* gcc/ChangeLog: Fix ChangeLog entry.
[official-gcc.git] / gcc / lra.c
blobd21d8646a61e0738264793cdbfb21ea8bb2e8834
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Changing spilled pseudos to stack memory or their equivalences;
41 o Allocation stack memory changes the address displacement and
42 new iteration is needed.
44 Here is block diagram of LRA passes:
46 ------------------------
47 --------------- | Undo inheritance for | ---------------
48 | Memory-memory | | spilled pseudos, | | New (and old) |
49 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
50 --------------- | the same hard regs, | | assignment |
51 Start | | and optional reloads | ---------------
52 | | ------------------------ ^
53 V | ---------------- |
54 ----------- V | Update virtual | |
55 | Remove |----> ------------>| register | |
56 | scratches | ^ | displacements | |
57 ----------- | ---------------- |
58 | | |
59 | V New |
60 ---------------- No ------------ pseudos -------------------
61 | Spilled pseudo | change |Constraints:| or insns | Inheritance/split |
62 | to memory |<-------| RTL |--------->| transformations |
63 | substitution | | transfor- | | in EBB scope |
64 ---------------- | mations | -------------------
65 | ------------
67 -------------------------
68 | Hard regs substitution, |
69 | devirtalization, and |------> Finish
70 | restoring scratches got |
71 | memory |
72 -------------------------
74 To speed up the process:
75 o We process only insns affected by changes on previous
76 iterations;
77 o We don't use DFA-infrastructure because it results in much slower
78 compiler speed than a special IR described below does;
79 o We use a special insn representation for quick access to insn
80 info which is always *synchronized* with the current RTL;
81 o Insn IR is minimized by memory. It is divided on three parts:
82 o one specific for each insn in RTL (only operand locations);
83 o one common for all insns in RTL with the same insn code
84 (different operand attributes from machine descriptions);
85 o one oriented for maintenance of live info (list of pseudos).
86 o Pseudo data:
87 o all insns where the pseudo is referenced;
88 o live info (conflicting hard regs, live ranges, # of
89 references etc);
90 o data used for assigning (preferred hard regs, costs etc).
92 This file contains LRA driver, LRA utility functions and data, and
93 code for dealing with scratches. */
95 #include "config.h"
96 #include "system.h"
97 #include "coretypes.h"
98 #include "tm.h"
99 #include "hard-reg-set.h"
100 #include "rtl.h"
101 #include "tm_p.h"
102 #include "regs.h"
103 #include "insn-config.h"
104 #include "insn-codes.h"
105 #include "recog.h"
106 #include "output.h"
107 #include "addresses.h"
108 #include "flags.h"
109 #include "function.h"
110 #include "expr.h"
111 #include "basic-block.h"
112 #include "except.h"
113 #include "tree-pass.h"
114 #include "timevar.h"
115 #include "target.h"
116 #include "vec.h"
117 #include "ira.h"
118 #include "lra-int.h"
119 #include "df.h"
121 /* Hard registers currently not available for allocation. It can
122 changed after some hard registers become not eliminable. */
123 HARD_REG_SET lra_no_alloc_regs;
125 static int get_new_reg_value (void);
126 static void expand_reg_info (void);
127 static void invalidate_insn_recog_data (int);
128 static int get_insn_freq (rtx);
129 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t, rtx, int);
131 /* Expand all regno related info needed for LRA. */
132 static void
133 expand_reg_data (int old)
135 resize_reg_info ();
136 expand_reg_info ();
137 ira_expand_reg_equiv ();
138 for (int i = (int) max_reg_num () - 1; i >= old; i--)
139 lra_change_class (i, ALL_REGS, " Set", true);
142 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
143 or of VOIDmode, use MD_MODE for the new reg. Initialize its
144 register class to RCLASS. Print message about assigning class
145 RCLASS containing new register name TITLE unless it is NULL. Use
146 attributes of ORIGINAL if it is a register. The created register
147 will have unique held value. */
149 lra_create_new_reg_with_unique_value (enum machine_mode md_mode, rtx original,
150 enum reg_class rclass, const char *title)
152 enum machine_mode mode;
153 rtx new_reg;
155 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
156 mode = md_mode;
157 lra_assert (mode != VOIDmode);
158 new_reg = gen_reg_rtx (mode);
159 if (original == NULL_RTX || ! REG_P (original))
161 if (lra_dump_file != NULL)
162 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
164 else
166 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
167 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
168 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
169 REG_POINTER (new_reg) = REG_POINTER (original);
170 REG_ATTRS (new_reg) = REG_ATTRS (original);
171 if (lra_dump_file != NULL)
172 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
173 REGNO (new_reg), REGNO (original));
175 if (lra_dump_file != NULL)
177 if (title != NULL)
178 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
179 reg_class_names[rclass], *title == '\0' ? "" : " ",
180 title, REGNO (new_reg));
181 fprintf (lra_dump_file, "\n");
183 expand_reg_data (max_reg_num ());
184 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
185 return new_reg;
188 /* Analogous to the previous function but also inherits value of
189 ORIGINAL. */
191 lra_create_new_reg (enum machine_mode md_mode, rtx original,
192 enum reg_class rclass, const char *title)
194 rtx new_reg;
196 new_reg
197 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
198 if (original != NULL_RTX && REG_P (original))
199 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
200 return new_reg;
203 /* Set up for REGNO unique hold value. */
204 void
205 lra_set_regno_unique_value (int regno)
207 lra_reg_info[regno].val = get_new_reg_value ();
210 /* Invalidate INSN related info used by LRA. The info should never be
211 used after that. */
212 void
213 lra_invalidate_insn_data (rtx insn)
215 lra_invalidate_insn_regno_info (insn);
216 invalidate_insn_recog_data (INSN_UID (insn));
219 /* Mark INSN deleted and invalidate the insn related info used by
220 LRA. */
221 void
222 lra_set_insn_deleted (rtx insn)
224 lra_invalidate_insn_data (insn);
225 SET_INSN_DELETED (insn);
228 /* Delete an unneeded INSN and any previous insns who sole purpose is
229 loading data that is dead in INSN. */
230 void
231 lra_delete_dead_insn (rtx insn)
233 rtx prev = prev_real_insn (insn);
234 rtx prev_dest;
236 /* If the previous insn sets a register that dies in our insn,
237 delete it too. */
238 if (prev && GET_CODE (PATTERN (prev)) == SET
239 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
240 && reg_mentioned_p (prev_dest, PATTERN (insn))
241 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
242 && ! side_effects_p (SET_SRC (PATTERN (prev))))
243 lra_delete_dead_insn (prev);
245 lra_set_insn_deleted (insn);
248 /* Emit insn x = y + z. Return NULL if we failed to do it.
249 Otherwise, return the insn. We don't use gen_add3_insn as it might
250 clobber CC. */
251 static rtx
252 emit_add3_insn (rtx x, rtx y, rtx z)
254 rtx insn, last;
256 last = get_last_insn ();
257 insn = emit_insn (gen_rtx_SET (VOIDmode, x,
258 gen_rtx_PLUS (GET_MODE (y), y, z)));
259 if (recog_memoized (insn) < 0)
261 delete_insns_since (last);
262 insn = NULL_RTX;
264 return insn;
267 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
268 last resort. */
269 static rtx
270 emit_add2_insn (rtx x, rtx y)
272 rtx insn;
274 insn = emit_add3_insn (x, x, y);
275 if (insn == NULL_RTX)
277 insn = gen_add2_insn (x, y);
278 if (insn != NULL_RTX)
279 emit_insn (insn);
281 return insn;
284 /* Target checks operands through operand predicates to recognize an
285 insn. We should have a special precaution to generate add insns
286 which are frequent results of elimination.
288 Emit insns for x = y + z. X can be used to store intermediate
289 values and should be not in Y and Z when we use X to store an
290 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
291 + disp] where base and index are registers, disp and scale are
292 constants. Y should contain base if it is present, Z should
293 contain disp if any. index[*scale] can be part of Y or Z. */
294 void
295 lra_emit_add (rtx x, rtx y, rtx z)
297 int old;
298 rtx insn, last;
299 rtx a1, a2, base, index, disp, scale, index_scale;
300 bool ok_p;
302 insn = emit_add3_insn (x, y, z);
303 old = max_reg_num ();
304 if (insn != NULL_RTX)
306 else
308 disp = a2 = NULL_RTX;
309 if (GET_CODE (y) == PLUS)
311 a1 = XEXP (y, 0);
312 a2 = XEXP (y, 1);
313 disp = z;
315 else
317 a1 = y;
318 if (CONSTANT_P (z))
319 disp = z;
320 else
321 a2 = z;
323 index_scale = scale = NULL_RTX;
324 if (GET_CODE (a1) == MULT)
326 index_scale = a1;
327 index = XEXP (a1, 0);
328 scale = XEXP (a1, 1);
329 base = a2;
331 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
333 index_scale = a2;
334 index = XEXP (a2, 0);
335 scale = XEXP (a2, 1);
336 base = a1;
338 else
340 base = a1;
341 index = a2;
343 if (! REG_P (base)
344 || (index != NULL_RTX && ! REG_P (index))
345 || (disp != NULL_RTX && ! CONSTANT_P (disp))
346 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
348 /* Probably we have no 3 op add. Last chance is to use 2-op
349 add insn. To succeed, don't move Z to X as an address
350 segment always comes in Y. Otherwise, we might fail when
351 adding the address segment to register. */
352 lra_assert (x != y && x != z);
353 emit_move_insn (x, y);
354 insn = emit_add2_insn (x, z);
355 lra_assert (insn != NULL_RTX);
357 else
359 if (index_scale == NULL_RTX)
360 index_scale = index;
361 if (disp == NULL_RTX)
363 /* Generate x = index_scale; x = x + base. */
364 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
365 emit_move_insn (x, index_scale);
366 insn = emit_add2_insn (x, base);
367 lra_assert (insn != NULL_RTX);
369 else if (scale == NULL_RTX)
371 /* Try x = base + disp. */
372 lra_assert (base != NULL_RTX);
373 last = get_last_insn ();
374 insn = emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base),
375 base, disp));
376 if (recog_memoized (insn) < 0)
378 delete_insns_since (last);
379 /* Generate x = disp; x = x + base. */
380 emit_move_insn (x, disp);
381 insn = emit_add2_insn (x, base);
382 lra_assert (insn != NULL_RTX);
384 /* Generate x = x + index. */
385 if (index != NULL_RTX)
387 insn = emit_add2_insn (x, index);
388 lra_assert (insn != NULL_RTX);
391 else
393 /* Try x = index_scale; x = x + disp; x = x + base. */
394 last = get_last_insn ();
395 insn = emit_move_insn (x, index_scale);
396 ok_p = false;
397 if (recog_memoized (insn) >= 0)
399 insn = emit_add2_insn (x, disp);
400 if (insn != NULL_RTX)
402 insn = emit_add2_insn (x, disp);
403 if (insn != NULL_RTX)
404 ok_p = true;
407 if (! ok_p)
409 delete_insns_since (last);
410 /* Generate x = disp; x = x + base; x = x + index_scale. */
411 emit_move_insn (x, disp);
412 insn = emit_add2_insn (x, base);
413 lra_assert (insn != NULL_RTX);
414 insn = emit_add2_insn (x, index_scale);
415 lra_assert (insn != NULL_RTX);
420 /* Functions emit_... can create pseudos -- so expand the pseudo
421 data. */
422 if (old != max_reg_num ())
423 expand_reg_data (old);
426 /* The number of emitted reload insns so far. */
427 int lra_curr_reload_num;
429 /* Emit x := y, processing special case when y = u + v or y = u + v *
430 scale + w through emit_add (Y can be an address which is base +
431 index reg * scale + displacement in general case). X may be used
432 as intermediate result therefore it should be not in Y. */
433 void
434 lra_emit_move (rtx x, rtx y)
436 int old;
438 if (GET_CODE (y) != PLUS)
440 if (rtx_equal_p (x, y))
441 return;
442 old = max_reg_num ();
443 emit_move_insn (x, y);
444 if (REG_P (x))
445 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
446 /* Function emit_move can create pseudos -- so expand the pseudo
447 data. */
448 if (old != max_reg_num ())
449 expand_reg_data (old);
450 return;
452 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
455 /* Update insn operands which are duplication of operands whose
456 numbers are in array of NOPS (with end marker -1). The insn is
457 represented by its LRA internal representation ID. */
458 void
459 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
461 int i, j, nop;
462 struct lra_static_insn_data *static_id = id->insn_static_data;
464 for (i = 0; i < static_id->n_dups; i++)
465 for (j = 0; (nop = nops[j]) >= 0; j++)
466 if (static_id->dup_num[i] == nop)
467 *id->dup_loc[i] = *id->operand_loc[nop];
472 /* This page contains code dealing with info about registers in the
473 insns. */
475 /* Pools for insn reg info. */
476 static alloc_pool insn_reg_pool;
478 /* Initiate pool for insn reg info. */
479 static void
480 init_insn_regs (void)
482 insn_reg_pool
483 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100);
486 /* Create LRA insn related info about a reference to REGNO in INSN with
487 TYPE (in/out/inout), biggest reference mode MODE, flag that it is
488 reference through subreg (SUBREG_P), flag that is early clobbered
489 in the insn (EARLY_CLOBBER), and reference to the next insn reg
490 info (NEXT). */
491 static struct lra_insn_reg *
492 new_insn_reg (rtx insn, int regno, enum op_type type, enum machine_mode mode,
493 bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
495 struct lra_insn_reg *ir;
497 ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool);
498 ir->type = type;
499 ir->biggest_mode = mode;
500 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode)
501 && NONDEBUG_INSN_P (insn))
502 lra_reg_info[regno].biggest_mode = mode;
503 ir->subreg_p = subreg_p;
504 ir->early_clobber = early_clobber;
505 ir->regno = regno;
506 ir->next = next;
507 return ir;
510 /* Free insn reg info IR. */
511 static void
512 free_insn_reg (struct lra_insn_reg *ir)
514 pool_free (insn_reg_pool, ir);
517 /* Free insn reg info list IR. */
518 static void
519 free_insn_regs (struct lra_insn_reg *ir)
521 struct lra_insn_reg *next_ir;
523 for (; ir != NULL; ir = next_ir)
525 next_ir = ir->next;
526 free_insn_reg (ir);
530 /* Finish pool for insn reg info. */
531 static void
532 finish_insn_regs (void)
534 free_alloc_pool (insn_reg_pool);
539 /* This page contains code dealing LRA insn info (or in other words
540 LRA internal insn representation). */
542 struct target_lra_int default_target_lra_int;
543 #if SWITCHABLE_TARGET
544 struct target_lra_int *this_target_lra_int = &default_target_lra_int;
545 #endif
547 /* Map INSN_CODE -> the static insn data. This info is valid during
548 all translation unit. */
549 struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE];
551 /* Debug insns are represented as a special insn with one input
552 operand which is RTL expression in var_location. */
554 /* The following data are used as static insn operand data for all
555 debug insns. If structure lra_operand_data is changed, the
556 initializer should be changed too. */
557 static struct lra_operand_data debug_operand_data =
559 NULL, /* alternative */
560 VOIDmode, /* We are not interesting in the operand mode. */
561 OP_IN,
562 0, 0, 0, 0
565 /* The following data are used as static insn data for all debug
566 insns. If structure lra_static_insn_data is changed, the
567 initializer should be changed too. */
568 static struct lra_static_insn_data debug_insn_static_data =
570 &debug_operand_data,
571 0, /* Duplication operands #. */
572 -1, /* Commutative operand #. */
573 1, /* Operands #. There is only one operand which is debug RTL
574 expression. */
575 0, /* Duplications #. */
576 0, /* Alternatives #. We are not interesting in alternatives
577 because we does not proceed debug_insns for reloads. */
578 NULL, /* Hard registers referenced in machine description. */
579 NULL /* Descriptions of operands in alternatives. */
582 /* Called once per compiler work to initialize some LRA data related
583 to insns. */
584 static void
585 init_insn_code_data_once (void)
587 memset (insn_code_data, 0, sizeof (insn_code_data));
588 memset (op_alt_data, 0, sizeof (op_alt_data));
591 /* Called once per compiler work to finalize some LRA data related to
592 insns. */
593 static void
594 finish_insn_code_data_once (void)
596 int i;
598 for (i = 0; i < LAST_INSN_CODE; i++)
600 if (insn_code_data[i] != NULL)
601 free (insn_code_data[i]);
602 if (op_alt_data[i] != NULL)
603 free (op_alt_data[i]);
607 /* Initialize LRA info about operands in insn alternatives. */
608 static void
609 init_op_alt_data (void)
611 int i;
613 for (i = 0; i < LAST_INSN_CODE; i++)
614 if (op_alt_data[i] != NULL)
616 free (op_alt_data[i]);
617 op_alt_data[i] = NULL;
621 /* Return static insn data, allocate and setup if necessary. Although
622 dup_num is static data (it depends only on icode), to set it up we
623 need to extract insn first. So recog_data should be valid for
624 normal insn (ICODE >= 0) before the call. */
625 static struct lra_static_insn_data *
626 get_static_insn_data (int icode, int nop, int ndup, int nalt)
628 struct lra_static_insn_data *data;
629 size_t n_bytes;
631 lra_assert (icode < LAST_INSN_CODE);
632 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
633 return data;
634 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
635 n_bytes = sizeof (struct lra_static_insn_data)
636 + sizeof (struct lra_operand_data) * nop
637 + sizeof (int) * ndup;
638 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
639 data->n_operands = nop;
640 data->n_dups = ndup;
641 data->n_alternatives = nalt;
642 data->operand = ((struct lra_operand_data *)
643 ((char *) data + sizeof (struct lra_static_insn_data)));
644 data->dup_num = ((int *) ((char *) data->operand
645 + sizeof (struct lra_operand_data) * nop));
646 if (icode >= 0)
648 int i;
650 insn_code_data[icode] = data;
651 for (i = 0; i < nop; i++)
653 data->operand[i].constraint
654 = insn_data[icode].operand[i].constraint;
655 data->operand[i].mode = insn_data[icode].operand[i].mode;
656 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
657 data->operand[i].is_operator
658 = insn_data[icode].operand[i].is_operator;
659 data->operand[i].type
660 = (data->operand[i].constraint[0] == '=' ? OP_OUT
661 : data->operand[i].constraint[0] == '+' ? OP_INOUT
662 : OP_IN);
663 data->operand[i].is_address = false;
665 for (i = 0; i < ndup; i++)
666 data->dup_num[i] = recog_data.dup_num[i];
668 return data;
671 /* The current length of the following array. */
672 int lra_insn_recog_data_len;
674 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
675 lra_insn_recog_data_t *lra_insn_recog_data;
677 /* Initialize LRA data about insns. */
678 static void
679 init_insn_recog_data (void)
681 lra_insn_recog_data_len = 0;
682 lra_insn_recog_data = NULL;
683 init_insn_regs ();
686 /* Expand, if necessary, LRA data about insns. */
687 static void
688 check_and_expand_insn_recog_data (int index)
690 int i, old;
692 if (lra_insn_recog_data_len > index)
693 return;
694 old = lra_insn_recog_data_len;
695 lra_insn_recog_data_len = index * 3 / 2 + 1;
696 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
697 lra_insn_recog_data,
698 lra_insn_recog_data_len);
699 for (i = old; i < lra_insn_recog_data_len; i++)
700 lra_insn_recog_data[i] = NULL;
703 /* Finish LRA DATA about insn. */
704 static void
705 free_insn_recog_data (lra_insn_recog_data_t data)
707 if (data->operand_loc != NULL)
708 free (data->operand_loc);
709 if (data->dup_loc != NULL)
710 free (data->dup_loc);
711 if (data->arg_hard_regs != NULL)
712 free (data->arg_hard_regs);
713 if (HAVE_ATTR_enabled && data->alternative_enabled_p != NULL)
714 free (data->alternative_enabled_p);
715 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
717 if (data->insn_static_data->operand_alternative != NULL)
718 free (data->insn_static_data->operand_alternative);
719 free_insn_regs (data->insn_static_data->hard_regs);
720 free (data->insn_static_data);
722 free_insn_regs (data->regs);
723 data->regs = NULL;
724 free (data);
727 /* Finish LRA data about all insns. */
728 static void
729 finish_insn_recog_data (void)
731 int i;
732 lra_insn_recog_data_t data;
734 for (i = 0; i < lra_insn_recog_data_len; i++)
735 if ((data = lra_insn_recog_data[i]) != NULL)
736 free_insn_recog_data (data);
737 finish_insn_regs ();
738 free (lra_insn_recog_data);
741 /* Setup info about operands in alternatives of LRA DATA of insn. */
742 static void
743 setup_operand_alternative (lra_insn_recog_data_t data)
745 int i, nop, nalt;
746 int icode = data->icode;
747 struct lra_static_insn_data *static_data = data->insn_static_data;
749 if (icode >= 0
750 && (static_data->operand_alternative = op_alt_data[icode]) != NULL)
751 return;
752 static_data->commutative = -1;
753 nop = static_data->n_operands;
754 if (nop == 0)
756 static_data->operand_alternative = NULL;
757 return;
759 nalt = static_data->n_alternatives;
760 static_data->operand_alternative = XNEWVEC (struct operand_alternative,
761 nalt * nop);
762 memset (static_data->operand_alternative, 0,
763 nalt * nop * sizeof (struct operand_alternative));
764 if (icode >= 0)
765 op_alt_data[icode] = static_data->operand_alternative;
766 for (i = 0; i < nop; i++)
768 int j;
769 struct operand_alternative *op_alt_start, *op_alt;
770 const char *p = static_data->operand[i].constraint;
772 static_data->operand[i].early_clobber = 0;
773 op_alt_start = &static_data->operand_alternative[i];
775 for (j = 0; j < nalt; j++)
777 op_alt = op_alt_start + j * nop;
778 op_alt->cl = NO_REGS;
779 op_alt->constraint = p;
780 op_alt->matches = -1;
781 op_alt->matched = -1;
783 if (*p == '\0' || *p == ',')
785 op_alt->anything_ok = 1;
786 continue;
789 for (;;)
791 char c = *p;
792 if (c == '#')
794 c = *++p;
795 while (c != ',' && c != '\0');
796 if (c == ',' || c == '\0')
798 p++;
799 break;
802 switch (c)
804 case '=': case '+': case '*':
805 case 'E': case 'F': case 'G': case 'H':
806 case 's': case 'i': case 'n':
807 case 'I': case 'J': case 'K': case 'L':
808 case 'M': case 'N': case 'O': case 'P':
809 /* These don't say anything we care about. */
810 break;
812 case '%':
813 /* We currently only support one commutative pair of
814 operands. */
815 if (static_data->commutative < 0)
816 static_data->commutative = i;
817 else
818 lra_assert (data->icode < 0); /* Asm */
820 /* The last operand should not be marked
821 commutative. */
822 lra_assert (i != nop - 1);
823 break;
825 case '?':
826 op_alt->reject += LRA_LOSER_COST_FACTOR;
827 break;
828 case '!':
829 op_alt->reject += LRA_MAX_REJECT;
830 break;
831 case '&':
832 op_alt->earlyclobber = 1;
833 static_data->operand[i].early_clobber = 1;
834 break;
836 case '0': case '1': case '2': case '3': case '4':
837 case '5': case '6': case '7': case '8': case '9':
839 char *end;
840 op_alt->matches = strtoul (p, &end, 10);
841 static_data->operand_alternative
842 [j * nop + op_alt->matches].matched = i;
843 p = end;
845 continue;
847 case TARGET_MEM_CONSTRAINT:
848 op_alt->memory_ok = 1;
849 break;
850 case '<':
851 op_alt->decmem_ok = 1;
852 break;
853 case '>':
854 op_alt->incmem_ok = 1;
855 break;
856 case 'V':
857 op_alt->nonoffmem_ok = 1;
858 break;
859 case 'o':
860 op_alt->offmem_ok = 1;
861 break;
862 case 'X':
863 op_alt->anything_ok = 1;
864 break;
866 case 'p':
867 static_data->operand[i].is_address = true;
868 op_alt->is_address = 1;
869 op_alt->cl = (reg_class_subunion[(int) op_alt->cl]
870 [(int) base_reg_class (VOIDmode,
871 ADDR_SPACE_GENERIC,
872 ADDRESS, SCRATCH)]);
873 break;
875 case 'g':
876 case 'r':
877 op_alt->cl =
878 reg_class_subunion[(int) op_alt->cl][(int) GENERAL_REGS];
879 break;
881 default:
882 if (EXTRA_MEMORY_CONSTRAINT (c, p))
884 op_alt->memory_ok = 1;
885 break;
887 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
889 static_data->operand[i].is_address = true;
890 op_alt->is_address = 1;
891 op_alt->cl
892 = (reg_class_subunion
893 [(int) op_alt->cl]
894 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
895 ADDRESS, SCRATCH)]);
896 break;
899 op_alt->cl
900 = (reg_class_subunion
901 [(int) op_alt->cl]
902 [(int)
903 REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
904 break;
906 p += CONSTRAINT_LEN (c, p);
912 /* Recursively process X and collect info about registers, which are
913 not the insn operands, in X with TYPE (in/out/inout) and flag that
914 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
915 to LIST. X is a part of insn given by DATA. Return the result
916 list. */
917 static struct lra_insn_reg *
918 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
919 struct lra_insn_reg *list,
920 enum op_type type, bool early_clobber)
922 int i, j, regno, last;
923 bool subreg_p;
924 enum machine_mode mode;
925 struct lra_insn_reg *curr;
926 rtx op = *x;
927 enum rtx_code code = GET_CODE (op);
928 const char *fmt = GET_RTX_FORMAT (code);
930 for (i = 0; i < data->insn_static_data->n_operands; i++)
931 if (x == data->operand_loc[i])
932 /* It is an operand loc. Stop here. */
933 return list;
934 for (i = 0; i < data->insn_static_data->n_dups; i++)
935 if (x == data->dup_loc[i])
936 /* It is a dup loc. Stop here. */
937 return list;
938 mode = GET_MODE (op);
939 subreg_p = false;
940 if (code == SUBREG)
942 op = SUBREG_REG (op);
943 code = GET_CODE (op);
944 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
946 mode = GET_MODE (op);
947 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
948 subreg_p = true;
951 if (REG_P (op))
953 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
954 return list;
955 for (last = regno + hard_regno_nregs[regno][mode];
956 regno < last;
957 regno++)
958 if (! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
959 || TEST_HARD_REG_BIT (eliminable_regset, regno))
961 for (curr = list; curr != NULL; curr = curr->next)
962 if (curr->regno == regno && curr->subreg_p == subreg_p
963 && curr->biggest_mode == mode)
965 if (curr->type != type)
966 curr->type = OP_INOUT;
967 if (curr->early_clobber != early_clobber)
968 curr->early_clobber = true;
969 break;
971 if (curr == NULL)
973 /* This is a new hard regno or the info can not be
974 integrated into the found structure. */
975 #ifdef STACK_REGS
976 early_clobber
977 = (early_clobber
978 /* This clobber is to inform popping floating
979 point stack only. */
980 && ! (FIRST_STACK_REG <= regno
981 && regno <= LAST_STACK_REG));
982 #endif
983 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
984 early_clobber, list);
987 return list;
989 switch (code)
991 case SET:
992 list = collect_non_operand_hard_regs (&SET_DEST (op), data,
993 list, OP_OUT, false);
994 list = collect_non_operand_hard_regs (&SET_SRC (op), data,
995 list, OP_IN, false);
996 break;
997 case CLOBBER:
998 /* We treat clobber of non-operand hard registers as early
999 clobber (the behavior is expected from asm). */
1000 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1001 list, OP_OUT, true);
1002 break;
1003 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1004 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1005 list, OP_INOUT, false);
1006 break;
1007 case PRE_MODIFY: case POST_MODIFY:
1008 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1009 list, OP_INOUT, false);
1010 list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
1011 list, OP_IN, false);
1012 break;
1013 default:
1014 fmt = GET_RTX_FORMAT (code);
1015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1017 if (fmt[i] == 'e')
1018 list = collect_non_operand_hard_regs (&XEXP (op, i), data,
1019 list, OP_IN, false);
1020 else if (fmt[i] == 'E')
1021 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
1022 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
1023 list, OP_IN, false);
1026 return list;
1029 /* Set up and return info about INSN. Set up the info if it is not set up
1030 yet. */
1031 lra_insn_recog_data_t
1032 lra_set_insn_recog_data (rtx insn)
1034 lra_insn_recog_data_t data;
1035 int i, n, icode;
1036 rtx **locs;
1037 unsigned int uid = INSN_UID (insn);
1038 struct lra_static_insn_data *insn_static_data;
1040 check_and_expand_insn_recog_data (uid);
1041 if (DEBUG_INSN_P (insn))
1042 icode = -1;
1043 else
1045 icode = INSN_CODE (insn);
1046 if (icode < 0)
1047 /* It might be a new simple insn which is not recognized yet. */
1048 INSN_CODE (insn) = icode = recog_memoized (insn);
1050 data = XNEW (struct lra_insn_recog_data);
1051 lra_insn_recog_data[uid] = data;
1052 data->insn = insn;
1053 data->used_insn_alternative = -1;
1054 data->icode = icode;
1055 data->regs = NULL;
1056 if (DEBUG_INSN_P (insn))
1058 data->insn_static_data = &debug_insn_static_data;
1059 data->dup_loc = NULL;
1060 data->arg_hard_regs = NULL;
1061 data->alternative_enabled_p = NULL;
1062 data->operand_loc = XNEWVEC (rtx *, 1);
1063 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
1064 return data;
1066 if (icode < 0)
1068 int nop;
1069 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1070 const char *constraints[MAX_RECOG_OPERANDS];
1072 nop = asm_noperands (PATTERN (insn));
1073 data->operand_loc = data->dup_loc = NULL;
1074 if (nop < 0)
1075 /* Its is a special insn like USE or CLOBBER. */
1076 data->insn_static_data = insn_static_data
1077 = get_static_insn_data (-1, 0, 0, 1);
1078 else
1080 /* expand_asm_operands makes sure there aren't too many
1081 operands. */
1082 lra_assert (nop <= MAX_RECOG_OPERANDS);
1083 if (nop != 0)
1084 data->operand_loc = XNEWVEC (rtx *, nop);
1085 /* Now get the operand values and constraints out of the
1086 insn. */
1087 decode_asm_operands (PATTERN (insn), NULL,
1088 data->operand_loc,
1089 constraints, operand_mode, NULL);
1090 n = 1;
1091 if (nop > 0)
1093 const char *p = recog_data.constraints[0];
1095 for (p = constraints[0]; *p; p++)
1096 n += *p == ',';
1098 data->insn_static_data = insn_static_data
1099 = get_static_insn_data (-1, nop, 0, n);
1100 for (i = 0; i < nop; i++)
1102 insn_static_data->operand[i].mode = operand_mode[i];
1103 insn_static_data->operand[i].constraint = constraints[i];
1104 insn_static_data->operand[i].strict_low = false;
1105 insn_static_data->operand[i].is_operator = false;
1106 insn_static_data->operand[i].is_address = false;
1109 for (i = 0; i < insn_static_data->n_operands; i++)
1110 insn_static_data->operand[i].type
1111 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1112 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1113 : OP_IN);
1114 data->alternative_enabled_p = NULL;
1116 else
1118 insn_extract (insn);
1119 data->insn_static_data = insn_static_data
1120 = get_static_insn_data (icode, insn_data[icode].n_operands,
1121 insn_data[icode].n_dups,
1122 insn_data[icode].n_alternatives);
1123 n = insn_static_data->n_operands;
1124 if (n == 0)
1125 locs = NULL;
1126 else
1128 locs = XNEWVEC (rtx *, n);
1129 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1131 data->operand_loc = locs;
1132 n = insn_static_data->n_dups;
1133 if (n == 0)
1134 locs = NULL;
1135 else
1137 locs = XNEWVEC (rtx *, n);
1138 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1140 data->dup_loc = locs;
1141 if (HAVE_ATTR_enabled)
1143 bool *bp;
1145 n = insn_static_data->n_alternatives;
1146 lra_assert (n >= 0);
1147 data->alternative_enabled_p = bp = XNEWVEC (bool, n);
1148 /* Cache the insn because we don't want to call extract_insn
1149 from get_attr_enabled as extract_insn modifies
1150 which_alternative. The attribute enabled should not depend
1151 on insn operands, operand modes, operand types, and operand
1152 constraints. It should depend on the architecture. If it
1153 is not true, we should rewrite this file code to use
1154 extract_insn instead of less expensive insn_extract. */
1155 recog_data.insn = insn;
1156 for (i = 0; i < n; i++)
1158 which_alternative = i;
1159 bp[i] = get_attr_enabled (insn);
1163 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1164 insn_static_data->hard_regs = NULL;
1165 else
1166 insn_static_data->hard_regs
1167 = collect_non_operand_hard_regs (&PATTERN (insn), data,
1168 NULL, OP_IN, false);
1169 setup_operand_alternative (data);
1170 data->arg_hard_regs = NULL;
1171 if (CALL_P (insn))
1173 rtx link;
1174 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1176 n_hard_regs = 0;
1177 /* Finding implicit hard register usage. We believe it will be
1178 not changed whatever transformations are used. Call insns
1179 are such example. */
1180 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1181 link != NULL_RTX;
1182 link = XEXP (link, 1))
1183 if (GET_CODE (XEXP (link, 0)) == USE
1184 && REG_P (XEXP (XEXP (link, 0), 0)))
1186 regno = REGNO (XEXP (XEXP (link, 0), 0));
1187 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1188 /* It is an argument register. */
1189 for (i = (hard_regno_nregs
1190 [regno][GET_MODE (XEXP (XEXP (link, 0), 0))]) - 1;
1191 i >= 0;
1192 i--)
1193 arg_hard_regs[n_hard_regs++] = regno + i;
1195 if (n_hard_regs != 0)
1197 arg_hard_regs[n_hard_regs++] = -1;
1198 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1199 memcpy (data->arg_hard_regs, arg_hard_regs,
1200 sizeof (int) * n_hard_regs);
1203 /* Some output operand can be recognized only from the context not
1204 from the constraints which are empty in this case. Call insn may
1205 contain a hard register in set destination with empty constraint
1206 and extract_insn treats them as an input. */
1207 for (i = 0; i < insn_static_data->n_operands; i++)
1209 int j;
1210 rtx pat, set;
1211 struct lra_operand_data *operand = &insn_static_data->operand[i];
1213 /* ??? Should we treat 'X' the same way. It looks to me that
1214 'X' means anything and empty constraint means we do not
1215 care. */
1216 if (operand->type != OP_IN || *operand->constraint != '\0'
1217 || operand->is_operator)
1218 continue;
1219 pat = PATTERN (insn);
1220 if (GET_CODE (pat) == SET)
1222 if (data->operand_loc[i] != &SET_DEST (pat))
1223 continue;
1225 else if (GET_CODE (pat) == PARALLEL)
1227 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1229 set = XVECEXP (PATTERN (insn), 0, j);
1230 if (GET_CODE (set) == SET
1231 && &SET_DEST (set) == data->operand_loc[i])
1232 break;
1234 if (j < 0)
1235 continue;
1237 else
1238 continue;
1239 operand->type = OP_OUT;
1241 return data;
1244 /* Return info about insn give by UID. The info should be already set
1245 up. */
1246 static lra_insn_recog_data_t
1247 get_insn_recog_data_by_uid (int uid)
1249 lra_insn_recog_data_t data;
1251 data = lra_insn_recog_data[uid];
1252 lra_assert (data != NULL);
1253 return data;
1256 /* Invalidate all info about insn given by its UID. */
1257 static void
1258 invalidate_insn_recog_data (int uid)
1260 lra_insn_recog_data_t data;
1262 data = lra_insn_recog_data[uid];
1263 lra_assert (data != NULL);
1264 free_insn_recog_data (data);
1265 lra_insn_recog_data[uid] = NULL;
1268 /* Update all the insn info about INSN. It is usually called when
1269 something in the insn was changed. Return the updated info. */
1270 lra_insn_recog_data_t
1271 lra_update_insn_recog_data (rtx insn)
1273 lra_insn_recog_data_t data;
1274 int n;
1275 unsigned int uid = INSN_UID (insn);
1276 struct lra_static_insn_data *insn_static_data;
1277 HOST_WIDE_INT sp_offset = 0;
1279 check_and_expand_insn_recog_data (uid);
1280 if ((data = lra_insn_recog_data[uid]) != NULL
1281 && data->icode != INSN_CODE (insn))
1283 sp_offset = data->sp_offset;
1284 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1285 invalidate_insn_recog_data (uid);
1286 data = NULL;
1288 if (data == NULL)
1290 data = lra_get_insn_recog_data (insn);
1291 /* Initiate or restore SP offset. */
1292 data->sp_offset = sp_offset;
1293 return data;
1295 insn_static_data = data->insn_static_data;
1296 data->used_insn_alternative = -1;
1297 if (DEBUG_INSN_P (insn))
1298 return data;
1299 if (data->icode < 0)
1301 int nop;
1302 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1303 const char *constraints[MAX_RECOG_OPERANDS];
1305 nop = asm_noperands (PATTERN (insn));
1306 if (nop >= 0)
1308 lra_assert (nop == data->insn_static_data->n_operands);
1309 /* Now get the operand values and constraints out of the
1310 insn. */
1311 decode_asm_operands (PATTERN (insn), NULL,
1312 data->operand_loc,
1313 constraints, operand_mode, NULL);
1314 #ifdef ENABLE_CHECKING
1316 int i;
1318 for (i = 0; i < nop; i++)
1319 lra_assert
1320 (insn_static_data->operand[i].mode == operand_mode[i]
1321 && insn_static_data->operand[i].constraint == constraints[i]
1322 && ! insn_static_data->operand[i].is_operator);
1324 #endif
1326 #ifdef ENABLE_CHECKING
1328 int i;
1330 for (i = 0; i < insn_static_data->n_operands; i++)
1331 lra_assert
1332 (insn_static_data->operand[i].type
1333 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1334 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1335 : OP_IN));
1337 #endif
1339 else
1341 insn_extract (insn);
1342 n = insn_static_data->n_operands;
1343 if (n != 0)
1344 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1345 n = insn_static_data->n_dups;
1346 if (n != 0)
1347 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1348 #if HAVE_ATTR_enabled
1349 #ifdef ENABLE_CHECKING
1351 int i;
1352 bool *bp;
1354 n = insn_static_data->n_alternatives;
1355 bp = data->alternative_enabled_p;
1356 lra_assert (n >= 0 && bp != NULL);
1357 /* Cache the insn to prevent extract_insn call from
1358 get_attr_enabled. */
1359 recog_data.insn = insn;
1360 for (i = 0; i < n; i++)
1362 which_alternative = i;
1363 lra_assert (bp[i] == get_attr_enabled (insn));
1366 #endif
1367 #endif
1369 return data;
1372 /* Set up that INSN is using alternative ALT now. */
1373 void
1374 lra_set_used_insn_alternative (rtx insn, int alt)
1376 lra_insn_recog_data_t data;
1378 data = lra_get_insn_recog_data (insn);
1379 data->used_insn_alternative = alt;
1382 /* Set up that insn with UID is using alternative ALT now. The insn
1383 info should be already set up. */
1384 void
1385 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1387 lra_insn_recog_data_t data;
1389 check_and_expand_insn_recog_data (uid);
1390 data = lra_insn_recog_data[uid];
1391 lra_assert (data != NULL);
1392 data->used_insn_alternative = alt;
1397 /* This page contains code dealing with common register info and
1398 pseudo copies. */
1400 /* The size of the following array. */
1401 static int reg_info_size;
1402 /* Common info about each register. */
1403 struct lra_reg *lra_reg_info;
1405 /* Last register value. */
1406 static int last_reg_value;
1408 /* Return new register value. */
1409 static int
1410 get_new_reg_value (void)
1412 return ++last_reg_value;
1415 /* Pools for copies. */
1416 static alloc_pool copy_pool;
1418 /* Vec referring to pseudo copies. */
1419 static vec<lra_copy_t> copy_vec;
1421 /* Initialize I-th element of lra_reg_info. */
1422 static inline void
1423 initialize_lra_reg_info_element (int i)
1425 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1426 #ifdef STACK_REGS
1427 lra_reg_info[i].no_stack_p = false;
1428 #endif
1429 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1430 lra_reg_info[i].preferred_hard_regno1 = -1;
1431 lra_reg_info[i].preferred_hard_regno2 = -1;
1432 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1433 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1434 lra_reg_info[i].biggest_mode = VOIDmode;
1435 lra_reg_info[i].live_ranges = NULL;
1436 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1437 lra_reg_info[i].last_reload = 0;
1438 lra_reg_info[i].restore_regno = -1;
1439 lra_reg_info[i].val = get_new_reg_value ();
1440 lra_reg_info[i].offset = 0;
1441 lra_reg_info[i].copies = NULL;
1444 /* Initialize common reg info and copies. */
1445 static void
1446 init_reg_info (void)
1448 int i;
1450 last_reg_value = 0;
1451 reg_info_size = max_reg_num () * 3 / 2 + 1;
1452 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1453 for (i = 0; i < reg_info_size; i++)
1454 initialize_lra_reg_info_element (i);
1455 copy_pool
1456 = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100);
1457 copy_vec.create (100);
1461 /* Finish common reg info and copies. */
1462 static void
1463 finish_reg_info (void)
1465 int i;
1467 for (i = 0; i < reg_info_size; i++)
1468 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1469 free (lra_reg_info);
1470 reg_info_size = 0;
1471 free_alloc_pool (copy_pool);
1472 copy_vec.release ();
1475 /* Expand common reg info if it is necessary. */
1476 static void
1477 expand_reg_info (void)
1479 int i, old = reg_info_size;
1481 if (reg_info_size > max_reg_num ())
1482 return;
1483 reg_info_size = max_reg_num () * 3 / 2 + 1;
1484 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1485 for (i = old; i < reg_info_size; i++)
1486 initialize_lra_reg_info_element (i);
1489 /* Free all copies. */
1490 void
1491 lra_free_copies (void)
1493 lra_copy_t cp;
1495 while (copy_vec.length () != 0)
1497 cp = copy_vec.pop ();
1498 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1499 pool_free (copy_pool, cp);
1503 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1504 frequency is FREQ. */
1505 void
1506 lra_create_copy (int regno1, int regno2, int freq)
1508 bool regno1_dest_p;
1509 lra_copy_t cp;
1511 lra_assert (regno1 != regno2);
1512 regno1_dest_p = true;
1513 if (regno1 > regno2)
1515 int temp = regno2;
1517 regno1_dest_p = false;
1518 regno2 = regno1;
1519 regno1 = temp;
1521 cp = (lra_copy_t) pool_alloc (copy_pool);
1522 copy_vec.safe_push (cp);
1523 cp->regno1_dest_p = regno1_dest_p;
1524 cp->freq = freq;
1525 cp->regno1 = regno1;
1526 cp->regno2 = regno2;
1527 cp->regno1_next = lra_reg_info[regno1].copies;
1528 lra_reg_info[regno1].copies = cp;
1529 cp->regno2_next = lra_reg_info[regno2].copies;
1530 lra_reg_info[regno2].copies = cp;
1531 if (lra_dump_file != NULL)
1532 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1533 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1536 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1537 NULL. */
1538 lra_copy_t
1539 lra_get_copy (int n)
1541 if (n >= (int) copy_vec.length ())
1542 return NULL;
1543 return copy_vec[n];
1548 /* This page contains code dealing with info about registers in
1549 insns. */
1551 /* Process X of insn UID recursively and add info (operand type is
1552 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1553 about registers in X to the insn DATA. */
1554 static void
1555 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1556 enum op_type type, bool early_clobber)
1558 int i, j, regno;
1559 bool subreg_p;
1560 enum machine_mode mode;
1561 const char *fmt;
1562 enum rtx_code code;
1563 struct lra_insn_reg *curr;
1565 code = GET_CODE (x);
1566 mode = GET_MODE (x);
1567 subreg_p = false;
1568 if (GET_CODE (x) == SUBREG)
1570 x = SUBREG_REG (x);
1571 code = GET_CODE (x);
1572 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1574 mode = GET_MODE (x);
1575 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1576 subreg_p = true;
1579 if (REG_P (x))
1581 regno = REGNO (x);
1582 if (regno < FIRST_PSEUDO_REGISTER
1583 && TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
1584 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
1585 return;
1586 expand_reg_info ();
1587 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1589 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1590 early_clobber, data->regs);
1591 return;
1593 else
1595 for (curr = data->regs; curr != NULL; curr = curr->next)
1596 if (curr->regno == regno)
1598 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1599 /* The info can not be integrated into the found
1600 structure. */
1601 data->regs = new_insn_reg (data->insn, regno, type, mode,
1602 subreg_p, early_clobber,
1603 data->regs);
1604 else
1606 if (curr->type != type)
1607 curr->type = OP_INOUT;
1608 if (curr->early_clobber != early_clobber)
1609 curr->early_clobber = true;
1611 return;
1613 gcc_unreachable ();
1617 switch (code)
1619 case SET:
1620 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1621 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1622 break;
1623 case CLOBBER:
1624 /* We treat clobber of non-operand hard registers as early
1625 clobber (the behavior is expected from asm). */
1626 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1627 break;
1628 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1629 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1630 break;
1631 case PRE_MODIFY: case POST_MODIFY:
1632 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1633 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1634 break;
1635 default:
1636 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1637 /* Some targets place small structures in registers for return
1638 values of functions, and those registers are wrapped in
1639 PARALLEL that we may see as the destination of a SET. Here
1640 is an example:
1642 (call_insn 13 12 14 2 (set (parallel:BLK [
1643 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1644 (const_int 0 [0]))
1645 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1646 (const_int 8 [0x8]))
1648 (call (mem:QI (symbol_ref:DI (... */
1649 type = OP_IN;
1650 fmt = GET_RTX_FORMAT (code);
1651 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1653 if (fmt[i] == 'e')
1654 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1655 else if (fmt[i] == 'E')
1657 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1658 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1659 type, false);
1665 /* Return execution frequency of INSN. */
1666 static int
1667 get_insn_freq (rtx insn)
1669 basic_block bb = BLOCK_FOR_INSN (insn);
1671 gcc_checking_assert (bb != NULL);
1672 return REG_FREQ_FROM_BB (bb);
1675 /* Invalidate all reg info of INSN with DATA and execution frequency
1676 FREQ. Update common info about the invalidated registers. */
1677 static void
1678 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx insn,
1679 int freq)
1681 int uid;
1682 bool debug_p;
1683 unsigned int i;
1684 struct lra_insn_reg *ir, *next_ir;
1686 uid = INSN_UID (insn);
1687 debug_p = DEBUG_INSN_P (insn);
1688 for (ir = data->regs; ir != NULL; ir = next_ir)
1690 i = ir->regno;
1691 next_ir = ir->next;
1692 free_insn_reg (ir);
1693 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1694 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1696 lra_reg_info[i].nrefs--;
1697 lra_reg_info[i].freq -= freq;
1698 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1701 data->regs = NULL;
1704 /* Invalidate all reg info of INSN. Update common info about the
1705 invalidated registers. */
1706 void
1707 lra_invalidate_insn_regno_info (rtx insn)
1709 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1710 get_insn_freq (insn));
1713 /* Update common reg info from reg info of insn given by its DATA and
1714 execution frequency FREQ. */
1715 static void
1716 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1718 unsigned int i;
1719 struct lra_insn_reg *ir;
1721 for (ir = data->regs; ir != NULL; ir = ir->next)
1722 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1724 lra_reg_info[i].nrefs++;
1725 lra_reg_info[i].freq += freq;
1729 /* Set up insn reg info of INSN. Update common reg info from reg info
1730 of INSN. */
1731 void
1732 lra_update_insn_regno_info (rtx insn)
1734 int i, uid, freq;
1735 lra_insn_recog_data_t data;
1736 struct lra_static_insn_data *static_data;
1737 enum rtx_code code;
1739 if (! INSN_P (insn))
1740 return;
1741 data = lra_get_insn_recog_data (insn);
1742 static_data = data->insn_static_data;
1743 freq = get_insn_freq (insn);
1744 invalidate_insn_data_regno_info (data, insn, freq);
1745 uid = INSN_UID (insn);
1746 for (i = static_data->n_operands - 1; i >= 0; i--)
1747 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1748 static_data->operand[i].type,
1749 static_data->operand[i].early_clobber);
1750 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1751 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1752 code == USE ? OP_IN : OP_OUT, false);
1753 if (NONDEBUG_INSN_P (insn))
1754 setup_insn_reg_info (data, freq);
1757 /* Return reg info of insn given by it UID. */
1758 struct lra_insn_reg *
1759 lra_get_insn_regs (int uid)
1761 lra_insn_recog_data_t data;
1763 data = get_insn_recog_data_by_uid (uid);
1764 return data->regs;
1769 /* This page contains code dealing with stack of the insns which
1770 should be processed by the next constraint pass. */
1772 /* Bitmap used to put an insn on the stack only in one exemplar. */
1773 static sbitmap lra_constraint_insn_stack_bitmap;
1775 /* The stack itself. */
1776 vec<rtx> lra_constraint_insn_stack;
1778 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1779 info for INSN, otherwise only update it if INSN is not already on the
1780 stack. */
1781 static inline void
1782 lra_push_insn_1 (rtx insn, bool always_update)
1784 unsigned int uid = INSN_UID (insn);
1785 if (always_update)
1786 lra_update_insn_regno_info (insn);
1787 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1788 lra_constraint_insn_stack_bitmap =
1789 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1790 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1791 return;
1792 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1793 if (! always_update)
1794 lra_update_insn_regno_info (insn);
1795 lra_constraint_insn_stack.safe_push (insn);
1798 /* Put INSN on the stack. */
1799 void
1800 lra_push_insn (rtx insn)
1802 lra_push_insn_1 (insn, false);
1805 /* Put INSN on the stack and update its reg info. */
1806 void
1807 lra_push_insn_and_update_insn_regno_info (rtx insn)
1809 lra_push_insn_1 (insn, true);
1812 /* Put insn with UID on the stack. */
1813 void
1814 lra_push_insn_by_uid (unsigned int uid)
1816 lra_push_insn (lra_insn_recog_data[uid]->insn);
1819 /* Take the last-inserted insns off the stack and return it. */
1821 lra_pop_insn (void)
1823 rtx insn = lra_constraint_insn_stack.pop ();
1824 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1825 return insn;
1828 /* Return the current size of the insn stack. */
1829 unsigned int
1830 lra_insn_stack_length (void)
1832 return lra_constraint_insn_stack.length ();
1835 /* Push insns FROM to TO (excluding it) going in reverse order. */
1836 static void
1837 push_insns (rtx from, rtx to)
1839 rtx insn;
1841 if (from == NULL_RTX)
1842 return;
1843 for (insn = from; insn != to; insn = PREV_INSN (insn))
1844 if (INSN_P (insn))
1845 lra_push_insn (insn);
1848 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1849 taken from the next BB insn after LAST or zero if there in such
1850 insn. */
1851 static void
1852 setup_sp_offset (rtx from, rtx last)
1854 rtx before = next_nonnote_insn_bb (last);
1855 HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before)
1856 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1858 for (rtx insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1859 lra_get_insn_recog_data (insn)->sp_offset = offset;
1862 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1863 insns onto the stack. Print about emitting the insns with
1864 TITLE. */
1865 void
1866 lra_process_new_insns (rtx insn, rtx before, rtx after, const char *title)
1868 rtx last;
1870 if (before == NULL_RTX && after == NULL_RTX)
1871 return;
1872 if (lra_dump_file != NULL)
1874 dump_insn_slim (lra_dump_file, insn);
1875 if (before != NULL_RTX)
1877 fprintf (lra_dump_file," %s before:\n", title);
1878 dump_rtl_slim (lra_dump_file, before, NULL_RTX, -1, 0);
1880 if (after != NULL_RTX)
1882 fprintf (lra_dump_file, " %s after:\n", title);
1883 dump_rtl_slim (lra_dump_file, after, NULL_RTX, -1, 0);
1885 fprintf (lra_dump_file, "\n");
1887 if (before != NULL_RTX)
1889 emit_insn_before (before, insn);
1890 push_insns (PREV_INSN (insn), PREV_INSN (before));
1891 setup_sp_offset (before, PREV_INSN (insn));
1893 if (after != NULL_RTX)
1895 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1897 emit_insn_after (after, insn);
1898 push_insns (last, insn);
1899 setup_sp_offset (after, last);
1905 /* This page contains code dealing with scratches (changing them onto
1906 pseudos and restoring them from the pseudos).
1908 We change scratches into pseudos at the beginning of LRA to
1909 simplify dealing with them (conflicts, hard register assignments).
1911 If the pseudo denoting scratch was spilled it means that we do need
1912 a hard register for it. Such pseudos are transformed back to
1913 scratches at the end of LRA. */
1915 /* Description of location of a former scratch operand. */
1916 struct sloc
1918 rtx insn; /* Insn where the scratch was. */
1919 int nop; /* Number of the operand which was a scratch. */
1922 typedef struct sloc *sloc_t;
1924 /* Locations of the former scratches. */
1925 static vec<sloc_t> scratches;
1927 /* Bitmap of scratch regnos. */
1928 static bitmap_head scratch_bitmap;
1930 /* Bitmap of scratch operands. */
1931 static bitmap_head scratch_operand_bitmap;
1933 /* Return true if pseudo REGNO is made of SCRATCH. */
1934 bool
1935 lra_former_scratch_p (int regno)
1937 return bitmap_bit_p (&scratch_bitmap, regno);
1940 /* Return true if the operand NOP of INSN is a former scratch. */
1941 bool
1942 lra_former_scratch_operand_p (rtx insn, int nop)
1944 return bitmap_bit_p (&scratch_operand_bitmap,
1945 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1948 /* Change scratches onto pseudos and save their location. */
1949 static void
1950 remove_scratches (void)
1952 int i;
1953 bool insn_changed_p;
1954 basic_block bb;
1955 rtx insn, reg;
1956 sloc_t loc;
1957 lra_insn_recog_data_t id;
1958 struct lra_static_insn_data *static_id;
1960 scratches.create (get_max_uid ());
1961 bitmap_initialize (&scratch_bitmap, &reg_obstack);
1962 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
1963 FOR_EACH_BB (bb)
1964 FOR_BB_INSNS (bb, insn)
1965 if (INSN_P (insn))
1967 id = lra_get_insn_recog_data (insn);
1968 static_id = id->insn_static_data;
1969 insn_changed_p = false;
1970 for (i = 0; i < static_id->n_operands; i++)
1971 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
1972 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
1974 insn_changed_p = true;
1975 *id->operand_loc[i] = reg
1976 = lra_create_new_reg (static_id->operand[i].mode,
1977 *id->operand_loc[i], ALL_REGS, NULL);
1978 add_reg_note (insn, REG_UNUSED, reg);
1979 lra_update_dup (id, i);
1980 loc = XNEW (struct sloc);
1981 loc->insn = insn;
1982 loc->nop = i;
1983 scratches.safe_push (loc);
1984 bitmap_set_bit (&scratch_bitmap, REGNO (*id->operand_loc[i]));
1985 bitmap_set_bit (&scratch_operand_bitmap,
1986 INSN_UID (insn) * MAX_RECOG_OPERANDS + i);
1987 if (lra_dump_file != NULL)
1988 fprintf (lra_dump_file,
1989 "Removing SCRATCH in insn #%u (nop %d)\n",
1990 INSN_UID (insn), i);
1992 if (insn_changed_p)
1993 /* Because we might use DF right after caller-saves sub-pass
1994 we need to keep DF info up to date. */
1995 df_insn_rescan (insn);
1999 /* Changes pseudos created by function remove_scratches onto scratches. */
2000 static void
2001 restore_scratches (void)
2003 int regno;
2004 unsigned i;
2005 sloc_t loc;
2006 rtx last = NULL_RTX;
2007 lra_insn_recog_data_t id = NULL;
2009 for (i = 0; scratches.iterate (i, &loc); i++)
2011 if (last != loc->insn)
2013 last = loc->insn;
2014 id = lra_get_insn_recog_data (last);
2016 if (REG_P (*id->operand_loc[loc->nop])
2017 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2018 >= FIRST_PSEUDO_REGISTER)
2019 && lra_get_regno_hard_regno (regno) < 0)
2021 /* It should be only case when scratch register with chosen
2022 constraint 'X' did not get memory or hard register. */
2023 lra_assert (lra_former_scratch_p (regno));
2024 *id->operand_loc[loc->nop]
2025 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2026 lra_update_dup (id, loc->nop);
2027 if (lra_dump_file != NULL)
2028 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2029 INSN_UID (loc->insn), loc->nop);
2032 for (i = 0; scratches.iterate (i, &loc); i++)
2033 free (loc);
2034 scratches.release ();
2035 bitmap_clear (&scratch_bitmap);
2036 bitmap_clear (&scratch_operand_bitmap);
2041 #ifdef ENABLE_CHECKING
2043 /* Function checks RTL for correctness. If FINAL_P is true, it is
2044 done at the end of LRA and the check is more rigorous. */
2045 static void
2046 check_rtl (bool final_p)
2048 basic_block bb;
2049 rtx insn;
2051 lra_assert (! final_p || reload_completed);
2052 FOR_EACH_BB (bb)
2053 FOR_BB_INSNS (bb, insn)
2054 if (NONDEBUG_INSN_P (insn)
2055 && GET_CODE (PATTERN (insn)) != USE
2056 && GET_CODE (PATTERN (insn)) != CLOBBER
2057 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2059 if (final_p)
2061 extract_insn (insn);
2062 lra_assert (constrain_operands (1));
2063 continue;
2065 /* LRA code is based on assumption that all addresses can be
2066 correctly decomposed. LRA can generate reloads for
2067 decomposable addresses. The decomposition code checks the
2068 correctness of the addresses. So we don't need to check
2069 the addresses here. Don't call insn_invalid_p here, it can
2070 change the code at this stage. */
2071 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2072 fatal_insn_not_found (insn);
2075 #endif /* #ifdef ENABLE_CHECKING */
2077 /* Determine if the current function has an exception receiver block
2078 that reaches the exit block via non-exceptional edges */
2079 static bool
2080 has_nonexceptional_receiver (void)
2082 edge e;
2083 edge_iterator ei;
2084 basic_block *tos, *worklist, bb;
2086 /* If we're not optimizing, then just err on the safe side. */
2087 if (!optimize)
2088 return true;
2090 /* First determine which blocks can reach exit via normal paths. */
2091 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2093 FOR_EACH_BB (bb)
2094 bb->flags &= ~BB_REACHABLE;
2096 /* Place the exit block on our worklist. */
2097 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2098 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2100 /* Iterate: find everything reachable from what we've already seen. */
2101 while (tos != worklist)
2103 bb = *--tos;
2105 FOR_EACH_EDGE (e, ei, bb->preds)
2106 if (e->flags & EDGE_ABNORMAL)
2108 free (worklist);
2109 return true;
2111 else
2113 basic_block src = e->src;
2115 if (!(src->flags & BB_REACHABLE))
2117 src->flags |= BB_REACHABLE;
2118 *tos++ = src;
2122 free (worklist);
2123 /* No exceptional block reached exit unexceptionally. */
2124 return false;
2127 #ifdef AUTO_INC_DEC
2129 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2130 static void
2131 add_auto_inc_notes (rtx insn, rtx x)
2133 enum rtx_code code = GET_CODE (x);
2134 const char *fmt;
2135 int i, j;
2137 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2139 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2140 return;
2143 /* Scan all X sub-expressions. */
2144 fmt = GET_RTX_FORMAT (code);
2145 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2147 if (fmt[i] == 'e')
2148 add_auto_inc_notes (insn, XEXP (x, i));
2149 else if (fmt[i] == 'E')
2150 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2151 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2155 #endif
2157 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2158 We change pseudos by hard registers without notification of DF and
2159 that can make the notes obsolete. DF-infrastructure does not deal
2160 with REG_INC notes -- so we should regenerate them here. */
2161 static void
2162 update_inc_notes (void)
2164 rtx *pnote;
2165 basic_block bb;
2166 rtx insn;
2168 FOR_EACH_BB (bb)
2169 FOR_BB_INSNS (bb, insn)
2170 if (NONDEBUG_INSN_P (insn))
2172 pnote = &REG_NOTES (insn);
2173 while (*pnote != 0)
2175 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2176 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2177 || REG_NOTE_KIND (*pnote) == REG_INC)
2178 *pnote = XEXP (*pnote, 1);
2179 else
2180 pnote = &XEXP (*pnote, 1);
2182 #ifdef AUTO_INC_DEC
2183 add_auto_inc_notes (insn, PATTERN (insn));
2184 #endif
2188 /* Set to 1 while in lra. */
2189 int lra_in_progress;
2191 /* Start of pseudo regnos before the LRA. */
2192 int lra_new_regno_start;
2194 /* Start of reload pseudo regnos before the new spill pass. */
2195 int lra_constraint_new_regno_start;
2197 /* Inheritance pseudo regnos before the new spill pass. */
2198 bitmap_head lra_inheritance_pseudos;
2200 /* Split regnos before the new spill pass. */
2201 bitmap_head lra_split_regs;
2203 /* Reload pseudo regnos before the new assignmnet pass which still can
2204 be spilled after the assinment pass as memory is also accepted in
2205 insns for the reload pseudos. */
2206 bitmap_head lra_optional_reload_pseudos;
2208 /* Pseudo regnos used for subreg reloads before the new assignment
2209 pass. Such pseudos still can be spilled after the assinment
2210 pass. */
2211 bitmap_head lra_subreg_reload_pseudos;
2213 /* First UID of insns generated before a new spill pass. */
2214 int lra_constraint_new_insn_uid_start;
2216 /* File used for output of LRA debug information. */
2217 FILE *lra_dump_file;
2219 /* True if we should try spill into registers of different classes
2220 instead of memory. */
2221 bool lra_reg_spill_p;
2223 /* Set up value LRA_REG_SPILL_P. */
2224 static void
2225 setup_reg_spill_flag (void)
2227 int cl, mode;
2229 if (targetm.spill_class != NULL)
2230 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2231 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2232 if (targetm.spill_class ((enum reg_class) cl,
2233 (enum machine_mode) mode) != NO_REGS)
2235 lra_reg_spill_p = true;
2236 return;
2238 lra_reg_spill_p = false;
2241 /* True if the current function is too big to use regular algorithms
2242 in LRA. In other words, we should use simpler and faster algorithms
2243 in LRA. It also means we should not worry about generation code
2244 for caller saves. The value is set up in IRA. */
2245 bool lra_simple_p;
2247 /* Major LRA entry function. F is a file should be used to dump LRA
2248 debug info. */
2249 void
2250 lra (FILE *f)
2252 int i;
2253 bool live_p, scratch_p, inserted_p;
2255 lra_dump_file = f;
2257 timevar_push (TV_LRA);
2259 /* Make sure that the last insn is a note. Some subsequent passes
2260 need it. */
2261 emit_note (NOTE_INSN_DELETED);
2263 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2265 init_reg_info ();
2266 expand_reg_info ();
2268 init_insn_recog_data ();
2270 #ifdef ENABLE_CHECKING
2271 /* Some quick check on RTL generated by previous passes. */
2272 check_rtl (false);
2273 #endif
2275 lra_in_progress = 1;
2277 lra_live_range_iter = lra_coalesce_iter = 0;
2278 lra_constraint_iter = lra_constraint_iter_after_spill = 0;
2279 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2281 setup_reg_spill_flag ();
2283 /* Function remove_scratches can creates new pseudos for clobbers --
2284 so set up lra_constraint_new_regno_start before its call to
2285 permit changing reg classes for pseudos created by this
2286 simplification. */
2287 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2288 remove_scratches ();
2289 scratch_p = lra_constraint_new_regno_start != max_reg_num ();
2291 /* A function that has a non-local label that can reach the exit
2292 block via non-exceptional paths must save all call-saved
2293 registers. */
2294 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2295 crtl->saves_all_registers = 1;
2297 if (crtl->saves_all_registers)
2298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2299 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2300 df_set_regs_ever_live (i, true);
2302 /* We don't DF from now and avoid its using because it is to
2303 expensive when a lot of RTL changes are made. */
2304 df_set_flags (DF_NO_INSN_RESCAN);
2305 lra_constraint_insn_stack.create (get_max_uid ());
2306 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2307 bitmap_clear (lra_constraint_insn_stack_bitmap);
2308 lra_live_ranges_init ();
2309 lra_constraints_init ();
2310 lra_curr_reload_num = 0;
2311 push_insns (get_last_insn (), NULL_RTX);
2312 /* It is needed for the 1st coalescing. */
2313 lra_constraint_new_insn_uid_start = get_max_uid ();
2314 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2315 bitmap_initialize (&lra_split_regs, &reg_obstack);
2316 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2317 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2318 live_p = false;
2319 if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2320 /* If we have a stack frame, we must align it now. The stack size
2321 may be a part of the offset computation for register
2322 elimination. */
2323 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2324 for (;;)
2326 for (;;)
2328 /* We should try to assign hard registers to scratches even
2329 if there were no RTL transformations in
2330 lra_constraints. */
2331 if (! lra_constraints (lra_constraint_iter == 0)
2332 && (lra_constraint_iter > 1
2333 || (! scratch_p && ! caller_save_needed)))
2334 break;
2335 /* Constraint transformations may result in that eliminable
2336 hard regs become uneliminable and pseudos which use them
2337 should be spilled. It is better to do it before pseudo
2338 assignments.
2340 For example, rs6000 can make
2341 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2342 to use a constant pool. */
2343 lra_eliminate (false, false);
2344 /* Do inheritance only for regular algorithms. */
2345 if (! lra_simple_p)
2346 lra_inheritance ();
2347 if (live_p)
2348 lra_clear_live_ranges ();
2349 /* We need live ranges for lra_assign -- so build them. */
2350 lra_create_live_ranges (true);
2351 live_p = true;
2352 /* If we don't spill non-reload and non-inheritance pseudos,
2353 there is no sense to run memory-memory move coalescing.
2354 If inheritance pseudos were spilled, the memory-memory
2355 moves involving them will be removed by pass undoing
2356 inheritance. */
2357 if (lra_simple_p)
2358 lra_assign ();
2359 else
2361 bool spill_p = !lra_assign ();
2363 if (lra_undo_inheritance ())
2364 live_p = false;
2365 if (spill_p)
2367 if (! live_p)
2369 lra_create_live_ranges (true);
2370 live_p = true;
2372 if (lra_coalesce ())
2373 live_p = false;
2375 if (! live_p)
2376 lra_clear_live_ranges ();
2379 /* Don't clear optional reloads bitmap until all constraints are
2380 satisfied as we need to differ them from regular reloads. */
2381 bitmap_clear (&lra_optional_reload_pseudos);
2382 bitmap_clear (&lra_subreg_reload_pseudos);
2383 bitmap_clear (&lra_inheritance_pseudos);
2384 bitmap_clear (&lra_split_regs);
2385 if (! lra_need_for_spills_p ())
2386 break;
2387 if (! live_p)
2389 /* We need full live info for spilling pseudos into
2390 registers instead of memory. */
2391 lra_create_live_ranges (lra_reg_spill_p);
2392 live_p = true;
2394 lra_spill ();
2395 /* Assignment of stack slots changes elimination offsets for
2396 some eliminations. So update the offsets here. */
2397 lra_eliminate (false, false);
2398 lra_constraint_new_regno_start = max_reg_num ();
2399 lra_constraint_new_insn_uid_start = get_max_uid ();
2400 lra_constraint_iter_after_spill = 0;
2402 restore_scratches ();
2403 lra_eliminate (true, false);
2404 lra_final_code_change ();
2405 lra_in_progress = 0;
2406 if (live_p)
2407 lra_clear_live_ranges ();
2408 lra_live_ranges_finish ();
2409 lra_constraints_finish ();
2410 finish_reg_info ();
2411 sbitmap_free (lra_constraint_insn_stack_bitmap);
2412 lra_constraint_insn_stack.release ();
2413 finish_insn_recog_data ();
2414 regstat_free_n_sets_and_refs ();
2415 regstat_free_ri ();
2416 reload_completed = 1;
2417 update_inc_notes ();
2419 inserted_p = fixup_abnormal_edges ();
2421 /* We've possibly turned single trapping insn into multiple ones. */
2422 if (cfun->can_throw_non_call_exceptions)
2424 sbitmap blocks;
2425 blocks = sbitmap_alloc (last_basic_block);
2426 bitmap_ones (blocks);
2427 find_many_sub_basic_blocks (blocks);
2428 sbitmap_free (blocks);
2431 if (inserted_p)
2432 commit_edge_insertions ();
2434 /* Replacing pseudos with their memory equivalents might have
2435 created shared rtx. Subsequent passes would get confused
2436 by this, so unshare everything here. */
2437 unshare_all_rtl_again (get_insns ());
2439 #ifdef ENABLE_CHECKING
2440 check_rtl (true);
2441 #endif
2443 timevar_pop (TV_LRA);
2446 /* Called once per compiler to initialize LRA data once. */
2447 void
2448 lra_init_once (void)
2450 init_insn_code_data_once ();
2453 /* Initialize LRA whenever register-related information is changed. */
2454 void
2455 lra_init (void)
2457 init_op_alt_data ();
2460 /* Called once per compiler to finish LRA data which are initialize
2461 once. */
2462 void
2463 lra_finish_once (void)
2465 finish_insn_code_data_once ();