set et_vect_aligned_arrays_saved 0
3571 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
3572 if { ([is-effective-target lp64]
3573 && ( ![check_avx_available]
3574 || [check_prefer_avx128])) } {
3575 set et_vect_aligned_arrays_saved 1
3578 if [istarget spu-*-*] {
3579 set et_vect_aligned_arrays_saved 1
3582 verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
3583 return $et_vect_aligned_arrays_saved
3586 # Return 1 if types of size 32 bit or less are naturally aligned
3587 # (aligned to their type-size), 0 otherwise.
3589 # This won't change for different subtargets so cache the result.
3591 proc check_effective_target_natural_alignment_32 { } {
3592 global et_natural_alignment_32
3594 if [info exists et_natural_alignment_32_saved] {
3595 verbose "check_effective_target_natural_alignment_32: using cached result" 2
3596 } else {
3597 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
3598 set et_natural_alignment_32_saved 1
3599 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
3600 set et_natural_alignment_32_saved 0
3603 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
3604 return $et_natural_alignment_32_saved
3607 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
3608 # type-size), 0 otherwise.
3610 # This won't change for different subtargets so cache the result.
3612 proc check_effective_target_natural_alignment_64 { } {
3613 global et_natural_alignment_64
3615 if [info exists et_natural_alignment_64_saved] {
3616 verbose "check_effective_target_natural_alignment_64: using cached result" 2
3617 } else {
3618 set et_natural_alignment_64_saved 0
3619 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
3620 || [istarget spu-*-*] } {
3621 set et_natural_alignment_64_saved 1
3624 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
3625 return $et_natural_alignment_64_saved
3628 # Return 1 if all vector types are naturally aligned (aligned to their
3629 # type-size), 0 otherwise.
3631 # This won't change for different subtargets so cache the result.
3633 proc check_effective_target_vect_natural_alignment { } {
3634 global et_vect_natural_alignment
3636 if [info exists et_vect_natural_alignment_saved] {
3637 verbose "check_effective_target_vect_natural_alignment: using cached result" 2
3638 } else {
3639 set et_vect_natural_alignment_saved 1
3640 if { [check_effective_target_arm_eabi] } {
3641 set et_vect_natural_alignment_saved 0
3644 verbose "check_effective_target_vect_natural_alignment: returning $et_vect_natural_alignment_saved" 2
3645 return $et_vect_natural_alignment_saved
3648 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
3650 # This won't change for different subtargets so cache the result.
3652 proc check_effective_target_vector_alignment_reachable { } {
3653 global et_vector_alignment_reachable
3655 if [info exists et_vector_alignment_reachable_saved] {
3656 verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
3657 } else {
3658 if { [check_effective_target_vect_aligned_arrays]
3659 || [check_effective_target_natural_alignment_32] } {
3660 set et_vector_alignment_reachable_saved 1
3661 } else {
3662 set et_vector_alignment_reachable_saved 0
3665 verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
3666 return $et_vector_alignment_reachable_saved
3669 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
3671 # This won't change for different subtargets so cache the result.
3673 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
3674 global et_vector_alignment_reachable_for_64bit
3676 if [info exists et_vector_alignment_reachable_for_64bit_saved] {
3677 verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
3678 } else {
3679 if { [check_effective_target_vect_aligned_arrays]
3680 || [check_effective_target_natural_alignment_64] } {
3681 set et_vector_alignment_reachable_for_64bit_saved 1
3682 } else {
3683 set et_vector_alignment_reachable_for_64bit_saved 0
3686 verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
3687 return $et_vector_alignment_reachable_for_64bit_saved
3690 # Return 1 if the target only requires element alignment for vector accesses
3692 proc check_effective_target_vect_element_align { } {
3693 global et_vect_element_align
3695 if [info exists et_vect_element_align] {
3696 verbose "check_effective_target_vect_element_align: using cached result" 2
3697 } else {
3698 set et_vect_element_align 0
3699 if { ([istarget arm*-*-*]
3700 && ![check_effective_target_arm_vect_no_misalign])
3701 || [check_effective_target_vect_hw_misalign] } {
3702 set et_vect_element_align 1
3706 verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
3707 return $et_vect_element_align
3710 # Return 1 if the target supports vector conditional operations, 0 otherwise.
3712 proc check_effective_target_vect_condition { } {
3713 global et_vect_cond_saved
3715 if [info exists et_vect_cond_saved] {
3716 verbose "check_effective_target_vect_cond: using cached result" 2
3717 } else {
3718 set et_vect_cond_saved 0
3719 if { [istarget aarch64*-*-*]
3720 || [istarget powerpc*-*-*]
3721 || [istarget ia64-*-*]
3722 || [istarget i?86-*-*]
3723 || [istarget spu-*-*]
3724 || [istarget x86_64-*-*]
3725 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3726 set et_vect_cond_saved 1
3730 verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
3731 return $et_vect_cond_saved
3734 # Return 1 if the target supports vector conditional operations where
3735 # the comparison has different type from the lhs, 0 otherwise.
3737 proc check_effective_target_vect_cond_mixed { } {
3738 global et_vect_cond_mixed_saved
3740 if [info exists et_vect_cond_mixed_saved] {
3741 verbose "check_effective_target_vect_cond_mixed: using cached result" 2
3742 } else {
3743 set et_vect_cond_mixed_saved 0
3744 if { [istarget i?86-*-*]
3745 || [istarget x86_64-*-*]
3746 || [istarget powerpc*-*-*] } {
3747 set et_vect_cond_mixed_saved 1
3751 verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
3752 return $et_vect_cond_mixed_saved
3755 # Return 1 if the target supports vector char multiplication, 0 otherwise.
3757 proc check_effective_target_vect_char_mult { } {
3758 global et_vect_char_mult_saved
3760 if [info exists et_vect_char_mult_saved] {
3761 verbose "check_effective_target_vect_char_mult: using cached result" 2
3762 } else {
3763 set et_vect_char_mult_saved 0
3764 if { [istarget aarch64*-*-*]
3765 || [istarget ia64-*-*]
3766 || [istarget i?86-*-*]
3767 || [istarget x86_64-*-*]
3768 || [check_effective_target_arm32] } {
3769 set et_vect_char_mult_saved 1
3773 verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
3774 return $et_vect_char_mult_saved
3777 # Return 1 if the target supports vector short multiplication, 0 otherwise.
3779 proc check_effective_target_vect_short_mult { } {
3780 global et_vect_short_mult_saved
3782 if [info exists et_vect_short_mult_saved] {
3783 verbose "check_effective_target_vect_short_mult: using cached result" 2
3784 } else {
3785 set et_vect_short_mult_saved 0
3786 if { [istarget ia64-*-*]
3787 || [istarget spu-*-*]
3788 || [istarget i?86-*-*]
3789 || [istarget x86_64-*-*]
3790 || [istarget powerpc*-*-*]
3791 || [istarget aarch64*-*-*]
3792 || [check_effective_target_arm32]
3793 || ([istarget mips*-*-*]
3794 && [check_effective_target_mips_loongson]) } {
3795 set et_vect_short_mult_saved 1
3799 verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
3800 return $et_vect_short_mult_saved
3803 # Return 1 if the target supports vector int multiplication, 0 otherwise.
3805 proc check_effective_target_vect_int_mult { } {
3806 global et_vect_int_mult_saved
3808 if [info exists et_vect_int_mult_saved] {
3809 verbose "check_effective_target_vect_int_mult: using cached result" 2
3810 } else {
3811 set et_vect_int_mult_saved 0
3812 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3813 || [istarget spu-*-*]
3814 || [istarget i?86-*-*]
3815 || [istarget x86_64-*-*]
3816 || [istarget ia64-*-*]
3817 || [istarget aarch64*-*-*]
3818 || [check_effective_target_arm32] } {
3819 set et_vect_int_mult_saved 1
3823 verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
3824 return $et_vect_int_mult_saved
3827 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
3829 proc check_effective_target_vect_extract_even_odd { } {
3830 global et_vect_extract_even_odd_saved
3832 if [info exists et_vect_extract_even_odd_saved] {
3833 verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
3834 } else {
3835 set et_vect_extract_even_odd_saved 0
3836 if { [istarget aarch64*-*-*]
3837 || [istarget powerpc*-*-*]
3838 || [is-effective-target arm_neon_ok]
3839 || [istarget i?86-*-*]
3840 || [istarget x86_64-*-*]
3841 || [istarget ia64-*-*]
3842 || [istarget spu-*-*]
3843 || ([istarget mips*-*-*]
3844 && [check_effective_target_mpaired_single]) } {
3845 set et_vect_extract_even_odd_saved 1
3849 verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
3850 return $et_vect_extract_even_odd_saved
3853 # Return 1 if the target supports vector interleaving, 0 otherwise.
3855 proc check_effective_target_vect_interleave { } {
3856 global et_vect_interleave_saved
3858 if [info exists et_vect_interleave_saved] {
3859 verbose "check_effective_target_vect_interleave: using cached result" 2
3860 } else {
3861 set et_vect_interleave_saved 0
3862 if { [istarget aarch64*-*-*]
3863 || [istarget powerpc*-*-*]
3864 || [is-effective-target arm_neon_ok]
3865 || [istarget i?86-*-*]
3866 || [istarget x86_64-*-*]
3867 || [istarget ia64-*-*]
3868 || [istarget spu-*-*]
3869 || ([istarget mips*-*-*]
3870 && [check_effective_target_mpaired_single]) } {
3871 set et_vect_interleave_saved 1
3875 verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
3876 return $et_vect_interleave_saved
3879 foreach N {2 3 4 8} {
3880 eval [string map [list N $N] {
3881 # Return 1 if the target supports 2-vector interleaving
3882 proc check_effective_target_vect_stridedN { } {
3883 global et_vect_stridedN_saved
3885 if [info exists et_vect_stridedN_saved] {
3886 verbose "check_effective_target_vect_stridedN: using cached result" 2
3887 } else {
3888 set et_vect_stridedN_saved 0
3889 if { (N & -N) == N
3890 && [check_effective_target_vect_interleave]
3891 && [check_effective_target_vect_extract_even_odd] } {
3892 set et_vect_stridedN_saved 1
3894 if { ([istarget arm*-*-*]
3895 || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
3896 set et_vect_stridedN_saved 1
3900 verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
3901 return $et_vect_stridedN_saved
3906 # Return 1 if the target supports multiple vector sizes
3908 proc check_effective_target_vect_multiple_sizes { } {
3909 global et_vect_multiple_sizes_saved
3911 set et_vect_multiple_sizes_saved 0
3912 if { ([istarget aarch64*-*-*]
3913 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])) } {
3914 set et_vect_multiple_sizes_saved 1
3916 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
3917 if { ([check_avx_available] && ![check_prefer_avx128]) } {
3918 set et_vect_multiple_sizes_saved 1
3922 verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
3923 return $et_vect_multiple_sizes_saved
3926 # Return 1 if the target supports vectors of 64 bits.
3928 proc check_effective_target_vect64 { } {
3929 global et_vect64_saved
3931 if [info exists et_vect64_saved] {
3932 verbose "check_effective_target_vect64: using cached result" 2
3933 } else {
3934 set et_vect64_saved 0
3935 if { ([istarget arm*-*-*]
3936 && [check_effective_target_arm_neon_ok]
3937 && [check_effective_target_arm_little_endian]) } {
3938 set et_vect64_saved 1
3942 verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
3943 return $et_vect64_saved
3946 # Return 1 if the target supports vector copysignf calls.
3948 proc check_effective_target_vect_call_copysignf { } {
3949 global et_vect_call_copysignf_saved
3951 if [info exists et_vect_call_copysignf_saved] {
3952 verbose "check_effective_target_vect_call_copysignf: using cached result" 2
3953 } else {
3954 set et_vect_call_copysignf_saved 0
3955 if { [istarget i?86-*-*]
3956 || [istarget x86_64-*-*]
3957 || [istarget powerpc*-*-*] } {
3958 set et_vect_call_copysignf_saved 1
3962 verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2
3963 return $et_vect_call_copysignf_saved
3966 # Return 1 if the target supports vector sqrtf calls.
3968 proc check_effective_target_vect_call_sqrtf { } {
3969 global et_vect_call_sqrtf_saved
3971 if [info exists et_vect_call_sqrtf_saved] {
3972 verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
3973 } else {
3974 set et_vect_call_sqrtf_saved 0
3975 if { [istarget aarch64*-*-*]
3976 || [istarget i?86-*-*]
3977 || [istarget x86_64-*-*]
3978 || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
3979 set et_vect_call_sqrtf_saved 1
3983 verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2
3984 return $et_vect_call_sqrtf_saved
3987 # Return 1 if the target supports vector lrint calls.
3989 proc check_effective_target_vect_call_lrint { } {
3990 set et_vect_call_lrint 0
3991 if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } {
3992 set et_vect_call_lrint 1
3995 verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
3996 return $et_vect_call_lrint
3999 # Return 1 if the target supports vector btrunc calls.
4001 proc check_effective_target_vect_call_btrunc { } {
4002 global et_vect_call_btrunc_saved
4004 if [info exists et_vect_call_btrunc_saved] {
4005 verbose "check_effective_target_vect_call_btrunc: using cached result" 2
4006 } else {
4007 set et_vect_call_btrunc_saved 0
4008 if { [istarget aarch64*-*-*] } {
4009 set et_vect_call_btrunc_saved 1
4013 verbose "check_effective_target_vect_call_btrunc: returning $et_vect_call_btrunc_saved" 2
4014 return $et_vect_call_btrunc_saved
4017 # Return 1 if the target supports vector btruncf calls.
4019 proc check_effective_target_vect_call_btruncf { } {
4020 global et_vect_call_btruncf_saved
4022 if [info exists et_vect_call_btruncf_saved] {
4023 verbose "check_effective_target_vect_call_btruncf: using cached result" 2
4024 } else {
4025 set et_vect_call_btruncf_saved 0
4026 if { [istarget aarch64*-*-*] } {
4027 set et_vect_call_btruncf_saved 1
4031 verbose "check_effective_target_vect_call_btruncf: returning $et_vect_call_btruncf_saved" 2
4032 return $et_vect_call_btruncf_saved
4035 # Return 1 if the target supports vector ceil calls.
4037 proc check_effective_target_vect_call_ceil { } {
4038 global et_vect_call_ceil_saved
4040 if [info exists et_vect_call_ceil_saved] {
4041 verbose "check_effective_target_vect_call_ceil: using cached result" 2
4042 } else {
4043 set et_vect_call_ceil_saved 0
4044 if { [istarget aarch64*-*-*] } {
4045 set et_vect_call_ceil_saved 1
4049 verbose "check_effective_target_vect_call_ceil: returning $et_vect_call_ceil_saved" 2
4050 return $et_vect_call_ceil_saved
4053 # Return 1 if the target supports vector ceilf calls.
4055 proc check_effective_target_vect_call_ceilf { } {
4056 global et_vect_call_ceilf_saved
4058 if [info exists et_vect_call_ceilf_saved] {
4059 verbose "check_effective_target_vect_call_ceilf: using cached result" 2
4060 } else {
4061 set et_vect_call_ceilf_saved 0
4062 if { [istarget aarch64*-*-*] } {
4063 set et_vect_call_ceilf_saved 1
4067 verbose "check_effective_target_vect_call_ceilf: returning $et_vect_call_ceilf_saved" 2
4068 return $et_vect_call_ceilf_saved
4071 # Return 1 if the target supports vector floor calls.
4073 proc check_effective_target_vect_call_floor { } {
4074 global et_vect_call_floor_saved
4076 if [info exists et_vect_call_floor_saved] {
4077 verbose "check_effective_target_vect_call_floor: using cached result" 2
4078 } else {
4079 set et_vect_call_floor_saved 0
4080 if { [istarget aarch64*-*-*] } {
4081 set et_vect_call_floor_saved 1
4085 verbose "check_effective_target_vect_call_floor: returning $et_vect_call_floor_saved" 2
4086 return $et_vect_call_floor_saved
4089 # Return 1 if the target supports vector floorf calls.
4091 proc check_effective_target_vect_call_floorf { } {
4092 global et_vect_call_floorf_saved
4094 if [info exists et_vect_call_floorf_saved] {
4095 verbose "check_effective_target_vect_call_floorf: using cached result" 2
4096 } else {
4097 set et_vect_call_floorf_saved 0
4098 if { [istarget aarch64*-*-*] } {
4099 set et_vect_call_floorf_saved 1
4103 verbose "check_effective_target_vect_call_floorf: returning $et_vect_call_floorf_saved" 2
4104 return $et_vect_call_floorf_saved
4107 # Return 1 if the target supports vector lceil calls.
4109 proc check_effective_target_vect_call_lceil { } {
4110 global et_vect_call_lceil_saved
4112 if [info exists et_vect_call_lceil_saved] {
4113 verbose "check_effective_target_vect_call_lceil: using cached result" 2
4114 } else {
4115 set et_vect_call_lceil_saved 0
4116 if { [istarget aarch64*-*-*] } {
4117 set et_vect_call_lceil_saved 1
4121 verbose "check_effective_target_vect_call_lceil: returning $et_vect_call_lceil_saved" 2
4122 return $et_vect_call_lceil_saved
4125 # Return 1 if the target supports vector lfloor calls.
4127 proc check_effective_target_vect_call_lfloor { } {
4128 global et_vect_call_lfloor_saved
4130 if [info exists et_vect_call_lfloor_saved] {
4131 verbose "check_effective_target_vect_call_lfloor: using cached result" 2
4132 } else {
4133 set et_vect_call_lfloor_saved 0
4134 if { [istarget aarch64*-*-*] } {
4135 set et_vect_call_lfloor_saved 1
4139 verbose "check_effective_target_vect_call_lfloor: returning $et_vect_call_lfloor_saved" 2
4140 return $et_vect_call_lfloor_saved
4143 # Return 1 if the target supports vector nearbyint calls.
4145 proc check_effective_target_vect_call_nearbyint { } {
4146 global et_vect_call_nearbyint_saved
4148 if [info exists et_vect_call_nearbyint_saved] {
4149 verbose "check_effective_target_vect_call_nearbyint: using cached result" 2
4150 } else {
4151 set et_vect_call_nearbyint_saved 0
4152 if { [istarget aarch64*-*-*] } {
4153 set et_vect_call_nearbyint_saved 1
4157 verbose "check_effective_target_vect_call_nearbyint: returning $et_vect_call_nearbyint_saved" 2
4158 return $et_vect_call_nearbyint_saved
4161 # Return 1 if the target supports vector nearbyintf calls.
4163 proc check_effective_target_vect_call_nearbyintf { } {
4164 global et_vect_call_nearbyintf_saved
4166 if [info exists et_vect_call_nearbyintf_saved] {
4167 verbose "check_effective_target_vect_call_nearbyintf: using cached result" 2
4168 } else {
4169 set et_vect_call_nearbyintf_saved 0
4170 if { [istarget aarch64*-*-*] } {
4171 set et_vect_call_nearbyintf_saved 1
4175 verbose "check_effective_target_vect_call_nearbyintf: returning $et_vect_call_nearbyintf_saved" 2
4176 return $et_vect_call_nearbyintf_saved
4179 # Return 1 if the target supports vector round calls.
4181 proc check_effective_target_vect_call_round { } {
4182 global et_vect_call_round_saved
4184 if [info exists et_vect_call_round_saved] {
4185 verbose "check_effective_target_vect_call_round: using cached result" 2
4186 } else {
4187 set et_vect_call_round_saved 0
4188 if { [istarget aarch64*-*-*] } {
4189 set et_vect_call_round_saved 1
4193 verbose "check_effective_target_vect_call_round: returning $et_vect_call_round_saved" 2
4194 return $et_vect_call_round_saved
4197 # Return 1 if the target supports vector roundf calls.
4199 proc check_effective_target_vect_call_roundf { } {
4200 global et_vect_call_roundf_saved
4202 if [info exists et_vect_call_roundf_saved] {
4203 verbose "check_effective_target_vect_call_roundf: using cached result" 2
4204 } else {
4205 set et_vect_call_roundf_saved 0
4206 if { [istarget aarch64*-*-*] } {
4207 set et_vect_call_roundf_saved 1
4211 verbose "check_effective_target_vect_call_roundf: returning $et_vect_call_roundf_saved" 2
4212 return $et_vect_call_roundf_saved
4215 # Return 1 if the target supports section-anchors
4217 proc check_effective_target_section_anchors { } {
4218 global et_section_anchors_saved
4220 if [info exists et_section_anchors_saved] {
4221 verbose "check_effective_target_section_anchors: using cached result" 2
4222 } else {
4223 set et_section_anchors_saved 0
4224 if { [istarget powerpc*-*-*]
4225 || [istarget arm*-*-*] } {
4226 set et_section_anchors_saved 1
4230 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
4231 return $et_section_anchors_saved
4234 # Return 1 if the target supports atomic operations on "int_128" values.
4236 proc check_effective_target_sync_int_128 { } {
4237 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4238 && ![is-effective-target ia32] } {
4239 return 1
4240 } else {
4241 return 0
4245 # Return 1 if the target supports atomic operations on "int_128" values
4246 # and can execute them.
4248 proc check_effective_target_sync_int_128_runtime { } {
4249 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4250 && ![is-effective-target ia32] } {
4251 return [check_cached_effective_target sync_int_128_available {
4252 check_runtime_nocache sync_int_128_available {
4253 #include "cpuid.h"
4254 int main ()
4256 unsigned int eax, ebx, ecx, edx;
4257 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
4258 return !(ecx & bit_CMPXCHG16B);
4259 return 1;
4261 } ""
4263 } else {
4264 return 0
4268 # Return 1 if the target supports atomic operations on "long long".
4270 # Note: 32bit x86 targets require -march=pentium in dg-options.
4272 proc check_effective_target_sync_long_long { } {
4273 if { [istarget x86_64-*-*]
4274 || [istarget i?86-*-*])
4275 || [istarget arm*-*-*]
4276 || [istarget alpha*-*-*]
4277 || ([istarget sparc*-*-*] && [check_effective_target_lp64]) } {
4278 return 1
4279 } else {
4280 return 0
4284 # Return 1 if the target supports atomic operations on "long long"
4285 # and can execute them.
4287 # Note: 32bit x86 targets require -march=pentium in dg-options.
4289 proc check_effective_target_sync_long_long_runtime { } {
4290 if { [istarget x86_64-*-*]
4291 || [istarget i?86-*-*] } {
4292 return [check_cached_effective_target sync_long_long_available {
4293 check_runtime_nocache sync_long_long_available {
4294 #include "cpuid.h"
4295 int main ()
4297 unsigned int eax, ebx, ecx, edx;
4298 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
4299 return !(edx & bit_CMPXCHG8B);
4300 return 1;
4302 } ""
4304 } elseif { [istarget arm*-*-linux-*] } {
4305 return [check_runtime sync_longlong_runtime {
4306 #include <stdlib.h>
4307 int main ()
4309 long long l1;
4311 if (sizeof (long long) != 8)
4312 exit (1);
4314 /* Just check for native; checking for kernel fallback is tricky. */
4315 asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
4317 exit (0);
4319 } "" ]
4320 } elseif { [istarget alpha*-*-*] } {
4321 return 1
4322 } elseif { ([istarget sparc*-*-*]
4323 && [check_effective_target_lp64]
4324 && [check_effective_target_ultrasparc_hw]) } {
4325 return 1
4326 } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } {
4327 return 1
4328 } else {
4329 return 0
4333 # Return 1 if the target supports atomic operations on "int" and "long".
4335 proc check_effective_target_sync_int_long { } {
4336 global et_sync_int_long_saved
4338 if [info exists et_sync_int_long_saved] {
4339 verbose "check_effective_target_sync_int_long: using cached result" 2
4340 } else {
4341 set et_sync_int_long_saved 0
4342 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
4343 # load-reserved/store-conditional instructions.
4344 if { [istarget ia64-*-*]
4345 || [istarget i?86-*-*]
4346 || [istarget x86_64-*-*]
4347 || [istarget aarch64*-*-*]
4348 || [istarget alpha*-*-*]
4349 || [istarget arm*-*-linux-*]
4350 || [istarget bfin*-*linux*]
4351 || [istarget hppa*-*linux*]
4352 || [istarget s390*-*-*]
4353 || [istarget powerpc*-*-*]
4354 || [istarget crisv32-*-*] || [istarget cris-*-*]
4355 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
4356 || [check_effective_target_mips_llsc] } {
4357 set et_sync_int_long_saved 1
4361 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
4362 return $et_sync_int_long_saved
4365 # Return 1 if the target supports atomic operations on "char" and "short".
4367 proc check_effective_target_sync_char_short { } {
4368 global et_sync_char_short_saved
4370 if [info exists et_sync_char_short_saved] {
4371 verbose "check_effective_target_sync_char_short: using cached result" 2
4372 } else {
4373 set et_sync_char_short_saved 0
4374 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
4375 # load-reserved/store-conditional instructions.
4376 if { [istarget aarch64*-*-*]
4377 || [istarget ia64-*-*]
4378 || [istarget i?86-*-*]
4379 || [istarget x86_64-*-*]
4380 || [istarget alpha*-*-*]
4381 || [istarget arm*-*-linux-*]
4382 || [istarget hppa*-*linux*]
4383 || [istarget s390*-*-*]
4384 || [istarget powerpc*-*-*]
4385 || [istarget crisv32-*-*] || [istarget cris-*-*]
4386 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
4387 || [check_effective_target_mips_llsc] } {
4388 set et_sync_char_short_saved 1
4392 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
4393 return $et_sync_char_short_saved
4396 # Return 1 if the target uses a ColdFire FPU.
4398 proc check_effective_target_coldfire_fpu { } {
4399 return [check_no_compiler_messages coldfire_fpu assembly {
4400 #ifndef __mcffpu__
4401 #error FOO
4402 #endif
4406 # Return true if this is a uClibc target.
4408 proc check_effective_target_uclibc {} {
4409 return [check_no_compiler_messages uclibc object {
4410 #include <features.h>
4411 #if !defined (__UCLIBC__)
4412 #error FOO
4413 #endif
4417 # Return true if this is a uclibc target and if the uclibc feature
4418 # described by __$feature__ is not present.
4420 proc check_missing_uclibc_feature {feature} {
4421 return [check_no_compiler_messages $feature object "
4422 #include <features.h>
4423 #if !defined (__UCLIBC) || defined (__${feature}__)
4424 #error FOO
4425 #endif
4429 # Return true if this is a Newlib target.
4431 proc check_effective_target_newlib {} {
4432 return [check_no_compiler_messages newlib object {
4433 #include <newlib.h>
4437 # Return 1 if
4438 # (a) an error of a few ULP is expected in string to floating-point
4439 # conversion functions; and
4440 # (b) overflow is not always detected correctly by those functions.
4442 proc check_effective_target_lax_strtofp {} {
4443 # By default, assume that all uClibc targets suffer from this.
4444 return [check_effective_target_uclibc]
4447 # Return 1 if this is a target for which wcsftime is a dummy
4448 # function that always returns 0.
4450 proc check_effective_target_dummy_wcsftime {} {
4451 # By default, assume that all uClibc targets suffer from this.
4452 return [check_effective_target_uclibc]
4455 # Return 1 if constructors with initialization priority arguments are
4456 # supposed on this target.
4458 proc check_effective_target_init_priority {} {
4459 return [check_no_compiler_messages init_priority assembly "
4460 void f() __attribute__((constructor (1000)));
4461 void f() \{\}
4465 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
4466 # This can be used with any check_* proc that takes no argument and
4467 # returns only 1 or 0. It could be used with check_* procs that take
4468 # arguments with keywords that pass particular arguments.
4470 proc is-effective-target { arg } {
4471 set selected 0
4472 if { [info procs check_effective_target_${arg}] != [list] } {
4473 set selected [check_effective_target_${arg}]
4474 } else {
4475 switch $arg {
4476 "vmx_hw" { set selected [check_vmx_hw_available] }
4477 "vsx_hw" { set selected [check_vsx_hw_available] }
4478 "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
4479 "named_sections" { set selected [check_named_sections_available] }
4480 "gc_sections" { set selected [check_gc_sections_available] }
4481 "cxa_atexit" { set selected [check_cxa_atexit_available] }
4482 default { error "unknown effective target keyword `$arg'" }
4485 verbose "is-effective-target: $arg $selected" 2
4486 return $selected
4489 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
4491 proc is-effective-target-keyword { arg } {
4492 if { [info procs check_effective_target_${arg}] != [list] } {
4493 return 1
4494 } else {
4495 # These have different names for their check_* procs.
4496 switch $arg {
4497 "vmx_hw" { return 1 }
4498 "vsx_hw" { return 1 }
4499 "ppc_recip_hw" { return 1 }
4500 "named_sections" { return 1 }
4501 "gc_sections" { return 1 }
4502 "cxa_atexit" { return 1 }
4503 default { return 0 }
4508 # Return 1 if target default to short enums
4510 proc check_effective_target_short_enums { } {
4511 return [check_no_compiler_messages short_enums assembly {
4512 enum foo { bar };
4513 int s[sizeof (enum foo) == 1 ? 1 : -1];
4517 # Return 1 if target supports merging string constants at link time.
4519 proc check_effective_target_string_merging { } {
4520 return [check_no_messages_and_pattern string_merging \
4521 "rodata\\.str" assembly {
4522 const char *var = "String";
4523 } {-O2}]
4526 # Return 1 if target has the basic signed and unsigned types in
4527 # <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
4528 # working <stdint.h> for all targets.
4530 proc check_effective_target_stdint_types { } {
4531 return [check_no_compiler_messages stdint_types assembly {
4532 #include <stdint.h>
4533 int8_t a; int16_t b; int32_t c; int64_t d;
4534 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
4538 # Return 1 if target has the basic signed and unsigned types in
4539 # <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
4540 # these types agree with those in the header, as some systems have
4541 # only <inttypes.h>.
4543 proc check_effective_target_inttypes_types { } {
4544 return [check_no_compiler_messages inttypes_types assembly {
4545 #include <inttypes.h>
4546 int8_t a; int16_t b; int32_t c; int64_t d;
4547 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
4551 # Return 1 if programs are intended to be run on a simulator
4552 # (i.e. slowly) rather than hardware (i.e. fast).
4554 proc check_effective_target_simulator { } {
4556 # All "src/sim" simulators set this one.
4557 if [board_info target exists is_simulator] {
4558 return [board_info target is_simulator]
4561 # The "sid" simulators don't set that one, but at least they set
4562 # this one.
4563 if [board_info target exists slow_simulator] {
4564 return [board_info target slow_simulator]
4567 return 0
4570 # Return 1 if the target is a VxWorks kernel.
4572 proc check_effective_target_vxworks_kernel { } {
4573 return [check_no_compiler_messages vxworks_kernel assembly {
4574 #if !defined __vxworks || defined __RTP__
4575 #error NO
4576 #endif
4580 # Return 1 if the target is a VxWorks RTP.
4582 proc check_effective_target_vxworks_rtp { } {
4583 return [check_no_compiler_messages vxworks_rtp assembly {
4584 #if !defined __vxworks || !defined __RTP__
4585 #error NO
4586 #endif
4590 # Return 1 if the target is expected to provide wide character support.
4592 proc check_effective_target_wchar { } {
4593 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
4594 return 0
4596 return [check_no_compiler_messages wchar assembly {
4597 #include <wchar.h>
4601 # Return 1 if the target has <pthread.h>.
4603 proc check_effective_target_pthread_h { } {
4604 return [check_no_compiler_messages pthread_h assembly {
4605 #include <pthread.h>
4609 # Return 1 if the target can truncate a file from a file-descriptor,
4610 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
4611 # chsize. We test for a trivially functional truncation; no stubs.
4612 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
4613 # different function to be used.
4615 proc check_effective_target_fd_truncate { } {
4616 set prog {
4617 #define _FILE_OFFSET_BITS 64
4618 #include <unistd.h>
4619 #include <stdio.h>
4620 #include <stdlib.h>
4621 int main ()
4623 FILE *f = fopen ("tst.tmp", "wb");
4624 int fd;
4625 const char t[] = "test writing more than ten characters";
4626 char s[11];
4627 int status = 0;
4628 fd = fileno (f);
4629 write (fd, t, sizeof (t) - 1);
4630 lseek (fd, 0, 0);
4631 if (ftruncate (fd, 10) != 0)
4632 status = 1;
4633 close (fd);
4634 fclose (f);
4635 if (status)
4637 unlink ("tst.tmp");
4638 exit (status);
4640 f = fopen ("tst.tmp", "rb");
4641 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
4642 status = 1;
4643 fclose (f);
4644 unlink ("tst.tmp");
4645 exit (status);
4649 if { [check_runtime ftruncate $prog] } {
4650 return 1;
4653 regsub "ftruncate" $prog "chsize" prog
4654 return [check_runtime chsize $prog]
4657 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
4659 proc add_options_for_c99_runtime { flags } {
4660 if { [istarget *-*-solaris2*] } {
4661 return "$flags -std=c99"
4663 if { [istarget powerpc-*-darwin*] } {
4664 return "$flags -mmacosx-version-min=10.3"
4666 return $flags
4669 # Add to FLAGS all the target-specific flags needed to enable
4670 # full IEEE compliance mode.
4672 proc add_options_for_ieee { flags } {
4673 if { [istarget alpha*-*-*]
4674 || [istarget sh*-*-*] } {
4675 return "$flags -mieee"
4677 if { [istarget rx-*-*] } {
4678 return "$flags -mnofpu"
4680 return $flags
4683 # Add to FLAGS the flags needed to enable functions to bind locally
4684 # when using pic/PIC passes in the testsuite.
4686 proc add_options_for_bind_pic_locally { flags } {
4687 if {[check_no_compiler_messages using_pic2 assembly {
4688 #if __PIC__ != 2
4689 #error FOO
4690 #endif
4691 }]} {
4692 return "$flags -fPIE"
4694 if {[check_no_compiler_messages using_pic1 assembly {
4695 #if __PIC__ != 1
4696 #error FOO
4697 #endif
4698 }]} {
4699 return "$flags -fpie"
4702 return $flags
4705 # Add to FLAGS the flags needed to enable 64-bit vectors.
4707 proc add_options_for_double_vectors { flags } {
4708 if [is-effective-target arm_neon_ok] {
4709 return "$flags -mvectorize-with-neon-double"
4712 return $flags
4715 # Add to FLAGS the flags needed to disable inlining of
4716 # UPC run-time access routines.
4718 proc add_options_for_upc_library_calls { flags } {
4719 return "$flags -fno-upc-inline-lib"
4722 # Check if UPC struct pts build
4724 proc check_effective_target_upc_struct_pts { } {
4725 return [check_no_compiler_messages upc_struct_pts object {
4726 #include <upc.h>
4727 #ifndef __UPC_PTS_STRUCT_REP__
4728 # error struct PTS is not supported
4729 #endif
4733 # Check if UPC packed pts build
4735 proc check_effective_target_upc_packed_pts { } {
4736 return [check_no_compiler_messages upc_packed_pts object {
4737 #include <upc.h>
4738 #ifndef __UPC_PTS_PACKED_REP__
4739 # error packed PTS is not supported
4740 #endif
4744 # Return 1 if the target provides a full C99 runtime.
4746 proc check_effective_target_c99_runtime { } {
4747 return [check_cached_effective_target c99_runtime {
4748 global srcdir
4750 set file [open "$srcdir/gcc.dg/builtins-config.h"]
4751 set contents [read $file]
4752 close $file
4753 append contents {
4754 #ifndef HAVE_C99_RUNTIME
4755 #error FOO
4756 #endif
4758 check_no_compiler_messages_nocache c99_runtime assembly \
4759 $contents [add_options_for_c99_runtime ""]
4763 # Return 1 if target wchar_t is at least 4 bytes.
4765 proc check_effective_target_4byte_wchar_t { } {
4766 return [check_no_compiler_messages 4byte_wchar_t object {
4767 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
4771 # Return 1 if the target supports automatic stack alignment.
4773 proc check_effective_target_automatic_stack_alignment { } {
4774 # Ordinarily x86 supports automatic stack alignment ...
4775 if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
4776 if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
4777 # ... except Win64 SEH doesn't. Succeed for Win32 though.
4778 return [check_effective_target_ilp32];
4780 return 1;
4782 return 0;
4785 # Return true if we are compiling for AVX target.
4787 proc check_avx_available { } {
4788 if { [check_no_compiler_messages avx_available assembly {
4789 #ifndef __AVX__
4790 #error unsupported
4791 #endif
4792 } ""] } {
4793 return 1;
4795 return 0;
4798 # Return true if 32- and 16-bytes vectors are available.
4800 proc check_effective_target_vect_sizes_32B_16B { } {
4801 return [check_avx_available];
4804 # Return true if 128-bits vectors are preferred even if 256-bits vectors
4805 # are available.
4807 proc check_prefer_avx128 { } {
4808 if ![check_avx_available] {
4809 return 0;
4811 return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
4812 float a[1024],b[1024],c[1024];
4813 void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
4814 } "-O2 -ftree-vectorize"]
4818 # Return 1 if avx instructions can be compiled.
4820 proc check_effective_target_avx { } {
4821 return [check_no_compiler_messages avx object {
4822 void _mm256_zeroall (void)
4824 __builtin_ia32_vzeroall ();
4826 } "-O2 -mavx" ]
4829 # Return 1 if sse instructions can be compiled.
4830 proc check_effective_target_sse { } {
4831 return [check_no_compiler_messages sse object {
4832 int main ()
4834 __builtin_ia32_stmxcsr ();
4835 return 0;
4837 } "-O2 -msse" ]
4840 # Return 1 if sse2 instructions can be compiled.
4841 proc check_effective_target_sse2 { } {
4842 return [check_no_compiler_messages sse2 object {
4843 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
4845 __m128i _mm_srli_si128 (__m128i __A, int __N)
4847 return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
4849 } "-O2 -msse2" ]
4852 # Return 1 if F16C instructions can be compiled.
4854 proc check_effective_target_f16c { } {
4855 return [check_no_compiler_messages f16c object {
4856 #include "immintrin.h"
4857 float
4858 foo (unsigned short val)
4860 return _cvtsh_ss (val);
4862 } "-O2 -mf16c" ]
4865 # Return 1 if C wchar_t type is compatible with char16_t.
4867 proc check_effective_target_wchar_t_char16_t_compatible { } {
4868 return [check_no_compiler_messages wchar_t_char16_t object {
4869 __WCHAR_TYPE__ wc;
4870 __CHAR16_TYPE__ *p16 = &wc;
4871 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
4875 # Return 1 if C wchar_t type is compatible with char32_t.
4877 proc check_effective_target_wchar_t_char32_t_compatible { } {
4878 return [check_no_compiler_messages wchar_t_char32_t object {
4879 __WCHAR_TYPE__ wc;
4880 __CHAR32_TYPE__ *p32 = &wc;
4881 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
4885 # Return 1 if pow10 function exists.
4887 proc check_effective_target_pow10 { } {
4888 return [check_runtime pow10 {
4889 #include <math.h>
4890 int main () {
4891 double x;
4892 x = pow10 (1);
4893 return 0;
4895 } "-lm" ]
4898 # Return 1 if current options generate DFP instructions, 0 otherwise.
4900 proc check_effective_target_hard_dfp {} {
4901 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
4902 typedef float d64 __attribute__((mode(DD)));
4903 d64 x, y, z;
4904 void foo (void) { z = x + y; }
4908 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
4909 # for strchr etc. functions.
4911 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
4912 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
4913 #include <string.h>
4914 #include <wchar.h>
4915 #if !defined(__cplusplus) \
4916 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
4917 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
4918 ISO C++ correct string.h and wchar.h protos not supported.
4919 #else
4920 int i;
4921 #endif
4925 # Return 1 if GNU as is used.
4927 proc check_effective_target_gas { } {
4928 global use_gas_saved
4929 global tool
4931 if {![info exists use_gas_saved]} {
4932 # Check if the as used by gcc is GNU as.
4933 set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
4934 # Provide /dev/null as input, otherwise gas times out reading from
4935 # stdin.
4936 set status [remote_exec host "$gcc_as" "-v /dev/null"]
4937 set as_output [lindex $status 1]
4938 if { [ string first "GNU" $as_output ] >= 0 } {
4939 set use_gas_saved 1
4940 } else {
4941 set use_gas_saved 0
4944 return $use_gas_saved
4947 # Return 1 if GNU ld is used.
4949 proc check_effective_target_gld { } {
4950 global use_gld_saved
4951 global tool
4953 if {![info exists use_gld_saved]} {
4954 # Check if the ld used by gcc is GNU ld.
4955 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
4956 set status [remote_exec host "$gcc_ld" "--version"]
4957 set ld_output [lindex $status 1]
4958 if { [ string first "GNU" $ld_output ] >= 0 } {
4959 set use_gld_saved 1
4960 } else {
4961 set use_gld_saved 0
4964 return $use_gld_saved
4967 # Return 1 if the compiler has been configure with link-time optimization
4968 # (LTO) support.
4970 proc check_effective_target_lto { } {
4971 global ENABLE_LTO
4972 return [info exists ENABLE_LTO]
4975 # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
4977 proc check_effective_target_maybe_x32 { } {
4978 return [check_no_compiler_messages maybe_x32 object {
4979 void foo (void) {}
4980 } "-mx32 -maddress-mode=short"]
4983 # Return 1 if this target supports the -fsplit-stack option, 0
4984 # otherwise.
4986 proc check_effective_target_split_stack {} {
4987 return [check_no_compiler_messages split_stack object {
4988 void foo (void) { }
4989 } "-fsplit-stack"]
4992 # Return 1 if this target supports the -masm=intel option, 0
4993 # otherwise
4995 proc check_effective_target_masm_intel {} {
4996 return [check_no_compiler_messages masm_intel object {
4997 extern void abort (void);
4998 } "-masm=intel"]
5001 # Return 1 if the language for the compiler under test is C.
5003 proc check_effective_target_c { } {
5004 global tool
5005 if [string match $tool "gcc"] {
5006 return 1
5008 return 0
5011 # Return 1 if the language for the compiler under test is C++.
5013 proc check_effective_target_c++ { } {
5014 global tool
5015 if [string match $tool "g++"] {
5016 return 1
5018 return 0
5021 # Check which language standard is active by checking for the presence of
5022 # one of the C++11 -std flags. This assumes that the default for the
5023 # compiler is C++98, and that there will never be multiple -std= arguments
5024 # on the command line.
5025 proc check_effective_target_c++11 { } {
5026 if ![check_effective_target_c++] {
5027 return 0
5029 return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
5032 proc check_effective_target_c++1y { } {
5033 if ![check_effective_target_c++] {
5034 return 0
5036 return [check-flags { { } { } { -std=c++1y -std=gnu++1y } }]
5039 proc check_effective_target_c++98 { } {
5040 if ![check_effective_target_c++] {
5041 return 0
5043 return [check-flags { { } { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 -std=c++1y -std=gnu++1y } }]
5046 # Return 1 if expensive testcases should be run.
5048 proc check_effective_target_run_expensive_tests { } {
5049 if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
5050 return 1
5052 return 0
5055 # Returns 1 if "mempcpy" is available on the target system.
5057 proc check_effective_target_mempcpy {} {
5058 return [check_function_available "mempcpy"]
5061 # Check whether the vectorizer tests are supported by the target and
5062 # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
5063 # Set dg-do-what-default to either compile or run, depending on target
5064 # capabilities. Return 1 if vectorizer tests are supported by
5065 # target, 0 otherwise.
5067 proc check_vect_support_and_set_flags { } {
5068 global DEFAULT_VECTCFLAGS
5069 global dg-do-what-default
5071 if [istarget powerpc-*paired*] {
5072 lappend DEFAULT_VECTCFLAGS "-mpaired"
5073 if [check_750cl_hw_available] {
5074 set dg-do-what-default run
5075 } else {
5076 set dg-do-what-default compile
5078 } elseif [istarget powerpc*-*-*] {
5079 # Skip targets not supporting -maltivec.
5080 if ![is-effective-target powerpc_altivec_ok] {
5081 return 0
5084 lappend DEFAULT_VECTCFLAGS "-maltivec"
5085 if [check_vsx_hw_available] {
5086 lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
5089 if [check_vmx_hw_available] {
5090 set dg-do-what-default run
5091 } else {
5092 if [is-effective-target ilp32] {
5093 # Specify a cpu that supports VMX for compile-only tests.
5094 lappend DEFAULT_VECTCFLAGS "-mcpu=970"
5096 set dg-do-what-default compile
5098 } elseif { [istarget spu-*-*] } {
5099 set dg-do-what-default run
5100 } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
5101 lappend DEFAULT_VECTCFLAGS "-msse2"
5102 if { [check_effective_target_sse2_runtime] } {
5103 set dg-do-what-default run
5104 } else {
5105 set dg-do-what-default compile
5107 } elseif { [istarget mips*-*-*]
5108 && ([check_effective_target_mpaired_single]
5109 || [check_effective_target_mips_loongson])
5110 && [check_effective_target_nomips16] } {
5111 if { [check_effective_target_mpaired_single] } {
5112 lappend DEFAULT_VECTCFLAGS "-mpaired-single"
5114 set dg-do-what-default run
5115 } elseif [istarget sparc*-*-*] {
5116 lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
5117 if [check_effective_target_ultrasparc_hw] {
5118 set dg-do-what-default run
5119 } else {
5120 set dg-do-what-default compile
5122 } elseif [istarget alpha*-*-*] {
5123 # Alpha's vectorization capabilities are extremely limited.
5124 # It's more effort than its worth disabling all of the tests
5125 # that it cannot pass. But if you actually want to see what
5126 # does work, command out the return.
5127 return 0
5129 lappend DEFAULT_VECTCFLAGS "-mmax"
5130 if [check_alpha_max_hw_available] {
5131 set dg-do-what-default run
5132 } else {
5133 set dg-do-what-default compile
5135 } elseif [istarget ia64-*-*] {
5136 set dg-do-what-default run
5137 } elseif [is-effective-target arm_neon_ok] {
5138 eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
5139 # NEON does not support denormals, so is not used for vectorization by
5140 # default to avoid loss of precision. We must pass -ffast-math to test
5141 # vectorization of float operations.
5142 lappend DEFAULT_VECTCFLAGS "-ffast-math"
5143 if [is-effective-target arm_neon_hw] {
5144 set dg-do-what-default run
5145 } else {
5146 set dg-do-what-default compile
5148 } elseif [istarget "aarch64*-*-*"] {
5149 set dg-do-what-default run
5150 } else {
5151 return 0
5154 return 1
5157 proc check_effective_target_non_strict_align {} {
5158 return [check_no_compiler_messages non_strict_align assembly {
5159 char *y;
5160 typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
5161 c *z;
5162 void foo(void) { z = (c *) y; }
5163 } "-Wcast-align"]
5166 # Return 1 if the target has <ucontext.h>.
5168 proc check_effective_target_ucontext_h { } {
5169 return [check_no_compiler_messages ucontext_h assembly {
5170 #include <ucontext.h>
5174 proc check_effective_target_aarch64_tiny { } {
5175 if { [istarget aarch64*-*-*] } {
5176 return [check_no_compiler_messages aarch64_tiny object {
5177 #ifdef __AARCH64_CMODEL_TINY__
5178 int dummy;
5179 #else
5180 #error target not AArch64 tiny code model
5181 #endif
5183 } else {
5184 return 0
5188 proc check_effective_target_aarch64_small { } {
5189 if { [istarget aarch64*-*-*] } {
5190 return [check_no_compiler_messages aarch64_small object {
5191 #ifdef __AARCH64_CMODEL_SMALL__
5192 int dummy;
5193 #else
5194 #error target not AArch64 small code model
5195 #endif
5197 } else {
5198 return 0
5202 proc check_effective_target_aarch64_large { } {
5203 if { [istarget aarch64*-*-*] } {
5204 return [check_no_compiler_messages aarch64_large object {
5205 #ifdef __AARCH64_CMODEL_LARGE__
5206 int dummy;
5207 #else
5208 #error target not AArch64 large code model
5209 #endif
5211 } else {
5212 return 0