1 #include "quadmath-imp.h"
5 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
7 * ====================================================
8 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
10 * Developed at SunPro, a Sun Microsystems, Inc. business.
11 * Permission to use, copy, modify, and distribute this
12 * software is freely granted, provided that this notice
14 * ====================================================
18 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
19 * double x[],y[]; int e0,nx,prec; int ipio2[];
21 * __kernel_rem_pio2 return the last three digits of N with
25 * The method is to compute the integer (mod 8) and fraction parts of
26 * (2/pi)*x without doing the full multiplication. In general we
27 * skip the part of the product that are known to be a huge integer (
28 * more accurately, = 0 mod 8 ). Thus the number of operations are
29 * independent of the exponent of the input.
31 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
34 * x[] The input value (must be positive) is broken into nx
35 * pieces of 24-bit integers in double precision format.
36 * x[i] will be the i-th 24 bit of x. The scaled exponent
37 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
38 * match x's up to 24 bits.
40 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
48 * y[] ouput result in an array of double precision numbers.
49 * The dimension of y[] is:
54 * The actual value is the sum of them. Thus for 113-bit
55 * precision, one may have to do something like:
57 * long double t,w,r_head, r_tail;
58 * t = (long double)y[2] + (long double)y[1];
59 * w = (long double)y[0];
61 * r_tail = w - (r_head - t);
63 * e0 The exponent of x[0]
67 * prec an integer indicating the precision:
70 * 2 64 bits (extended)
74 * integer array, contains the (24*i)-th to (24*i+23)-th
75 * bit of 2/pi after binary point. The corresponding
78 * ipio2[i] * 2^(-24(i+1)).
81 * double scalbn(), floor();
84 * Here is the description of some local variables:
86 * jk jk+1 is the initial number of terms of ipio2[] needed
87 * in the computation. The recommended value is 2,3,4,
88 * 6 for single, double, extended,and quad.
90 * jz local integer variable indicating the number of
91 * terms of ipio2[] used.
95 * jv index for pointing to the suitable ipio2[] for the
96 * computation. In general, we want
97 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
99 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
100 * Hence jv = max(0,(e0-3)/24).
102 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
104 * q[] double array with integral value, representing the
105 * 24-bits chunk of the product of x and 2/pi.
107 * q0 the corresponding exponent of q[0]. Note that the
108 * exponent for q[i] would be q0-24*i.
110 * PIo2[] double precision array, obtained by cutting pi/2
111 * into 24 bits chunks.
113 * f[] ipio2[] in floating point
115 * iq[] integer array by breaking up q[] in 24-bits chunk.
117 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
119 * ih integer. If >0 it indicates q[] is >= 0.5, hence
120 * it also indicates the *sign* of the result.
126 * The hexadecimal values are the intended ones for the following
127 * constants. The decimal values may be used, provided that the
128 * compiler will convert from decimal to binary accurately enough
129 * to produce the hexadecimal values shown.
133 static const int init_jk
[] = {2,3,4,6}; /* initial value for jk */
135 static const double PIo2
[] = {
136 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
137 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
138 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
139 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
140 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
141 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
142 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
143 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
149 two24
= 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
150 twon24
= 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
154 __quadmath_kernel_rem_pio2 (double *x
, double *y
, int e0
, int nx
, int prec
, const int32_t *ipio2
)
156 int32_t jz
,jx
,jv
,jp
,jk
,carry
,n
,iq
[20],i
,j
,k
,m
,q0
,ih
;
157 double z
,fw
,f
[20],fq
[20],q
[20];
163 /* determine jx,jv,q0, note that 3>q0 */
165 jv
= (e0
-3)/24; if(jv
<0) jv
=0;
168 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
169 j
= jv
-jx
; m
= jx
+jk
;
170 for(i
=0;i
<=m
;i
++,j
++) f
[i
] = (j
<0)? zero
: (double) ipio2
[j
];
172 /* compute q[0],q[1],...q[jk] */
173 for (i
=0;i
<=jk
;i
++) {
174 for(j
=0,fw
=0.0;j
<=jx
;j
++) fw
+= x
[j
]*f
[jx
+i
-j
]; q
[i
] = fw
;
179 /* distill q[] into iq[] reversingly */
180 for(i
=0,j
=jz
,z
=q
[jz
];j
>0;i
++,j
--) {
181 fw
= (double)((int32_t)(twon24
* z
));
182 iq
[i
] = (int32_t)(z
-two24
*fw
);
187 z
= scalbn(z
,q0
); /* actual value of z */
188 z
-= 8.0*floor(z
*0.125); /* trim off integer >= 8 */
192 if(q0
>0) { /* need iq[jz-1] to determine n */
193 i
= (iq
[jz
-1]>>(24-q0
)); n
+= i
;
194 iq
[jz
-1] -= i
<<(24-q0
);
195 ih
= iq
[jz
-1]>>(23-q0
);
197 else if(q0
==0) ih
= iq
[jz
-1]>>23;
198 else if(z
>=0.5) ih
=2;
200 if(ih
>0) { /* q > 0.5 */
202 for(i
=0;i
<jz
;i
++) { /* compute 1-q */
206 carry
= 1; iq
[i
] = 0x1000000- j
;
208 } else iq
[i
] = 0xffffff - j
;
210 if(q0
>0) { /* rare case: chance is 1 in 12 */
213 iq
[jz
-1] &= 0x7fffff; break;
215 iq
[jz
-1] &= 0x3fffff; break;
220 if(carry
!=0) z
-= scalbn(one
,q0
);
224 /* check if recomputation is needed */
227 for (i
=jz
-1;i
>=jk
;i
--) j
|= iq
[i
];
228 if(j
==0) { /* need recomputation */
229 for(k
=1;iq
[jk
-k
]==0;k
++); /* k = no. of terms needed */
231 for(i
=jz
+1;i
<=jz
+k
;i
++) { /* add q[jz+1] to q[jz+k] */
232 f
[jx
+i
] = (double) ipio2
[jv
+i
];
233 for(j
=0,fw
=0.0;j
<=jx
;j
++) fw
+= x
[j
]*f
[jx
+i
-j
];
241 /* chop off zero terms */
244 while(iq
[jz
]==0) { jz
--; q0
-=24;}
245 } else { /* break z into 24-bit if necessary */
248 fw
= (double)((int32_t)(twon24
*z
));
249 iq
[jz
] = (int32_t)(z
-two24
*fw
);
251 iq
[jz
] = (int32_t) fw
;
252 } else iq
[jz
] = (int32_t) z
;
255 /* convert integer "bit" chunk to floating-point value */
258 q
[i
] = fw
*(double)iq
[i
]; fw
*=twon24
;
261 /* compute PIo2[0,...,jp]*q[jz,...,0] */
263 for(fw
=0.0,k
=0;k
<=jp
&&k
<=jz
-i
;k
++) fw
+= PIo2
[k
]*q
[i
+k
];
267 /* compress fq[] into y[] */
271 for (i
=jz
;i
>=0;i
--) fw
+= fq
[i
];
272 y
[0] = (ih
==0)? fw
: -fw
;
277 for (i
=jz
;i
>=0;i
--) fw
+= fq
[i
];
278 y
[0] = (ih
==0)? fw
: -fw
;
280 for (i
=1;i
<=jz
;i
++) fw
+= fq
[i
];
281 y
[1] = (ih
==0)? fw
: -fw
;
283 case 3: /* painful */
294 for (fw
=0.0,i
=jz
;i
>=2;i
--) fw
+= fq
[i
];
296 y
[0] = fq
[0]; y
[1] = fq
[1]; y
[2] = fw
;
298 y
[0] = -fq
[0]; y
[1] = -fq
[1]; y
[2] = -fw
;
308 /* Quad-precision floating point argument reduction.
309 Copyright (C) 1999 Free Software Foundation, Inc.
310 This file is part of the GNU C Library.
311 Contributed by Jakub Jelinek <jj@ultra.linux.cz>
313 The GNU C Library is free software; you can redistribute it and/or
314 modify it under the terms of the GNU Lesser General Public
315 License as published by the Free Software Foundation; either
316 version 2.1 of the License, or (at your option) any later version.
318 The GNU C Library is distributed in the hope that it will be useful,
319 but WITHOUT ANY WARRANTY; without even the implied warranty of
320 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
321 Lesser General Public License for more details.
323 You should have received a copy of the GNU Lesser General Public
324 License along with the GNU C Library; if not, write to the Free
325 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
329 * Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi
331 static const int32_t two_over_pi
[] = {
332 0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
333 0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
334 0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
335 0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
336 0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
337 0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
338 0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
339 0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
340 0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
341 0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
342 0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
343 0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6,
344 0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2,
345 0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35,
346 0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30,
347 0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c,
348 0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4,
349 0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770,
350 0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7,
351 0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19,
352 0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522,
353 0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16,
354 0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6,
355 0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e,
356 0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48,
357 0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3,
358 0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf,
359 0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55,
360 0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612,
361 0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929,
362 0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec,
363 0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b,
364 0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c,
365 0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4,
366 0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb,
367 0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc,
368 0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c,
369 0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f,
370 0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5,
371 0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437,
372 0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b,
373 0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea,
374 0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad,
375 0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3,
376 0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3,
377 0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717,
378 0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f,
379 0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61,
380 0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db,
381 0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51,
382 0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0,
383 0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c,
384 0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6,
385 0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc,
386 0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed,
387 0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328,
388 0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d,
389 0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0,
390 0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b,
391 0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4,
392 0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3,
393 0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f,
394 0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad,
395 0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b,
396 0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4,
397 0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761,
398 0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31,
399 0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30,
400 0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262,
401 0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e,
402 0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1,
403 0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c,
404 0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4,
405 0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08,
406 0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196,
407 0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9,
408 0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4,
409 0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc,
410 0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c,
411 0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0,
412 0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c,
413 0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0,
414 0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac,
415 0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22,
416 0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893,
417 0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7,
418 0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5,
419 0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f,
420 0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4,
421 0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf,
422 0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b,
423 0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2,
424 0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138,
425 0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e,
426 0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569,
427 0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34,
428 0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9,
429 0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d,
430 0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f,
431 0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855,
432 0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569,
433 0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b,
434 0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe,
435 0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41,
436 0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49,
437 0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f,
438 0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110,
439 0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8,
440 0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365,
441 0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a,
442 0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270,
443 0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5,
444 0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616,
445 0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b,
446 0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0,
447 0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb,
448 0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a,
449 0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e,
450 0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa,
451 0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5,
452 0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0,
453 0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2,
454 0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886,
455 0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142,
456 0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba,
457 0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4,
458 0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708,
459 0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555,
460 0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3,
461 0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55,
462 0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58,
463 0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5,
464 0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c,
465 0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe,
466 0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b,
467 0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8,
468 0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005,
469 0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7,
470 0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50,
471 0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604,
472 0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643,
473 0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485,
474 0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d,
475 0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6,
476 0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2,
477 0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02,
478 0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3,
479 0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412,
480 0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274,
481 0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755,
482 0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849,
483 0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce,
484 0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5,
485 0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba,
486 0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6,
487 0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d,
491 static const __float128 c
[] = {
492 /* 93 bits of pi/2 */
494 1.57079632679489661923132169155131424e+00Q
, /* 3fff921fb54442d18469898cc5100000 */
498 8.84372056613570112025531863263659260e-29Q
, /* 3fa1c06e0e68948127044533e63a0106 */
503 __quadmath_rem_pio2q (__float128 x
, __float128
*y
)
507 int64_t exp
, n
, ix
, hx
;
510 GET_FLT128_WORDS64 (hx
, lx
, x
);
511 ix
= hx
& 0x7fffffffffffffffLL
;
512 if (ix
<= 0x3ffe921fb54442d1LL
) /* x in <-pi/4, pi/4> */
519 if (ix
< 0x40002d97c7f3321dLL
) /* |x| in <pi/4, 3pi/4) */
523 /* 113 + 93 bit PI is ok */
526 y
[1] = (z
- y
[0]) - PI_2_1t
;
531 /* 113 + 93 bit PI is ok */
534 y
[1] = (z
- y
[0]) + PI_2_1t
;
539 if (ix
>= 0x7fff000000000000LL
) /* x is +=oo or NaN */
546 /* Handle large arguments.
547 We split the 113 bits of the mantissa into 5 24bit integers
548 stored in a double array. */
549 exp
= (ix
>> 48) - 16383 - 23;
551 /* This is faster than doing this in floating point, because we
552 have to convert it to integers anyway and like this we can keep
553 both integer and floating point units busy. */
554 tx
[0] = (double)(((ix
>> 25) & 0x7fffff) | 0x800000);
555 tx
[1] = (double)((ix
>> 1) & 0xffffff);
556 tx
[2] = (double)(((ix
<< 23) | (lx
>> 41)) & 0xffffff);
557 tx
[3] = (double)((lx
>> 17) & 0xffffff);
558 tx
[4] = (double)((lx
<< 7) & 0xffffff);
560 n
= __quadmath_kernel_rem_pio2 (tx
, tx
+ 5, exp
,
561 ((lx
<< 7) & 0xffffff) ? 5 : 4,
564 /* The result is now stored in 3 double values, we need to convert it into
565 two __float128 values. */
566 t
= (__float128
) tx
[6] + (__float128
) tx
[7];
567 w
= (__float128
) tx
[5];
572 y
[1] = t
- (y
[0] - w
);
578 y
[1] = -t
- (y
[0] + w
);