* gcc/ChangeLog: Fix ChangeLog entry.
[official-gcc.git] / gcc / tree-eh.c
blob85dc79f458d7d7543f475c41e4706e661c895851
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "expr.h"
27 #include "calls.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "pointer-set.h"
32 #include "basic-block.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "stringpool.h"
46 #include "tree-ssanames.h"
47 #include "tree-into-ssa.h"
48 #include "tree-ssa.h"
49 #include "tree-inline.h"
50 #include "tree-pass.h"
51 #include "langhooks.h"
52 #include "diagnostic-core.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "gimple-low.h"
57 /* In some instances a tree and a gimple need to be stored in a same table,
58 i.e. in hash tables. This is a structure to do this. */
59 typedef union {tree *tp; tree t; gimple g;} treemple;
61 /* Misc functions used in this file. */
63 /* Remember and lookup EH landing pad data for arbitrary statements.
64 Really this means any statement that could_throw_p. We could
65 stuff this information into the stmt_ann data structure, but:
67 (1) We absolutely rely on this information being kept until
68 we get to rtl. Once we're done with lowering here, if we lose
69 the information there's no way to recover it!
71 (2) There are many more statements that *cannot* throw as
72 compared to those that can. We should be saving some amount
73 of space by only allocating memory for those that can throw. */
75 /* Add statement T in function IFUN to landing pad NUM. */
77 static void
78 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
80 struct throw_stmt_node *n;
81 void **slot;
83 gcc_assert (num != 0);
85 n = ggc_alloc_throw_stmt_node ();
86 n->stmt = t;
87 n->lp_nr = num;
89 if (!get_eh_throw_stmt_table (ifun))
90 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
91 struct_ptr_eq,
92 ggc_free));
94 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
95 gcc_assert (!*slot);
96 *slot = n;
99 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
101 void
102 add_stmt_to_eh_lp (gimple t, int num)
104 add_stmt_to_eh_lp_fn (cfun, t, num);
107 /* Add statement T to the single EH landing pad in REGION. */
109 static void
110 record_stmt_eh_region (eh_region region, gimple t)
112 if (region == NULL)
113 return;
114 if (region->type == ERT_MUST_NOT_THROW)
115 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
116 else
118 eh_landing_pad lp = region->landing_pads;
119 if (lp == NULL)
120 lp = gen_eh_landing_pad (region);
121 else
122 gcc_assert (lp->next_lp == NULL);
123 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
128 /* Remove statement T in function IFUN from its EH landing pad. */
130 bool
131 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
133 struct throw_stmt_node dummy;
134 void **slot;
136 if (!get_eh_throw_stmt_table (ifun))
137 return false;
139 dummy.stmt = t;
140 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
141 NO_INSERT);
142 if (slot)
144 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
145 return true;
147 else
148 return false;
152 /* Remove statement T in the current function (cfun) from its
153 EH landing pad. */
155 bool
156 remove_stmt_from_eh_lp (gimple t)
158 return remove_stmt_from_eh_lp_fn (cfun, t);
161 /* Determine if statement T is inside an EH region in function IFUN.
162 Positive numbers indicate a landing pad index; negative numbers
163 indicate a MUST_NOT_THROW region index; zero indicates that the
164 statement is not recorded in the region table. */
167 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
169 struct throw_stmt_node *p, n;
171 if (ifun->eh->throw_stmt_table == NULL)
172 return 0;
174 n.stmt = t;
175 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
176 return p ? p->lp_nr : 0;
179 /* Likewise, but always use the current function. */
182 lookup_stmt_eh_lp (gimple t)
184 /* We can get called from initialized data when -fnon-call-exceptions
185 is on; prevent crash. */
186 if (!cfun)
187 return 0;
188 return lookup_stmt_eh_lp_fn (cfun, t);
191 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
192 nodes and LABEL_DECL nodes. We will use this during the second phase to
193 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
195 struct finally_tree_node
197 /* When storing a GIMPLE_TRY, we have to record a gimple. However
198 when deciding whether a GOTO to a certain LABEL_DECL (which is a
199 tree) leaves the TRY block, its necessary to record a tree in
200 this field. Thus a treemple is used. */
201 treemple child;
202 gimple parent;
205 /* Hashtable helpers. */
207 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
209 typedef finally_tree_node value_type;
210 typedef finally_tree_node compare_type;
211 static inline hashval_t hash (const value_type *);
212 static inline bool equal (const value_type *, const compare_type *);
215 inline hashval_t
216 finally_tree_hasher::hash (const value_type *v)
218 return (intptr_t)v->child.t >> 4;
221 inline bool
222 finally_tree_hasher::equal (const value_type *v, const compare_type *c)
224 return v->child.t == c->child.t;
227 /* Note that this table is *not* marked GTY. It is short-lived. */
228 static hash_table <finally_tree_hasher> finally_tree;
230 static void
231 record_in_finally_tree (treemple child, gimple parent)
233 struct finally_tree_node *n;
234 finally_tree_node **slot;
236 n = XNEW (struct finally_tree_node);
237 n->child = child;
238 n->parent = parent;
240 slot = finally_tree.find_slot (n, INSERT);
241 gcc_assert (!*slot);
242 *slot = n;
245 static void
246 collect_finally_tree (gimple stmt, gimple region);
248 /* Go through the gimple sequence. Works with collect_finally_tree to
249 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
251 static void
252 collect_finally_tree_1 (gimple_seq seq, gimple region)
254 gimple_stmt_iterator gsi;
256 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
257 collect_finally_tree (gsi_stmt (gsi), region);
260 static void
261 collect_finally_tree (gimple stmt, gimple region)
263 treemple temp;
265 switch (gimple_code (stmt))
267 case GIMPLE_LABEL:
268 temp.t = gimple_label_label (stmt);
269 record_in_finally_tree (temp, region);
270 break;
272 case GIMPLE_TRY:
273 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
275 temp.g = stmt;
276 record_in_finally_tree (temp, region);
277 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
278 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
280 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
282 collect_finally_tree_1 (gimple_try_eval (stmt), region);
283 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
285 break;
287 case GIMPLE_CATCH:
288 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
289 break;
291 case GIMPLE_EH_FILTER:
292 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
293 break;
295 case GIMPLE_EH_ELSE:
296 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
297 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
298 break;
300 default:
301 /* A type, a decl, or some kind of statement that we're not
302 interested in. Don't walk them. */
303 break;
308 /* Use the finally tree to determine if a jump from START to TARGET
309 would leave the try_finally node that START lives in. */
311 static bool
312 outside_finally_tree (treemple start, gimple target)
314 struct finally_tree_node n, *p;
318 n.child = start;
319 p = finally_tree.find (&n);
320 if (!p)
321 return true;
322 start.g = p->parent;
324 while (start.g != target);
326 return false;
329 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
330 nodes into a set of gotos, magic labels, and eh regions.
331 The eh region creation is straight-forward, but frobbing all the gotos
332 and such into shape isn't. */
334 /* The sequence into which we record all EH stuff. This will be
335 placed at the end of the function when we're all done. */
336 static gimple_seq eh_seq;
338 /* Record whether an EH region contains something that can throw,
339 indexed by EH region number. */
340 static bitmap eh_region_may_contain_throw_map;
342 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
343 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
344 The idea is to record a gimple statement for everything except for
345 the conditionals, which get their labels recorded. Since labels are
346 of type 'tree', we need this node to store both gimple and tree
347 objects. REPL_STMT is the sequence used to replace the goto/return
348 statement. CONT_STMT is used to store the statement that allows
349 the return/goto to jump to the original destination. */
351 struct goto_queue_node
353 treemple stmt;
354 location_t location;
355 gimple_seq repl_stmt;
356 gimple cont_stmt;
357 int index;
358 /* This is used when index >= 0 to indicate that stmt is a label (as
359 opposed to a goto stmt). */
360 int is_label;
363 /* State of the world while lowering. */
365 struct leh_state
367 /* What's "current" while constructing the eh region tree. These
368 correspond to variables of the same name in cfun->eh, which we
369 don't have easy access to. */
370 eh_region cur_region;
372 /* What's "current" for the purposes of __builtin_eh_pointer. For
373 a CATCH, this is the associated TRY. For an EH_FILTER, this is
374 the associated ALLOWED_EXCEPTIONS, etc. */
375 eh_region ehp_region;
377 /* Processing of TRY_FINALLY requires a bit more state. This is
378 split out into a separate structure so that we don't have to
379 copy so much when processing other nodes. */
380 struct leh_tf_state *tf;
383 struct leh_tf_state
385 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
386 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
387 this so that outside_finally_tree can reliably reference the tree used
388 in the collect_finally_tree data structures. */
389 gimple try_finally_expr;
390 gimple top_p;
392 /* While lowering a top_p usually it is expanded into multiple statements,
393 thus we need the following field to store them. */
394 gimple_seq top_p_seq;
396 /* The state outside this try_finally node. */
397 struct leh_state *outer;
399 /* The exception region created for it. */
400 eh_region region;
402 /* The goto queue. */
403 struct goto_queue_node *goto_queue;
404 size_t goto_queue_size;
405 size_t goto_queue_active;
407 /* Pointer map to help in searching goto_queue when it is large. */
408 struct pointer_map_t *goto_queue_map;
410 /* The set of unique labels seen as entries in the goto queue. */
411 vec<tree> dest_array;
413 /* A label to be added at the end of the completed transformed
414 sequence. It will be set if may_fallthru was true *at one time*,
415 though subsequent transformations may have cleared that flag. */
416 tree fallthru_label;
418 /* True if it is possible to fall out the bottom of the try block.
419 Cleared if the fallthru is converted to a goto. */
420 bool may_fallthru;
422 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
423 bool may_return;
425 /* True if the finally block can receive an exception edge.
426 Cleared if the exception case is handled by code duplication. */
427 bool may_throw;
430 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
432 /* Search for STMT in the goto queue. Return the replacement,
433 or null if the statement isn't in the queue. */
435 #define LARGE_GOTO_QUEUE 20
437 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
439 static gimple_seq
440 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
442 unsigned int i;
443 void **slot;
445 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
447 for (i = 0; i < tf->goto_queue_active; i++)
448 if ( tf->goto_queue[i].stmt.g == stmt.g)
449 return tf->goto_queue[i].repl_stmt;
450 return NULL;
453 /* If we have a large number of entries in the goto_queue, create a
454 pointer map and use that for searching. */
456 if (!tf->goto_queue_map)
458 tf->goto_queue_map = pointer_map_create ();
459 for (i = 0; i < tf->goto_queue_active; i++)
461 slot = pointer_map_insert (tf->goto_queue_map,
462 tf->goto_queue[i].stmt.g);
463 gcc_assert (*slot == NULL);
464 *slot = &tf->goto_queue[i];
468 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
469 if (slot != NULL)
470 return (((struct goto_queue_node *) *slot)->repl_stmt);
472 return NULL;
475 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
476 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
477 then we can just splat it in, otherwise we add the new stmts immediately
478 after the GIMPLE_COND and redirect. */
480 static void
481 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
482 gimple_stmt_iterator *gsi)
484 tree label;
485 gimple_seq new_seq;
486 treemple temp;
487 location_t loc = gimple_location (gsi_stmt (*gsi));
489 temp.tp = tp;
490 new_seq = find_goto_replacement (tf, temp);
491 if (!new_seq)
492 return;
494 if (gimple_seq_singleton_p (new_seq)
495 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
497 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
498 return;
501 label = create_artificial_label (loc);
502 /* Set the new label for the GIMPLE_COND */
503 *tp = label;
505 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
506 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
509 /* The real work of replace_goto_queue. Returns with TSI updated to
510 point to the next statement. */
512 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
514 static void
515 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
516 gimple_stmt_iterator *gsi)
518 gimple_seq seq;
519 treemple temp;
520 temp.g = NULL;
522 switch (gimple_code (stmt))
524 case GIMPLE_GOTO:
525 case GIMPLE_RETURN:
526 temp.g = stmt;
527 seq = find_goto_replacement (tf, temp);
528 if (seq)
530 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
531 gsi_remove (gsi, false);
532 return;
534 break;
536 case GIMPLE_COND:
537 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
538 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
539 break;
541 case GIMPLE_TRY:
542 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
543 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
544 break;
545 case GIMPLE_CATCH:
546 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
547 break;
548 case GIMPLE_EH_FILTER:
549 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
550 break;
551 case GIMPLE_EH_ELSE:
552 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
553 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
554 break;
556 default:
557 /* These won't have gotos in them. */
558 break;
561 gsi_next (gsi);
564 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
566 static void
567 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
569 gimple_stmt_iterator gsi = gsi_start (*seq);
571 while (!gsi_end_p (gsi))
572 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
575 /* Replace all goto queue members. */
577 static void
578 replace_goto_queue (struct leh_tf_state *tf)
580 if (tf->goto_queue_active == 0)
581 return;
582 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
583 replace_goto_queue_stmt_list (&eh_seq, tf);
586 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
587 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
588 a gimple return. */
590 static void
591 record_in_goto_queue (struct leh_tf_state *tf,
592 treemple new_stmt,
593 int index,
594 bool is_label,
595 location_t location)
597 size_t active, size;
598 struct goto_queue_node *q;
600 gcc_assert (!tf->goto_queue_map);
602 active = tf->goto_queue_active;
603 size = tf->goto_queue_size;
604 if (active >= size)
606 size = (size ? size * 2 : 32);
607 tf->goto_queue_size = size;
608 tf->goto_queue
609 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
612 q = &tf->goto_queue[active];
613 tf->goto_queue_active = active + 1;
615 memset (q, 0, sizeof (*q));
616 q->stmt = new_stmt;
617 q->index = index;
618 q->location = location;
619 q->is_label = is_label;
622 /* Record the LABEL label in the goto queue contained in TF.
623 TF is not null. */
625 static void
626 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
627 location_t location)
629 int index;
630 treemple temp, new_stmt;
632 if (!label)
633 return;
635 /* Computed and non-local gotos do not get processed. Given
636 their nature we can neither tell whether we've escaped the
637 finally block nor redirect them if we knew. */
638 if (TREE_CODE (label) != LABEL_DECL)
639 return;
641 /* No need to record gotos that don't leave the try block. */
642 temp.t = label;
643 if (!outside_finally_tree (temp, tf->try_finally_expr))
644 return;
646 if (! tf->dest_array.exists ())
648 tf->dest_array.create (10);
649 tf->dest_array.quick_push (label);
650 index = 0;
652 else
654 int n = tf->dest_array.length ();
655 for (index = 0; index < n; ++index)
656 if (tf->dest_array[index] == label)
657 break;
658 if (index == n)
659 tf->dest_array.safe_push (label);
662 /* In the case of a GOTO we want to record the destination label,
663 since with a GIMPLE_COND we have an easy access to the then/else
664 labels. */
665 new_stmt = stmt;
666 record_in_goto_queue (tf, new_stmt, index, true, location);
669 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
670 node, and if so record that fact in the goto queue associated with that
671 try_finally node. */
673 static void
674 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
676 struct leh_tf_state *tf = state->tf;
677 treemple new_stmt;
679 if (!tf)
680 return;
682 switch (gimple_code (stmt))
684 case GIMPLE_COND:
685 new_stmt.tp = gimple_op_ptr (stmt, 2);
686 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
687 EXPR_LOCATION (*new_stmt.tp));
688 new_stmt.tp = gimple_op_ptr (stmt, 3);
689 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
690 EXPR_LOCATION (*new_stmt.tp));
691 break;
692 case GIMPLE_GOTO:
693 new_stmt.g = stmt;
694 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
695 gimple_location (stmt));
696 break;
698 case GIMPLE_RETURN:
699 tf->may_return = true;
700 new_stmt.g = stmt;
701 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
702 break;
704 default:
705 gcc_unreachable ();
710 #ifdef ENABLE_CHECKING
711 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
712 was in fact structured, and we've not yet done jump threading, then none
713 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
715 static void
716 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
718 struct leh_tf_state *tf = state->tf;
719 size_t i, n;
721 if (!tf)
722 return;
724 n = gimple_switch_num_labels (switch_expr);
726 for (i = 0; i < n; ++i)
728 treemple temp;
729 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
730 temp.t = lab;
731 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
734 #else
735 #define verify_norecord_switch_expr(state, switch_expr)
736 #endif
738 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
739 non-null, insert it before the new branch. */
741 static void
742 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
744 gimple x;
746 /* In the case of a return, the queue node must be a gimple statement. */
747 gcc_assert (!q->is_label);
749 /* Note that the return value may have already been computed, e.g.,
751 int x;
752 int foo (void)
754 x = 0;
755 try {
756 return x;
757 } finally {
758 x++;
762 should return 0, not 1. We don't have to do anything to make
763 this happens because the return value has been placed in the
764 RESULT_DECL already. */
766 q->cont_stmt = q->stmt.g;
768 if (mod)
769 gimple_seq_add_seq (&q->repl_stmt, mod);
771 x = gimple_build_goto (finlab);
772 gimple_set_location (x, q->location);
773 gimple_seq_add_stmt (&q->repl_stmt, x);
776 /* Similar, but easier, for GIMPLE_GOTO. */
778 static void
779 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
780 struct leh_tf_state *tf)
782 gimple x;
784 gcc_assert (q->is_label);
786 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
788 if (mod)
789 gimple_seq_add_seq (&q->repl_stmt, mod);
791 x = gimple_build_goto (finlab);
792 gimple_set_location (x, q->location);
793 gimple_seq_add_stmt (&q->repl_stmt, x);
796 /* Emit a standard landing pad sequence into SEQ for REGION. */
798 static void
799 emit_post_landing_pad (gimple_seq *seq, eh_region region)
801 eh_landing_pad lp = region->landing_pads;
802 gimple x;
804 if (lp == NULL)
805 lp = gen_eh_landing_pad (region);
807 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
808 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
810 x = gimple_build_label (lp->post_landing_pad);
811 gimple_seq_add_stmt (seq, x);
814 /* Emit a RESX statement into SEQ for REGION. */
816 static void
817 emit_resx (gimple_seq *seq, eh_region region)
819 gimple x = gimple_build_resx (region->index);
820 gimple_seq_add_stmt (seq, x);
821 if (region->outer)
822 record_stmt_eh_region (region->outer, x);
825 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
827 static void
828 emit_eh_dispatch (gimple_seq *seq, eh_region region)
830 gimple x = gimple_build_eh_dispatch (region->index);
831 gimple_seq_add_stmt (seq, x);
834 /* Note that the current EH region may contain a throw, or a
835 call to a function which itself may contain a throw. */
837 static void
838 note_eh_region_may_contain_throw (eh_region region)
840 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
842 if (region->type == ERT_MUST_NOT_THROW)
843 break;
844 region = region->outer;
845 if (region == NULL)
846 break;
850 /* Check if REGION has been marked as containing a throw. If REGION is
851 NULL, this predicate is false. */
853 static inline bool
854 eh_region_may_contain_throw (eh_region r)
856 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
859 /* We want to transform
860 try { body; } catch { stuff; }
862 normal_seqence:
863 body;
864 over:
865 eh_seqence:
866 landing_pad:
867 stuff;
868 goto over;
870 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
871 should be placed before the second operand, or NULL. OVER is
872 an existing label that should be put at the exit, or NULL. */
874 static gimple_seq
875 frob_into_branch_around (gimple tp, eh_region region, tree over)
877 gimple x;
878 gimple_seq cleanup, result;
879 location_t loc = gimple_location (tp);
881 cleanup = gimple_try_cleanup (tp);
882 result = gimple_try_eval (tp);
884 if (region)
885 emit_post_landing_pad (&eh_seq, region);
887 if (gimple_seq_may_fallthru (cleanup))
889 if (!over)
890 over = create_artificial_label (loc);
891 x = gimple_build_goto (over);
892 gimple_set_location (x, loc);
893 gimple_seq_add_stmt (&cleanup, x);
895 gimple_seq_add_seq (&eh_seq, cleanup);
897 if (over)
899 x = gimple_build_label (over);
900 gimple_seq_add_stmt (&result, x);
902 return result;
905 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
906 Make sure to record all new labels found. */
908 static gimple_seq
909 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
910 location_t loc)
912 gimple region = NULL;
913 gimple_seq new_seq;
914 gimple_stmt_iterator gsi;
916 new_seq = copy_gimple_seq_and_replace_locals (seq);
918 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
920 gimple stmt = gsi_stmt (gsi);
921 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
923 tree block = gimple_block (stmt);
924 gimple_set_location (stmt, loc);
925 gimple_set_block (stmt, block);
929 if (outer_state->tf)
930 region = outer_state->tf->try_finally_expr;
931 collect_finally_tree_1 (new_seq, region);
933 return new_seq;
936 /* A subroutine of lower_try_finally. Create a fallthru label for
937 the given try_finally state. The only tricky bit here is that
938 we have to make sure to record the label in our outer context. */
940 static tree
941 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
943 tree label = tf->fallthru_label;
944 treemple temp;
946 if (!label)
948 label = create_artificial_label (gimple_location (tf->try_finally_expr));
949 tf->fallthru_label = label;
950 if (tf->outer->tf)
952 temp.t = label;
953 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
956 return label;
959 /* A subroutine of lower_try_finally. If FINALLY consits of a
960 GIMPLE_EH_ELSE node, return it. */
962 static inline gimple
963 get_eh_else (gimple_seq finally)
965 gimple x = gimple_seq_first_stmt (finally);
966 if (gimple_code (x) == GIMPLE_EH_ELSE)
968 gcc_assert (gimple_seq_singleton_p (finally));
969 return x;
971 return NULL;
974 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
975 langhook returns non-null, then the language requires that the exception
976 path out of a try_finally be treated specially. To wit: the code within
977 the finally block may not itself throw an exception. We have two choices
978 here. First we can duplicate the finally block and wrap it in a
979 must_not_throw region. Second, we can generate code like
981 try {
982 finally_block;
983 } catch {
984 if (fintmp == eh_edge)
985 protect_cleanup_actions;
988 where "fintmp" is the temporary used in the switch statement generation
989 alternative considered below. For the nonce, we always choose the first
990 option.
992 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
994 static void
995 honor_protect_cleanup_actions (struct leh_state *outer_state,
996 struct leh_state *this_state,
997 struct leh_tf_state *tf)
999 tree protect_cleanup_actions;
1000 gimple_stmt_iterator gsi;
1001 bool finally_may_fallthru;
1002 gimple_seq finally;
1003 gimple x, eh_else;
1005 /* First check for nothing to do. */
1006 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1007 return;
1008 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1009 if (protect_cleanup_actions == NULL)
1010 return;
1012 finally = gimple_try_cleanup (tf->top_p);
1013 eh_else = get_eh_else (finally);
1015 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1016 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1017 if (eh_else)
1019 finally = gimple_eh_else_e_body (eh_else);
1020 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1022 else if (this_state)
1023 finally = lower_try_finally_dup_block (finally, outer_state,
1024 gimple_location (tf->try_finally_expr));
1025 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1027 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1028 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1029 to be in an enclosing scope, but needs to be implemented at this level
1030 to avoid a nesting violation (see wrap_temporary_cleanups in
1031 cp/decl.c). Since it's logically at an outer level, we should call
1032 terminate before we get to it, so strip it away before adding the
1033 MUST_NOT_THROW filter. */
1034 gsi = gsi_start (finally);
1035 x = gsi_stmt (gsi);
1036 if (gimple_code (x) == GIMPLE_TRY
1037 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1038 && gimple_try_catch_is_cleanup (x))
1040 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1041 gsi_remove (&gsi, false);
1044 /* Wrap the block with protect_cleanup_actions as the action. */
1045 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1046 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1047 GIMPLE_TRY_CATCH);
1048 finally = lower_eh_must_not_throw (outer_state, x);
1050 /* Drop all of this into the exception sequence. */
1051 emit_post_landing_pad (&eh_seq, tf->region);
1052 gimple_seq_add_seq (&eh_seq, finally);
1053 if (finally_may_fallthru)
1054 emit_resx (&eh_seq, tf->region);
1056 /* Having now been handled, EH isn't to be considered with
1057 the rest of the outgoing edges. */
1058 tf->may_throw = false;
1061 /* A subroutine of lower_try_finally. We have determined that there is
1062 no fallthru edge out of the finally block. This means that there is
1063 no outgoing edge corresponding to any incoming edge. Restructure the
1064 try_finally node for this special case. */
1066 static void
1067 lower_try_finally_nofallthru (struct leh_state *state,
1068 struct leh_tf_state *tf)
1070 tree lab;
1071 gimple x, eh_else;
1072 gimple_seq finally;
1073 struct goto_queue_node *q, *qe;
1075 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1077 /* We expect that tf->top_p is a GIMPLE_TRY. */
1078 finally = gimple_try_cleanup (tf->top_p);
1079 tf->top_p_seq = gimple_try_eval (tf->top_p);
1081 x = gimple_build_label (lab);
1082 gimple_seq_add_stmt (&tf->top_p_seq, x);
1084 q = tf->goto_queue;
1085 qe = q + tf->goto_queue_active;
1086 for (; q < qe; ++q)
1087 if (q->index < 0)
1088 do_return_redirection (q, lab, NULL);
1089 else
1090 do_goto_redirection (q, lab, NULL, tf);
1092 replace_goto_queue (tf);
1094 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1095 eh_else = get_eh_else (finally);
1096 if (eh_else)
1098 finally = gimple_eh_else_n_body (eh_else);
1099 lower_eh_constructs_1 (state, &finally);
1100 gimple_seq_add_seq (&tf->top_p_seq, finally);
1102 if (tf->may_throw)
1104 finally = gimple_eh_else_e_body (eh_else);
1105 lower_eh_constructs_1 (state, &finally);
1107 emit_post_landing_pad (&eh_seq, tf->region);
1108 gimple_seq_add_seq (&eh_seq, finally);
1111 else
1113 lower_eh_constructs_1 (state, &finally);
1114 gimple_seq_add_seq (&tf->top_p_seq, finally);
1116 if (tf->may_throw)
1118 emit_post_landing_pad (&eh_seq, tf->region);
1120 x = gimple_build_goto (lab);
1121 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1122 gimple_seq_add_stmt (&eh_seq, x);
1127 /* A subroutine of lower_try_finally. We have determined that there is
1128 exactly one destination of the finally block. Restructure the
1129 try_finally node for this special case. */
1131 static void
1132 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1134 struct goto_queue_node *q, *qe;
1135 gimple x;
1136 gimple_seq finally;
1137 gimple_stmt_iterator gsi;
1138 tree finally_label;
1139 location_t loc = gimple_location (tf->try_finally_expr);
1141 finally = gimple_try_cleanup (tf->top_p);
1142 tf->top_p_seq = gimple_try_eval (tf->top_p);
1144 /* Since there's only one destination, and the destination edge can only
1145 either be EH or non-EH, that implies that all of our incoming edges
1146 are of the same type. Therefore we can lower EH_ELSE immediately. */
1147 x = get_eh_else (finally);
1148 if (x)
1150 if (tf->may_throw)
1151 finally = gimple_eh_else_e_body (x);
1152 else
1153 finally = gimple_eh_else_n_body (x);
1156 lower_eh_constructs_1 (state, &finally);
1158 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1160 gimple stmt = gsi_stmt (gsi);
1161 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1163 tree block = gimple_block (stmt);
1164 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1165 gimple_set_block (stmt, block);
1169 if (tf->may_throw)
1171 /* Only reachable via the exception edge. Add the given label to
1172 the head of the FINALLY block. Append a RESX at the end. */
1173 emit_post_landing_pad (&eh_seq, tf->region);
1174 gimple_seq_add_seq (&eh_seq, finally);
1175 emit_resx (&eh_seq, tf->region);
1176 return;
1179 if (tf->may_fallthru)
1181 /* Only reachable via the fallthru edge. Do nothing but let
1182 the two blocks run together; we'll fall out the bottom. */
1183 gimple_seq_add_seq (&tf->top_p_seq, finally);
1184 return;
1187 finally_label = create_artificial_label (loc);
1188 x = gimple_build_label (finally_label);
1189 gimple_seq_add_stmt (&tf->top_p_seq, x);
1191 gimple_seq_add_seq (&tf->top_p_seq, finally);
1193 q = tf->goto_queue;
1194 qe = q + tf->goto_queue_active;
1196 if (tf->may_return)
1198 /* Reachable by return expressions only. Redirect them. */
1199 for (; q < qe; ++q)
1200 do_return_redirection (q, finally_label, NULL);
1201 replace_goto_queue (tf);
1203 else
1205 /* Reachable by goto expressions only. Redirect them. */
1206 for (; q < qe; ++q)
1207 do_goto_redirection (q, finally_label, NULL, tf);
1208 replace_goto_queue (tf);
1210 if (tf->dest_array[0] == tf->fallthru_label)
1212 /* Reachable by goto to fallthru label only. Redirect it
1213 to the new label (already created, sadly), and do not
1214 emit the final branch out, or the fallthru label. */
1215 tf->fallthru_label = NULL;
1216 return;
1220 /* Place the original return/goto to the original destination
1221 immediately after the finally block. */
1222 x = tf->goto_queue[0].cont_stmt;
1223 gimple_seq_add_stmt (&tf->top_p_seq, x);
1224 maybe_record_in_goto_queue (state, x);
1227 /* A subroutine of lower_try_finally. There are multiple edges incoming
1228 and outgoing from the finally block. Implement this by duplicating the
1229 finally block for every destination. */
1231 static void
1232 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1234 gimple_seq finally;
1235 gimple_seq new_stmt;
1236 gimple_seq seq;
1237 gimple x, eh_else;
1238 tree tmp;
1239 location_t tf_loc = gimple_location (tf->try_finally_expr);
1241 finally = gimple_try_cleanup (tf->top_p);
1243 /* Notice EH_ELSE, and simplify some of the remaining code
1244 by considering FINALLY to be the normal return path only. */
1245 eh_else = get_eh_else (finally);
1246 if (eh_else)
1247 finally = gimple_eh_else_n_body (eh_else);
1249 tf->top_p_seq = gimple_try_eval (tf->top_p);
1250 new_stmt = NULL;
1252 if (tf->may_fallthru)
1254 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1255 lower_eh_constructs_1 (state, &seq);
1256 gimple_seq_add_seq (&new_stmt, seq);
1258 tmp = lower_try_finally_fallthru_label (tf);
1259 x = gimple_build_goto (tmp);
1260 gimple_set_location (x, tf_loc);
1261 gimple_seq_add_stmt (&new_stmt, x);
1264 if (tf->may_throw)
1266 /* We don't need to copy the EH path of EH_ELSE,
1267 since it is only emitted once. */
1268 if (eh_else)
1269 seq = gimple_eh_else_e_body (eh_else);
1270 else
1271 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1272 lower_eh_constructs_1 (state, &seq);
1274 emit_post_landing_pad (&eh_seq, tf->region);
1275 gimple_seq_add_seq (&eh_seq, seq);
1276 emit_resx (&eh_seq, tf->region);
1279 if (tf->goto_queue)
1281 struct goto_queue_node *q, *qe;
1282 int return_index, index;
1283 struct labels_s
1285 struct goto_queue_node *q;
1286 tree label;
1287 } *labels;
1289 return_index = tf->dest_array.length ();
1290 labels = XCNEWVEC (struct labels_s, return_index + 1);
1292 q = tf->goto_queue;
1293 qe = q + tf->goto_queue_active;
1294 for (; q < qe; q++)
1296 index = q->index < 0 ? return_index : q->index;
1298 if (!labels[index].q)
1299 labels[index].q = q;
1302 for (index = 0; index < return_index + 1; index++)
1304 tree lab;
1306 q = labels[index].q;
1307 if (! q)
1308 continue;
1310 lab = labels[index].label
1311 = create_artificial_label (tf_loc);
1313 if (index == return_index)
1314 do_return_redirection (q, lab, NULL);
1315 else
1316 do_goto_redirection (q, lab, NULL, tf);
1318 x = gimple_build_label (lab);
1319 gimple_seq_add_stmt (&new_stmt, x);
1321 seq = lower_try_finally_dup_block (finally, state, q->location);
1322 lower_eh_constructs_1 (state, &seq);
1323 gimple_seq_add_seq (&new_stmt, seq);
1325 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1326 maybe_record_in_goto_queue (state, q->cont_stmt);
1329 for (q = tf->goto_queue; q < qe; q++)
1331 tree lab;
1333 index = q->index < 0 ? return_index : q->index;
1335 if (labels[index].q == q)
1336 continue;
1338 lab = labels[index].label;
1340 if (index == return_index)
1341 do_return_redirection (q, lab, NULL);
1342 else
1343 do_goto_redirection (q, lab, NULL, tf);
1346 replace_goto_queue (tf);
1347 free (labels);
1350 /* Need to link new stmts after running replace_goto_queue due
1351 to not wanting to process the same goto stmts twice. */
1352 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1355 /* A subroutine of lower_try_finally. There are multiple edges incoming
1356 and outgoing from the finally block. Implement this by instrumenting
1357 each incoming edge and creating a switch statement at the end of the
1358 finally block that branches to the appropriate destination. */
1360 static void
1361 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1363 struct goto_queue_node *q, *qe;
1364 tree finally_tmp, finally_label;
1365 int return_index, eh_index, fallthru_index;
1366 int nlabels, ndests, j, last_case_index;
1367 tree last_case;
1368 vec<tree> case_label_vec;
1369 gimple_seq switch_body = NULL;
1370 gimple x, eh_else;
1371 tree tmp;
1372 gimple switch_stmt;
1373 gimple_seq finally;
1374 struct pointer_map_t *cont_map = NULL;
1375 /* The location of the TRY_FINALLY stmt. */
1376 location_t tf_loc = gimple_location (tf->try_finally_expr);
1377 /* The location of the finally block. */
1378 location_t finally_loc;
1380 finally = gimple_try_cleanup (tf->top_p);
1381 eh_else = get_eh_else (finally);
1383 /* Mash the TRY block to the head of the chain. */
1384 tf->top_p_seq = gimple_try_eval (tf->top_p);
1386 /* The location of the finally is either the last stmt in the finally
1387 block or the location of the TRY_FINALLY itself. */
1388 x = gimple_seq_last_stmt (finally);
1389 finally_loc = x ? gimple_location (x) : tf_loc;
1391 /* Lower the finally block itself. */
1392 lower_eh_constructs_1 (state, &finally);
1394 /* Prepare for switch statement generation. */
1395 nlabels = tf->dest_array.length ();
1396 return_index = nlabels;
1397 eh_index = return_index + tf->may_return;
1398 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1399 ndests = fallthru_index + tf->may_fallthru;
1401 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1402 finally_label = create_artificial_label (finally_loc);
1404 /* We use vec::quick_push on case_label_vec throughout this function,
1405 since we know the size in advance and allocate precisely as muce
1406 space as needed. */
1407 case_label_vec.create (ndests);
1408 last_case = NULL;
1409 last_case_index = 0;
1411 /* Begin inserting code for getting to the finally block. Things
1412 are done in this order to correspond to the sequence the code is
1413 laid out. */
1415 if (tf->may_fallthru)
1417 x = gimple_build_assign (finally_tmp,
1418 build_int_cst (integer_type_node,
1419 fallthru_index));
1420 gimple_seq_add_stmt (&tf->top_p_seq, x);
1422 tmp = build_int_cst (integer_type_node, fallthru_index);
1423 last_case = build_case_label (tmp, NULL,
1424 create_artificial_label (tf_loc));
1425 case_label_vec.quick_push (last_case);
1426 last_case_index++;
1428 x = gimple_build_label (CASE_LABEL (last_case));
1429 gimple_seq_add_stmt (&switch_body, x);
1431 tmp = lower_try_finally_fallthru_label (tf);
1432 x = gimple_build_goto (tmp);
1433 gimple_set_location (x, tf_loc);
1434 gimple_seq_add_stmt (&switch_body, x);
1437 /* For EH_ELSE, emit the exception path (plus resx) now, then
1438 subsequently we only need consider the normal path. */
1439 if (eh_else)
1441 if (tf->may_throw)
1443 finally = gimple_eh_else_e_body (eh_else);
1444 lower_eh_constructs_1 (state, &finally);
1446 emit_post_landing_pad (&eh_seq, tf->region);
1447 gimple_seq_add_seq (&eh_seq, finally);
1448 emit_resx (&eh_seq, tf->region);
1451 finally = gimple_eh_else_n_body (eh_else);
1453 else if (tf->may_throw)
1455 emit_post_landing_pad (&eh_seq, tf->region);
1457 x = gimple_build_assign (finally_tmp,
1458 build_int_cst (integer_type_node, eh_index));
1459 gimple_seq_add_stmt (&eh_seq, x);
1461 x = gimple_build_goto (finally_label);
1462 gimple_set_location (x, tf_loc);
1463 gimple_seq_add_stmt (&eh_seq, x);
1465 tmp = build_int_cst (integer_type_node, eh_index);
1466 last_case = build_case_label (tmp, NULL,
1467 create_artificial_label (tf_loc));
1468 case_label_vec.quick_push (last_case);
1469 last_case_index++;
1471 x = gimple_build_label (CASE_LABEL (last_case));
1472 gimple_seq_add_stmt (&eh_seq, x);
1473 emit_resx (&eh_seq, tf->region);
1476 x = gimple_build_label (finally_label);
1477 gimple_seq_add_stmt (&tf->top_p_seq, x);
1479 gimple_seq_add_seq (&tf->top_p_seq, finally);
1481 /* Redirect each incoming goto edge. */
1482 q = tf->goto_queue;
1483 qe = q + tf->goto_queue_active;
1484 j = last_case_index + tf->may_return;
1485 /* Prepare the assignments to finally_tmp that are executed upon the
1486 entrance through a particular edge. */
1487 for (; q < qe; ++q)
1489 gimple_seq mod = NULL;
1490 int switch_id;
1491 unsigned int case_index;
1493 if (q->index < 0)
1495 x = gimple_build_assign (finally_tmp,
1496 build_int_cst (integer_type_node,
1497 return_index));
1498 gimple_seq_add_stmt (&mod, x);
1499 do_return_redirection (q, finally_label, mod);
1500 switch_id = return_index;
1502 else
1504 x = gimple_build_assign (finally_tmp,
1505 build_int_cst (integer_type_node, q->index));
1506 gimple_seq_add_stmt (&mod, x);
1507 do_goto_redirection (q, finally_label, mod, tf);
1508 switch_id = q->index;
1511 case_index = j + q->index;
1512 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1514 tree case_lab;
1515 void **slot;
1516 tmp = build_int_cst (integer_type_node, switch_id);
1517 case_lab = build_case_label (tmp, NULL,
1518 create_artificial_label (tf_loc));
1519 /* We store the cont_stmt in the pointer map, so that we can recover
1520 it in the loop below. */
1521 if (!cont_map)
1522 cont_map = pointer_map_create ();
1523 slot = pointer_map_insert (cont_map, case_lab);
1524 *slot = q->cont_stmt;
1525 case_label_vec.quick_push (case_lab);
1528 for (j = last_case_index; j < last_case_index + nlabels; j++)
1530 gimple cont_stmt;
1531 void **slot;
1533 last_case = case_label_vec[j];
1535 gcc_assert (last_case);
1536 gcc_assert (cont_map);
1538 slot = pointer_map_contains (cont_map, last_case);
1539 gcc_assert (slot);
1540 cont_stmt = *(gimple *) slot;
1542 x = gimple_build_label (CASE_LABEL (last_case));
1543 gimple_seq_add_stmt (&switch_body, x);
1544 gimple_seq_add_stmt (&switch_body, cont_stmt);
1545 maybe_record_in_goto_queue (state, cont_stmt);
1547 if (cont_map)
1548 pointer_map_destroy (cont_map);
1550 replace_goto_queue (tf);
1552 /* Make sure that the last case is the default label, as one is required.
1553 Then sort the labels, which is also required in GIMPLE. */
1554 CASE_LOW (last_case) = NULL;
1555 sort_case_labels (case_label_vec);
1557 /* Build the switch statement, setting last_case to be the default
1558 label. */
1559 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1560 case_label_vec);
1561 gimple_set_location (switch_stmt, finally_loc);
1563 /* Need to link SWITCH_STMT after running replace_goto_queue
1564 due to not wanting to process the same goto stmts twice. */
1565 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1566 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1569 /* Decide whether or not we are going to duplicate the finally block.
1570 There are several considerations.
1572 First, if this is Java, then the finally block contains code
1573 written by the user. It has line numbers associated with it,
1574 so duplicating the block means it's difficult to set a breakpoint.
1575 Since controlling code generation via -g is verboten, we simply
1576 never duplicate code without optimization.
1578 Second, we'd like to prevent egregious code growth. One way to
1579 do this is to estimate the size of the finally block, multiply
1580 that by the number of copies we'd need to make, and compare against
1581 the estimate of the size of the switch machinery we'd have to add. */
1583 static bool
1584 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1586 int f_estimate, sw_estimate;
1587 gimple eh_else;
1589 /* If there's an EH_ELSE involved, the exception path is separate
1590 and really doesn't come into play for this computation. */
1591 eh_else = get_eh_else (finally);
1592 if (eh_else)
1594 ndests -= may_throw;
1595 finally = gimple_eh_else_n_body (eh_else);
1598 if (!optimize)
1600 gimple_stmt_iterator gsi;
1602 if (ndests == 1)
1603 return true;
1605 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1607 gimple stmt = gsi_stmt (gsi);
1608 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1609 return false;
1611 return true;
1614 /* Finally estimate N times, plus N gotos. */
1615 f_estimate = count_insns_seq (finally, &eni_size_weights);
1616 f_estimate = (f_estimate + 1) * ndests;
1618 /* Switch statement (cost 10), N variable assignments, N gotos. */
1619 sw_estimate = 10 + 2 * ndests;
1621 /* Optimize for size clearly wants our best guess. */
1622 if (optimize_function_for_size_p (cfun))
1623 return f_estimate < sw_estimate;
1625 /* ??? These numbers are completely made up so far. */
1626 if (optimize > 1)
1627 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1628 else
1629 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1632 /* REG is the enclosing region for a possible cleanup region, or the region
1633 itself. Returns TRUE if such a region would be unreachable.
1635 Cleanup regions within a must-not-throw region aren't actually reachable
1636 even if there are throwing stmts within them, because the personality
1637 routine will call terminate before unwinding. */
1639 static bool
1640 cleanup_is_dead_in (eh_region reg)
1642 while (reg && reg->type == ERT_CLEANUP)
1643 reg = reg->outer;
1644 return (reg && reg->type == ERT_MUST_NOT_THROW);
1647 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1648 to a sequence of labels and blocks, plus the exception region trees
1649 that record all the magic. This is complicated by the need to
1650 arrange for the FINALLY block to be executed on all exits. */
1652 static gimple_seq
1653 lower_try_finally (struct leh_state *state, gimple tp)
1655 struct leh_tf_state this_tf;
1656 struct leh_state this_state;
1657 int ndests;
1658 gimple_seq old_eh_seq;
1660 /* Process the try block. */
1662 memset (&this_tf, 0, sizeof (this_tf));
1663 this_tf.try_finally_expr = tp;
1664 this_tf.top_p = tp;
1665 this_tf.outer = state;
1666 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1668 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1669 this_state.cur_region = this_tf.region;
1671 else
1673 this_tf.region = NULL;
1674 this_state.cur_region = state->cur_region;
1677 this_state.ehp_region = state->ehp_region;
1678 this_state.tf = &this_tf;
1680 old_eh_seq = eh_seq;
1681 eh_seq = NULL;
1683 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1685 /* Determine if the try block is escaped through the bottom. */
1686 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1688 /* Determine if any exceptions are possible within the try block. */
1689 if (this_tf.region)
1690 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1691 if (this_tf.may_throw)
1692 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1694 /* Determine how many edges (still) reach the finally block. Or rather,
1695 how many destinations are reached by the finally block. Use this to
1696 determine how we process the finally block itself. */
1698 ndests = this_tf.dest_array.length ();
1699 ndests += this_tf.may_fallthru;
1700 ndests += this_tf.may_return;
1701 ndests += this_tf.may_throw;
1703 /* If the FINALLY block is not reachable, dike it out. */
1704 if (ndests == 0)
1706 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1707 gimple_try_set_cleanup (tp, NULL);
1709 /* If the finally block doesn't fall through, then any destination
1710 we might try to impose there isn't reached either. There may be
1711 some minor amount of cleanup and redirection still needed. */
1712 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1713 lower_try_finally_nofallthru (state, &this_tf);
1715 /* We can easily special-case redirection to a single destination. */
1716 else if (ndests == 1)
1717 lower_try_finally_onedest (state, &this_tf);
1718 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1719 gimple_try_cleanup (tp)))
1720 lower_try_finally_copy (state, &this_tf);
1721 else
1722 lower_try_finally_switch (state, &this_tf);
1724 /* If someone requested we add a label at the end of the transformed
1725 block, do so. */
1726 if (this_tf.fallthru_label)
1728 /* This must be reached only if ndests == 0. */
1729 gimple x = gimple_build_label (this_tf.fallthru_label);
1730 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1733 this_tf.dest_array.release ();
1734 free (this_tf.goto_queue);
1735 if (this_tf.goto_queue_map)
1736 pointer_map_destroy (this_tf.goto_queue_map);
1738 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1739 If there was no old eh_seq, then the append is trivially already done. */
1740 if (old_eh_seq)
1742 if (eh_seq == NULL)
1743 eh_seq = old_eh_seq;
1744 else
1746 gimple_seq new_eh_seq = eh_seq;
1747 eh_seq = old_eh_seq;
1748 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1752 return this_tf.top_p_seq;
1755 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1756 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1757 exception region trees that records all the magic. */
1759 static gimple_seq
1760 lower_catch (struct leh_state *state, gimple tp)
1762 eh_region try_region = NULL;
1763 struct leh_state this_state = *state;
1764 gimple_stmt_iterator gsi;
1765 tree out_label;
1766 gimple_seq new_seq, cleanup;
1767 gimple x;
1768 location_t try_catch_loc = gimple_location (tp);
1770 if (flag_exceptions)
1772 try_region = gen_eh_region_try (state->cur_region);
1773 this_state.cur_region = try_region;
1776 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1778 if (!eh_region_may_contain_throw (try_region))
1779 return gimple_try_eval (tp);
1781 new_seq = NULL;
1782 emit_eh_dispatch (&new_seq, try_region);
1783 emit_resx (&new_seq, try_region);
1785 this_state.cur_region = state->cur_region;
1786 this_state.ehp_region = try_region;
1788 out_label = NULL;
1789 cleanup = gimple_try_cleanup (tp);
1790 for (gsi = gsi_start (cleanup);
1791 !gsi_end_p (gsi);
1792 gsi_next (&gsi))
1794 eh_catch c;
1795 gimple gcatch;
1796 gimple_seq handler;
1798 gcatch = gsi_stmt (gsi);
1799 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1801 handler = gimple_catch_handler (gcatch);
1802 lower_eh_constructs_1 (&this_state, &handler);
1804 c->label = create_artificial_label (UNKNOWN_LOCATION);
1805 x = gimple_build_label (c->label);
1806 gimple_seq_add_stmt (&new_seq, x);
1808 gimple_seq_add_seq (&new_seq, handler);
1810 if (gimple_seq_may_fallthru (new_seq))
1812 if (!out_label)
1813 out_label = create_artificial_label (try_catch_loc);
1815 x = gimple_build_goto (out_label);
1816 gimple_seq_add_stmt (&new_seq, x);
1818 if (!c->type_list)
1819 break;
1822 gimple_try_set_cleanup (tp, new_seq);
1824 return frob_into_branch_around (tp, try_region, out_label);
1827 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1828 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1829 region trees that record all the magic. */
1831 static gimple_seq
1832 lower_eh_filter (struct leh_state *state, gimple tp)
1834 struct leh_state this_state = *state;
1835 eh_region this_region = NULL;
1836 gimple inner, x;
1837 gimple_seq new_seq;
1839 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1841 if (flag_exceptions)
1843 this_region = gen_eh_region_allowed (state->cur_region,
1844 gimple_eh_filter_types (inner));
1845 this_state.cur_region = this_region;
1848 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1850 if (!eh_region_may_contain_throw (this_region))
1851 return gimple_try_eval (tp);
1853 new_seq = NULL;
1854 this_state.cur_region = state->cur_region;
1855 this_state.ehp_region = this_region;
1857 emit_eh_dispatch (&new_seq, this_region);
1858 emit_resx (&new_seq, this_region);
1860 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1861 x = gimple_build_label (this_region->u.allowed.label);
1862 gimple_seq_add_stmt (&new_seq, x);
1864 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1865 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1867 gimple_try_set_cleanup (tp, new_seq);
1869 return frob_into_branch_around (tp, this_region, NULL);
1872 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1873 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1874 plus the exception region trees that record all the magic. */
1876 static gimple_seq
1877 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1879 struct leh_state this_state = *state;
1881 if (flag_exceptions)
1883 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1884 eh_region this_region;
1886 this_region = gen_eh_region_must_not_throw (state->cur_region);
1887 this_region->u.must_not_throw.failure_decl
1888 = gimple_eh_must_not_throw_fndecl (inner);
1889 this_region->u.must_not_throw.failure_loc
1890 = LOCATION_LOCUS (gimple_location (tp));
1892 /* In order to get mangling applied to this decl, we must mark it
1893 used now. Otherwise, pass_ipa_free_lang_data won't think it
1894 needs to happen. */
1895 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1897 this_state.cur_region = this_region;
1900 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1902 return gimple_try_eval (tp);
1905 /* Implement a cleanup expression. This is similar to try-finally,
1906 except that we only execute the cleanup block for exception edges. */
1908 static gimple_seq
1909 lower_cleanup (struct leh_state *state, gimple tp)
1911 struct leh_state this_state = *state;
1912 eh_region this_region = NULL;
1913 struct leh_tf_state fake_tf;
1914 gimple_seq result;
1915 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1917 if (flag_exceptions && !cleanup_dead)
1919 this_region = gen_eh_region_cleanup (state->cur_region);
1920 this_state.cur_region = this_region;
1923 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1925 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1926 return gimple_try_eval (tp);
1928 /* Build enough of a try-finally state so that we can reuse
1929 honor_protect_cleanup_actions. */
1930 memset (&fake_tf, 0, sizeof (fake_tf));
1931 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1932 fake_tf.outer = state;
1933 fake_tf.region = this_region;
1934 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1935 fake_tf.may_throw = true;
1937 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1939 if (fake_tf.may_throw)
1941 /* In this case honor_protect_cleanup_actions had nothing to do,
1942 and we should process this normally. */
1943 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1944 result = frob_into_branch_around (tp, this_region,
1945 fake_tf.fallthru_label);
1947 else
1949 /* In this case honor_protect_cleanup_actions did nearly all of
1950 the work. All we have left is to append the fallthru_label. */
1952 result = gimple_try_eval (tp);
1953 if (fake_tf.fallthru_label)
1955 gimple x = gimple_build_label (fake_tf.fallthru_label);
1956 gimple_seq_add_stmt (&result, x);
1959 return result;
1962 /* Main loop for lowering eh constructs. Also moves gsi to the next
1963 statement. */
1965 static void
1966 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1968 gimple_seq replace;
1969 gimple x;
1970 gimple stmt = gsi_stmt (*gsi);
1972 switch (gimple_code (stmt))
1974 case GIMPLE_CALL:
1976 tree fndecl = gimple_call_fndecl (stmt);
1977 tree rhs, lhs;
1979 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1980 switch (DECL_FUNCTION_CODE (fndecl))
1982 case BUILT_IN_EH_POINTER:
1983 /* The front end may have generated a call to
1984 __builtin_eh_pointer (0) within a catch region. Replace
1985 this zero argument with the current catch region number. */
1986 if (state->ehp_region)
1988 tree nr = build_int_cst (integer_type_node,
1989 state->ehp_region->index);
1990 gimple_call_set_arg (stmt, 0, nr);
1992 else
1994 /* The user has dome something silly. Remove it. */
1995 rhs = null_pointer_node;
1996 goto do_replace;
1998 break;
2000 case BUILT_IN_EH_FILTER:
2001 /* ??? This should never appear, but since it's a builtin it
2002 is accessible to abuse by users. Just remove it and
2003 replace the use with the arbitrary value zero. */
2004 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2005 do_replace:
2006 lhs = gimple_call_lhs (stmt);
2007 x = gimple_build_assign (lhs, rhs);
2008 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2009 /* FALLTHRU */
2011 case BUILT_IN_EH_COPY_VALUES:
2012 /* Likewise this should not appear. Remove it. */
2013 gsi_remove (gsi, true);
2014 return;
2016 default:
2017 break;
2020 /* FALLTHRU */
2022 case GIMPLE_ASSIGN:
2023 /* If the stmt can throw use a new temporary for the assignment
2024 to a LHS. This makes sure the old value of the LHS is
2025 available on the EH edge. Only do so for statements that
2026 potentially fall through (no noreturn calls e.g.), otherwise
2027 this new assignment might create fake fallthru regions. */
2028 if (stmt_could_throw_p (stmt)
2029 && gimple_has_lhs (stmt)
2030 && gimple_stmt_may_fallthru (stmt)
2031 && !tree_could_throw_p (gimple_get_lhs (stmt))
2032 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2034 tree lhs = gimple_get_lhs (stmt);
2035 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2036 gimple s = gimple_build_assign (lhs, tmp);
2037 gimple_set_location (s, gimple_location (stmt));
2038 gimple_set_block (s, gimple_block (stmt));
2039 gimple_set_lhs (stmt, tmp);
2040 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2041 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2042 DECL_GIMPLE_REG_P (tmp) = 1;
2043 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2045 /* Look for things that can throw exceptions, and record them. */
2046 if (state->cur_region && stmt_could_throw_p (stmt))
2048 record_stmt_eh_region (state->cur_region, stmt);
2049 note_eh_region_may_contain_throw (state->cur_region);
2051 break;
2053 case GIMPLE_COND:
2054 case GIMPLE_GOTO:
2055 case GIMPLE_RETURN:
2056 maybe_record_in_goto_queue (state, stmt);
2057 break;
2059 case GIMPLE_SWITCH:
2060 verify_norecord_switch_expr (state, stmt);
2061 break;
2063 case GIMPLE_TRY:
2064 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2065 replace = lower_try_finally (state, stmt);
2066 else
2068 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2069 if (!x)
2071 replace = gimple_try_eval (stmt);
2072 lower_eh_constructs_1 (state, &replace);
2074 else
2075 switch (gimple_code (x))
2077 case GIMPLE_CATCH:
2078 replace = lower_catch (state, stmt);
2079 break;
2080 case GIMPLE_EH_FILTER:
2081 replace = lower_eh_filter (state, stmt);
2082 break;
2083 case GIMPLE_EH_MUST_NOT_THROW:
2084 replace = lower_eh_must_not_throw (state, stmt);
2085 break;
2086 case GIMPLE_EH_ELSE:
2087 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2088 gcc_unreachable ();
2089 default:
2090 replace = lower_cleanup (state, stmt);
2091 break;
2095 /* Remove the old stmt and insert the transformed sequence
2096 instead. */
2097 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2098 gsi_remove (gsi, true);
2100 /* Return since we don't want gsi_next () */
2101 return;
2103 case GIMPLE_EH_ELSE:
2104 /* We should be eliminating this in lower_try_finally et al. */
2105 gcc_unreachable ();
2107 default:
2108 /* A type, a decl, or some kind of statement that we're not
2109 interested in. Don't walk them. */
2110 break;
2113 gsi_next (gsi);
2116 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2118 static void
2119 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2121 gimple_stmt_iterator gsi;
2122 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2123 lower_eh_constructs_2 (state, &gsi);
2126 static unsigned int
2127 lower_eh_constructs (void)
2129 struct leh_state null_state;
2130 gimple_seq bodyp;
2132 bodyp = gimple_body (current_function_decl);
2133 if (bodyp == NULL)
2134 return 0;
2136 finally_tree.create (31);
2137 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2138 memset (&null_state, 0, sizeof (null_state));
2140 collect_finally_tree_1 (bodyp, NULL);
2141 lower_eh_constructs_1 (&null_state, &bodyp);
2142 gimple_set_body (current_function_decl, bodyp);
2144 /* We assume there's a return statement, or something, at the end of
2145 the function, and thus ploping the EH sequence afterward won't
2146 change anything. */
2147 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2148 gimple_seq_add_seq (&bodyp, eh_seq);
2150 /* We assume that since BODYP already existed, adding EH_SEQ to it
2151 didn't change its value, and we don't have to re-set the function. */
2152 gcc_assert (bodyp == gimple_body (current_function_decl));
2154 finally_tree.dispose ();
2155 BITMAP_FREE (eh_region_may_contain_throw_map);
2156 eh_seq = NULL;
2158 /* If this function needs a language specific EH personality routine
2159 and the frontend didn't already set one do so now. */
2160 if (function_needs_eh_personality (cfun) == eh_personality_lang
2161 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2162 DECL_FUNCTION_PERSONALITY (current_function_decl)
2163 = lang_hooks.eh_personality ();
2165 return 0;
2168 namespace {
2170 const pass_data pass_data_lower_eh =
2172 GIMPLE_PASS, /* type */
2173 "eh", /* name */
2174 OPTGROUP_NONE, /* optinfo_flags */
2175 false, /* has_gate */
2176 true, /* has_execute */
2177 TV_TREE_EH, /* tv_id */
2178 PROP_gimple_lcf, /* properties_required */
2179 PROP_gimple_leh, /* properties_provided */
2180 0, /* properties_destroyed */
2181 0, /* todo_flags_start */
2182 0, /* todo_flags_finish */
2185 class pass_lower_eh : public gimple_opt_pass
2187 public:
2188 pass_lower_eh (gcc::context *ctxt)
2189 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2192 /* opt_pass methods: */
2193 unsigned int execute () { return lower_eh_constructs (); }
2195 }; // class pass_lower_eh
2197 } // anon namespace
2199 gimple_opt_pass *
2200 make_pass_lower_eh (gcc::context *ctxt)
2202 return new pass_lower_eh (ctxt);
2205 /* Create the multiple edges from an EH_DISPATCH statement to all of
2206 the possible handlers for its EH region. Return true if there's
2207 no fallthru edge; false if there is. */
2209 bool
2210 make_eh_dispatch_edges (gimple stmt)
2212 eh_region r;
2213 eh_catch c;
2214 basic_block src, dst;
2216 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2217 src = gimple_bb (stmt);
2219 switch (r->type)
2221 case ERT_TRY:
2222 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2224 dst = label_to_block (c->label);
2225 make_edge (src, dst, 0);
2227 /* A catch-all handler doesn't have a fallthru. */
2228 if (c->type_list == NULL)
2229 return false;
2231 break;
2233 case ERT_ALLOWED_EXCEPTIONS:
2234 dst = label_to_block (r->u.allowed.label);
2235 make_edge (src, dst, 0);
2236 break;
2238 default:
2239 gcc_unreachable ();
2242 return true;
2245 /* Create the single EH edge from STMT to its nearest landing pad,
2246 if there is such a landing pad within the current function. */
2248 void
2249 make_eh_edges (gimple stmt)
2251 basic_block src, dst;
2252 eh_landing_pad lp;
2253 int lp_nr;
2255 lp_nr = lookup_stmt_eh_lp (stmt);
2256 if (lp_nr <= 0)
2257 return;
2259 lp = get_eh_landing_pad_from_number (lp_nr);
2260 gcc_assert (lp != NULL);
2262 src = gimple_bb (stmt);
2263 dst = label_to_block (lp->post_landing_pad);
2264 make_edge (src, dst, EDGE_EH);
2267 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2268 do not actually perform the final edge redirection.
2270 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2271 we intend to change the destination EH region as well; this means
2272 EH_LANDING_PAD_NR must already be set on the destination block label.
2273 If false, we're being called from generic cfg manipulation code and we
2274 should preserve our place within the region tree. */
2276 static void
2277 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2279 eh_landing_pad old_lp, new_lp;
2280 basic_block old_bb;
2281 gimple throw_stmt;
2282 int old_lp_nr, new_lp_nr;
2283 tree old_label, new_label;
2284 edge_iterator ei;
2285 edge e;
2287 old_bb = edge_in->dest;
2288 old_label = gimple_block_label (old_bb);
2289 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2290 gcc_assert (old_lp_nr > 0);
2291 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2293 throw_stmt = last_stmt (edge_in->src);
2294 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2296 new_label = gimple_block_label (new_bb);
2298 /* Look for an existing region that might be using NEW_BB already. */
2299 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2300 if (new_lp_nr)
2302 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2303 gcc_assert (new_lp);
2305 /* Unless CHANGE_REGION is true, the new and old landing pad
2306 had better be associated with the same EH region. */
2307 gcc_assert (change_region || new_lp->region == old_lp->region);
2309 else
2311 new_lp = NULL;
2312 gcc_assert (!change_region);
2315 /* Notice when we redirect the last EH edge away from OLD_BB. */
2316 FOR_EACH_EDGE (e, ei, old_bb->preds)
2317 if (e != edge_in && (e->flags & EDGE_EH))
2318 break;
2320 if (new_lp)
2322 /* NEW_LP already exists. If there are still edges into OLD_LP,
2323 there's nothing to do with the EH tree. If there are no more
2324 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2325 If CHANGE_REGION is true, then our caller is expecting to remove
2326 the landing pad. */
2327 if (e == NULL && !change_region)
2328 remove_eh_landing_pad (old_lp);
2330 else
2332 /* No correct landing pad exists. If there are no more edges
2333 into OLD_LP, then we can simply re-use the existing landing pad.
2334 Otherwise, we have to create a new landing pad. */
2335 if (e == NULL)
2337 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2338 new_lp = old_lp;
2340 else
2341 new_lp = gen_eh_landing_pad (old_lp->region);
2342 new_lp->post_landing_pad = new_label;
2343 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2346 /* Maybe move the throwing statement to the new region. */
2347 if (old_lp != new_lp)
2349 remove_stmt_from_eh_lp (throw_stmt);
2350 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2354 /* Redirect EH edge E to NEW_BB. */
2356 edge
2357 redirect_eh_edge (edge edge_in, basic_block new_bb)
2359 redirect_eh_edge_1 (edge_in, new_bb, false);
2360 return ssa_redirect_edge (edge_in, new_bb);
2363 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2364 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2365 The actual edge update will happen in the caller. */
2367 void
2368 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2370 tree new_lab = gimple_block_label (new_bb);
2371 bool any_changed = false;
2372 basic_block old_bb;
2373 eh_region r;
2374 eh_catch c;
2376 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2377 switch (r->type)
2379 case ERT_TRY:
2380 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2382 old_bb = label_to_block (c->label);
2383 if (old_bb == e->dest)
2385 c->label = new_lab;
2386 any_changed = true;
2389 break;
2391 case ERT_ALLOWED_EXCEPTIONS:
2392 old_bb = label_to_block (r->u.allowed.label);
2393 gcc_assert (old_bb == e->dest);
2394 r->u.allowed.label = new_lab;
2395 any_changed = true;
2396 break;
2398 default:
2399 gcc_unreachable ();
2402 gcc_assert (any_changed);
2405 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2407 bool
2408 operation_could_trap_helper_p (enum tree_code op,
2409 bool fp_operation,
2410 bool honor_trapv,
2411 bool honor_nans,
2412 bool honor_snans,
2413 tree divisor,
2414 bool *handled)
2416 *handled = true;
2417 switch (op)
2419 case TRUNC_DIV_EXPR:
2420 case CEIL_DIV_EXPR:
2421 case FLOOR_DIV_EXPR:
2422 case ROUND_DIV_EXPR:
2423 case EXACT_DIV_EXPR:
2424 case CEIL_MOD_EXPR:
2425 case FLOOR_MOD_EXPR:
2426 case ROUND_MOD_EXPR:
2427 case TRUNC_MOD_EXPR:
2428 case RDIV_EXPR:
2429 if (honor_snans || honor_trapv)
2430 return true;
2431 if (fp_operation)
2432 return flag_trapping_math;
2433 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2434 return true;
2435 return false;
2437 case LT_EXPR:
2438 case LE_EXPR:
2439 case GT_EXPR:
2440 case GE_EXPR:
2441 case LTGT_EXPR:
2442 /* Some floating point comparisons may trap. */
2443 return honor_nans;
2445 case EQ_EXPR:
2446 case NE_EXPR:
2447 case UNORDERED_EXPR:
2448 case ORDERED_EXPR:
2449 case UNLT_EXPR:
2450 case UNLE_EXPR:
2451 case UNGT_EXPR:
2452 case UNGE_EXPR:
2453 case UNEQ_EXPR:
2454 return honor_snans;
2456 case CONVERT_EXPR:
2457 case FIX_TRUNC_EXPR:
2458 /* Conversion of floating point might trap. */
2459 return honor_nans;
2461 case NEGATE_EXPR:
2462 case ABS_EXPR:
2463 case CONJ_EXPR:
2464 /* These operations don't trap with floating point. */
2465 if (honor_trapv)
2466 return true;
2467 return false;
2469 case PLUS_EXPR:
2470 case MINUS_EXPR:
2471 case MULT_EXPR:
2472 /* Any floating arithmetic may trap. */
2473 if (fp_operation && flag_trapping_math)
2474 return true;
2475 if (honor_trapv)
2476 return true;
2477 return false;
2479 case COMPLEX_EXPR:
2480 case CONSTRUCTOR:
2481 /* Constructing an object cannot trap. */
2482 return false;
2484 default:
2485 /* Any floating arithmetic may trap. */
2486 if (fp_operation && flag_trapping_math)
2487 return true;
2489 *handled = false;
2490 return false;
2494 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2495 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2496 type operands that may trap. If OP is a division operator, DIVISOR contains
2497 the value of the divisor. */
2499 bool
2500 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2501 tree divisor)
2503 bool honor_nans = (fp_operation && flag_trapping_math
2504 && !flag_finite_math_only);
2505 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2506 bool handled;
2508 if (TREE_CODE_CLASS (op) != tcc_comparison
2509 && TREE_CODE_CLASS (op) != tcc_unary
2510 && TREE_CODE_CLASS (op) != tcc_binary)
2511 return false;
2513 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2514 honor_nans, honor_snans, divisor,
2515 &handled);
2519 /* Returns true if it is possible to prove that the index of
2520 an array access REF (an ARRAY_REF expression) falls into the
2521 array bounds. */
2523 static bool
2524 in_array_bounds_p (tree ref)
2526 tree idx = TREE_OPERAND (ref, 1);
2527 tree min, max;
2529 if (TREE_CODE (idx) != INTEGER_CST)
2530 return false;
2532 min = array_ref_low_bound (ref);
2533 max = array_ref_up_bound (ref);
2534 if (!min
2535 || !max
2536 || TREE_CODE (min) != INTEGER_CST
2537 || TREE_CODE (max) != INTEGER_CST)
2538 return false;
2540 if (tree_int_cst_lt (idx, min)
2541 || tree_int_cst_lt (max, idx))
2542 return false;
2544 return true;
2547 /* Returns true if it is possible to prove that the range of
2548 an array access REF (an ARRAY_RANGE_REF expression) falls
2549 into the array bounds. */
2551 static bool
2552 range_in_array_bounds_p (tree ref)
2554 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2555 tree range_min, range_max, min, max;
2557 range_min = TYPE_MIN_VALUE (domain_type);
2558 range_max = TYPE_MAX_VALUE (domain_type);
2559 if (!range_min
2560 || !range_max
2561 || TREE_CODE (range_min) != INTEGER_CST
2562 || TREE_CODE (range_max) != INTEGER_CST)
2563 return false;
2565 min = array_ref_low_bound (ref);
2566 max = array_ref_up_bound (ref);
2567 if (!min
2568 || !max
2569 || TREE_CODE (min) != INTEGER_CST
2570 || TREE_CODE (max) != INTEGER_CST)
2571 return false;
2573 if (tree_int_cst_lt (range_min, min)
2574 || tree_int_cst_lt (max, range_max))
2575 return false;
2577 return true;
2580 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2581 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2582 This routine expects only GIMPLE lhs or rhs input. */
2584 bool
2585 tree_could_trap_p (tree expr)
2587 enum tree_code code;
2588 bool fp_operation = false;
2589 bool honor_trapv = false;
2590 tree t, base, div = NULL_TREE;
2592 if (!expr)
2593 return false;
2595 code = TREE_CODE (expr);
2596 t = TREE_TYPE (expr);
2598 if (t)
2600 if (COMPARISON_CLASS_P (expr))
2601 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2602 else
2603 fp_operation = FLOAT_TYPE_P (t);
2604 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2607 if (TREE_CODE_CLASS (code) == tcc_binary)
2608 div = TREE_OPERAND (expr, 1);
2609 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2610 return true;
2612 restart:
2613 switch (code)
2615 case TARGET_MEM_REF:
2616 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2617 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2618 return false;
2619 return !TREE_THIS_NOTRAP (expr);
2621 case COMPONENT_REF:
2622 case REALPART_EXPR:
2623 case IMAGPART_EXPR:
2624 case BIT_FIELD_REF:
2625 case VIEW_CONVERT_EXPR:
2626 case WITH_SIZE_EXPR:
2627 expr = TREE_OPERAND (expr, 0);
2628 code = TREE_CODE (expr);
2629 goto restart;
2631 case ARRAY_RANGE_REF:
2632 base = TREE_OPERAND (expr, 0);
2633 if (tree_could_trap_p (base))
2634 return true;
2635 if (TREE_THIS_NOTRAP (expr))
2636 return false;
2637 return !range_in_array_bounds_p (expr);
2639 case ARRAY_REF:
2640 base = TREE_OPERAND (expr, 0);
2641 if (tree_could_trap_p (base))
2642 return true;
2643 if (TREE_THIS_NOTRAP (expr))
2644 return false;
2645 return !in_array_bounds_p (expr);
2647 case MEM_REF:
2648 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2649 return false;
2650 /* Fallthru. */
2651 case INDIRECT_REF:
2652 return !TREE_THIS_NOTRAP (expr);
2654 case ASM_EXPR:
2655 return TREE_THIS_VOLATILE (expr);
2657 case CALL_EXPR:
2658 t = get_callee_fndecl (expr);
2659 /* Assume that calls to weak functions may trap. */
2660 if (!t || !DECL_P (t))
2661 return true;
2662 if (DECL_WEAK (t))
2663 return tree_could_trap_p (t);
2664 return false;
2666 case FUNCTION_DECL:
2667 /* Assume that accesses to weak functions may trap, unless we know
2668 they are certainly defined in current TU or in some other
2669 LTO partition. */
2670 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2672 struct cgraph_node *node;
2673 if (!DECL_EXTERNAL (expr))
2674 return false;
2675 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2676 if (node && node->in_other_partition)
2677 return false;
2678 return true;
2680 return false;
2682 case VAR_DECL:
2683 /* Assume that accesses to weak vars may trap, unless we know
2684 they are certainly defined in current TU or in some other
2685 LTO partition. */
2686 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2688 struct varpool_node *node;
2689 if (!DECL_EXTERNAL (expr))
2690 return false;
2691 node = varpool_variable_node (varpool_get_node (expr), NULL);
2692 if (node && node->in_other_partition)
2693 return false;
2694 return true;
2696 return false;
2698 default:
2699 return false;
2704 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2705 an assignment or a conditional) may throw. */
2707 static bool
2708 stmt_could_throw_1_p (gimple stmt)
2710 enum tree_code code = gimple_expr_code (stmt);
2711 bool honor_nans = false;
2712 bool honor_snans = false;
2713 bool fp_operation = false;
2714 bool honor_trapv = false;
2715 tree t;
2716 size_t i;
2717 bool handled, ret;
2719 if (TREE_CODE_CLASS (code) == tcc_comparison
2720 || TREE_CODE_CLASS (code) == tcc_unary
2721 || TREE_CODE_CLASS (code) == tcc_binary)
2723 if (is_gimple_assign (stmt)
2724 && TREE_CODE_CLASS (code) == tcc_comparison)
2725 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2726 else if (gimple_code (stmt) == GIMPLE_COND)
2727 t = TREE_TYPE (gimple_cond_lhs (stmt));
2728 else
2729 t = gimple_expr_type (stmt);
2730 fp_operation = FLOAT_TYPE_P (t);
2731 if (fp_operation)
2733 honor_nans = flag_trapping_math && !flag_finite_math_only;
2734 honor_snans = flag_signaling_nans != 0;
2736 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2737 honor_trapv = true;
2740 /* Check if the main expression may trap. */
2741 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2742 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2743 honor_nans, honor_snans, t,
2744 &handled);
2745 if (handled)
2746 return ret;
2748 /* If the expression does not trap, see if any of the individual operands may
2749 trap. */
2750 for (i = 0; i < gimple_num_ops (stmt); i++)
2751 if (tree_could_trap_p (gimple_op (stmt, i)))
2752 return true;
2754 return false;
2758 /* Return true if statement STMT could throw an exception. */
2760 bool
2761 stmt_could_throw_p (gimple stmt)
2763 if (!flag_exceptions)
2764 return false;
2766 /* The only statements that can throw an exception are assignments,
2767 conditionals, calls, resx, and asms. */
2768 switch (gimple_code (stmt))
2770 case GIMPLE_RESX:
2771 return true;
2773 case GIMPLE_CALL:
2774 return !gimple_call_nothrow_p (stmt);
2776 case GIMPLE_ASSIGN:
2777 case GIMPLE_COND:
2778 if (!cfun->can_throw_non_call_exceptions)
2779 return false;
2780 return stmt_could_throw_1_p (stmt);
2782 case GIMPLE_ASM:
2783 if (!cfun->can_throw_non_call_exceptions)
2784 return false;
2785 return gimple_asm_volatile_p (stmt);
2787 default:
2788 return false;
2793 /* Return true if expression T could throw an exception. */
2795 bool
2796 tree_could_throw_p (tree t)
2798 if (!flag_exceptions)
2799 return false;
2800 if (TREE_CODE (t) == MODIFY_EXPR)
2802 if (cfun->can_throw_non_call_exceptions
2803 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2804 return true;
2805 t = TREE_OPERAND (t, 1);
2808 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2809 t = TREE_OPERAND (t, 0);
2810 if (TREE_CODE (t) == CALL_EXPR)
2811 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2812 if (cfun->can_throw_non_call_exceptions)
2813 return tree_could_trap_p (t);
2814 return false;
2817 /* Return true if STMT can throw an exception that is not caught within
2818 the current function (CFUN). */
2820 bool
2821 stmt_can_throw_external (gimple stmt)
2823 int lp_nr;
2825 if (!stmt_could_throw_p (stmt))
2826 return false;
2828 lp_nr = lookup_stmt_eh_lp (stmt);
2829 return lp_nr == 0;
2832 /* Return true if STMT can throw an exception that is caught within
2833 the current function (CFUN). */
2835 bool
2836 stmt_can_throw_internal (gimple stmt)
2838 int lp_nr;
2840 if (!stmt_could_throw_p (stmt))
2841 return false;
2843 lp_nr = lookup_stmt_eh_lp (stmt);
2844 return lp_nr > 0;
2847 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2848 remove any entry it might have from the EH table. Return true if
2849 any change was made. */
2851 bool
2852 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2854 if (stmt_could_throw_p (stmt))
2855 return false;
2856 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2859 /* Likewise, but always use the current function. */
2861 bool
2862 maybe_clean_eh_stmt (gimple stmt)
2864 return maybe_clean_eh_stmt_fn (cfun, stmt);
2867 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2868 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2869 in the table if it should be in there. Return TRUE if a replacement was
2870 done that my require an EH edge purge. */
2872 bool
2873 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2875 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2877 if (lp_nr != 0)
2879 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2881 if (new_stmt == old_stmt && new_stmt_could_throw)
2882 return false;
2884 remove_stmt_from_eh_lp (old_stmt);
2885 if (new_stmt_could_throw)
2887 add_stmt_to_eh_lp (new_stmt, lp_nr);
2888 return false;
2890 else
2891 return true;
2894 return false;
2897 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2898 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2899 operand is the return value of duplicate_eh_regions. */
2901 bool
2902 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2903 struct function *old_fun, gimple old_stmt,
2904 struct pointer_map_t *map, int default_lp_nr)
2906 int old_lp_nr, new_lp_nr;
2907 void **slot;
2909 if (!stmt_could_throw_p (new_stmt))
2910 return false;
2912 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2913 if (old_lp_nr == 0)
2915 if (default_lp_nr == 0)
2916 return false;
2917 new_lp_nr = default_lp_nr;
2919 else if (old_lp_nr > 0)
2921 eh_landing_pad old_lp, new_lp;
2923 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2924 slot = pointer_map_contains (map, old_lp);
2925 new_lp = (eh_landing_pad) *slot;
2926 new_lp_nr = new_lp->index;
2928 else
2930 eh_region old_r, new_r;
2932 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2933 slot = pointer_map_contains (map, old_r);
2934 new_r = (eh_region) *slot;
2935 new_lp_nr = -new_r->index;
2938 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2939 return true;
2942 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2943 and thus no remapping is required. */
2945 bool
2946 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2948 int lp_nr;
2950 if (!stmt_could_throw_p (new_stmt))
2951 return false;
2953 lp_nr = lookup_stmt_eh_lp (old_stmt);
2954 if (lp_nr == 0)
2955 return false;
2957 add_stmt_to_eh_lp (new_stmt, lp_nr);
2958 return true;
2961 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2962 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2963 this only handles handlers consisting of a single call, as that's the
2964 important case for C++: a destructor call for a particular object showing
2965 up in multiple handlers. */
2967 static bool
2968 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2970 gimple_stmt_iterator gsi;
2971 gimple ones, twos;
2972 unsigned int ai;
2974 gsi = gsi_start (oneh);
2975 if (!gsi_one_before_end_p (gsi))
2976 return false;
2977 ones = gsi_stmt (gsi);
2979 gsi = gsi_start (twoh);
2980 if (!gsi_one_before_end_p (gsi))
2981 return false;
2982 twos = gsi_stmt (gsi);
2984 if (!is_gimple_call (ones)
2985 || !is_gimple_call (twos)
2986 || gimple_call_lhs (ones)
2987 || gimple_call_lhs (twos)
2988 || gimple_call_chain (ones)
2989 || gimple_call_chain (twos)
2990 || !gimple_call_same_target_p (ones, twos)
2991 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2992 return false;
2994 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2995 if (!operand_equal_p (gimple_call_arg (ones, ai),
2996 gimple_call_arg (twos, ai), 0))
2997 return false;
2999 return true;
3002 /* Optimize
3003 try { A() } finally { try { ~B() } catch { ~A() } }
3004 try { ... } finally { ~A() }
3005 into
3006 try { A() } catch { ~B() }
3007 try { ~B() ... } finally { ~A() }
3009 This occurs frequently in C++, where A is a local variable and B is a
3010 temporary used in the initializer for A. */
3012 static void
3013 optimize_double_finally (gimple one, gimple two)
3015 gimple oneh;
3016 gimple_stmt_iterator gsi;
3017 gimple_seq cleanup;
3019 cleanup = gimple_try_cleanup (one);
3020 gsi = gsi_start (cleanup);
3021 if (!gsi_one_before_end_p (gsi))
3022 return;
3024 oneh = gsi_stmt (gsi);
3025 if (gimple_code (oneh) != GIMPLE_TRY
3026 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3027 return;
3029 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3031 gimple_seq seq = gimple_try_eval (oneh);
3033 gimple_try_set_cleanup (one, seq);
3034 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3035 seq = copy_gimple_seq_and_replace_locals (seq);
3036 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3037 gimple_try_set_eval (two, seq);
3041 /* Perform EH refactoring optimizations that are simpler to do when code
3042 flow has been lowered but EH structures haven't. */
3044 static void
3045 refactor_eh_r (gimple_seq seq)
3047 gimple_stmt_iterator gsi;
3048 gimple one, two;
3050 one = NULL;
3051 two = NULL;
3052 gsi = gsi_start (seq);
3053 while (1)
3055 one = two;
3056 if (gsi_end_p (gsi))
3057 two = NULL;
3058 else
3059 two = gsi_stmt (gsi);
3060 if (one
3061 && two
3062 && gimple_code (one) == GIMPLE_TRY
3063 && gimple_code (two) == GIMPLE_TRY
3064 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
3065 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
3066 optimize_double_finally (one, two);
3067 if (one)
3068 switch (gimple_code (one))
3070 case GIMPLE_TRY:
3071 refactor_eh_r (gimple_try_eval (one));
3072 refactor_eh_r (gimple_try_cleanup (one));
3073 break;
3074 case GIMPLE_CATCH:
3075 refactor_eh_r (gimple_catch_handler (one));
3076 break;
3077 case GIMPLE_EH_FILTER:
3078 refactor_eh_r (gimple_eh_filter_failure (one));
3079 break;
3080 case GIMPLE_EH_ELSE:
3081 refactor_eh_r (gimple_eh_else_n_body (one));
3082 refactor_eh_r (gimple_eh_else_e_body (one));
3083 break;
3084 default:
3085 break;
3087 if (two)
3088 gsi_next (&gsi);
3089 else
3090 break;
3094 static unsigned
3095 refactor_eh (void)
3097 refactor_eh_r (gimple_body (current_function_decl));
3098 return 0;
3101 static bool
3102 gate_refactor_eh (void)
3104 return flag_exceptions != 0;
3107 namespace {
3109 const pass_data pass_data_refactor_eh =
3111 GIMPLE_PASS, /* type */
3112 "ehopt", /* name */
3113 OPTGROUP_NONE, /* optinfo_flags */
3114 true, /* has_gate */
3115 true, /* has_execute */
3116 TV_TREE_EH, /* tv_id */
3117 PROP_gimple_lcf, /* properties_required */
3118 0, /* properties_provided */
3119 0, /* properties_destroyed */
3120 0, /* todo_flags_start */
3121 0, /* todo_flags_finish */
3124 class pass_refactor_eh : public gimple_opt_pass
3126 public:
3127 pass_refactor_eh (gcc::context *ctxt)
3128 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3131 /* opt_pass methods: */
3132 bool gate () { return gate_refactor_eh (); }
3133 unsigned int execute () { return refactor_eh (); }
3135 }; // class pass_refactor_eh
3137 } // anon namespace
3139 gimple_opt_pass *
3140 make_pass_refactor_eh (gcc::context *ctxt)
3142 return new pass_refactor_eh (ctxt);
3145 /* At the end of gimple optimization, we can lower RESX. */
3147 static bool
3148 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3150 int lp_nr;
3151 eh_region src_r, dst_r;
3152 gimple_stmt_iterator gsi;
3153 gimple x;
3154 tree fn, src_nr;
3155 bool ret = false;
3157 lp_nr = lookup_stmt_eh_lp (stmt);
3158 if (lp_nr != 0)
3159 dst_r = get_eh_region_from_lp_number (lp_nr);
3160 else
3161 dst_r = NULL;
3163 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3164 gsi = gsi_last_bb (bb);
3166 if (src_r == NULL)
3168 /* We can wind up with no source region when pass_cleanup_eh shows
3169 that there are no entries into an eh region and deletes it, but
3170 then the block that contains the resx isn't removed. This can
3171 happen without optimization when the switch statement created by
3172 lower_try_finally_switch isn't simplified to remove the eh case.
3174 Resolve this by expanding the resx node to an abort. */
3176 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3177 x = gimple_build_call (fn, 0);
3178 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3180 while (EDGE_COUNT (bb->succs) > 0)
3181 remove_edge (EDGE_SUCC (bb, 0));
3183 else if (dst_r)
3185 /* When we have a destination region, we resolve this by copying
3186 the excptr and filter values into place, and changing the edge
3187 to immediately after the landing pad. */
3188 edge e;
3190 if (lp_nr < 0)
3192 basic_block new_bb;
3193 void **slot;
3194 tree lab;
3196 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3197 the failure decl into a new block, if needed. */
3198 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3200 slot = pointer_map_contains (mnt_map, dst_r);
3201 if (slot == NULL)
3203 gimple_stmt_iterator gsi2;
3205 new_bb = create_empty_bb (bb);
3206 if (current_loops)
3207 add_bb_to_loop (new_bb, bb->loop_father);
3208 lab = gimple_block_label (new_bb);
3209 gsi2 = gsi_start_bb (new_bb);
3211 fn = dst_r->u.must_not_throw.failure_decl;
3212 x = gimple_build_call (fn, 0);
3213 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3214 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3216 slot = pointer_map_insert (mnt_map, dst_r);
3217 *slot = lab;
3219 else
3221 lab = (tree) *slot;
3222 new_bb = label_to_block (lab);
3225 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3226 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3227 e->count = bb->count;
3228 e->probability = REG_BR_PROB_BASE;
3230 else
3232 edge_iterator ei;
3233 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3235 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3236 src_nr = build_int_cst (integer_type_node, src_r->index);
3237 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3238 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3240 /* Update the flags for the outgoing edge. */
3241 e = single_succ_edge (bb);
3242 gcc_assert (e->flags & EDGE_EH);
3243 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3245 /* If there are no more EH users of the landing pad, delete it. */
3246 FOR_EACH_EDGE (e, ei, e->dest->preds)
3247 if (e->flags & EDGE_EH)
3248 break;
3249 if (e == NULL)
3251 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3252 remove_eh_landing_pad (lp);
3256 ret = true;
3258 else
3260 tree var;
3262 /* When we don't have a destination region, this exception escapes
3263 up the call chain. We resolve this by generating a call to the
3264 _Unwind_Resume library function. */
3266 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3267 with no arguments for C++ and Java. Check for that. */
3268 if (src_r->use_cxa_end_cleanup)
3270 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3271 x = gimple_build_call (fn, 0);
3272 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3274 else
3276 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3277 src_nr = build_int_cst (integer_type_node, src_r->index);
3278 x = gimple_build_call (fn, 1, src_nr);
3279 var = create_tmp_var (ptr_type_node, NULL);
3280 var = make_ssa_name (var, x);
3281 gimple_call_set_lhs (x, var);
3282 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3284 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3285 x = gimple_build_call (fn, 1, var);
3286 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3289 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3292 gsi_remove (&gsi, true);
3294 return ret;
3297 static unsigned
3298 execute_lower_resx (void)
3300 basic_block bb;
3301 struct pointer_map_t *mnt_map;
3302 bool dominance_invalidated = false;
3303 bool any_rewritten = false;
3305 mnt_map = pointer_map_create ();
3307 FOR_EACH_BB (bb)
3309 gimple last = last_stmt (bb);
3310 if (last && is_gimple_resx (last))
3312 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3313 any_rewritten = true;
3317 pointer_map_destroy (mnt_map);
3319 if (dominance_invalidated)
3321 free_dominance_info (CDI_DOMINATORS);
3322 free_dominance_info (CDI_POST_DOMINATORS);
3325 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3328 static bool
3329 gate_lower_resx (void)
3331 return flag_exceptions != 0;
3334 namespace {
3336 const pass_data pass_data_lower_resx =
3338 GIMPLE_PASS, /* type */
3339 "resx", /* name */
3340 OPTGROUP_NONE, /* optinfo_flags */
3341 true, /* has_gate */
3342 true, /* has_execute */
3343 TV_TREE_EH, /* tv_id */
3344 PROP_gimple_lcf, /* properties_required */
3345 0, /* properties_provided */
3346 0, /* properties_destroyed */
3347 0, /* todo_flags_start */
3348 TODO_verify_flow, /* todo_flags_finish */
3351 class pass_lower_resx : public gimple_opt_pass
3353 public:
3354 pass_lower_resx (gcc::context *ctxt)
3355 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3358 /* opt_pass methods: */
3359 bool gate () { return gate_lower_resx (); }
3360 unsigned int execute () { return execute_lower_resx (); }
3362 }; // class pass_lower_resx
3364 } // anon namespace
3366 gimple_opt_pass *
3367 make_pass_lower_resx (gcc::context *ctxt)
3369 return new pass_lower_resx (ctxt);
3372 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3373 external throw. */
3375 static void
3376 optimize_clobbers (basic_block bb)
3378 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3379 bool any_clobbers = false;
3380 bool seen_stack_restore = false;
3381 edge_iterator ei;
3382 edge e;
3384 /* Only optimize anything if the bb contains at least one clobber,
3385 ends with resx (checked by caller), optionally contains some
3386 debug stmts or labels, or at most one __builtin_stack_restore
3387 call, and has an incoming EH edge. */
3388 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3390 gimple stmt = gsi_stmt (gsi);
3391 if (is_gimple_debug (stmt))
3392 continue;
3393 if (gimple_clobber_p (stmt))
3395 any_clobbers = true;
3396 continue;
3398 if (!seen_stack_restore
3399 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3401 seen_stack_restore = true;
3402 continue;
3404 if (gimple_code (stmt) == GIMPLE_LABEL)
3405 break;
3406 return;
3408 if (!any_clobbers)
3409 return;
3410 FOR_EACH_EDGE (e, ei, bb->preds)
3411 if (e->flags & EDGE_EH)
3412 break;
3413 if (e == NULL)
3414 return;
3415 gsi = gsi_last_bb (bb);
3416 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3418 gimple stmt = gsi_stmt (gsi);
3419 if (!gimple_clobber_p (stmt))
3420 continue;
3421 unlink_stmt_vdef (stmt);
3422 gsi_remove (&gsi, true);
3423 release_defs (stmt);
3427 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3428 internal throw to successor BB. */
3430 static int
3431 sink_clobbers (basic_block bb)
3433 edge e;
3434 edge_iterator ei;
3435 gimple_stmt_iterator gsi, dgsi;
3436 basic_block succbb;
3437 bool any_clobbers = false;
3438 unsigned todo = 0;
3440 /* Only optimize if BB has a single EH successor and
3441 all predecessor edges are EH too. */
3442 if (!single_succ_p (bb)
3443 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3444 return 0;
3446 FOR_EACH_EDGE (e, ei, bb->preds)
3448 if ((e->flags & EDGE_EH) == 0)
3449 return 0;
3452 /* And BB contains only CLOBBER stmts before the final
3453 RESX. */
3454 gsi = gsi_last_bb (bb);
3455 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3457 gimple stmt = gsi_stmt (gsi);
3458 if (is_gimple_debug (stmt))
3459 continue;
3460 if (gimple_code (stmt) == GIMPLE_LABEL)
3461 break;
3462 if (!gimple_clobber_p (stmt))
3463 return 0;
3464 any_clobbers = true;
3466 if (!any_clobbers)
3467 return 0;
3469 edge succe = single_succ_edge (bb);
3470 succbb = succe->dest;
3472 /* See if there is a virtual PHI node to take an updated virtual
3473 operand from. */
3474 gimple vphi = NULL;
3475 tree vuse = NULL_TREE;
3476 for (gsi = gsi_start_phis (succbb); !gsi_end_p (gsi); gsi_next (&gsi))
3478 tree res = gimple_phi_result (gsi_stmt (gsi));
3479 if (virtual_operand_p (res))
3481 vphi = gsi_stmt (gsi);
3482 vuse = res;
3483 break;
3487 dgsi = gsi_after_labels (succbb);
3488 gsi = gsi_last_bb (bb);
3489 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3491 gimple stmt = gsi_stmt (gsi);
3492 tree lhs;
3493 if (is_gimple_debug (stmt))
3494 continue;
3495 if (gimple_code (stmt) == GIMPLE_LABEL)
3496 break;
3497 lhs = gimple_assign_lhs (stmt);
3498 /* Unfortunately we don't have dominance info updated at this
3499 point, so checking if
3500 dominated_by_p (CDI_DOMINATORS, succbb,
3501 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3502 would be too costly. Thus, avoid sinking any clobbers that
3503 refer to non-(D) SSA_NAMEs. */
3504 if (TREE_CODE (lhs) == MEM_REF
3505 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3506 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3508 unlink_stmt_vdef (stmt);
3509 gsi_remove (&gsi, true);
3510 release_defs (stmt);
3511 continue;
3514 /* As we do not change stmt order when sinking across a
3515 forwarder edge we can keep virtual operands in place. */
3516 gsi_remove (&gsi, false);
3517 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3519 /* But adjust virtual operands if we sunk across a PHI node. */
3520 if (vuse)
3522 gimple use_stmt;
3523 imm_use_iterator iter;
3524 use_operand_p use_p;
3525 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3526 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3527 SET_USE (use_p, gimple_vdef (stmt));
3528 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3530 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3531 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3533 /* Adjust the incoming virtual operand. */
3534 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3535 SET_USE (gimple_vuse_op (stmt), vuse);
3537 /* If there isn't a single predecessor but no virtual PHI node
3538 arrange for virtual operands to be renamed. */
3539 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3540 && !single_pred_p (succbb))
3542 /* In this case there will be no use of the VDEF of this stmt.
3543 ??? Unless this is a secondary opportunity and we have not
3544 removed unreachable blocks yet, so we cannot assert this.
3545 Which also means we will end up renaming too many times. */
3546 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3547 mark_virtual_operands_for_renaming (cfun);
3548 todo |= TODO_update_ssa_only_virtuals;
3552 return todo;
3555 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3556 we have found some duplicate labels and removed some edges. */
3558 static bool
3559 lower_eh_dispatch (basic_block src, gimple stmt)
3561 gimple_stmt_iterator gsi;
3562 int region_nr;
3563 eh_region r;
3564 tree filter, fn;
3565 gimple x;
3566 bool redirected = false;
3568 region_nr = gimple_eh_dispatch_region (stmt);
3569 r = get_eh_region_from_number (region_nr);
3571 gsi = gsi_last_bb (src);
3573 switch (r->type)
3575 case ERT_TRY:
3577 auto_vec<tree> labels;
3578 tree default_label = NULL;
3579 eh_catch c;
3580 edge_iterator ei;
3581 edge e;
3582 struct pointer_set_t *seen_values = pointer_set_create ();
3584 /* Collect the labels for a switch. Zero the post_landing_pad
3585 field becase we'll no longer have anything keeping these labels
3586 in existence and the optimizer will be free to merge these
3587 blocks at will. */
3588 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3590 tree tp_node, flt_node, lab = c->label;
3591 bool have_label = false;
3593 c->label = NULL;
3594 tp_node = c->type_list;
3595 flt_node = c->filter_list;
3597 if (tp_node == NULL)
3599 default_label = lab;
3600 break;
3604 /* Filter out duplicate labels that arise when this handler
3605 is shadowed by an earlier one. When no labels are
3606 attached to the handler anymore, we remove
3607 the corresponding edge and then we delete unreachable
3608 blocks at the end of this pass. */
3609 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3611 tree t = build_case_label (TREE_VALUE (flt_node),
3612 NULL, lab);
3613 labels.safe_push (t);
3614 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3615 have_label = true;
3618 tp_node = TREE_CHAIN (tp_node);
3619 flt_node = TREE_CHAIN (flt_node);
3621 while (tp_node);
3622 if (! have_label)
3624 remove_edge (find_edge (src, label_to_block (lab)));
3625 redirected = true;
3629 /* Clean up the edge flags. */
3630 FOR_EACH_EDGE (e, ei, src->succs)
3632 if (e->flags & EDGE_FALLTHRU)
3634 /* If there was no catch-all, use the fallthru edge. */
3635 if (default_label == NULL)
3636 default_label = gimple_block_label (e->dest);
3637 e->flags &= ~EDGE_FALLTHRU;
3640 gcc_assert (default_label != NULL);
3642 /* Don't generate a switch if there's only a default case.
3643 This is common in the form of try { A; } catch (...) { B; }. */
3644 if (!labels.exists ())
3646 e = single_succ_edge (src);
3647 e->flags |= EDGE_FALLTHRU;
3649 else
3651 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3652 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3653 region_nr));
3654 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3655 filter = make_ssa_name (filter, x);
3656 gimple_call_set_lhs (x, filter);
3657 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3659 /* Turn the default label into a default case. */
3660 default_label = build_case_label (NULL, NULL, default_label);
3661 sort_case_labels (labels);
3663 x = gimple_build_switch (filter, default_label, labels);
3664 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3666 pointer_set_destroy (seen_values);
3668 break;
3670 case ERT_ALLOWED_EXCEPTIONS:
3672 edge b_e = BRANCH_EDGE (src);
3673 edge f_e = FALLTHRU_EDGE (src);
3675 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3676 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3677 region_nr));
3678 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3679 filter = make_ssa_name (filter, x);
3680 gimple_call_set_lhs (x, filter);
3681 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3683 r->u.allowed.label = NULL;
3684 x = gimple_build_cond (EQ_EXPR, filter,
3685 build_int_cst (TREE_TYPE (filter),
3686 r->u.allowed.filter),
3687 NULL_TREE, NULL_TREE);
3688 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3690 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3691 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3693 break;
3695 default:
3696 gcc_unreachable ();
3699 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3700 gsi_remove (&gsi, true);
3701 return redirected;
3704 static unsigned
3705 execute_lower_eh_dispatch (void)
3707 basic_block bb;
3708 int flags = 0;
3709 bool redirected = false;
3711 assign_filter_values ();
3713 FOR_EACH_BB (bb)
3715 gimple last = last_stmt (bb);
3716 if (last == NULL)
3717 continue;
3718 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3720 redirected |= lower_eh_dispatch (bb, last);
3721 flags |= TODO_update_ssa_only_virtuals;
3723 else if (gimple_code (last) == GIMPLE_RESX)
3725 if (stmt_can_throw_external (last))
3726 optimize_clobbers (bb);
3727 else
3728 flags |= sink_clobbers (bb);
3732 if (redirected)
3733 delete_unreachable_blocks ();
3734 return flags;
3737 static bool
3738 gate_lower_eh_dispatch (void)
3740 return cfun->eh->region_tree != NULL;
3743 namespace {
3745 const pass_data pass_data_lower_eh_dispatch =
3747 GIMPLE_PASS, /* type */
3748 "ehdisp", /* name */
3749 OPTGROUP_NONE, /* optinfo_flags */
3750 true, /* has_gate */
3751 true, /* has_execute */
3752 TV_TREE_EH, /* tv_id */
3753 PROP_gimple_lcf, /* properties_required */
3754 0, /* properties_provided */
3755 0, /* properties_destroyed */
3756 0, /* todo_flags_start */
3757 TODO_verify_flow, /* todo_flags_finish */
3760 class pass_lower_eh_dispatch : public gimple_opt_pass
3762 public:
3763 pass_lower_eh_dispatch (gcc::context *ctxt)
3764 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3767 /* opt_pass methods: */
3768 bool gate () { return gate_lower_eh_dispatch (); }
3769 unsigned int execute () { return execute_lower_eh_dispatch (); }
3771 }; // class pass_lower_eh_dispatch
3773 } // anon namespace
3775 gimple_opt_pass *
3776 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3778 return new pass_lower_eh_dispatch (ctxt);
3781 /* Walk statements, see what regions and, optionally, landing pads
3782 are really referenced.
3784 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3785 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3787 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3788 regions are marked.
3790 The caller is responsible for freeing the returned sbitmaps. */
3792 static void
3793 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3795 sbitmap r_reachable, lp_reachable;
3796 basic_block bb;
3797 bool mark_landing_pads = (lp_reachablep != NULL);
3798 gcc_checking_assert (r_reachablep != NULL);
3800 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3801 bitmap_clear (r_reachable);
3802 *r_reachablep = r_reachable;
3804 if (mark_landing_pads)
3806 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3807 bitmap_clear (lp_reachable);
3808 *lp_reachablep = lp_reachable;
3810 else
3811 lp_reachable = NULL;
3813 FOR_EACH_BB (bb)
3815 gimple_stmt_iterator gsi;
3817 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3819 gimple stmt = gsi_stmt (gsi);
3821 if (mark_landing_pads)
3823 int lp_nr = lookup_stmt_eh_lp (stmt);
3825 /* Negative LP numbers are MUST_NOT_THROW regions which
3826 are not considered BB enders. */
3827 if (lp_nr < 0)
3828 bitmap_set_bit (r_reachable, -lp_nr);
3830 /* Positive LP numbers are real landing pads, and BB enders. */
3831 else if (lp_nr > 0)
3833 gcc_assert (gsi_one_before_end_p (gsi));
3834 eh_region region = get_eh_region_from_lp_number (lp_nr);
3835 bitmap_set_bit (r_reachable, region->index);
3836 bitmap_set_bit (lp_reachable, lp_nr);
3840 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3841 switch (gimple_code (stmt))
3843 case GIMPLE_RESX:
3844 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3845 break;
3846 case GIMPLE_EH_DISPATCH:
3847 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3848 break;
3849 default:
3850 break;
3856 /* Remove unreachable handlers and unreachable landing pads. */
3858 static void
3859 remove_unreachable_handlers (void)
3861 sbitmap r_reachable, lp_reachable;
3862 eh_region region;
3863 eh_landing_pad lp;
3864 unsigned i;
3866 mark_reachable_handlers (&r_reachable, &lp_reachable);
3868 if (dump_file)
3870 fprintf (dump_file, "Before removal of unreachable regions:\n");
3871 dump_eh_tree (dump_file, cfun);
3872 fprintf (dump_file, "Reachable regions: ");
3873 dump_bitmap_file (dump_file, r_reachable);
3874 fprintf (dump_file, "Reachable landing pads: ");
3875 dump_bitmap_file (dump_file, lp_reachable);
3878 if (dump_file)
3880 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3881 if (region && !bitmap_bit_p (r_reachable, region->index))
3882 fprintf (dump_file,
3883 "Removing unreachable region %d\n",
3884 region->index);
3887 remove_unreachable_eh_regions (r_reachable);
3889 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3890 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3892 if (dump_file)
3893 fprintf (dump_file,
3894 "Removing unreachable landing pad %d\n",
3895 lp->index);
3896 remove_eh_landing_pad (lp);
3899 if (dump_file)
3901 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3902 dump_eh_tree (dump_file, cfun);
3903 fprintf (dump_file, "\n\n");
3906 sbitmap_free (r_reachable);
3907 sbitmap_free (lp_reachable);
3909 #ifdef ENABLE_CHECKING
3910 verify_eh_tree (cfun);
3911 #endif
3914 /* Remove unreachable handlers if any landing pads have been removed after
3915 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3917 void
3918 maybe_remove_unreachable_handlers (void)
3920 eh_landing_pad lp;
3921 unsigned i;
3923 if (cfun->eh == NULL)
3924 return;
3926 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3927 if (lp && lp->post_landing_pad)
3929 if (label_to_block (lp->post_landing_pad) == NULL)
3931 remove_unreachable_handlers ();
3932 return;
3937 /* Remove regions that do not have landing pads. This assumes
3938 that remove_unreachable_handlers has already been run, and
3939 that we've just manipulated the landing pads since then.
3941 Preserve regions with landing pads and regions that prevent
3942 exceptions from propagating further, even if these regions
3943 are not reachable. */
3945 static void
3946 remove_unreachable_handlers_no_lp (void)
3948 eh_region region;
3949 sbitmap r_reachable;
3950 unsigned i;
3952 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3954 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3956 if (! region)
3957 continue;
3959 if (region->landing_pads != NULL
3960 || region->type == ERT_MUST_NOT_THROW)
3961 bitmap_set_bit (r_reachable, region->index);
3963 if (dump_file
3964 && !bitmap_bit_p (r_reachable, region->index))
3965 fprintf (dump_file,
3966 "Removing unreachable region %d\n",
3967 region->index);
3970 remove_unreachable_eh_regions (r_reachable);
3972 sbitmap_free (r_reachable);
3975 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3976 optimisticaly split all sorts of edges, including EH edges. The
3977 optimization passes in between may not have needed them; if not,
3978 we should undo the split.
3980 Recognize this case by having one EH edge incoming to the BB and
3981 one normal edge outgoing; BB should be empty apart from the
3982 post_landing_pad label.
3984 Note that this is slightly different from the empty handler case
3985 handled by cleanup_empty_eh, in that the actual handler may yet
3986 have actual code but the landing pad has been separated from the
3987 handler. As such, cleanup_empty_eh relies on this transformation
3988 having been done first. */
3990 static bool
3991 unsplit_eh (eh_landing_pad lp)
3993 basic_block bb = label_to_block (lp->post_landing_pad);
3994 gimple_stmt_iterator gsi;
3995 edge e_in, e_out;
3997 /* Quickly check the edge counts on BB for singularity. */
3998 if (!single_pred_p (bb) || !single_succ_p (bb))
3999 return false;
4000 e_in = single_pred_edge (bb);
4001 e_out = single_succ_edge (bb);
4003 /* Input edge must be EH and output edge must be normal. */
4004 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4005 return false;
4007 /* The block must be empty except for the labels and debug insns. */
4008 gsi = gsi_after_labels (bb);
4009 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4010 gsi_next_nondebug (&gsi);
4011 if (!gsi_end_p (gsi))
4012 return false;
4014 /* The destination block must not already have a landing pad
4015 for a different region. */
4016 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4018 gimple stmt = gsi_stmt (gsi);
4019 tree lab;
4020 int lp_nr;
4022 if (gimple_code (stmt) != GIMPLE_LABEL)
4023 break;
4024 lab = gimple_label_label (stmt);
4025 lp_nr = EH_LANDING_PAD_NR (lab);
4026 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4027 return false;
4030 /* The new destination block must not already be a destination of
4031 the source block, lest we merge fallthru and eh edges and get
4032 all sorts of confused. */
4033 if (find_edge (e_in->src, e_out->dest))
4034 return false;
4036 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4037 thought this should have been cleaned up by a phicprop pass, but
4038 that doesn't appear to handle virtuals. Propagate by hand. */
4039 if (!gimple_seq_empty_p (phi_nodes (bb)))
4041 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
4043 gimple use_stmt, phi = gsi_stmt (gsi);
4044 tree lhs = gimple_phi_result (phi);
4045 tree rhs = gimple_phi_arg_def (phi, 0);
4046 use_operand_p use_p;
4047 imm_use_iterator iter;
4049 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4051 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4052 SET_USE (use_p, rhs);
4055 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4056 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4058 remove_phi_node (&gsi, true);
4062 if (dump_file && (dump_flags & TDF_DETAILS))
4063 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4064 lp->index, e_out->dest->index);
4066 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4067 a successor edge, humor it. But do the real CFG change with the
4068 predecessor of E_OUT in order to preserve the ordering of arguments
4069 to the PHI nodes in E_OUT->DEST. */
4070 redirect_eh_edge_1 (e_in, e_out->dest, false);
4071 redirect_edge_pred (e_out, e_in->src);
4072 e_out->flags = e_in->flags;
4073 e_out->probability = e_in->probability;
4074 e_out->count = e_in->count;
4075 remove_edge (e_in);
4077 return true;
4080 /* Examine each landing pad block and see if it matches unsplit_eh. */
4082 static bool
4083 unsplit_all_eh (void)
4085 bool changed = false;
4086 eh_landing_pad lp;
4087 int i;
4089 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4090 if (lp)
4091 changed |= unsplit_eh (lp);
4093 return changed;
4096 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4097 to OLD_BB to NEW_BB; return true on success, false on failure.
4099 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4100 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4101 Virtual PHIs may be deleted and marked for renaming. */
4103 static bool
4104 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4105 edge old_bb_out, bool change_region)
4107 gimple_stmt_iterator ngsi, ogsi;
4108 edge_iterator ei;
4109 edge e;
4110 bitmap ophi_handled;
4112 /* The destination block must not be a regular successor for any
4113 of the preds of the landing pad. Thus, avoid turning
4114 <..>
4115 | \ EH
4116 | <..>
4118 <..>
4119 into
4120 <..>
4121 | | EH
4122 <..>
4123 which CFG verification would choke on. See PR45172 and PR51089. */
4124 FOR_EACH_EDGE (e, ei, old_bb->preds)
4125 if (find_edge (e->src, new_bb))
4126 return false;
4128 FOR_EACH_EDGE (e, ei, old_bb->preds)
4129 redirect_edge_var_map_clear (e);
4131 ophi_handled = BITMAP_ALLOC (NULL);
4133 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4134 for the edges we're going to move. */
4135 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4137 gimple ophi, nphi = gsi_stmt (ngsi);
4138 tree nresult, nop;
4140 nresult = gimple_phi_result (nphi);
4141 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4143 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4144 the source ssa_name. */
4145 ophi = NULL;
4146 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4148 ophi = gsi_stmt (ogsi);
4149 if (gimple_phi_result (ophi) == nop)
4150 break;
4151 ophi = NULL;
4154 /* If we did find the corresponding PHI, copy those inputs. */
4155 if (ophi)
4157 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4158 if (!has_single_use (nop))
4160 imm_use_iterator imm_iter;
4161 use_operand_p use_p;
4163 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4165 if (!gimple_debug_bind_p (USE_STMT (use_p))
4166 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4167 || gimple_bb (USE_STMT (use_p)) != new_bb))
4168 goto fail;
4171 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4172 FOR_EACH_EDGE (e, ei, old_bb->preds)
4174 location_t oloc;
4175 tree oop;
4177 if ((e->flags & EDGE_EH) == 0)
4178 continue;
4179 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4180 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4181 redirect_edge_var_map_add (e, nresult, oop, oloc);
4184 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4185 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4186 variable is unchanged from input to the block and we can simply
4187 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4188 else
4190 location_t nloc
4191 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4192 FOR_EACH_EDGE (e, ei, old_bb->preds)
4193 redirect_edge_var_map_add (e, nresult, nop, nloc);
4197 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4198 we don't know what values from the other edges into NEW_BB to use. */
4199 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4201 gimple ophi = gsi_stmt (ogsi);
4202 tree oresult = gimple_phi_result (ophi);
4203 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4204 goto fail;
4207 /* Finally, move the edges and update the PHIs. */
4208 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4209 if (e->flags & EDGE_EH)
4211 /* ??? CFG manipluation routines do not try to update loop
4212 form on edge redirection. Do so manually here for now. */
4213 /* If we redirect a loop entry or latch edge that will either create
4214 a multiple entry loop or rotate the loop. If the loops merge
4215 we may have created a loop with multiple latches.
4216 All of this isn't easily fixed thus cancel the affected loop
4217 and mark the other loop as possibly having multiple latches. */
4218 if (current_loops
4219 && e->dest == e->dest->loop_father->header)
4221 e->dest->loop_father->header = NULL;
4222 e->dest->loop_father->latch = NULL;
4223 new_bb->loop_father->latch = NULL;
4224 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4226 redirect_eh_edge_1 (e, new_bb, change_region);
4227 redirect_edge_succ (e, new_bb);
4228 flush_pending_stmts (e);
4230 else
4231 ei_next (&ei);
4233 BITMAP_FREE (ophi_handled);
4234 return true;
4236 fail:
4237 FOR_EACH_EDGE (e, ei, old_bb->preds)
4238 redirect_edge_var_map_clear (e);
4239 BITMAP_FREE (ophi_handled);
4240 return false;
4243 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4244 old region to NEW_REGION at BB. */
4246 static void
4247 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4248 eh_landing_pad lp, eh_region new_region)
4250 gimple_stmt_iterator gsi;
4251 eh_landing_pad *pp;
4253 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4254 continue;
4255 *pp = lp->next_lp;
4257 lp->region = new_region;
4258 lp->next_lp = new_region->landing_pads;
4259 new_region->landing_pads = lp;
4261 /* Delete the RESX that was matched within the empty handler block. */
4262 gsi = gsi_last_bb (bb);
4263 unlink_stmt_vdef (gsi_stmt (gsi));
4264 gsi_remove (&gsi, true);
4266 /* Clean up E_OUT for the fallthru. */
4267 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4268 e_out->probability = REG_BR_PROB_BASE;
4271 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4272 unsplitting than unsplit_eh was prepared to handle, e.g. when
4273 multiple incoming edges and phis are involved. */
4275 static bool
4276 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4278 gimple_stmt_iterator gsi;
4279 tree lab;
4281 /* We really ought not have totally lost everything following
4282 a landing pad label. Given that BB is empty, there had better
4283 be a successor. */
4284 gcc_assert (e_out != NULL);
4286 /* The destination block must not already have a landing pad
4287 for a different region. */
4288 lab = NULL;
4289 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4291 gimple stmt = gsi_stmt (gsi);
4292 int lp_nr;
4294 if (gimple_code (stmt) != GIMPLE_LABEL)
4295 break;
4296 lab = gimple_label_label (stmt);
4297 lp_nr = EH_LANDING_PAD_NR (lab);
4298 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4299 return false;
4302 /* Attempt to move the PHIs into the successor block. */
4303 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4305 if (dump_file && (dump_flags & TDF_DETAILS))
4306 fprintf (dump_file,
4307 "Unsplit EH landing pad %d to block %i "
4308 "(via cleanup_empty_eh).\n",
4309 lp->index, e_out->dest->index);
4310 return true;
4313 return false;
4316 /* Return true if edge E_FIRST is part of an empty infinite loop
4317 or leads to such a loop through a series of single successor
4318 empty bbs. */
4320 static bool
4321 infinite_empty_loop_p (edge e_first)
4323 bool inf_loop = false;
4324 edge e;
4326 if (e_first->dest == e_first->src)
4327 return true;
4329 e_first->src->aux = (void *) 1;
4330 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4332 gimple_stmt_iterator gsi;
4333 if (e->dest->aux)
4335 inf_loop = true;
4336 break;
4338 e->dest->aux = (void *) 1;
4339 gsi = gsi_after_labels (e->dest);
4340 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4341 gsi_next_nondebug (&gsi);
4342 if (!gsi_end_p (gsi))
4343 break;
4345 e_first->src->aux = NULL;
4346 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4347 e->dest->aux = NULL;
4349 return inf_loop;
4352 /* Examine the block associated with LP to determine if it's an empty
4353 handler for its EH region. If so, attempt to redirect EH edges to
4354 an outer region. Return true the CFG was updated in any way. This
4355 is similar to jump forwarding, just across EH edges. */
4357 static bool
4358 cleanup_empty_eh (eh_landing_pad lp)
4360 basic_block bb = label_to_block (lp->post_landing_pad);
4361 gimple_stmt_iterator gsi;
4362 gimple resx;
4363 eh_region new_region;
4364 edge_iterator ei;
4365 edge e, e_out;
4366 bool has_non_eh_pred;
4367 bool ret = false;
4368 int new_lp_nr;
4370 /* There can be zero or one edges out of BB. This is the quickest test. */
4371 switch (EDGE_COUNT (bb->succs))
4373 case 0:
4374 e_out = NULL;
4375 break;
4376 case 1:
4377 e_out = single_succ_edge (bb);
4378 break;
4379 default:
4380 return false;
4383 resx = last_stmt (bb);
4384 if (resx && is_gimple_resx (resx))
4386 if (stmt_can_throw_external (resx))
4387 optimize_clobbers (bb);
4388 else if (sink_clobbers (bb))
4389 ret = true;
4392 gsi = gsi_after_labels (bb);
4394 /* Make sure to skip debug statements. */
4395 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4396 gsi_next_nondebug (&gsi);
4398 /* If the block is totally empty, look for more unsplitting cases. */
4399 if (gsi_end_p (gsi))
4401 /* For the degenerate case of an infinite loop bail out. */
4402 if (infinite_empty_loop_p (e_out))
4403 return ret;
4405 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4408 /* The block should consist only of a single RESX statement, modulo a
4409 preceding call to __builtin_stack_restore if there is no outgoing
4410 edge, since the call can be eliminated in this case. */
4411 resx = gsi_stmt (gsi);
4412 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4414 gsi_next (&gsi);
4415 resx = gsi_stmt (gsi);
4417 if (!is_gimple_resx (resx))
4418 return ret;
4419 gcc_assert (gsi_one_before_end_p (gsi));
4421 /* Determine if there are non-EH edges, or resx edges into the handler. */
4422 has_non_eh_pred = false;
4423 FOR_EACH_EDGE (e, ei, bb->preds)
4424 if (!(e->flags & EDGE_EH))
4425 has_non_eh_pred = true;
4427 /* Find the handler that's outer of the empty handler by looking at
4428 where the RESX instruction was vectored. */
4429 new_lp_nr = lookup_stmt_eh_lp (resx);
4430 new_region = get_eh_region_from_lp_number (new_lp_nr);
4432 /* If there's no destination region within the current function,
4433 redirection is trivial via removing the throwing statements from
4434 the EH region, removing the EH edges, and allowing the block
4435 to go unreachable. */
4436 if (new_region == NULL)
4438 gcc_assert (e_out == NULL);
4439 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4440 if (e->flags & EDGE_EH)
4442 gimple stmt = last_stmt (e->src);
4443 remove_stmt_from_eh_lp (stmt);
4444 remove_edge (e);
4446 else
4447 ei_next (&ei);
4448 goto succeed;
4451 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4452 to handle the abort and allow the blocks to go unreachable. */
4453 if (new_region->type == ERT_MUST_NOT_THROW)
4455 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4456 if (e->flags & EDGE_EH)
4458 gimple stmt = last_stmt (e->src);
4459 remove_stmt_from_eh_lp (stmt);
4460 add_stmt_to_eh_lp (stmt, new_lp_nr);
4461 remove_edge (e);
4463 else
4464 ei_next (&ei);
4465 goto succeed;
4468 /* Try to redirect the EH edges and merge the PHIs into the destination
4469 landing pad block. If the merge succeeds, we'll already have redirected
4470 all the EH edges. The handler itself will go unreachable if there were
4471 no normal edges. */
4472 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4473 goto succeed;
4475 /* Finally, if all input edges are EH edges, then we can (potentially)
4476 reduce the number of transfers from the runtime by moving the landing
4477 pad from the original region to the new region. This is a win when
4478 we remove the last CLEANUP region along a particular exception
4479 propagation path. Since nothing changes except for the region with
4480 which the landing pad is associated, the PHI nodes do not need to be
4481 adjusted at all. */
4482 if (!has_non_eh_pred)
4484 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4485 if (dump_file && (dump_flags & TDF_DETAILS))
4486 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4487 lp->index, new_region->index);
4489 /* ??? The CFG didn't change, but we may have rendered the
4490 old EH region unreachable. Trigger a cleanup there. */
4491 return true;
4494 return ret;
4496 succeed:
4497 if (dump_file && (dump_flags & TDF_DETAILS))
4498 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4499 remove_eh_landing_pad (lp);
4500 return true;
4503 /* Do a post-order traversal of the EH region tree. Examine each
4504 post_landing_pad block and see if we can eliminate it as empty. */
4506 static bool
4507 cleanup_all_empty_eh (void)
4509 bool changed = false;
4510 eh_landing_pad lp;
4511 int i;
4513 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4514 if (lp)
4515 changed |= cleanup_empty_eh (lp);
4517 return changed;
4520 /* Perform cleanups and lowering of exception handling
4521 1) cleanups regions with handlers doing nothing are optimized out
4522 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4523 3) Info about regions that are containing instructions, and regions
4524 reachable via local EH edges is collected
4525 4) Eh tree is pruned for regions no longer necessary.
4527 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4528 Unify those that have the same failure decl and locus.
4531 static unsigned int
4532 execute_cleanup_eh_1 (void)
4534 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4535 looking up unreachable landing pads. */
4536 remove_unreachable_handlers ();
4538 /* Watch out for the region tree vanishing due to all unreachable. */
4539 if (cfun->eh->region_tree && optimize)
4541 bool changed = false;
4543 changed |= unsplit_all_eh ();
4544 changed |= cleanup_all_empty_eh ();
4546 if (changed)
4548 free_dominance_info (CDI_DOMINATORS);
4549 free_dominance_info (CDI_POST_DOMINATORS);
4551 /* We delayed all basic block deletion, as we may have performed
4552 cleanups on EH edges while non-EH edges were still present. */
4553 delete_unreachable_blocks ();
4555 /* We manipulated the landing pads. Remove any region that no
4556 longer has a landing pad. */
4557 remove_unreachable_handlers_no_lp ();
4559 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4563 return 0;
4566 static unsigned int
4567 execute_cleanup_eh (void)
4569 int ret = execute_cleanup_eh_1 ();
4571 /* If the function no longer needs an EH personality routine
4572 clear it. This exposes cross-language inlining opportunities
4573 and avoids references to a never defined personality routine. */
4574 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4575 && function_needs_eh_personality (cfun) != eh_personality_lang)
4576 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4578 return ret;
4581 static bool
4582 gate_cleanup_eh (void)
4584 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4587 namespace {
4589 const pass_data pass_data_cleanup_eh =
4591 GIMPLE_PASS, /* type */
4592 "ehcleanup", /* name */
4593 OPTGROUP_NONE, /* optinfo_flags */
4594 true, /* has_gate */
4595 true, /* has_execute */
4596 TV_TREE_EH, /* tv_id */
4597 PROP_gimple_lcf, /* properties_required */
4598 0, /* properties_provided */
4599 0, /* properties_destroyed */
4600 0, /* todo_flags_start */
4601 TODO_verify_ssa, /* todo_flags_finish */
4604 class pass_cleanup_eh : public gimple_opt_pass
4606 public:
4607 pass_cleanup_eh (gcc::context *ctxt)
4608 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4611 /* opt_pass methods: */
4612 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4613 bool gate () { return gate_cleanup_eh (); }
4614 unsigned int execute () { return execute_cleanup_eh (); }
4616 }; // class pass_cleanup_eh
4618 } // anon namespace
4620 gimple_opt_pass *
4621 make_pass_cleanup_eh (gcc::context *ctxt)
4623 return new pass_cleanup_eh (ctxt);
4626 /* Verify that BB containing STMT as the last statement, has precisely the
4627 edge that make_eh_edges would create. */
4629 DEBUG_FUNCTION bool
4630 verify_eh_edges (gimple stmt)
4632 basic_block bb = gimple_bb (stmt);
4633 eh_landing_pad lp = NULL;
4634 int lp_nr;
4635 edge_iterator ei;
4636 edge e, eh_edge;
4638 lp_nr = lookup_stmt_eh_lp (stmt);
4639 if (lp_nr > 0)
4640 lp = get_eh_landing_pad_from_number (lp_nr);
4642 eh_edge = NULL;
4643 FOR_EACH_EDGE (e, ei, bb->succs)
4645 if (e->flags & EDGE_EH)
4647 if (eh_edge)
4649 error ("BB %i has multiple EH edges", bb->index);
4650 return true;
4652 else
4653 eh_edge = e;
4657 if (lp == NULL)
4659 if (eh_edge)
4661 error ("BB %i can not throw but has an EH edge", bb->index);
4662 return true;
4664 return false;
4667 if (!stmt_could_throw_p (stmt))
4669 error ("BB %i last statement has incorrectly set lp", bb->index);
4670 return true;
4673 if (eh_edge == NULL)
4675 error ("BB %i is missing an EH edge", bb->index);
4676 return true;
4679 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4681 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4682 return true;
4685 return false;
4688 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4690 DEBUG_FUNCTION bool
4691 verify_eh_dispatch_edge (gimple stmt)
4693 eh_region r;
4694 eh_catch c;
4695 basic_block src, dst;
4696 bool want_fallthru = true;
4697 edge_iterator ei;
4698 edge e, fall_edge;
4700 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4701 src = gimple_bb (stmt);
4703 FOR_EACH_EDGE (e, ei, src->succs)
4704 gcc_assert (e->aux == NULL);
4706 switch (r->type)
4708 case ERT_TRY:
4709 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4711 dst = label_to_block (c->label);
4712 e = find_edge (src, dst);
4713 if (e == NULL)
4715 error ("BB %i is missing an edge", src->index);
4716 return true;
4718 e->aux = (void *)e;
4720 /* A catch-all handler doesn't have a fallthru. */
4721 if (c->type_list == NULL)
4723 want_fallthru = false;
4724 break;
4727 break;
4729 case ERT_ALLOWED_EXCEPTIONS:
4730 dst = label_to_block (r->u.allowed.label);
4731 e = find_edge (src, dst);
4732 if (e == NULL)
4734 error ("BB %i is missing an edge", src->index);
4735 return true;
4737 e->aux = (void *)e;
4738 break;
4740 default:
4741 gcc_unreachable ();
4744 fall_edge = NULL;
4745 FOR_EACH_EDGE (e, ei, src->succs)
4747 if (e->flags & EDGE_FALLTHRU)
4749 if (fall_edge != NULL)
4751 error ("BB %i too many fallthru edges", src->index);
4752 return true;
4754 fall_edge = e;
4756 else if (e->aux)
4757 e->aux = NULL;
4758 else
4760 error ("BB %i has incorrect edge", src->index);
4761 return true;
4764 if ((fall_edge != NULL) ^ want_fallthru)
4766 error ("BB %i has incorrect fallthru edge", src->index);
4767 return true;
4770 return false;