Fix previous commit
[official-gcc.git] / gcc / postreload.c
blob12d74fcc0504fd657bdba28671e67572314bb65f
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "function-abi.h"
45 static int reload_cse_noop_set_p (rtx);
46 static bool reload_cse_simplify (rtx_insn *, rtx);
47 static void reload_cse_regs_1 (void);
48 static int reload_cse_simplify_set (rtx, rtx_insn *);
49 static int reload_cse_simplify_operands (rtx_insn *, rtx);
51 static void reload_combine (void);
52 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
53 static void reload_combine_note_store (rtx, const_rtx, void *);
55 static bool reload_cse_move2add (rtx_insn *);
56 static void move2add_note_store (rtx, const_rtx, void *);
58 /* Call cse / combine like post-reload optimization phases.
59 FIRST is the first instruction. */
61 static void
62 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
64 bool moves_converted;
65 reload_cse_regs_1 ();
66 reload_combine ();
67 moves_converted = reload_cse_move2add (first);
68 if (flag_expensive_optimizations)
70 if (moves_converted)
71 reload_combine ();
72 reload_cse_regs_1 ();
76 /* See whether a single set SET is a noop. */
77 static int
78 reload_cse_noop_set_p (rtx set)
80 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
81 return 0;
83 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
86 /* Try to simplify INSN. Return true if the CFG may have changed. */
87 static bool
88 reload_cse_simplify (rtx_insn *insn, rtx testreg)
90 rtx body = PATTERN (insn);
91 basic_block insn_bb = BLOCK_FOR_INSN (insn);
92 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
94 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
95 to cse function calls. */
96 if (NO_FUNCTION_CSE && CALL_P (insn))
97 return false;
99 if (GET_CODE (body) == SET)
101 int count = 0;
103 /* Simplify even if we may think it is a no-op.
104 We may think a memory load of a value smaller than WORD_SIZE
105 is redundant because we haven't taken into account possible
106 implicit extension. reload_cse_simplify_set() will bring
107 this out, so it's safer to simplify before we delete. */
108 count += reload_cse_simplify_set (body, insn);
110 if (!count && reload_cse_noop_set_p (body))
112 if (check_for_inc_dec (insn))
113 delete_insn_and_edges (insn);
114 /* We're done with this insn. */
115 goto done;
118 if (count > 0)
119 apply_change_group ();
120 else
121 reload_cse_simplify_operands (insn, testreg);
123 else if (GET_CODE (body) == PARALLEL)
125 int i;
126 int count = 0;
127 rtx value = NULL_RTX;
129 /* Registers mentioned in the clobber list for an asm cannot be reused
130 within the body of the asm. Invalidate those registers now so that
131 we don't try to substitute values for them. */
132 if (asm_noperands (body) >= 0)
134 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
136 rtx part = XVECEXP (body, 0, i);
137 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
138 cselib_invalidate_rtx (XEXP (part, 0));
142 /* If every action in a PARALLEL is a noop, we can delete
143 the entire PARALLEL. */
144 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
146 rtx part = XVECEXP (body, 0, i);
147 if (GET_CODE (part) == SET)
149 if (! reload_cse_noop_set_p (part))
150 break;
151 if (REG_P (SET_DEST (part))
152 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
154 if (value)
155 break;
156 value = SET_DEST (part);
159 else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
160 break;
163 if (i < 0)
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
167 /* We're done with this insn. */
168 goto done;
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
182 done:
183 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
186 /* Do a very simple CSE pass over the hard registers.
188 This function detects no-op moves where we happened to assign two
189 different pseudo-registers to the same hard register, and then
190 copied one to the other. Reload will generate a useless
191 instruction copying a register to itself.
193 This function also detects cases where we load a value from memory
194 into two different registers, and (if memory is more expensive than
195 registers) changes it to simply copy the first register into the
196 second register.
198 Another optimization is performed that scans the operands of each
199 instruction to see whether the value is already available in a
200 hard register. It then replaces the operand with the hard register
201 if possible, much like an optional reload would. */
203 static void
204 reload_cse_regs_1 (void)
206 bool cfg_changed = false;
207 basic_block bb;
208 rtx_insn *insn;
209 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
211 cselib_init (CSELIB_RECORD_MEMORY);
212 init_alias_analysis ();
214 FOR_EACH_BB_FN (bb, cfun)
215 FOR_BB_INSNS (bb, insn)
217 if (INSN_P (insn))
218 cfg_changed |= reload_cse_simplify (insn, testreg);
220 cselib_process_insn (insn);
223 /* Clean up. */
224 end_alias_analysis ();
225 cselib_finish ();
226 if (cfg_changed)
227 cleanup_cfg (0);
230 /* Try to simplify a single SET instruction. SET is the set pattern.
231 INSN is the instruction it came from.
232 This function only handles one case: if we set a register to a value
233 which is not a register, we try to find that value in some other register
234 and change the set into a register copy. */
236 static int
237 reload_cse_simplify_set (rtx set, rtx_insn *insn)
239 int did_change = 0;
240 int dreg;
241 rtx src;
242 reg_class_t dclass;
243 int old_cost;
244 cselib_val *val;
245 struct elt_loc_list *l;
246 enum rtx_code extend_op = UNKNOWN;
247 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
249 dreg = true_regnum (SET_DEST (set));
250 if (dreg < 0)
251 return 0;
253 src = SET_SRC (set);
254 if (side_effects_p (src) || true_regnum (src) >= 0)
255 return 0;
257 dclass = REGNO_REG_CLASS (dreg);
259 /* When replacing a memory with a register, we need to honor assumptions
260 that combine made wrt the contents of sign bits. We'll do this by
261 generating an extend instruction instead of a reg->reg copy. Thus
262 the destination must be a register that we can widen. */
263 if (MEM_P (src)
264 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
265 && !REG_P (SET_DEST (set)))
266 return 0;
268 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
269 if (! val)
270 return 0;
272 /* If memory loads are cheaper than register copies, don't change them. */
273 if (MEM_P (src))
274 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
275 else if (REG_P (src))
276 old_cost = register_move_cost (GET_MODE (src),
277 REGNO_REG_CLASS (REGNO (src)), dclass);
278 else
279 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
281 for (l = val->locs; l; l = l->next)
283 rtx this_rtx = l->loc;
284 int this_cost;
286 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
288 if (extend_op != UNKNOWN)
290 wide_int result;
292 if (!CONST_SCALAR_INT_P (this_rtx))
293 continue;
295 switch (extend_op)
297 case ZERO_EXTEND:
298 result = wide_int::from (rtx_mode_t (this_rtx,
299 GET_MODE (src)),
300 BITS_PER_WORD, UNSIGNED);
301 break;
302 case SIGN_EXTEND:
303 result = wide_int::from (rtx_mode_t (this_rtx,
304 GET_MODE (src)),
305 BITS_PER_WORD, SIGNED);
306 break;
307 default:
308 gcc_unreachable ();
310 this_rtx = immed_wide_int_const (result, word_mode);
313 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
315 else if (REG_P (this_rtx))
317 if (extend_op != UNKNOWN)
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = set_src_cost (this_rtx, word_mode, speed);
322 else
323 this_cost = register_move_cost (GET_MODE (this_rtx),
324 REGNO_REG_CLASS (REGNO (this_rtx)),
325 dclass);
327 else
328 continue;
330 /* If equal costs, prefer registers over anything else. That
331 tends to lead to smaller instructions on some machines. */
332 if (this_cost < old_cost
333 || (this_cost == old_cost
334 && REG_P (this_rtx)
335 && !REG_P (SET_SRC (set))))
337 if (extend_op != UNKNOWN
338 && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
339 GET_MODE (SET_DEST (set)), word_mode))
341 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
342 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
343 validate_change (insn, &SET_DEST (set), wide_dest, 1);
346 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
347 old_cost = this_cost, did_change = 1;
351 return did_change;
354 /* Try to replace operands in INSN with equivalent values that are already
355 in registers. This can be viewed as optional reloading.
357 For each non-register operand in the insn, see if any hard regs are
358 known to be equivalent to that operand. Record the alternatives which
359 can accept these hard registers. Among all alternatives, select the
360 ones which are better or equal to the one currently matching, where
361 "better" is in terms of '?' and '!' constraints. Among the remaining
362 alternatives, select the one which replaces most operands with
363 hard registers. */
365 static int
366 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
368 int i, j;
370 /* For each operand, all registers that are equivalent to it. */
371 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
373 const char *constraints[MAX_RECOG_OPERANDS];
375 /* Vector recording how bad an alternative is. */
376 int *alternative_reject;
377 /* Vector recording how many registers can be introduced by choosing
378 this alternative. */
379 int *alternative_nregs;
380 /* Array of vectors recording, for each operand and each alternative,
381 which hard register to substitute, or -1 if the operand should be
382 left as it is. */
383 int *op_alt_regno[MAX_RECOG_OPERANDS];
384 /* Array of alternatives, sorted in order of decreasing desirability. */
385 int *alternative_order;
387 extract_constrain_insn (insn);
389 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
390 return 0;
392 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
393 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
394 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
395 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
396 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
398 /* For each operand, find out which regs are equivalent. */
399 for (i = 0; i < recog_data.n_operands; i++)
401 cselib_val *v;
402 struct elt_loc_list *l;
403 rtx op;
405 CLEAR_HARD_REG_SET (equiv_regs[i]);
407 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
408 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
409 Likewise if we have a constant and the insn pattern doesn't tell us
410 the mode we need. */
411 if (LABEL_P (recog_data.operand[i])
412 || (NOTE_P (recog_data.operand[i])
413 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
414 || (CONSTANT_P (recog_data.operand[i])
415 && recog_data.operand_mode[i] == VOIDmode))
416 continue;
418 op = recog_data.operand[i];
419 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
421 rtx set = single_set (insn);
423 /* We might have multiple sets, some of which do implicit
424 extension. Punt on this for now. */
425 if (! set)
426 continue;
427 /* If the destination is also a MEM or a STRICT_LOW_PART, no
428 extension applies.
429 Also, if there is an explicit extension, we don't have to
430 worry about an implicit one. */
431 else if (MEM_P (SET_DEST (set))
432 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
433 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
434 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
435 ; /* Continue ordinary processing. */
436 /* If the register cannot change mode to word_mode, it follows that
437 it cannot have been used in word_mode. */
438 else if (REG_P (SET_DEST (set))
439 && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
440 GET_MODE (SET_DEST (set)),
441 word_mode))
442 ; /* Continue ordinary processing. */
443 /* If this is a straight load, make the extension explicit. */
444 else if (REG_P (SET_DEST (set))
445 && recog_data.n_operands == 2
446 && SET_SRC (set) == op
447 && SET_DEST (set) == recog_data.operand[1-i])
449 validate_change (insn, recog_data.operand_loc[i],
450 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
451 word_mode, op),
453 validate_change (insn, recog_data.operand_loc[1-i],
454 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
456 if (! apply_change_group ())
457 return 0;
458 return reload_cse_simplify_operands (insn, testreg);
460 else
461 /* ??? There might be arithmetic operations with memory that are
462 safe to optimize, but is it worth the trouble? */
463 continue;
466 if (side_effects_p (op))
467 continue;
468 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
469 if (! v)
470 continue;
472 for (l = v->locs; l; l = l->next)
473 if (REG_P (l->loc))
474 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
477 alternative_mask preferred = get_preferred_alternatives (insn);
478 for (i = 0; i < recog_data.n_operands; i++)
480 machine_mode mode;
481 int regno;
482 const char *p;
484 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
485 for (j = 0; j < recog_data.n_alternatives; j++)
486 op_alt_regno[i][j] = -1;
488 p = constraints[i] = recog_data.constraints[i];
489 mode = recog_data.operand_mode[i];
491 /* Add the reject values for each alternative given by the constraints
492 for this operand. */
493 j = 0;
494 while (*p != '\0')
496 char c = *p++;
497 if (c == ',')
498 j++;
499 else if (c == '?')
500 alternative_reject[j] += 3;
501 else if (c == '!')
502 alternative_reject[j] += 300;
505 /* We won't change operands which are already registers. We
506 also don't want to modify output operands. */
507 regno = true_regnum (recog_data.operand[i]);
508 if (regno >= 0
509 || constraints[i][0] == '='
510 || constraints[i][0] == '+')
511 continue;
513 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
515 enum reg_class rclass = NO_REGS;
517 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
518 continue;
520 set_mode_and_regno (testreg, mode, regno);
522 /* We found a register equal to this operand. Now look for all
523 alternatives that can accept this register and have not been
524 assigned a register they can use yet. */
525 j = 0;
526 p = constraints[i];
527 for (;;)
529 char c = *p;
531 switch (c)
533 case 'g':
534 rclass = reg_class_subunion[rclass][GENERAL_REGS];
535 break;
537 default:
538 rclass
539 = (reg_class_subunion
540 [rclass]
541 [reg_class_for_constraint (lookup_constraint (p))]);
542 break;
544 case ',': case '\0':
545 /* See if REGNO fits this alternative, and set it up as the
546 replacement register if we don't have one for this
547 alternative yet and the operand being replaced is not
548 a cheap CONST_INT. */
549 if (op_alt_regno[i][j] == -1
550 && TEST_BIT (preferred, j)
551 && reg_fits_class_p (testreg, rclass, 0, mode)
552 && (!CONST_INT_P (recog_data.operand[i])
553 || (set_src_cost (recog_data.operand[i], mode,
554 optimize_bb_for_speed_p
555 (BLOCK_FOR_INSN (insn)))
556 > set_src_cost (testreg, mode,
557 optimize_bb_for_speed_p
558 (BLOCK_FOR_INSN (insn))))))
560 alternative_nregs[j]++;
561 op_alt_regno[i][j] = regno;
563 j++;
564 rclass = NO_REGS;
565 break;
567 p += CONSTRAINT_LEN (c, p);
569 if (c == '\0')
570 break;
575 /* Record all alternatives which are better or equal to the currently
576 matching one in the alternative_order array. */
577 for (i = j = 0; i < recog_data.n_alternatives; i++)
578 if (alternative_reject[i] <= alternative_reject[which_alternative])
579 alternative_order[j++] = i;
580 recog_data.n_alternatives = j;
582 /* Sort it. Given a small number of alternatives, a dumb algorithm
583 won't hurt too much. */
584 for (i = 0; i < recog_data.n_alternatives - 1; i++)
586 int best = i;
587 int best_reject = alternative_reject[alternative_order[i]];
588 int best_nregs = alternative_nregs[alternative_order[i]];
590 for (j = i + 1; j < recog_data.n_alternatives; j++)
592 int this_reject = alternative_reject[alternative_order[j]];
593 int this_nregs = alternative_nregs[alternative_order[j]];
595 if (this_reject < best_reject
596 || (this_reject == best_reject && this_nregs > best_nregs))
598 best = j;
599 best_reject = this_reject;
600 best_nregs = this_nregs;
604 std::swap (alternative_order[best], alternative_order[i]);
607 /* Substitute the operands as determined by op_alt_regno for the best
608 alternative. */
609 j = alternative_order[0];
611 for (i = 0; i < recog_data.n_operands; i++)
613 machine_mode mode = recog_data.operand_mode[i];
614 if (op_alt_regno[i][j] == -1)
615 continue;
617 validate_change (insn, recog_data.operand_loc[i],
618 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
621 for (i = recog_data.n_dups - 1; i >= 0; i--)
623 int op = recog_data.dup_num[i];
624 machine_mode mode = recog_data.operand_mode[op];
626 if (op_alt_regno[op][j] == -1)
627 continue;
629 validate_change (insn, recog_data.dup_loc[i],
630 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
633 return apply_change_group ();
636 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
637 addressing now.
638 This code might also be useful when reload gave up on reg+reg addressing
639 because of clashes between the return register and INDEX_REG_CLASS. */
641 /* The maximum number of uses of a register we can keep track of to
642 replace them with reg+reg addressing. */
643 #define RELOAD_COMBINE_MAX_USES 16
645 /* Describes a recorded use of a register. */
646 struct reg_use
648 /* The insn where a register has been used. */
649 rtx_insn *insn;
650 /* Points to the memory reference enclosing the use, if any, NULL_RTX
651 otherwise. */
652 rtx containing_mem;
653 /* Location of the register within INSN. */
654 rtx *usep;
655 /* The reverse uid of the insn. */
656 int ruid;
659 /* If the register is used in some unknown fashion, USE_INDEX is negative.
660 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
661 indicates where it is first set or clobbered.
662 Otherwise, USE_INDEX is the index of the last encountered use of the
663 register (which is first among these we have seen since we scan backwards).
664 USE_RUID indicates the first encountered, i.e. last, of these uses.
665 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
666 with a constant offset; OFFSET contains this constant in that case.
667 STORE_RUID is always meaningful if we only want to use a value in a
668 register in a different place: it denotes the next insn in the insn
669 stream (i.e. the last encountered) that sets or clobbers the register.
670 REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
671 EXPR is the expression used when storing the register. */
672 static struct
674 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
675 rtx offset;
676 int use_index;
677 int store_ruid;
678 int real_store_ruid;
679 int use_ruid;
680 bool all_offsets_match;
681 rtx expr;
682 } reg_state[FIRST_PSEUDO_REGISTER];
684 /* Reverse linear uid. This is increased in reload_combine while scanning
685 the instructions from last to first. It is used to set last_label_ruid
686 and the store_ruid / use_ruid fields in reg_state. */
687 static int reload_combine_ruid;
689 /* The RUID of the last label we encountered in reload_combine. */
690 static int last_label_ruid;
692 /* The RUID of the last jump we encountered in reload_combine. */
693 static int last_jump_ruid;
695 /* The register numbers of the first and last index register. A value of
696 -1 in LAST_INDEX_REG indicates that we've previously computed these
697 values and found no suitable index registers. */
698 static int first_index_reg = -1;
699 static int last_index_reg;
701 #define LABEL_LIVE(LABEL) \
702 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
704 /* Subroutine of reload_combine_split_ruids, called to fix up a single
705 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
707 static inline void
708 reload_combine_split_one_ruid (int *pruid, int split_ruid)
710 if (*pruid > split_ruid)
711 (*pruid)++;
714 /* Called when we insert a new insn in a position we've already passed in
715 the scan. Examine all our state, increasing all ruids that are higher
716 than SPLIT_RUID by one in order to make room for a new insn. */
718 static void
719 reload_combine_split_ruids (int split_ruid)
721 unsigned i;
723 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
724 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
725 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
727 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
729 int j, idx = reg_state[i].use_index;
730 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
731 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
732 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
733 split_ruid);
734 if (idx < 0)
735 continue;
736 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
738 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
739 split_ruid);
744 /* Called when we are about to rescan a previously encountered insn with
745 reload_combine_note_use after modifying some part of it. This clears all
746 information about uses in that particular insn. */
748 static void
749 reload_combine_purge_insn_uses (rtx_insn *insn)
751 unsigned i;
753 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
755 int j, k, idx = reg_state[i].use_index;
756 if (idx < 0)
757 continue;
758 j = k = RELOAD_COMBINE_MAX_USES;
759 while (j-- > idx)
761 if (reg_state[i].reg_use[j].insn != insn)
763 k--;
764 if (k != j)
765 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
768 reg_state[i].use_index = k;
772 /* Called when we need to forget about all uses of REGNO after an insn
773 which is identified by RUID. */
775 static void
776 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
778 int j, k, idx = reg_state[regno].use_index;
779 if (idx < 0)
780 return;
781 j = k = RELOAD_COMBINE_MAX_USES;
782 while (j-- > idx)
784 if (reg_state[regno].reg_use[j].ruid >= ruid)
786 k--;
787 if (k != j)
788 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
791 reg_state[regno].use_index = k;
794 /* Find the use of REGNO with the ruid that is highest among those
795 lower than RUID_LIMIT, and return it if it is the only use of this
796 reg in the insn. Return NULL otherwise. */
798 static struct reg_use *
799 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
801 int i, best_ruid = 0;
802 int use_idx = reg_state[regno].use_index;
803 struct reg_use *retval;
805 if (use_idx < 0)
806 return NULL;
807 retval = NULL;
808 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
810 struct reg_use *use = reg_state[regno].reg_use + i;
811 int this_ruid = use->ruid;
812 if (this_ruid >= ruid_limit)
813 continue;
814 if (this_ruid > best_ruid)
816 best_ruid = this_ruid;
817 retval = use;
819 else if (this_ruid == best_ruid)
820 retval = NULL;
822 if (last_label_ruid >= best_ruid)
823 return NULL;
824 return retval;
827 /* After we've moved an add insn, fix up any debug insns that occur
828 between the old location of the add and the new location. REG is
829 the destination register of the add insn; REPLACEMENT is the
830 SET_SRC of the add. FROM and TO specify the range in which we
831 should make this change on debug insns. */
833 static void
834 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
836 rtx_insn *insn;
837 for (insn = from; insn != to; insn = NEXT_INSN (insn))
839 rtx t;
841 if (!DEBUG_BIND_INSN_P (insn))
842 continue;
844 t = INSN_VAR_LOCATION_LOC (insn);
845 t = simplify_replace_rtx (t, reg, replacement);
846 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
850 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
851 with SRC in the insn described by USE, taking costs into account. Return
852 true if we made the replacement. */
854 static bool
855 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
857 rtx_insn *use_insn = use->insn;
858 rtx mem = use->containing_mem;
859 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
861 if (mem != NULL_RTX)
863 addr_space_t as = MEM_ADDR_SPACE (mem);
864 rtx oldaddr = XEXP (mem, 0);
865 rtx newaddr = NULL_RTX;
866 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
867 int new_cost;
869 newaddr = simplify_replace_rtx (oldaddr, reg, src);
870 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
872 XEXP (mem, 0) = newaddr;
873 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
874 XEXP (mem, 0) = oldaddr;
875 if (new_cost <= old_cost
876 && validate_change (use_insn,
877 &XEXP (mem, 0), newaddr, 0))
878 return true;
881 else
883 rtx new_set = single_set (use_insn);
884 if (new_set
885 && REG_P (SET_DEST (new_set))
886 && GET_CODE (SET_SRC (new_set)) == PLUS
887 && REG_P (XEXP (SET_SRC (new_set), 0))
888 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
890 rtx new_src;
891 machine_mode mode = GET_MODE (SET_DEST (new_set));
892 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
894 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
895 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
897 if (set_src_cost (new_src, mode, speed) <= old_cost
898 && validate_change (use_insn, &SET_SRC (new_set),
899 new_src, 0))
900 return true;
903 return false;
906 /* Called by reload_combine when scanning INSN. This function tries to detect
907 patterns where a constant is added to a register, and the result is used
908 in an address.
909 Return true if no further processing is needed on INSN; false if it wasn't
910 recognized and should be handled normally. */
912 static bool
913 reload_combine_recognize_const_pattern (rtx_insn *insn)
915 int from_ruid = reload_combine_ruid;
916 rtx set, pat, reg, src, addreg;
917 unsigned int regno;
918 struct reg_use *use;
919 bool must_move_add;
920 rtx_insn *add_moved_after_insn = NULL;
921 int add_moved_after_ruid = 0;
922 int clobbered_regno = -1;
924 set = single_set (insn);
925 if (set == NULL_RTX)
926 return false;
928 reg = SET_DEST (set);
929 src = SET_SRC (set);
930 if (!REG_P (reg)
931 || REG_NREGS (reg) != 1
932 || GET_MODE (reg) != Pmode
933 || reg == stack_pointer_rtx)
934 return false;
936 regno = REGNO (reg);
938 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
939 uses of REG1 inside an address, or inside another add insn. If
940 possible and profitable, merge the addition into subsequent
941 uses. */
942 if (GET_CODE (src) != PLUS
943 || !REG_P (XEXP (src, 0))
944 || !CONSTANT_P (XEXP (src, 1)))
945 return false;
947 addreg = XEXP (src, 0);
948 must_move_add = rtx_equal_p (reg, addreg);
950 pat = PATTERN (insn);
951 if (must_move_add && set != pat)
953 /* We have to be careful when moving the add; apart from the
954 single_set there may also be clobbers. Recognize one special
955 case, that of one clobber alongside the set (likely a clobber
956 of the CC register). */
957 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
958 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
959 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
960 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
961 return false;
962 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
967 use = reload_combine_closest_single_use (regno, from_ruid);
969 if (use)
970 /* Start the search for the next use from here. */
971 from_ruid = use->ruid;
973 if (use && GET_MODE (*use->usep) == Pmode)
975 bool delete_add = false;
976 rtx_insn *use_insn = use->insn;
977 int use_ruid = use->ruid;
979 /* Avoid moving the add insn past a jump. */
980 if (must_move_add && use_ruid <= last_jump_ruid)
981 break;
983 /* If the add clobbers another hard reg in parallel, don't move
984 it past a real set of this hard reg. */
985 if (must_move_add && clobbered_regno >= 0
986 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
987 break;
989 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
990 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
991 break;
993 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
994 /* Avoid moving a use of ADDREG past a point where it is stored. */
995 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
996 break;
998 /* We also must not move the addition past an insn that sets
999 the same register, unless we can combine two add insns. */
1000 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1002 if (use->containing_mem == NULL_RTX)
1003 delete_add = true;
1004 else
1005 break;
1008 if (try_replace_in_use (use, reg, src))
1010 reload_combine_purge_insn_uses (use_insn);
1011 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1012 use_ruid, NULL_RTX);
1014 if (delete_add)
1016 fixup_debug_insns (reg, src, insn, use_insn);
1017 delete_insn (insn);
1018 return true;
1020 if (must_move_add)
1022 add_moved_after_insn = use_insn;
1023 add_moved_after_ruid = use_ruid;
1025 continue;
1028 /* If we get here, we couldn't handle this use. */
1029 if (must_move_add)
1030 break;
1032 while (use);
1034 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1035 /* Process the add normally. */
1036 return false;
1038 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1040 reorder_insns (insn, insn, add_moved_after_insn);
1041 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1042 reload_combine_split_ruids (add_moved_after_ruid - 1);
1043 reload_combine_note_use (&PATTERN (insn), insn,
1044 add_moved_after_ruid, NULL_RTX);
1045 reg_state[regno].store_ruid = add_moved_after_ruid;
1047 return true;
1050 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1051 can handle and improve. Return true if no further processing is needed on
1052 INSN; false if it wasn't recognized and should be handled normally. */
1054 static bool
1055 reload_combine_recognize_pattern (rtx_insn *insn)
1057 rtx set, reg, src;
1059 set = single_set (insn);
1060 if (set == NULL_RTX)
1061 return false;
1063 reg = SET_DEST (set);
1064 src = SET_SRC (set);
1065 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1066 return false;
1068 unsigned int regno = REGNO (reg);
1069 machine_mode mode = GET_MODE (reg);
1071 if (reg_state[regno].use_index < 0
1072 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1073 return false;
1075 for (int i = reg_state[regno].use_index;
1076 i < RELOAD_COMBINE_MAX_USES; i++)
1078 struct reg_use *use = reg_state[regno].reg_use + i;
1079 if (GET_MODE (*use->usep) != mode)
1080 return false;
1083 /* Look for (set (REGX) (CONST_INT))
1084 (set (REGX) (PLUS (REGX) (REGY)))
1086 ... (MEM (REGX)) ...
1087 and convert it to
1088 (set (REGZ) (CONST_INT))
1090 ... (MEM (PLUS (REGZ) (REGY)))... .
1092 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1093 and that we know all uses of REGX before it dies.
1094 Also, explicitly check that REGX != REGY; our life information
1095 does not yet show whether REGY changes in this insn. */
1097 if (GET_CODE (src) == PLUS
1098 && reg_state[regno].all_offsets_match
1099 && last_index_reg != -1
1100 && REG_P (XEXP (src, 1))
1101 && rtx_equal_p (XEXP (src, 0), reg)
1102 && !rtx_equal_p (XEXP (src, 1), reg)
1103 && last_label_ruid < reg_state[regno].use_ruid)
1105 rtx base = XEXP (src, 1);
1106 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1107 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1108 rtx index_reg = NULL_RTX;
1109 rtx reg_sum = NULL_RTX;
1110 int i;
1112 /* Now we need to set INDEX_REG to an index register (denoted as
1113 REGZ in the illustration above) and REG_SUM to the expression
1114 register+register that we want to use to substitute uses of REG
1115 (typically in MEMs) with. First check REG and BASE for being
1116 index registers; we can use them even if they are not dead. */
1117 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1118 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1119 REGNO (base)))
1121 index_reg = reg;
1122 reg_sum = src;
1124 else
1126 /* Otherwise, look for a free index register. Since we have
1127 checked above that neither REG nor BASE are index registers,
1128 if we find anything at all, it will be different from these
1129 two registers. */
1130 for (i = first_index_reg; i <= last_index_reg; i++)
1132 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1133 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1134 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1135 && (crtl->abi->clobbers_full_reg_p (i)
1136 || df_regs_ever_live_p (i))
1137 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1138 && !fixed_regs[i] && !global_regs[i]
1139 && hard_regno_nregs (i, GET_MODE (reg)) == 1
1140 && targetm.hard_regno_scratch_ok (i))
1142 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1143 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1144 break;
1149 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1150 (REGY), i.e. BASE, is not clobbered before the last use we'll
1151 create. */
1152 if (reg_sum
1153 && prev_set
1154 && CONST_INT_P (SET_SRC (prev_set))
1155 && rtx_equal_p (SET_DEST (prev_set), reg)
1156 && (reg_state[REGNO (base)].store_ruid
1157 <= reg_state[regno].use_ruid))
1159 /* Change destination register and, if necessary, the constant
1160 value in PREV, the constant loading instruction. */
1161 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1162 if (reg_state[regno].offset != const0_rtx)
1164 HOST_WIDE_INT c
1165 = trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1166 + UINTVAL (reg_state[regno].offset),
1167 GET_MODE (index_reg));
1168 validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1171 /* Now for every use of REG that we have recorded, replace REG
1172 with REG_SUM. */
1173 for (i = reg_state[regno].use_index;
1174 i < RELOAD_COMBINE_MAX_USES; i++)
1175 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1176 reg_state[regno].reg_use[i].usep,
1177 /* Each change must have its own
1178 replacement. */
1179 reg_sum, 1);
1181 if (apply_change_group ())
1183 struct reg_use *lowest_ruid = NULL;
1185 /* For every new use of REG_SUM, we have to record the use
1186 of BASE therein, i.e. operand 1. */
1187 for (i = reg_state[regno].use_index;
1188 i < RELOAD_COMBINE_MAX_USES; i++)
1190 struct reg_use *use = reg_state[regno].reg_use + i;
1191 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1192 use->ruid, use->containing_mem);
1193 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1194 lowest_ruid = use;
1197 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1199 /* Delete the reg-reg addition. */
1200 delete_insn (insn);
1202 if (reg_state[regno].offset != const0_rtx
1203 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1204 are now invalid. */
1205 && remove_reg_equal_equiv_notes (prev))
1206 df_notes_rescan (prev);
1208 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1209 return true;
1213 return false;
1216 static void
1217 reload_combine (void)
1219 rtx_insn *insn, *prev;
1220 basic_block bb;
1221 unsigned int r;
1222 int min_labelno, n_labels;
1223 HARD_REG_SET ever_live_at_start, *label_live;
1225 /* To avoid wasting too much time later searching for an index register,
1226 determine the minimum and maximum index register numbers. */
1227 if (INDEX_REG_CLASS == NO_REGS)
1228 last_index_reg = -1;
1229 else if (first_index_reg == -1 && last_index_reg == 0)
1231 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1232 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1234 if (first_index_reg == -1)
1235 first_index_reg = r;
1237 last_index_reg = r;
1240 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1241 to -1 so we'll know to quit early the next time we get here. */
1242 if (first_index_reg == -1)
1244 last_index_reg = -1;
1245 return;
1249 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1250 information is a bit fuzzy immediately after reload, but it's
1251 still good enough to determine which registers are live at a jump
1252 destination. */
1253 min_labelno = get_first_label_num ();
1254 n_labels = max_label_num () - min_labelno;
1255 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1256 CLEAR_HARD_REG_SET (ever_live_at_start);
1258 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1260 insn = BB_HEAD (bb);
1261 if (LABEL_P (insn))
1263 HARD_REG_SET live;
1264 bitmap live_in = df_get_live_in (bb);
1266 REG_SET_TO_HARD_REG_SET (live, live_in);
1267 compute_use_by_pseudos (&live, live_in);
1268 LABEL_LIVE (insn) = live;
1269 ever_live_at_start |= live;
1273 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1274 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1275 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1277 reg_state[r].store_ruid = 0;
1278 reg_state[r].real_store_ruid = 0;
1279 if (fixed_regs[r])
1280 reg_state[r].use_index = -1;
1281 else
1282 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1285 for (insn = get_last_insn (); insn; insn = prev)
1287 bool control_flow_insn;
1288 rtx note;
1290 prev = PREV_INSN (insn);
1292 /* We cannot do our optimization across labels. Invalidating all the use
1293 information we have would be costly, so we just note where the label
1294 is and then later disable any optimization that would cross it. */
1295 if (LABEL_P (insn))
1296 last_label_ruid = reload_combine_ruid;
1297 else if (BARRIER_P (insn))
1299 /* Crossing a barrier resets all the use information. */
1300 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1301 if (! fixed_regs[r])
1302 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1304 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1305 /* Optimizations across insns being marked as volatile must be
1306 prevented. All the usage information is invalidated
1307 here. */
1308 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1309 if (! fixed_regs[r]
1310 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1311 reg_state[r].use_index = -1;
1313 if (! NONDEBUG_INSN_P (insn))
1314 continue;
1316 reload_combine_ruid++;
1318 control_flow_insn = control_flow_insn_p (insn);
1319 if (control_flow_insn)
1320 last_jump_ruid = reload_combine_ruid;
1322 if (reload_combine_recognize_const_pattern (insn)
1323 || reload_combine_recognize_pattern (insn))
1324 continue;
1326 note_stores (insn, reload_combine_note_store, NULL);
1328 if (CALL_P (insn))
1330 rtx link;
1331 HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
1333 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1334 if (TEST_HARD_REG_BIT (used_regs, r))
1336 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1337 reg_state[r].store_ruid = reload_combine_ruid;
1340 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1341 link = XEXP (link, 1))
1343 rtx setuse = XEXP (link, 0);
1344 rtx usage_rtx = XEXP (setuse, 0);
1346 if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
1348 unsigned int end_regno = END_REGNO (usage_rtx);
1349 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1350 reg_state[i].use_index = -1;
1355 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1357 /* Non-spill registers might be used at the call destination in
1358 some unknown fashion, so we have to mark the unknown use. */
1359 HARD_REG_SET *live;
1361 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1362 && JUMP_LABEL (insn))
1364 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1365 live = NULL;
1366 else
1367 live = &LABEL_LIVE (JUMP_LABEL (insn));
1369 else
1370 live = &ever_live_at_start;
1372 if (live)
1373 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1374 if (TEST_HARD_REG_BIT (*live, r))
1375 reg_state[r].use_index = -1;
1378 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1379 NULL_RTX);
1381 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1383 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1385 int regno = REGNO (XEXP (note, 0));
1386 reg_state[regno].store_ruid = reload_combine_ruid;
1387 reg_state[regno].real_store_ruid = reload_combine_ruid;
1388 reg_state[regno].use_index = -1;
1393 free (label_live);
1396 /* Check if DST is a register or a subreg of a register; if it is,
1397 update store_ruid, real_store_ruid and use_index in the reg_state
1398 structure accordingly. Called via note_stores from reload_combine. */
1400 static void
1401 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1403 int regno = 0;
1404 int i;
1405 machine_mode mode = GET_MODE (dst);
1407 if (GET_CODE (dst) == SUBREG)
1409 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1410 GET_MODE (SUBREG_REG (dst)),
1411 SUBREG_BYTE (dst),
1412 GET_MODE (dst));
1413 dst = SUBREG_REG (dst);
1416 /* Some targets do argument pushes without adding REG_INC notes. */
1418 if (MEM_P (dst))
1420 dst = XEXP (dst, 0);
1421 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1422 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1423 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1425 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1426 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1428 /* We could probably do better, but for now mark the register
1429 as used in an unknown fashion and set/clobbered at this
1430 insn. */
1431 reg_state[i].use_index = -1;
1432 reg_state[i].store_ruid = reload_combine_ruid;
1433 reg_state[i].real_store_ruid = reload_combine_ruid;
1436 else
1437 return;
1440 if (!REG_P (dst))
1441 return;
1442 regno += REGNO (dst);
1444 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1445 careful with registers / register parts that are not full words.
1446 Similarly for ZERO_EXTRACT. */
1447 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1448 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1450 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1452 reg_state[i].use_index = -1;
1453 reg_state[i].store_ruid = reload_combine_ruid;
1454 reg_state[i].real_store_ruid = reload_combine_ruid;
1457 else
1459 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1461 reg_state[i].store_ruid = reload_combine_ruid;
1462 if (GET_CODE (set) == SET)
1463 reg_state[i].real_store_ruid = reload_combine_ruid;
1464 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1469 /* XP points to a piece of rtl that has to be checked for any uses of
1470 registers.
1471 *XP is the pattern of INSN, or a part of it.
1472 Called from reload_combine, and recursively by itself. */
1473 static void
1474 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1476 rtx x = *xp;
1477 enum rtx_code code = x->code;
1478 const char *fmt;
1479 int i, j;
1480 rtx offset = const0_rtx; /* For the REG case below. */
1482 switch (code)
1484 case SET:
1485 if (REG_P (SET_DEST (x)))
1487 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1488 return;
1490 break;
1492 case USE:
1493 /* If this is the USE of a return value, we can't change it. */
1494 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1496 /* Mark the return register as used in an unknown fashion. */
1497 rtx reg = XEXP (x, 0);
1498 unsigned int end_regno = END_REGNO (reg);
1499 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1500 reg_state[regno].use_index = -1;
1501 return;
1503 break;
1505 case CLOBBER:
1506 if (REG_P (SET_DEST (x)))
1508 /* No spurious CLOBBERs of pseudo registers may remain. */
1509 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1510 return;
1512 break;
1514 case PLUS:
1515 /* We are interested in (plus (reg) (const_int)) . */
1516 if (!REG_P (XEXP (x, 0))
1517 || !CONST_INT_P (XEXP (x, 1)))
1518 break;
1519 offset = XEXP (x, 1);
1520 x = XEXP (x, 0);
1521 /* Fall through. */
1522 case REG:
1524 int regno = REGNO (x);
1525 int use_index;
1526 int nregs;
1528 /* No spurious USEs of pseudo registers may remain. */
1529 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1531 nregs = REG_NREGS (x);
1533 /* We can't substitute into multi-hard-reg uses. */
1534 if (nregs > 1)
1536 while (--nregs >= 0)
1537 reg_state[regno + nregs].use_index = -1;
1538 return;
1541 /* We may be called to update uses in previously seen insns.
1542 Don't add uses beyond the last store we saw. */
1543 if (ruid < reg_state[regno].store_ruid)
1544 return;
1546 /* If this register is already used in some unknown fashion, we
1547 can't do anything.
1548 If we decrement the index from zero to -1, we can't store more
1549 uses, so this register becomes used in an unknown fashion. */
1550 use_index = --reg_state[regno].use_index;
1551 if (use_index < 0)
1552 return;
1554 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1556 /* This is the first use of this register we have seen since we
1557 marked it as dead. */
1558 reg_state[regno].offset = offset;
1559 reg_state[regno].all_offsets_match = true;
1560 reg_state[regno].use_ruid = ruid;
1562 else
1564 if (reg_state[regno].use_ruid > ruid)
1565 reg_state[regno].use_ruid = ruid;
1567 if (! rtx_equal_p (offset, reg_state[regno].offset))
1568 reg_state[regno].all_offsets_match = false;
1571 reg_state[regno].reg_use[use_index].insn = insn;
1572 reg_state[regno].reg_use[use_index].ruid = ruid;
1573 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1574 reg_state[regno].reg_use[use_index].usep = xp;
1575 return;
1578 case MEM:
1579 containing_mem = x;
1580 break;
1582 default:
1583 break;
1586 /* Recursively process the components of X. */
1587 fmt = GET_RTX_FORMAT (code);
1588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1590 if (fmt[i] == 'e')
1591 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1592 else if (fmt[i] == 'E')
1594 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1595 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1596 containing_mem);
1601 /* See if we can reduce the cost of a constant by replacing a move
1602 with an add. We track situations in which a register is set to a
1603 constant or to a register plus a constant. */
1604 /* We cannot do our optimization across labels. Invalidating all the
1605 information about register contents we have would be costly, so we
1606 use move2add_last_label_luid to note where the label is and then
1607 later disable any optimization that would cross it.
1608 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1609 are only valid if reg_set_luid[n] is greater than
1610 move2add_last_label_luid.
1611 For a set that established a new (potential) base register with
1612 non-constant value, we use move2add_luid from the place where the
1613 setting insn is encountered; registers based off that base then
1614 get the same reg_set_luid. Constants all get
1615 move2add_last_label_luid + 1 as their reg_set_luid. */
1616 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1618 /* If reg_base_reg[n] is negative, register n has been set to
1619 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1620 If reg_base_reg[n] is non-negative, register n has been set to the
1621 sum of reg_offset[n] and the value of register reg_base_reg[n]
1622 before reg_set_luid[n], calculated in mode reg_mode[n] .
1623 For multi-hard-register registers, all but the first one are
1624 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1625 marks it as invalid. */
1626 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1627 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1628 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1629 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1631 /* move2add_luid is linearly increased while scanning the instructions
1632 from first to last. It is used to set reg_set_luid in
1633 reload_cse_move2add and move2add_note_store. */
1634 static int move2add_luid;
1636 /* move2add_last_label_luid is set whenever a label is found. Labels
1637 invalidate all previously collected reg_offset data. */
1638 static int move2add_last_label_luid;
1640 /* ??? We don't know how zero / sign extension is handled, hence we
1641 can't go from a narrower to a wider mode. */
1642 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1643 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1644 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1645 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1647 /* Record that REG is being set to a value with the mode of REG. */
1649 static void
1650 move2add_record_mode (rtx reg)
1652 int regno, nregs;
1653 machine_mode mode = GET_MODE (reg);
1655 if (GET_CODE (reg) == SUBREG)
1657 regno = subreg_regno (reg);
1658 nregs = subreg_nregs (reg);
1660 else if (REG_P (reg))
1662 regno = REGNO (reg);
1663 nregs = REG_NREGS (reg);
1665 else
1666 gcc_unreachable ();
1667 for (int i = nregs - 1; i > 0; i--)
1668 reg_mode[regno + i] = BLKmode;
1669 reg_mode[regno] = mode;
1672 /* Record that REG is being set to the sum of SYM and OFF. */
1674 static void
1675 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1677 int regno = REGNO (reg);
1679 move2add_record_mode (reg);
1680 reg_set_luid[regno] = move2add_luid;
1681 reg_base_reg[regno] = -1;
1682 reg_symbol_ref[regno] = sym;
1683 reg_offset[regno] = INTVAL (off);
1686 /* Check if REGNO contains a valid value in MODE. */
1688 static bool
1689 move2add_valid_value_p (int regno, scalar_int_mode mode)
1691 if (reg_set_luid[regno] <= move2add_last_label_luid)
1692 return false;
1694 if (mode != reg_mode[regno])
1696 scalar_int_mode old_mode;
1697 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1698 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
1699 return false;
1700 /* The value loaded into regno in reg_mode[regno] is also valid in
1701 mode after truncation only if (REG:mode regno) is the lowpart of
1702 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1703 regno of the lowpart might be different. */
1704 poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
1705 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1706 if (maybe_ne (s_off, 0))
1707 /* We could in principle adjust regno, check reg_mode[regno] to be
1708 BLKmode, and return s_off to the caller (vs. -1 for failure),
1709 but we currently have no callers that could make use of this
1710 information. */
1711 return false;
1714 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1715 if (reg_mode[i] != BLKmode)
1716 return false;
1717 return true;
1720 /* This function is called with INSN that sets REG (of mode MODE)
1721 to (SYM + OFF), while REG is known to already have value (SYM + offset).
1722 This function tries to change INSN into an add instruction
1723 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1724 It also updates the information about REG's known value.
1725 Return true if we made a change. */
1727 static bool
1728 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1729 rtx_insn *insn)
1731 rtx pat = PATTERN (insn);
1732 rtx src = SET_SRC (pat);
1733 int regno = REGNO (reg);
1734 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1735 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1736 bool changed = false;
1738 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1739 use (set (reg) (reg)) instead.
1740 We don't delete this insn, nor do we convert it into a
1741 note, to avoid losing register notes or the return
1742 value flag. jump2 already knows how to get rid of
1743 no-op moves. */
1744 if (new_src == const0_rtx)
1746 /* If the constants are different, this is a
1747 truncation, that, if turned into (set (reg)
1748 (reg)), would be discarded. Maybe we should
1749 try a truncMN pattern? */
1750 if (INTVAL (off) == reg_offset [regno])
1751 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1753 else
1755 struct full_rtx_costs oldcst, newcst;
1756 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1758 get_full_set_rtx_cost (pat, &oldcst);
1759 SET_SRC (pat) = tem;
1760 get_full_set_rtx_cost (pat, &newcst);
1761 SET_SRC (pat) = src;
1763 if (costs_lt_p (&newcst, &oldcst, speed)
1764 && have_add2_insn (reg, new_src))
1765 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1766 else if (sym == NULL_RTX && mode != BImode)
1768 scalar_int_mode narrow_mode;
1769 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1771 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1772 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1773 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1775 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1776 rtx narrow_src = gen_int_mode (INTVAL (off),
1777 narrow_mode);
1778 rtx new_set
1779 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1780 narrow_reg),
1781 narrow_src);
1782 get_full_set_rtx_cost (new_set, &newcst);
1783 if (costs_lt_p (&newcst, &oldcst, speed))
1785 changed = validate_change (insn, &PATTERN (insn),
1786 new_set, 0);
1787 if (changed)
1788 break;
1794 move2add_record_sym_value (reg, sym, off);
1795 return changed;
1799 /* This function is called with INSN that sets REG (of mode MODE) to
1800 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1801 function tries to find another register which is known to already have
1802 value (SYM + offset) and change INSN into an add instruction
1803 (set (REG) (plus (the found register) (OFF - offset))) if such
1804 a register is found. It also updates the information about
1805 REG's known value.
1806 Return true iff we made a change. */
1808 static bool
1809 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1810 rtx_insn *insn)
1812 rtx pat = PATTERN (insn);
1813 rtx src = SET_SRC (pat);
1814 int regno = REGNO (reg);
1815 int min_regno = 0;
1816 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1817 int i;
1818 bool changed = false;
1819 struct full_rtx_costs oldcst, newcst, mincst;
1820 rtx plus_expr;
1822 init_costs_to_max (&mincst);
1823 get_full_set_rtx_cost (pat, &oldcst);
1825 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1826 SET_SRC (pat) = plus_expr;
1828 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1829 if (move2add_valid_value_p (i, mode)
1830 && reg_base_reg[i] < 0
1831 && reg_symbol_ref[i] != NULL_RTX
1832 && rtx_equal_p (sym, reg_symbol_ref[i]))
1834 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1835 GET_MODE (reg));
1836 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1837 use (set (reg) (reg)) instead.
1838 We don't delete this insn, nor do we convert it into a
1839 note, to avoid losing register notes or the return
1840 value flag. jump2 already knows how to get rid of
1841 no-op moves. */
1842 if (new_src == const0_rtx)
1844 init_costs_to_zero (&mincst);
1845 min_regno = i;
1846 break;
1848 else
1850 XEXP (plus_expr, 1) = new_src;
1851 get_full_set_rtx_cost (pat, &newcst);
1853 if (costs_lt_p (&newcst, &mincst, speed))
1855 mincst = newcst;
1856 min_regno = i;
1860 SET_SRC (pat) = src;
1862 if (costs_lt_p (&mincst, &oldcst, speed))
1864 rtx tem;
1866 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1867 if (i != min_regno)
1869 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1870 GET_MODE (reg));
1871 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1873 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1874 changed = true;
1876 reg_set_luid[regno] = move2add_luid;
1877 move2add_record_sym_value (reg, sym, off);
1878 return changed;
1881 /* Convert move insns with constant inputs to additions if they are cheaper.
1882 Return true if any changes were made. */
1883 static bool
1884 reload_cse_move2add (rtx_insn *first)
1886 int i;
1887 rtx_insn *insn;
1888 bool changed = false;
1890 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1892 reg_set_luid[i] = 0;
1893 reg_offset[i] = 0;
1894 reg_base_reg[i] = 0;
1895 reg_symbol_ref[i] = NULL_RTX;
1896 reg_mode[i] = VOIDmode;
1899 move2add_last_label_luid = 0;
1900 move2add_luid = 2;
1901 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1903 rtx pat, note;
1905 if (LABEL_P (insn))
1907 move2add_last_label_luid = move2add_luid;
1908 /* We're going to increment move2add_luid twice after a
1909 label, so that we can use move2add_last_label_luid + 1 as
1910 the luid for constants. */
1911 move2add_luid++;
1912 continue;
1914 if (! INSN_P (insn))
1915 continue;
1916 pat = PATTERN (insn);
1917 /* For simplicity, we only perform this optimization on
1918 straightforward SETs. */
1919 scalar_int_mode mode;
1920 if (GET_CODE (pat) == SET
1921 && REG_P (SET_DEST (pat))
1922 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1924 rtx reg = SET_DEST (pat);
1925 int regno = REGNO (reg);
1926 rtx src = SET_SRC (pat);
1928 /* Check if we have valid information on the contents of this
1929 register in the mode of REG. */
1930 if (move2add_valid_value_p (regno, mode)
1931 && dbg_cnt (cse2_move2add))
1933 /* Try to transform (set (REGX) (CONST_INT A))
1935 (set (REGX) (CONST_INT B))
1937 (set (REGX) (CONST_INT A))
1939 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1941 (set (REGX) (CONST_INT A))
1943 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1946 if (CONST_INT_P (src)
1947 && reg_base_reg[regno] < 0
1948 && reg_symbol_ref[regno] == NULL_RTX)
1950 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1951 src, insn);
1952 continue;
1955 /* Try to transform (set (REGX) (REGY))
1956 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1958 (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1961 (set (REGX) (REGY))
1962 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1964 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1965 else if (REG_P (src)
1966 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1967 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1968 && move2add_valid_value_p (REGNO (src), mode))
1970 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1971 rtx set = NULL_RTX;
1972 if (next)
1973 set = single_set (next);
1974 if (set
1975 && SET_DEST (set) == reg
1976 && GET_CODE (SET_SRC (set)) == PLUS
1977 && XEXP (SET_SRC (set), 0) == reg
1978 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1980 rtx src3 = XEXP (SET_SRC (set), 1);
1981 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1982 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1983 HOST_WIDE_INT regno_offset = reg_offset[regno];
1984 rtx new_src =
1985 gen_int_mode (added_offset
1986 + base_offset
1987 - regno_offset,
1988 mode);
1989 bool success = false;
1990 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1992 if (new_src == const0_rtx)
1993 /* See above why we create (set (reg) (reg)) here. */
1994 success
1995 = validate_change (next, &SET_SRC (set), reg, 0);
1996 else
1998 rtx old_src = SET_SRC (set);
1999 struct full_rtx_costs oldcst, newcst;
2000 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2002 get_full_set_rtx_cost (set, &oldcst);
2003 SET_SRC (set) = tem;
2004 get_full_set_src_cost (tem, mode, &newcst);
2005 SET_SRC (set) = old_src;
2006 costs_add_n_insns (&oldcst, 1);
2008 if (costs_lt_p (&newcst, &oldcst, speed)
2009 && have_add2_insn (reg, new_src))
2011 rtx newpat = gen_rtx_SET (reg, tem);
2012 success
2013 = validate_change (next, &PATTERN (next),
2014 newpat, 0);
2017 if (success)
2018 delete_insn (insn);
2019 changed |= success;
2020 insn = next;
2021 move2add_record_mode (reg);
2022 reg_offset[regno]
2023 = trunc_int_for_mode (added_offset + base_offset,
2024 mode);
2025 continue;
2030 /* Try to transform
2031 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2033 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2035 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2037 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2038 if ((GET_CODE (src) == SYMBOL_REF
2039 || (GET_CODE (src) == CONST
2040 && GET_CODE (XEXP (src, 0)) == PLUS
2041 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2042 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2043 && dbg_cnt (cse2_move2add))
2045 rtx sym, off;
2047 if (GET_CODE (src) == SYMBOL_REF)
2049 sym = src;
2050 off = const0_rtx;
2052 else
2054 sym = XEXP (XEXP (src, 0), 0);
2055 off = XEXP (XEXP (src, 0), 1);
2058 /* If the reg already contains the value which is sum of
2059 sym and some constant value, we can use an add2 insn. */
2060 if (move2add_valid_value_p (regno, mode)
2061 && reg_base_reg[regno] < 0
2062 && reg_symbol_ref[regno] != NULL_RTX
2063 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2064 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2066 /* Otherwise, we have to find a register whose value is sum
2067 of sym and some constant value. */
2068 else
2069 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2071 continue;
2075 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2077 if (REG_NOTE_KIND (note) == REG_INC
2078 && REG_P (XEXP (note, 0)))
2080 /* Reset the information about this register. */
2081 int regno = REGNO (XEXP (note, 0));
2082 if (regno < FIRST_PSEUDO_REGISTER)
2084 move2add_record_mode (XEXP (note, 0));
2085 reg_mode[regno] = VOIDmode;
2089 note_stores (insn, move2add_note_store, insn);
2091 /* If INSN is a conditional branch, we try to extract an
2092 implicit set out of it. */
2093 if (any_condjump_p (insn))
2095 rtx cnd = fis_get_condition (insn);
2097 if (cnd != NULL_RTX
2098 && GET_CODE (cnd) == NE
2099 && REG_P (XEXP (cnd, 0))
2100 && !reg_set_p (XEXP (cnd, 0), insn)
2101 /* The following two checks, which are also in
2102 move2add_note_store, are intended to reduce the
2103 number of calls to gen_rtx_SET to avoid memory
2104 allocation if possible. */
2105 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2106 && REG_NREGS (XEXP (cnd, 0)) == 1
2107 && CONST_INT_P (XEXP (cnd, 1)))
2109 rtx implicit_set =
2110 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2111 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2115 /* If this is a CALL_INSN, all call used registers are stored with
2116 unknown values. */
2117 if (CALL_P (insn))
2119 function_abi callee_abi = insn_callee_abi (insn);
2120 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2121 if (reg_mode[i] != VOIDmode
2122 && reg_mode[i] != BLKmode
2123 && callee_abi.clobbers_reg_p (reg_mode[i], i))
2124 /* Reset the information about this register. */
2125 reg_mode[i] = VOIDmode;
2128 return changed;
2131 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2132 contains SET.
2133 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2134 Called from reload_cse_move2add via note_stores. */
2136 static void
2137 move2add_note_store (rtx dst, const_rtx set, void *data)
2139 rtx_insn *insn = (rtx_insn *) data;
2140 unsigned int regno = 0;
2141 scalar_int_mode mode;
2143 /* Some targets do argument pushes without adding REG_INC notes. */
2145 if (MEM_P (dst))
2147 dst = XEXP (dst, 0);
2148 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2149 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2150 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2151 return;
2154 if (GET_CODE (dst) == SUBREG)
2155 regno = subreg_regno (dst);
2156 else if (REG_P (dst))
2157 regno = REGNO (dst);
2158 else
2159 return;
2161 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2162 goto invalidate;
2164 if (GET_CODE (set) == SET)
2166 rtx note, sym = NULL_RTX;
2167 rtx off;
2169 note = find_reg_equal_equiv_note (insn);
2170 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2172 sym = XEXP (note, 0);
2173 off = const0_rtx;
2175 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2176 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2177 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2178 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2180 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2181 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2184 if (sym != NULL_RTX)
2186 move2add_record_sym_value (dst, sym, off);
2187 return;
2191 if (GET_CODE (set) == SET
2192 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2193 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2195 rtx src = SET_SRC (set);
2196 rtx base_reg;
2197 unsigned HOST_WIDE_INT offset;
2198 int base_regno;
2200 switch (GET_CODE (src))
2202 case PLUS:
2203 if (REG_P (XEXP (src, 0)))
2205 base_reg = XEXP (src, 0);
2207 if (CONST_INT_P (XEXP (src, 1)))
2208 offset = UINTVAL (XEXP (src, 1));
2209 else if (REG_P (XEXP (src, 1))
2210 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2212 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2213 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2214 offset = reg_offset[REGNO (XEXP (src, 1))];
2215 /* Maybe the first register is known to be a
2216 constant. */
2217 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2218 && reg_base_reg[REGNO (base_reg)] < 0
2219 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2221 offset = reg_offset[REGNO (base_reg)];
2222 base_reg = XEXP (src, 1);
2224 else
2225 goto invalidate;
2227 else
2228 goto invalidate;
2230 break;
2233 goto invalidate;
2235 case REG:
2236 base_reg = src;
2237 offset = 0;
2238 break;
2240 case CONST_INT:
2241 /* Start tracking the register as a constant. */
2242 reg_base_reg[regno] = -1;
2243 reg_symbol_ref[regno] = NULL_RTX;
2244 reg_offset[regno] = INTVAL (SET_SRC (set));
2245 /* We assign the same luid to all registers set to constants. */
2246 reg_set_luid[regno] = move2add_last_label_luid + 1;
2247 move2add_record_mode (dst);
2248 return;
2250 default:
2251 goto invalidate;
2254 base_regno = REGNO (base_reg);
2255 /* If information about the base register is not valid, set it
2256 up as a new base register, pretending its value is known
2257 starting from the current insn. */
2258 if (!move2add_valid_value_p (base_regno, mode))
2260 reg_base_reg[base_regno] = base_regno;
2261 reg_symbol_ref[base_regno] = NULL_RTX;
2262 reg_offset[base_regno] = 0;
2263 reg_set_luid[base_regno] = move2add_luid;
2264 gcc_assert (GET_MODE (base_reg) == mode);
2265 move2add_record_mode (base_reg);
2268 /* Copy base information from our base register. */
2269 reg_set_luid[regno] = reg_set_luid[base_regno];
2270 reg_base_reg[regno] = reg_base_reg[base_regno];
2271 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2273 /* Compute the sum of the offsets or constants. */
2274 reg_offset[regno]
2275 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2277 move2add_record_mode (dst);
2279 else
2281 invalidate:
2282 /* Invalidate the contents of the register. */
2283 move2add_record_mode (dst);
2284 reg_mode[regno] = VOIDmode;
2288 namespace {
2290 const pass_data pass_data_postreload_cse =
2292 RTL_PASS, /* type */
2293 "postreload", /* name */
2294 OPTGROUP_NONE, /* optinfo_flags */
2295 TV_RELOAD_CSE_REGS, /* tv_id */
2296 0, /* properties_required */
2297 0, /* properties_provided */
2298 0, /* properties_destroyed */
2299 0, /* todo_flags_start */
2300 TODO_df_finish, /* todo_flags_finish */
2303 class pass_postreload_cse : public rtl_opt_pass
2305 public:
2306 pass_postreload_cse (gcc::context *ctxt)
2307 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2310 /* opt_pass methods: */
2311 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2313 virtual unsigned int execute (function *);
2315 }; // class pass_postreload_cse
2317 unsigned int
2318 pass_postreload_cse::execute (function *fun)
2320 if (!dbg_cnt (postreload_cse))
2321 return 0;
2323 /* Do a very simple CSE pass over just the hard registers. */
2324 reload_cse_regs (get_insns ());
2325 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2326 Remove any EH edges associated with them. */
2327 if (fun->can_throw_non_call_exceptions
2328 && purge_all_dead_edges ())
2329 cleanup_cfg (0);
2331 return 0;
2334 } // anon namespace
2336 rtl_opt_pass *
2337 make_pass_postreload_cse (gcc::context *ctxt)
2339 return new pass_postreload_cse (ctxt);