* config/rs6000/rs6000.c (rs6000_xcoff_asm_named_section): Place
[official-gcc.git] / gcc / tree-parloops.c
blob741392bf937c74694112fd71972c414f14f1ebfb
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "alias.h"
26 #include "backend.h"
27 #include "cfghooks.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "hard-reg-set.h"
31 #include "ssa.h"
32 #include "options.h"
33 #include "fold-const.h"
34 #include "internal-fn.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "gimple-walk.h"
39 #include "stor-layout.h"
40 #include "tree-nested.h"
41 #include "tree-cfg.h"
42 #include "tree-ssa-loop-ivopts.h"
43 #include "tree-ssa-loop-manip.h"
44 #include "tree-ssa-loop-niter.h"
45 #include "tree-ssa-loop.h"
46 #include "tree-into-ssa.h"
47 #include "cfgloop.h"
48 #include "tree-data-ref.h"
49 #include "tree-scalar-evolution.h"
50 #include "gimple-pretty-print.h"
51 #include "tree-pass.h"
52 #include "langhooks.h"
53 #include "tree-vectorizer.h"
54 #include "tree-hasher.h"
55 #include "tree-parloops.h"
56 #include "omp-low.h"
57 #include "tree-nested.h"
58 #include "cgraph.h"
59 #include "tree-ssa.h"
60 #include "params.h"
62 /* This pass tries to distribute iterations of loops into several threads.
63 The implementation is straightforward -- for each loop we test whether its
64 iterations are independent, and if it is the case (and some additional
65 conditions regarding profitability and correctness are satisfied), we
66 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
67 machinery do its job.
69 The most of the complexity is in bringing the code into shape expected
70 by the omp expanders:
71 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
72 variable and that the exit test is at the start of the loop body
73 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
74 variables by accesses through pointers, and breaking up ssa chains
75 by storing the values incoming to the parallelized loop to a structure
76 passed to the new function as an argument (something similar is done
77 in omp gimplification, unfortunately only a small part of the code
78 can be shared).
80 TODO:
81 -- if there are several parallelizable loops in a function, it may be
82 possible to generate the threads just once (using synchronization to
83 ensure that cross-loop dependences are obeyed).
84 -- handling of common reduction patterns for outer loops.
86 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
88 Reduction handling:
89 currently we use vect_force_simple_reduction() to detect reduction patterns.
90 The code transformation will be introduced by an example.
93 parloop
95 int sum=1;
97 for (i = 0; i < N; i++)
99 x[i] = i + 3;
100 sum+=x[i];
104 gimple-like code:
105 header_bb:
107 # sum_29 = PHI <sum_11(5), 1(3)>
108 # i_28 = PHI <i_12(5), 0(3)>
109 D.1795_8 = i_28 + 3;
110 x[i_28] = D.1795_8;
111 sum_11 = D.1795_8 + sum_29;
112 i_12 = i_28 + 1;
113 if (N_6(D) > i_12)
114 goto header_bb;
117 exit_bb:
119 # sum_21 = PHI <sum_11(4)>
120 printf (&"%d"[0], sum_21);
123 after reduction transformation (only relevant parts):
125 parloop
128 ....
131 # Storing the initial value given by the user. #
133 .paral_data_store.32.sum.27 = 1;
135 #pragma omp parallel num_threads(4)
137 #pragma omp for schedule(static)
139 # The neutral element corresponding to the particular
140 reduction's operation, e.g. 0 for PLUS_EXPR,
141 1 for MULT_EXPR, etc. replaces the user's initial value. #
143 # sum.27_29 = PHI <sum.27_11, 0>
145 sum.27_11 = D.1827_8 + sum.27_29;
147 GIMPLE_OMP_CONTINUE
149 # Adding this reduction phi is done at create_phi_for_local_result() #
150 # sum.27_56 = PHI <sum.27_11, 0>
151 GIMPLE_OMP_RETURN
153 # Creating the atomic operation is done at
154 create_call_for_reduction_1() #
156 #pragma omp atomic_load
157 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
158 D.1840_60 = sum.27_56 + D.1839_59;
159 #pragma omp atomic_store (D.1840_60);
161 GIMPLE_OMP_RETURN
163 # collecting the result after the join of the threads is done at
164 create_loads_for_reductions().
165 The value computed by the threads is loaded from the
166 shared struct. #
169 .paral_data_load.33_52 = &.paral_data_store.32;
170 sum_37 = .paral_data_load.33_52->sum.27;
171 sum_43 = D.1795_41 + sum_37;
173 exit bb:
174 # sum_21 = PHI <sum_43, sum_26>
175 printf (&"%d"[0], sum_21);
183 /* Minimal number of iterations of a loop that should be executed in each
184 thread. */
185 #define MIN_PER_THREAD 100
187 /* Element of the hashtable, representing a
188 reduction in the current loop. */
189 struct reduction_info
191 gimple *reduc_stmt; /* reduction statement. */
192 gimple *reduc_phi; /* The phi node defining the reduction. */
193 enum tree_code reduction_code;/* code for the reduction operation. */
194 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
195 result. */
196 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
197 of the reduction variable when existing the loop. */
198 tree initial_value; /* The initial value of the reduction var before entering the loop. */
199 tree field; /* the name of the field in the parloop data structure intended for reduction. */
200 tree init; /* reduction initialization value. */
201 gphi *new_phi; /* (helper field) Newly created phi node whose result
202 will be passed to the atomic operation. Represents
203 the local result each thread computed for the reduction
204 operation. */
207 /* Reduction info hashtable helpers. */
209 struct reduction_hasher : free_ptr_hash <reduction_info>
211 static inline hashval_t hash (const reduction_info *);
212 static inline bool equal (const reduction_info *, const reduction_info *);
215 /* Equality and hash functions for hashtab code. */
217 inline bool
218 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
220 return (a->reduc_phi == b->reduc_phi);
223 inline hashval_t
224 reduction_hasher::hash (const reduction_info *a)
226 return a->reduc_version;
229 typedef hash_table<reduction_hasher> reduction_info_table_type;
232 static struct reduction_info *
233 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
235 struct reduction_info tmpred, *red;
237 if (reduction_list->elements () == 0 || phi == NULL)
238 return NULL;
240 tmpred.reduc_phi = phi;
241 tmpred.reduc_version = gimple_uid (phi);
242 red = reduction_list->find (&tmpred);
244 return red;
247 /* Element of hashtable of names to copy. */
249 struct name_to_copy_elt
251 unsigned version; /* The version of the name to copy. */
252 tree new_name; /* The new name used in the copy. */
253 tree field; /* The field of the structure used to pass the
254 value. */
257 /* Name copies hashtable helpers. */
259 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
261 static inline hashval_t hash (const name_to_copy_elt *);
262 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
265 /* Equality and hash functions for hashtab code. */
267 inline bool
268 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
270 return a->version == b->version;
273 inline hashval_t
274 name_to_copy_hasher::hash (const name_to_copy_elt *a)
276 return (hashval_t) a->version;
279 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
281 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
282 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
283 represents the denominator for every element in the matrix. */
284 typedef struct lambda_trans_matrix_s
286 lambda_matrix matrix;
287 int rowsize;
288 int colsize;
289 int denominator;
290 } *lambda_trans_matrix;
291 #define LTM_MATRIX(T) ((T)->matrix)
292 #define LTM_ROWSIZE(T) ((T)->rowsize)
293 #define LTM_COLSIZE(T) ((T)->colsize)
294 #define LTM_DENOMINATOR(T) ((T)->denominator)
296 /* Allocate a new transformation matrix. */
298 static lambda_trans_matrix
299 lambda_trans_matrix_new (int colsize, int rowsize,
300 struct obstack * lambda_obstack)
302 lambda_trans_matrix ret;
304 ret = (lambda_trans_matrix)
305 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
306 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
307 LTM_ROWSIZE (ret) = rowsize;
308 LTM_COLSIZE (ret) = colsize;
309 LTM_DENOMINATOR (ret) = 1;
310 return ret;
313 /* Multiply a vector VEC by a matrix MAT.
314 MAT is an M*N matrix, and VEC is a vector with length N. The result
315 is stored in DEST which must be a vector of length M. */
317 static void
318 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
319 lambda_vector vec, lambda_vector dest)
321 int i, j;
323 lambda_vector_clear (dest, m);
324 for (i = 0; i < m; i++)
325 for (j = 0; j < n; j++)
326 dest[i] += matrix[i][j] * vec[j];
329 /* Return true if TRANS is a legal transformation matrix that respects
330 the dependence vectors in DISTS and DIRS. The conservative answer
331 is false.
333 "Wolfe proves that a unimodular transformation represented by the
334 matrix T is legal when applied to a loop nest with a set of
335 lexicographically non-negative distance vectors RDG if and only if
336 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
337 i.e.: if and only if it transforms the lexicographically positive
338 distance vectors to lexicographically positive vectors. Note that
339 a unimodular matrix must transform the zero vector (and only it) to
340 the zero vector." S.Muchnick. */
342 static bool
343 lambda_transform_legal_p (lambda_trans_matrix trans,
344 int nb_loops,
345 vec<ddr_p> dependence_relations)
347 unsigned int i, j;
348 lambda_vector distres;
349 struct data_dependence_relation *ddr;
351 gcc_assert (LTM_COLSIZE (trans) == nb_loops
352 && LTM_ROWSIZE (trans) == nb_loops);
354 /* When there are no dependences, the transformation is correct. */
355 if (dependence_relations.length () == 0)
356 return true;
358 ddr = dependence_relations[0];
359 if (ddr == NULL)
360 return true;
362 /* When there is an unknown relation in the dependence_relations, we
363 know that it is no worth looking at this loop nest: give up. */
364 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
365 return false;
367 distres = lambda_vector_new (nb_loops);
369 /* For each distance vector in the dependence graph. */
370 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
372 /* Don't care about relations for which we know that there is no
373 dependence, nor about read-read (aka. output-dependences):
374 these data accesses can happen in any order. */
375 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
376 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
377 continue;
379 /* Conservatively answer: "this transformation is not valid". */
380 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
381 return false;
383 /* If the dependence could not be captured by a distance vector,
384 conservatively answer that the transform is not valid. */
385 if (DDR_NUM_DIST_VECTS (ddr) == 0)
386 return false;
388 /* Compute trans.dist_vect */
389 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
391 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
392 DDR_DIST_VECT (ddr, j), distres);
394 if (!lambda_vector_lexico_pos (distres, nb_loops))
395 return false;
398 return true;
401 /* Data dependency analysis. Returns true if the iterations of LOOP
402 are independent on each other (that is, if we can execute them
403 in parallel). */
405 static bool
406 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
408 vec<ddr_p> dependence_relations;
409 vec<data_reference_p> datarefs;
410 lambda_trans_matrix trans;
411 bool ret = false;
413 if (dump_file && (dump_flags & TDF_DETAILS))
415 fprintf (dump_file, "Considering loop %d\n", loop->num);
416 if (!loop->inner)
417 fprintf (dump_file, "loop is innermost\n");
418 else
419 fprintf (dump_file, "loop NOT innermost\n");
422 /* Check for problems with dependences. If the loop can be reversed,
423 the iterations are independent. */
424 auto_vec<loop_p, 3> loop_nest;
425 datarefs.create (10);
426 dependence_relations.create (100);
427 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
428 &dependence_relations))
430 if (dump_file && (dump_flags & TDF_DETAILS))
431 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
432 ret = false;
433 goto end;
435 if (dump_file && (dump_flags & TDF_DETAILS))
436 dump_data_dependence_relations (dump_file, dependence_relations);
438 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
439 LTM_MATRIX (trans)[0][0] = -1;
441 if (lambda_transform_legal_p (trans, 1, dependence_relations))
443 ret = true;
444 if (dump_file && (dump_flags & TDF_DETAILS))
445 fprintf (dump_file, " SUCCESS: may be parallelized\n");
447 else if (dump_file && (dump_flags & TDF_DETAILS))
448 fprintf (dump_file,
449 " FAILED: data dependencies exist across iterations\n");
451 end:
452 free_dependence_relations (dependence_relations);
453 free_data_refs (datarefs);
455 return ret;
458 /* Return true when LOOP contains basic blocks marked with the
459 BB_IRREDUCIBLE_LOOP flag. */
461 static inline bool
462 loop_has_blocks_with_irreducible_flag (struct loop *loop)
464 unsigned i;
465 basic_block *bbs = get_loop_body_in_dom_order (loop);
466 bool res = true;
468 for (i = 0; i < loop->num_nodes; i++)
469 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
470 goto end;
472 res = false;
473 end:
474 free (bbs);
475 return res;
478 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
479 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
480 to their addresses that can be reused. The address of OBJ is known to
481 be invariant in the whole function. Other needed statements are placed
482 right before GSI. */
484 static tree
485 take_address_of (tree obj, tree type, edge entry,
486 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
488 int uid;
489 tree *var_p, name, addr;
490 gassign *stmt;
491 gimple_seq stmts;
493 /* Since the address of OBJ is invariant, the trees may be shared.
494 Avoid rewriting unrelated parts of the code. */
495 obj = unshare_expr (obj);
496 for (var_p = &obj;
497 handled_component_p (*var_p);
498 var_p = &TREE_OPERAND (*var_p, 0))
499 continue;
501 /* Canonicalize the access to base on a MEM_REF. */
502 if (DECL_P (*var_p))
503 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
505 /* Assign a canonical SSA name to the address of the base decl used
506 in the address and share it for all accesses and addresses based
507 on it. */
508 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
509 int_tree_map elt;
510 elt.uid = uid;
511 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
512 if (!slot->to)
514 if (gsi == NULL)
515 return NULL;
516 addr = TREE_OPERAND (*var_p, 0);
517 const char *obj_name
518 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
519 if (obj_name)
520 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
521 else
522 name = make_ssa_name (TREE_TYPE (addr));
523 stmt = gimple_build_assign (name, addr);
524 gsi_insert_on_edge_immediate (entry, stmt);
526 slot->uid = uid;
527 slot->to = name;
529 else
530 name = slot->to;
532 /* Express the address in terms of the canonical SSA name. */
533 TREE_OPERAND (*var_p, 0) = name;
534 if (gsi == NULL)
535 return build_fold_addr_expr_with_type (obj, type);
537 name = force_gimple_operand (build_addr (obj, current_function_decl),
538 &stmts, true, NULL_TREE);
539 if (!gimple_seq_empty_p (stmts))
540 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
542 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
544 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
545 NULL_TREE);
546 if (!gimple_seq_empty_p (stmts))
547 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
550 return name;
553 static tree
554 reduc_stmt_res (gimple *stmt)
556 return (gimple_code (stmt) == GIMPLE_PHI
557 ? gimple_phi_result (stmt)
558 : gimple_assign_lhs (stmt));
561 /* Callback for htab_traverse. Create the initialization statement
562 for reduction described in SLOT, and place it at the preheader of
563 the loop described in DATA. */
566 initialize_reductions (reduction_info **slot, struct loop *loop)
568 tree init;
569 tree type, arg;
570 edge e;
572 struct reduction_info *const reduc = *slot;
574 /* Create initialization in preheader:
575 reduction_variable = initialization value of reduction. */
577 /* In the phi node at the header, replace the argument coming
578 from the preheader with the reduction initialization value. */
580 /* Initialize the reduction. */
581 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
582 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
583 reduc->reduction_code, type);
584 reduc->init = init;
586 /* Replace the argument representing the initialization value
587 with the initialization value for the reduction (neutral
588 element for the particular operation, e.g. 0 for PLUS_EXPR,
589 1 for MULT_EXPR, etc).
590 Keep the old value in a new variable "reduction_initial",
591 that will be taken in consideration after the parallel
592 computing is done. */
594 e = loop_preheader_edge (loop);
595 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
596 /* Create new variable to hold the initial value. */
598 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
599 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
600 reduc->initial_value = arg;
601 return 1;
604 struct elv_data
606 struct walk_stmt_info info;
607 edge entry;
608 int_tree_htab_type *decl_address;
609 gimple_stmt_iterator *gsi;
610 bool changed;
611 bool reset;
614 /* Eliminates references to local variables in *TP out of the single
615 entry single exit region starting at DTA->ENTRY.
616 DECL_ADDRESS contains addresses of the references that had their
617 address taken already. If the expression is changed, CHANGED is
618 set to true. Callback for walk_tree. */
620 static tree
621 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
623 struct elv_data *const dta = (struct elv_data *) data;
624 tree t = *tp, var, addr, addr_type, type, obj;
626 if (DECL_P (t))
628 *walk_subtrees = 0;
630 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
631 return NULL_TREE;
633 type = TREE_TYPE (t);
634 addr_type = build_pointer_type (type);
635 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
636 dta->gsi);
637 if (dta->gsi == NULL && addr == NULL_TREE)
639 dta->reset = true;
640 return NULL_TREE;
643 *tp = build_simple_mem_ref (addr);
645 dta->changed = true;
646 return NULL_TREE;
649 if (TREE_CODE (t) == ADDR_EXPR)
651 /* ADDR_EXPR may appear in two contexts:
652 -- as a gimple operand, when the address taken is a function invariant
653 -- as gimple rhs, when the resulting address in not a function
654 invariant
655 We do not need to do anything special in the latter case (the base of
656 the memory reference whose address is taken may be replaced in the
657 DECL_P case). The former case is more complicated, as we need to
658 ensure that the new address is still a gimple operand. Thus, it
659 is not sufficient to replace just the base of the memory reference --
660 we need to move the whole computation of the address out of the
661 loop. */
662 if (!is_gimple_val (t))
663 return NULL_TREE;
665 *walk_subtrees = 0;
666 obj = TREE_OPERAND (t, 0);
667 var = get_base_address (obj);
668 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
669 return NULL_TREE;
671 addr_type = TREE_TYPE (t);
672 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
673 dta->gsi);
674 if (dta->gsi == NULL && addr == NULL_TREE)
676 dta->reset = true;
677 return NULL_TREE;
679 *tp = addr;
681 dta->changed = true;
682 return NULL_TREE;
685 if (!EXPR_P (t))
686 *walk_subtrees = 0;
688 return NULL_TREE;
691 /* Moves the references to local variables in STMT at *GSI out of the single
692 entry single exit region starting at ENTRY. DECL_ADDRESS contains
693 addresses of the references that had their address taken
694 already. */
696 static void
697 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
698 int_tree_htab_type *decl_address)
700 struct elv_data dta;
701 gimple *stmt = gsi_stmt (*gsi);
703 memset (&dta.info, '\0', sizeof (dta.info));
704 dta.entry = entry;
705 dta.decl_address = decl_address;
706 dta.changed = false;
707 dta.reset = false;
709 if (gimple_debug_bind_p (stmt))
711 dta.gsi = NULL;
712 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
713 eliminate_local_variables_1, &dta.info, NULL);
714 if (dta.reset)
716 gimple_debug_bind_reset_value (stmt);
717 dta.changed = true;
720 else if (gimple_clobber_p (stmt))
722 stmt = gimple_build_nop ();
723 gsi_replace (gsi, stmt, false);
724 dta.changed = true;
726 else
728 dta.gsi = gsi;
729 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
732 if (dta.changed)
733 update_stmt (stmt);
736 /* Eliminates the references to local variables from the single entry
737 single exit region between the ENTRY and EXIT edges.
739 This includes:
740 1) Taking address of a local variable -- these are moved out of the
741 region (and temporary variable is created to hold the address if
742 necessary).
744 2) Dereferencing a local variable -- these are replaced with indirect
745 references. */
747 static void
748 eliminate_local_variables (edge entry, edge exit)
750 basic_block bb;
751 auto_vec<basic_block, 3> body;
752 unsigned i;
753 gimple_stmt_iterator gsi;
754 bool has_debug_stmt = false;
755 int_tree_htab_type decl_address (10);
756 basic_block entry_bb = entry->src;
757 basic_block exit_bb = exit->dest;
759 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
761 FOR_EACH_VEC_ELT (body, i, bb)
762 if (bb != entry_bb && bb != exit_bb)
763 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
764 if (is_gimple_debug (gsi_stmt (gsi)))
766 if (gimple_debug_bind_p (gsi_stmt (gsi)))
767 has_debug_stmt = true;
769 else
770 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
772 if (has_debug_stmt)
773 FOR_EACH_VEC_ELT (body, i, bb)
774 if (bb != entry_bb && bb != exit_bb)
775 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
776 if (gimple_debug_bind_p (gsi_stmt (gsi)))
777 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
780 /* Returns true if expression EXPR is not defined between ENTRY and
781 EXIT, i.e. if all its operands are defined outside of the region. */
783 static bool
784 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
786 basic_block entry_bb = entry->src;
787 basic_block exit_bb = exit->dest;
788 basic_block def_bb;
790 if (is_gimple_min_invariant (expr))
791 return true;
793 if (TREE_CODE (expr) == SSA_NAME)
795 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
796 if (def_bb
797 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
798 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
799 return false;
801 return true;
804 return false;
807 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
808 The copies are stored to NAME_COPIES, if NAME was already duplicated,
809 its duplicate stored in NAME_COPIES is returned.
811 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
812 duplicated, storing the copies in DECL_COPIES. */
814 static tree
815 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
816 int_tree_htab_type *decl_copies,
817 bool copy_name_p)
819 tree copy, var, var_copy;
820 unsigned idx, uid, nuid;
821 struct int_tree_map ielt;
822 struct name_to_copy_elt elt, *nelt;
823 name_to_copy_elt **slot;
824 int_tree_map *dslot;
826 if (TREE_CODE (name) != SSA_NAME)
827 return name;
829 idx = SSA_NAME_VERSION (name);
830 elt.version = idx;
831 slot = name_copies->find_slot_with_hash (&elt, idx,
832 copy_name_p ? INSERT : NO_INSERT);
833 if (slot && *slot)
834 return (*slot)->new_name;
836 if (copy_name_p)
838 copy = duplicate_ssa_name (name, NULL);
839 nelt = XNEW (struct name_to_copy_elt);
840 nelt->version = idx;
841 nelt->new_name = copy;
842 nelt->field = NULL_TREE;
843 *slot = nelt;
845 else
847 gcc_assert (!slot);
848 copy = name;
851 var = SSA_NAME_VAR (name);
852 if (!var)
853 return copy;
855 uid = DECL_UID (var);
856 ielt.uid = uid;
857 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
858 if (!dslot->to)
860 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
861 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
862 dslot->uid = uid;
863 dslot->to = var_copy;
865 /* Ensure that when we meet this decl next time, we won't duplicate
866 it again. */
867 nuid = DECL_UID (var_copy);
868 ielt.uid = nuid;
869 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
870 gcc_assert (!dslot->to);
871 dslot->uid = nuid;
872 dslot->to = var_copy;
874 else
875 var_copy = dslot->to;
877 replace_ssa_name_symbol (copy, var_copy);
878 return copy;
881 /* Finds the ssa names used in STMT that are defined outside the
882 region between ENTRY and EXIT and replaces such ssa names with
883 their duplicates. The duplicates are stored to NAME_COPIES. Base
884 decls of all ssa names used in STMT (including those defined in
885 LOOP) are replaced with the new temporary variables; the
886 replacement decls are stored in DECL_COPIES. */
888 static void
889 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
890 name_to_copy_table_type *name_copies,
891 int_tree_htab_type *decl_copies)
893 use_operand_p use;
894 def_operand_p def;
895 ssa_op_iter oi;
896 tree name, copy;
897 bool copy_name_p;
899 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
901 name = DEF_FROM_PTR (def);
902 gcc_assert (TREE_CODE (name) == SSA_NAME);
903 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
904 false);
905 gcc_assert (copy == name);
908 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
910 name = USE_FROM_PTR (use);
911 if (TREE_CODE (name) != SSA_NAME)
912 continue;
914 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
915 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
916 copy_name_p);
917 SET_USE (use, copy);
921 /* Finds the ssa names used in STMT that are defined outside the
922 region between ENTRY and EXIT and replaces such ssa names with
923 their duplicates. The duplicates are stored to NAME_COPIES. Base
924 decls of all ssa names used in STMT (including those defined in
925 LOOP) are replaced with the new temporary variables; the
926 replacement decls are stored in DECL_COPIES. */
928 static bool
929 separate_decls_in_region_debug (gimple *stmt,
930 name_to_copy_table_type *name_copies,
931 int_tree_htab_type *decl_copies)
933 use_operand_p use;
934 ssa_op_iter oi;
935 tree var, name;
936 struct int_tree_map ielt;
937 struct name_to_copy_elt elt;
938 name_to_copy_elt **slot;
939 int_tree_map *dslot;
941 if (gimple_debug_bind_p (stmt))
942 var = gimple_debug_bind_get_var (stmt);
943 else if (gimple_debug_source_bind_p (stmt))
944 var = gimple_debug_source_bind_get_var (stmt);
945 else
946 return true;
947 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
948 return true;
949 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
950 ielt.uid = DECL_UID (var);
951 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
952 if (!dslot)
953 return true;
954 if (gimple_debug_bind_p (stmt))
955 gimple_debug_bind_set_var (stmt, dslot->to);
956 else if (gimple_debug_source_bind_p (stmt))
957 gimple_debug_source_bind_set_var (stmt, dslot->to);
959 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
961 name = USE_FROM_PTR (use);
962 if (TREE_CODE (name) != SSA_NAME)
963 continue;
965 elt.version = SSA_NAME_VERSION (name);
966 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
967 if (!slot)
969 gimple_debug_bind_reset_value (stmt);
970 update_stmt (stmt);
971 break;
974 SET_USE (use, (*slot)->new_name);
977 return false;
980 /* Callback for htab_traverse. Adds a field corresponding to the reduction
981 specified in SLOT. The type is passed in DATA. */
984 add_field_for_reduction (reduction_info **slot, tree type)
987 struct reduction_info *const red = *slot;
988 tree var = reduc_stmt_res (red->reduc_stmt);
989 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
990 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
992 insert_field_into_struct (type, field);
994 red->field = field;
996 return 1;
999 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1000 described in SLOT. The type is passed in DATA. */
1003 add_field_for_name (name_to_copy_elt **slot, tree type)
1005 struct name_to_copy_elt *const elt = *slot;
1006 tree name = ssa_name (elt->version);
1007 tree field = build_decl (UNKNOWN_LOCATION,
1008 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1009 TREE_TYPE (name));
1011 insert_field_into_struct (type, field);
1012 elt->field = field;
1014 return 1;
1017 /* Callback for htab_traverse. A local result is the intermediate result
1018 computed by a single
1019 thread, or the initial value in case no iteration was executed.
1020 This function creates a phi node reflecting these values.
1021 The phi's result will be stored in NEW_PHI field of the
1022 reduction's data structure. */
1025 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1027 struct reduction_info *const reduc = *slot;
1028 edge e;
1029 gphi *new_phi;
1030 basic_block store_bb, continue_bb;
1031 tree local_res;
1032 source_location locus;
1034 /* STORE_BB is the block where the phi
1035 should be stored. It is the destination of the loop exit.
1036 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1037 continue_bb = single_pred (loop->latch);
1038 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1040 /* STORE_BB has two predecessors. One coming from the loop
1041 (the reduction's result is computed at the loop),
1042 and another coming from a block preceding the loop,
1043 when no iterations
1044 are executed (the initial value should be taken). */
1045 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1046 e = EDGE_PRED (store_bb, 1);
1047 else
1048 e = EDGE_PRED (store_bb, 0);
1049 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1050 local_res = copy_ssa_name (lhs);
1051 locus = gimple_location (reduc->reduc_stmt);
1052 new_phi = create_phi_node (local_res, store_bb);
1053 add_phi_arg (new_phi, reduc->init, e, locus);
1054 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1055 reduc->new_phi = new_phi;
1057 return 1;
1060 struct clsn_data
1062 tree store;
1063 tree load;
1065 basic_block store_bb;
1066 basic_block load_bb;
1069 /* Callback for htab_traverse. Create an atomic instruction for the
1070 reduction described in SLOT.
1071 DATA annotates the place in memory the atomic operation relates to,
1072 and the basic block it needs to be generated in. */
1075 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1077 struct reduction_info *const reduc = *slot;
1078 gimple_stmt_iterator gsi;
1079 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1080 tree load_struct;
1081 basic_block bb;
1082 basic_block new_bb;
1083 edge e;
1084 tree t, addr, ref, x;
1085 tree tmp_load, name;
1086 gimple *load;
1088 load_struct = build_simple_mem_ref (clsn_data->load);
1089 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1091 addr = build_addr (t, current_function_decl);
1093 /* Create phi node. */
1094 bb = clsn_data->load_bb;
1096 gsi = gsi_last_bb (bb);
1097 e = split_block (bb, gsi_stmt (gsi));
1098 new_bb = e->dest;
1100 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1101 tmp_load = make_ssa_name (tmp_load);
1102 load = gimple_build_omp_atomic_load (tmp_load, addr);
1103 SSA_NAME_DEF_STMT (tmp_load) = load;
1104 gsi = gsi_start_bb (new_bb);
1105 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1107 e = split_block (new_bb, load);
1108 new_bb = e->dest;
1109 gsi = gsi_start_bb (new_bb);
1110 ref = tmp_load;
1111 x = fold_build2 (reduc->reduction_code,
1112 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1113 PHI_RESULT (reduc->new_phi));
1115 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1116 GSI_CONTINUE_LINKING);
1118 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1119 return 1;
1122 /* Create the atomic operation at the join point of the threads.
1123 REDUCTION_LIST describes the reductions in the LOOP.
1124 LD_ST_DATA describes the shared data structure where
1125 shared data is stored in and loaded from. */
1126 static void
1127 create_call_for_reduction (struct loop *loop,
1128 reduction_info_table_type *reduction_list,
1129 struct clsn_data *ld_st_data)
1131 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1132 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1133 basic_block continue_bb = single_pred (loop->latch);
1134 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1135 reduction_list
1136 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1139 /* Callback for htab_traverse. Loads the final reduction value at the
1140 join point of all threads, and inserts it in the right place. */
1143 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1145 struct reduction_info *const red = *slot;
1146 gimple *stmt;
1147 gimple_stmt_iterator gsi;
1148 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1149 tree load_struct;
1150 tree name;
1151 tree x;
1153 /* If there's no exit phi, the result of the reduction is unused. */
1154 if (red->keep_res == NULL)
1155 return 1;
1157 gsi = gsi_after_labels (clsn_data->load_bb);
1158 load_struct = build_simple_mem_ref (clsn_data->load);
1159 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1160 NULL_TREE);
1162 x = load_struct;
1163 name = PHI_RESULT (red->keep_res);
1164 stmt = gimple_build_assign (name, x);
1166 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1168 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1169 !gsi_end_p (gsi); gsi_next (&gsi))
1170 if (gsi_stmt (gsi) == red->keep_res)
1172 remove_phi_node (&gsi, false);
1173 return 1;
1175 gcc_unreachable ();
1178 /* Load the reduction result that was stored in LD_ST_DATA.
1179 REDUCTION_LIST describes the list of reductions that the
1180 loads should be generated for. */
1181 static void
1182 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1183 struct clsn_data *ld_st_data)
1185 gimple_stmt_iterator gsi;
1186 tree t;
1187 gimple *stmt;
1189 gsi = gsi_after_labels (ld_st_data->load_bb);
1190 t = build_fold_addr_expr (ld_st_data->store);
1191 stmt = gimple_build_assign (ld_st_data->load, t);
1193 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1195 reduction_list
1196 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1200 /* Callback for htab_traverse. Store the neutral value for the
1201 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1202 1 for MULT_EXPR, etc. into the reduction field.
1203 The reduction is specified in SLOT. The store information is
1204 passed in DATA. */
1207 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1209 struct reduction_info *const red = *slot;
1210 tree t;
1211 gimple *stmt;
1212 gimple_stmt_iterator gsi;
1213 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1215 gsi = gsi_last_bb (clsn_data->store_bb);
1216 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1217 stmt = gimple_build_assign (t, red->initial_value);
1218 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1220 return 1;
1223 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1224 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1225 specified in SLOT. */
1228 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1229 struct clsn_data *clsn_data)
1231 struct name_to_copy_elt *const elt = *slot;
1232 tree t;
1233 gimple *stmt;
1234 gimple_stmt_iterator gsi;
1235 tree type = TREE_TYPE (elt->new_name);
1236 tree load_struct;
1238 gsi = gsi_last_bb (clsn_data->store_bb);
1239 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1240 stmt = gimple_build_assign (t, ssa_name (elt->version));
1241 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1243 gsi = gsi_last_bb (clsn_data->load_bb);
1244 load_struct = build_simple_mem_ref (clsn_data->load);
1245 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1246 stmt = gimple_build_assign (elt->new_name, t);
1247 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1249 return 1;
1252 /* Moves all the variables used in LOOP and defined outside of it (including
1253 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1254 name) to a structure created for this purpose. The code
1256 while (1)
1258 use (a);
1259 use (b);
1262 is transformed this way:
1264 bb0:
1265 old.a = a;
1266 old.b = b;
1268 bb1:
1269 a' = new->a;
1270 b' = new->b;
1271 while (1)
1273 use (a');
1274 use (b');
1277 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1278 pointer `new' is intentionally not initialized (the loop will be split to a
1279 separate function later, and `new' will be initialized from its arguments).
1280 LD_ST_DATA holds information about the shared data structure used to pass
1281 information among the threads. It is initialized here, and
1282 gen_parallel_loop will pass it to create_call_for_reduction that
1283 needs this information. REDUCTION_LIST describes the reductions
1284 in LOOP. */
1286 static void
1287 separate_decls_in_region (edge entry, edge exit,
1288 reduction_info_table_type *reduction_list,
1289 tree *arg_struct, tree *new_arg_struct,
1290 struct clsn_data *ld_st_data)
1293 basic_block bb1 = split_edge (entry);
1294 basic_block bb0 = single_pred (bb1);
1295 name_to_copy_table_type name_copies (10);
1296 int_tree_htab_type decl_copies (10);
1297 unsigned i;
1298 tree type, type_name, nvar;
1299 gimple_stmt_iterator gsi;
1300 struct clsn_data clsn_data;
1301 auto_vec<basic_block, 3> body;
1302 basic_block bb;
1303 basic_block entry_bb = bb1;
1304 basic_block exit_bb = exit->dest;
1305 bool has_debug_stmt = false;
1307 entry = single_succ_edge (entry_bb);
1308 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1310 FOR_EACH_VEC_ELT (body, i, bb)
1312 if (bb != entry_bb && bb != exit_bb)
1314 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1315 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1316 &name_copies, &decl_copies);
1318 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1320 gimple *stmt = gsi_stmt (gsi);
1322 if (is_gimple_debug (stmt))
1323 has_debug_stmt = true;
1324 else
1325 separate_decls_in_region_stmt (entry, exit, stmt,
1326 &name_copies, &decl_copies);
1331 /* Now process debug bind stmts. We must not create decls while
1332 processing debug stmts, so we defer their processing so as to
1333 make sure we will have debug info for as many variables as
1334 possible (all of those that were dealt with in the loop above),
1335 and discard those for which we know there's nothing we can
1336 do. */
1337 if (has_debug_stmt)
1338 FOR_EACH_VEC_ELT (body, i, bb)
1339 if (bb != entry_bb && bb != exit_bb)
1341 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1343 gimple *stmt = gsi_stmt (gsi);
1345 if (is_gimple_debug (stmt))
1347 if (separate_decls_in_region_debug (stmt, &name_copies,
1348 &decl_copies))
1350 gsi_remove (&gsi, true);
1351 continue;
1355 gsi_next (&gsi);
1359 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1361 /* It may happen that there is nothing to copy (if there are only
1362 loop carried and external variables in the loop). */
1363 *arg_struct = NULL;
1364 *new_arg_struct = NULL;
1366 else
1368 /* Create the type for the structure to store the ssa names to. */
1369 type = lang_hooks.types.make_type (RECORD_TYPE);
1370 type_name = build_decl (UNKNOWN_LOCATION,
1371 TYPE_DECL, create_tmp_var_name (".paral_data"),
1372 type);
1373 TYPE_NAME (type) = type_name;
1375 name_copies.traverse <tree, add_field_for_name> (type);
1376 if (reduction_list && reduction_list->elements () > 0)
1378 /* Create the fields for reductions. */
1379 reduction_list->traverse <tree, add_field_for_reduction> (type);
1381 layout_type (type);
1383 /* Create the loads and stores. */
1384 *arg_struct = create_tmp_var (type, ".paral_data_store");
1385 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1386 *new_arg_struct = make_ssa_name (nvar);
1388 ld_st_data->store = *arg_struct;
1389 ld_st_data->load = *new_arg_struct;
1390 ld_st_data->store_bb = bb0;
1391 ld_st_data->load_bb = bb1;
1393 name_copies
1394 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1395 (ld_st_data);
1397 /* Load the calculation from memory (after the join of the threads). */
1399 if (reduction_list && reduction_list->elements () > 0)
1401 reduction_list
1402 ->traverse <struct clsn_data *, create_stores_for_reduction>
1403 (ld_st_data);
1404 clsn_data.load = make_ssa_name (nvar);
1405 clsn_data.load_bb = exit->dest;
1406 clsn_data.store = ld_st_data->store;
1407 create_final_loads_for_reduction (reduction_list, &clsn_data);
1412 /* Returns true if FN was created to run in parallel. */
1414 bool
1415 parallelized_function_p (tree fndecl)
1417 cgraph_node *node = cgraph_node::get (fndecl);
1418 gcc_assert (node != NULL);
1419 return node->parallelized_function;
1422 /* Creates and returns an empty function that will receive the body of
1423 a parallelized loop. */
1425 static tree
1426 create_loop_fn (location_t loc)
1428 char buf[100];
1429 char *tname;
1430 tree decl, type, name, t;
1431 struct function *act_cfun = cfun;
1432 static unsigned loopfn_num;
1434 loc = LOCATION_LOCUS (loc);
1435 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1436 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1437 clean_symbol_name (tname);
1438 name = get_identifier (tname);
1439 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1441 decl = build_decl (loc, FUNCTION_DECL, name, type);
1442 TREE_STATIC (decl) = 1;
1443 TREE_USED (decl) = 1;
1444 DECL_ARTIFICIAL (decl) = 1;
1445 DECL_IGNORED_P (decl) = 0;
1446 TREE_PUBLIC (decl) = 0;
1447 DECL_UNINLINABLE (decl) = 1;
1448 DECL_EXTERNAL (decl) = 0;
1449 DECL_CONTEXT (decl) = NULL_TREE;
1450 DECL_INITIAL (decl) = make_node (BLOCK);
1452 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1453 DECL_ARTIFICIAL (t) = 1;
1454 DECL_IGNORED_P (t) = 1;
1455 DECL_RESULT (decl) = t;
1457 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1458 ptr_type_node);
1459 DECL_ARTIFICIAL (t) = 1;
1460 DECL_ARG_TYPE (t) = ptr_type_node;
1461 DECL_CONTEXT (t) = decl;
1462 TREE_USED (t) = 1;
1463 DECL_ARGUMENTS (decl) = t;
1465 allocate_struct_function (decl, false);
1467 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1468 it. */
1469 set_cfun (act_cfun);
1471 return decl;
1474 /* Replace uses of NAME by VAL in block BB. */
1476 static void
1477 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1479 gimple *use_stmt;
1480 imm_use_iterator imm_iter;
1482 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1484 if (gimple_bb (use_stmt) != bb)
1485 continue;
1487 use_operand_p use_p;
1488 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1489 SET_USE (use_p, val);
1493 /* Do transformation from:
1495 <bb preheader>:
1497 goto <bb header>
1499 <bb header>:
1500 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1501 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1503 use (ivtmp_a)
1505 sum_b = sum_a + sum_update
1507 if (ivtmp_a < n)
1508 goto <bb latch>;
1509 else
1510 goto <bb exit>;
1512 <bb latch>:
1513 ivtmp_b = ivtmp_a + 1;
1514 goto <bb header>
1516 <bb exit>:
1517 sum_z = PHI <sum_b (cond[1]), ...>
1519 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1520 that's <bb header>.
1524 <bb preheader>:
1526 goto <bb newheader>
1528 <bb header>:
1529 ivtmp_a = PHI <ivtmp_c (latch)>
1530 sum_a = PHI <sum_c (latch)>
1532 use (ivtmp_a)
1534 sum_b = sum_a + sum_update
1536 goto <bb latch>;
1538 <bb newheader>:
1539 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1540 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1541 if (ivtmp_c < n + 1)
1542 goto <bb header>;
1543 else
1544 goto <bb newexit>;
1546 <bb latch>:
1547 ivtmp_b = ivtmp_a + 1;
1548 goto <bb newheader>
1550 <bb newexit>:
1551 sum_y = PHI <sum_c (newheader)>
1553 <bb exit>:
1554 sum_z = PHI <sum_y (newexit), ...>
1557 In unified diff format:
1559 <bb preheader>:
1561 - goto <bb header>
1562 + goto <bb newheader>
1564 <bb header>:
1565 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1566 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1567 + ivtmp_a = PHI <ivtmp_c (latch)>
1568 + sum_a = PHI <sum_c (latch)>
1570 use (ivtmp_a)
1572 sum_b = sum_a + sum_update
1574 - if (ivtmp_a < n)
1575 - goto <bb latch>;
1576 + goto <bb latch>;
1578 + <bb newheader>:
1579 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1580 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1581 + if (ivtmp_c < n + 1)
1582 + goto <bb header>;
1583 else
1584 goto <bb exit>;
1586 <bb latch>:
1587 ivtmp_b = ivtmp_a + 1;
1588 - goto <bb header>
1589 + goto <bb newheader>
1591 + <bb newexit>:
1592 + sum_y = PHI <sum_c (newheader)>
1594 <bb exit>:
1595 - sum_z = PHI <sum_b (cond[1]), ...>
1596 + sum_z = PHI <sum_y (newexit), ...>
1598 Note: the example does not show any virtual phis, but these are handled more
1599 or less as reductions.
1602 Moves the exit condition of LOOP to the beginning of its header.
1603 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1604 bound. */
1606 static void
1607 transform_to_exit_first_loop_alt (struct loop *loop,
1608 reduction_info_table_type *reduction_list,
1609 tree bound)
1611 basic_block header = loop->header;
1612 basic_block latch = loop->latch;
1613 edge exit = single_dom_exit (loop);
1614 basic_block exit_block = exit->dest;
1615 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1616 tree control = gimple_cond_lhs (cond_stmt);
1617 edge e;
1619 /* Rewriting virtuals into loop-closed ssa normal form makes this
1620 transformation simpler. It also ensures that the virtuals are in
1621 loop-closed ssa normal from after the transformation, which is required by
1622 create_parallel_loop. */
1623 rewrite_virtuals_into_loop_closed_ssa (loop);
1625 /* Create the new_header block. */
1626 basic_block new_header = split_block_before_cond_jump (exit->src);
1627 edge edge_at_split = single_pred_edge (new_header);
1629 /* Redirect entry edge to new_header. */
1630 edge entry = loop_preheader_edge (loop);
1631 e = redirect_edge_and_branch (entry, new_header);
1632 gcc_assert (e == entry);
1634 /* Redirect post_inc_edge to new_header. */
1635 edge post_inc_edge = single_succ_edge (latch);
1636 e = redirect_edge_and_branch (post_inc_edge, new_header);
1637 gcc_assert (e == post_inc_edge);
1639 /* Redirect post_cond_edge to header. */
1640 edge post_cond_edge = single_pred_edge (latch);
1641 e = redirect_edge_and_branch (post_cond_edge, header);
1642 gcc_assert (e == post_cond_edge);
1644 /* Redirect edge_at_split to latch. */
1645 e = redirect_edge_and_branch (edge_at_split, latch);
1646 gcc_assert (e == edge_at_split);
1648 /* Set the new loop bound. */
1649 gimple_cond_set_rhs (cond_stmt, bound);
1650 update_stmt (cond_stmt);
1652 /* Repair the ssa. */
1653 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1654 edge_var_map *vm;
1655 gphi_iterator gsi;
1656 int i;
1657 for (gsi = gsi_start_phis (header), i = 0;
1658 !gsi_end_p (gsi) && v->iterate (i, &vm);
1659 gsi_next (&gsi), i++)
1661 gphi *phi = gsi.phi ();
1662 tree res_a = PHI_RESULT (phi);
1664 /* Create new phi. */
1665 tree res_c = copy_ssa_name (res_a, phi);
1666 gphi *nphi = create_phi_node (res_c, new_header);
1668 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1669 replace_uses_in_bb_by (res_a, res_c, new_header);
1671 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1672 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1674 /* Replace sum_b with sum_c in exit phi. */
1675 tree res_b = redirect_edge_var_map_def (vm);
1676 replace_uses_in_bb_by (res_b, res_c, exit_block);
1678 struct reduction_info *red = reduction_phi (reduction_list, phi);
1679 gcc_assert (virtual_operand_p (res_a)
1680 || res_a == control
1681 || red != NULL);
1683 if (red)
1685 /* Register the new reduction phi. */
1686 red->reduc_phi = nphi;
1687 gimple_set_uid (red->reduc_phi, red->reduc_version);
1690 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1692 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1693 flush_pending_stmts (entry);
1695 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1696 flush_pending_stmts (post_inc_edge);
1698 /* Create a new empty exit block, inbetween the new loop header and the old
1699 exit block. The function separate_decls_in_region needs this block to
1700 insert code that is active on loop exit, but not any other path. */
1701 basic_block new_exit_block = split_edge (exit);
1703 /* Insert and register the reduction exit phis. */
1704 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1705 !gsi_end_p (gsi);
1706 gsi_next (&gsi))
1708 gphi *phi = gsi.phi ();
1709 tree res_z = PHI_RESULT (phi);
1711 /* Now that we have a new exit block, duplicate the phi of the old exit
1712 block in the new exit block to preserve loop-closed ssa. */
1713 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1714 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1715 tree res_y = copy_ssa_name (res_z, phi);
1716 gphi *nphi = create_phi_node (res_y, new_exit_block);
1717 tree res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1718 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1719 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1721 if (virtual_operand_p (res_z))
1722 continue;
1724 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1725 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1726 if (red != NULL)
1727 red->keep_res = nphi;
1730 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1731 then we're still using some fields, so only bother about fields that are
1732 still used: header and latch.
1733 The loop has a new header bb, so we update it. The latch bb stays the
1734 same. */
1735 loop->header = new_header;
1737 /* Recalculate dominance info. */
1738 free_dominance_info (CDI_DOMINATORS);
1739 calculate_dominance_info (CDI_DOMINATORS);
1742 /* Tries to moves the exit condition of LOOP to the beginning of its header
1743 without duplication of the loop body. NIT is the number of iterations of the
1744 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1745 transformation is successful. */
1747 static bool
1748 try_transform_to_exit_first_loop_alt (struct loop *loop,
1749 reduction_info_table_type *reduction_list,
1750 tree nit)
1752 /* Check whether the latch contains a single statement. */
1753 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1754 return false;
1756 /* Check whether the latch contains the loop iv increment. */
1757 edge back = single_succ_edge (loop->latch);
1758 edge exit = single_dom_exit (loop);
1759 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1760 tree control = gimple_cond_lhs (cond_stmt);
1761 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1762 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1763 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1764 return false;
1766 /* Check whether there's no code between the loop condition and the latch. */
1767 if (!single_pred_p (loop->latch)
1768 || single_pred (loop->latch) != exit->src)
1769 return false;
1771 tree alt_bound = NULL_TREE;
1772 tree nit_type = TREE_TYPE (nit);
1774 /* Figure out whether nit + 1 overflows. */
1775 if (TREE_CODE (nit) == INTEGER_CST)
1777 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1779 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1780 nit, build_one_cst (nit_type));
1782 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1783 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1784 return true;
1786 else
1788 /* Todo: Figure out if we can trigger this, if it's worth to handle
1789 optimally, and if we can handle it optimally. */
1790 return false;
1794 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1796 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1797 iv with base 0 and step 1 that is incremented in the latch, like this:
1799 <bb header>:
1800 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1802 if (iv_1 < nit)
1803 goto <bb latch>;
1804 else
1805 goto <bb exit>;
1807 <bb latch>:
1808 iv_2 = iv_1 + 1;
1809 goto <bb header>;
1811 The range of iv_1 is [0, nit]. The latch edge is taken for
1812 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1813 number of latch executions is equal to nit.
1815 The function max_loop_iterations gives us the maximum number of latch
1816 executions, so it gives us the maximum value of nit. */
1817 widest_int nit_max;
1818 if (!max_loop_iterations (loop, &nit_max))
1819 return false;
1821 /* Check if nit + 1 overflows. */
1822 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1823 if (!wi::lts_p (nit_max, type_max))
1824 return false;
1826 gimple *def = SSA_NAME_DEF_STMT (nit);
1828 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1829 if (def
1830 && is_gimple_assign (def)
1831 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1833 tree op1 = gimple_assign_rhs1 (def);
1834 tree op2 = gimple_assign_rhs2 (def);
1835 if (integer_minus_onep (op1))
1836 alt_bound = op2;
1837 else if (integer_minus_onep (op2))
1838 alt_bound = op1;
1841 /* If not found, insert nit + 1. */
1842 if (alt_bound == NULL_TREE)
1844 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1845 build_int_cst_type (nit_type, 1));
1847 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1849 alt_bound
1850 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1851 GSI_CONTINUE_LINKING);
1854 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1855 return true;
1858 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1859 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1860 LOOP. */
1862 static void
1863 transform_to_exit_first_loop (struct loop *loop,
1864 reduction_info_table_type *reduction_list,
1865 tree nit)
1867 basic_block *bbs, *nbbs, ex_bb, orig_header;
1868 unsigned n;
1869 bool ok;
1870 edge exit = single_dom_exit (loop), hpred;
1871 tree control, control_name, res, t;
1872 gphi *phi, *nphi;
1873 gassign *stmt;
1874 gcond *cond_stmt, *cond_nit;
1875 tree nit_1;
1877 split_block_after_labels (loop->header);
1878 orig_header = single_succ (loop->header);
1879 hpred = single_succ_edge (loop->header);
1881 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1882 control = gimple_cond_lhs (cond_stmt);
1883 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1885 /* Make sure that we have phi nodes on exit for all loop header phis
1886 (create_parallel_loop requires that). */
1887 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1888 !gsi_end_p (gsi);
1889 gsi_next (&gsi))
1891 phi = gsi.phi ();
1892 res = PHI_RESULT (phi);
1893 t = copy_ssa_name (res, phi);
1894 SET_PHI_RESULT (phi, t);
1895 nphi = create_phi_node (res, orig_header);
1896 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1898 if (res == control)
1900 gimple_cond_set_lhs (cond_stmt, t);
1901 update_stmt (cond_stmt);
1902 control = t;
1906 bbs = get_loop_body_in_dom_order (loop);
1908 for (n = 0; bbs[n] != exit->src; n++)
1909 continue;
1910 nbbs = XNEWVEC (basic_block, n);
1911 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1912 bbs + 1, n, nbbs);
1913 gcc_assert (ok);
1914 free (bbs);
1915 ex_bb = nbbs[0];
1916 free (nbbs);
1918 /* Other than reductions, the only gimple reg that should be copied
1919 out of the loop is the control variable. */
1920 exit = single_dom_exit (loop);
1921 control_name = NULL_TREE;
1922 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1923 !gsi_end_p (gsi); )
1925 phi = gsi.phi ();
1926 res = PHI_RESULT (phi);
1927 if (virtual_operand_p (res))
1929 gsi_next (&gsi);
1930 continue;
1933 /* Check if it is a part of reduction. If it is,
1934 keep the phi at the reduction's keep_res field. The
1935 PHI_RESULT of this phi is the resulting value of the reduction
1936 variable when exiting the loop. */
1938 if (reduction_list->elements () > 0)
1940 struct reduction_info *red;
1942 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1943 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1944 if (red)
1946 red->keep_res = phi;
1947 gsi_next (&gsi);
1948 continue;
1951 gcc_assert (control_name == NULL_TREE
1952 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1953 control_name = res;
1954 remove_phi_node (&gsi, false);
1956 gcc_assert (control_name != NULL_TREE);
1958 /* Initialize the control variable to number of iterations
1959 according to the rhs of the exit condition. */
1960 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
1961 cond_nit = as_a <gcond *> (last_stmt (exit->src));
1962 nit_1 = gimple_cond_rhs (cond_nit);
1963 nit_1 = force_gimple_operand_gsi (&gsi,
1964 fold_convert (TREE_TYPE (control_name), nit_1),
1965 false, NULL_TREE, false, GSI_SAME_STMT);
1966 stmt = gimple_build_assign (control_name, nit_1);
1967 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1970 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1971 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1972 NEW_DATA is the variable that should be initialized from the argument
1973 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1974 basic block containing GIMPLE_OMP_PARALLEL tree. */
1976 static basic_block
1977 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1978 tree new_data, unsigned n_threads, location_t loc)
1980 gimple_stmt_iterator gsi;
1981 basic_block bb, paral_bb, for_bb, ex_bb, continue_bb;
1982 tree t, param;
1983 gomp_parallel *omp_par_stmt;
1984 gimple *omp_return_stmt1, *omp_return_stmt2;
1985 gimple *phi;
1986 gcond *cond_stmt;
1987 gomp_for *for_stmt;
1988 gomp_continue *omp_cont_stmt;
1989 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1990 edge exit, nexit, guard, end, e;
1992 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1993 bb = loop_preheader_edge (loop)->src;
1994 paral_bb = single_pred (bb);
1995 gsi = gsi_last_bb (paral_bb);
1997 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1998 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1999 = build_int_cst (integer_type_node, n_threads);
2000 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2001 gimple_set_location (omp_par_stmt, loc);
2003 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2005 /* Initialize NEW_DATA. */
2006 if (data)
2008 gassign *assign_stmt;
2010 gsi = gsi_after_labels (bb);
2012 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2013 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2014 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2016 assign_stmt = gimple_build_assign (new_data,
2017 fold_convert (TREE_TYPE (new_data), param));
2018 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2021 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2022 bb = split_loop_exit_edge (single_dom_exit (loop));
2023 gsi = gsi_last_bb (bb);
2024 omp_return_stmt1 = gimple_build_omp_return (false);
2025 gimple_set_location (omp_return_stmt1, loc);
2026 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2028 /* Extract data for GIMPLE_OMP_FOR. */
2029 gcc_assert (loop->header == single_dom_exit (loop)->src);
2030 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2032 cvar = gimple_cond_lhs (cond_stmt);
2033 cvar_base = SSA_NAME_VAR (cvar);
2034 phi = SSA_NAME_DEF_STMT (cvar);
2035 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2036 initvar = copy_ssa_name (cvar);
2037 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2038 initvar);
2039 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2041 gsi = gsi_last_nondebug_bb (loop->latch);
2042 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2043 gsi_remove (&gsi, true);
2045 /* Prepare cfg. */
2046 for_bb = split_edge (loop_preheader_edge (loop));
2047 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2048 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2049 gcc_assert (exit == single_dom_exit (loop));
2051 guard = make_edge (for_bb, ex_bb, 0);
2052 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2053 loop->latch = split_edge (single_succ_edge (loop->latch));
2054 single_pred_edge (loop->latch)->flags = 0;
2055 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2056 rescan_loop_exit (end, true, false);
2058 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2059 !gsi_end_p (gpi); gsi_next (&gpi))
2061 source_location locus;
2062 gphi *phi = gpi.phi ();
2063 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2064 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2066 /* If the exit phi is not connected to a header phi in the same loop, this
2067 value is not modified in the loop, and we're done with this phi. */
2068 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2069 && gimple_bb (def_stmt) == loop->header))
2070 continue;
2072 gphi *stmt = as_a <gphi *> (def_stmt);
2073 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2074 locus = gimple_phi_arg_location_from_edge (stmt,
2075 loop_preheader_edge (loop));
2076 add_phi_arg (phi, def, guard, locus);
2078 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2079 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2080 add_phi_arg (phi, def, end, locus);
2082 e = redirect_edge_and_branch (exit, nexit->dest);
2083 PENDING_STMT (e) = NULL;
2085 /* Emit GIMPLE_OMP_FOR. */
2086 gimple_cond_set_lhs (cond_stmt, cvar_base);
2087 type = TREE_TYPE (cvar);
2088 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2089 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2090 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2091 if (chunk_size != 0)
2092 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2093 = build_int_cst (integer_type_node, chunk_size);
2095 for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
2096 gimple_set_location (for_stmt, loc);
2097 gimple_omp_for_set_index (for_stmt, 0, initvar);
2098 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2099 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2100 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2101 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2102 cvar_base,
2103 build_int_cst (type, 1)));
2105 gsi = gsi_last_bb (for_bb);
2106 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2107 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2109 /* Emit GIMPLE_OMP_CONTINUE. */
2110 continue_bb = single_pred (loop->latch);
2111 gsi = gsi_last_bb (continue_bb);
2112 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2113 gimple_set_location (omp_cont_stmt, loc);
2114 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2115 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2117 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2118 gsi = gsi_last_bb (ex_bb);
2119 omp_return_stmt2 = gimple_build_omp_return (true);
2120 gimple_set_location (omp_return_stmt2, loc);
2121 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2123 /* After the above dom info is hosed. Re-compute it. */
2124 free_dominance_info (CDI_DOMINATORS);
2125 calculate_dominance_info (CDI_DOMINATORS);
2127 return paral_bb;
2130 /* Generates code to execute the iterations of LOOP in N_THREADS
2131 threads in parallel.
2133 NITER describes number of iterations of LOOP.
2134 REDUCTION_LIST describes the reductions existent in the LOOP. */
2136 static void
2137 gen_parallel_loop (struct loop *loop,
2138 reduction_info_table_type *reduction_list,
2139 unsigned n_threads, struct tree_niter_desc *niter)
2141 tree many_iterations_cond, type, nit;
2142 tree arg_struct, new_arg_struct;
2143 gimple_seq stmts;
2144 edge entry, exit;
2145 struct clsn_data clsn_data;
2146 unsigned prob;
2147 location_t loc;
2148 gimple *cond_stmt;
2149 unsigned int m_p_thread=2;
2151 /* From
2153 ---------------------------------------------------------------------
2154 loop
2156 IV = phi (INIT, IV + STEP)
2157 BODY1;
2158 if (COND)
2159 break;
2160 BODY2;
2162 ---------------------------------------------------------------------
2164 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2165 we generate the following code:
2167 ---------------------------------------------------------------------
2169 if (MAY_BE_ZERO
2170 || NITER < MIN_PER_THREAD * N_THREADS)
2171 goto original;
2173 BODY1;
2174 store all local loop-invariant variables used in body of the loop to DATA.
2175 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2176 load the variables from DATA.
2177 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2178 BODY2;
2179 BODY1;
2180 GIMPLE_OMP_CONTINUE;
2181 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2182 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2183 goto end;
2185 original:
2186 loop
2188 IV = phi (INIT, IV + STEP)
2189 BODY1;
2190 if (COND)
2191 break;
2192 BODY2;
2195 end:
2199 /* Create two versions of the loop -- in the old one, we know that the
2200 number of iterations is large enough, and we will transform it into the
2201 loop that will be split to loop_fn, the new one will be used for the
2202 remaining iterations. */
2204 /* We should compute a better number-of-iterations value for outer loops.
2205 That is, if we have
2207 for (i = 0; i < n; ++i)
2208 for (j = 0; j < m; ++j)
2211 we should compute nit = n * m, not nit = n.
2212 Also may_be_zero handling would need to be adjusted. */
2214 type = TREE_TYPE (niter->niter);
2215 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2216 NULL_TREE);
2217 if (stmts)
2218 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2220 if (loop->inner)
2221 m_p_thread=2;
2222 else
2223 m_p_thread=MIN_PER_THREAD;
2225 many_iterations_cond =
2226 fold_build2 (GE_EXPR, boolean_type_node,
2227 nit, build_int_cst (type, m_p_thread * n_threads));
2229 many_iterations_cond
2230 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2231 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2232 many_iterations_cond);
2233 many_iterations_cond
2234 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2235 if (stmts)
2236 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2237 if (!is_gimple_condexpr (many_iterations_cond))
2239 many_iterations_cond
2240 = force_gimple_operand (many_iterations_cond, &stmts,
2241 true, NULL_TREE);
2242 if (stmts)
2243 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2246 initialize_original_copy_tables ();
2248 /* We assume that the loop usually iterates a lot. */
2249 prob = 4 * REG_BR_PROB_BASE / 5;
2250 loop_version (loop, many_iterations_cond, NULL,
2251 prob, prob, REG_BR_PROB_BASE - prob, true);
2252 update_ssa (TODO_update_ssa);
2253 free_original_copy_tables ();
2255 /* Base all the induction variables in LOOP on a single control one. */
2256 canonicalize_loop_ivs (loop, &nit, true);
2258 /* Ensure that the exit condition is the first statement in the loop.
2259 The common case is that latch of the loop is empty (apart from the
2260 increment) and immediately follows the loop exit test. Attempt to move the
2261 entry of the loop directly before the exit check and increase the number of
2262 iterations of the loop by one. */
2263 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2265 if (dump_file
2266 && (dump_flags & TDF_DETAILS))
2267 fprintf (dump_file,
2268 "alternative exit-first loop transform succeeded"
2269 " for loop %d\n", loop->num);
2271 else
2273 /* Fall back on the method that handles more cases, but duplicates the
2274 loop body: move the exit condition of LOOP to the beginning of its
2275 header, and duplicate the part of the last iteration that gets disabled
2276 to the exit of the loop. */
2277 transform_to_exit_first_loop (loop, reduction_list, nit);
2280 /* Generate initializations for reductions. */
2281 if (reduction_list->elements () > 0)
2282 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2284 /* Eliminate the references to local variables from the loop. */
2285 gcc_assert (single_exit (loop));
2286 entry = loop_preheader_edge (loop);
2287 exit = single_dom_exit (loop);
2289 eliminate_local_variables (entry, exit);
2290 /* In the old loop, move all variables non-local to the loop to a structure
2291 and back, and create separate decls for the variables used in loop. */
2292 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2293 &new_arg_struct, &clsn_data);
2295 /* Create the parallel constructs. */
2296 loc = UNKNOWN_LOCATION;
2297 cond_stmt = last_stmt (loop->header);
2298 if (cond_stmt)
2299 loc = gimple_location (cond_stmt);
2300 create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
2301 new_arg_struct, n_threads, loc);
2302 if (reduction_list->elements () > 0)
2303 create_call_for_reduction (loop, reduction_list, &clsn_data);
2305 scev_reset ();
2307 /* Free loop bound estimations that could contain references to
2308 removed statements. */
2309 FOR_EACH_LOOP (loop, 0)
2310 free_numbers_of_iterations_estimates_loop (loop);
2313 /* Returns true when LOOP contains vector phi nodes. */
2315 static bool
2316 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2318 unsigned i;
2319 basic_block *bbs = get_loop_body_in_dom_order (loop);
2320 gphi_iterator gsi;
2321 bool res = true;
2323 for (i = 0; i < loop->num_nodes; i++)
2324 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2325 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2326 goto end;
2328 res = false;
2329 end:
2330 free (bbs);
2331 return res;
2334 /* Create a reduction_info struct, initialize it with REDUC_STMT
2335 and PHI, insert it to the REDUCTION_LIST. */
2337 static void
2338 build_new_reduction (reduction_info_table_type *reduction_list,
2339 gimple *reduc_stmt, gphi *phi)
2341 reduction_info **slot;
2342 struct reduction_info *new_reduction;
2343 enum tree_code reduction_code;
2345 gcc_assert (reduc_stmt);
2347 if (dump_file && (dump_flags & TDF_DETAILS))
2349 fprintf (dump_file,
2350 "Detected reduction. reduction stmt is: \n");
2351 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2352 fprintf (dump_file, "\n");
2355 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2357 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2358 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2359 reduction_code = gimple_assign_rhs_code (def1);
2362 else
2363 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2365 new_reduction = XCNEW (struct reduction_info);
2367 new_reduction->reduc_stmt = reduc_stmt;
2368 new_reduction->reduc_phi = phi;
2369 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2370 new_reduction->reduction_code = reduction_code;
2371 slot = reduction_list->find_slot (new_reduction, INSERT);
2372 *slot = new_reduction;
2375 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2378 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2380 struct reduction_info *const red = *slot;
2381 gimple_set_uid (red->reduc_phi, red->reduc_version);
2382 return 1;
2385 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2387 static void
2388 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2390 gphi_iterator gsi;
2391 loop_vec_info simple_loop_info;
2392 loop_vec_info simple_inner_loop_info = NULL;
2393 bool allow_double_reduc = true;
2395 simple_loop_info = vect_analyze_loop_form (loop);
2396 if (simple_loop_info == NULL)
2397 return;
2399 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2401 gphi *phi = gsi.phi ();
2402 affine_iv iv;
2403 tree res = PHI_RESULT (phi);
2404 bool double_reduc;
2406 if (virtual_operand_p (res))
2407 continue;
2409 if (simple_iv (loop, loop, res, &iv, true))
2410 continue;
2412 gimple *reduc_stmt
2413 = vect_force_simple_reduction (simple_loop_info, phi, true,
2414 &double_reduc, true);
2415 if (!reduc_stmt)
2416 continue;
2418 if (double_reduc)
2420 if (!allow_double_reduc
2421 || loop->inner->inner != NULL)
2422 continue;
2424 if (!simple_inner_loop_info)
2426 simple_inner_loop_info = vect_analyze_loop_form (loop->inner);
2427 if (!simple_inner_loop_info)
2429 allow_double_reduc = false;
2430 continue;
2434 use_operand_p use_p;
2435 gimple *inner_stmt;
2436 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2437 gcc_assert (single_use_p);
2438 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2439 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2440 &iv, true))
2441 continue;
2443 gimple *inner_reduc_stmt
2444 = vect_force_simple_reduction (simple_inner_loop_info, inner_phi,
2445 true, &double_reduc, true);
2446 gcc_assert (!double_reduc);
2447 if (inner_reduc_stmt == NULL)
2448 continue;
2451 build_new_reduction (reduction_list, reduc_stmt, phi);
2453 destroy_loop_vec_info (simple_loop_info, true);
2454 destroy_loop_vec_info (simple_inner_loop_info, true);
2456 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2457 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2458 only now. */
2459 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2462 /* Try to initialize NITER for code generation part. */
2464 static bool
2465 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2467 edge exit = single_dom_exit (loop);
2469 gcc_assert (exit);
2471 /* We need to know # of iterations, and there should be no uses of values
2472 defined inside loop outside of it, unless the values are invariants of
2473 the loop. */
2474 if (!number_of_iterations_exit (loop, exit, niter, false))
2476 if (dump_file && (dump_flags & TDF_DETAILS))
2477 fprintf (dump_file, " FAILED: number of iterations not known\n");
2478 return false;
2481 return true;
2484 /* Try to initialize REDUCTION_LIST for code generation part.
2485 REDUCTION_LIST describes the reductions. */
2487 static bool
2488 try_create_reduction_list (loop_p loop,
2489 reduction_info_table_type *reduction_list)
2491 edge exit = single_dom_exit (loop);
2492 gphi_iterator gsi;
2494 gcc_assert (exit);
2496 gather_scalar_reductions (loop, reduction_list);
2499 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2501 gphi *phi = gsi.phi ();
2502 struct reduction_info *red;
2503 imm_use_iterator imm_iter;
2504 use_operand_p use_p;
2505 gimple *reduc_phi;
2506 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2508 if (!virtual_operand_p (val))
2510 if (dump_file && (dump_flags & TDF_DETAILS))
2512 fprintf (dump_file, "phi is ");
2513 print_gimple_stmt (dump_file, phi, 0, 0);
2514 fprintf (dump_file, "arg of phi to exit: value ");
2515 print_generic_expr (dump_file, val, 0);
2516 fprintf (dump_file, " used outside loop\n");
2517 fprintf (dump_file,
2518 " checking if it a part of reduction pattern: \n");
2520 if (reduction_list->elements () == 0)
2522 if (dump_file && (dump_flags & TDF_DETAILS))
2523 fprintf (dump_file,
2524 " FAILED: it is not a part of reduction.\n");
2525 return false;
2527 reduc_phi = NULL;
2528 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2530 if (!gimple_debug_bind_p (USE_STMT (use_p))
2531 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2533 reduc_phi = USE_STMT (use_p);
2534 break;
2537 red = reduction_phi (reduction_list, reduc_phi);
2538 if (red == NULL)
2540 if (dump_file && (dump_flags & TDF_DETAILS))
2541 fprintf (dump_file,
2542 " FAILED: it is not a part of reduction.\n");
2543 return false;
2545 if (dump_file && (dump_flags & TDF_DETAILS))
2547 fprintf (dump_file, "reduction phi is ");
2548 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2549 fprintf (dump_file, "reduction stmt is ");
2550 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2555 /* The iterations of the loop may communicate only through bivs whose
2556 iteration space can be distributed efficiently. */
2557 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2559 gphi *phi = gsi.phi ();
2560 tree def = PHI_RESULT (phi);
2561 affine_iv iv;
2563 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2565 struct reduction_info *red;
2567 red = reduction_phi (reduction_list, phi);
2568 if (red == NULL)
2570 if (dump_file && (dump_flags & TDF_DETAILS))
2571 fprintf (dump_file,
2572 " FAILED: scalar dependency between iterations\n");
2573 return false;
2579 return true;
2582 /* Detect parallel loops and generate parallel code using libgomp
2583 primitives. Returns true if some loop was parallelized, false
2584 otherwise. */
2586 static bool
2587 parallelize_loops (void)
2589 unsigned n_threads = flag_tree_parallelize_loops;
2590 bool changed = false;
2591 struct loop *loop;
2592 struct loop *skip_loop = NULL;
2593 struct tree_niter_desc niter_desc;
2594 struct obstack parloop_obstack;
2595 HOST_WIDE_INT estimated;
2596 source_location loop_loc;
2598 /* Do not parallelize loops in the functions created by parallelization. */
2599 if (parallelized_function_p (cfun->decl))
2600 return false;
2601 if (cfun->has_nonlocal_label)
2602 return false;
2604 gcc_obstack_init (&parloop_obstack);
2605 reduction_info_table_type reduction_list (10);
2606 init_stmt_vec_info_vec ();
2608 FOR_EACH_LOOP (loop, 0)
2610 if (loop == skip_loop)
2612 if (dump_file && (dump_flags & TDF_DETAILS))
2613 fprintf (dump_file,
2614 "Skipping loop %d as inner loop of parallelized loop\n",
2615 loop->num);
2617 skip_loop = loop->inner;
2618 continue;
2620 else
2621 skip_loop = NULL;
2623 reduction_list.empty ();
2624 if (dump_file && (dump_flags & TDF_DETAILS))
2626 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2627 if (loop->inner)
2628 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2629 else
2630 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2633 /* If we use autopar in graphite pass, we use its marked dependency
2634 checking results. */
2635 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2637 if (dump_file && (dump_flags & TDF_DETAILS))
2638 fprintf (dump_file, "loop is not parallel according to graphite\n");
2639 continue;
2642 if (!single_dom_exit (loop))
2645 if (dump_file && (dump_flags & TDF_DETAILS))
2646 fprintf (dump_file, "loop is !single_dom_exit\n");
2648 continue;
2651 if (/* And of course, the loop must be parallelizable. */
2652 !can_duplicate_loop_p (loop)
2653 || loop_has_blocks_with_irreducible_flag (loop)
2654 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2655 /* FIXME: the check for vector phi nodes could be removed. */
2656 || loop_has_vector_phi_nodes (loop))
2657 continue;
2659 estimated = estimated_stmt_executions_int (loop);
2660 if (estimated == -1)
2661 estimated = max_stmt_executions_int (loop);
2662 /* FIXME: Bypass this check as graphite doesn't update the
2663 count and frequency correctly now. */
2664 if (!flag_loop_parallelize_all
2665 && ((estimated != -1
2666 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2667 /* Do not bother with loops in cold areas. */
2668 || optimize_loop_nest_for_size_p (loop)))
2669 continue;
2671 if (!try_get_loop_niter (loop, &niter_desc))
2672 continue;
2674 if (!try_create_reduction_list (loop, &reduction_list))
2675 continue;
2677 if (!flag_loop_parallelize_all
2678 && !loop_parallel_p (loop, &parloop_obstack))
2679 continue;
2681 changed = true;
2682 skip_loop = loop->inner;
2683 if (dump_file && (dump_flags & TDF_DETAILS))
2685 if (loop->inner)
2686 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2687 else
2688 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2689 loop_loc = find_loop_location (loop);
2690 if (loop_loc != UNKNOWN_LOCATION)
2691 fprintf (dump_file, "\nloop at %s:%d: ",
2692 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2694 gen_parallel_loop (loop, &reduction_list,
2695 n_threads, &niter_desc);
2698 free_stmt_vec_info_vec ();
2699 obstack_free (&parloop_obstack, NULL);
2701 /* Parallelization will cause new function calls to be inserted through
2702 which local variables will escape. Reset the points-to solution
2703 for ESCAPED. */
2704 if (changed)
2705 pt_solution_reset (&cfun->gimple_df->escaped);
2707 return changed;
2710 /* Parallelization. */
2712 namespace {
2714 const pass_data pass_data_parallelize_loops =
2716 GIMPLE_PASS, /* type */
2717 "parloops", /* name */
2718 OPTGROUP_LOOP, /* optinfo_flags */
2719 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2720 ( PROP_cfg | PROP_ssa ), /* properties_required */
2721 0, /* properties_provided */
2722 0, /* properties_destroyed */
2723 0, /* todo_flags_start */
2724 0, /* todo_flags_finish */
2727 class pass_parallelize_loops : public gimple_opt_pass
2729 public:
2730 pass_parallelize_loops (gcc::context *ctxt)
2731 : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2734 /* opt_pass methods: */
2735 virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2736 virtual unsigned int execute (function *);
2738 }; // class pass_parallelize_loops
2740 unsigned
2741 pass_parallelize_loops::execute (function *fun)
2743 if (number_of_loops (fun) <= 1)
2744 return 0;
2746 if (parallelize_loops ())
2748 fun->curr_properties &= ~(PROP_gimple_eomp);
2750 #ifdef ENABLE_CHECKING
2751 verify_loop_structure ();
2752 #endif
2754 return TODO_update_ssa;
2757 return 0;
2760 } // anon namespace
2762 gimple_opt_pass *
2763 make_pass_parallelize_loops (gcc::context *ctxt)
2765 return new pass_parallelize_loops (ctxt);