PR middle-end/66633
[official-gcc.git] / gcc / tree-parloops.c
blob21ed17b4cafde79e04603b4cfd239bd30d06a7b2
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "options.h"
28 #include "tree.h"
29 #include "fold-const.h"
30 #include "predict.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "basic-block.h"
37 #include "tree-ssa-alias.h"
38 #include "internal-fn.h"
39 #include "gimple-expr.h"
40 #include "gimple.h"
41 #include "gimplify.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "stor-layout.h"
46 #include "tree-nested.h"
47 #include "gimple-ssa.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-ivopts.h"
54 #include "tree-ssa-loop-manip.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-into-ssa.h"
58 #include "cfgloop.h"
59 #include "tree-data-ref.h"
60 #include "tree-scalar-evolution.h"
61 #include "gimple-pretty-print.h"
62 #include "tree-pass.h"
63 #include "langhooks.h"
64 #include "tree-vectorizer.h"
65 #include "tree-hasher.h"
66 #include "tree-parloops.h"
67 #include "omp-low.h"
68 #include "tree-nested.h"
69 #include "cgraph.h"
70 #include "tree-ssa.h"
72 /* This pass tries to distribute iterations of loops into several threads.
73 The implementation is straightforward -- for each loop we test whether its
74 iterations are independent, and if it is the case (and some additional
75 conditions regarding profitability and correctness are satisfied), we
76 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
77 machinery do its job.
79 The most of the complexity is in bringing the code into shape expected
80 by the omp expanders:
81 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
82 variable and that the exit test is at the start of the loop body
83 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
84 variables by accesses through pointers, and breaking up ssa chains
85 by storing the values incoming to the parallelized loop to a structure
86 passed to the new function as an argument (something similar is done
87 in omp gimplification, unfortunately only a small part of the code
88 can be shared).
90 TODO:
91 -- if there are several parallelizable loops in a function, it may be
92 possible to generate the threads just once (using synchronization to
93 ensure that cross-loop dependences are obeyed).
94 -- handling of common reduction patterns for outer loops.
96 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
98 Reduction handling:
99 currently we use vect_force_simple_reduction() to detect reduction patterns.
100 The code transformation will be introduced by an example.
103 parloop
105 int sum=1;
107 for (i = 0; i < N; i++)
109 x[i] = i + 3;
110 sum+=x[i];
114 gimple-like code:
115 header_bb:
117 # sum_29 = PHI <sum_11(5), 1(3)>
118 # i_28 = PHI <i_12(5), 0(3)>
119 D.1795_8 = i_28 + 3;
120 x[i_28] = D.1795_8;
121 sum_11 = D.1795_8 + sum_29;
122 i_12 = i_28 + 1;
123 if (N_6(D) > i_12)
124 goto header_bb;
127 exit_bb:
129 # sum_21 = PHI <sum_11(4)>
130 printf (&"%d"[0], sum_21);
133 after reduction transformation (only relevant parts):
135 parloop
138 ....
141 # Storing the initial value given by the user. #
143 .paral_data_store.32.sum.27 = 1;
145 #pragma omp parallel num_threads(4)
147 #pragma omp for schedule(static)
149 # The neutral element corresponding to the particular
150 reduction's operation, e.g. 0 for PLUS_EXPR,
151 1 for MULT_EXPR, etc. replaces the user's initial value. #
153 # sum.27_29 = PHI <sum.27_11, 0>
155 sum.27_11 = D.1827_8 + sum.27_29;
157 GIMPLE_OMP_CONTINUE
159 # Adding this reduction phi is done at create_phi_for_local_result() #
160 # sum.27_56 = PHI <sum.27_11, 0>
161 GIMPLE_OMP_RETURN
163 # Creating the atomic operation is done at
164 create_call_for_reduction_1() #
166 #pragma omp atomic_load
167 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
168 D.1840_60 = sum.27_56 + D.1839_59;
169 #pragma omp atomic_store (D.1840_60);
171 GIMPLE_OMP_RETURN
173 # collecting the result after the join of the threads is done at
174 create_loads_for_reductions().
175 The value computed by the threads is loaded from the
176 shared struct. #
179 .paral_data_load.33_52 = &.paral_data_store.32;
180 sum_37 = .paral_data_load.33_52->sum.27;
181 sum_43 = D.1795_41 + sum_37;
183 exit bb:
184 # sum_21 = PHI <sum_43, sum_26>
185 printf (&"%d"[0], sum_21);
193 /* Minimal number of iterations of a loop that should be executed in each
194 thread. */
195 #define MIN_PER_THREAD 100
197 /* Element of the hashtable, representing a
198 reduction in the current loop. */
199 struct reduction_info
201 gimple reduc_stmt; /* reduction statement. */
202 gimple reduc_phi; /* The phi node defining the reduction. */
203 enum tree_code reduction_code;/* code for the reduction operation. */
204 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
205 result. */
206 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
207 of the reduction variable when existing the loop. */
208 tree initial_value; /* The initial value of the reduction var before entering the loop. */
209 tree field; /* the name of the field in the parloop data structure intended for reduction. */
210 tree init; /* reduction initialization value. */
211 gphi *new_phi; /* (helper field) Newly created phi node whose result
212 will be passed to the atomic operation. Represents
213 the local result each thread computed for the reduction
214 operation. */
217 /* Reduction info hashtable helpers. */
219 struct reduction_hasher : free_ptr_hash <reduction_info>
221 static inline hashval_t hash (const reduction_info *);
222 static inline bool equal (const reduction_info *, const reduction_info *);
225 /* Equality and hash functions for hashtab code. */
227 inline bool
228 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
230 return (a->reduc_phi == b->reduc_phi);
233 inline hashval_t
234 reduction_hasher::hash (const reduction_info *a)
236 return a->reduc_version;
239 typedef hash_table<reduction_hasher> reduction_info_table_type;
242 static struct reduction_info *
243 reduction_phi (reduction_info_table_type *reduction_list, gimple phi)
245 struct reduction_info tmpred, *red;
247 if (reduction_list->elements () == 0 || phi == NULL)
248 return NULL;
250 tmpred.reduc_phi = phi;
251 tmpred.reduc_version = gimple_uid (phi);
252 red = reduction_list->find (&tmpred);
254 return red;
257 /* Element of hashtable of names to copy. */
259 struct name_to_copy_elt
261 unsigned version; /* The version of the name to copy. */
262 tree new_name; /* The new name used in the copy. */
263 tree field; /* The field of the structure used to pass the
264 value. */
267 /* Name copies hashtable helpers. */
269 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
271 static inline hashval_t hash (const name_to_copy_elt *);
272 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
275 /* Equality and hash functions for hashtab code. */
277 inline bool
278 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
280 return a->version == b->version;
283 inline hashval_t
284 name_to_copy_hasher::hash (const name_to_copy_elt *a)
286 return (hashval_t) a->version;
289 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
291 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
292 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
293 represents the denominator for every element in the matrix. */
294 typedef struct lambda_trans_matrix_s
296 lambda_matrix matrix;
297 int rowsize;
298 int colsize;
299 int denominator;
300 } *lambda_trans_matrix;
301 #define LTM_MATRIX(T) ((T)->matrix)
302 #define LTM_ROWSIZE(T) ((T)->rowsize)
303 #define LTM_COLSIZE(T) ((T)->colsize)
304 #define LTM_DENOMINATOR(T) ((T)->denominator)
306 /* Allocate a new transformation matrix. */
308 static lambda_trans_matrix
309 lambda_trans_matrix_new (int colsize, int rowsize,
310 struct obstack * lambda_obstack)
312 lambda_trans_matrix ret;
314 ret = (lambda_trans_matrix)
315 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
316 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
317 LTM_ROWSIZE (ret) = rowsize;
318 LTM_COLSIZE (ret) = colsize;
319 LTM_DENOMINATOR (ret) = 1;
320 return ret;
323 /* Multiply a vector VEC by a matrix MAT.
324 MAT is an M*N matrix, and VEC is a vector with length N. The result
325 is stored in DEST which must be a vector of length M. */
327 static void
328 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
329 lambda_vector vec, lambda_vector dest)
331 int i, j;
333 lambda_vector_clear (dest, m);
334 for (i = 0; i < m; i++)
335 for (j = 0; j < n; j++)
336 dest[i] += matrix[i][j] * vec[j];
339 /* Return true if TRANS is a legal transformation matrix that respects
340 the dependence vectors in DISTS and DIRS. The conservative answer
341 is false.
343 "Wolfe proves that a unimodular transformation represented by the
344 matrix T is legal when applied to a loop nest with a set of
345 lexicographically non-negative distance vectors RDG if and only if
346 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
347 i.e.: if and only if it transforms the lexicographically positive
348 distance vectors to lexicographically positive vectors. Note that
349 a unimodular matrix must transform the zero vector (and only it) to
350 the zero vector." S.Muchnick. */
352 static bool
353 lambda_transform_legal_p (lambda_trans_matrix trans,
354 int nb_loops,
355 vec<ddr_p> dependence_relations)
357 unsigned int i, j;
358 lambda_vector distres;
359 struct data_dependence_relation *ddr;
361 gcc_assert (LTM_COLSIZE (trans) == nb_loops
362 && LTM_ROWSIZE (trans) == nb_loops);
364 /* When there are no dependences, the transformation is correct. */
365 if (dependence_relations.length () == 0)
366 return true;
368 ddr = dependence_relations[0];
369 if (ddr == NULL)
370 return true;
372 /* When there is an unknown relation in the dependence_relations, we
373 know that it is no worth looking at this loop nest: give up. */
374 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
375 return false;
377 distres = lambda_vector_new (nb_loops);
379 /* For each distance vector in the dependence graph. */
380 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
382 /* Don't care about relations for which we know that there is no
383 dependence, nor about read-read (aka. output-dependences):
384 these data accesses can happen in any order. */
385 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
386 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
387 continue;
389 /* Conservatively answer: "this transformation is not valid". */
390 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
391 return false;
393 /* If the dependence could not be captured by a distance vector,
394 conservatively answer that the transform is not valid. */
395 if (DDR_NUM_DIST_VECTS (ddr) == 0)
396 return false;
398 /* Compute trans.dist_vect */
399 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
401 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
402 DDR_DIST_VECT (ddr, j), distres);
404 if (!lambda_vector_lexico_pos (distres, nb_loops))
405 return false;
408 return true;
411 /* Data dependency analysis. Returns true if the iterations of LOOP
412 are independent on each other (that is, if we can execute them
413 in parallel). */
415 static bool
416 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
418 vec<ddr_p> dependence_relations;
419 vec<data_reference_p> datarefs;
420 lambda_trans_matrix trans;
421 bool ret = false;
423 if (dump_file && (dump_flags & TDF_DETAILS))
425 fprintf (dump_file, "Considering loop %d\n", loop->num);
426 if (!loop->inner)
427 fprintf (dump_file, "loop is innermost\n");
428 else
429 fprintf (dump_file, "loop NOT innermost\n");
432 /* Check for problems with dependences. If the loop can be reversed,
433 the iterations are independent. */
434 auto_vec<loop_p, 3> loop_nest;
435 datarefs.create (10);
436 dependence_relations.create (100);
437 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
438 &dependence_relations))
440 if (dump_file && (dump_flags & TDF_DETAILS))
441 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
442 ret = false;
443 goto end;
445 if (dump_file && (dump_flags & TDF_DETAILS))
446 dump_data_dependence_relations (dump_file, dependence_relations);
448 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
449 LTM_MATRIX (trans)[0][0] = -1;
451 if (lambda_transform_legal_p (trans, 1, dependence_relations))
453 ret = true;
454 if (dump_file && (dump_flags & TDF_DETAILS))
455 fprintf (dump_file, " SUCCESS: may be parallelized\n");
457 else if (dump_file && (dump_flags & TDF_DETAILS))
458 fprintf (dump_file,
459 " FAILED: data dependencies exist across iterations\n");
461 end:
462 free_dependence_relations (dependence_relations);
463 free_data_refs (datarefs);
465 return ret;
468 /* Return true when LOOP contains basic blocks marked with the
469 BB_IRREDUCIBLE_LOOP flag. */
471 static inline bool
472 loop_has_blocks_with_irreducible_flag (struct loop *loop)
474 unsigned i;
475 basic_block *bbs = get_loop_body_in_dom_order (loop);
476 bool res = true;
478 for (i = 0; i < loop->num_nodes; i++)
479 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
480 goto end;
482 res = false;
483 end:
484 free (bbs);
485 return res;
488 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
489 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
490 to their addresses that can be reused. The address of OBJ is known to
491 be invariant in the whole function. Other needed statements are placed
492 right before GSI. */
494 static tree
495 take_address_of (tree obj, tree type, edge entry,
496 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
498 int uid;
499 tree *var_p, name, addr;
500 gassign *stmt;
501 gimple_seq stmts;
503 /* Since the address of OBJ is invariant, the trees may be shared.
504 Avoid rewriting unrelated parts of the code. */
505 obj = unshare_expr (obj);
506 for (var_p = &obj;
507 handled_component_p (*var_p);
508 var_p = &TREE_OPERAND (*var_p, 0))
509 continue;
511 /* Canonicalize the access to base on a MEM_REF. */
512 if (DECL_P (*var_p))
513 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
515 /* Assign a canonical SSA name to the address of the base decl used
516 in the address and share it for all accesses and addresses based
517 on it. */
518 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
519 int_tree_map elt;
520 elt.uid = uid;
521 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
522 if (!slot->to)
524 if (gsi == NULL)
525 return NULL;
526 addr = TREE_OPERAND (*var_p, 0);
527 const char *obj_name
528 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
529 if (obj_name)
530 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
531 else
532 name = make_ssa_name (TREE_TYPE (addr));
533 stmt = gimple_build_assign (name, addr);
534 gsi_insert_on_edge_immediate (entry, stmt);
536 slot->uid = uid;
537 slot->to = name;
539 else
540 name = slot->to;
542 /* Express the address in terms of the canonical SSA name. */
543 TREE_OPERAND (*var_p, 0) = name;
544 if (gsi == NULL)
545 return build_fold_addr_expr_with_type (obj, type);
547 name = force_gimple_operand (build_addr (obj, current_function_decl),
548 &stmts, true, NULL_TREE);
549 if (!gimple_seq_empty_p (stmts))
550 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
552 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
554 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
555 NULL_TREE);
556 if (!gimple_seq_empty_p (stmts))
557 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
560 return name;
563 /* Callback for htab_traverse. Create the initialization statement
564 for reduction described in SLOT, and place it at the preheader of
565 the loop described in DATA. */
568 initialize_reductions (reduction_info **slot, struct loop *loop)
570 tree init, c;
571 tree bvar, type, arg;
572 edge e;
574 struct reduction_info *const reduc = *slot;
576 /* Create initialization in preheader:
577 reduction_variable = initialization value of reduction. */
579 /* In the phi node at the header, replace the argument coming
580 from the preheader with the reduction initialization value. */
582 /* Create a new variable to initialize the reduction. */
583 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
584 bvar = create_tmp_var (type, "reduction");
586 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
587 OMP_CLAUSE_REDUCTION);
588 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
589 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
591 init = omp_reduction_init (c, TREE_TYPE (bvar));
592 reduc->init = init;
594 /* Replace the argument representing the initialization value
595 with the initialization value for the reduction (neutral
596 element for the particular operation, e.g. 0 for PLUS_EXPR,
597 1 for MULT_EXPR, etc).
598 Keep the old value in a new variable "reduction_initial",
599 that will be taken in consideration after the parallel
600 computing is done. */
602 e = loop_preheader_edge (loop);
603 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
604 /* Create new variable to hold the initial value. */
606 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
607 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
608 reduc->initial_value = arg;
609 return 1;
612 struct elv_data
614 struct walk_stmt_info info;
615 edge entry;
616 int_tree_htab_type *decl_address;
617 gimple_stmt_iterator *gsi;
618 bool changed;
619 bool reset;
622 /* Eliminates references to local variables in *TP out of the single
623 entry single exit region starting at DTA->ENTRY.
624 DECL_ADDRESS contains addresses of the references that had their
625 address taken already. If the expression is changed, CHANGED is
626 set to true. Callback for walk_tree. */
628 static tree
629 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
631 struct elv_data *const dta = (struct elv_data *) data;
632 tree t = *tp, var, addr, addr_type, type, obj;
634 if (DECL_P (t))
636 *walk_subtrees = 0;
638 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
639 return NULL_TREE;
641 type = TREE_TYPE (t);
642 addr_type = build_pointer_type (type);
643 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
644 dta->gsi);
645 if (dta->gsi == NULL && addr == NULL_TREE)
647 dta->reset = true;
648 return NULL_TREE;
651 *tp = build_simple_mem_ref (addr);
653 dta->changed = true;
654 return NULL_TREE;
657 if (TREE_CODE (t) == ADDR_EXPR)
659 /* ADDR_EXPR may appear in two contexts:
660 -- as a gimple operand, when the address taken is a function invariant
661 -- as gimple rhs, when the resulting address in not a function
662 invariant
663 We do not need to do anything special in the latter case (the base of
664 the memory reference whose address is taken may be replaced in the
665 DECL_P case). The former case is more complicated, as we need to
666 ensure that the new address is still a gimple operand. Thus, it
667 is not sufficient to replace just the base of the memory reference --
668 we need to move the whole computation of the address out of the
669 loop. */
670 if (!is_gimple_val (t))
671 return NULL_TREE;
673 *walk_subtrees = 0;
674 obj = TREE_OPERAND (t, 0);
675 var = get_base_address (obj);
676 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
677 return NULL_TREE;
679 addr_type = TREE_TYPE (t);
680 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
681 dta->gsi);
682 if (dta->gsi == NULL && addr == NULL_TREE)
684 dta->reset = true;
685 return NULL_TREE;
687 *tp = addr;
689 dta->changed = true;
690 return NULL_TREE;
693 if (!EXPR_P (t))
694 *walk_subtrees = 0;
696 return NULL_TREE;
699 /* Moves the references to local variables in STMT at *GSI out of the single
700 entry single exit region starting at ENTRY. DECL_ADDRESS contains
701 addresses of the references that had their address taken
702 already. */
704 static void
705 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
706 int_tree_htab_type *decl_address)
708 struct elv_data dta;
709 gimple stmt = gsi_stmt (*gsi);
711 memset (&dta.info, '\0', sizeof (dta.info));
712 dta.entry = entry;
713 dta.decl_address = decl_address;
714 dta.changed = false;
715 dta.reset = false;
717 if (gimple_debug_bind_p (stmt))
719 dta.gsi = NULL;
720 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
721 eliminate_local_variables_1, &dta.info, NULL);
722 if (dta.reset)
724 gimple_debug_bind_reset_value (stmt);
725 dta.changed = true;
728 else if (gimple_clobber_p (stmt))
730 stmt = gimple_build_nop ();
731 gsi_replace (gsi, stmt, false);
732 dta.changed = true;
734 else
736 dta.gsi = gsi;
737 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
740 if (dta.changed)
741 update_stmt (stmt);
744 /* Eliminates the references to local variables from the single entry
745 single exit region between the ENTRY and EXIT edges.
747 This includes:
748 1) Taking address of a local variable -- these are moved out of the
749 region (and temporary variable is created to hold the address if
750 necessary).
752 2) Dereferencing a local variable -- these are replaced with indirect
753 references. */
755 static void
756 eliminate_local_variables (edge entry, edge exit)
758 basic_block bb;
759 auto_vec<basic_block, 3> body;
760 unsigned i;
761 gimple_stmt_iterator gsi;
762 bool has_debug_stmt = false;
763 int_tree_htab_type decl_address (10);
764 basic_block entry_bb = entry->src;
765 basic_block exit_bb = exit->dest;
767 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
769 FOR_EACH_VEC_ELT (body, i, bb)
770 if (bb != entry_bb && bb != exit_bb)
771 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
772 if (is_gimple_debug (gsi_stmt (gsi)))
774 if (gimple_debug_bind_p (gsi_stmt (gsi)))
775 has_debug_stmt = true;
777 else
778 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
780 if (has_debug_stmt)
781 FOR_EACH_VEC_ELT (body, i, bb)
782 if (bb != entry_bb && bb != exit_bb)
783 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
784 if (gimple_debug_bind_p (gsi_stmt (gsi)))
785 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
788 /* Returns true if expression EXPR is not defined between ENTRY and
789 EXIT, i.e. if all its operands are defined outside of the region. */
791 static bool
792 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
794 basic_block entry_bb = entry->src;
795 basic_block exit_bb = exit->dest;
796 basic_block def_bb;
798 if (is_gimple_min_invariant (expr))
799 return true;
801 if (TREE_CODE (expr) == SSA_NAME)
803 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
804 if (def_bb
805 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
806 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
807 return false;
809 return true;
812 return false;
815 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
816 The copies are stored to NAME_COPIES, if NAME was already duplicated,
817 its duplicate stored in NAME_COPIES is returned.
819 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
820 duplicated, storing the copies in DECL_COPIES. */
822 static tree
823 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
824 int_tree_htab_type *decl_copies,
825 bool copy_name_p)
827 tree copy, var, var_copy;
828 unsigned idx, uid, nuid;
829 struct int_tree_map ielt;
830 struct name_to_copy_elt elt, *nelt;
831 name_to_copy_elt **slot;
832 int_tree_map *dslot;
834 if (TREE_CODE (name) != SSA_NAME)
835 return name;
837 idx = SSA_NAME_VERSION (name);
838 elt.version = idx;
839 slot = name_copies->find_slot_with_hash (&elt, idx,
840 copy_name_p ? INSERT : NO_INSERT);
841 if (slot && *slot)
842 return (*slot)->new_name;
844 if (copy_name_p)
846 copy = duplicate_ssa_name (name, NULL);
847 nelt = XNEW (struct name_to_copy_elt);
848 nelt->version = idx;
849 nelt->new_name = copy;
850 nelt->field = NULL_TREE;
851 *slot = nelt;
853 else
855 gcc_assert (!slot);
856 copy = name;
859 var = SSA_NAME_VAR (name);
860 if (!var)
861 return copy;
863 uid = DECL_UID (var);
864 ielt.uid = uid;
865 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
866 if (!dslot->to)
868 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
869 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
870 dslot->uid = uid;
871 dslot->to = var_copy;
873 /* Ensure that when we meet this decl next time, we won't duplicate
874 it again. */
875 nuid = DECL_UID (var_copy);
876 ielt.uid = nuid;
877 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
878 gcc_assert (!dslot->to);
879 dslot->uid = nuid;
880 dslot->to = var_copy;
882 else
883 var_copy = dslot->to;
885 replace_ssa_name_symbol (copy, var_copy);
886 return copy;
889 /* Finds the ssa names used in STMT that are defined outside the
890 region between ENTRY and EXIT and replaces such ssa names with
891 their duplicates. The duplicates are stored to NAME_COPIES. Base
892 decls of all ssa names used in STMT (including those defined in
893 LOOP) are replaced with the new temporary variables; the
894 replacement decls are stored in DECL_COPIES. */
896 static void
897 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
898 name_to_copy_table_type *name_copies,
899 int_tree_htab_type *decl_copies)
901 use_operand_p use;
902 def_operand_p def;
903 ssa_op_iter oi;
904 tree name, copy;
905 bool copy_name_p;
907 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
909 name = DEF_FROM_PTR (def);
910 gcc_assert (TREE_CODE (name) == SSA_NAME);
911 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
912 false);
913 gcc_assert (copy == name);
916 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
918 name = USE_FROM_PTR (use);
919 if (TREE_CODE (name) != SSA_NAME)
920 continue;
922 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
923 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
924 copy_name_p);
925 SET_USE (use, copy);
929 /* Finds the ssa names used in STMT that are defined outside the
930 region between ENTRY and EXIT and replaces such ssa names with
931 their duplicates. The duplicates are stored to NAME_COPIES. Base
932 decls of all ssa names used in STMT (including those defined in
933 LOOP) are replaced with the new temporary variables; the
934 replacement decls are stored in DECL_COPIES. */
936 static bool
937 separate_decls_in_region_debug (gimple stmt,
938 name_to_copy_table_type *name_copies,
939 int_tree_htab_type *decl_copies)
941 use_operand_p use;
942 ssa_op_iter oi;
943 tree var, name;
944 struct int_tree_map ielt;
945 struct name_to_copy_elt elt;
946 name_to_copy_elt **slot;
947 int_tree_map *dslot;
949 if (gimple_debug_bind_p (stmt))
950 var = gimple_debug_bind_get_var (stmt);
951 else if (gimple_debug_source_bind_p (stmt))
952 var = gimple_debug_source_bind_get_var (stmt);
953 else
954 return true;
955 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
956 return true;
957 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
958 ielt.uid = DECL_UID (var);
959 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
960 if (!dslot)
961 return true;
962 if (gimple_debug_bind_p (stmt))
963 gimple_debug_bind_set_var (stmt, dslot->to);
964 else if (gimple_debug_source_bind_p (stmt))
965 gimple_debug_source_bind_set_var (stmt, dslot->to);
967 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
969 name = USE_FROM_PTR (use);
970 if (TREE_CODE (name) != SSA_NAME)
971 continue;
973 elt.version = SSA_NAME_VERSION (name);
974 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
975 if (!slot)
977 gimple_debug_bind_reset_value (stmt);
978 update_stmt (stmt);
979 break;
982 SET_USE (use, (*slot)->new_name);
985 return false;
988 /* Callback for htab_traverse. Adds a field corresponding to the reduction
989 specified in SLOT. The type is passed in DATA. */
992 add_field_for_reduction (reduction_info **slot, tree type)
995 struct reduction_info *const red = *slot;
996 tree var = gimple_assign_lhs (red->reduc_stmt);
997 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
998 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1000 insert_field_into_struct (type, field);
1002 red->field = field;
1004 return 1;
1007 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1008 described in SLOT. The type is passed in DATA. */
1011 add_field_for_name (name_to_copy_elt **slot, tree type)
1013 struct name_to_copy_elt *const elt = *slot;
1014 tree name = ssa_name (elt->version);
1015 tree field = build_decl (UNKNOWN_LOCATION,
1016 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1017 TREE_TYPE (name));
1019 insert_field_into_struct (type, field);
1020 elt->field = field;
1022 return 1;
1025 /* Callback for htab_traverse. A local result is the intermediate result
1026 computed by a single
1027 thread, or the initial value in case no iteration was executed.
1028 This function creates a phi node reflecting these values.
1029 The phi's result will be stored in NEW_PHI field of the
1030 reduction's data structure. */
1033 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1035 struct reduction_info *const reduc = *slot;
1036 edge e;
1037 gphi *new_phi;
1038 basic_block store_bb;
1039 tree local_res;
1040 source_location locus;
1042 /* STORE_BB is the block where the phi
1043 should be stored. It is the destination of the loop exit.
1044 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1045 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1047 /* STORE_BB has two predecessors. One coming from the loop
1048 (the reduction's result is computed at the loop),
1049 and another coming from a block preceding the loop,
1050 when no iterations
1051 are executed (the initial value should be taken). */
1052 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1053 e = EDGE_PRED (store_bb, 1);
1054 else
1055 e = EDGE_PRED (store_bb, 0);
1056 local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt));
1057 locus = gimple_location (reduc->reduc_stmt);
1058 new_phi = create_phi_node (local_res, store_bb);
1059 add_phi_arg (new_phi, reduc->init, e, locus);
1060 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1061 FALLTHRU_EDGE (loop->latch), locus);
1062 reduc->new_phi = new_phi;
1064 return 1;
1067 struct clsn_data
1069 tree store;
1070 tree load;
1072 basic_block store_bb;
1073 basic_block load_bb;
1076 /* Callback for htab_traverse. Create an atomic instruction for the
1077 reduction described in SLOT.
1078 DATA annotates the place in memory the atomic operation relates to,
1079 and the basic block it needs to be generated in. */
1082 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1084 struct reduction_info *const reduc = *slot;
1085 gimple_stmt_iterator gsi;
1086 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1087 tree load_struct;
1088 basic_block bb;
1089 basic_block new_bb;
1090 edge e;
1091 tree t, addr, ref, x;
1092 tree tmp_load, name;
1093 gimple load;
1095 load_struct = build_simple_mem_ref (clsn_data->load);
1096 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1098 addr = build_addr (t, current_function_decl);
1100 /* Create phi node. */
1101 bb = clsn_data->load_bb;
1103 gsi = gsi_last_bb (bb);
1104 e = split_block (bb, gsi_stmt (gsi));
1105 new_bb = e->dest;
1107 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1108 tmp_load = make_ssa_name (tmp_load);
1109 load = gimple_build_omp_atomic_load (tmp_load, addr);
1110 SSA_NAME_DEF_STMT (tmp_load) = load;
1111 gsi = gsi_start_bb (new_bb);
1112 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1114 e = split_block (new_bb, load);
1115 new_bb = e->dest;
1116 gsi = gsi_start_bb (new_bb);
1117 ref = tmp_load;
1118 x = fold_build2 (reduc->reduction_code,
1119 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1120 PHI_RESULT (reduc->new_phi));
1122 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1123 GSI_CONTINUE_LINKING);
1125 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1126 return 1;
1129 /* Create the atomic operation at the join point of the threads.
1130 REDUCTION_LIST describes the reductions in the LOOP.
1131 LD_ST_DATA describes the shared data structure where
1132 shared data is stored in and loaded from. */
1133 static void
1134 create_call_for_reduction (struct loop *loop,
1135 reduction_info_table_type *reduction_list,
1136 struct clsn_data *ld_st_data)
1138 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1139 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1140 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1141 reduction_list
1142 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1145 /* Callback for htab_traverse. Loads the final reduction value at the
1146 join point of all threads, and inserts it in the right place. */
1149 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1151 struct reduction_info *const red = *slot;
1152 gimple stmt;
1153 gimple_stmt_iterator gsi;
1154 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1155 tree load_struct;
1156 tree name;
1157 tree x;
1159 gsi = gsi_after_labels (clsn_data->load_bb);
1160 load_struct = build_simple_mem_ref (clsn_data->load);
1161 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1162 NULL_TREE);
1164 x = load_struct;
1165 name = PHI_RESULT (red->keep_res);
1166 stmt = gimple_build_assign (name, x);
1168 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1170 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1171 !gsi_end_p (gsi); gsi_next (&gsi))
1172 if (gsi_stmt (gsi) == red->keep_res)
1174 remove_phi_node (&gsi, false);
1175 return 1;
1177 gcc_unreachable ();
1180 /* Load the reduction result that was stored in LD_ST_DATA.
1181 REDUCTION_LIST describes the list of reductions that the
1182 loads should be generated for. */
1183 static void
1184 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1185 struct clsn_data *ld_st_data)
1187 gimple_stmt_iterator gsi;
1188 tree t;
1189 gimple stmt;
1191 gsi = gsi_after_labels (ld_st_data->load_bb);
1192 t = build_fold_addr_expr (ld_st_data->store);
1193 stmt = gimple_build_assign (ld_st_data->load, t);
1195 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1197 reduction_list
1198 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1202 /* Callback for htab_traverse. Store the neutral value for the
1203 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1204 1 for MULT_EXPR, etc. into the reduction field.
1205 The reduction is specified in SLOT. The store information is
1206 passed in DATA. */
1209 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1211 struct reduction_info *const red = *slot;
1212 tree t;
1213 gimple stmt;
1214 gimple_stmt_iterator gsi;
1215 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1217 gsi = gsi_last_bb (clsn_data->store_bb);
1218 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1219 stmt = gimple_build_assign (t, red->initial_value);
1220 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1222 return 1;
1225 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1226 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1227 specified in SLOT. */
1230 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1231 struct clsn_data *clsn_data)
1233 struct name_to_copy_elt *const elt = *slot;
1234 tree t;
1235 gimple stmt;
1236 gimple_stmt_iterator gsi;
1237 tree type = TREE_TYPE (elt->new_name);
1238 tree load_struct;
1240 gsi = gsi_last_bb (clsn_data->store_bb);
1241 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1242 stmt = gimple_build_assign (t, ssa_name (elt->version));
1243 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1245 gsi = gsi_last_bb (clsn_data->load_bb);
1246 load_struct = build_simple_mem_ref (clsn_data->load);
1247 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1248 stmt = gimple_build_assign (elt->new_name, t);
1249 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1251 return 1;
1254 /* Moves all the variables used in LOOP and defined outside of it (including
1255 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1256 name) to a structure created for this purpose. The code
1258 while (1)
1260 use (a);
1261 use (b);
1264 is transformed this way:
1266 bb0:
1267 old.a = a;
1268 old.b = b;
1270 bb1:
1271 a' = new->a;
1272 b' = new->b;
1273 while (1)
1275 use (a');
1276 use (b');
1279 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1280 pointer `new' is intentionally not initialized (the loop will be split to a
1281 separate function later, and `new' will be initialized from its arguments).
1282 LD_ST_DATA holds information about the shared data structure used to pass
1283 information among the threads. It is initialized here, and
1284 gen_parallel_loop will pass it to create_call_for_reduction that
1285 needs this information. REDUCTION_LIST describes the reductions
1286 in LOOP. */
1288 static void
1289 separate_decls_in_region (edge entry, edge exit,
1290 reduction_info_table_type *reduction_list,
1291 tree *arg_struct, tree *new_arg_struct,
1292 struct clsn_data *ld_st_data)
1295 basic_block bb1 = split_edge (entry);
1296 basic_block bb0 = single_pred (bb1);
1297 name_to_copy_table_type name_copies (10);
1298 int_tree_htab_type decl_copies (10);
1299 unsigned i;
1300 tree type, type_name, nvar;
1301 gimple_stmt_iterator gsi;
1302 struct clsn_data clsn_data;
1303 auto_vec<basic_block, 3> body;
1304 basic_block bb;
1305 basic_block entry_bb = bb1;
1306 basic_block exit_bb = exit->dest;
1307 bool has_debug_stmt = false;
1309 entry = single_succ_edge (entry_bb);
1310 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1312 FOR_EACH_VEC_ELT (body, i, bb)
1314 if (bb != entry_bb && bb != exit_bb)
1316 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1317 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1318 &name_copies, &decl_copies);
1320 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1322 gimple stmt = gsi_stmt (gsi);
1324 if (is_gimple_debug (stmt))
1325 has_debug_stmt = true;
1326 else
1327 separate_decls_in_region_stmt (entry, exit, stmt,
1328 &name_copies, &decl_copies);
1333 /* Now process debug bind stmts. We must not create decls while
1334 processing debug stmts, so we defer their processing so as to
1335 make sure we will have debug info for as many variables as
1336 possible (all of those that were dealt with in the loop above),
1337 and discard those for which we know there's nothing we can
1338 do. */
1339 if (has_debug_stmt)
1340 FOR_EACH_VEC_ELT (body, i, bb)
1341 if (bb != entry_bb && bb != exit_bb)
1343 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1345 gimple stmt = gsi_stmt (gsi);
1347 if (is_gimple_debug (stmt))
1349 if (separate_decls_in_region_debug (stmt, &name_copies,
1350 &decl_copies))
1352 gsi_remove (&gsi, true);
1353 continue;
1357 gsi_next (&gsi);
1361 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1363 /* It may happen that there is nothing to copy (if there are only
1364 loop carried and external variables in the loop). */
1365 *arg_struct = NULL;
1366 *new_arg_struct = NULL;
1368 else
1370 /* Create the type for the structure to store the ssa names to. */
1371 type = lang_hooks.types.make_type (RECORD_TYPE);
1372 type_name = build_decl (UNKNOWN_LOCATION,
1373 TYPE_DECL, create_tmp_var_name (".paral_data"),
1374 type);
1375 TYPE_NAME (type) = type_name;
1377 name_copies.traverse <tree, add_field_for_name> (type);
1378 if (reduction_list && reduction_list->elements () > 0)
1380 /* Create the fields for reductions. */
1381 reduction_list->traverse <tree, add_field_for_reduction> (type);
1383 layout_type (type);
1385 /* Create the loads and stores. */
1386 *arg_struct = create_tmp_var (type, ".paral_data_store");
1387 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1388 *new_arg_struct = make_ssa_name (nvar);
1390 ld_st_data->store = *arg_struct;
1391 ld_st_data->load = *new_arg_struct;
1392 ld_st_data->store_bb = bb0;
1393 ld_st_data->load_bb = bb1;
1395 name_copies
1396 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1397 (ld_st_data);
1399 /* Load the calculation from memory (after the join of the threads). */
1401 if (reduction_list && reduction_list->elements () > 0)
1403 reduction_list
1404 ->traverse <struct clsn_data *, create_stores_for_reduction>
1405 (ld_st_data);
1406 clsn_data.load = make_ssa_name (nvar);
1407 clsn_data.load_bb = exit->dest;
1408 clsn_data.store = ld_st_data->store;
1409 create_final_loads_for_reduction (reduction_list, &clsn_data);
1414 /* Returns true if FN was created to run in parallel. */
1416 bool
1417 parallelized_function_p (tree fndecl)
1419 cgraph_node *node = cgraph_node::get (fndecl);
1420 gcc_assert (node != NULL);
1421 return node->parallelized_function;
1424 /* Creates and returns an empty function that will receive the body of
1425 a parallelized loop. */
1427 static tree
1428 create_loop_fn (location_t loc)
1430 char buf[100];
1431 char *tname;
1432 tree decl, type, name, t;
1433 struct function *act_cfun = cfun;
1434 static unsigned loopfn_num;
1436 loc = LOCATION_LOCUS (loc);
1437 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1438 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1439 clean_symbol_name (tname);
1440 name = get_identifier (tname);
1441 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1443 decl = build_decl (loc, FUNCTION_DECL, name, type);
1444 TREE_STATIC (decl) = 1;
1445 TREE_USED (decl) = 1;
1446 DECL_ARTIFICIAL (decl) = 1;
1447 DECL_IGNORED_P (decl) = 0;
1448 TREE_PUBLIC (decl) = 0;
1449 DECL_UNINLINABLE (decl) = 1;
1450 DECL_EXTERNAL (decl) = 0;
1451 DECL_CONTEXT (decl) = NULL_TREE;
1452 DECL_INITIAL (decl) = make_node (BLOCK);
1454 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1455 DECL_ARTIFICIAL (t) = 1;
1456 DECL_IGNORED_P (t) = 1;
1457 DECL_RESULT (decl) = t;
1459 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1460 ptr_type_node);
1461 DECL_ARTIFICIAL (t) = 1;
1462 DECL_ARG_TYPE (t) = ptr_type_node;
1463 DECL_CONTEXT (t) = decl;
1464 TREE_USED (t) = 1;
1465 DECL_ARGUMENTS (decl) = t;
1467 allocate_struct_function (decl, false);
1469 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1470 it. */
1471 set_cfun (act_cfun);
1473 return decl;
1476 /* Replace uses of NAME by VAL in block BB. */
1478 static void
1479 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1481 gimple use_stmt;
1482 imm_use_iterator imm_iter;
1484 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1486 if (gimple_bb (use_stmt) != bb)
1487 continue;
1489 use_operand_p use_p;
1490 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1491 SET_USE (use_p, val);
1495 /* Replace uses of NAME by VAL in blocks BBS. */
1497 static void
1498 replace_uses_in_bbs_by (tree name, tree val, bitmap bbs)
1500 gimple use_stmt;
1501 imm_use_iterator imm_iter;
1503 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1505 if (!bitmap_bit_p (bbs, gimple_bb (use_stmt)->index))
1506 continue;
1508 use_operand_p use_p;
1509 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1510 SET_USE (use_p, val);
1514 /* Do transformation from:
1516 <bb preheader>:
1518 goto <bb header>
1520 <bb header>:
1521 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1522 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1524 use (ivtmp_a)
1526 sum_b = sum_a + sum_update
1528 if (ivtmp_a < n)
1529 goto <bb latch>;
1530 else
1531 goto <bb exit>;
1533 <bb latch>:
1534 ivtmp_b = ivtmp_a + 1;
1535 goto <bb header>
1537 <bb exit>:
1538 sum_z = PHI <sum_b (cond[1])>
1540 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1541 that's <bb header>.
1545 <bb preheader>:
1547 goto <bb newheader>
1549 <bb header>:
1550 ivtmp_a = PHI <ivtmp_c (latch)>
1551 sum_a = PHI <sum_c (latch)>
1553 use (ivtmp_a)
1555 sum_b = sum_a + sum_update
1557 goto <bb latch>;
1559 <bb newheader>:
1560 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1561 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1562 if (ivtmp_c < n + 1)
1563 goto <bb header>;
1564 else
1565 goto <bb exit>;
1567 <bb latch>:
1568 ivtmp_b = ivtmp_a + 1;
1569 goto <bb newheader>
1571 <bb exit>:
1572 sum_z = PHI <sum_c (newheader)>
1575 In unified diff format:
1577 <bb preheader>:
1579 - goto <bb header>
1580 + goto <bb newheader>
1582 <bb header>:
1583 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1584 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1585 + ivtmp_a = PHI <ivtmp_c (latch)>
1586 + sum_a = PHI <sum_c (latch)>
1588 use (ivtmp_a)
1590 sum_b = sum_a + sum_update
1592 - if (ivtmp_a < n)
1593 - goto <bb latch>;
1594 + goto <bb latch>;
1596 + <bb newheader>:
1597 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1598 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1599 + if (ivtmp_c < n + 1)
1600 + goto <bb header>;
1601 else
1602 goto <bb exit>;
1604 <bb latch>:
1605 ivtmp_b = ivtmp_a + 1;
1606 - goto <bb header>
1607 + goto <bb newheader>
1609 <bb exit>:
1610 - sum_z = PHI <sum_b (cond[1])>
1611 + sum_z = PHI <sum_c (newheader)>
1613 Note: the example does not show any virtual phis, but these are handled more
1614 or less as reductions.
1617 Moves the exit condition of LOOP to the beginning of its header.
1618 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1619 bound. */
1621 static void
1622 transform_to_exit_first_loop_alt (struct loop *loop,
1623 reduction_info_table_type *reduction_list,
1624 tree bound)
1626 basic_block header = loop->header;
1627 basic_block latch = loop->latch;
1628 edge exit = single_dom_exit (loop);
1629 basic_block exit_block = exit->dest;
1630 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1631 tree control = gimple_cond_lhs (cond_stmt);
1632 edge e;
1634 /* Gather the bbs dominated by the exit block. */
1635 bitmap exit_dominated = BITMAP_ALLOC (NULL);
1636 bitmap_set_bit (exit_dominated, exit_block->index);
1637 vec<basic_block> exit_dominated_vec
1638 = get_dominated_by (CDI_DOMINATORS, exit_block);
1640 int i;
1641 basic_block dom_bb;
1642 FOR_EACH_VEC_ELT (exit_dominated_vec, i, dom_bb)
1643 bitmap_set_bit (exit_dominated, dom_bb->index);
1645 exit_dominated_vec.release ();
1647 /* Create the new_header block. */
1648 basic_block new_header = split_block_before_cond_jump (exit->src);
1649 edge split_edge = single_pred_edge (new_header);
1651 /* Redirect entry edge to new_header. */
1652 edge entry = loop_preheader_edge (loop);
1653 e = redirect_edge_and_branch (entry, new_header);
1654 gcc_assert (e == entry);
1656 /* Redirect post_inc_edge to new_header. */
1657 edge post_inc_edge = single_succ_edge (latch);
1658 e = redirect_edge_and_branch (post_inc_edge, new_header);
1659 gcc_assert (e == post_inc_edge);
1661 /* Redirect post_cond_edge to header. */
1662 edge post_cond_edge = single_pred_edge (latch);
1663 e = redirect_edge_and_branch (post_cond_edge, header);
1664 gcc_assert (e == post_cond_edge);
1666 /* Redirect split_edge to latch. */
1667 e = redirect_edge_and_branch (split_edge, latch);
1668 gcc_assert (e == split_edge);
1670 /* Set the new loop bound. */
1671 gimple_cond_set_rhs (cond_stmt, bound);
1672 update_stmt (cond_stmt);
1674 /* Repair the ssa. */
1675 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1676 edge_var_map *vm;
1677 gphi_iterator gsi;
1678 for (gsi = gsi_start_phis (header), i = 0;
1679 !gsi_end_p (gsi) && v->iterate (i, &vm);
1680 gsi_next (&gsi), i++)
1682 gphi *phi = gsi.phi ();
1683 tree res_a = PHI_RESULT (phi);
1685 /* Create new phi. */
1686 tree res_c = copy_ssa_name (res_a, phi);
1687 gphi *nphi = create_phi_node (res_c, new_header);
1689 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1690 replace_uses_in_bb_by (res_a, res_c, new_header);
1692 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1693 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1695 /* Replace sum_b with sum_c in exit phi. Loop-closed ssa does not hold
1696 for virtuals, so we cannot get away with exit_block only. */
1697 tree res_b = redirect_edge_var_map_def (vm);
1698 replace_uses_in_bbs_by (res_b, res_c, exit_dominated);
1700 struct reduction_info *red = reduction_phi (reduction_list, phi);
1701 gcc_assert (virtual_operand_p (res_a)
1702 || res_a == control
1703 || red != NULL);
1705 if (red)
1707 /* Register the new reduction phi. */
1708 red->reduc_phi = nphi;
1709 gimple_set_uid (red->reduc_phi, red->reduc_version);
1712 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1713 BITMAP_FREE (exit_dominated);
1715 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1716 flush_pending_stmts (entry);
1718 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1719 flush_pending_stmts (post_inc_edge);
1721 /* Register the reduction exit phis. */
1722 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1723 !gsi_end_p (gsi);
1724 gsi_next (&gsi))
1726 gphi *phi = gsi.phi ();
1727 tree res_z = PHI_RESULT (phi);
1728 if (virtual_operand_p (res_z))
1729 continue;
1731 tree res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1732 gimple reduc_phi = SSA_NAME_DEF_STMT (res_c);
1733 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1734 if (red != NULL)
1735 red->keep_res = phi;
1738 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1739 then we're still using some fields, so only bother about fields that are
1740 still used: header and latch.
1741 The loop has a new header bb, so we update it. The latch bb stays the
1742 same. */
1743 loop->header = new_header;
1745 /* Recalculate dominance info. */
1746 free_dominance_info (CDI_DOMINATORS);
1747 calculate_dominance_info (CDI_DOMINATORS);
1750 /* Tries to moves the exit condition of LOOP to the beginning of its header
1751 without duplication of the loop body. NIT is the number of iterations of the
1752 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1753 transformation is successful. */
1755 static bool
1756 try_transform_to_exit_first_loop_alt (struct loop *loop,
1757 reduction_info_table_type *reduction_list,
1758 tree nit)
1760 /* Check whether the latch contains a single statement. */
1761 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1762 return false;
1764 /* Check whether the latch contains the loop iv increment. */
1765 edge back = single_succ_edge (loop->latch);
1766 edge exit = single_dom_exit (loop);
1767 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1768 tree control = gimple_cond_lhs (cond_stmt);
1769 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1770 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1771 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1772 return false;
1774 /* Check whether there's no code between the loop condition and the latch. */
1775 if (!single_pred_p (loop->latch)
1776 || single_pred (loop->latch) != exit->src)
1777 return false;
1779 tree alt_bound = NULL_TREE;
1780 tree nit_type = TREE_TYPE (nit);
1782 /* Figure out whether nit + 1 overflows. */
1783 if (TREE_CODE (nit) == INTEGER_CST)
1785 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1787 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1788 nit, build_one_cst (nit_type));
1790 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1791 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1792 return true;
1794 else
1796 /* Todo: Figure out if we can trigger this, if it's worth to handle
1797 optimally, and if we can handle it optimally. */
1798 return false;
1802 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1804 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1805 iv with base 0 and step 1 that is incremented in the latch, like this:
1807 <bb header>:
1808 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1810 if (iv_1 < nit)
1811 goto <bb latch>;
1812 else
1813 goto <bb exit>;
1815 <bb latch>:
1816 iv_2 = iv_1 + 1;
1817 goto <bb header>;
1819 The range of iv_1 is [0, nit]. The latch edge is taken for
1820 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1821 number of latch executions is equal to nit.
1823 The function max_loop_iterations gives us the maximum number of latch
1824 executions, so it gives us the maximum value of nit. */
1825 widest_int nit_max;
1826 if (!max_loop_iterations (loop, &nit_max))
1827 return false;
1829 /* Check if nit + 1 overflows. */
1830 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1831 if (!wi::lts_p (nit_max, type_max))
1832 return false;
1834 gimple def = SSA_NAME_DEF_STMT (nit);
1836 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1837 if (def
1838 && is_gimple_assign (def)
1839 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1841 tree op1 = gimple_assign_rhs1 (def);
1842 tree op2 = gimple_assign_rhs2 (def);
1843 if (integer_minus_onep (op1))
1844 alt_bound = op2;
1845 else if (integer_minus_onep (op2))
1846 alt_bound = op1;
1849 if (alt_bound == NULL_TREE)
1850 return false;
1852 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1853 return true;
1856 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1857 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1858 LOOP. */
1860 static void
1861 transform_to_exit_first_loop (struct loop *loop,
1862 reduction_info_table_type *reduction_list,
1863 tree nit)
1865 basic_block *bbs, *nbbs, ex_bb, orig_header;
1866 unsigned n;
1867 bool ok;
1868 edge exit = single_dom_exit (loop), hpred;
1869 tree control, control_name, res, t;
1870 gphi *phi, *nphi;
1871 gassign *stmt;
1872 gcond *cond_stmt, *cond_nit;
1873 tree nit_1;
1875 split_block_after_labels (loop->header);
1876 orig_header = single_succ (loop->header);
1877 hpred = single_succ_edge (loop->header);
1879 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1880 control = gimple_cond_lhs (cond_stmt);
1881 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1883 /* Make sure that we have phi nodes on exit for all loop header phis
1884 (create_parallel_loop requires that). */
1885 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1886 !gsi_end_p (gsi);
1887 gsi_next (&gsi))
1889 phi = gsi.phi ();
1890 res = PHI_RESULT (phi);
1891 t = copy_ssa_name (res, phi);
1892 SET_PHI_RESULT (phi, t);
1893 nphi = create_phi_node (res, orig_header);
1894 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1896 if (res == control)
1898 gimple_cond_set_lhs (cond_stmt, t);
1899 update_stmt (cond_stmt);
1900 control = t;
1904 bbs = get_loop_body_in_dom_order (loop);
1906 for (n = 0; bbs[n] != exit->src; n++)
1907 continue;
1908 nbbs = XNEWVEC (basic_block, n);
1909 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1910 bbs + 1, n, nbbs);
1911 gcc_assert (ok);
1912 free (bbs);
1913 ex_bb = nbbs[0];
1914 free (nbbs);
1916 /* Other than reductions, the only gimple reg that should be copied
1917 out of the loop is the control variable. */
1918 exit = single_dom_exit (loop);
1919 control_name = NULL_TREE;
1920 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1921 !gsi_end_p (gsi); )
1923 phi = gsi.phi ();
1924 res = PHI_RESULT (phi);
1925 if (virtual_operand_p (res))
1927 gsi_next (&gsi);
1928 continue;
1931 /* Check if it is a part of reduction. If it is,
1932 keep the phi at the reduction's keep_res field. The
1933 PHI_RESULT of this phi is the resulting value of the reduction
1934 variable when exiting the loop. */
1936 if (reduction_list->elements () > 0)
1938 struct reduction_info *red;
1940 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1941 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1942 if (red)
1944 red->keep_res = phi;
1945 gsi_next (&gsi);
1946 continue;
1949 gcc_assert (control_name == NULL_TREE
1950 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1951 control_name = res;
1952 remove_phi_node (&gsi, false);
1954 gcc_assert (control_name != NULL_TREE);
1956 /* Initialize the control variable to number of iterations
1957 according to the rhs of the exit condition. */
1958 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
1959 cond_nit = as_a <gcond *> (last_stmt (exit->src));
1960 nit_1 = gimple_cond_rhs (cond_nit);
1961 nit_1 = force_gimple_operand_gsi (&gsi,
1962 fold_convert (TREE_TYPE (control_name), nit_1),
1963 false, NULL_TREE, false, GSI_SAME_STMT);
1964 stmt = gimple_build_assign (control_name, nit_1);
1965 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1968 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1969 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1970 NEW_DATA is the variable that should be initialized from the argument
1971 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1972 basic block containing GIMPLE_OMP_PARALLEL tree. */
1974 static basic_block
1975 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1976 tree new_data, unsigned n_threads, location_t loc)
1978 gimple_stmt_iterator gsi;
1979 basic_block bb, paral_bb, for_bb, ex_bb;
1980 tree t, param;
1981 gomp_parallel *omp_par_stmt;
1982 gimple omp_return_stmt1, omp_return_stmt2;
1983 gimple phi;
1984 gcond *cond_stmt;
1985 gomp_for *for_stmt;
1986 gomp_continue *omp_cont_stmt;
1987 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1988 edge exit, nexit, guard, end, e;
1990 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1991 bb = loop_preheader_edge (loop)->src;
1992 paral_bb = single_pred (bb);
1993 gsi = gsi_last_bb (paral_bb);
1995 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1996 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1997 = build_int_cst (integer_type_node, n_threads);
1998 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1999 gimple_set_location (omp_par_stmt, loc);
2001 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2003 /* Initialize NEW_DATA. */
2004 if (data)
2006 gassign *assign_stmt;
2008 gsi = gsi_after_labels (bb);
2010 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2011 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2012 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2014 assign_stmt = gimple_build_assign (new_data,
2015 fold_convert (TREE_TYPE (new_data), param));
2016 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2019 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2020 bb = split_loop_exit_edge (single_dom_exit (loop));
2021 gsi = gsi_last_bb (bb);
2022 omp_return_stmt1 = gimple_build_omp_return (false);
2023 gimple_set_location (omp_return_stmt1, loc);
2024 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2026 /* Extract data for GIMPLE_OMP_FOR. */
2027 gcc_assert (loop->header == single_dom_exit (loop)->src);
2028 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2030 cvar = gimple_cond_lhs (cond_stmt);
2031 cvar_base = SSA_NAME_VAR (cvar);
2032 phi = SSA_NAME_DEF_STMT (cvar);
2033 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2034 initvar = copy_ssa_name (cvar);
2035 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2036 initvar);
2037 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2039 gsi = gsi_last_nondebug_bb (loop->latch);
2040 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2041 gsi_remove (&gsi, true);
2043 /* Prepare cfg. */
2044 for_bb = split_edge (loop_preheader_edge (loop));
2045 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2046 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2047 gcc_assert (exit == single_dom_exit (loop));
2049 guard = make_edge (for_bb, ex_bb, 0);
2050 single_succ_edge (loop->latch)->flags = 0;
2051 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
2052 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2053 !gsi_end_p (gpi); gsi_next (&gpi))
2055 source_location locus;
2056 tree def;
2057 gphi *phi = gpi.phi ();
2058 gphi *stmt;
2060 stmt = as_a <gphi *> (
2061 SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit)));
2063 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2064 locus = gimple_phi_arg_location_from_edge (stmt,
2065 loop_preheader_edge (loop));
2066 add_phi_arg (phi, def, guard, locus);
2068 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2069 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2070 add_phi_arg (phi, def, end, locus);
2072 e = redirect_edge_and_branch (exit, nexit->dest);
2073 PENDING_STMT (e) = NULL;
2075 /* Emit GIMPLE_OMP_FOR. */
2076 gimple_cond_set_lhs (cond_stmt, cvar_base);
2077 type = TREE_TYPE (cvar);
2078 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2079 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2081 for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
2082 gimple_set_location (for_stmt, loc);
2083 gimple_omp_for_set_index (for_stmt, 0, initvar);
2084 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2085 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2086 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2087 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2088 cvar_base,
2089 build_int_cst (type, 1)));
2091 gsi = gsi_last_bb (for_bb);
2092 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2093 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2095 /* Emit GIMPLE_OMP_CONTINUE. */
2096 gsi = gsi_last_bb (loop->latch);
2097 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2098 gimple_set_location (omp_cont_stmt, loc);
2099 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2100 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2102 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2103 gsi = gsi_last_bb (ex_bb);
2104 omp_return_stmt2 = gimple_build_omp_return (true);
2105 gimple_set_location (omp_return_stmt2, loc);
2106 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2108 /* After the above dom info is hosed. Re-compute it. */
2109 free_dominance_info (CDI_DOMINATORS);
2110 calculate_dominance_info (CDI_DOMINATORS);
2112 return paral_bb;
2115 /* Generates code to execute the iterations of LOOP in N_THREADS
2116 threads in parallel.
2118 NITER describes number of iterations of LOOP.
2119 REDUCTION_LIST describes the reductions existent in the LOOP. */
2121 static void
2122 gen_parallel_loop (struct loop *loop,
2123 reduction_info_table_type *reduction_list,
2124 unsigned n_threads, struct tree_niter_desc *niter)
2126 tree many_iterations_cond, type, nit;
2127 tree arg_struct, new_arg_struct;
2128 gimple_seq stmts;
2129 edge entry, exit;
2130 struct clsn_data clsn_data;
2131 unsigned prob;
2132 location_t loc;
2133 gimple cond_stmt;
2134 unsigned int m_p_thread=2;
2136 /* From
2138 ---------------------------------------------------------------------
2139 loop
2141 IV = phi (INIT, IV + STEP)
2142 BODY1;
2143 if (COND)
2144 break;
2145 BODY2;
2147 ---------------------------------------------------------------------
2149 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2150 we generate the following code:
2152 ---------------------------------------------------------------------
2154 if (MAY_BE_ZERO
2155 || NITER < MIN_PER_THREAD * N_THREADS)
2156 goto original;
2158 BODY1;
2159 store all local loop-invariant variables used in body of the loop to DATA.
2160 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2161 load the variables from DATA.
2162 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2163 BODY2;
2164 BODY1;
2165 GIMPLE_OMP_CONTINUE;
2166 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2167 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2168 goto end;
2170 original:
2171 loop
2173 IV = phi (INIT, IV + STEP)
2174 BODY1;
2175 if (COND)
2176 break;
2177 BODY2;
2180 end:
2184 /* Create two versions of the loop -- in the old one, we know that the
2185 number of iterations is large enough, and we will transform it into the
2186 loop that will be split to loop_fn, the new one will be used for the
2187 remaining iterations. */
2189 /* We should compute a better number-of-iterations value for outer loops.
2190 That is, if we have
2192 for (i = 0; i < n; ++i)
2193 for (j = 0; j < m; ++j)
2196 we should compute nit = n * m, not nit = n.
2197 Also may_be_zero handling would need to be adjusted. */
2199 type = TREE_TYPE (niter->niter);
2200 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2201 NULL_TREE);
2202 if (stmts)
2203 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2205 if (loop->inner)
2206 m_p_thread=2;
2207 else
2208 m_p_thread=MIN_PER_THREAD;
2210 many_iterations_cond =
2211 fold_build2 (GE_EXPR, boolean_type_node,
2212 nit, build_int_cst (type, m_p_thread * n_threads));
2214 many_iterations_cond
2215 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2216 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2217 many_iterations_cond);
2218 many_iterations_cond
2219 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2220 if (stmts)
2221 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2222 if (!is_gimple_condexpr (many_iterations_cond))
2224 many_iterations_cond
2225 = force_gimple_operand (many_iterations_cond, &stmts,
2226 true, NULL_TREE);
2227 if (stmts)
2228 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2231 initialize_original_copy_tables ();
2233 /* We assume that the loop usually iterates a lot. */
2234 prob = 4 * REG_BR_PROB_BASE / 5;
2235 loop_version (loop, many_iterations_cond, NULL,
2236 prob, prob, REG_BR_PROB_BASE - prob, true);
2237 update_ssa (TODO_update_ssa);
2238 free_original_copy_tables ();
2240 /* Base all the induction variables in LOOP on a single control one. */
2241 canonicalize_loop_ivs (loop, &nit, true);
2243 /* Ensure that the exit condition is the first statement in the loop.
2244 The common case is that latch of the loop is empty (apart from the
2245 increment) and immediately follows the loop exit test. Attempt to move the
2246 entry of the loop directly before the exit check and increase the number of
2247 iterations of the loop by one. */
2248 if (!try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2250 /* Fall back on the method that handles more cases, but duplicates the
2251 loop body: move the exit condition of LOOP to the beginning of its
2252 header, and duplicate the part of the last iteration that gets disabled
2253 to the exit of the loop. */
2254 transform_to_exit_first_loop (loop, reduction_list, nit);
2257 /* Generate initializations for reductions. */
2258 if (reduction_list->elements () > 0)
2259 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2261 /* Eliminate the references to local variables from the loop. */
2262 gcc_assert (single_exit (loop));
2263 entry = loop_preheader_edge (loop);
2264 exit = single_dom_exit (loop);
2266 eliminate_local_variables (entry, exit);
2267 /* In the old loop, move all variables non-local to the loop to a structure
2268 and back, and create separate decls for the variables used in loop. */
2269 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2270 &new_arg_struct, &clsn_data);
2272 /* Create the parallel constructs. */
2273 loc = UNKNOWN_LOCATION;
2274 cond_stmt = last_stmt (loop->header);
2275 if (cond_stmt)
2276 loc = gimple_location (cond_stmt);
2277 create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
2278 new_arg_struct, n_threads, loc);
2279 if (reduction_list->elements () > 0)
2280 create_call_for_reduction (loop, reduction_list, &clsn_data);
2282 scev_reset ();
2284 /* Cancel the loop (it is simpler to do it here rather than to teach the
2285 expander to do it). */
2286 cancel_loop_tree (loop);
2288 /* Free loop bound estimations that could contain references to
2289 removed statements. */
2290 FOR_EACH_LOOP (loop, 0)
2291 free_numbers_of_iterations_estimates_loop (loop);
2294 /* Returns true when LOOP contains vector phi nodes. */
2296 static bool
2297 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2299 unsigned i;
2300 basic_block *bbs = get_loop_body_in_dom_order (loop);
2301 gphi_iterator gsi;
2302 bool res = true;
2304 for (i = 0; i < loop->num_nodes; i++)
2305 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2306 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2307 goto end;
2309 res = false;
2310 end:
2311 free (bbs);
2312 return res;
2315 /* Create a reduction_info struct, initialize it with REDUC_STMT
2316 and PHI, insert it to the REDUCTION_LIST. */
2318 static void
2319 build_new_reduction (reduction_info_table_type *reduction_list,
2320 gimple reduc_stmt, gphi *phi)
2322 reduction_info **slot;
2323 struct reduction_info *new_reduction;
2325 gcc_assert (reduc_stmt);
2327 if (dump_file && (dump_flags & TDF_DETAILS))
2329 fprintf (dump_file,
2330 "Detected reduction. reduction stmt is: \n");
2331 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2332 fprintf (dump_file, "\n");
2335 new_reduction = XCNEW (struct reduction_info);
2337 new_reduction->reduc_stmt = reduc_stmt;
2338 new_reduction->reduc_phi = phi;
2339 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2340 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
2341 slot = reduction_list->find_slot (new_reduction, INSERT);
2342 *slot = new_reduction;
2345 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2348 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2350 struct reduction_info *const red = *slot;
2351 gimple_set_uid (red->reduc_phi, red->reduc_version);
2352 return 1;
2355 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2357 static void
2358 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2360 gphi_iterator gsi;
2361 loop_vec_info simple_loop_info;
2363 simple_loop_info = vect_analyze_loop_form (loop);
2365 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2367 gphi *phi = gsi.phi ();
2368 affine_iv iv;
2369 tree res = PHI_RESULT (phi);
2370 bool double_reduc;
2372 if (virtual_operand_p (res))
2373 continue;
2375 if (!simple_iv (loop, loop, res, &iv, true)
2376 && simple_loop_info)
2378 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
2379 phi, true,
2380 &double_reduc);
2381 if (reduc_stmt && !double_reduc)
2382 build_new_reduction (reduction_list, reduc_stmt, phi);
2385 destroy_loop_vec_info (simple_loop_info, true);
2387 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2388 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2389 only now. */
2390 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2393 /* Try to initialize NITER for code generation part. */
2395 static bool
2396 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2398 edge exit = single_dom_exit (loop);
2400 gcc_assert (exit);
2402 /* We need to know # of iterations, and there should be no uses of values
2403 defined inside loop outside of it, unless the values are invariants of
2404 the loop. */
2405 if (!number_of_iterations_exit (loop, exit, niter, false))
2407 if (dump_file && (dump_flags & TDF_DETAILS))
2408 fprintf (dump_file, " FAILED: number of iterations not known\n");
2409 return false;
2412 return true;
2415 /* Try to initialize REDUCTION_LIST for code generation part.
2416 REDUCTION_LIST describes the reductions. */
2418 static bool
2419 try_create_reduction_list (loop_p loop,
2420 reduction_info_table_type *reduction_list)
2422 edge exit = single_dom_exit (loop);
2423 gphi_iterator gsi;
2425 gcc_assert (exit);
2427 gather_scalar_reductions (loop, reduction_list);
2430 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2432 gphi *phi = gsi.phi ();
2433 struct reduction_info *red;
2434 imm_use_iterator imm_iter;
2435 use_operand_p use_p;
2436 gimple reduc_phi;
2437 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2439 if (!virtual_operand_p (val))
2441 if (dump_file && (dump_flags & TDF_DETAILS))
2443 fprintf (dump_file, "phi is ");
2444 print_gimple_stmt (dump_file, phi, 0, 0);
2445 fprintf (dump_file, "arg of phi to exit: value ");
2446 print_generic_expr (dump_file, val, 0);
2447 fprintf (dump_file, " used outside loop\n");
2448 fprintf (dump_file,
2449 " checking if it a part of reduction pattern: \n");
2451 if (reduction_list->elements () == 0)
2453 if (dump_file && (dump_flags & TDF_DETAILS))
2454 fprintf (dump_file,
2455 " FAILED: it is not a part of reduction.\n");
2456 return false;
2458 reduc_phi = NULL;
2459 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2461 if (!gimple_debug_bind_p (USE_STMT (use_p))
2462 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2464 reduc_phi = USE_STMT (use_p);
2465 break;
2468 red = reduction_phi (reduction_list, reduc_phi);
2469 if (red == NULL)
2471 if (dump_file && (dump_flags & TDF_DETAILS))
2472 fprintf (dump_file,
2473 " FAILED: it is not a part of reduction.\n");
2474 return false;
2476 if (dump_file && (dump_flags & TDF_DETAILS))
2478 fprintf (dump_file, "reduction phi is ");
2479 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2480 fprintf (dump_file, "reduction stmt is ");
2481 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2486 /* The iterations of the loop may communicate only through bivs whose
2487 iteration space can be distributed efficiently. */
2488 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2490 gphi *phi = gsi.phi ();
2491 tree def = PHI_RESULT (phi);
2492 affine_iv iv;
2494 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2496 struct reduction_info *red;
2498 red = reduction_phi (reduction_list, phi);
2499 if (red == NULL)
2501 if (dump_file && (dump_flags & TDF_DETAILS))
2502 fprintf (dump_file,
2503 " FAILED: scalar dependency between iterations\n");
2504 return false;
2510 return true;
2513 /* Detect parallel loops and generate parallel code using libgomp
2514 primitives. Returns true if some loop was parallelized, false
2515 otherwise. */
2517 static bool
2518 parallelize_loops (void)
2520 unsigned n_threads = flag_tree_parallelize_loops;
2521 bool changed = false;
2522 struct loop *loop;
2523 struct tree_niter_desc niter_desc;
2524 struct obstack parloop_obstack;
2525 HOST_WIDE_INT estimated;
2526 source_location loop_loc;
2528 /* Do not parallelize loops in the functions created by parallelization. */
2529 if (parallelized_function_p (cfun->decl))
2530 return false;
2531 if (cfun->has_nonlocal_label)
2532 return false;
2534 gcc_obstack_init (&parloop_obstack);
2535 reduction_info_table_type reduction_list (10);
2536 init_stmt_vec_info_vec ();
2538 FOR_EACH_LOOP (loop, 0)
2540 reduction_list.empty ();
2541 if (dump_file && (dump_flags & TDF_DETAILS))
2543 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2544 if (loop->inner)
2545 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2546 else
2547 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2550 /* If we use autopar in graphite pass, we use its marked dependency
2551 checking results. */
2552 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2554 if (dump_file && (dump_flags & TDF_DETAILS))
2555 fprintf (dump_file, "loop is not parallel according to graphite\n");
2556 continue;
2559 if (!single_dom_exit (loop))
2562 if (dump_file && (dump_flags & TDF_DETAILS))
2563 fprintf (dump_file, "loop is !single_dom_exit\n");
2565 continue;
2568 if (/* And of course, the loop must be parallelizable. */
2569 !can_duplicate_loop_p (loop)
2570 || loop_has_blocks_with_irreducible_flag (loop)
2571 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2572 /* FIXME: the check for vector phi nodes could be removed. */
2573 || loop_has_vector_phi_nodes (loop))
2574 continue;
2576 estimated = estimated_stmt_executions_int (loop);
2577 if (estimated == -1)
2578 estimated = max_stmt_executions_int (loop);
2579 /* FIXME: Bypass this check as graphite doesn't update the
2580 count and frequency correctly now. */
2581 if (!flag_loop_parallelize_all
2582 && ((estimated != -1
2583 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2584 /* Do not bother with loops in cold areas. */
2585 || optimize_loop_nest_for_size_p (loop)))
2586 continue;
2588 if (!try_get_loop_niter (loop, &niter_desc))
2589 continue;
2591 if (!try_create_reduction_list (loop, &reduction_list))
2592 continue;
2594 if (!flag_loop_parallelize_all
2595 && !loop_parallel_p (loop, &parloop_obstack))
2596 continue;
2598 changed = true;
2599 if (dump_file && (dump_flags & TDF_DETAILS))
2601 if (loop->inner)
2602 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2603 else
2604 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2605 loop_loc = find_loop_location (loop);
2606 if (loop_loc != UNKNOWN_LOCATION)
2607 fprintf (dump_file, "\nloop at %s:%d: ",
2608 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2610 gen_parallel_loop (loop, &reduction_list,
2611 n_threads, &niter_desc);
2614 free_stmt_vec_info_vec ();
2615 obstack_free (&parloop_obstack, NULL);
2617 /* Parallelization will cause new function calls to be inserted through
2618 which local variables will escape. Reset the points-to solution
2619 for ESCAPED. */
2620 if (changed)
2621 pt_solution_reset (&cfun->gimple_df->escaped);
2623 return changed;
2626 /* Parallelization. */
2628 namespace {
2630 const pass_data pass_data_parallelize_loops =
2632 GIMPLE_PASS, /* type */
2633 "parloops", /* name */
2634 OPTGROUP_LOOP, /* optinfo_flags */
2635 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2636 ( PROP_cfg | PROP_ssa ), /* properties_required */
2637 0, /* properties_provided */
2638 0, /* properties_destroyed */
2639 0, /* todo_flags_start */
2640 0, /* todo_flags_finish */
2643 class pass_parallelize_loops : public gimple_opt_pass
2645 public:
2646 pass_parallelize_loops (gcc::context *ctxt)
2647 : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2650 /* opt_pass methods: */
2651 virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2652 virtual unsigned int execute (function *);
2654 }; // class pass_parallelize_loops
2656 unsigned
2657 pass_parallelize_loops::execute (function *fun)
2659 if (number_of_loops (fun) <= 1)
2660 return 0;
2662 if (parallelize_loops ())
2664 fun->curr_properties &= ~(PROP_gimple_eomp);
2665 return TODO_update_ssa;
2668 return 0;
2671 } // anon namespace
2673 gimple_opt_pass *
2674 make_pass_parallelize_loops (gcc::context *ctxt)
2676 return new pass_parallelize_loops (ctxt);