2007-05-22 H.J. Lu <hongjiu.lu@intel.com>
[official-gcc.git] / gcc / cfgloopanal.c
blob54d00ce574c7b887a7cdd4e93ac53fcc76fa9a65
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
35 bool
36 just_once_each_iteration_p (const struct loop *loop, basic_block bb)
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
40 return false;
42 /* And just once. */
43 if (bb->loop_father != loop)
44 return false;
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb->flags & BB_IRREDUCIBLE_LOOP)
48 return false;
50 return true;
53 /* Structure representing edge of a graph. */
55 struct edge
57 int src, dest; /* Source and destination. */
58 struct edge *pred_next, *succ_next;
59 /* Next edge in predecessor and successor lists. */
60 void *data; /* Data attached to the edge. */
63 /* Structure representing vertex of a graph. */
65 struct vertex
67 struct edge *pred, *succ;
68 /* Lists of predecessors and successors. */
69 int component; /* Number of dfs restarts before reaching the
70 vertex. */
71 int post; /* Postorder number. */
74 /* Structure representing a graph. */
76 struct graph
78 int n_vertices; /* Number of vertices. */
79 struct vertex *vertices;
80 /* The vertices. */
83 /* Dumps graph G into F. */
85 extern void dump_graph (FILE *, struct graph *);
87 void
88 dump_graph (FILE *f, struct graph *g)
90 int i;
91 struct edge *e;
93 for (i = 0; i < g->n_vertices; i++)
95 if (!g->vertices[i].pred
96 && !g->vertices[i].succ)
97 continue;
99 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
100 for (e = g->vertices[i].pred; e; e = e->pred_next)
101 fprintf (f, " %d", e->src);
102 fprintf (f, "\n");
104 fprintf (f, "\t->");
105 for (e = g->vertices[i].succ; e; e = e->succ_next)
106 fprintf (f, " %d", e->dest);
107 fprintf (f, "\n");
111 /* Creates a new graph with N_VERTICES vertices. */
113 static struct graph *
114 new_graph (int n_vertices)
116 struct graph *g = XNEW (struct graph);
118 g->n_vertices = n_vertices;
119 g->vertices = XCNEWVEC (struct vertex, n_vertices);
121 return g;
124 /* Adds an edge from F to T to graph G, with DATA attached. */
126 static void
127 add_edge (struct graph *g, int f, int t, void *data)
129 struct edge *e = xmalloc (sizeof (struct edge));
131 e->src = f;
132 e->dest = t;
133 e->data = data;
135 e->pred_next = g->vertices[t].pred;
136 g->vertices[t].pred = e;
138 e->succ_next = g->vertices[f].succ;
139 g->vertices[f].succ = e;
142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
143 The vertices in postorder are stored into QT. If FORWARD is false,
144 backward dfs is run. */
146 static void
147 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
149 int i, tick = 0, v, comp = 0, top;
150 struct edge *e;
151 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
153 for (i = 0; i < g->n_vertices; i++)
155 g->vertices[i].component = -1;
156 g->vertices[i].post = -1;
159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
164 for (i = 0; i < nq; i++)
166 v = qs[i];
167 if (g->vertices[v].post != -1)
168 continue;
170 g->vertices[v].component = comp++;
171 e = FST_EDGE (v);
172 top = 0;
174 while (1)
176 while (e && g->vertices[EDGE_DEST (e)].component != -1)
177 e = NEXT_EDGE (e);
179 if (!e)
181 if (qt)
182 qt[tick] = v;
183 g->vertices[v].post = tick++;
185 if (!top)
186 break;
188 e = stack[--top];
189 v = EDGE_SRC (e);
190 e = NEXT_EDGE (e);
191 continue;
194 stack[top++] = e;
195 v = EDGE_DEST (e);
196 e = FST_EDGE (v);
197 g->vertices[v].component = comp - 1;
201 free (stack);
204 /* Marks the edge E in graph G irreducible if it connects two vertices in the
205 same scc. */
207 static void
208 check_irred (struct graph *g, struct edge *e)
210 edge real = e->data;
212 /* All edges should lead from a component with higher number to the
213 one with lower one. */
214 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
216 if (g->vertices[e->src].component != g->vertices[e->dest].component)
217 return;
219 real->flags |= EDGE_IRREDUCIBLE_LOOP;
220 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
221 real->src->flags |= BB_IRREDUCIBLE_LOOP;
224 /* Runs CALLBACK for all edges in G. */
226 static void
227 for_each_edge (struct graph *g,
228 void (callback) (struct graph *, struct edge *))
230 struct edge *e;
231 int i;
233 for (i = 0; i < g->n_vertices; i++)
234 for (e = g->vertices[i].succ; e; e = e->succ_next)
235 callback (g, e);
238 /* Releases the memory occupied by G. */
240 static void
241 free_graph (struct graph *g)
243 struct edge *e, *n;
244 int i;
246 for (i = 0; i < g->n_vertices; i++)
247 for (e = g->vertices[i].succ; e; e = n)
249 n = e->succ_next;
250 free (e);
252 free (g->vertices);
253 free (g);
256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
257 throw away all latch edges and mark blocks inside any remaining cycle.
258 Everything is a bit complicated due to fact we do not want to do this
259 for parts of cycles that only "pass" through some loop -- i.e. for
260 each cycle, we want to mark blocks that belong directly to innermost
261 loop containing the whole cycle.
263 LOOPS is the loop tree. */
265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
266 #define BB_REPR(BB) ((BB)->index + 1)
268 void
269 mark_irreducible_loops (void)
271 basic_block act;
272 edge e;
273 edge_iterator ei;
274 int i, src, dest;
275 struct graph *g;
276 int num = current_loops ? number_of_loops () : 1;
277 int *queue1 = XNEWVEC (int, last_basic_block + num);
278 int *queue2 = XNEWVEC (int, last_basic_block + num);
279 int nq;
280 unsigned depth;
281 struct loop *cloop, *loop;
282 loop_iterator li;
284 /* Reset the flags. */
285 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
287 act->flags &= ~BB_IRREDUCIBLE_LOOP;
288 FOR_EACH_EDGE (e, ei, act->succs)
289 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
292 /* Create the edge lists. */
293 g = new_graph (last_basic_block + num);
295 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
296 FOR_EACH_EDGE (e, ei, act->succs)
298 /* Ignore edges to exit. */
299 if (e->dest == EXIT_BLOCK_PTR)
300 continue;
302 src = BB_REPR (act);
303 dest = BB_REPR (e->dest);
305 if (current_loops)
307 /* Ignore latch edges. */
308 if (e->dest->loop_father->header == e->dest
309 && e->dest->loop_father->latch == act)
310 continue;
312 /* Edges inside a single loop should be left where they are. Edges
313 to subloop headers should lead to representative of the subloop,
314 but from the same place.
316 Edges exiting loops should lead from representative
317 of the son of nearest common ancestor of the loops in that
318 act lays. */
320 if (e->dest->loop_father->header == e->dest)
321 dest = LOOP_REPR (e->dest->loop_father);
323 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
325 depth = 1 + loop_depth (find_common_loop (act->loop_father,
326 e->dest->loop_father));
327 if (depth == loop_depth (act->loop_father))
328 cloop = act->loop_father;
329 else
330 cloop = VEC_index (loop_p, act->loop_father->superloops,
331 depth);
333 src = LOOP_REPR (cloop);
337 add_edge (g, src, dest, e);
340 /* Find the strongly connected components. Use the algorithm of Tarjan --
341 first determine the postorder dfs numbering in reversed graph, then
342 run the dfs on the original graph in the order given by decreasing
343 numbers assigned by the previous pass. */
344 nq = 0;
345 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
347 queue1[nq++] = BB_REPR (act);
350 if (current_loops)
352 FOR_EACH_LOOP (li, loop, 0)
354 queue1[nq++] = LOOP_REPR (loop);
357 dfs (g, queue1, nq, queue2, false);
358 for (i = 0; i < nq; i++)
359 queue1[i] = queue2[nq - i - 1];
360 dfs (g, queue1, nq, NULL, true);
362 /* Mark the irreducible loops. */
363 for_each_edge (g, check_irred);
365 free_graph (g);
366 free (queue1);
367 free (queue2);
369 if (current_loops)
370 current_loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
373 /* Counts number of insns inside LOOP. */
375 num_loop_insns (struct loop *loop)
377 basic_block *bbs, bb;
378 unsigned i, ninsns = 0;
379 rtx insn;
381 bbs = get_loop_body (loop);
382 for (i = 0; i < loop->num_nodes; i++)
384 bb = bbs[i];
385 ninsns++;
386 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
387 if (INSN_P (insn))
388 ninsns++;
390 free(bbs);
392 return ninsns;
395 /* Counts number of insns executed on average per iteration LOOP. */
397 average_num_loop_insns (struct loop *loop)
399 basic_block *bbs, bb;
400 unsigned i, binsns, ninsns, ratio;
401 rtx insn;
403 ninsns = 0;
404 bbs = get_loop_body (loop);
405 for (i = 0; i < loop->num_nodes; i++)
407 bb = bbs[i];
409 binsns = 1;
410 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
411 if (INSN_P (insn))
412 binsns++;
414 ratio = loop->header->frequency == 0
415 ? BB_FREQ_MAX
416 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
417 ninsns += binsns * ratio;
419 free(bbs);
421 ninsns /= BB_FREQ_MAX;
422 if (!ninsns)
423 ninsns = 1; /* To avoid division by zero. */
425 return ninsns;
428 /* Returns expected number of iterations of LOOP, according to
429 measured or guessed profile. No bounding is done on the
430 value. */
432 gcov_type
433 expected_loop_iterations_unbounded (const struct loop *loop)
435 edge e;
436 edge_iterator ei;
438 if (loop->latch->count || loop->header->count)
440 gcov_type count_in, count_latch, expected;
442 count_in = 0;
443 count_latch = 0;
445 FOR_EACH_EDGE (e, ei, loop->header->preds)
446 if (e->src == loop->latch)
447 count_latch = e->count;
448 else
449 count_in += e->count;
451 if (count_in == 0)
452 expected = count_latch * 2;
453 else
454 expected = (count_latch + count_in - 1) / count_in;
456 return expected;
458 else
460 int freq_in, freq_latch;
462 freq_in = 0;
463 freq_latch = 0;
465 FOR_EACH_EDGE (e, ei, loop->header->preds)
466 if (e->src == loop->latch)
467 freq_latch = EDGE_FREQUENCY (e);
468 else
469 freq_in += EDGE_FREQUENCY (e);
471 if (freq_in == 0)
472 return freq_latch * 2;
474 return (freq_latch + freq_in - 1) / freq_in;
478 /* Returns expected number of LOOP iterations. The returned value is bounded
479 by REG_BR_PROB_BASE. */
481 unsigned
482 expected_loop_iterations (const struct loop *loop)
484 gcov_type expected = expected_loop_iterations_unbounded (loop);
485 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
488 /* Returns the maximum level of nesting of subloops of LOOP. */
490 unsigned
491 get_loop_level (const struct loop *loop)
493 const struct loop *ploop;
494 unsigned mx = 0, l;
496 for (ploop = loop->inner; ploop; ploop = ploop->next)
498 l = get_loop_level (ploop);
499 if (l >= mx)
500 mx = l + 1;
502 return mx;
505 /* Returns estimate on cost of computing SEQ. */
507 static unsigned
508 seq_cost (rtx seq)
510 unsigned cost = 0;
511 rtx set;
513 for (; seq; seq = NEXT_INSN (seq))
515 set = single_set (seq);
516 if (set)
517 cost += rtx_cost (set, SET);
518 else
519 cost++;
522 return cost;
525 /* The properties of the target. */
527 unsigned target_avail_regs; /* Number of available registers. */
528 unsigned target_res_regs; /* Number of registers reserved for temporary
529 expressions. */
530 unsigned target_reg_cost; /* The cost for register when there still
531 is some reserve, but we are approaching
532 the number of available registers. */
533 unsigned target_spill_cost; /* The cost for register when we need
534 to spill. */
536 /* Initialize the constants for computing set costs. */
538 void
539 init_set_costs (void)
541 rtx seq;
542 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
543 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
544 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
545 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
546 unsigned i;
548 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
549 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
550 && !fixed_regs[i])
551 target_avail_regs++;
553 target_res_regs = 3;
555 /* Set up the costs for using extra registers:
557 1) If not many free registers remain, we should prefer having an
558 additional move to decreasing the number of available registers.
559 (TARGET_REG_COST).
560 2) If no registers are available, we need to spill, which may require
561 storing the old value to memory and loading it back
562 (TARGET_SPILL_COST). */
564 start_sequence ();
565 emit_move_insn (reg1, reg2);
566 seq = get_insns ();
567 end_sequence ();
568 target_reg_cost = seq_cost (seq);
570 start_sequence ();
571 emit_move_insn (mem, reg1);
572 emit_move_insn (reg2, mem);
573 seq = get_insns ();
574 end_sequence ();
575 target_spill_cost = seq_cost (seq);
578 /* Estimates cost of increased register pressure caused by making N_NEW new
579 registers live around the loop. N_OLD is the number of registers live
580 around the loop. */
582 unsigned
583 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old)
585 unsigned regs_needed = n_new + n_old;
587 /* If we have enough registers, we should use them and not restrict
588 the transformations unnecessarily. */
589 if (regs_needed + target_res_regs <= target_avail_regs)
590 return 0;
592 /* If we are close to running out of registers, try to preserve them. */
593 if (regs_needed <= target_avail_regs)
594 return target_reg_cost * n_new;
596 /* If we run out of registers, it is very expensive to add another one. */
597 return target_spill_cost * n_new;
600 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
602 void
603 mark_loop_exit_edges (void)
605 basic_block bb;
606 edge e;
608 if (!current_loops)
609 return;
611 FOR_EACH_BB (bb)
613 edge_iterator ei;
615 FOR_EACH_EDGE (e, ei, bb->succs)
617 if (loop_outer (bb->loop_father)
618 && loop_exit_edge_p (bb->loop_father, e))
619 e->flags |= EDGE_LOOP_EXIT;
620 else
621 e->flags &= ~EDGE_LOOP_EXIT;