PR middle-end/66633
[official-gcc.git] / gcc / ira.c
blob92d5eb11ed7c71ce682145db958805610f5319ab
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "alias.h"
372 #include "symtab.h"
373 #include "tree.h"
374 #include "hard-reg-set.h"
375 #include "rtl.h"
376 #include "tm_p.h"
377 #include "target.h"
378 #include "flags.h"
379 #include "obstack.h"
380 #include "bitmap.h"
381 #include "predict.h"
382 #include "function.h"
383 #include "dominance.h"
384 #include "cfg.h"
385 #include "cfgrtl.h"
386 #include "cfgbuild.h"
387 #include "cfgcleanup.h"
388 #include "basic-block.h"
389 #include "df.h"
390 #include "insn-config.h"
391 #include "expmed.h"
392 #include "dojump.h"
393 #include "explow.h"
394 #include "calls.h"
395 #include "emit-rtl.h"
396 #include "varasm.h"
397 #include "stmt.h"
398 #include "expr.h"
399 #include "recog.h"
400 #include "params.h"
401 #include "tree-pass.h"
402 #include "output.h"
403 #include "except.h"
404 #include "reload.h"
405 #include "diagnostic-core.h"
406 #include "ira-int.h"
407 #include "lra.h"
408 #include "dce.h"
409 #include "dbgcnt.h"
410 #include "rtl-iter.h"
411 #include "shrink-wrap.h"
413 struct target_ira default_target_ira;
414 struct target_ira_int default_target_ira_int;
415 #if SWITCHABLE_TARGET
416 struct target_ira *this_target_ira = &default_target_ira;
417 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
418 #endif
420 /* A modified value of flag `-fira-verbose' used internally. */
421 int internal_flag_ira_verbose;
423 /* Dump file of the allocator if it is not NULL. */
424 FILE *ira_dump_file;
426 /* The number of elements in the following array. */
427 int ira_spilled_reg_stack_slots_num;
429 /* The following array contains info about spilled pseudo-registers
430 stack slots used in current function so far. */
431 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
433 /* Correspondingly overall cost of the allocation, overall cost before
434 reload, cost of the allocnos assigned to hard-registers, cost of
435 the allocnos assigned to memory, cost of loads, stores and register
436 move insns generated for pseudo-register live range splitting (see
437 ira-emit.c). */
438 int64_t ira_overall_cost, overall_cost_before;
439 int64_t ira_reg_cost, ira_mem_cost;
440 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
441 int ira_move_loops_num, ira_additional_jumps_num;
443 /* All registers that can be eliminated. */
445 HARD_REG_SET eliminable_regset;
447 /* Value of max_reg_num () before IRA work start. This value helps
448 us to recognize a situation when new pseudos were created during
449 IRA work. */
450 static int max_regno_before_ira;
452 /* Temporary hard reg set used for a different calculation. */
453 static HARD_REG_SET temp_hard_regset;
455 #define last_mode_for_init_move_cost \
456 (this_target_ira_int->x_last_mode_for_init_move_cost)
459 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
460 static void
461 setup_reg_mode_hard_regset (void)
463 int i, m, hard_regno;
465 for (m = 0; m < NUM_MACHINE_MODES; m++)
466 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
468 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
469 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
470 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
471 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
472 hard_regno + i);
477 #define no_unit_alloc_regs \
478 (this_target_ira_int->x_no_unit_alloc_regs)
480 /* The function sets up the three arrays declared above. */
481 static void
482 setup_class_hard_regs (void)
484 int cl, i, hard_regno, n;
485 HARD_REG_SET processed_hard_reg_set;
487 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
488 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
490 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
491 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
492 CLEAR_HARD_REG_SET (processed_hard_reg_set);
493 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
495 ira_non_ordered_class_hard_regs[cl][i] = -1;
496 ira_class_hard_reg_index[cl][i] = -1;
498 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 #ifdef REG_ALLOC_ORDER
501 hard_regno = reg_alloc_order[i];
502 #else
503 hard_regno = i;
504 #endif
505 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
506 continue;
507 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
508 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
509 ira_class_hard_reg_index[cl][hard_regno] = -1;
510 else
512 ira_class_hard_reg_index[cl][hard_regno] = n;
513 ira_class_hard_regs[cl][n++] = hard_regno;
516 ira_class_hard_regs_num[cl] = n;
517 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
518 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
519 ira_non_ordered_class_hard_regs[cl][n++] = i;
520 ira_assert (ira_class_hard_regs_num[cl] == n);
524 /* Set up global variables defining info about hard registers for the
525 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
526 that we can use the hard frame pointer for the allocation. */
527 static void
528 setup_alloc_regs (bool use_hard_frame_p)
530 #ifdef ADJUST_REG_ALLOC_ORDER
531 ADJUST_REG_ALLOC_ORDER;
532 #endif
533 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
534 if (! use_hard_frame_p)
535 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
536 setup_class_hard_regs ();
541 #define alloc_reg_class_subclasses \
542 (this_target_ira_int->x_alloc_reg_class_subclasses)
544 /* Initialize the table of subclasses of each reg class. */
545 static void
546 setup_reg_subclasses (void)
548 int i, j;
549 HARD_REG_SET temp_hard_regset2;
551 for (i = 0; i < N_REG_CLASSES; i++)
552 for (j = 0; j < N_REG_CLASSES; j++)
553 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
555 for (i = 0; i < N_REG_CLASSES; i++)
557 if (i == (int) NO_REGS)
558 continue;
560 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
561 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
562 if (hard_reg_set_empty_p (temp_hard_regset))
563 continue;
564 for (j = 0; j < N_REG_CLASSES; j++)
565 if (i != j)
567 enum reg_class *p;
569 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
570 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
571 if (! hard_reg_set_subset_p (temp_hard_regset,
572 temp_hard_regset2))
573 continue;
574 p = &alloc_reg_class_subclasses[j][0];
575 while (*p != LIM_REG_CLASSES) p++;
576 *p = (enum reg_class) i;
583 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
584 static void
585 setup_class_subset_and_memory_move_costs (void)
587 int cl, cl2, mode, cost;
588 HARD_REG_SET temp_hard_regset2;
590 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
591 ira_memory_move_cost[mode][NO_REGS][0]
592 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
593 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
595 if (cl != (int) NO_REGS)
596 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
598 ira_max_memory_move_cost[mode][cl][0]
599 = ira_memory_move_cost[mode][cl][0]
600 = memory_move_cost ((machine_mode) mode,
601 (reg_class_t) cl, false);
602 ira_max_memory_move_cost[mode][cl][1]
603 = ira_memory_move_cost[mode][cl][1]
604 = memory_move_cost ((machine_mode) mode,
605 (reg_class_t) cl, true);
606 /* Costs for NO_REGS are used in cost calculation on the
607 1st pass when the preferred register classes are not
608 known yet. In this case we take the best scenario. */
609 if (ira_memory_move_cost[mode][NO_REGS][0]
610 > ira_memory_move_cost[mode][cl][0])
611 ira_max_memory_move_cost[mode][NO_REGS][0]
612 = ira_memory_move_cost[mode][NO_REGS][0]
613 = ira_memory_move_cost[mode][cl][0];
614 if (ira_memory_move_cost[mode][NO_REGS][1]
615 > ira_memory_move_cost[mode][cl][1])
616 ira_max_memory_move_cost[mode][NO_REGS][1]
617 = ira_memory_move_cost[mode][NO_REGS][1]
618 = ira_memory_move_cost[mode][cl][1];
621 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
622 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
624 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
625 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
626 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
627 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
628 ira_class_subset_p[cl][cl2]
629 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
630 if (! hard_reg_set_empty_p (temp_hard_regset2)
631 && hard_reg_set_subset_p (reg_class_contents[cl2],
632 reg_class_contents[cl]))
633 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
635 cost = ira_memory_move_cost[mode][cl2][0];
636 if (cost > ira_max_memory_move_cost[mode][cl][0])
637 ira_max_memory_move_cost[mode][cl][0] = cost;
638 cost = ira_memory_move_cost[mode][cl2][1];
639 if (cost > ira_max_memory_move_cost[mode][cl][1])
640 ira_max_memory_move_cost[mode][cl][1] = cost;
643 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
644 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
646 ira_memory_move_cost[mode][cl][0]
647 = ira_max_memory_move_cost[mode][cl][0];
648 ira_memory_move_cost[mode][cl][1]
649 = ira_max_memory_move_cost[mode][cl][1];
651 setup_reg_subclasses ();
656 /* Define the following macro if allocation through malloc if
657 preferable. */
658 #define IRA_NO_OBSTACK
660 #ifndef IRA_NO_OBSTACK
661 /* Obstack used for storing all dynamic data (except bitmaps) of the
662 IRA. */
663 static struct obstack ira_obstack;
664 #endif
666 /* Obstack used for storing all bitmaps of the IRA. */
667 static struct bitmap_obstack ira_bitmap_obstack;
669 /* Allocate memory of size LEN for IRA data. */
670 void *
671 ira_allocate (size_t len)
673 void *res;
675 #ifndef IRA_NO_OBSTACK
676 res = obstack_alloc (&ira_obstack, len);
677 #else
678 res = xmalloc (len);
679 #endif
680 return res;
683 /* Free memory ADDR allocated for IRA data. */
684 void
685 ira_free (void *addr ATTRIBUTE_UNUSED)
687 #ifndef IRA_NO_OBSTACK
688 /* do nothing */
689 #else
690 free (addr);
691 #endif
695 /* Allocate and returns bitmap for IRA. */
696 bitmap
697 ira_allocate_bitmap (void)
699 return BITMAP_ALLOC (&ira_bitmap_obstack);
702 /* Free bitmap B allocated for IRA. */
703 void
704 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
706 /* do nothing */
711 /* Output information about allocation of all allocnos (except for
712 caps) into file F. */
713 void
714 ira_print_disposition (FILE *f)
716 int i, n, max_regno;
717 ira_allocno_t a;
718 basic_block bb;
720 fprintf (f, "Disposition:");
721 max_regno = max_reg_num ();
722 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
723 for (a = ira_regno_allocno_map[i];
724 a != NULL;
725 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
727 if (n % 4 == 0)
728 fprintf (f, "\n");
729 n++;
730 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
731 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
732 fprintf (f, "b%-3d", bb->index);
733 else
734 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
735 if (ALLOCNO_HARD_REGNO (a) >= 0)
736 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
737 else
738 fprintf (f, " mem");
740 fprintf (f, "\n");
743 /* Outputs information about allocation of all allocnos into
744 stderr. */
745 void
746 ira_debug_disposition (void)
748 ira_print_disposition (stderr);
753 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
754 register class containing stack registers or NO_REGS if there are
755 no stack registers. To find this class, we iterate through all
756 register pressure classes and choose the first register pressure
757 class containing all the stack registers and having the biggest
758 size. */
759 static void
760 setup_stack_reg_pressure_class (void)
762 ira_stack_reg_pressure_class = NO_REGS;
763 #ifdef STACK_REGS
765 int i, best, size;
766 enum reg_class cl;
767 HARD_REG_SET temp_hard_regset2;
769 CLEAR_HARD_REG_SET (temp_hard_regset);
770 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
771 SET_HARD_REG_BIT (temp_hard_regset, i);
772 best = 0;
773 for (i = 0; i < ira_pressure_classes_num; i++)
775 cl = ira_pressure_classes[i];
776 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
777 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
778 size = hard_reg_set_size (temp_hard_regset2);
779 if (best < size)
781 best = size;
782 ira_stack_reg_pressure_class = cl;
786 #endif
789 /* Find pressure classes which are register classes for which we
790 calculate register pressure in IRA, register pressure sensitive
791 insn scheduling, and register pressure sensitive loop invariant
792 motion.
794 To make register pressure calculation easy, we always use
795 non-intersected register pressure classes. A move of hard
796 registers from one register pressure class is not more expensive
797 than load and store of the hard registers. Most likely an allocno
798 class will be a subset of a register pressure class and in many
799 cases a register pressure class. That makes usage of register
800 pressure classes a good approximation to find a high register
801 pressure. */
802 static void
803 setup_pressure_classes (void)
805 int cost, i, n, curr;
806 int cl, cl2;
807 enum reg_class pressure_classes[N_REG_CLASSES];
808 int m;
809 HARD_REG_SET temp_hard_regset2;
810 bool insert_p;
812 n = 0;
813 for (cl = 0; cl < N_REG_CLASSES; cl++)
815 if (ira_class_hard_regs_num[cl] == 0)
816 continue;
817 if (ira_class_hard_regs_num[cl] != 1
818 /* A register class without subclasses may contain a few
819 hard registers and movement between them is costly
820 (e.g. SPARC FPCC registers). We still should consider it
821 as a candidate for a pressure class. */
822 && alloc_reg_class_subclasses[cl][0] < cl)
824 /* Check that the moves between any hard registers of the
825 current class are not more expensive for a legal mode
826 than load/store of the hard registers of the current
827 class. Such class is a potential candidate to be a
828 register pressure class. */
829 for (m = 0; m < NUM_MACHINE_MODES; m++)
831 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
833 AND_COMPL_HARD_REG_SET (temp_hard_regset,
834 ira_prohibited_class_mode_regs[cl][m]);
835 if (hard_reg_set_empty_p (temp_hard_regset))
836 continue;
837 ira_init_register_move_cost_if_necessary ((machine_mode) m);
838 cost = ira_register_move_cost[m][cl][cl];
839 if (cost <= ira_max_memory_move_cost[m][cl][1]
840 || cost <= ira_max_memory_move_cost[m][cl][0])
841 break;
843 if (m >= NUM_MACHINE_MODES)
844 continue;
846 curr = 0;
847 insert_p = true;
848 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
849 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
850 /* Remove so far added pressure classes which are subset of the
851 current candidate class. Prefer GENERAL_REGS as a pressure
852 register class to another class containing the same
853 allocatable hard registers. We do this because machine
854 dependent cost hooks might give wrong costs for the latter
855 class but always give the right cost for the former class
856 (GENERAL_REGS). */
857 for (i = 0; i < n; i++)
859 cl2 = pressure_classes[i];
860 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
861 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
862 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
863 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
864 || cl2 == (int) GENERAL_REGS))
866 pressure_classes[curr++] = (enum reg_class) cl2;
867 insert_p = false;
868 continue;
870 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
871 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
872 || cl == (int) GENERAL_REGS))
873 continue;
874 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
875 insert_p = false;
876 pressure_classes[curr++] = (enum reg_class) cl2;
878 /* If the current candidate is a subset of a so far added
879 pressure class, don't add it to the list of the pressure
880 classes. */
881 if (insert_p)
882 pressure_classes[curr++] = (enum reg_class) cl;
883 n = curr;
885 #ifdef ENABLE_IRA_CHECKING
887 HARD_REG_SET ignore_hard_regs;
889 /* Check pressure classes correctness: here we check that hard
890 registers from all register pressure classes contains all hard
891 registers available for the allocation. */
892 CLEAR_HARD_REG_SET (temp_hard_regset);
893 CLEAR_HARD_REG_SET (temp_hard_regset2);
894 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
895 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
897 /* For some targets (like MIPS with MD_REGS), there are some
898 classes with hard registers available for allocation but
899 not able to hold value of any mode. */
900 for (m = 0; m < NUM_MACHINE_MODES; m++)
901 if (contains_reg_of_mode[cl][m])
902 break;
903 if (m >= NUM_MACHINE_MODES)
905 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
906 continue;
908 for (i = 0; i < n; i++)
909 if ((int) pressure_classes[i] == cl)
910 break;
911 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
912 if (i < n)
913 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
915 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
916 /* Some targets (like SPARC with ICC reg) have allocatable regs
917 for which no reg class is defined. */
918 if (REGNO_REG_CLASS (i) == NO_REGS)
919 SET_HARD_REG_BIT (ignore_hard_regs, i);
920 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
921 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
922 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
924 #endif
925 ira_pressure_classes_num = 0;
926 for (i = 0; i < n; i++)
928 cl = (int) pressure_classes[i];
929 ira_reg_pressure_class_p[cl] = true;
930 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
932 setup_stack_reg_pressure_class ();
935 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
936 whose register move cost between any registers of the class is the
937 same as for all its subclasses. We use the data to speed up the
938 2nd pass of calculations of allocno costs. */
939 static void
940 setup_uniform_class_p (void)
942 int i, cl, cl2, m;
944 for (cl = 0; cl < N_REG_CLASSES; cl++)
946 ira_uniform_class_p[cl] = false;
947 if (ira_class_hard_regs_num[cl] == 0)
948 continue;
949 /* We can not use alloc_reg_class_subclasses here because move
950 cost hooks does not take into account that some registers are
951 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
952 is element of alloc_reg_class_subclasses for GENERAL_REGS
953 because SSE regs are unavailable. */
954 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
956 if (ira_class_hard_regs_num[cl2] == 0)
957 continue;
958 for (m = 0; m < NUM_MACHINE_MODES; m++)
959 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
961 ira_init_register_move_cost_if_necessary ((machine_mode) m);
962 if (ira_register_move_cost[m][cl][cl]
963 != ira_register_move_cost[m][cl2][cl2])
964 break;
966 if (m < NUM_MACHINE_MODES)
967 break;
969 if (cl2 == LIM_REG_CLASSES)
970 ira_uniform_class_p[cl] = true;
974 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
975 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
977 Target may have many subtargets and not all target hard registers can
978 be used for allocation, e.g. x86 port in 32-bit mode can not use
979 hard registers introduced in x86-64 like r8-r15). Some classes
980 might have the same allocatable hard registers, e.g. INDEX_REGS
981 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
982 calculations efforts we introduce allocno classes which contain
983 unique non-empty sets of allocatable hard-registers.
985 Pseudo class cost calculation in ira-costs.c is very expensive.
986 Therefore we are trying to decrease number of classes involved in
987 such calculation. Register classes used in the cost calculation
988 are called important classes. They are allocno classes and other
989 non-empty classes whose allocatable hard register sets are inside
990 of an allocno class hard register set. From the first sight, it
991 looks like that they are just allocno classes. It is not true. In
992 example of x86-port in 32-bit mode, allocno classes will contain
993 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
994 registers are the same for the both classes). The important
995 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
996 because a machine description insn constraint may refers for
997 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
998 of the insn constraints. */
999 static void
1000 setup_allocno_and_important_classes (void)
1002 int i, j, n, cl;
1003 bool set_p;
1004 HARD_REG_SET temp_hard_regset2;
1005 static enum reg_class classes[LIM_REG_CLASSES + 1];
1007 n = 0;
1008 /* Collect classes which contain unique sets of allocatable hard
1009 registers. Prefer GENERAL_REGS to other classes containing the
1010 same set of hard registers. */
1011 for (i = 0; i < LIM_REG_CLASSES; i++)
1013 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1014 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1015 for (j = 0; j < n; j++)
1017 cl = classes[j];
1018 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1019 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1020 no_unit_alloc_regs);
1021 if (hard_reg_set_equal_p (temp_hard_regset,
1022 temp_hard_regset2))
1023 break;
1025 if (j >= n)
1026 classes[n++] = (enum reg_class) i;
1027 else if (i == GENERAL_REGS)
1028 /* Prefer general regs. For i386 example, it means that
1029 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1030 (all of them consists of the same available hard
1031 registers). */
1032 classes[j] = (enum reg_class) i;
1034 classes[n] = LIM_REG_CLASSES;
1036 /* Set up classes which can be used for allocnos as classes
1037 containing non-empty unique sets of allocatable hard
1038 registers. */
1039 ira_allocno_classes_num = 0;
1040 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1041 if (ira_class_hard_regs_num[cl] > 0)
1042 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1043 ira_important_classes_num = 0;
1044 /* Add non-allocno classes containing to non-empty set of
1045 allocatable hard regs. */
1046 for (cl = 0; cl < N_REG_CLASSES; cl++)
1047 if (ira_class_hard_regs_num[cl] > 0)
1049 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1050 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1051 set_p = false;
1052 for (j = 0; j < ira_allocno_classes_num; j++)
1054 COPY_HARD_REG_SET (temp_hard_regset2,
1055 reg_class_contents[ira_allocno_classes[j]]);
1056 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1057 if ((enum reg_class) cl == ira_allocno_classes[j])
1058 break;
1059 else if (hard_reg_set_subset_p (temp_hard_regset,
1060 temp_hard_regset2))
1061 set_p = true;
1063 if (set_p && j >= ira_allocno_classes_num)
1064 ira_important_classes[ira_important_classes_num++]
1065 = (enum reg_class) cl;
1067 /* Now add allocno classes to the important classes. */
1068 for (j = 0; j < ira_allocno_classes_num; j++)
1069 ira_important_classes[ira_important_classes_num++]
1070 = ira_allocno_classes[j];
1071 for (cl = 0; cl < N_REG_CLASSES; cl++)
1073 ira_reg_allocno_class_p[cl] = false;
1074 ira_reg_pressure_class_p[cl] = false;
1076 for (j = 0; j < ira_allocno_classes_num; j++)
1077 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1078 setup_pressure_classes ();
1079 setup_uniform_class_p ();
1082 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1083 given by array CLASSES of length CLASSES_NUM. The function is used
1084 make translation any reg class to an allocno class or to an
1085 pressure class. This translation is necessary for some
1086 calculations when we can use only allocno or pressure classes and
1087 such translation represents an approximate representation of all
1088 classes.
1090 The translation in case when allocatable hard register set of a
1091 given class is subset of allocatable hard register set of a class
1092 in CLASSES is pretty simple. We use smallest classes from CLASSES
1093 containing a given class. If allocatable hard register set of a
1094 given class is not a subset of any corresponding set of a class
1095 from CLASSES, we use the cheapest (with load/store point of view)
1096 class from CLASSES whose set intersects with given class set. */
1097 static void
1098 setup_class_translate_array (enum reg_class *class_translate,
1099 int classes_num, enum reg_class *classes)
1101 int cl, mode;
1102 enum reg_class aclass, best_class, *cl_ptr;
1103 int i, cost, min_cost, best_cost;
1105 for (cl = 0; cl < N_REG_CLASSES; cl++)
1106 class_translate[cl] = NO_REGS;
1108 for (i = 0; i < classes_num; i++)
1110 aclass = classes[i];
1111 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1112 (cl = *cl_ptr) != LIM_REG_CLASSES;
1113 cl_ptr++)
1114 if (class_translate[cl] == NO_REGS)
1115 class_translate[cl] = aclass;
1116 class_translate[aclass] = aclass;
1118 /* For classes which are not fully covered by one of given classes
1119 (in other words covered by more one given class), use the
1120 cheapest class. */
1121 for (cl = 0; cl < N_REG_CLASSES; cl++)
1123 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1124 continue;
1125 best_class = NO_REGS;
1126 best_cost = INT_MAX;
1127 for (i = 0; i < classes_num; i++)
1129 aclass = classes[i];
1130 COPY_HARD_REG_SET (temp_hard_regset,
1131 reg_class_contents[aclass]);
1132 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1133 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1134 if (! hard_reg_set_empty_p (temp_hard_regset))
1136 min_cost = INT_MAX;
1137 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1139 cost = (ira_memory_move_cost[mode][aclass][0]
1140 + ira_memory_move_cost[mode][aclass][1]);
1141 if (min_cost > cost)
1142 min_cost = cost;
1144 if (best_class == NO_REGS || best_cost > min_cost)
1146 best_class = aclass;
1147 best_cost = min_cost;
1151 class_translate[cl] = best_class;
1155 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1156 IRA_PRESSURE_CLASS_TRANSLATE. */
1157 static void
1158 setup_class_translate (void)
1160 setup_class_translate_array (ira_allocno_class_translate,
1161 ira_allocno_classes_num, ira_allocno_classes);
1162 setup_class_translate_array (ira_pressure_class_translate,
1163 ira_pressure_classes_num, ira_pressure_classes);
1166 /* Order numbers of allocno classes in original target allocno class
1167 array, -1 for non-allocno classes. */
1168 static int allocno_class_order[N_REG_CLASSES];
1170 /* The function used to sort the important classes. */
1171 static int
1172 comp_reg_classes_func (const void *v1p, const void *v2p)
1174 enum reg_class cl1 = *(const enum reg_class *) v1p;
1175 enum reg_class cl2 = *(const enum reg_class *) v2p;
1176 enum reg_class tcl1, tcl2;
1177 int diff;
1179 tcl1 = ira_allocno_class_translate[cl1];
1180 tcl2 = ira_allocno_class_translate[cl2];
1181 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1182 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1183 return diff;
1184 return (int) cl1 - (int) cl2;
1187 /* For correct work of function setup_reg_class_relation we need to
1188 reorder important classes according to the order of their allocno
1189 classes. It places important classes containing the same
1190 allocatable hard register set adjacent to each other and allocno
1191 class with the allocatable hard register set right after the other
1192 important classes with the same set.
1194 In example from comments of function
1195 setup_allocno_and_important_classes, it places LEGACY_REGS and
1196 GENERAL_REGS close to each other and GENERAL_REGS is after
1197 LEGACY_REGS. */
1198 static void
1199 reorder_important_classes (void)
1201 int i;
1203 for (i = 0; i < N_REG_CLASSES; i++)
1204 allocno_class_order[i] = -1;
1205 for (i = 0; i < ira_allocno_classes_num; i++)
1206 allocno_class_order[ira_allocno_classes[i]] = i;
1207 qsort (ira_important_classes, ira_important_classes_num,
1208 sizeof (enum reg_class), comp_reg_classes_func);
1209 for (i = 0; i < ira_important_classes_num; i++)
1210 ira_important_class_nums[ira_important_classes[i]] = i;
1213 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1214 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1215 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1216 please see corresponding comments in ira-int.h. */
1217 static void
1218 setup_reg_class_relations (void)
1220 int i, cl1, cl2, cl3;
1221 HARD_REG_SET intersection_set, union_set, temp_set2;
1222 bool important_class_p[N_REG_CLASSES];
1224 memset (important_class_p, 0, sizeof (important_class_p));
1225 for (i = 0; i < ira_important_classes_num; i++)
1226 important_class_p[ira_important_classes[i]] = true;
1227 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1229 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1230 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1232 ira_reg_classes_intersect_p[cl1][cl2] = false;
1233 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1234 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1235 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1236 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1237 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1238 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1239 if (hard_reg_set_empty_p (temp_hard_regset)
1240 && hard_reg_set_empty_p (temp_set2))
1242 /* The both classes have no allocatable hard registers
1243 -- take all class hard registers into account and use
1244 reg_class_subunion and reg_class_superunion. */
1245 for (i = 0;; i++)
1247 cl3 = reg_class_subclasses[cl1][i];
1248 if (cl3 == LIM_REG_CLASSES)
1249 break;
1250 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1251 (enum reg_class) cl3))
1252 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1254 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1255 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1256 continue;
1258 ira_reg_classes_intersect_p[cl1][cl2]
1259 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1260 if (important_class_p[cl1] && important_class_p[cl2]
1261 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1263 /* CL1 and CL2 are important classes and CL1 allocatable
1264 hard register set is inside of CL2 allocatable hard
1265 registers -- make CL1 a superset of CL2. */
1266 enum reg_class *p;
1268 p = &ira_reg_class_super_classes[cl1][0];
1269 while (*p != LIM_REG_CLASSES)
1270 p++;
1271 *p++ = (enum reg_class) cl2;
1272 *p = LIM_REG_CLASSES;
1274 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1275 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1276 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1277 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1278 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1279 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1280 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1281 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1282 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1284 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1285 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1286 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1288 /* CL3 allocatable hard register set is inside of
1289 intersection of allocatable hard register sets
1290 of CL1 and CL2. */
1291 if (important_class_p[cl3])
1293 COPY_HARD_REG_SET
1294 (temp_set2,
1295 reg_class_contents
1296 [(int) ira_reg_class_intersect[cl1][cl2]]);
1297 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1298 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1299 /* If the allocatable hard register sets are
1300 the same, prefer GENERAL_REGS or the
1301 smallest class for debugging
1302 purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && (cl3 == GENERAL_REGS
1305 || ((ira_reg_class_intersect[cl1][cl2]
1306 != GENERAL_REGS)
1307 && hard_reg_set_subset_p
1308 (reg_class_contents[cl3],
1309 reg_class_contents
1310 [(int)
1311 ira_reg_class_intersect[cl1][cl2]])))))
1312 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1314 COPY_HARD_REG_SET
1315 (temp_set2,
1316 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1317 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1318 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1319 /* Ignore unavailable hard registers and prefer
1320 smallest class for debugging purposes. */
1321 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1322 && hard_reg_set_subset_p
1323 (reg_class_contents[cl3],
1324 reg_class_contents
1325 [(int) ira_reg_class_subset[cl1][cl2]])))
1326 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1328 if (important_class_p[cl3]
1329 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1331 /* CL3 allocatable hard register set is inside of
1332 union of allocatable hard register sets of CL1
1333 and CL2. */
1334 COPY_HARD_REG_SET
1335 (temp_set2,
1336 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1337 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1338 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1339 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1341 && (! hard_reg_set_equal_p (temp_set2,
1342 temp_hard_regset)
1343 || cl3 == GENERAL_REGS
1344 /* If the allocatable hard register sets are the
1345 same, prefer GENERAL_REGS or the smallest
1346 class for debugging purposes. */
1347 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1348 && hard_reg_set_subset_p
1349 (reg_class_contents[cl3],
1350 reg_class_contents
1351 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1352 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1354 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1356 /* CL3 allocatable hard register set contains union
1357 of allocatable hard register sets of CL1 and
1358 CL2. */
1359 COPY_HARD_REG_SET
1360 (temp_set2,
1361 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1362 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1363 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1364 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1366 && (! hard_reg_set_equal_p (temp_set2,
1367 temp_hard_regset)
1368 || cl3 == GENERAL_REGS
1369 /* If the allocatable hard register sets are the
1370 same, prefer GENERAL_REGS or the smallest
1371 class for debugging purposes. */
1372 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1373 && hard_reg_set_subset_p
1374 (reg_class_contents[cl3],
1375 reg_class_contents
1376 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1377 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1384 /* Output all uniform and important classes into file F. */
1385 static void
1386 print_unform_and_important_classes (FILE *f)
1388 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1389 int i, cl;
1391 fprintf (f, "Uniform classes:\n");
1392 for (cl = 0; cl < N_REG_CLASSES; cl++)
1393 if (ira_uniform_class_p[cl])
1394 fprintf (f, " %s", reg_class_names[cl]);
1395 fprintf (f, "\nImportant classes:\n");
1396 for (i = 0; i < ira_important_classes_num; i++)
1397 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1398 fprintf (f, "\n");
1401 /* Output all possible allocno or pressure classes and their
1402 translation map into file F. */
1403 static void
1404 print_translated_classes (FILE *f, bool pressure_p)
1406 int classes_num = (pressure_p
1407 ? ira_pressure_classes_num : ira_allocno_classes_num);
1408 enum reg_class *classes = (pressure_p
1409 ? ira_pressure_classes : ira_allocno_classes);
1410 enum reg_class *class_translate = (pressure_p
1411 ? ira_pressure_class_translate
1412 : ira_allocno_class_translate);
1413 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1414 int i;
1416 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1417 for (i = 0; i < classes_num; i++)
1418 fprintf (f, " %s", reg_class_names[classes[i]]);
1419 fprintf (f, "\nClass translation:\n");
1420 for (i = 0; i < N_REG_CLASSES; i++)
1421 fprintf (f, " %s -> %s\n", reg_class_names[i],
1422 reg_class_names[class_translate[i]]);
1425 /* Output all possible allocno and translation classes and the
1426 translation maps into stderr. */
1427 void
1428 ira_debug_allocno_classes (void)
1430 print_unform_and_important_classes (stderr);
1431 print_translated_classes (stderr, false);
1432 print_translated_classes (stderr, true);
1435 /* Set up different arrays concerning class subsets, allocno and
1436 important classes. */
1437 static void
1438 find_reg_classes (void)
1440 setup_allocno_and_important_classes ();
1441 setup_class_translate ();
1442 reorder_important_classes ();
1443 setup_reg_class_relations ();
1448 /* Set up the array above. */
1449 static void
1450 setup_hard_regno_aclass (void)
1452 int i;
1454 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1456 #if 1
1457 ira_hard_regno_allocno_class[i]
1458 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1459 ? NO_REGS
1460 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1461 #else
1462 int j;
1463 enum reg_class cl;
1464 ira_hard_regno_allocno_class[i] = NO_REGS;
1465 for (j = 0; j < ira_allocno_classes_num; j++)
1467 cl = ira_allocno_classes[j];
1468 if (ira_class_hard_reg_index[cl][i] >= 0)
1470 ira_hard_regno_allocno_class[i] = cl;
1471 break;
1474 #endif
1480 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1481 static void
1482 setup_reg_class_nregs (void)
1484 int i, cl, cl2, m;
1486 for (m = 0; m < MAX_MACHINE_MODE; m++)
1488 for (cl = 0; cl < N_REG_CLASSES; cl++)
1489 ira_reg_class_max_nregs[cl][m]
1490 = ira_reg_class_min_nregs[cl][m]
1491 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1492 for (cl = 0; cl < N_REG_CLASSES; cl++)
1493 for (i = 0;
1494 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1495 i++)
1496 if (ira_reg_class_min_nregs[cl2][m]
1497 < ira_reg_class_min_nregs[cl][m])
1498 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1504 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1505 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1506 static void
1507 setup_prohibited_class_mode_regs (void)
1509 int j, k, hard_regno, cl, last_hard_regno, count;
1511 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1513 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1514 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1515 for (j = 0; j < NUM_MACHINE_MODES; j++)
1517 count = 0;
1518 last_hard_regno = -1;
1519 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1520 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1522 hard_regno = ira_class_hard_regs[cl][k];
1523 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1524 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1525 hard_regno);
1526 else if (in_hard_reg_set_p (temp_hard_regset,
1527 (machine_mode) j, hard_regno))
1529 last_hard_regno = hard_regno;
1530 count++;
1533 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1538 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1539 spanning from one register pressure class to another one. It is
1540 called after defining the pressure classes. */
1541 static void
1542 clarify_prohibited_class_mode_regs (void)
1544 int j, k, hard_regno, cl, pclass, nregs;
1546 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1547 for (j = 0; j < NUM_MACHINE_MODES; j++)
1549 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1550 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1552 hard_regno = ira_class_hard_regs[cl][k];
1553 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1554 continue;
1555 nregs = hard_regno_nregs[hard_regno][j];
1556 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1558 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1559 hard_regno);
1560 continue;
1562 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1563 for (nregs-- ;nregs >= 0; nregs--)
1564 if (((enum reg_class) pclass
1565 != ira_pressure_class_translate[REGNO_REG_CLASS
1566 (hard_regno + nregs)]))
1568 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1569 hard_regno);
1570 break;
1572 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1573 hard_regno))
1574 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1575 (machine_mode) j, hard_regno);
1580 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1581 and IRA_MAY_MOVE_OUT_COST for MODE. */
1582 void
1583 ira_init_register_move_cost (machine_mode mode)
1585 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1586 bool all_match = true;
1587 unsigned int cl1, cl2;
1589 ira_assert (ira_register_move_cost[mode] == NULL
1590 && ira_may_move_in_cost[mode] == NULL
1591 && ira_may_move_out_cost[mode] == NULL);
1592 ira_assert (have_regs_of_mode[mode]);
1593 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1594 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1596 int cost;
1597 if (!contains_reg_of_mode[cl1][mode]
1598 || !contains_reg_of_mode[cl2][mode])
1600 if ((ira_reg_class_max_nregs[cl1][mode]
1601 > ira_class_hard_regs_num[cl1])
1602 || (ira_reg_class_max_nregs[cl2][mode]
1603 > ira_class_hard_regs_num[cl2]))
1604 cost = 65535;
1605 else
1606 cost = (ira_memory_move_cost[mode][cl1][0]
1607 + ira_memory_move_cost[mode][cl2][1]) * 2;
1609 else
1611 cost = register_move_cost (mode, (enum reg_class) cl1,
1612 (enum reg_class) cl2);
1613 ira_assert (cost < 65535);
1615 all_match &= (last_move_cost[cl1][cl2] == cost);
1616 last_move_cost[cl1][cl2] = cost;
1618 if (all_match && last_mode_for_init_move_cost != -1)
1620 ira_register_move_cost[mode]
1621 = ira_register_move_cost[last_mode_for_init_move_cost];
1622 ira_may_move_in_cost[mode]
1623 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1624 ira_may_move_out_cost[mode]
1625 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1626 return;
1628 last_mode_for_init_move_cost = mode;
1629 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1630 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1631 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1632 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1633 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1635 int cost;
1636 enum reg_class *p1, *p2;
1638 if (last_move_cost[cl1][cl2] == 65535)
1640 ira_register_move_cost[mode][cl1][cl2] = 65535;
1641 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1642 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1644 else
1646 cost = last_move_cost[cl1][cl2];
1648 for (p2 = &reg_class_subclasses[cl2][0];
1649 *p2 != LIM_REG_CLASSES; p2++)
1650 if (ira_class_hard_regs_num[*p2] > 0
1651 && (ira_reg_class_max_nregs[*p2][mode]
1652 <= ira_class_hard_regs_num[*p2]))
1653 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1655 for (p1 = &reg_class_subclasses[cl1][0];
1656 *p1 != LIM_REG_CLASSES; p1++)
1657 if (ira_class_hard_regs_num[*p1] > 0
1658 && (ira_reg_class_max_nregs[*p1][mode]
1659 <= ira_class_hard_regs_num[*p1]))
1660 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1662 ira_assert (cost <= 65535);
1663 ira_register_move_cost[mode][cl1][cl2] = cost;
1665 if (ira_class_subset_p[cl1][cl2])
1666 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1667 else
1668 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1670 if (ira_class_subset_p[cl2][cl1])
1671 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1672 else
1673 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1680 /* This is called once during compiler work. It sets up
1681 different arrays whose values don't depend on the compiled
1682 function. */
1683 void
1684 ira_init_once (void)
1686 ira_init_costs_once ();
1687 lra_init_once ();
1690 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1691 ira_may_move_out_cost for each mode. */
1692 void
1693 target_ira_int::free_register_move_costs (void)
1695 int mode, i;
1697 /* Reset move_cost and friends, making sure we only free shared
1698 table entries once. */
1699 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1700 if (x_ira_register_move_cost[mode])
1702 for (i = 0;
1703 i < mode && (x_ira_register_move_cost[i]
1704 != x_ira_register_move_cost[mode]);
1705 i++)
1707 if (i == mode)
1709 free (x_ira_register_move_cost[mode]);
1710 free (x_ira_may_move_in_cost[mode]);
1711 free (x_ira_may_move_out_cost[mode]);
1714 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1715 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1716 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1717 last_mode_for_init_move_cost = -1;
1720 target_ira_int::~target_ira_int ()
1722 free_ira_costs ();
1723 free_register_move_costs ();
1726 /* This is called every time when register related information is
1727 changed. */
1728 void
1729 ira_init (void)
1731 this_target_ira_int->free_register_move_costs ();
1732 setup_reg_mode_hard_regset ();
1733 setup_alloc_regs (flag_omit_frame_pointer != 0);
1734 setup_class_subset_and_memory_move_costs ();
1735 setup_reg_class_nregs ();
1736 setup_prohibited_class_mode_regs ();
1737 find_reg_classes ();
1738 clarify_prohibited_class_mode_regs ();
1739 setup_hard_regno_aclass ();
1740 ira_init_costs ();
1744 #define ira_prohibited_mode_move_regs_initialized_p \
1745 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1747 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1748 static void
1749 setup_prohibited_mode_move_regs (void)
1751 int i, j;
1752 rtx test_reg1, test_reg2, move_pat;
1753 rtx_insn *move_insn;
1755 if (ira_prohibited_mode_move_regs_initialized_p)
1756 return;
1757 ira_prohibited_mode_move_regs_initialized_p = true;
1758 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1759 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1760 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1761 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1762 for (i = 0; i < NUM_MACHINE_MODES; i++)
1764 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1765 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1767 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1768 continue;
1769 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1770 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1771 INSN_CODE (move_insn) = -1;
1772 recog_memoized (move_insn);
1773 if (INSN_CODE (move_insn) < 0)
1774 continue;
1775 extract_insn (move_insn);
1776 /* We don't know whether the move will be in code that is optimized
1777 for size or speed, so consider all enabled alternatives. */
1778 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1779 continue;
1780 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1787 /* Setup possible alternatives in ALTS for INSN. */
1788 void
1789 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1791 /* MAP nalt * nop -> start of constraints for given operand and
1792 alternative. */
1793 static vec<const char *> insn_constraints;
1794 int nop, nalt;
1795 bool curr_swapped;
1796 const char *p;
1797 int commutative = -1;
1799 extract_insn (insn);
1800 alternative_mask preferred = get_preferred_alternatives (insn);
1801 CLEAR_HARD_REG_SET (alts);
1802 insn_constraints.release ();
1803 insn_constraints.safe_grow_cleared (recog_data.n_operands
1804 * recog_data.n_alternatives + 1);
1805 /* Check that the hard reg set is enough for holding all
1806 alternatives. It is hard to imagine the situation when the
1807 assertion is wrong. */
1808 ira_assert (recog_data.n_alternatives
1809 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1810 FIRST_PSEUDO_REGISTER));
1811 for (curr_swapped = false;; curr_swapped = true)
1813 /* Calculate some data common for all alternatives to speed up the
1814 function. */
1815 for (nop = 0; nop < recog_data.n_operands; nop++)
1817 for (nalt = 0, p = recog_data.constraints[nop];
1818 nalt < recog_data.n_alternatives;
1819 nalt++)
1821 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1822 while (*p && *p != ',')
1823 p++;
1824 if (*p)
1825 p++;
1828 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1830 if (!TEST_BIT (preferred, nalt)
1831 || TEST_HARD_REG_BIT (alts, nalt))
1832 continue;
1834 for (nop = 0; nop < recog_data.n_operands; nop++)
1836 int c, len;
1838 rtx op = recog_data.operand[nop];
1839 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1840 if (*p == 0 || *p == ',')
1841 continue;
1844 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1846 case '#':
1847 case ',':
1848 c = '\0';
1849 case '\0':
1850 len = 0;
1851 break;
1853 case '%':
1854 /* We only support one commutative marker, the
1855 first one. We already set commutative
1856 above. */
1857 if (commutative < 0)
1858 commutative = nop;
1859 break;
1861 case '0': case '1': case '2': case '3': case '4':
1862 case '5': case '6': case '7': case '8': case '9':
1863 goto op_success;
1864 break;
1866 case 'g':
1867 goto op_success;
1868 break;
1870 default:
1872 enum constraint_num cn = lookup_constraint (p);
1873 switch (get_constraint_type (cn))
1875 case CT_REGISTER:
1876 if (reg_class_for_constraint (cn) != NO_REGS)
1877 goto op_success;
1878 break;
1880 case CT_CONST_INT:
1881 if (CONST_INT_P (op)
1882 && (insn_const_int_ok_for_constraint
1883 (INTVAL (op), cn)))
1884 goto op_success;
1885 break;
1887 case CT_ADDRESS:
1888 case CT_MEMORY:
1889 goto op_success;
1891 case CT_FIXED_FORM:
1892 if (constraint_satisfied_p (op, cn))
1893 goto op_success;
1894 break;
1896 break;
1899 while (p += len, c);
1900 break;
1901 op_success:
1904 if (nop >= recog_data.n_operands)
1905 SET_HARD_REG_BIT (alts, nalt);
1907 if (commutative < 0)
1908 break;
1909 if (curr_swapped)
1910 break;
1911 std::swap (recog_data.operand[commutative],
1912 recog_data.operand[commutative + 1]);
1916 /* Return the number of the output non-early clobber operand which
1917 should be the same in any case as operand with number OP_NUM (or
1918 negative value if there is no such operand). The function takes
1919 only really possible alternatives into consideration. */
1921 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1923 int curr_alt, c, original, dup;
1924 bool ignore_p, use_commut_op_p;
1925 const char *str;
1927 if (op_num < 0 || recog_data.n_alternatives == 0)
1928 return -1;
1929 /* We should find duplications only for input operands. */
1930 if (recog_data.operand_type[op_num] != OP_IN)
1931 return -1;
1932 str = recog_data.constraints[op_num];
1933 use_commut_op_p = false;
1934 for (;;)
1936 rtx op = recog_data.operand[op_num];
1938 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1939 original = -1;;)
1941 c = *str;
1942 if (c == '\0')
1943 break;
1944 if (c == '#')
1945 ignore_p = true;
1946 else if (c == ',')
1948 curr_alt++;
1949 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1951 else if (! ignore_p)
1952 switch (c)
1954 case 'g':
1955 goto fail;
1956 default:
1958 enum constraint_num cn = lookup_constraint (str);
1959 enum reg_class cl = reg_class_for_constraint (cn);
1960 if (cl != NO_REGS
1961 && !targetm.class_likely_spilled_p (cl))
1962 goto fail;
1963 if (constraint_satisfied_p (op, cn))
1964 goto fail;
1965 break;
1968 case '0': case '1': case '2': case '3': case '4':
1969 case '5': case '6': case '7': case '8': case '9':
1970 if (original != -1 && original != c)
1971 goto fail;
1972 original = c;
1973 break;
1975 str += CONSTRAINT_LEN (c, str);
1977 if (original == -1)
1978 goto fail;
1979 dup = -1;
1980 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1981 *str != 0;
1982 str++)
1983 if (ignore_p)
1985 if (*str == ',')
1986 ignore_p = false;
1988 else if (*str == '#')
1989 ignore_p = true;
1990 else if (! ignore_p)
1992 if (*str == '=')
1993 dup = original - '0';
1994 /* It is better ignore an alternative with early clobber. */
1995 else if (*str == '&')
1996 goto fail;
1998 if (dup >= 0)
1999 return dup;
2000 fail:
2001 if (use_commut_op_p)
2002 break;
2003 use_commut_op_p = true;
2004 if (recog_data.constraints[op_num][0] == '%')
2005 str = recog_data.constraints[op_num + 1];
2006 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2007 str = recog_data.constraints[op_num - 1];
2008 else
2009 break;
2011 return -1;
2016 /* Search forward to see if the source register of a copy insn dies
2017 before either it or the destination register is modified, but don't
2018 scan past the end of the basic block. If so, we can replace the
2019 source with the destination and let the source die in the copy
2020 insn.
2022 This will reduce the number of registers live in that range and may
2023 enable the destination and the source coalescing, thus often saving
2024 one register in addition to a register-register copy. */
2026 static void
2027 decrease_live_ranges_number (void)
2029 basic_block bb;
2030 rtx_insn *insn;
2031 rtx set, src, dest, dest_death, note;
2032 rtx_insn *p, *q;
2033 int sregno, dregno;
2035 if (! flag_expensive_optimizations)
2036 return;
2038 if (ira_dump_file)
2039 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2041 FOR_EACH_BB_FN (bb, cfun)
2042 FOR_BB_INSNS (bb, insn)
2044 set = single_set (insn);
2045 if (! set)
2046 continue;
2047 src = SET_SRC (set);
2048 dest = SET_DEST (set);
2049 if (! REG_P (src) || ! REG_P (dest)
2050 || find_reg_note (insn, REG_DEAD, src))
2051 continue;
2052 sregno = REGNO (src);
2053 dregno = REGNO (dest);
2055 /* We don't want to mess with hard regs if register classes
2056 are small. */
2057 if (sregno == dregno
2058 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2059 && (sregno < FIRST_PSEUDO_REGISTER
2060 || dregno < FIRST_PSEUDO_REGISTER))
2061 /* We don't see all updates to SP if they are in an
2062 auto-inc memory reference, so we must disallow this
2063 optimization on them. */
2064 || sregno == STACK_POINTER_REGNUM
2065 || dregno == STACK_POINTER_REGNUM)
2066 continue;
2068 dest_death = NULL_RTX;
2070 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2072 if (! INSN_P (p))
2073 continue;
2074 if (BLOCK_FOR_INSN (p) != bb)
2075 break;
2077 if (reg_set_p (src, p) || reg_set_p (dest, p)
2078 /* If SRC is an asm-declared register, it must not be
2079 replaced in any asm. Unfortunately, the REG_EXPR
2080 tree for the asm variable may be absent in the SRC
2081 rtx, so we can't check the actual register
2082 declaration easily (the asm operand will have it,
2083 though). To avoid complicating the test for a rare
2084 case, we just don't perform register replacement
2085 for a hard reg mentioned in an asm. */
2086 || (sregno < FIRST_PSEUDO_REGISTER
2087 && asm_noperands (PATTERN (p)) >= 0
2088 && reg_overlap_mentioned_p (src, PATTERN (p)))
2089 /* Don't change hard registers used by a call. */
2090 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2091 && find_reg_fusage (p, USE, src))
2092 /* Don't change a USE of a register. */
2093 || (GET_CODE (PATTERN (p)) == USE
2094 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2095 break;
2097 /* See if all of SRC dies in P. This test is slightly
2098 more conservative than it needs to be. */
2099 if ((note = find_regno_note (p, REG_DEAD, sregno))
2100 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2102 int failed = 0;
2104 /* We can do the optimization. Scan forward from INSN
2105 again, replacing regs as we go. Set FAILED if a
2106 replacement can't be done. In that case, we can't
2107 move the death note for SRC. This should be
2108 rare. */
2110 /* Set to stop at next insn. */
2111 for (q = next_real_insn (insn);
2112 q != next_real_insn (p);
2113 q = next_real_insn (q))
2115 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2117 /* If SRC is a hard register, we might miss
2118 some overlapping registers with
2119 validate_replace_rtx, so we would have to
2120 undo it. We can't if DEST is present in
2121 the insn, so fail in that combination of
2122 cases. */
2123 if (sregno < FIRST_PSEUDO_REGISTER
2124 && reg_mentioned_p (dest, PATTERN (q)))
2125 failed = 1;
2127 /* Attempt to replace all uses. */
2128 else if (!validate_replace_rtx (src, dest, q))
2129 failed = 1;
2131 /* If this succeeded, but some part of the
2132 register is still present, undo the
2133 replacement. */
2134 else if (sregno < FIRST_PSEUDO_REGISTER
2135 && reg_overlap_mentioned_p (src, PATTERN (q)))
2137 validate_replace_rtx (dest, src, q);
2138 failed = 1;
2142 /* If DEST dies here, remove the death note and
2143 save it for later. Make sure ALL of DEST dies
2144 here; again, this is overly conservative. */
2145 if (! dest_death
2146 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2148 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2149 remove_note (q, dest_death);
2150 else
2152 failed = 1;
2153 dest_death = 0;
2158 if (! failed)
2160 /* Move death note of SRC from P to INSN. */
2161 remove_note (p, note);
2162 XEXP (note, 1) = REG_NOTES (insn);
2163 REG_NOTES (insn) = note;
2166 /* DEST is also dead if INSN has a REG_UNUSED note for
2167 DEST. */
2168 if (! dest_death
2169 && (dest_death
2170 = find_regno_note (insn, REG_UNUSED, dregno)))
2172 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2173 remove_note (insn, dest_death);
2176 /* Put death note of DEST on P if we saw it die. */
2177 if (dest_death)
2179 XEXP (dest_death, 1) = REG_NOTES (p);
2180 REG_NOTES (p) = dest_death;
2182 break;
2185 /* If SRC is a hard register which is set or killed in
2186 some other way, we can't do this optimization. */
2187 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2188 break;
2195 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2196 static bool
2197 ira_bad_reload_regno_1 (int regno, rtx x)
2199 int x_regno, n, i;
2200 ira_allocno_t a;
2201 enum reg_class pref;
2203 /* We only deal with pseudo regs. */
2204 if (! x || GET_CODE (x) != REG)
2205 return false;
2207 x_regno = REGNO (x);
2208 if (x_regno < FIRST_PSEUDO_REGISTER)
2209 return false;
2211 /* If the pseudo prefers REGNO explicitly, then do not consider
2212 REGNO a bad spill choice. */
2213 pref = reg_preferred_class (x_regno);
2214 if (reg_class_size[pref] == 1)
2215 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2217 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2218 poor choice for a reload regno. */
2219 a = ira_regno_allocno_map[x_regno];
2220 n = ALLOCNO_NUM_OBJECTS (a);
2221 for (i = 0; i < n; i++)
2223 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2224 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2225 return true;
2227 return false;
2230 /* Return nonzero if REGNO is a particularly bad choice for reloading
2231 IN or OUT. */
2232 bool
2233 ira_bad_reload_regno (int regno, rtx in, rtx out)
2235 return (ira_bad_reload_regno_1 (regno, in)
2236 || ira_bad_reload_regno_1 (regno, out));
2239 /* Add register clobbers from asm statements. */
2240 static void
2241 compute_regs_asm_clobbered (void)
2243 basic_block bb;
2245 FOR_EACH_BB_FN (bb, cfun)
2247 rtx_insn *insn;
2248 FOR_BB_INSNS_REVERSE (bb, insn)
2250 df_ref def;
2252 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2253 FOR_EACH_INSN_DEF (def, insn)
2255 unsigned int dregno = DF_REF_REGNO (def);
2256 if (HARD_REGISTER_NUM_P (dregno))
2257 add_to_hard_reg_set (&crtl->asm_clobbers,
2258 GET_MODE (DF_REF_REAL_REG (def)),
2259 dregno);
2266 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2267 REGS_EVER_LIVE. */
2268 void
2269 ira_setup_eliminable_regset (void)
2271 #ifdef ELIMINABLE_REGS
2272 int i;
2273 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2274 #endif
2275 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2276 sp for alloca. So we can't eliminate the frame pointer in that
2277 case. At some point, we should improve this by emitting the
2278 sp-adjusting insns for this case. */
2279 frame_pointer_needed
2280 = (! flag_omit_frame_pointer
2281 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2282 /* We need the frame pointer to catch stack overflow exceptions
2283 if the stack pointer is moving. */
2284 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2285 || crtl->accesses_prior_frames
2286 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2287 /* We need a frame pointer for all Cilk Plus functions that use
2288 Cilk keywords. */
2289 || (flag_cilkplus && cfun->is_cilk_function)
2290 || targetm.frame_pointer_required ());
2292 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2293 RTL is very small. So if we use frame pointer for RA and RTL
2294 actually prevents this, we will spill pseudos assigned to the
2295 frame pointer in LRA. */
2297 if (frame_pointer_needed)
2298 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2300 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2301 CLEAR_HARD_REG_SET (eliminable_regset);
2303 compute_regs_asm_clobbered ();
2305 /* Build the regset of all eliminable registers and show we can't
2306 use those that we already know won't be eliminated. */
2307 #ifdef ELIMINABLE_REGS
2308 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2310 bool cannot_elim
2311 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2312 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2314 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2316 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2318 if (cannot_elim)
2319 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2321 else if (cannot_elim)
2322 error ("%s cannot be used in asm here",
2323 reg_names[eliminables[i].from]);
2324 else
2325 df_set_regs_ever_live (eliminables[i].from, true);
2327 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2329 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2332 if (frame_pointer_needed)
2333 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2335 else if (frame_pointer_needed)
2336 error ("%s cannot be used in asm here",
2337 reg_names[HARD_FRAME_POINTER_REGNUM]);
2338 else
2339 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2342 #else
2343 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2345 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2346 if (frame_pointer_needed)
2347 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2349 else if (frame_pointer_needed)
2350 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2351 else
2352 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2353 #endif
2358 /* Vector of substitutions of register numbers,
2359 used to map pseudo regs into hardware regs.
2360 This is set up as a result of register allocation.
2361 Element N is the hard reg assigned to pseudo reg N,
2362 or is -1 if no hard reg was assigned.
2363 If N is a hard reg number, element N is N. */
2364 short *reg_renumber;
2366 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2367 the allocation found by IRA. */
2368 static void
2369 setup_reg_renumber (void)
2371 int regno, hard_regno;
2372 ira_allocno_t a;
2373 ira_allocno_iterator ai;
2375 caller_save_needed = 0;
2376 FOR_EACH_ALLOCNO (a, ai)
2378 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2379 continue;
2380 /* There are no caps at this point. */
2381 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2382 if (! ALLOCNO_ASSIGNED_P (a))
2383 /* It can happen if A is not referenced but partially anticipated
2384 somewhere in a region. */
2385 ALLOCNO_ASSIGNED_P (a) = true;
2386 ira_free_allocno_updated_costs (a);
2387 hard_regno = ALLOCNO_HARD_REGNO (a);
2388 regno = ALLOCNO_REGNO (a);
2389 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2390 if (hard_regno >= 0)
2392 int i, nwords;
2393 enum reg_class pclass;
2394 ira_object_t obj;
2396 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2397 nwords = ALLOCNO_NUM_OBJECTS (a);
2398 for (i = 0; i < nwords; i++)
2400 obj = ALLOCNO_OBJECT (a, i);
2401 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2402 reg_class_contents[pclass]);
2404 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2405 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2406 call_used_reg_set))
2408 ira_assert (!optimize || flag_caller_saves
2409 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2410 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2411 || regno >= ira_reg_equiv_len
2412 || ira_equiv_no_lvalue_p (regno));
2413 caller_save_needed = 1;
2419 /* Set up allocno assignment flags for further allocation
2420 improvements. */
2421 static void
2422 setup_allocno_assignment_flags (void)
2424 int hard_regno;
2425 ira_allocno_t a;
2426 ira_allocno_iterator ai;
2428 FOR_EACH_ALLOCNO (a, ai)
2430 if (! ALLOCNO_ASSIGNED_P (a))
2431 /* It can happen if A is not referenced but partially anticipated
2432 somewhere in a region. */
2433 ira_free_allocno_updated_costs (a);
2434 hard_regno = ALLOCNO_HARD_REGNO (a);
2435 /* Don't assign hard registers to allocnos which are destination
2436 of removed store at the end of loop. It has no sense to keep
2437 the same value in different hard registers. It is also
2438 impossible to assign hard registers correctly to such
2439 allocnos because the cost info and info about intersected
2440 calls are incorrect for them. */
2441 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2442 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2443 || (ALLOCNO_MEMORY_COST (a)
2444 - ALLOCNO_CLASS_COST (a)) < 0);
2445 ira_assert
2446 (hard_regno < 0
2447 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2448 reg_class_contents[ALLOCNO_CLASS (a)]));
2452 /* Evaluate overall allocation cost and the costs for using hard
2453 registers and memory for allocnos. */
2454 static void
2455 calculate_allocation_cost (void)
2457 int hard_regno, cost;
2458 ira_allocno_t a;
2459 ira_allocno_iterator ai;
2461 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2462 FOR_EACH_ALLOCNO (a, ai)
2464 hard_regno = ALLOCNO_HARD_REGNO (a);
2465 ira_assert (hard_regno < 0
2466 || (ira_hard_reg_in_set_p
2467 (hard_regno, ALLOCNO_MODE (a),
2468 reg_class_contents[ALLOCNO_CLASS (a)])));
2469 if (hard_regno < 0)
2471 cost = ALLOCNO_MEMORY_COST (a);
2472 ira_mem_cost += cost;
2474 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2476 cost = (ALLOCNO_HARD_REG_COSTS (a)
2477 [ira_class_hard_reg_index
2478 [ALLOCNO_CLASS (a)][hard_regno]]);
2479 ira_reg_cost += cost;
2481 else
2483 cost = ALLOCNO_CLASS_COST (a);
2484 ira_reg_cost += cost;
2486 ira_overall_cost += cost;
2489 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2491 fprintf (ira_dump_file,
2492 "+++Costs: overall %" PRId64
2493 ", reg %" PRId64
2494 ", mem %" PRId64
2495 ", ld %" PRId64
2496 ", st %" PRId64
2497 ", move %" PRId64,
2498 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2499 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2500 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2501 ira_move_loops_num, ira_additional_jumps_num);
2506 #ifdef ENABLE_IRA_CHECKING
2507 /* Check the correctness of the allocation. We do need this because
2508 of complicated code to transform more one region internal
2509 representation into one region representation. */
2510 static void
2511 check_allocation (void)
2513 ira_allocno_t a;
2514 int hard_regno, nregs, conflict_nregs;
2515 ira_allocno_iterator ai;
2517 FOR_EACH_ALLOCNO (a, ai)
2519 int n = ALLOCNO_NUM_OBJECTS (a);
2520 int i;
2522 if (ALLOCNO_CAP_MEMBER (a) != NULL
2523 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2524 continue;
2525 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2526 if (nregs == 1)
2527 /* We allocated a single hard register. */
2528 n = 1;
2529 else if (n > 1)
2530 /* We allocated multiple hard registers, and we will test
2531 conflicts in a granularity of single hard regs. */
2532 nregs = 1;
2534 for (i = 0; i < n; i++)
2536 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2537 ira_object_t conflict_obj;
2538 ira_object_conflict_iterator oci;
2539 int this_regno = hard_regno;
2540 if (n > 1)
2542 if (REG_WORDS_BIG_ENDIAN)
2543 this_regno += n - i - 1;
2544 else
2545 this_regno += i;
2547 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2549 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2550 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2551 if (conflict_hard_regno < 0)
2552 continue;
2554 conflict_nregs
2555 = (hard_regno_nregs
2556 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2558 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2559 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2561 if (REG_WORDS_BIG_ENDIAN)
2562 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2563 - OBJECT_SUBWORD (conflict_obj) - 1);
2564 else
2565 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2566 conflict_nregs = 1;
2569 if ((conflict_hard_regno <= this_regno
2570 && this_regno < conflict_hard_regno + conflict_nregs)
2571 || (this_regno <= conflict_hard_regno
2572 && conflict_hard_regno < this_regno + nregs))
2574 fprintf (stderr, "bad allocation for %d and %d\n",
2575 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2576 gcc_unreachable ();
2582 #endif
2584 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2585 be already calculated. */
2586 static void
2587 setup_reg_equiv_init (void)
2589 int i;
2590 int max_regno = max_reg_num ();
2592 for (i = 0; i < max_regno; i++)
2593 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2596 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2597 are insns which were generated for such movement. It is assumed
2598 that FROM_REGNO and TO_REGNO always have the same value at the
2599 point of any move containing such registers. This function is used
2600 to update equiv info for register shuffles on the region borders
2601 and for caller save/restore insns. */
2602 void
2603 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2605 rtx_insn *insn;
2606 rtx x, note;
2608 if (! ira_reg_equiv[from_regno].defined_p
2609 && (! ira_reg_equiv[to_regno].defined_p
2610 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2611 && ! MEM_READONLY_P (x))))
2612 return;
2613 insn = insns;
2614 if (NEXT_INSN (insn) != NULL_RTX)
2616 if (! ira_reg_equiv[to_regno].defined_p)
2618 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2619 return;
2621 ira_reg_equiv[to_regno].defined_p = false;
2622 ira_reg_equiv[to_regno].memory
2623 = ira_reg_equiv[to_regno].constant
2624 = ira_reg_equiv[to_regno].invariant
2625 = ira_reg_equiv[to_regno].init_insns = NULL;
2626 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2627 fprintf (ira_dump_file,
2628 " Invalidating equiv info for reg %d\n", to_regno);
2629 return;
2631 /* It is possible that FROM_REGNO still has no equivalence because
2632 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2633 insn was not processed yet. */
2634 if (ira_reg_equiv[from_regno].defined_p)
2636 ira_reg_equiv[to_regno].defined_p = true;
2637 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2640 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2641 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2642 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2643 ira_reg_equiv[to_regno].memory = x;
2644 if (! MEM_READONLY_P (x))
2645 /* We don't add the insn to insn init list because memory
2646 equivalence is just to say what memory is better to use
2647 when the pseudo is spilled. */
2648 return;
2650 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2652 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2653 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2654 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2655 ira_reg_equiv[to_regno].constant = x;
2657 else
2659 x = ira_reg_equiv[from_regno].invariant;
2660 ira_assert (x != NULL_RTX);
2661 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2662 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2663 ira_reg_equiv[to_regno].invariant = x;
2665 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2667 note = set_unique_reg_note (insn, REG_EQUIV, x);
2668 gcc_assert (note != NULL_RTX);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2671 fprintf (ira_dump_file,
2672 " Adding equiv note to insn %u for reg %d ",
2673 INSN_UID (insn), to_regno);
2674 dump_value_slim (ira_dump_file, x, 1);
2675 fprintf (ira_dump_file, "\n");
2679 ira_reg_equiv[to_regno].init_insns
2680 = gen_rtx_INSN_LIST (VOIDmode, insn,
2681 ira_reg_equiv[to_regno].init_insns);
2682 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2683 fprintf (ira_dump_file,
2684 " Adding equiv init move insn %u to reg %d\n",
2685 INSN_UID (insn), to_regno);
2688 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2689 by IRA. */
2690 static void
2691 fix_reg_equiv_init (void)
2693 int max_regno = max_reg_num ();
2694 int i, new_regno, max;
2695 rtx set;
2696 rtx_insn_list *x, *next, *prev;
2697 rtx_insn *insn;
2699 if (max_regno_before_ira < max_regno)
2701 max = vec_safe_length (reg_equivs);
2702 grow_reg_equivs ();
2703 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2704 for (prev = NULL, x = reg_equiv_init (i);
2705 x != NULL_RTX;
2706 x = next)
2708 next = x->next ();
2709 insn = x->insn ();
2710 set = single_set (insn);
2711 ira_assert (set != NULL_RTX
2712 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2713 if (REG_P (SET_DEST (set))
2714 && ((int) REGNO (SET_DEST (set)) == i
2715 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2716 new_regno = REGNO (SET_DEST (set));
2717 else if (REG_P (SET_SRC (set))
2718 && ((int) REGNO (SET_SRC (set)) == i
2719 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2720 new_regno = REGNO (SET_SRC (set));
2721 else
2722 gcc_unreachable ();
2723 if (new_regno == i)
2724 prev = x;
2725 else
2727 /* Remove the wrong list element. */
2728 if (prev == NULL_RTX)
2729 reg_equiv_init (i) = next;
2730 else
2731 XEXP (prev, 1) = next;
2732 XEXP (x, 1) = reg_equiv_init (new_regno);
2733 reg_equiv_init (new_regno) = x;
2739 #ifdef ENABLE_IRA_CHECKING
2740 /* Print redundant memory-memory copies. */
2741 static void
2742 print_redundant_copies (void)
2744 int hard_regno;
2745 ira_allocno_t a;
2746 ira_copy_t cp, next_cp;
2747 ira_allocno_iterator ai;
2749 FOR_EACH_ALLOCNO (a, ai)
2751 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2752 /* It is a cap. */
2753 continue;
2754 hard_regno = ALLOCNO_HARD_REGNO (a);
2755 if (hard_regno >= 0)
2756 continue;
2757 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2758 if (cp->first == a)
2759 next_cp = cp->next_first_allocno_copy;
2760 else
2762 next_cp = cp->next_second_allocno_copy;
2763 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2764 && cp->insn != NULL_RTX
2765 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2766 fprintf (ira_dump_file,
2767 " Redundant move from %d(freq %d):%d\n",
2768 INSN_UID (cp->insn), cp->freq, hard_regno);
2772 #endif
2774 /* Setup preferred and alternative classes for new pseudo-registers
2775 created by IRA starting with START. */
2776 static void
2777 setup_preferred_alternate_classes_for_new_pseudos (int start)
2779 int i, old_regno;
2780 int max_regno = max_reg_num ();
2782 for (i = start; i < max_regno; i++)
2784 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2785 ira_assert (i != old_regno);
2786 setup_reg_classes (i, reg_preferred_class (old_regno),
2787 reg_alternate_class (old_regno),
2788 reg_allocno_class (old_regno));
2789 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2790 fprintf (ira_dump_file,
2791 " New r%d: setting preferred %s, alternative %s\n",
2792 i, reg_class_names[reg_preferred_class (old_regno)],
2793 reg_class_names[reg_alternate_class (old_regno)]);
2798 /* The number of entries allocated in reg_info. */
2799 static int allocated_reg_info_size;
2801 /* Regional allocation can create new pseudo-registers. This function
2802 expands some arrays for pseudo-registers. */
2803 static void
2804 expand_reg_info (void)
2806 int i;
2807 int size = max_reg_num ();
2809 resize_reg_info ();
2810 for (i = allocated_reg_info_size; i < size; i++)
2811 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2812 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2813 allocated_reg_info_size = size;
2816 /* Return TRUE if there is too high register pressure in the function.
2817 It is used to decide when stack slot sharing is worth to do. */
2818 static bool
2819 too_high_register_pressure_p (void)
2821 int i;
2822 enum reg_class pclass;
2824 for (i = 0; i < ira_pressure_classes_num; i++)
2826 pclass = ira_pressure_classes[i];
2827 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2828 return true;
2830 return false;
2835 /* Indicate that hard register number FROM was eliminated and replaced with
2836 an offset from hard register number TO. The status of hard registers live
2837 at the start of a basic block is updated by replacing a use of FROM with
2838 a use of TO. */
2840 void
2841 mark_elimination (int from, int to)
2843 basic_block bb;
2844 bitmap r;
2846 FOR_EACH_BB_FN (bb, cfun)
2848 r = DF_LR_IN (bb);
2849 if (bitmap_bit_p (r, from))
2851 bitmap_clear_bit (r, from);
2852 bitmap_set_bit (r, to);
2854 if (! df_live)
2855 continue;
2856 r = DF_LIVE_IN (bb);
2857 if (bitmap_bit_p (r, from))
2859 bitmap_clear_bit (r, from);
2860 bitmap_set_bit (r, to);
2867 /* The length of the following array. */
2868 int ira_reg_equiv_len;
2870 /* Info about equiv. info for each register. */
2871 struct ira_reg_equiv_s *ira_reg_equiv;
2873 /* Expand ira_reg_equiv if necessary. */
2874 void
2875 ira_expand_reg_equiv (void)
2877 int old = ira_reg_equiv_len;
2879 if (ira_reg_equiv_len > max_reg_num ())
2880 return;
2881 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2882 ira_reg_equiv
2883 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2884 ira_reg_equiv_len
2885 * sizeof (struct ira_reg_equiv_s));
2886 gcc_assert (old < ira_reg_equiv_len);
2887 memset (ira_reg_equiv + old, 0,
2888 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2891 static void
2892 init_reg_equiv (void)
2894 ira_reg_equiv_len = 0;
2895 ira_reg_equiv = NULL;
2896 ira_expand_reg_equiv ();
2899 static void
2900 finish_reg_equiv (void)
2902 free (ira_reg_equiv);
2907 struct equivalence
2909 /* Set when a REG_EQUIV note is found or created. Use to
2910 keep track of what memory accesses might be created later,
2911 e.g. by reload. */
2912 rtx replacement;
2913 rtx *src_p;
2915 /* The list of each instruction which initializes this register.
2917 NULL indicates we know nothing about this register's equivalence
2918 properties.
2920 An INSN_LIST with a NULL insn indicates this pseudo is already
2921 known to not have a valid equivalence. */
2922 rtx_insn_list *init_insns;
2924 /* Loop depth is used to recognize equivalences which appear
2925 to be present within the same loop (or in an inner loop). */
2926 short loop_depth;
2927 /* Nonzero if this had a preexisting REG_EQUIV note. */
2928 unsigned char is_arg_equivalence : 1;
2929 /* Set when an attempt should be made to replace a register
2930 with the associated src_p entry. */
2931 unsigned char replace : 1;
2932 /* Set if this register has no known equivalence. */
2933 unsigned char no_equiv : 1;
2936 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2937 structure for that register. */
2938 static struct equivalence *reg_equiv;
2940 /* Used for communication between the following two functions: contains
2941 a MEM that we wish to ensure remains unchanged. */
2942 static rtx equiv_mem;
2944 /* Set nonzero if EQUIV_MEM is modified. */
2945 static int equiv_mem_modified;
2947 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2948 Called via note_stores. */
2949 static void
2950 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2951 void *data ATTRIBUTE_UNUSED)
2953 if ((REG_P (dest)
2954 && reg_overlap_mentioned_p (dest, equiv_mem))
2955 || (MEM_P (dest)
2956 && anti_dependence (equiv_mem, dest)))
2957 equiv_mem_modified = 1;
2960 /* Verify that no store between START and the death of REG invalidates
2961 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2962 by storing into an overlapping memory location, or with a non-const
2963 CALL_INSN.
2965 Return 1 if MEMREF remains valid. */
2966 static int
2967 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2969 rtx_insn *insn;
2970 rtx note;
2972 equiv_mem = memref;
2973 equiv_mem_modified = 0;
2975 /* If the memory reference has side effects or is volatile, it isn't a
2976 valid equivalence. */
2977 if (side_effects_p (memref))
2978 return 0;
2980 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2982 if (! INSN_P (insn))
2983 continue;
2985 if (find_reg_note (insn, REG_DEAD, reg))
2986 return 1;
2988 /* This used to ignore readonly memory and const/pure calls. The problem
2989 is the equivalent form may reference a pseudo which gets assigned a
2990 call clobbered hard reg. When we later replace REG with its
2991 equivalent form, the value in the call-clobbered reg has been
2992 changed and all hell breaks loose. */
2993 if (CALL_P (insn))
2994 return 0;
2996 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2998 /* If a register mentioned in MEMREF is modified via an
2999 auto-increment, we lose the equivalence. Do the same if one
3000 dies; although we could extend the life, it doesn't seem worth
3001 the trouble. */
3003 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3004 if ((REG_NOTE_KIND (note) == REG_INC
3005 || REG_NOTE_KIND (note) == REG_DEAD)
3006 && REG_P (XEXP (note, 0))
3007 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3008 return 0;
3011 return 0;
3014 /* Returns zero if X is known to be invariant. */
3015 static int
3016 equiv_init_varies_p (rtx x)
3018 RTX_CODE code = GET_CODE (x);
3019 int i;
3020 const char *fmt;
3022 switch (code)
3024 case MEM:
3025 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3027 case CONST:
3028 CASE_CONST_ANY:
3029 case SYMBOL_REF:
3030 case LABEL_REF:
3031 return 0;
3033 case REG:
3034 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3036 case ASM_OPERANDS:
3037 if (MEM_VOLATILE_P (x))
3038 return 1;
3040 /* Fall through. */
3042 default:
3043 break;
3046 fmt = GET_RTX_FORMAT (code);
3047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3048 if (fmt[i] == 'e')
3050 if (equiv_init_varies_p (XEXP (x, i)))
3051 return 1;
3053 else if (fmt[i] == 'E')
3055 int j;
3056 for (j = 0; j < XVECLEN (x, i); j++)
3057 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3058 return 1;
3061 return 0;
3064 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3065 X is only movable if the registers it uses have equivalent initializations
3066 which appear to be within the same loop (or in an inner loop) and movable
3067 or if they are not candidates for local_alloc and don't vary. */
3068 static int
3069 equiv_init_movable_p (rtx x, int regno)
3071 int i, j;
3072 const char *fmt;
3073 enum rtx_code code = GET_CODE (x);
3075 switch (code)
3077 case SET:
3078 return equiv_init_movable_p (SET_SRC (x), regno);
3080 case CC0:
3081 case CLOBBER:
3082 return 0;
3084 case PRE_INC:
3085 case PRE_DEC:
3086 case POST_INC:
3087 case POST_DEC:
3088 case PRE_MODIFY:
3089 case POST_MODIFY:
3090 return 0;
3092 case REG:
3093 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3094 && reg_equiv[REGNO (x)].replace)
3095 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3096 && ! rtx_varies_p (x, 0)));
3098 case UNSPEC_VOLATILE:
3099 return 0;
3101 case ASM_OPERANDS:
3102 if (MEM_VOLATILE_P (x))
3103 return 0;
3105 /* Fall through. */
3107 default:
3108 break;
3111 fmt = GET_RTX_FORMAT (code);
3112 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3113 switch (fmt[i])
3115 case 'e':
3116 if (! equiv_init_movable_p (XEXP (x, i), regno))
3117 return 0;
3118 break;
3119 case 'E':
3120 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3121 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3122 return 0;
3123 break;
3126 return 1;
3129 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3130 true. */
3131 static int
3132 contains_replace_regs (rtx x)
3134 int i, j;
3135 const char *fmt;
3136 enum rtx_code code = GET_CODE (x);
3138 switch (code)
3140 case CONST:
3141 case LABEL_REF:
3142 case SYMBOL_REF:
3143 CASE_CONST_ANY:
3144 case PC:
3145 case CC0:
3146 case HIGH:
3147 return 0;
3149 case REG:
3150 return reg_equiv[REGNO (x)].replace;
3152 default:
3153 break;
3156 fmt = GET_RTX_FORMAT (code);
3157 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3158 switch (fmt[i])
3160 case 'e':
3161 if (contains_replace_regs (XEXP (x, i)))
3162 return 1;
3163 break;
3164 case 'E':
3165 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3166 if (contains_replace_regs (XVECEXP (x, i, j)))
3167 return 1;
3168 break;
3171 return 0;
3174 /* TRUE if X references a memory location that would be affected by a store
3175 to MEMREF. */
3176 static int
3177 memref_referenced_p (rtx memref, rtx x)
3179 int i, j;
3180 const char *fmt;
3181 enum rtx_code code = GET_CODE (x);
3183 switch (code)
3185 case CONST:
3186 case LABEL_REF:
3187 case SYMBOL_REF:
3188 CASE_CONST_ANY:
3189 case PC:
3190 case CC0:
3191 case HIGH:
3192 case LO_SUM:
3193 return 0;
3195 case REG:
3196 return (reg_equiv[REGNO (x)].replacement
3197 && memref_referenced_p (memref,
3198 reg_equiv[REGNO (x)].replacement));
3200 case MEM:
3201 if (true_dependence (memref, VOIDmode, x))
3202 return 1;
3203 break;
3205 case SET:
3206 /* If we are setting a MEM, it doesn't count (its address does), but any
3207 other SET_DEST that has a MEM in it is referencing the MEM. */
3208 if (MEM_P (SET_DEST (x)))
3210 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3211 return 1;
3213 else if (memref_referenced_p (memref, SET_DEST (x)))
3214 return 1;
3216 return memref_referenced_p (memref, SET_SRC (x));
3218 default:
3219 break;
3222 fmt = GET_RTX_FORMAT (code);
3223 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3224 switch (fmt[i])
3226 case 'e':
3227 if (memref_referenced_p (memref, XEXP (x, i)))
3228 return 1;
3229 break;
3230 case 'E':
3231 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3232 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3233 return 1;
3234 break;
3237 return 0;
3240 /* TRUE if some insn in the range (START, END] references a memory location
3241 that would be affected by a store to MEMREF. */
3242 static int
3243 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3245 rtx_insn *insn;
3247 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3248 insn = NEXT_INSN (insn))
3250 if (!NONDEBUG_INSN_P (insn))
3251 continue;
3253 if (memref_referenced_p (memref, PATTERN (insn)))
3254 return 1;
3256 /* Nonconst functions may access memory. */
3257 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3258 return 1;
3261 return 0;
3264 /* Mark REG as having no known equivalence.
3265 Some instructions might have been processed before and furnished
3266 with REG_EQUIV notes for this register; these notes will have to be
3267 removed.
3268 STORE is the piece of RTL that does the non-constant / conflicting
3269 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3270 but needs to be there because this function is called from note_stores. */
3271 static void
3272 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3273 void *data ATTRIBUTE_UNUSED)
3275 int regno;
3276 rtx_insn_list *list;
3278 if (!REG_P (reg))
3279 return;
3280 regno = REGNO (reg);
3281 reg_equiv[regno].no_equiv = 1;
3282 list = reg_equiv[regno].init_insns;
3283 if (list && list->insn () == NULL)
3284 return;
3285 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3286 reg_equiv[regno].replacement = NULL_RTX;
3287 /* This doesn't matter for equivalences made for argument registers, we
3288 should keep their initialization insns. */
3289 if (reg_equiv[regno].is_arg_equivalence)
3290 return;
3291 ira_reg_equiv[regno].defined_p = false;
3292 ira_reg_equiv[regno].init_insns = NULL;
3293 for (; list; list = list->next ())
3295 rtx_insn *insn = list->insn ();
3296 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3300 /* Check whether the SUBREG is a paradoxical subreg and set the result
3301 in PDX_SUBREGS. */
3303 static void
3304 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3306 subrtx_iterator::array_type array;
3307 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3309 const_rtx subreg = *iter;
3310 if (GET_CODE (subreg) == SUBREG)
3312 const_rtx reg = SUBREG_REG (subreg);
3313 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3314 pdx_subregs[REGNO (reg)] = true;
3319 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3320 equivalent replacement. */
3322 static rtx
3323 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3325 if (REG_P (loc))
3327 bitmap cleared_regs = (bitmap) data;
3328 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3329 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3330 NULL_RTX, adjust_cleared_regs, data);
3332 return NULL_RTX;
3335 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3336 static int recorded_label_ref;
3338 /* Find registers that are equivalent to a single value throughout the
3339 compilation (either because they can be referenced in memory or are
3340 set once from a single constant). Lower their priority for a
3341 register.
3343 If such a register is only referenced once, try substituting its
3344 value into the using insn. If it succeeds, we can eliminate the
3345 register completely.
3347 Initialize init_insns in ira_reg_equiv array.
3349 Return non-zero if jump label rebuilding should be done. */
3350 static int
3351 update_equiv_regs (void)
3353 rtx_insn *insn;
3354 basic_block bb;
3355 int loop_depth;
3356 bitmap cleared_regs;
3357 bool *pdx_subregs;
3359 /* We need to keep track of whether or not we recorded a LABEL_REF so
3360 that we know if the jump optimizer needs to be rerun. */
3361 recorded_label_ref = 0;
3363 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3364 subreg. */
3365 pdx_subregs = XCNEWVEC (bool, max_regno);
3367 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3368 grow_reg_equivs ();
3370 init_alias_analysis ();
3372 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3373 paradoxical subreg. Don't set such reg equivalent to a mem,
3374 because lra will not substitute such equiv memory in order to
3375 prevent access beyond allocated memory for paradoxical memory subreg. */
3376 FOR_EACH_BB_FN (bb, cfun)
3377 FOR_BB_INSNS (bb, insn)
3378 if (NONDEBUG_INSN_P (insn))
3379 set_paradoxical_subreg (insn, pdx_subregs);
3381 /* Scan the insns and find which registers have equivalences. Do this
3382 in a separate scan of the insns because (due to -fcse-follow-jumps)
3383 a register can be set below its use. */
3384 FOR_EACH_BB_FN (bb, cfun)
3386 loop_depth = bb_loop_depth (bb);
3388 for (insn = BB_HEAD (bb);
3389 insn != NEXT_INSN (BB_END (bb));
3390 insn = NEXT_INSN (insn))
3392 rtx note;
3393 rtx set;
3394 rtx dest, src;
3395 int regno;
3397 if (! INSN_P (insn))
3398 continue;
3400 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3401 if (REG_NOTE_KIND (note) == REG_INC)
3402 no_equiv (XEXP (note, 0), note, NULL);
3404 set = single_set (insn);
3406 /* If this insn contains more (or less) than a single SET,
3407 only mark all destinations as having no known equivalence. */
3408 if (set == NULL_RTX)
3410 note_stores (PATTERN (insn), no_equiv, NULL);
3411 continue;
3413 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3415 int i;
3417 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3419 rtx part = XVECEXP (PATTERN (insn), 0, i);
3420 if (part != set)
3421 note_stores (part, no_equiv, NULL);
3425 dest = SET_DEST (set);
3426 src = SET_SRC (set);
3428 /* See if this is setting up the equivalence between an argument
3429 register and its stack slot. */
3430 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3431 if (note)
3433 gcc_assert (REG_P (dest));
3434 regno = REGNO (dest);
3436 /* Note that we don't want to clear init_insns in
3437 ira_reg_equiv even if there are multiple sets of this
3438 register. */
3439 reg_equiv[regno].is_arg_equivalence = 1;
3441 /* The insn result can have equivalence memory although
3442 the equivalence is not set up by the insn. We add
3443 this insn to init insns as it is a flag for now that
3444 regno has an equivalence. We will remove the insn
3445 from init insn list later. */
3446 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3447 ira_reg_equiv[regno].init_insns
3448 = gen_rtx_INSN_LIST (VOIDmode, insn,
3449 ira_reg_equiv[regno].init_insns);
3451 /* Continue normally in case this is a candidate for
3452 replacements. */
3455 if (!optimize)
3456 continue;
3458 /* We only handle the case of a pseudo register being set
3459 once, or always to the same value. */
3460 /* ??? The mn10200 port breaks if we add equivalences for
3461 values that need an ADDRESS_REGS register and set them equivalent
3462 to a MEM of a pseudo. The actual problem is in the over-conservative
3463 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3464 calculate_needs, but we traditionally work around this problem
3465 here by rejecting equivalences when the destination is in a register
3466 that's likely spilled. This is fragile, of course, since the
3467 preferred class of a pseudo depends on all instructions that set
3468 or use it. */
3470 if (!REG_P (dest)
3471 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3472 || (reg_equiv[regno].init_insns
3473 && reg_equiv[regno].init_insns->insn () == NULL)
3474 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3475 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3477 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3478 also set somewhere else to a constant. */
3479 note_stores (set, no_equiv, NULL);
3480 continue;
3483 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3484 if (MEM_P (src) && pdx_subregs[regno])
3486 note_stores (set, no_equiv, NULL);
3487 continue;
3490 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3492 /* cse sometimes generates function invariants, but doesn't put a
3493 REG_EQUAL note on the insn. Since this note would be redundant,
3494 there's no point creating it earlier than here. */
3495 if (! note && ! rtx_varies_p (src, 0))
3496 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3498 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3499 since it represents a function call. */
3500 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3501 note = NULL_RTX;
3503 if (DF_REG_DEF_COUNT (regno) != 1)
3505 bool equal_p = true;
3506 rtx_insn_list *list;
3508 /* If we have already processed this pseudo and determined it
3509 can not have an equivalence, then honor that decision. */
3510 if (reg_equiv[regno].no_equiv)
3511 continue;
3513 if (! note
3514 || rtx_varies_p (XEXP (note, 0), 0)
3515 || (reg_equiv[regno].replacement
3516 && ! rtx_equal_p (XEXP (note, 0),
3517 reg_equiv[regno].replacement)))
3519 no_equiv (dest, set, NULL);
3520 continue;
3523 list = reg_equiv[regno].init_insns;
3524 for (; list; list = list->next ())
3526 rtx note_tmp;
3527 rtx_insn *insn_tmp;
3529 insn_tmp = list->insn ();
3530 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3531 gcc_assert (note_tmp);
3532 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3534 equal_p = false;
3535 break;
3539 if (! equal_p)
3541 no_equiv (dest, set, NULL);
3542 continue;
3546 /* Record this insn as initializing this register. */
3547 reg_equiv[regno].init_insns
3548 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3550 /* If this register is known to be equal to a constant, record that
3551 it is always equivalent to the constant. */
3552 if (DF_REG_DEF_COUNT (regno) == 1
3553 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3555 rtx note_value = XEXP (note, 0);
3556 remove_note (insn, note);
3557 set_unique_reg_note (insn, REG_EQUIV, note_value);
3560 /* If this insn introduces a "constant" register, decrease the priority
3561 of that register. Record this insn if the register is only used once
3562 more and the equivalence value is the same as our source.
3564 The latter condition is checked for two reasons: First, it is an
3565 indication that it may be more efficient to actually emit the insn
3566 as written (if no registers are available, reload will substitute
3567 the equivalence). Secondly, it avoids problems with any registers
3568 dying in this insn whose death notes would be missed.
3570 If we don't have a REG_EQUIV note, see if this insn is loading
3571 a register used only in one basic block from a MEM. If so, and the
3572 MEM remains unchanged for the life of the register, add a REG_EQUIV
3573 note. */
3574 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3576 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3577 && MEM_P (SET_SRC (set))
3578 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3579 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3581 if (note)
3583 int regno = REGNO (dest);
3584 rtx x = XEXP (note, 0);
3586 /* If we haven't done so, record for reload that this is an
3587 equivalencing insn. */
3588 if (!reg_equiv[regno].is_arg_equivalence)
3589 ira_reg_equiv[regno].init_insns
3590 = gen_rtx_INSN_LIST (VOIDmode, insn,
3591 ira_reg_equiv[regno].init_insns);
3593 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3594 We might end up substituting the LABEL_REF for uses of the
3595 pseudo here or later. That kind of transformation may turn an
3596 indirect jump into a direct jump, in which case we must rerun the
3597 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3598 if (GET_CODE (x) == LABEL_REF
3599 || (GET_CODE (x) == CONST
3600 && GET_CODE (XEXP (x, 0)) == PLUS
3601 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3602 recorded_label_ref = 1;
3604 reg_equiv[regno].replacement = x;
3605 reg_equiv[regno].src_p = &SET_SRC (set);
3606 reg_equiv[regno].loop_depth = (short) loop_depth;
3608 /* Don't mess with things live during setjmp. */
3609 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3611 /* Note that the statement below does not affect the priority
3612 in local-alloc! */
3613 REG_LIVE_LENGTH (regno) *= 2;
3615 /* If the register is referenced exactly twice, meaning it is
3616 set once and used once, indicate that the reference may be
3617 replaced by the equivalence we computed above. Do this
3618 even if the register is only used in one block so that
3619 dependencies can be handled where the last register is
3620 used in a different block (i.e. HIGH / LO_SUM sequences)
3621 and to reduce the number of registers alive across
3622 calls. */
3624 if (REG_N_REFS (regno) == 2
3625 && (rtx_equal_p (x, src)
3626 || ! equiv_init_varies_p (src))
3627 && NONJUMP_INSN_P (insn)
3628 && equiv_init_movable_p (PATTERN (insn), regno))
3629 reg_equiv[regno].replace = 1;
3635 if (!optimize)
3636 goto out;
3638 /* A second pass, to gather additional equivalences with memory. This needs
3639 to be done after we know which registers we are going to replace. */
3641 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3643 rtx set, src, dest;
3644 unsigned regno;
3646 if (! INSN_P (insn))
3647 continue;
3649 set = single_set (insn);
3650 if (! set)
3651 continue;
3653 dest = SET_DEST (set);
3654 src = SET_SRC (set);
3656 /* If this sets a MEM to the contents of a REG that is only used
3657 in a single basic block, see if the register is always equivalent
3658 to that memory location and if moving the store from INSN to the
3659 insn that set REG is safe. If so, put a REG_EQUIV note on the
3660 initializing insn.
3662 Don't add a REG_EQUIV note if the insn already has one. The existing
3663 REG_EQUIV is likely more useful than the one we are adding.
3665 If one of the regs in the address has reg_equiv[REGNO].replace set,
3666 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3667 optimization may move the set of this register immediately before
3668 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3669 the mention in the REG_EQUIV note would be to an uninitialized
3670 pseudo. */
3672 if (MEM_P (dest) && REG_P (src)
3673 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3674 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3675 && DF_REG_DEF_COUNT (regno) == 1
3676 && reg_equiv[regno].init_insns != NULL
3677 && reg_equiv[regno].init_insns->insn () != NULL
3678 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3679 REG_EQUIV, NULL_RTX)
3680 && ! contains_replace_regs (XEXP (dest, 0))
3681 && ! pdx_subregs[regno])
3683 rtx_insn *init_insn =
3684 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3685 if (validate_equiv_mem (init_insn, src, dest)
3686 && ! memref_used_between_p (dest, init_insn, insn)
3687 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3688 multiple sets. */
3689 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3691 /* This insn makes the equivalence, not the one initializing
3692 the register. */
3693 ira_reg_equiv[regno].init_insns
3694 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3695 df_notes_rescan (init_insn);
3700 cleared_regs = BITMAP_ALLOC (NULL);
3701 /* Now scan all regs killed in an insn to see if any of them are
3702 registers only used that once. If so, see if we can replace the
3703 reference with the equivalent form. If we can, delete the
3704 initializing reference and this register will go away. If we
3705 can't replace the reference, and the initializing reference is
3706 within the same loop (or in an inner loop), then move the register
3707 initialization just before the use, so that they are in the same
3708 basic block. */
3709 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3711 loop_depth = bb_loop_depth (bb);
3712 for (insn = BB_END (bb);
3713 insn != PREV_INSN (BB_HEAD (bb));
3714 insn = PREV_INSN (insn))
3716 rtx link;
3718 if (! INSN_P (insn))
3719 continue;
3721 /* Don't substitute into a non-local goto, this confuses CFG. */
3722 if (JUMP_P (insn)
3723 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3724 continue;
3726 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3728 if (REG_NOTE_KIND (link) == REG_DEAD
3729 /* Make sure this insn still refers to the register. */
3730 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3732 int regno = REGNO (XEXP (link, 0));
3733 rtx equiv_insn;
3735 if (! reg_equiv[regno].replace
3736 || reg_equiv[regno].loop_depth < (short) loop_depth
3737 /* There is no sense to move insns if live range
3738 shrinkage or register pressure-sensitive
3739 scheduling were done because it will not
3740 improve allocation but worsen insn schedule
3741 with a big probability. */
3742 || flag_live_range_shrinkage
3743 || (flag_sched_pressure && flag_schedule_insns))
3744 continue;
3746 /* reg_equiv[REGNO].replace gets set only when
3747 REG_N_REFS[REGNO] is 2, i.e. the register is set
3748 once and used once. (If it were only set, but
3749 not used, flow would have deleted the setting
3750 insns.) Hence there can only be one insn in
3751 reg_equiv[REGNO].init_insns. */
3752 gcc_assert (reg_equiv[regno].init_insns
3753 && !XEXP (reg_equiv[regno].init_insns, 1));
3754 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3756 /* We may not move instructions that can throw, since
3757 that changes basic block boundaries and we are not
3758 prepared to adjust the CFG to match. */
3759 if (can_throw_internal (equiv_insn))
3760 continue;
3762 if (asm_noperands (PATTERN (equiv_insn)) < 0
3763 && validate_replace_rtx (regno_reg_rtx[regno],
3764 *(reg_equiv[regno].src_p), insn))
3766 rtx equiv_link;
3767 rtx last_link;
3768 rtx note;
3770 /* Find the last note. */
3771 for (last_link = link; XEXP (last_link, 1);
3772 last_link = XEXP (last_link, 1))
3775 /* Append the REG_DEAD notes from equiv_insn. */
3776 equiv_link = REG_NOTES (equiv_insn);
3777 while (equiv_link)
3779 note = equiv_link;
3780 equiv_link = XEXP (equiv_link, 1);
3781 if (REG_NOTE_KIND (note) == REG_DEAD)
3783 remove_note (equiv_insn, note);
3784 XEXP (last_link, 1) = note;
3785 XEXP (note, 1) = NULL_RTX;
3786 last_link = note;
3790 remove_death (regno, insn);
3791 SET_REG_N_REFS (regno, 0);
3792 REG_FREQ (regno) = 0;
3793 delete_insn (equiv_insn);
3795 reg_equiv[regno].init_insns
3796 = reg_equiv[regno].init_insns->next ();
3798 ira_reg_equiv[regno].init_insns = NULL;
3799 bitmap_set_bit (cleared_regs, regno);
3801 /* Move the initialization of the register to just before
3802 INSN. Update the flow information. */
3803 else if (prev_nondebug_insn (insn) != equiv_insn)
3805 rtx_insn *new_insn;
3807 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3808 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3809 REG_NOTES (equiv_insn) = 0;
3810 /* Rescan it to process the notes. */
3811 df_insn_rescan (new_insn);
3813 /* Make sure this insn is recognized before
3814 reload begins, otherwise
3815 eliminate_regs_in_insn will die. */
3816 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3818 delete_insn (equiv_insn);
3820 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3822 REG_BASIC_BLOCK (regno) = bb->index;
3823 REG_N_CALLS_CROSSED (regno) = 0;
3824 REG_FREQ_CALLS_CROSSED (regno) = 0;
3825 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3826 REG_LIVE_LENGTH (regno) = 2;
3828 if (insn == BB_HEAD (bb))
3829 BB_HEAD (bb) = PREV_INSN (insn);
3831 ira_reg_equiv[regno].init_insns
3832 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3833 bitmap_set_bit (cleared_regs, regno);
3840 if (!bitmap_empty_p (cleared_regs))
3842 FOR_EACH_BB_FN (bb, cfun)
3844 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3845 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3846 if (! df_live)
3847 continue;
3848 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3849 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3852 /* Last pass - adjust debug insns referencing cleared regs. */
3853 if (MAY_HAVE_DEBUG_INSNS)
3854 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3855 if (DEBUG_INSN_P (insn))
3857 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3858 INSN_VAR_LOCATION_LOC (insn)
3859 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3860 adjust_cleared_regs,
3861 (void *) cleared_regs);
3862 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3863 df_insn_rescan (insn);
3867 BITMAP_FREE (cleared_regs);
3869 out:
3870 /* Clean up. */
3872 end_alias_analysis ();
3873 free (reg_equiv);
3874 free (pdx_subregs);
3875 return recorded_label_ref;
3880 /* Set up fields memory, constant, and invariant from init_insns in
3881 the structures of array ira_reg_equiv. */
3882 static void
3883 setup_reg_equiv (void)
3885 int i;
3886 rtx_insn_list *elem, *prev_elem, *next_elem;
3887 rtx_insn *insn;
3888 rtx set, x;
3890 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3891 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3892 elem;
3893 prev_elem = elem, elem = next_elem)
3895 next_elem = elem->next ();
3896 insn = elem->insn ();
3897 set = single_set (insn);
3899 /* Init insns can set up equivalence when the reg is a destination or
3900 a source (in this case the destination is memory). */
3901 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3903 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3905 x = XEXP (x, 0);
3906 if (REG_P (SET_DEST (set))
3907 && REGNO (SET_DEST (set)) == (unsigned int) i
3908 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3910 /* This insn reporting the equivalence but
3911 actually not setting it. Remove it from the
3912 list. */
3913 if (prev_elem == NULL)
3914 ira_reg_equiv[i].init_insns = next_elem;
3915 else
3916 XEXP (prev_elem, 1) = next_elem;
3917 elem = prev_elem;
3920 else if (REG_P (SET_DEST (set))
3921 && REGNO (SET_DEST (set)) == (unsigned int) i)
3922 x = SET_SRC (set);
3923 else
3925 gcc_assert (REG_P (SET_SRC (set))
3926 && REGNO (SET_SRC (set)) == (unsigned int) i);
3927 x = SET_DEST (set);
3929 if (! function_invariant_p (x)
3930 || ! flag_pic
3931 /* A function invariant is often CONSTANT_P but may
3932 include a register. We promise to only pass
3933 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3934 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3936 /* It can happen that a REG_EQUIV note contains a MEM
3937 that is not a legitimate memory operand. As later
3938 stages of reload assume that all addresses found in
3939 the lra_regno_equiv_* arrays were originally
3940 legitimate, we ignore such REG_EQUIV notes. */
3941 if (memory_operand (x, VOIDmode))
3943 ira_reg_equiv[i].defined_p = true;
3944 ira_reg_equiv[i].memory = x;
3945 continue;
3947 else if (function_invariant_p (x))
3949 machine_mode mode;
3951 mode = GET_MODE (SET_DEST (set));
3952 if (GET_CODE (x) == PLUS
3953 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3954 /* This is PLUS of frame pointer and a constant,
3955 or fp, or argp. */
3956 ira_reg_equiv[i].invariant = x;
3957 else if (targetm.legitimate_constant_p (mode, x))
3958 ira_reg_equiv[i].constant = x;
3959 else
3961 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3962 if (ira_reg_equiv[i].memory == NULL_RTX)
3964 ira_reg_equiv[i].defined_p = false;
3965 ira_reg_equiv[i].init_insns = NULL;
3966 break;
3969 ira_reg_equiv[i].defined_p = true;
3970 continue;
3974 ira_reg_equiv[i].defined_p = false;
3975 ira_reg_equiv[i].init_insns = NULL;
3976 break;
3982 /* Print chain C to FILE. */
3983 static void
3984 print_insn_chain (FILE *file, struct insn_chain *c)
3986 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3987 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3988 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3992 /* Print all reload_insn_chains to FILE. */
3993 static void
3994 print_insn_chains (FILE *file)
3996 struct insn_chain *c;
3997 for (c = reload_insn_chain; c ; c = c->next)
3998 print_insn_chain (file, c);
4001 /* Return true if pseudo REGNO should be added to set live_throughout
4002 or dead_or_set of the insn chains for reload consideration. */
4003 static bool
4004 pseudo_for_reload_consideration_p (int regno)
4006 /* Consider spilled pseudos too for IRA because they still have a
4007 chance to get hard-registers in the reload when IRA is used. */
4008 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4011 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4012 REG to the number of nregs, and INIT_VALUE to get the
4013 initialization. ALLOCNUM need not be the regno of REG. */
4014 static void
4015 init_live_subregs (bool init_value, sbitmap *live_subregs,
4016 bitmap live_subregs_used, int allocnum, rtx reg)
4018 unsigned int regno = REGNO (SUBREG_REG (reg));
4019 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4021 gcc_assert (size > 0);
4023 /* Been there, done that. */
4024 if (bitmap_bit_p (live_subregs_used, allocnum))
4025 return;
4027 /* Create a new one. */
4028 if (live_subregs[allocnum] == NULL)
4029 live_subregs[allocnum] = sbitmap_alloc (size);
4031 /* If the entire reg was live before blasting into subregs, we need
4032 to init all of the subregs to ones else init to 0. */
4033 if (init_value)
4034 bitmap_ones (live_subregs[allocnum]);
4035 else
4036 bitmap_clear (live_subregs[allocnum]);
4038 bitmap_set_bit (live_subregs_used, allocnum);
4041 /* Walk the insns of the current function and build reload_insn_chain,
4042 and record register life information. */
4043 static void
4044 build_insn_chain (void)
4046 unsigned int i;
4047 struct insn_chain **p = &reload_insn_chain;
4048 basic_block bb;
4049 struct insn_chain *c = NULL;
4050 struct insn_chain *next = NULL;
4051 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4052 bitmap elim_regset = BITMAP_ALLOC (NULL);
4053 /* live_subregs is a vector used to keep accurate information about
4054 which hardregs are live in multiword pseudos. live_subregs and
4055 live_subregs_used are indexed by pseudo number. The live_subreg
4056 entry for a particular pseudo is only used if the corresponding
4057 element is non zero in live_subregs_used. The sbitmap size of
4058 live_subreg[allocno] is number of bytes that the pseudo can
4059 occupy. */
4060 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4061 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4063 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4064 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4065 bitmap_set_bit (elim_regset, i);
4066 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4068 bitmap_iterator bi;
4069 rtx_insn *insn;
4071 CLEAR_REG_SET (live_relevant_regs);
4072 bitmap_clear (live_subregs_used);
4074 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4076 if (i >= FIRST_PSEUDO_REGISTER)
4077 break;
4078 bitmap_set_bit (live_relevant_regs, i);
4081 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4082 FIRST_PSEUDO_REGISTER, i, bi)
4084 if (pseudo_for_reload_consideration_p (i))
4085 bitmap_set_bit (live_relevant_regs, i);
4088 FOR_BB_INSNS_REVERSE (bb, insn)
4090 if (!NOTE_P (insn) && !BARRIER_P (insn))
4092 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4093 df_ref def, use;
4095 c = new_insn_chain ();
4096 c->next = next;
4097 next = c;
4098 *p = c;
4099 p = &c->prev;
4101 c->insn = insn;
4102 c->block = bb->index;
4104 if (NONDEBUG_INSN_P (insn))
4105 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4107 unsigned int regno = DF_REF_REGNO (def);
4109 /* Ignore may clobbers because these are generated
4110 from calls. However, every other kind of def is
4111 added to dead_or_set. */
4112 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4114 if (regno < FIRST_PSEUDO_REGISTER)
4116 if (!fixed_regs[regno])
4117 bitmap_set_bit (&c->dead_or_set, regno);
4119 else if (pseudo_for_reload_consideration_p (regno))
4120 bitmap_set_bit (&c->dead_or_set, regno);
4123 if ((regno < FIRST_PSEUDO_REGISTER
4124 || reg_renumber[regno] >= 0
4125 || ira_conflicts_p)
4126 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4128 rtx reg = DF_REF_REG (def);
4130 /* We can model subregs, but not if they are
4131 wrapped in ZERO_EXTRACTS. */
4132 if (GET_CODE (reg) == SUBREG
4133 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4135 unsigned int start = SUBREG_BYTE (reg);
4136 unsigned int last = start
4137 + GET_MODE_SIZE (GET_MODE (reg));
4139 init_live_subregs
4140 (bitmap_bit_p (live_relevant_regs, regno),
4141 live_subregs, live_subregs_used, regno, reg);
4143 if (!DF_REF_FLAGS_IS_SET
4144 (def, DF_REF_STRICT_LOW_PART))
4146 /* Expand the range to cover entire words.
4147 Bytes added here are "don't care". */
4148 start
4149 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4150 last = ((last + UNITS_PER_WORD - 1)
4151 / UNITS_PER_WORD * UNITS_PER_WORD);
4154 /* Ignore the paradoxical bits. */
4155 if (last > SBITMAP_SIZE (live_subregs[regno]))
4156 last = SBITMAP_SIZE (live_subregs[regno]);
4158 while (start < last)
4160 bitmap_clear_bit (live_subregs[regno], start);
4161 start++;
4164 if (bitmap_empty_p (live_subregs[regno]))
4166 bitmap_clear_bit (live_subregs_used, regno);
4167 bitmap_clear_bit (live_relevant_regs, regno);
4169 else
4170 /* Set live_relevant_regs here because
4171 that bit has to be true to get us to
4172 look at the live_subregs fields. */
4173 bitmap_set_bit (live_relevant_regs, regno);
4175 else
4177 /* DF_REF_PARTIAL is generated for
4178 subregs, STRICT_LOW_PART, and
4179 ZERO_EXTRACT. We handle the subreg
4180 case above so here we have to keep from
4181 modeling the def as a killing def. */
4182 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4184 bitmap_clear_bit (live_subregs_used, regno);
4185 bitmap_clear_bit (live_relevant_regs, regno);
4191 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4192 bitmap_copy (&c->live_throughout, live_relevant_regs);
4194 if (NONDEBUG_INSN_P (insn))
4195 FOR_EACH_INSN_INFO_USE (use, insn_info)
4197 unsigned int regno = DF_REF_REGNO (use);
4198 rtx reg = DF_REF_REG (use);
4200 /* DF_REF_READ_WRITE on a use means that this use
4201 is fabricated from a def that is a partial set
4202 to a multiword reg. Here, we only model the
4203 subreg case that is not wrapped in ZERO_EXTRACT
4204 precisely so we do not need to look at the
4205 fabricated use. */
4206 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4207 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4208 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4209 continue;
4211 /* Add the last use of each var to dead_or_set. */
4212 if (!bitmap_bit_p (live_relevant_regs, regno))
4214 if (regno < FIRST_PSEUDO_REGISTER)
4216 if (!fixed_regs[regno])
4217 bitmap_set_bit (&c->dead_or_set, regno);
4219 else if (pseudo_for_reload_consideration_p (regno))
4220 bitmap_set_bit (&c->dead_or_set, regno);
4223 if (regno < FIRST_PSEUDO_REGISTER
4224 || pseudo_for_reload_consideration_p (regno))
4226 if (GET_CODE (reg) == SUBREG
4227 && !DF_REF_FLAGS_IS_SET (use,
4228 DF_REF_SIGN_EXTRACT
4229 | DF_REF_ZERO_EXTRACT))
4231 unsigned int start = SUBREG_BYTE (reg);
4232 unsigned int last = start
4233 + GET_MODE_SIZE (GET_MODE (reg));
4235 init_live_subregs
4236 (bitmap_bit_p (live_relevant_regs, regno),
4237 live_subregs, live_subregs_used, regno, reg);
4239 /* Ignore the paradoxical bits. */
4240 if (last > SBITMAP_SIZE (live_subregs[regno]))
4241 last = SBITMAP_SIZE (live_subregs[regno]);
4243 while (start < last)
4245 bitmap_set_bit (live_subregs[regno], start);
4246 start++;
4249 else
4250 /* Resetting the live_subregs_used is
4251 effectively saying do not use the subregs
4252 because we are reading the whole
4253 pseudo. */
4254 bitmap_clear_bit (live_subregs_used, regno);
4255 bitmap_set_bit (live_relevant_regs, regno);
4261 /* FIXME!! The following code is a disaster. Reload needs to see the
4262 labels and jump tables that are just hanging out in between
4263 the basic blocks. See pr33676. */
4264 insn = BB_HEAD (bb);
4266 /* Skip over the barriers and cruft. */
4267 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4268 || BLOCK_FOR_INSN (insn) == bb))
4269 insn = PREV_INSN (insn);
4271 /* While we add anything except barriers and notes, the focus is
4272 to get the labels and jump tables into the
4273 reload_insn_chain. */
4274 while (insn)
4276 if (!NOTE_P (insn) && !BARRIER_P (insn))
4278 if (BLOCK_FOR_INSN (insn))
4279 break;
4281 c = new_insn_chain ();
4282 c->next = next;
4283 next = c;
4284 *p = c;
4285 p = &c->prev;
4287 /* The block makes no sense here, but it is what the old
4288 code did. */
4289 c->block = bb->index;
4290 c->insn = insn;
4291 bitmap_copy (&c->live_throughout, live_relevant_regs);
4293 insn = PREV_INSN (insn);
4297 reload_insn_chain = c;
4298 *p = NULL;
4300 for (i = 0; i < (unsigned int) max_regno; i++)
4301 if (live_subregs[i] != NULL)
4302 sbitmap_free (live_subregs[i]);
4303 free (live_subregs);
4304 BITMAP_FREE (live_subregs_used);
4305 BITMAP_FREE (live_relevant_regs);
4306 BITMAP_FREE (elim_regset);
4308 if (dump_file)
4309 print_insn_chains (dump_file);
4312 /* Examine the rtx found in *LOC, which is read or written to as determined
4313 by TYPE. Return false if we find a reason why an insn containing this
4314 rtx should not be moved (such as accesses to non-constant memory), true
4315 otherwise. */
4316 static bool
4317 rtx_moveable_p (rtx *loc, enum op_type type)
4319 const char *fmt;
4320 rtx x = *loc;
4321 enum rtx_code code = GET_CODE (x);
4322 int i, j;
4324 code = GET_CODE (x);
4325 switch (code)
4327 case CONST:
4328 CASE_CONST_ANY:
4329 case SYMBOL_REF:
4330 case LABEL_REF:
4331 return true;
4333 case PC:
4334 return type == OP_IN;
4336 case CC0:
4337 return false;
4339 case REG:
4340 if (x == frame_pointer_rtx)
4341 return true;
4342 if (HARD_REGISTER_P (x))
4343 return false;
4345 return true;
4347 case MEM:
4348 if (type == OP_IN && MEM_READONLY_P (x))
4349 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4350 return false;
4352 case SET:
4353 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4354 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4356 case STRICT_LOW_PART:
4357 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4359 case ZERO_EXTRACT:
4360 case SIGN_EXTRACT:
4361 return (rtx_moveable_p (&XEXP (x, 0), type)
4362 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4363 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4365 case CLOBBER:
4366 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4368 case UNSPEC_VOLATILE:
4369 /* It is a bad idea to consider insns with with such rtl
4370 as moveable ones. The insn scheduler also considers them as barrier
4371 for a reason. */
4372 return false;
4374 default:
4375 break;
4378 fmt = GET_RTX_FORMAT (code);
4379 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4381 if (fmt[i] == 'e')
4383 if (!rtx_moveable_p (&XEXP (x, i), type))
4384 return false;
4386 else if (fmt[i] == 'E')
4387 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4389 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4390 return false;
4393 return true;
4396 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4397 to give dominance relationships between two insns I1 and I2. */
4398 static bool
4399 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4401 basic_block bb1 = BLOCK_FOR_INSN (i1);
4402 basic_block bb2 = BLOCK_FOR_INSN (i2);
4404 if (bb1 == bb2)
4405 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4406 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4409 /* Record the range of register numbers added by find_moveable_pseudos. */
4410 int first_moveable_pseudo, last_moveable_pseudo;
4412 /* These two vectors hold data for every register added by
4413 find_movable_pseudos, with index 0 holding data for the
4414 first_moveable_pseudo. */
4415 /* The original home register. */
4416 static vec<rtx> pseudo_replaced_reg;
4418 /* Look for instances where we have an instruction that is known to increase
4419 register pressure, and whose result is not used immediately. If it is
4420 possible to move the instruction downwards to just before its first use,
4421 split its lifetime into two ranges. We create a new pseudo to compute the
4422 value, and emit a move instruction just before the first use. If, after
4423 register allocation, the new pseudo remains unallocated, the function
4424 move_unallocated_pseudos then deletes the move instruction and places
4425 the computation just before the first use.
4427 Such a move is safe and profitable if all the input registers remain live
4428 and unchanged between the original computation and its first use. In such
4429 a situation, the computation is known to increase register pressure, and
4430 moving it is known to at least not worsen it.
4432 We restrict moves to only those cases where a register remains unallocated,
4433 in order to avoid interfering too much with the instruction schedule. As
4434 an exception, we may move insns which only modify their input register
4435 (typically induction variables), as this increases the freedom for our
4436 intended transformation, and does not limit the second instruction
4437 scheduler pass. */
4439 static void
4440 find_moveable_pseudos (void)
4442 unsigned i;
4443 int max_regs = max_reg_num ();
4444 int max_uid = get_max_uid ();
4445 basic_block bb;
4446 int *uid_luid = XNEWVEC (int, max_uid);
4447 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4448 /* A set of registers which are live but not modified throughout a block. */
4449 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4450 last_basic_block_for_fn (cfun));
4451 /* A set of registers which only exist in a given basic block. */
4452 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4453 last_basic_block_for_fn (cfun));
4454 /* A set of registers which are set once, in an instruction that can be
4455 moved freely downwards, but are otherwise transparent to a block. */
4456 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4457 last_basic_block_for_fn (cfun));
4458 bitmap_head live, used, set, interesting, unusable_as_input;
4459 bitmap_iterator bi;
4460 bitmap_initialize (&interesting, 0);
4462 first_moveable_pseudo = max_regs;
4463 pseudo_replaced_reg.release ();
4464 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4466 df_analyze ();
4467 calculate_dominance_info (CDI_DOMINATORS);
4469 i = 0;
4470 bitmap_initialize (&live, 0);
4471 bitmap_initialize (&used, 0);
4472 bitmap_initialize (&set, 0);
4473 bitmap_initialize (&unusable_as_input, 0);
4474 FOR_EACH_BB_FN (bb, cfun)
4476 rtx_insn *insn;
4477 bitmap transp = bb_transp_live + bb->index;
4478 bitmap moveable = bb_moveable_reg_sets + bb->index;
4479 bitmap local = bb_local + bb->index;
4481 bitmap_initialize (local, 0);
4482 bitmap_initialize (transp, 0);
4483 bitmap_initialize (moveable, 0);
4484 bitmap_copy (&live, df_get_live_out (bb));
4485 bitmap_and_into (&live, df_get_live_in (bb));
4486 bitmap_copy (transp, &live);
4487 bitmap_clear (moveable);
4488 bitmap_clear (&live);
4489 bitmap_clear (&used);
4490 bitmap_clear (&set);
4491 FOR_BB_INSNS (bb, insn)
4492 if (NONDEBUG_INSN_P (insn))
4494 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4495 df_ref def, use;
4497 uid_luid[INSN_UID (insn)] = i++;
4499 def = df_single_def (insn_info);
4500 use = df_single_use (insn_info);
4501 if (use
4502 && def
4503 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4504 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4505 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4507 unsigned regno = DF_REF_REGNO (use);
4508 bitmap_set_bit (moveable, regno);
4509 bitmap_set_bit (&set, regno);
4510 bitmap_set_bit (&used, regno);
4511 bitmap_clear_bit (transp, regno);
4512 continue;
4514 FOR_EACH_INSN_INFO_USE (use, insn_info)
4516 unsigned regno = DF_REF_REGNO (use);
4517 bitmap_set_bit (&used, regno);
4518 if (bitmap_clear_bit (moveable, regno))
4519 bitmap_clear_bit (transp, regno);
4522 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4524 unsigned regno = DF_REF_REGNO (def);
4525 bitmap_set_bit (&set, regno);
4526 bitmap_clear_bit (transp, regno);
4527 bitmap_clear_bit (moveable, regno);
4532 bitmap_clear (&live);
4533 bitmap_clear (&used);
4534 bitmap_clear (&set);
4536 FOR_EACH_BB_FN (bb, cfun)
4538 bitmap local = bb_local + bb->index;
4539 rtx_insn *insn;
4541 FOR_BB_INSNS (bb, insn)
4542 if (NONDEBUG_INSN_P (insn))
4544 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4545 rtx_insn *def_insn;
4546 rtx closest_use, note;
4547 df_ref def, use;
4548 unsigned regno;
4549 bool all_dominated, all_local;
4550 machine_mode mode;
4552 def = df_single_def (insn_info);
4553 /* There must be exactly one def in this insn. */
4554 if (!def || !single_set (insn))
4555 continue;
4556 /* This must be the only definition of the reg. We also limit
4557 which modes we deal with so that we can assume we can generate
4558 move instructions. */
4559 regno = DF_REF_REGNO (def);
4560 mode = GET_MODE (DF_REF_REG (def));
4561 if (DF_REG_DEF_COUNT (regno) != 1
4562 || !DF_REF_INSN_INFO (def)
4563 || HARD_REGISTER_NUM_P (regno)
4564 || DF_REG_EQ_USE_COUNT (regno) > 0
4565 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4566 continue;
4567 def_insn = DF_REF_INSN (def);
4569 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4570 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4571 break;
4573 if (note)
4575 if (dump_file)
4576 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4577 regno);
4578 bitmap_set_bit (&unusable_as_input, regno);
4579 continue;
4582 use = DF_REG_USE_CHAIN (regno);
4583 all_dominated = true;
4584 all_local = true;
4585 closest_use = NULL_RTX;
4586 for (; use; use = DF_REF_NEXT_REG (use))
4588 rtx_insn *insn;
4589 if (!DF_REF_INSN_INFO (use))
4591 all_dominated = false;
4592 all_local = false;
4593 break;
4595 insn = DF_REF_INSN (use);
4596 if (DEBUG_INSN_P (insn))
4597 continue;
4598 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4599 all_local = false;
4600 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4601 all_dominated = false;
4602 if (closest_use != insn && closest_use != const0_rtx)
4604 if (closest_use == NULL_RTX)
4605 closest_use = insn;
4606 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4607 closest_use = insn;
4608 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4609 closest_use = const0_rtx;
4612 if (!all_dominated)
4614 if (dump_file)
4615 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4616 regno);
4617 continue;
4619 if (all_local)
4620 bitmap_set_bit (local, regno);
4621 if (closest_use == const0_rtx || closest_use == NULL
4622 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4624 if (dump_file)
4625 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4626 closest_use == const0_rtx || closest_use == NULL
4627 ? " (no unique first use)" : "");
4628 continue;
4630 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4632 if (dump_file)
4633 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4634 regno);
4635 continue;
4638 bitmap_set_bit (&interesting, regno);
4639 /* If we get here, we know closest_use is a non-NULL insn
4640 (as opposed to const_0_rtx). */
4641 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4643 if (dump_file && (all_local || all_dominated))
4645 fprintf (dump_file, "Reg %u:", regno);
4646 if (all_local)
4647 fprintf (dump_file, " local to bb %d", bb->index);
4648 if (all_dominated)
4649 fprintf (dump_file, " def dominates all uses");
4650 if (closest_use != const0_rtx)
4651 fprintf (dump_file, " has unique first use");
4652 fputs ("\n", dump_file);
4657 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4659 df_ref def = DF_REG_DEF_CHAIN (i);
4660 rtx_insn *def_insn = DF_REF_INSN (def);
4661 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4662 bitmap def_bb_local = bb_local + def_block->index;
4663 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4664 bitmap def_bb_transp = bb_transp_live + def_block->index;
4665 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4666 rtx_insn *use_insn = closest_uses[i];
4667 df_ref use;
4668 bool all_ok = true;
4669 bool all_transp = true;
4671 if (!REG_P (DF_REF_REG (def)))
4672 continue;
4674 if (!local_to_bb_p)
4676 if (dump_file)
4677 fprintf (dump_file, "Reg %u not local to one basic block\n",
4679 continue;
4681 if (reg_equiv_init (i) != NULL_RTX)
4683 if (dump_file)
4684 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4686 continue;
4688 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4690 if (dump_file)
4691 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4692 INSN_UID (def_insn), i);
4693 continue;
4695 if (dump_file)
4696 fprintf (dump_file, "Examining insn %d, def for %d\n",
4697 INSN_UID (def_insn), i);
4698 FOR_EACH_INSN_USE (use, def_insn)
4700 unsigned regno = DF_REF_REGNO (use);
4701 if (bitmap_bit_p (&unusable_as_input, regno))
4703 all_ok = false;
4704 if (dump_file)
4705 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4706 break;
4708 if (!bitmap_bit_p (def_bb_transp, regno))
4710 if (bitmap_bit_p (def_bb_moveable, regno)
4711 && !control_flow_insn_p (use_insn)
4712 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4714 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4716 rtx_insn *x = NEXT_INSN (def_insn);
4717 while (!modified_in_p (DF_REF_REG (use), x))
4719 gcc_assert (x != use_insn);
4720 x = NEXT_INSN (x);
4722 if (dump_file)
4723 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4724 regno, INSN_UID (x));
4725 emit_insn_after (PATTERN (x), use_insn);
4726 set_insn_deleted (x);
4728 else
4730 if (dump_file)
4731 fprintf (dump_file, " input reg %u modified between def and use\n",
4732 regno);
4733 all_transp = false;
4736 else
4737 all_transp = false;
4740 if (!all_ok)
4741 continue;
4742 if (!dbg_cnt (ira_move))
4743 break;
4744 if (dump_file)
4745 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4747 if (all_transp)
4749 rtx def_reg = DF_REF_REG (def);
4750 rtx newreg = ira_create_new_reg (def_reg);
4751 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4753 unsigned nregno = REGNO (newreg);
4754 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4755 nregno -= max_regs;
4756 pseudo_replaced_reg[nregno] = def_reg;
4761 FOR_EACH_BB_FN (bb, cfun)
4763 bitmap_clear (bb_local + bb->index);
4764 bitmap_clear (bb_transp_live + bb->index);
4765 bitmap_clear (bb_moveable_reg_sets + bb->index);
4767 bitmap_clear (&interesting);
4768 bitmap_clear (&unusable_as_input);
4769 free (uid_luid);
4770 free (closest_uses);
4771 free (bb_local);
4772 free (bb_transp_live);
4773 free (bb_moveable_reg_sets);
4775 last_moveable_pseudo = max_reg_num ();
4777 fix_reg_equiv_init ();
4778 expand_reg_info ();
4779 regstat_free_n_sets_and_refs ();
4780 regstat_free_ri ();
4781 regstat_init_n_sets_and_refs ();
4782 regstat_compute_ri ();
4783 free_dominance_info (CDI_DOMINATORS);
4786 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4787 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4788 the destination. Otherwise return NULL. */
4790 static rtx
4791 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4793 rtx src = SET_SRC (set);
4794 rtx dest = SET_DEST (set);
4795 if (!REG_P (src) || !HARD_REGISTER_P (src)
4796 || !REG_P (dest) || HARD_REGISTER_P (dest)
4797 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4798 return NULL;
4799 return dest;
4802 /* If insn is interesting for parameter range-splitting shrink-wrapping
4803 preparation, i.e. it is a single set from a hard register to a pseudo, which
4804 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4805 parallel statement with only one such statement, return the destination.
4806 Otherwise return NULL. */
4808 static rtx
4809 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4811 if (!INSN_P (insn))
4812 return NULL;
4813 rtx pat = PATTERN (insn);
4814 if (GET_CODE (pat) == SET)
4815 return interesting_dest_for_shprep_1 (pat, call_dom);
4817 if (GET_CODE (pat) != PARALLEL)
4818 return NULL;
4819 rtx ret = NULL;
4820 for (int i = 0; i < XVECLEN (pat, 0); i++)
4822 rtx sub = XVECEXP (pat, 0, i);
4823 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4824 continue;
4825 if (GET_CODE (sub) != SET
4826 || side_effects_p (sub))
4827 return NULL;
4828 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4829 if (dest && ret)
4830 return NULL;
4831 if (dest)
4832 ret = dest;
4834 return ret;
4837 /* Split live ranges of pseudos that are loaded from hard registers in the
4838 first BB in a BB that dominates all non-sibling call if such a BB can be
4839 found and is not in a loop. Return true if the function has made any
4840 changes. */
4842 static bool
4843 split_live_ranges_for_shrink_wrap (void)
4845 basic_block bb, call_dom = NULL;
4846 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4847 rtx_insn *insn, *last_interesting_insn = NULL;
4848 bitmap_head need_new, reachable;
4849 vec<basic_block> queue;
4851 if (!SHRINK_WRAPPING_ENABLED)
4852 return false;
4854 bitmap_initialize (&need_new, 0);
4855 bitmap_initialize (&reachable, 0);
4856 queue.create (n_basic_blocks_for_fn (cfun));
4858 FOR_EACH_BB_FN (bb, cfun)
4859 FOR_BB_INSNS (bb, insn)
4860 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4862 if (bb == first)
4864 bitmap_clear (&need_new);
4865 bitmap_clear (&reachable);
4866 queue.release ();
4867 return false;
4870 bitmap_set_bit (&need_new, bb->index);
4871 bitmap_set_bit (&reachable, bb->index);
4872 queue.quick_push (bb);
4873 break;
4876 if (queue.is_empty ())
4878 bitmap_clear (&need_new);
4879 bitmap_clear (&reachable);
4880 queue.release ();
4881 return false;
4884 while (!queue.is_empty ())
4886 edge e;
4887 edge_iterator ei;
4889 bb = queue.pop ();
4890 FOR_EACH_EDGE (e, ei, bb->succs)
4891 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4892 && bitmap_set_bit (&reachable, e->dest->index))
4893 queue.quick_push (e->dest);
4895 queue.release ();
4897 FOR_BB_INSNS (first, insn)
4899 rtx dest = interesting_dest_for_shprep (insn, NULL);
4900 if (!dest)
4901 continue;
4903 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4905 bitmap_clear (&need_new);
4906 bitmap_clear (&reachable);
4907 return false;
4910 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4911 use;
4912 use = DF_REF_NEXT_REG (use))
4914 int ubbi = DF_REF_BB (use)->index;
4915 if (bitmap_bit_p (&reachable, ubbi))
4916 bitmap_set_bit (&need_new, ubbi);
4918 last_interesting_insn = insn;
4921 bitmap_clear (&reachable);
4922 if (!last_interesting_insn)
4924 bitmap_clear (&need_new);
4925 return false;
4928 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4929 bitmap_clear (&need_new);
4930 if (call_dom == first)
4931 return false;
4933 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4934 while (bb_loop_depth (call_dom) > 0)
4935 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4936 loop_optimizer_finalize ();
4938 if (call_dom == first)
4939 return false;
4941 calculate_dominance_info (CDI_POST_DOMINATORS);
4942 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4944 free_dominance_info (CDI_POST_DOMINATORS);
4945 return false;
4947 free_dominance_info (CDI_POST_DOMINATORS);
4949 if (dump_file)
4950 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4951 call_dom->index);
4953 bool ret = false;
4954 FOR_BB_INSNS (first, insn)
4956 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4957 if (!dest || dest == pic_offset_table_rtx)
4958 continue;
4960 rtx newreg = NULL_RTX;
4961 df_ref use, next;
4962 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4964 rtx_insn *uin = DF_REF_INSN (use);
4965 next = DF_REF_NEXT_REG (use);
4967 basic_block ubb = BLOCK_FOR_INSN (uin);
4968 if (ubb == call_dom
4969 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4971 if (!newreg)
4972 newreg = ira_create_new_reg (dest);
4973 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4977 if (newreg)
4979 rtx_insn *new_move = gen_move_insn (newreg, dest);
4980 emit_insn_after (new_move, bb_note (call_dom));
4981 if (dump_file)
4983 fprintf (dump_file, "Split live-range of register ");
4984 print_rtl_single (dump_file, dest);
4986 ret = true;
4989 if (insn == last_interesting_insn)
4990 break;
4992 apply_change_group ();
4993 return ret;
4996 /* Perform the second half of the transformation started in
4997 find_moveable_pseudos. We look for instances where the newly introduced
4998 pseudo remains unallocated, and remove it by moving the definition to
4999 just before its use, replacing the move instruction generated by
5000 find_moveable_pseudos. */
5001 static void
5002 move_unallocated_pseudos (void)
5004 int i;
5005 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5006 if (reg_renumber[i] < 0)
5008 int idx = i - first_moveable_pseudo;
5009 rtx other_reg = pseudo_replaced_reg[idx];
5010 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5011 /* The use must follow all definitions of OTHER_REG, so we can
5012 insert the new definition immediately after any of them. */
5013 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5014 rtx_insn *move_insn = DF_REF_INSN (other_def);
5015 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5016 rtx set;
5017 int success;
5019 if (dump_file)
5020 fprintf (dump_file, "moving def of %d (insn %d now) ",
5021 REGNO (other_reg), INSN_UID (def_insn));
5023 delete_insn (move_insn);
5024 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5025 delete_insn (DF_REF_INSN (other_def));
5026 delete_insn (def_insn);
5028 set = single_set (newinsn);
5029 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5030 gcc_assert (success);
5031 if (dump_file)
5032 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5033 INSN_UID (newinsn), i);
5034 SET_REG_N_REFS (i, 0);
5038 /* If the backend knows where to allocate pseudos for hard
5039 register initial values, register these allocations now. */
5040 static void
5041 allocate_initial_values (void)
5043 if (targetm.allocate_initial_value)
5045 rtx hreg, preg, x;
5046 int i, regno;
5048 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5050 if (! initial_value_entry (i, &hreg, &preg))
5051 break;
5053 x = targetm.allocate_initial_value (hreg);
5054 regno = REGNO (preg);
5055 if (x && REG_N_SETS (regno) <= 1)
5057 if (MEM_P (x))
5058 reg_equiv_memory_loc (regno) = x;
5059 else
5061 basic_block bb;
5062 int new_regno;
5064 gcc_assert (REG_P (x));
5065 new_regno = REGNO (x);
5066 reg_renumber[regno] = new_regno;
5067 /* Poke the regno right into regno_reg_rtx so that even
5068 fixed regs are accepted. */
5069 SET_REGNO (preg, new_regno);
5070 /* Update global register liveness information. */
5071 FOR_EACH_BB_FN (bb, cfun)
5073 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5074 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5075 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5076 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5082 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5083 &hreg, &preg));
5088 /* True when we use LRA instead of reload pass for the current
5089 function. */
5090 bool ira_use_lra_p;
5092 /* True if we have allocno conflicts. It is false for non-optimized
5093 mode or when the conflict table is too big. */
5094 bool ira_conflicts_p;
5096 /* Saved between IRA and reload. */
5097 static int saved_flag_ira_share_spill_slots;
5099 /* This is the main entry of IRA. */
5100 static void
5101 ira (FILE *f)
5103 bool loops_p;
5104 int ira_max_point_before_emit;
5105 int rebuild_p;
5106 bool saved_flag_caller_saves = flag_caller_saves;
5107 enum ira_region saved_flag_ira_region = flag_ira_region;
5109 /* Perform target specific PIC register initialization. */
5110 targetm.init_pic_reg ();
5112 ira_conflicts_p = optimize > 0;
5114 ira_use_lra_p = targetm.lra_p ();
5115 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5116 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5117 use simplified and faster algorithms in LRA. */
5118 lra_simple_p
5119 = (ira_use_lra_p
5120 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5121 if (lra_simple_p)
5123 /* It permits to skip live range splitting in LRA. */
5124 flag_caller_saves = false;
5125 /* There is no sense to do regional allocation when we use
5126 simplified LRA. */
5127 flag_ira_region = IRA_REGION_ONE;
5128 ira_conflicts_p = false;
5131 #ifndef IRA_NO_OBSTACK
5132 gcc_obstack_init (&ira_obstack);
5133 #endif
5134 bitmap_obstack_initialize (&ira_bitmap_obstack);
5136 /* LRA uses its own infrastructure to handle caller save registers. */
5137 if (flag_caller_saves && !ira_use_lra_p)
5138 init_caller_save ();
5140 if (flag_ira_verbose < 10)
5142 internal_flag_ira_verbose = flag_ira_verbose;
5143 ira_dump_file = f;
5145 else
5147 internal_flag_ira_verbose = flag_ira_verbose - 10;
5148 ira_dump_file = stderr;
5151 setup_prohibited_mode_move_regs ();
5152 decrease_live_ranges_number ();
5153 df_note_add_problem ();
5155 /* DF_LIVE can't be used in the register allocator, too many other
5156 parts of the compiler depend on using the "classic" liveness
5157 interpretation of the DF_LR problem. See PR38711.
5158 Remove the problem, so that we don't spend time updating it in
5159 any of the df_analyze() calls during IRA/LRA. */
5160 if (optimize > 1)
5161 df_remove_problem (df_live);
5162 gcc_checking_assert (df_live == NULL);
5164 #ifdef ENABLE_CHECKING
5165 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5166 #endif
5167 df_analyze ();
5169 init_reg_equiv ();
5170 if (ira_conflicts_p)
5172 calculate_dominance_info (CDI_DOMINATORS);
5174 if (split_live_ranges_for_shrink_wrap ())
5175 df_analyze ();
5177 free_dominance_info (CDI_DOMINATORS);
5180 df_clear_flags (DF_NO_INSN_RESCAN);
5182 regstat_init_n_sets_and_refs ();
5183 regstat_compute_ri ();
5185 /* If we are not optimizing, then this is the only place before
5186 register allocation where dataflow is done. And that is needed
5187 to generate these warnings. */
5188 if (warn_clobbered)
5189 generate_setjmp_warnings ();
5191 /* Determine if the current function is a leaf before running IRA
5192 since this can impact optimizations done by the prologue and
5193 epilogue thus changing register elimination offsets. */
5194 crtl->is_leaf = leaf_function_p ();
5196 if (resize_reg_info () && flag_ira_loop_pressure)
5197 ira_set_pseudo_classes (true, ira_dump_file);
5199 rebuild_p = update_equiv_regs ();
5200 setup_reg_equiv ();
5201 setup_reg_equiv_init ();
5203 if (optimize && rebuild_p)
5205 timevar_push (TV_JUMP);
5206 rebuild_jump_labels (get_insns ());
5207 if (purge_all_dead_edges ())
5208 delete_unreachable_blocks ();
5209 timevar_pop (TV_JUMP);
5212 allocated_reg_info_size = max_reg_num ();
5214 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5215 df_analyze ();
5217 /* It is not worth to do such improvement when we use a simple
5218 allocation because of -O0 usage or because the function is too
5219 big. */
5220 if (ira_conflicts_p)
5221 find_moveable_pseudos ();
5223 max_regno_before_ira = max_reg_num ();
5224 ira_setup_eliminable_regset ();
5226 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5227 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5228 ira_move_loops_num = ira_additional_jumps_num = 0;
5230 ira_assert (current_loops == NULL);
5231 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5232 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5234 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5235 fprintf (ira_dump_file, "Building IRA IR\n");
5236 loops_p = ira_build ();
5238 ira_assert (ira_conflicts_p || !loops_p);
5240 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5241 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5242 /* It is just wasting compiler's time to pack spilled pseudos into
5243 stack slots in this case -- prohibit it. We also do this if
5244 there is setjmp call because a variable not modified between
5245 setjmp and longjmp the compiler is required to preserve its
5246 value and sharing slots does not guarantee it. */
5247 flag_ira_share_spill_slots = FALSE;
5249 ira_color ();
5251 ira_max_point_before_emit = ira_max_point;
5253 ira_initiate_emit_data ();
5255 ira_emit (loops_p);
5257 max_regno = max_reg_num ();
5258 if (ira_conflicts_p)
5260 if (! loops_p)
5262 if (! ira_use_lra_p)
5263 ira_initiate_assign ();
5265 else
5267 expand_reg_info ();
5269 if (ira_use_lra_p)
5271 ira_allocno_t a;
5272 ira_allocno_iterator ai;
5274 FOR_EACH_ALLOCNO (a, ai)
5276 int old_regno = ALLOCNO_REGNO (a);
5277 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5279 ALLOCNO_REGNO (a) = new_regno;
5281 if (old_regno != new_regno)
5282 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5283 reg_alternate_class (old_regno),
5284 reg_allocno_class (old_regno));
5288 else
5290 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5291 fprintf (ira_dump_file, "Flattening IR\n");
5292 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5294 /* New insns were generated: add notes and recalculate live
5295 info. */
5296 df_analyze ();
5298 /* ??? Rebuild the loop tree, but why? Does the loop tree
5299 change if new insns were generated? Can that be handled
5300 by updating the loop tree incrementally? */
5301 loop_optimizer_finalize ();
5302 free_dominance_info (CDI_DOMINATORS);
5303 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5304 | LOOPS_HAVE_RECORDED_EXITS);
5306 if (! ira_use_lra_p)
5308 setup_allocno_assignment_flags ();
5309 ira_initiate_assign ();
5310 ira_reassign_conflict_allocnos (max_regno);
5315 ira_finish_emit_data ();
5317 setup_reg_renumber ();
5319 calculate_allocation_cost ();
5321 #ifdef ENABLE_IRA_CHECKING
5322 if (ira_conflicts_p)
5323 check_allocation ();
5324 #endif
5326 if (max_regno != max_regno_before_ira)
5328 regstat_free_n_sets_and_refs ();
5329 regstat_free_ri ();
5330 regstat_init_n_sets_and_refs ();
5331 regstat_compute_ri ();
5334 overall_cost_before = ira_overall_cost;
5335 if (! ira_conflicts_p)
5336 grow_reg_equivs ();
5337 else
5339 fix_reg_equiv_init ();
5341 #ifdef ENABLE_IRA_CHECKING
5342 print_redundant_copies ();
5343 #endif
5344 if (! ira_use_lra_p)
5346 ira_spilled_reg_stack_slots_num = 0;
5347 ira_spilled_reg_stack_slots
5348 = ((struct ira_spilled_reg_stack_slot *)
5349 ira_allocate (max_regno
5350 * sizeof (struct ira_spilled_reg_stack_slot)));
5351 memset (ira_spilled_reg_stack_slots, 0,
5352 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5355 allocate_initial_values ();
5357 /* See comment for find_moveable_pseudos call. */
5358 if (ira_conflicts_p)
5359 move_unallocated_pseudos ();
5361 /* Restore original values. */
5362 if (lra_simple_p)
5364 flag_caller_saves = saved_flag_caller_saves;
5365 flag_ira_region = saved_flag_ira_region;
5369 static void
5370 do_reload (void)
5372 basic_block bb;
5373 bool need_dce;
5374 unsigned pic_offset_table_regno = INVALID_REGNUM;
5376 if (flag_ira_verbose < 10)
5377 ira_dump_file = dump_file;
5379 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5380 after reload to avoid possible wrong usages of hard reg assigned
5381 to it. */
5382 if (pic_offset_table_rtx
5383 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5384 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5386 timevar_push (TV_RELOAD);
5387 if (ira_use_lra_p)
5389 if (current_loops != NULL)
5391 loop_optimizer_finalize ();
5392 free_dominance_info (CDI_DOMINATORS);
5394 FOR_ALL_BB_FN (bb, cfun)
5395 bb->loop_father = NULL;
5396 current_loops = NULL;
5398 ira_destroy ();
5400 lra (ira_dump_file);
5401 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5402 LRA. */
5403 vec_free (reg_equivs);
5404 reg_equivs = NULL;
5405 need_dce = false;
5407 else
5409 df_set_flags (DF_NO_INSN_RESCAN);
5410 build_insn_chain ();
5412 need_dce = reload (get_insns (), ira_conflicts_p);
5416 timevar_pop (TV_RELOAD);
5418 timevar_push (TV_IRA);
5420 if (ira_conflicts_p && ! ira_use_lra_p)
5422 ira_free (ira_spilled_reg_stack_slots);
5423 ira_finish_assign ();
5426 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5427 && overall_cost_before != ira_overall_cost)
5428 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5429 ira_overall_cost);
5431 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5433 if (! ira_use_lra_p)
5435 ira_destroy ();
5436 if (current_loops != NULL)
5438 loop_optimizer_finalize ();
5439 free_dominance_info (CDI_DOMINATORS);
5441 FOR_ALL_BB_FN (bb, cfun)
5442 bb->loop_father = NULL;
5443 current_loops = NULL;
5445 regstat_free_ri ();
5446 regstat_free_n_sets_and_refs ();
5449 if (optimize)
5450 cleanup_cfg (CLEANUP_EXPENSIVE);
5452 finish_reg_equiv ();
5454 bitmap_obstack_release (&ira_bitmap_obstack);
5455 #ifndef IRA_NO_OBSTACK
5456 obstack_free (&ira_obstack, NULL);
5457 #endif
5459 /* The code after the reload has changed so much that at this point
5460 we might as well just rescan everything. Note that
5461 df_rescan_all_insns is not going to help here because it does not
5462 touch the artificial uses and defs. */
5463 df_finish_pass (true);
5464 df_scan_alloc (NULL);
5465 df_scan_blocks ();
5467 if (optimize > 1)
5469 df_live_add_problem ();
5470 df_live_set_all_dirty ();
5473 if (optimize)
5474 df_analyze ();
5476 if (need_dce && optimize)
5477 run_fast_dce ();
5479 /* Diagnose uses of the hard frame pointer when it is used as a global
5480 register. Often we can get away with letting the user appropriate
5481 the frame pointer, but we should let them know when code generation
5482 makes that impossible. */
5483 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5485 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5486 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5487 "frame pointer required, but reserved");
5488 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5491 if (pic_offset_table_regno != INVALID_REGNUM)
5492 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5494 timevar_pop (TV_IRA);
5497 /* Run the integrated register allocator. */
5499 namespace {
5501 const pass_data pass_data_ira =
5503 RTL_PASS, /* type */
5504 "ira", /* name */
5505 OPTGROUP_NONE, /* optinfo_flags */
5506 TV_IRA, /* tv_id */
5507 0, /* properties_required */
5508 0, /* properties_provided */
5509 0, /* properties_destroyed */
5510 0, /* todo_flags_start */
5511 TODO_do_not_ggc_collect, /* todo_flags_finish */
5514 class pass_ira : public rtl_opt_pass
5516 public:
5517 pass_ira (gcc::context *ctxt)
5518 : rtl_opt_pass (pass_data_ira, ctxt)
5521 /* opt_pass methods: */
5522 virtual bool gate (function *)
5524 return !targetm.no_register_allocation;
5526 virtual unsigned int execute (function *)
5528 ira (dump_file);
5529 return 0;
5532 }; // class pass_ira
5534 } // anon namespace
5536 rtl_opt_pass *
5537 make_pass_ira (gcc::context *ctxt)
5539 return new pass_ira (ctxt);
5542 namespace {
5544 const pass_data pass_data_reload =
5546 RTL_PASS, /* type */
5547 "reload", /* name */
5548 OPTGROUP_NONE, /* optinfo_flags */
5549 TV_RELOAD, /* tv_id */
5550 0, /* properties_required */
5551 0, /* properties_provided */
5552 0, /* properties_destroyed */
5553 0, /* todo_flags_start */
5554 0, /* todo_flags_finish */
5557 class pass_reload : public rtl_opt_pass
5559 public:
5560 pass_reload (gcc::context *ctxt)
5561 : rtl_opt_pass (pass_data_reload, ctxt)
5564 /* opt_pass methods: */
5565 virtual bool gate (function *)
5567 return !targetm.no_register_allocation;
5569 virtual unsigned int execute (function *)
5571 do_reload ();
5572 return 0;
5575 }; // class pass_reload
5577 } // anon namespace
5579 rtl_opt_pass *
5580 make_pass_reload (gcc::context *ctxt)
5582 return new pass_reload (ctxt);