1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
53 #include "fixed-value.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl
;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num
= 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers
;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
94 rtx global_rtl
[GR_MAX
];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
110 REAL_VALUE_TYPE dconst0
;
111 REAL_VALUE_TYPE dconst1
;
112 REAL_VALUE_TYPE dconst2
;
113 REAL_VALUE_TYPE dconstm1
;
114 REAL_VALUE_TYPE dconsthalf
;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
118 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
151 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
157 htab_t const_int_htab
;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
161 htab_t mem_attrs_htab
;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
165 htab_t reg_attrs_htab
;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
169 htab_t const_double_htab
;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
173 htab_t const_fixed_htab
;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx
make_call_insn_raw (rtx
);
182 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
183 static void set_used_decls (tree
);
184 static void mark_label_nuses (rtx
);
185 static hashval_t
const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t
const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx
lookup_const_double (rtx
);
190 static hashval_t
const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx
lookup_const_fixed (rtx
);
193 static hashval_t
mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs
*get_mem_attrs (alias_set_type
, tree
, rtx
, rtx
, unsigned int,
197 static hashval_t
reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs
*get_reg_attrs (tree
, int);
200 static tree
component_ref_for_mem_expr (tree
);
201 static rtx
gen_const_vector (enum machine_mode
, int);
202 static void copy_rtx_if_shared_1 (rtx
*orig
);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability
= -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
211 const_int_htab_hash (const void *x
)
213 return (hashval_t
) INTVAL ((const_rtx
) x
);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
221 const_int_htab_eq (const void *x
, const void *y
)
223 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
228 const_double_htab_hash (const void *x
)
230 const_rtx
const value
= (const_rtx
) x
;
233 if (GET_MODE (value
) == VOIDmode
)
234 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
237 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h
^= GET_MODE (value
);
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
247 const_double_htab_eq (const void *x
, const void *y
)
249 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
251 if (GET_MODE (a
) != GET_MODE (b
))
253 if (GET_MODE (a
) == VOIDmode
)
254 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
255 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
258 CONST_DOUBLE_REAL_VALUE (b
));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
264 const_fixed_htab_hash (const void *x
)
266 const_rtx
const value
= (const_rtx
) x
;
269 h
= fixed_hash (CONST_FIXED_VALUE (value
));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h
^= GET_MODE (value
);
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
279 const_fixed_htab_eq (const void *x
, const void *y
)
281 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
283 if (GET_MODE (a
) != GET_MODE (b
))
285 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
291 mem_attrs_htab_hash (const void *x
)
293 const mem_attrs
*const p
= (const mem_attrs
*) x
;
295 return (p
->alias
^ (p
->align
* 1000)
296 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
297 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
306 mem_attrs_htab_eq (const void *x
, const void *y
)
308 const mem_attrs
*const p
= (const mem_attrs
*) x
;
309 const mem_attrs
*const q
= (const mem_attrs
*) y
;
311 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
312 && p
->size
== q
->size
&& p
->align
== q
->align
313 && (p
->expr
== q
->expr
314 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
315 && operand_equal_p (p
->expr
, q
->expr
, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
323 get_mem_attrs (alias_set_type alias
, tree expr
, rtx offset
, rtx size
,
324 unsigned int align
, enum machine_mode mode
)
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias
== 0 && expr
== 0 && offset
== 0
334 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
335 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
336 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
341 attrs
.offset
= offset
;
345 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
348 *slot
= ggc_alloc (sizeof (mem_attrs
));
349 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
352 return (mem_attrs
*) *slot
;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
358 reg_attrs_htab_hash (const void *x
)
360 const reg_attrs
*const p
= (const reg_attrs
*) x
;
362 return ((p
->offset
* 1000) ^ (long) p
->decl
);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
370 reg_attrs_htab_eq (const void *x
, const void *y
)
372 const reg_attrs
*const p
= (const reg_attrs
*) x
;
373 const reg_attrs
*const q
= (const reg_attrs
*) y
;
375 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
382 get_reg_attrs (tree decl
, int offset
)
387 /* If everything is the default, we can just return zero. */
388 if (decl
== 0 && offset
== 0)
392 attrs
.offset
= offset
;
394 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
397 *slot
= ggc_alloc (sizeof (reg_attrs
));
398 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
401 return (reg_attrs
*) *slot
;
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
412 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
413 MEM_VOLATILE_P (x
) = true;
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode
, int regno
)
426 rtx x
= gen_rtx_raw_REG (mode
, regno
);
427 ORIGINAL_REGNO (x
) = regno
;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
440 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
441 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
445 return const_true_rtx
;
448 /* Look up the CONST_INT in the hash table. */
449 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
450 (hashval_t
) arg
, INSERT
);
452 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
458 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
460 return GEN_INT (trunc_int_for_mode (c
, mode
));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
471 lookup_const_double (rtx real
)
473 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
485 rtx real
= rtx_alloc (CONST_DOUBLE
);
486 PUT_MODE (real
, mode
);
490 return lookup_const_double (real
);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
498 lookup_const_fixed (rtx fixed
)
500 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
513 rtx fixed
= rtx_alloc (CONST_FIXED
);
514 PUT_MODE (fixed
, mode
);
518 return lookup_const_fixed (fixed
);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode
!= VOIDmode
)
544 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
545 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
550 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
551 return gen_int_mode (i0
, mode
);
553 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
560 /* We use VOIDmode for integers. */
561 value
= rtx_alloc (CONST_DOUBLE
);
562 PUT_MODE (value
, VOIDmode
);
564 CONST_DOUBLE_LOW (value
) = i0
;
565 CONST_DOUBLE_HIGH (value
) = i1
;
567 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
568 XWINT (value
, i
) = 0;
570 return lookup_const_double (value
);
574 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode
== Pmode
&& !reload_in_progress
)
592 if (regno
== FRAME_POINTER_REGNUM
593 && (!reload_completed
|| frame_pointer_needed
))
594 return frame_pointer_rtx
;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno
== HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed
|| frame_pointer_needed
))
598 return hard_frame_pointer_rtx
;
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno
== ARG_POINTER_REGNUM
)
602 return arg_pointer_rtx
;
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
606 return return_address_pointer_rtx
;
608 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
610 return pic_offset_table_rtx
;
611 if (regno
== STACK_POINTER_REGNUM
)
612 return stack_pointer_rtx
;
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
630 && regno
< FIRST_PSEUDO_REGISTER
631 && reg_raw_mode
[regno
] == mode
)
632 return regno_reg_rtx
[regno
];
635 return gen_raw_REG (mode
, regno
);
639 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
641 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
643 /* This field is not cleared by the mere allocation of the rtx, so
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode
, rtx addr
)
655 rtx mem
= gen_rtx_MEM (mode
, addr
);
656 MEM_READONLY_P (mem
) = 1;
657 MEM_NOTRAP_P (mem
) = 1;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
665 gen_frame_mem (enum machine_mode mode
, rtx addr
)
667 rtx mem
= gen_rtx_MEM (mode
, addr
);
668 MEM_NOTRAP_P (mem
) = 1;
669 set_mem_alias_set (mem
, get_frame_alias_set ());
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
679 rtx mem
= gen_rtx_MEM (mode
, addr
);
680 MEM_NOTRAP_P (mem
) = 1;
681 if (!cfun
->calls_alloca
)
682 set_mem_alias_set (mem
, get_frame_alias_set ());
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
690 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
691 const_rtx reg
, unsigned int offset
)
693 unsigned int isize
= GET_MODE_SIZE (imode
);
694 unsigned int osize
= GET_MODE_SIZE (omode
);
696 /* All subregs must be aligned. */
697 if (offset
% osize
!= 0)
700 /* The subreg offset cannot be outside the inner object. */
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
708 if (omode
== word_mode
)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
717 && GET_MODE_INNER (imode
) == omode
)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
735 /* Paradoxical subregs must have offset zero. */
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
745 unsigned int regno
= REGNO (reg
);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
749 && GET_MODE_INNER (imode
) == omode
)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
755 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize
< UNITS_PER_WORD
)
766 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
767 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
768 if (offset
% UNITS_PER_WORD
!= low_off
)
775 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
777 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
778 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
787 enum machine_mode inmode
;
789 inmode
= GET_MODE (reg
);
790 if (inmode
== VOIDmode
)
792 return gen_rtx_SUBREG (mode
, reg
,
793 subreg_lowpart_offset (mode
, inmode
));
797 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
800 gen_rtvec (int n
, ...)
808 /* Don't allocate an empty rtvec... */
812 rt_val
= rtvec_alloc (n
);
814 for (i
= 0; i
< n
; i
++)
815 rt_val
->elem
[i
] = va_arg (p
, rtx
);
822 gen_rtvec_v (int n
, rtx
*argp
)
827 /* Don't allocate an empty rtvec... */
831 rt_val
= rtvec_alloc (n
);
833 for (i
= 0; i
< n
; i
++)
834 rt_val
->elem
[i
] = *argp
++;
839 /* Return the number of bytes between the start of an OUTER_MODE
840 in-memory value and the start of an INNER_MODE in-memory value,
841 given that the former is a lowpart of the latter. It may be a
842 paradoxical lowpart, in which case the offset will be negative
843 on big-endian targets. */
846 byte_lowpart_offset (enum machine_mode outer_mode
,
847 enum machine_mode inner_mode
)
849 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
850 return subreg_lowpart_offset (outer_mode
, inner_mode
);
852 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
855 /* Generate a REG rtx for a new pseudo register of mode MODE.
856 This pseudo is assigned the next sequential register number. */
859 gen_reg_rtx (enum machine_mode mode
)
862 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
864 gcc_assert (can_create_pseudo_p ());
866 /* If a virtual register with bigger mode alignment is generated,
867 increase stack alignment estimation because it might be spilled
869 if (SUPPORTS_STACK_ALIGNMENT
870 && crtl
->stack_alignment_estimated
< align
871 && !crtl
->stack_realign_processed
)
872 crtl
->stack_alignment_estimated
= align
;
874 if (generating_concat_p
875 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
876 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
878 /* For complex modes, don't make a single pseudo.
879 Instead, make a CONCAT of two pseudos.
880 This allows noncontiguous allocation of the real and imaginary parts,
881 which makes much better code. Besides, allocating DCmode
882 pseudos overstrains reload on some machines like the 386. */
883 rtx realpart
, imagpart
;
884 enum machine_mode partmode
= GET_MODE_INNER (mode
);
886 realpart
= gen_reg_rtx (partmode
);
887 imagpart
= gen_reg_rtx (partmode
);
888 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
891 /* Make sure regno_pointer_align, and regno_reg_rtx are large
892 enough to have an element for this pseudo reg number. */
894 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
896 int old_size
= crtl
->emit
.regno_pointer_align_length
;
900 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
901 memset (tmp
+ old_size
, 0, old_size
);
902 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
904 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
905 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
906 regno_reg_rtx
= new1
;
908 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
911 val
= gen_raw_REG (mode
, reg_rtx_no
);
912 regno_reg_rtx
[reg_rtx_no
++] = val
;
916 /* Update NEW with the same attributes as REG, but with OFFSET added
917 to the REG_OFFSET. */
920 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
922 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
923 REG_OFFSET (reg
) + offset
);
926 /* Generate a register with same attributes as REG, but with OFFSET
927 added to the REG_OFFSET. */
930 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
933 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
935 update_reg_offset (new_rtx
, reg
, offset
);
939 /* Generate a new pseudo-register with the same attributes as REG, but
940 with OFFSET added to the REG_OFFSET. */
943 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
945 rtx new_rtx
= gen_reg_rtx (mode
);
947 update_reg_offset (new_rtx
, reg
, offset
);
951 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
952 new register is a (possibly paradoxical) lowpart of the old one. */
955 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
957 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
958 PUT_MODE (reg
, mode
);
961 /* Copy REG's attributes from X, if X has any attributes. If REG and X
962 have different modes, REG is a (possibly paradoxical) lowpart of X. */
965 set_reg_attrs_from_value (rtx reg
, rtx x
)
969 /* Hard registers can be reused for multiple purposes within the same
970 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
972 if (HARD_REGISTER_P (reg
))
975 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
978 if (MEM_OFFSET (x
) && GET_CODE (MEM_OFFSET (x
)) == CONST_INT
)
980 = get_reg_attrs (MEM_EXPR (x
), INTVAL (MEM_OFFSET (x
)) + offset
);
982 mark_reg_pointer (reg
, 0);
987 update_reg_offset (reg
, x
, offset
);
989 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
993 /* Generate a REG rtx for a new pseudo register, copying the mode
994 and attributes from X. */
997 gen_reg_rtx_and_attrs (rtx x
)
999 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1000 set_reg_attrs_from_value (reg
, x
);
1004 /* Set the register attributes for registers contained in PARM_RTX.
1005 Use needed values from memory attributes of MEM. */
1008 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1010 if (REG_P (parm_rtx
))
1011 set_reg_attrs_from_value (parm_rtx
, mem
);
1012 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1014 /* Check for a NULL entry in the first slot, used to indicate that the
1015 parameter goes both on the stack and in registers. */
1016 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1017 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1019 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1020 if (REG_P (XEXP (x
, 0)))
1021 REG_ATTRS (XEXP (x
, 0))
1022 = get_reg_attrs (MEM_EXPR (mem
),
1023 INTVAL (XEXP (x
, 1)));
1028 /* Set the REG_ATTRS for registers in value X, given that X represents
1032 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1034 if (GET_CODE (x
) == SUBREG
)
1036 gcc_assert (subreg_lowpart_p (x
));
1041 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1043 if (GET_CODE (x
) == CONCAT
)
1045 if (REG_P (XEXP (x
, 0)))
1046 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1047 if (REG_P (XEXP (x
, 1)))
1048 REG_ATTRS (XEXP (x
, 1))
1049 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1051 if (GET_CODE (x
) == PARALLEL
)
1055 /* Check for a NULL entry, used to indicate that the parameter goes
1056 both on the stack and in registers. */
1057 if (XEXP (XVECEXP (x
, 0, 0), 0))
1062 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1064 rtx y
= XVECEXP (x
, 0, i
);
1065 if (REG_P (XEXP (y
, 0)))
1066 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1071 /* Assign the RTX X to declaration T. */
1074 set_decl_rtl (tree t
, rtx x
)
1076 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1078 set_reg_attrs_for_decl_rtl (t
, x
);
1081 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1082 if the ABI requires the parameter to be passed by reference. */
1085 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1087 DECL_INCOMING_RTL (t
) = x
;
1088 if (x
&& !by_reference_p
)
1089 set_reg_attrs_for_decl_rtl (t
, x
);
1092 /* Identify REG (which may be a CONCAT) as a user register. */
1095 mark_user_reg (rtx reg
)
1097 if (GET_CODE (reg
) == CONCAT
)
1099 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1100 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1104 gcc_assert (REG_P (reg
));
1105 REG_USERVAR_P (reg
) = 1;
1109 /* Identify REG as a probable pointer register and show its alignment
1110 as ALIGN, if nonzero. */
1113 mark_reg_pointer (rtx reg
, int align
)
1115 if (! REG_POINTER (reg
))
1117 REG_POINTER (reg
) = 1;
1120 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1122 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1123 /* We can no-longer be sure just how aligned this pointer is. */
1124 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1127 /* Return 1 plus largest pseudo reg number used in the current function. */
1135 /* Return 1 + the largest label number used so far in the current function. */
1138 max_label_num (void)
1143 /* Return first label number used in this function (if any were used). */
1146 get_first_label_num (void)
1148 return first_label_num
;
1151 /* If the rtx for label was created during the expansion of a nested
1152 function, then first_label_num won't include this label number.
1153 Fix this now so that array indices work later. */
1156 maybe_set_first_label_num (rtx x
)
1158 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1159 first_label_num
= CODE_LABEL_NUMBER (x
);
1162 /* Return a value representing some low-order bits of X, where the number
1163 of low-order bits is given by MODE. Note that no conversion is done
1164 between floating-point and fixed-point values, rather, the bit
1165 representation is returned.
1167 This function handles the cases in common between gen_lowpart, below,
1168 and two variants in cse.c and combine.c. These are the cases that can
1169 be safely handled at all points in the compilation.
1171 If this is not a case we can handle, return 0. */
1174 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1176 int msize
= GET_MODE_SIZE (mode
);
1179 enum machine_mode innermode
;
1181 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1182 so we have to make one up. Yuk. */
1183 innermode
= GET_MODE (x
);
1184 if (GET_CODE (x
) == CONST_INT
1185 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1186 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1187 else if (innermode
== VOIDmode
)
1188 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1190 xsize
= GET_MODE_SIZE (innermode
);
1192 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1194 if (innermode
== mode
)
1197 /* MODE must occupy no more words than the mode of X. */
1198 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1199 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1202 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1203 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1206 offset
= subreg_lowpart_offset (mode
, innermode
);
1208 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1209 && (GET_MODE_CLASS (mode
) == MODE_INT
1210 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1212 /* If we are getting the low-order part of something that has been
1213 sign- or zero-extended, we can either just use the object being
1214 extended or make a narrower extension. If we want an even smaller
1215 piece than the size of the object being extended, call ourselves
1218 This case is used mostly by combine and cse. */
1220 if (GET_MODE (XEXP (x
, 0)) == mode
)
1222 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1223 return gen_lowpart_common (mode
, XEXP (x
, 0));
1224 else if (msize
< xsize
)
1225 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1227 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1228 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1229 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1230 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1232 /* Otherwise, we can't do this. */
1237 gen_highpart (enum machine_mode mode
, rtx x
)
1239 unsigned int msize
= GET_MODE_SIZE (mode
);
1242 /* This case loses if X is a subreg. To catch bugs early,
1243 complain if an invalid MODE is used even in other cases. */
1244 gcc_assert (msize
<= UNITS_PER_WORD
1245 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1247 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1248 subreg_highpart_offset (mode
, GET_MODE (x
)));
1249 gcc_assert (result
);
1251 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1252 the target if we have a MEM. gen_highpart must return a valid operand,
1253 emitting code if necessary to do so. */
1256 result
= validize_mem (result
);
1257 gcc_assert (result
);
1263 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1266 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1268 if (GET_MODE (exp
) != VOIDmode
)
1270 gcc_assert (GET_MODE (exp
) == innermode
);
1271 return gen_highpart (outermode
, exp
);
1273 return simplify_gen_subreg (outermode
, exp
, innermode
,
1274 subreg_highpart_offset (outermode
, innermode
));
1277 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1280 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1282 unsigned int offset
= 0;
1283 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1287 if (WORDS_BIG_ENDIAN
)
1288 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1289 if (BYTES_BIG_ENDIAN
)
1290 offset
+= difference
% UNITS_PER_WORD
;
1296 /* Return offset in bytes to get OUTERMODE high part
1297 of the value in mode INNERMODE stored in memory in target format. */
1299 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1301 unsigned int offset
= 0;
1302 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1304 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1308 if (! WORDS_BIG_ENDIAN
)
1309 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1310 if (! BYTES_BIG_ENDIAN
)
1311 offset
+= difference
% UNITS_PER_WORD
;
1317 /* Return 1 iff X, assumed to be a SUBREG,
1318 refers to the least significant part of its containing reg.
1319 If X is not a SUBREG, always return 1 (it is its own low part!). */
1322 subreg_lowpart_p (const_rtx x
)
1324 if (GET_CODE (x
) != SUBREG
)
1326 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1329 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1330 == SUBREG_BYTE (x
));
1333 /* Return subword OFFSET of operand OP.
1334 The word number, OFFSET, is interpreted as the word number starting
1335 at the low-order address. OFFSET 0 is the low-order word if not
1336 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1338 If we cannot extract the required word, we return zero. Otherwise,
1339 an rtx corresponding to the requested word will be returned.
1341 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1342 reload has completed, a valid address will always be returned. After
1343 reload, if a valid address cannot be returned, we return zero.
1345 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1346 it is the responsibility of the caller.
1348 MODE is the mode of OP in case it is a CONST_INT.
1350 ??? This is still rather broken for some cases. The problem for the
1351 moment is that all callers of this thing provide no 'goal mode' to
1352 tell us to work with. This exists because all callers were written
1353 in a word based SUBREG world.
1354 Now use of this function can be deprecated by simplify_subreg in most
1359 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1361 if (mode
== VOIDmode
)
1362 mode
= GET_MODE (op
);
1364 gcc_assert (mode
!= VOIDmode
);
1366 /* If OP is narrower than a word, fail. */
1368 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1371 /* If we want a word outside OP, return zero. */
1373 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1376 /* Form a new MEM at the requested address. */
1379 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1381 if (! validate_address
)
1384 else if (reload_completed
)
1386 if (! strict_memory_address_p (word_mode
, XEXP (new_rtx
, 0)))
1390 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1393 /* Rest can be handled by simplify_subreg. */
1394 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1397 /* Similar to `operand_subword', but never return 0. If we can't
1398 extract the required subword, put OP into a register and try again.
1399 The second attempt must succeed. We always validate the address in
1402 MODE is the mode of OP, in case it is CONST_INT. */
1405 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1407 rtx result
= operand_subword (op
, offset
, 1, mode
);
1412 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1414 /* If this is a register which can not be accessed by words, copy it
1415 to a pseudo register. */
1417 op
= copy_to_reg (op
);
1419 op
= force_reg (mode
, op
);
1422 result
= operand_subword (op
, offset
, 1, mode
);
1423 gcc_assert (result
);
1428 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1429 or (2) a component ref of something variable. Represent the later with
1430 a NULL expression. */
1433 component_ref_for_mem_expr (tree ref
)
1435 tree inner
= TREE_OPERAND (ref
, 0);
1437 if (TREE_CODE (inner
) == COMPONENT_REF
)
1438 inner
= component_ref_for_mem_expr (inner
);
1441 /* Now remove any conversions: they don't change what the underlying
1442 object is. Likewise for SAVE_EXPR. */
1443 while (CONVERT_EXPR_P (inner
)
1444 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1445 || TREE_CODE (inner
) == SAVE_EXPR
)
1446 inner
= TREE_OPERAND (inner
, 0);
1448 if (! DECL_P (inner
))
1452 if (inner
== TREE_OPERAND (ref
, 0)
1453 /* Don't leak SSA-names in the third operand. */
1454 && (!TREE_OPERAND (ref
, 2)
1455 || TREE_CODE (TREE_OPERAND (ref
, 2)) != SSA_NAME
))
1458 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1459 TREE_OPERAND (ref
, 1), NULL_TREE
);
1462 /* Returns 1 if both MEM_EXPR can be considered equal
1466 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1471 if (! expr1
|| ! expr2
)
1474 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1477 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1479 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1480 TREE_OPERAND (expr2
, 0))
1481 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1482 TREE_OPERAND (expr2
, 1));
1484 if (INDIRECT_REF_P (expr1
))
1485 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1486 TREE_OPERAND (expr2
, 0));
1488 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1489 have been resolved here. */
1490 gcc_assert (DECL_P (expr1
));
1492 /* Decls with different pointers can't be equal. */
1496 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1497 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1501 get_mem_align_offset (rtx mem
, unsigned int align
)
1504 unsigned HOST_WIDE_INT offset
;
1506 /* This function can't use
1507 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1508 || !CONST_INT_P (MEM_OFFSET (mem))
1509 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1513 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1515 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1516 for <variable>. get_inner_reference doesn't handle it and
1517 even if it did, the alignment in that case needs to be determined
1518 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1519 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1520 isn't sufficiently aligned, the object it is in might be. */
1521 gcc_assert (MEM_P (mem
));
1522 expr
= MEM_EXPR (mem
);
1523 if (expr
== NULL_TREE
1524 || MEM_OFFSET (mem
) == NULL_RTX
1525 || !CONST_INT_P (MEM_OFFSET (mem
)))
1528 offset
= INTVAL (MEM_OFFSET (mem
));
1531 if (DECL_ALIGN (expr
) < align
)
1534 else if (INDIRECT_REF_P (expr
))
1536 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1539 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1543 tree inner
= TREE_OPERAND (expr
, 0);
1544 tree field
= TREE_OPERAND (expr
, 1);
1545 tree byte_offset
= component_ref_field_offset (expr
);
1546 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1549 || !host_integerp (byte_offset
, 1)
1550 || !host_integerp (bit_offset
, 1))
1553 offset
+= tree_low_cst (byte_offset
, 1);
1554 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1556 if (inner
== NULL_TREE
)
1558 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1559 < (unsigned int) align
)
1563 else if (DECL_P (inner
))
1565 if (DECL_ALIGN (inner
) < align
)
1569 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1577 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1580 /* Given REF (a MEM) and T, either the type of X or the expression
1581 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1582 if we are making a new object of this type. BITPOS is nonzero if
1583 there is an offset outstanding on T that will be applied later. */
1586 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1587 HOST_WIDE_INT bitpos
)
1589 alias_set_type alias
= MEM_ALIAS_SET (ref
);
1590 tree expr
= MEM_EXPR (ref
);
1591 rtx offset
= MEM_OFFSET (ref
);
1592 rtx size
= MEM_SIZE (ref
);
1593 unsigned int align
= MEM_ALIGN (ref
);
1594 HOST_WIDE_INT apply_bitpos
= 0;
1597 /* It can happen that type_for_mode was given a mode for which there
1598 is no language-level type. In which case it returns NULL, which
1603 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1604 if (type
== error_mark_node
)
1607 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1608 wrong answer, as it assumes that DECL_RTL already has the right alias
1609 info. Callers should not set DECL_RTL until after the call to
1610 set_mem_attributes. */
1611 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1613 /* Get the alias set from the expression or type (perhaps using a
1614 front-end routine) and use it. */
1615 alias
= get_alias_set (t
);
1617 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1618 MEM_IN_STRUCT_P (ref
)
1619 = AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
;
1620 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1622 /* If we are making an object of this type, or if this is a DECL, we know
1623 that it is a scalar if the type is not an aggregate. */
1624 if ((objectp
|| DECL_P (t
))
1625 && ! AGGREGATE_TYPE_P (type
)
1626 && TREE_CODE (type
) != COMPLEX_TYPE
)
1627 MEM_SCALAR_P (ref
) = 1;
1629 /* We can set the alignment from the type if we are making an object,
1630 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1631 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1632 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1633 || TYPE_ALIGN_OK (type
))
1634 align
= MAX (align
, TYPE_ALIGN (type
));
1636 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1638 if (integer_zerop (TREE_OPERAND (t
, 1)))
1639 /* We don't know anything about the alignment. */
1640 align
= BITS_PER_UNIT
;
1642 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1645 /* If the size is known, we can set that. */
1646 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1647 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1649 /* If T is not a type, we may be able to deduce some more information about
1654 bool align_computed
= false;
1656 if (TREE_THIS_VOLATILE (t
))
1657 MEM_VOLATILE_P (ref
) = 1;
1659 /* Now remove any conversions: they don't change what the underlying
1660 object is. Likewise for SAVE_EXPR. */
1661 while (CONVERT_EXPR_P (t
)
1662 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1663 || TREE_CODE (t
) == SAVE_EXPR
)
1664 t
= TREE_OPERAND (t
, 0);
1666 /* We may look through structure-like accesses for the purposes of
1667 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1669 while (TREE_CODE (base
) == COMPONENT_REF
1670 || TREE_CODE (base
) == REALPART_EXPR
1671 || TREE_CODE (base
) == IMAGPART_EXPR
1672 || TREE_CODE (base
) == BIT_FIELD_REF
)
1673 base
= TREE_OPERAND (base
, 0);
1677 if (CODE_CONTAINS_STRUCT (TREE_CODE (base
), TS_DECL_WITH_VIS
))
1678 MEM_NOTRAP_P (ref
) = !DECL_WEAK (base
);
1680 MEM_NOTRAP_P (ref
) = 1;
1683 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (base
);
1685 base
= get_base_address (base
);
1686 if (base
&& DECL_P (base
)
1687 && TREE_READONLY (base
)
1688 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1690 tree base_type
= TREE_TYPE (base
);
1691 gcc_assert (!(base_type
&& TYPE_NEEDS_CONSTRUCTING (base_type
))
1692 || DECL_ARTIFICIAL (base
));
1693 MEM_READONLY_P (ref
) = 1;
1696 /* If this expression uses it's parent's alias set, mark it such
1697 that we won't change it. */
1698 if (component_uses_parent_alias_set (t
))
1699 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1701 /* If this is a decl, set the attributes of the MEM from it. */
1705 offset
= const0_rtx
;
1706 apply_bitpos
= bitpos
;
1707 size
= (DECL_SIZE_UNIT (t
)
1708 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1709 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1710 align
= DECL_ALIGN (t
);
1711 align_computed
= true;
1714 /* If this is a constant, we know the alignment. */
1715 else if (CONSTANT_CLASS_P (t
))
1717 align
= TYPE_ALIGN (type
);
1718 #ifdef CONSTANT_ALIGNMENT
1719 align
= CONSTANT_ALIGNMENT (t
, align
);
1721 align_computed
= true;
1724 /* If this is a field reference and not a bit-field, record it. */
1725 /* ??? There is some information that can be gleaned from bit-fields,
1726 such as the word offset in the structure that might be modified.
1727 But skip it for now. */
1728 else if (TREE_CODE (t
) == COMPONENT_REF
1729 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1731 expr
= component_ref_for_mem_expr (t
);
1732 offset
= const0_rtx
;
1733 apply_bitpos
= bitpos
;
1734 /* ??? Any reason the field size would be different than
1735 the size we got from the type? */
1738 /* If this is an array reference, look for an outer field reference. */
1739 else if (TREE_CODE (t
) == ARRAY_REF
)
1741 tree off_tree
= size_zero_node
;
1742 /* We can't modify t, because we use it at the end of the
1748 tree index
= TREE_OPERAND (t2
, 1);
1749 tree low_bound
= array_ref_low_bound (t2
);
1750 tree unit_size
= array_ref_element_size (t2
);
1752 /* We assume all arrays have sizes that are a multiple of a byte.
1753 First subtract the lower bound, if any, in the type of the
1754 index, then convert to sizetype and multiply by the size of
1755 the array element. */
1756 if (! integer_zerop (low_bound
))
1757 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1760 off_tree
= size_binop (PLUS_EXPR
,
1761 size_binop (MULT_EXPR
,
1762 fold_convert (sizetype
,
1766 t2
= TREE_OPERAND (t2
, 0);
1768 while (TREE_CODE (t2
) == ARRAY_REF
);
1774 if (host_integerp (off_tree
, 1))
1776 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1777 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1778 align
= DECL_ALIGN (t2
);
1779 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1781 align_computed
= true;
1782 offset
= GEN_INT (ioff
);
1783 apply_bitpos
= bitpos
;
1786 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1788 expr
= component_ref_for_mem_expr (t2
);
1789 if (host_integerp (off_tree
, 1))
1791 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1792 apply_bitpos
= bitpos
;
1794 /* ??? Any reason the field size would be different than
1795 the size we got from the type? */
1797 else if (flag_argument_noalias
> 1
1798 && (INDIRECT_REF_P (t2
))
1799 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1806 /* If this is a Fortran indirect argument reference, record the
1808 else if (flag_argument_noalias
> 1
1809 && (INDIRECT_REF_P (t
))
1810 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1816 if (!align_computed
&& !INDIRECT_REF_P (t
))
1818 unsigned int obj_align
1819 = get_object_alignment (t
, align
, BIGGEST_ALIGNMENT
);
1820 align
= MAX (align
, obj_align
);
1824 /* If we modified OFFSET based on T, then subtract the outstanding
1825 bit position offset. Similarly, increase the size of the accessed
1826 object to contain the negative offset. */
1829 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1831 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1834 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1836 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1837 we're overlapping. */
1842 /* Now set the attributes we computed above. */
1844 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1846 /* If this is already known to be a scalar or aggregate, we are done. */
1847 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1850 /* If it is a reference into an aggregate, this is part of an aggregate.
1851 Otherwise we don't know. */
1852 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1853 || TREE_CODE (t
) == ARRAY_RANGE_REF
1854 || TREE_CODE (t
) == BIT_FIELD_REF
)
1855 MEM_IN_STRUCT_P (ref
) = 1;
1859 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1861 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1864 /* Set the alias set of MEM to SET. */
1867 set_mem_alias_set (rtx mem
, alias_set_type set
)
1869 #ifdef ENABLE_CHECKING
1870 /* If the new and old alias sets don't conflict, something is wrong. */
1871 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1874 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1875 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1879 /* Set the alignment of MEM to ALIGN bits. */
1882 set_mem_align (rtx mem
, unsigned int align
)
1884 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1885 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1889 /* Set the expr for MEM to EXPR. */
1892 set_mem_expr (rtx mem
, tree expr
)
1895 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1896 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1899 /* Set the offset of MEM to OFFSET. */
1902 set_mem_offset (rtx mem
, rtx offset
)
1904 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1905 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1909 /* Set the size of MEM to SIZE. */
1912 set_mem_size (rtx mem
, rtx size
)
1914 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1915 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1919 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1920 and its address changed to ADDR. (VOIDmode means don't change the mode.
1921 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1922 returned memory location is required to be valid. The memory
1923 attributes are not changed. */
1926 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1930 gcc_assert (MEM_P (memref
));
1931 if (mode
== VOIDmode
)
1932 mode
= GET_MODE (memref
);
1934 addr
= XEXP (memref
, 0);
1935 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1936 && (!validate
|| memory_address_p (mode
, addr
)))
1941 if (reload_in_progress
|| reload_completed
)
1942 gcc_assert (memory_address_p (mode
, addr
));
1944 addr
= memory_address (mode
, addr
);
1947 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1950 new_rtx
= gen_rtx_MEM (mode
, addr
);
1951 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1955 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1956 way we are changing MEMREF, so we only preserve the alias set. */
1959 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1961 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1), size
;
1962 enum machine_mode mmode
= GET_MODE (new_rtx
);
1965 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1966 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1968 /* If there are no changes, just return the original memory reference. */
1969 if (new_rtx
== memref
)
1971 if (MEM_ATTRS (memref
) == 0
1972 || (MEM_EXPR (memref
) == NULL
1973 && MEM_OFFSET (memref
) == NULL
1974 && MEM_SIZE (memref
) == size
1975 && MEM_ALIGN (memref
) == align
))
1978 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1979 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1983 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1988 /* Return a memory reference like MEMREF, but with its mode changed
1989 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1990 nonzero, the memory address is forced to be valid.
1991 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1992 and caller is responsible for adjusting MEMREF base register. */
1995 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1996 int validate
, int adjust
)
1998 rtx addr
= XEXP (memref
, 0);
2000 rtx memoffset
= MEM_OFFSET (memref
);
2002 unsigned int memalign
= MEM_ALIGN (memref
);
2005 /* If there are no changes, just return the original memory reference. */
2006 if (mode
== GET_MODE (memref
) && !offset
2007 && (!validate
|| memory_address_p (mode
, addr
)))
2010 /* ??? Prefer to create garbage instead of creating shared rtl.
2011 This may happen even if offset is nonzero -- consider
2012 (plus (plus reg reg) const_int) -- so do this always. */
2013 addr
= copy_rtx (addr
);
2015 /* Convert a possibly large offset to a signed value within the
2016 range of the target address space. */
2017 pbits
= GET_MODE_BITSIZE (Pmode
);
2018 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2020 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2021 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2027 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2028 object, we can merge it into the LO_SUM. */
2029 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2031 && (unsigned HOST_WIDE_INT
) offset
2032 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2033 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
2034 plus_constant (XEXP (addr
, 1), offset
));
2036 addr
= plus_constant (addr
, offset
);
2039 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2041 /* If the address is a REG, change_address_1 rightfully returns memref,
2042 but this would destroy memref's MEM_ATTRS. */
2043 if (new_rtx
== memref
&& offset
!= 0)
2044 new_rtx
= copy_rtx (new_rtx
);
2046 /* Compute the new values of the memory attributes due to this adjustment.
2047 We add the offsets and update the alignment. */
2049 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
2051 /* Compute the new alignment by taking the MIN of the alignment and the
2052 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2057 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
2059 /* We can compute the size in a number of ways. */
2060 if (GET_MODE (new_rtx
) != BLKmode
)
2061 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx
)));
2062 else if (MEM_SIZE (memref
))
2063 size
= plus_constant (MEM_SIZE (memref
), -offset
);
2065 MEM_ATTRS (new_rtx
) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2066 memoffset
, size
, memalign
, GET_MODE (new_rtx
));
2068 /* At some point, we should validate that this offset is within the object,
2069 if all the appropriate values are known. */
2073 /* Return a memory reference like MEMREF, but with its mode changed
2074 to MODE and its address changed to ADDR, which is assumed to be
2075 MEMREF offset by OFFSET bytes. If VALIDATE is
2076 nonzero, the memory address is forced to be valid. */
2079 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2080 HOST_WIDE_INT offset
, int validate
)
2082 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2083 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2086 /* Return a memory reference like MEMREF, but whose address is changed by
2087 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2088 known to be in OFFSET (possibly 1). */
2091 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2093 rtx new_rtx
, addr
= XEXP (memref
, 0);
2095 new_rtx
= simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2097 /* At this point we don't know _why_ the address is invalid. It
2098 could have secondary memory references, multiplies or anything.
2100 However, if we did go and rearrange things, we can wind up not
2101 being able to recognize the magic around pic_offset_table_rtx.
2102 This stuff is fragile, and is yet another example of why it is
2103 bad to expose PIC machinery too early. */
2104 if (! memory_address_p (GET_MODE (memref
), new_rtx
)
2105 && GET_CODE (addr
) == PLUS
2106 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2108 addr
= force_reg (GET_MODE (addr
), addr
);
2109 new_rtx
= simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2112 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2113 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2115 /* If there are no changes, just return the original memory reference. */
2116 if (new_rtx
== memref
)
2119 /* Update the alignment to reflect the offset. Reset the offset, which
2122 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2123 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2124 GET_MODE (new_rtx
));
2128 /* Return a memory reference like MEMREF, but with its address changed to
2129 ADDR. The caller is asserting that the actual piece of memory pointed
2130 to is the same, just the form of the address is being changed, such as
2131 by putting something into a register. */
2134 replace_equiv_address (rtx memref
, rtx addr
)
2136 /* change_address_1 copies the memory attribute structure without change
2137 and that's exactly what we want here. */
2138 update_temp_slot_address (XEXP (memref
, 0), addr
);
2139 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2142 /* Likewise, but the reference is not required to be valid. */
2145 replace_equiv_address_nv (rtx memref
, rtx addr
)
2147 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2150 /* Return a memory reference like MEMREF, but with its mode widened to
2151 MODE and offset by OFFSET. This would be used by targets that e.g.
2152 cannot issue QImode memory operations and have to use SImode memory
2153 operations plus masking logic. */
2156 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2158 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1);
2159 tree expr
= MEM_EXPR (new_rtx
);
2160 rtx memoffset
= MEM_OFFSET (new_rtx
);
2161 unsigned int size
= GET_MODE_SIZE (mode
);
2163 /* If there are no changes, just return the original memory reference. */
2164 if (new_rtx
== memref
)
2167 /* If we don't know what offset we were at within the expression, then
2168 we can't know if we've overstepped the bounds. */
2174 if (TREE_CODE (expr
) == COMPONENT_REF
)
2176 tree field
= TREE_OPERAND (expr
, 1);
2177 tree offset
= component_ref_field_offset (expr
);
2179 if (! DECL_SIZE_UNIT (field
))
2185 /* Is the field at least as large as the access? If so, ok,
2186 otherwise strip back to the containing structure. */
2187 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2188 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2189 && INTVAL (memoffset
) >= 0)
2192 if (! host_integerp (offset
, 1))
2198 expr
= TREE_OPERAND (expr
, 0);
2200 = (GEN_INT (INTVAL (memoffset
)
2201 + tree_low_cst (offset
, 1)
2202 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2205 /* Similarly for the decl. */
2206 else if (DECL_P (expr
)
2207 && DECL_SIZE_UNIT (expr
)
2208 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2209 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2210 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2214 /* The widened memory access overflows the expression, which means
2215 that it could alias another expression. Zap it. */
2222 memoffset
= NULL_RTX
;
2224 /* The widened memory may alias other stuff, so zap the alias set. */
2225 /* ??? Maybe use get_alias_set on any remaining expression. */
2227 MEM_ATTRS (new_rtx
) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2228 MEM_ALIGN (new_rtx
), mode
);
2233 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2234 static GTY(()) tree spill_slot_decl
;
2237 get_spill_slot_decl (bool force_build_p
)
2239 tree d
= spill_slot_decl
;
2242 if (d
|| !force_build_p
)
2245 d
= build_decl (VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2246 DECL_ARTIFICIAL (d
) = 1;
2247 DECL_IGNORED_P (d
) = 1;
2249 TREE_THIS_NOTRAP (d
) = 1;
2250 spill_slot_decl
= d
;
2252 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2253 MEM_NOTRAP_P (rd
) = 1;
2254 MEM_ATTRS (rd
) = get_mem_attrs (new_alias_set (), d
, const0_rtx
,
2255 NULL_RTX
, 0, BLKmode
);
2256 SET_DECL_RTL (d
, rd
);
2261 /* Given MEM, a result from assign_stack_local, fill in the memory
2262 attributes as appropriate for a register allocator spill slot.
2263 These slots are not aliasable by other memory. We arrange for
2264 them all to use a single MEM_EXPR, so that the aliasing code can
2265 work properly in the case of shared spill slots. */
2268 set_mem_attrs_for_spill (rtx mem
)
2270 alias_set_type alias
;
2274 expr
= get_spill_slot_decl (true);
2275 alias
= MEM_ALIAS_SET (DECL_RTL (expr
));
2277 /* We expect the incoming memory to be of the form:
2278 (mem:MODE (plus (reg sfp) (const_int offset)))
2279 with perhaps the plus missing for offset = 0. */
2280 addr
= XEXP (mem
, 0);
2281 offset
= const0_rtx
;
2282 if (GET_CODE (addr
) == PLUS
2283 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
2284 offset
= XEXP (addr
, 1);
2286 MEM_ATTRS (mem
) = get_mem_attrs (alias
, expr
, offset
,
2287 MEM_SIZE (mem
), MEM_ALIGN (mem
),
2289 MEM_NOTRAP_P (mem
) = 1;
2292 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2295 gen_label_rtx (void)
2297 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2298 NULL
, label_num
++, NULL
);
2301 /* For procedure integration. */
2303 /* Install new pointers to the first and last insns in the chain.
2304 Also, set cur_insn_uid to one higher than the last in use.
2305 Used for an inline-procedure after copying the insn chain. */
2308 set_new_first_and_last_insn (rtx first
, rtx last
)
2316 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2317 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2322 /* Go through all the RTL insn bodies and copy any invalid shared
2323 structure. This routine should only be called once. */
2326 unshare_all_rtl_1 (rtx insn
)
2328 /* Unshare just about everything else. */
2329 unshare_all_rtl_in_chain (insn
);
2331 /* Make sure the addresses of stack slots found outside the insn chain
2332 (such as, in DECL_RTL of a variable) are not shared
2333 with the insn chain.
2335 This special care is necessary when the stack slot MEM does not
2336 actually appear in the insn chain. If it does appear, its address
2337 is unshared from all else at that point. */
2338 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2341 /* Go through all the RTL insn bodies and copy any invalid shared
2342 structure, again. This is a fairly expensive thing to do so it
2343 should be done sparingly. */
2346 unshare_all_rtl_again (rtx insn
)
2351 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2354 reset_used_flags (PATTERN (p
));
2355 reset_used_flags (REG_NOTES (p
));
2358 /* Make sure that virtual stack slots are not shared. */
2359 set_used_decls (DECL_INITIAL (cfun
->decl
));
2361 /* Make sure that virtual parameters are not shared. */
2362 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2363 set_used_flags (DECL_RTL (decl
));
2365 reset_used_flags (stack_slot_list
);
2367 unshare_all_rtl_1 (insn
);
2371 unshare_all_rtl (void)
2373 unshare_all_rtl_1 (get_insns ());
2377 struct rtl_opt_pass pass_unshare_all_rtl
=
2381 "unshare", /* name */
2383 unshare_all_rtl
, /* execute */
2386 0, /* static_pass_number */
2387 TV_NONE
, /* tv_id */
2388 0, /* properties_required */
2389 0, /* properties_provided */
2390 0, /* properties_destroyed */
2391 0, /* todo_flags_start */
2392 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */
2397 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2398 Recursively does the same for subexpressions. */
2401 verify_rtx_sharing (rtx orig
, rtx insn
)
2406 const char *format_ptr
;
2411 code
= GET_CODE (x
);
2413 /* These types may be freely shared. */
2429 /* SCRATCH must be shared because they represent distinct values. */
2431 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2436 if (shared_const_p (orig
))
2441 /* A MEM is allowed to be shared if its address is constant. */
2442 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2443 || reload_completed
|| reload_in_progress
)
2452 /* This rtx may not be shared. If it has already been seen,
2453 replace it with a copy of itself. */
2454 #ifdef ENABLE_CHECKING
2455 if (RTX_FLAG (x
, used
))
2457 error ("invalid rtl sharing found in the insn");
2459 error ("shared rtx");
2461 internal_error ("internal consistency failure");
2464 gcc_assert (!RTX_FLAG (x
, used
));
2466 RTX_FLAG (x
, used
) = 1;
2468 /* Now scan the subexpressions recursively. */
2470 format_ptr
= GET_RTX_FORMAT (code
);
2472 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2474 switch (*format_ptr
++)
2477 verify_rtx_sharing (XEXP (x
, i
), insn
);
2481 if (XVEC (x
, i
) != NULL
)
2484 int len
= XVECLEN (x
, i
);
2486 for (j
= 0; j
< len
; j
++)
2488 /* We allow sharing of ASM_OPERANDS inside single
2490 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2491 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2493 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2495 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2504 /* Go through all the RTL insn bodies and check that there is no unexpected
2505 sharing in between the subexpressions. */
2508 verify_rtl_sharing (void)
2512 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2515 reset_used_flags (PATTERN (p
));
2516 reset_used_flags (REG_NOTES (p
));
2517 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2520 rtx q
, sequence
= PATTERN (p
);
2522 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2524 q
= XVECEXP (sequence
, 0, i
);
2525 gcc_assert (INSN_P (q
));
2526 reset_used_flags (PATTERN (q
));
2527 reset_used_flags (REG_NOTES (q
));
2532 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2535 verify_rtx_sharing (PATTERN (p
), p
);
2536 verify_rtx_sharing (REG_NOTES (p
), p
);
2540 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2541 Assumes the mark bits are cleared at entry. */
2544 unshare_all_rtl_in_chain (rtx insn
)
2546 for (; insn
; insn
= NEXT_INSN (insn
))
2549 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2550 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2554 /* Go through all virtual stack slots of a function and mark them as
2555 shared. We never replace the DECL_RTLs themselves with a copy,
2556 but expressions mentioned into a DECL_RTL cannot be shared with
2557 expressions in the instruction stream.
2559 Note that reload may convert pseudo registers into memories in-place.
2560 Pseudo registers are always shared, but MEMs never are. Thus if we
2561 reset the used flags on MEMs in the instruction stream, we must set
2562 them again on MEMs that appear in DECL_RTLs. */
2565 set_used_decls (tree blk
)
2570 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2571 if (DECL_RTL_SET_P (t
))
2572 set_used_flags (DECL_RTL (t
));
2574 /* Now process sub-blocks. */
2575 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2579 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2580 Recursively does the same for subexpressions. Uses
2581 copy_rtx_if_shared_1 to reduce stack space. */
2584 copy_rtx_if_shared (rtx orig
)
2586 copy_rtx_if_shared_1 (&orig
);
2590 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2591 use. Recursively does the same for subexpressions. */
2594 copy_rtx_if_shared_1 (rtx
*orig1
)
2600 const char *format_ptr
;
2604 /* Repeat is used to turn tail-recursion into iteration. */
2611 code
= GET_CODE (x
);
2613 /* These types may be freely shared. */
2628 /* SCRATCH must be shared because they represent distinct values. */
2631 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2636 if (shared_const_p (x
))
2645 /* The chain of insns is not being copied. */
2652 /* This rtx may not be shared. If it has already been seen,
2653 replace it with a copy of itself. */
2655 if (RTX_FLAG (x
, used
))
2657 x
= shallow_copy_rtx (x
);
2660 RTX_FLAG (x
, used
) = 1;
2662 /* Now scan the subexpressions recursively.
2663 We can store any replaced subexpressions directly into X
2664 since we know X is not shared! Any vectors in X
2665 must be copied if X was copied. */
2667 format_ptr
= GET_RTX_FORMAT (code
);
2668 length
= GET_RTX_LENGTH (code
);
2671 for (i
= 0; i
< length
; i
++)
2673 switch (*format_ptr
++)
2677 copy_rtx_if_shared_1 (last_ptr
);
2678 last_ptr
= &XEXP (x
, i
);
2682 if (XVEC (x
, i
) != NULL
)
2685 int len
= XVECLEN (x
, i
);
2687 /* Copy the vector iff I copied the rtx and the length
2689 if (copied
&& len
> 0)
2690 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2692 /* Call recursively on all inside the vector. */
2693 for (j
= 0; j
< len
; j
++)
2696 copy_rtx_if_shared_1 (last_ptr
);
2697 last_ptr
= &XVECEXP (x
, i
, j
);
2712 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2713 to look for shared sub-parts. */
2716 reset_used_flags (rtx x
)
2720 const char *format_ptr
;
2723 /* Repeat is used to turn tail-recursion into iteration. */
2728 code
= GET_CODE (x
);
2730 /* These types may be freely shared so we needn't do any resetting
2752 /* The chain of insns is not being copied. */
2759 RTX_FLAG (x
, used
) = 0;
2761 format_ptr
= GET_RTX_FORMAT (code
);
2762 length
= GET_RTX_LENGTH (code
);
2764 for (i
= 0; i
< length
; i
++)
2766 switch (*format_ptr
++)
2774 reset_used_flags (XEXP (x
, i
));
2778 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2779 reset_used_flags (XVECEXP (x
, i
, j
));
2785 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2786 to look for shared sub-parts. */
2789 set_used_flags (rtx x
)
2793 const char *format_ptr
;
2798 code
= GET_CODE (x
);
2800 /* These types may be freely shared so we needn't do any resetting
2822 /* The chain of insns is not being copied. */
2829 RTX_FLAG (x
, used
) = 1;
2831 format_ptr
= GET_RTX_FORMAT (code
);
2832 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2834 switch (*format_ptr
++)
2837 set_used_flags (XEXP (x
, i
));
2841 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2842 set_used_flags (XVECEXP (x
, i
, j
));
2848 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2849 Return X or the rtx for the pseudo reg the value of X was copied into.
2850 OTHER must be valid as a SET_DEST. */
2853 make_safe_from (rtx x
, rtx other
)
2856 switch (GET_CODE (other
))
2859 other
= SUBREG_REG (other
);
2861 case STRICT_LOW_PART
:
2864 other
= XEXP (other
, 0);
2873 && GET_CODE (x
) != SUBREG
)
2875 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2876 || reg_mentioned_p (other
, x
))))
2878 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2879 emit_move_insn (temp
, x
);
2885 /* Emission of insns (adding them to the doubly-linked list). */
2887 /* Return the first insn of the current sequence or current function. */
2895 /* Specify a new insn as the first in the chain. */
2898 set_first_insn (rtx insn
)
2900 gcc_assert (!PREV_INSN (insn
));
2904 /* Return the last insn emitted in current sequence or current function. */
2907 get_last_insn (void)
2912 /* Specify a new insn as the last in the chain. */
2915 set_last_insn (rtx insn
)
2917 gcc_assert (!NEXT_INSN (insn
));
2921 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2924 get_last_insn_anywhere (void)
2926 struct sequence_stack
*stack
;
2929 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2930 if (stack
->last
!= 0)
2935 /* Return the first nonnote insn emitted in current sequence or current
2936 function. This routine looks inside SEQUENCEs. */
2939 get_first_nonnote_insn (void)
2941 rtx insn
= first_insn
;
2946 for (insn
= next_insn (insn
);
2947 insn
&& NOTE_P (insn
);
2948 insn
= next_insn (insn
))
2952 if (NONJUMP_INSN_P (insn
)
2953 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2954 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2961 /* Return the last nonnote insn emitted in current sequence or current
2962 function. This routine looks inside SEQUENCEs. */
2965 get_last_nonnote_insn (void)
2967 rtx insn
= last_insn
;
2972 for (insn
= previous_insn (insn
);
2973 insn
&& NOTE_P (insn
);
2974 insn
= previous_insn (insn
))
2978 if (NONJUMP_INSN_P (insn
)
2979 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2980 insn
= XVECEXP (PATTERN (insn
), 0,
2981 XVECLEN (PATTERN (insn
), 0) - 1);
2988 /* Return a number larger than any instruction's uid in this function. */
2993 return cur_insn_uid
;
2996 /* Return the next insn. If it is a SEQUENCE, return the first insn
3000 next_insn (rtx insn
)
3004 insn
= NEXT_INSN (insn
);
3005 if (insn
&& NONJUMP_INSN_P (insn
)
3006 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3007 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3013 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3017 previous_insn (rtx insn
)
3021 insn
= PREV_INSN (insn
);
3022 if (insn
&& NONJUMP_INSN_P (insn
)
3023 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3024 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3030 /* Return the next insn after INSN that is not a NOTE. This routine does not
3031 look inside SEQUENCEs. */
3034 next_nonnote_insn (rtx insn
)
3038 insn
= NEXT_INSN (insn
);
3039 if (insn
== 0 || !NOTE_P (insn
))
3046 /* Return the previous insn before INSN that is not a NOTE. This routine does
3047 not look inside SEQUENCEs. */
3050 prev_nonnote_insn (rtx insn
)
3054 insn
= PREV_INSN (insn
);
3055 if (insn
== 0 || !NOTE_P (insn
))
3062 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3063 or 0, if there is none. This routine does not look inside
3067 next_real_insn (rtx insn
)
3071 insn
= NEXT_INSN (insn
);
3072 if (insn
== 0 || INSN_P (insn
))
3079 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3080 or 0, if there is none. This routine does not look inside
3084 prev_real_insn (rtx insn
)
3088 insn
= PREV_INSN (insn
);
3089 if (insn
== 0 || INSN_P (insn
))
3096 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3097 This routine does not look inside SEQUENCEs. */
3100 last_call_insn (void)
3104 for (insn
= get_last_insn ();
3105 insn
&& !CALL_P (insn
);
3106 insn
= PREV_INSN (insn
))
3112 /* Find the next insn after INSN that really does something. This routine
3113 does not look inside SEQUENCEs. Until reload has completed, this is the
3114 same as next_real_insn. */
3117 active_insn_p (const_rtx insn
)
3119 return (CALL_P (insn
) || JUMP_P (insn
)
3120 || (NONJUMP_INSN_P (insn
)
3121 && (! reload_completed
3122 || (GET_CODE (PATTERN (insn
)) != USE
3123 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3127 next_active_insn (rtx insn
)
3131 insn
= NEXT_INSN (insn
);
3132 if (insn
== 0 || active_insn_p (insn
))
3139 /* Find the last insn before INSN that really does something. This routine
3140 does not look inside SEQUENCEs. Until reload has completed, this is the
3141 same as prev_real_insn. */
3144 prev_active_insn (rtx insn
)
3148 insn
= PREV_INSN (insn
);
3149 if (insn
== 0 || active_insn_p (insn
))
3156 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3159 next_label (rtx insn
)
3163 insn
= NEXT_INSN (insn
);
3164 if (insn
== 0 || LABEL_P (insn
))
3171 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3174 prev_label (rtx insn
)
3178 insn
= PREV_INSN (insn
);
3179 if (insn
== 0 || LABEL_P (insn
))
3186 /* Return the last label to mark the same position as LABEL. Return null
3187 if LABEL itself is null. */
3190 skip_consecutive_labels (rtx label
)
3194 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3202 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3203 and REG_CC_USER notes so we can find it. */
3206 link_cc0_insns (rtx insn
)
3208 rtx user
= next_nonnote_insn (insn
);
3210 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3211 user
= XVECEXP (PATTERN (user
), 0, 0);
3213 add_reg_note (user
, REG_CC_SETTER
, insn
);
3214 add_reg_note (insn
, REG_CC_USER
, user
);
3217 /* Return the next insn that uses CC0 after INSN, which is assumed to
3218 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3219 applied to the result of this function should yield INSN).
3221 Normally, this is simply the next insn. However, if a REG_CC_USER note
3222 is present, it contains the insn that uses CC0.
3224 Return 0 if we can't find the insn. */
3227 next_cc0_user (rtx insn
)
3229 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3232 return XEXP (note
, 0);
3234 insn
= next_nonnote_insn (insn
);
3235 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3236 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3238 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3244 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3245 note, it is the previous insn. */
3248 prev_cc0_setter (rtx insn
)
3250 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3253 return XEXP (note
, 0);
3255 insn
= prev_nonnote_insn (insn
);
3256 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3263 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3266 find_auto_inc (rtx
*xp
, void *data
)
3269 rtx reg
= (rtx
) data
;
3271 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3274 switch (GET_CODE (x
))
3282 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3293 /* Increment the label uses for all labels present in rtx. */
3296 mark_label_nuses (rtx x
)
3302 code
= GET_CODE (x
);
3303 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3304 LABEL_NUSES (XEXP (x
, 0))++;
3306 fmt
= GET_RTX_FORMAT (code
);
3307 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3310 mark_label_nuses (XEXP (x
, i
));
3311 else if (fmt
[i
] == 'E')
3312 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3313 mark_label_nuses (XVECEXP (x
, i
, j
));
3318 /* Try splitting insns that can be split for better scheduling.
3319 PAT is the pattern which might split.
3320 TRIAL is the insn providing PAT.
3321 LAST is nonzero if we should return the last insn of the sequence produced.
3323 If this routine succeeds in splitting, it returns the first or last
3324 replacement insn depending on the value of LAST. Otherwise, it
3325 returns TRIAL. If the insn to be returned can be split, it will be. */
3328 try_split (rtx pat
, rtx trial
, int last
)
3330 rtx before
= PREV_INSN (trial
);
3331 rtx after
= NEXT_INSN (trial
);
3332 int has_barrier
= 0;
3335 rtx insn_last
, insn
;
3338 /* We're not good at redistributing frame information. */
3339 if (RTX_FRAME_RELATED_P (trial
))
3342 if (any_condjump_p (trial
)
3343 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3344 split_branch_probability
= INTVAL (XEXP (note
, 0));
3345 probability
= split_branch_probability
;
3347 seq
= split_insns (pat
, trial
);
3349 split_branch_probability
= -1;
3351 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3352 We may need to handle this specially. */
3353 if (after
&& BARRIER_P (after
))
3356 after
= NEXT_INSN (after
);
3362 /* Avoid infinite loop if any insn of the result matches
3363 the original pattern. */
3367 if (INSN_P (insn_last
)
3368 && rtx_equal_p (PATTERN (insn_last
), pat
))
3370 if (!NEXT_INSN (insn_last
))
3372 insn_last
= NEXT_INSN (insn_last
);
3375 /* We will be adding the new sequence to the function. The splitters
3376 may have introduced invalid RTL sharing, so unshare the sequence now. */
3377 unshare_all_rtl_in_chain (seq
);
3380 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3384 mark_jump_label (PATTERN (insn
), insn
, 0);
3386 if (probability
!= -1
3387 && any_condjump_p (insn
)
3388 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3390 /* We can preserve the REG_BR_PROB notes only if exactly
3391 one jump is created, otherwise the machine description
3392 is responsible for this step using
3393 split_branch_probability variable. */
3394 gcc_assert (njumps
== 1);
3395 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3400 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3401 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3404 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3407 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3410 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3411 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3415 /* Copy notes, particularly those related to the CFG. */
3416 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3418 switch (REG_NOTE_KIND (note
))
3421 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3424 || (flag_non_call_exceptions
&& INSN_P (insn
)
3425 && may_trap_p (PATTERN (insn
))))
3426 add_reg_note (insn
, REG_EH_REGION
, XEXP (note
, 0));
3432 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3435 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3439 case REG_NON_LOCAL_GOTO
:
3440 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3443 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3449 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3451 rtx reg
= XEXP (note
, 0);
3452 if (!FIND_REG_INC_NOTE (insn
, reg
)
3453 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3454 add_reg_note (insn
, REG_INC
, reg
);
3464 /* If there are LABELS inside the split insns increment the
3465 usage count so we don't delete the label. */
3469 while (insn
!= NULL_RTX
)
3471 /* JUMP_P insns have already been "marked" above. */
3472 if (NONJUMP_INSN_P (insn
))
3473 mark_label_nuses (PATTERN (insn
));
3475 insn
= PREV_INSN (insn
);
3479 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3481 delete_insn (trial
);
3483 emit_barrier_after (tem
);
3485 /* Recursively call try_split for each new insn created; by the
3486 time control returns here that insn will be fully split, so
3487 set LAST and continue from the insn after the one returned.
3488 We can't use next_active_insn here since AFTER may be a note.
3489 Ignore deleted insns, which can be occur if not optimizing. */
3490 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3491 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3492 tem
= try_split (PATTERN (tem
), tem
, 1);
3494 /* Return either the first or the last insn, depending on which was
3497 ? (after
? PREV_INSN (after
) : last_insn
)
3498 : NEXT_INSN (before
);
3501 /* Make and return an INSN rtx, initializing all its slots.
3502 Store PATTERN in the pattern slots. */
3505 make_insn_raw (rtx pattern
)
3509 insn
= rtx_alloc (INSN
);
3511 INSN_UID (insn
) = cur_insn_uid
++;
3512 PATTERN (insn
) = pattern
;
3513 INSN_CODE (insn
) = -1;
3514 REG_NOTES (insn
) = NULL
;
3515 INSN_LOCATOR (insn
) = curr_insn_locator ();
3516 BLOCK_FOR_INSN (insn
) = NULL
;
3518 #ifdef ENABLE_RTL_CHECKING
3521 && (returnjump_p (insn
)
3522 || (GET_CODE (insn
) == SET
3523 && SET_DEST (insn
) == pc_rtx
)))
3525 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3533 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3536 make_jump_insn_raw (rtx pattern
)
3540 insn
= rtx_alloc (JUMP_INSN
);
3541 INSN_UID (insn
) = cur_insn_uid
++;
3543 PATTERN (insn
) = pattern
;
3544 INSN_CODE (insn
) = -1;
3545 REG_NOTES (insn
) = NULL
;
3546 JUMP_LABEL (insn
) = NULL
;
3547 INSN_LOCATOR (insn
) = curr_insn_locator ();
3548 BLOCK_FOR_INSN (insn
) = NULL
;
3553 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3556 make_call_insn_raw (rtx pattern
)
3560 insn
= rtx_alloc (CALL_INSN
);
3561 INSN_UID (insn
) = cur_insn_uid
++;
3563 PATTERN (insn
) = pattern
;
3564 INSN_CODE (insn
) = -1;
3565 REG_NOTES (insn
) = NULL
;
3566 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3567 INSN_LOCATOR (insn
) = curr_insn_locator ();
3568 BLOCK_FOR_INSN (insn
) = NULL
;
3573 /* Add INSN to the end of the doubly-linked list.
3574 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3579 PREV_INSN (insn
) = last_insn
;
3580 NEXT_INSN (insn
) = 0;
3582 if (NULL
!= last_insn
)
3583 NEXT_INSN (last_insn
) = insn
;
3585 if (NULL
== first_insn
)
3591 /* Add INSN into the doubly-linked list after insn AFTER. This and
3592 the next should be the only functions called to insert an insn once
3593 delay slots have been filled since only they know how to update a
3597 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3599 rtx next
= NEXT_INSN (after
);
3601 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3603 NEXT_INSN (insn
) = next
;
3604 PREV_INSN (insn
) = after
;
3608 PREV_INSN (next
) = insn
;
3609 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3610 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3612 else if (last_insn
== after
)
3616 struct sequence_stack
*stack
= seq_stack
;
3617 /* Scan all pending sequences too. */
3618 for (; stack
; stack
= stack
->next
)
3619 if (after
== stack
->last
)
3628 if (!BARRIER_P (after
)
3629 && !BARRIER_P (insn
)
3630 && (bb
= BLOCK_FOR_INSN (after
)))
3632 set_block_for_insn (insn
, bb
);
3634 df_insn_rescan (insn
);
3635 /* Should not happen as first in the BB is always
3636 either NOTE or LABEL. */
3637 if (BB_END (bb
) == after
3638 /* Avoid clobbering of structure when creating new BB. */
3639 && !BARRIER_P (insn
)
3640 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3644 NEXT_INSN (after
) = insn
;
3645 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3647 rtx sequence
= PATTERN (after
);
3648 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3652 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3653 the previous should be the only functions called to insert an insn
3654 once delay slots have been filled since only they know how to
3655 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3659 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3661 rtx prev
= PREV_INSN (before
);
3663 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3665 PREV_INSN (insn
) = prev
;
3666 NEXT_INSN (insn
) = before
;
3670 NEXT_INSN (prev
) = insn
;
3671 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3673 rtx sequence
= PATTERN (prev
);
3674 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3677 else if (first_insn
== before
)
3681 struct sequence_stack
*stack
= seq_stack
;
3682 /* Scan all pending sequences too. */
3683 for (; stack
; stack
= stack
->next
)
3684 if (before
== stack
->first
)
3686 stack
->first
= insn
;
3694 && !BARRIER_P (before
)
3695 && !BARRIER_P (insn
))
3696 bb
= BLOCK_FOR_INSN (before
);
3700 set_block_for_insn (insn
, bb
);
3702 df_insn_rescan (insn
);
3703 /* Should not happen as first in the BB is always either NOTE or
3705 gcc_assert (BB_HEAD (bb
) != insn
3706 /* Avoid clobbering of structure when creating new BB. */
3708 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3711 PREV_INSN (before
) = insn
;
3712 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3713 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3717 /* Replace insn with an deleted instruction note. */
3720 set_insn_deleted (rtx insn
)
3722 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3723 PUT_CODE (insn
, NOTE
);
3724 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3728 /* Remove an insn from its doubly-linked list. This function knows how
3729 to handle sequences. */
3731 remove_insn (rtx insn
)
3733 rtx next
= NEXT_INSN (insn
);
3734 rtx prev
= PREV_INSN (insn
);
3737 /* Later in the code, the block will be marked dirty. */
3738 df_insn_delete (NULL
, INSN_UID (insn
));
3742 NEXT_INSN (prev
) = next
;
3743 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3745 rtx sequence
= PATTERN (prev
);
3746 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3749 else if (first_insn
== insn
)
3753 struct sequence_stack
*stack
= seq_stack
;
3754 /* Scan all pending sequences too. */
3755 for (; stack
; stack
= stack
->next
)
3756 if (insn
== stack
->first
)
3758 stack
->first
= next
;
3767 PREV_INSN (next
) = prev
;
3768 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3769 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3771 else if (last_insn
== insn
)
3775 struct sequence_stack
*stack
= seq_stack
;
3776 /* Scan all pending sequences too. */
3777 for (; stack
; stack
= stack
->next
)
3778 if (insn
== stack
->last
)
3786 if (!BARRIER_P (insn
)
3787 && (bb
= BLOCK_FOR_INSN (insn
)))
3790 df_set_bb_dirty (bb
);
3791 if (BB_HEAD (bb
) == insn
)
3793 /* Never ever delete the basic block note without deleting whole
3795 gcc_assert (!NOTE_P (insn
));
3796 BB_HEAD (bb
) = next
;
3798 if (BB_END (bb
) == insn
)
3803 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3806 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3808 gcc_assert (call_insn
&& CALL_P (call_insn
));
3810 /* Put the register usage information on the CALL. If there is already
3811 some usage information, put ours at the end. */
3812 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3816 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3817 link
= XEXP (link
, 1))
3820 XEXP (link
, 1) = call_fusage
;
3823 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3826 /* Delete all insns made since FROM.
3827 FROM becomes the new last instruction. */
3830 delete_insns_since (rtx from
)
3835 NEXT_INSN (from
) = 0;
3839 /* This function is deprecated, please use sequences instead.
3841 Move a consecutive bunch of insns to a different place in the chain.
3842 The insns to be moved are those between FROM and TO.
3843 They are moved to a new position after the insn AFTER.
3844 AFTER must not be FROM or TO or any insn in between.
3846 This function does not know about SEQUENCEs and hence should not be
3847 called after delay-slot filling has been done. */
3850 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3852 /* Splice this bunch out of where it is now. */
3853 if (PREV_INSN (from
))
3854 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3856 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3857 if (last_insn
== to
)
3858 last_insn
= PREV_INSN (from
);
3859 if (first_insn
== from
)
3860 first_insn
= NEXT_INSN (to
);
3862 /* Make the new neighbors point to it and it to them. */
3863 if (NEXT_INSN (after
))
3864 PREV_INSN (NEXT_INSN (after
)) = to
;
3866 NEXT_INSN (to
) = NEXT_INSN (after
);
3867 PREV_INSN (from
) = after
;
3868 NEXT_INSN (after
) = from
;
3869 if (after
== last_insn
)
3873 /* Same as function above, but take care to update BB boundaries. */
3875 reorder_insns (rtx from
, rtx to
, rtx after
)
3877 rtx prev
= PREV_INSN (from
);
3878 basic_block bb
, bb2
;
3880 reorder_insns_nobb (from
, to
, after
);
3882 if (!BARRIER_P (after
)
3883 && (bb
= BLOCK_FOR_INSN (after
)))
3886 df_set_bb_dirty (bb
);
3888 if (!BARRIER_P (from
)
3889 && (bb2
= BLOCK_FOR_INSN (from
)))
3891 if (BB_END (bb2
) == to
)
3892 BB_END (bb2
) = prev
;
3893 df_set_bb_dirty (bb2
);
3896 if (BB_END (bb
) == after
)
3899 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3901 df_insn_change_bb (x
, bb
);
3906 /* Emit insn(s) of given code and pattern
3907 at a specified place within the doubly-linked list.
3909 All of the emit_foo global entry points accept an object
3910 X which is either an insn list or a PATTERN of a single
3913 There are thus a few canonical ways to generate code and
3914 emit it at a specific place in the instruction stream. For
3915 example, consider the instruction named SPOT and the fact that
3916 we would like to emit some instructions before SPOT. We might
3920 ... emit the new instructions ...
3921 insns_head = get_insns ();
3924 emit_insn_before (insns_head, SPOT);
3926 It used to be common to generate SEQUENCE rtl instead, but that
3927 is a relic of the past which no longer occurs. The reason is that
3928 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3929 generated would almost certainly die right after it was created. */
3931 /* Make X be output before the instruction BEFORE. */
3934 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
3939 gcc_assert (before
);
3944 switch (GET_CODE (x
))
3955 rtx next
= NEXT_INSN (insn
);
3956 add_insn_before (insn
, before
, bb
);
3962 #ifdef ENABLE_RTL_CHECKING
3969 last
= make_insn_raw (x
);
3970 add_insn_before (last
, before
, bb
);
3977 /* Make an instruction with body X and code JUMP_INSN
3978 and output it before the instruction BEFORE. */
3981 emit_jump_insn_before_noloc (rtx x
, rtx before
)
3983 rtx insn
, last
= NULL_RTX
;
3985 gcc_assert (before
);
3987 switch (GET_CODE (x
))
3998 rtx next
= NEXT_INSN (insn
);
3999 add_insn_before (insn
, before
, NULL
);
4005 #ifdef ENABLE_RTL_CHECKING
4012 last
= make_jump_insn_raw (x
);
4013 add_insn_before (last
, before
, NULL
);
4020 /* Make an instruction with body X and code CALL_INSN
4021 and output it before the instruction BEFORE. */
4024 emit_call_insn_before_noloc (rtx x
, rtx before
)
4026 rtx last
= NULL_RTX
, insn
;
4028 gcc_assert (before
);
4030 switch (GET_CODE (x
))
4041 rtx next
= NEXT_INSN (insn
);
4042 add_insn_before (insn
, before
, NULL
);
4048 #ifdef ENABLE_RTL_CHECKING
4055 last
= make_call_insn_raw (x
);
4056 add_insn_before (last
, before
, NULL
);
4063 /* Make an insn of code BARRIER
4064 and output it before the insn BEFORE. */
4067 emit_barrier_before (rtx before
)
4069 rtx insn
= rtx_alloc (BARRIER
);
4071 INSN_UID (insn
) = cur_insn_uid
++;
4073 add_insn_before (insn
, before
, NULL
);
4077 /* Emit the label LABEL before the insn BEFORE. */
4080 emit_label_before (rtx label
, rtx before
)
4082 /* This can be called twice for the same label as a result of the
4083 confusion that follows a syntax error! So make it harmless. */
4084 if (INSN_UID (label
) == 0)
4086 INSN_UID (label
) = cur_insn_uid
++;
4087 add_insn_before (label
, before
, NULL
);
4093 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4096 emit_note_before (enum insn_note subtype
, rtx before
)
4098 rtx note
= rtx_alloc (NOTE
);
4099 INSN_UID (note
) = cur_insn_uid
++;
4100 NOTE_KIND (note
) = subtype
;
4101 BLOCK_FOR_INSN (note
) = NULL
;
4102 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4104 add_insn_before (note
, before
, NULL
);
4108 /* Helper for emit_insn_after, handles lists of instructions
4112 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4116 if (!bb
&& !BARRIER_P (after
))
4117 bb
= BLOCK_FOR_INSN (after
);
4121 df_set_bb_dirty (bb
);
4122 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4123 if (!BARRIER_P (last
))
4125 set_block_for_insn (last
, bb
);
4126 df_insn_rescan (last
);
4128 if (!BARRIER_P (last
))
4130 set_block_for_insn (last
, bb
);
4131 df_insn_rescan (last
);
4133 if (BB_END (bb
) == after
)
4137 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4140 after_after
= NEXT_INSN (after
);
4142 NEXT_INSN (after
) = first
;
4143 PREV_INSN (first
) = after
;
4144 NEXT_INSN (last
) = after_after
;
4146 PREV_INSN (after_after
) = last
;
4148 if (after
== last_insn
)
4154 /* Make X be output after the insn AFTER and set the BB of insn. If
4155 BB is NULL, an attempt is made to infer the BB from AFTER. */
4158 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4167 switch (GET_CODE (x
))
4175 last
= emit_insn_after_1 (x
, after
, bb
);
4178 #ifdef ENABLE_RTL_CHECKING
4185 last
= make_insn_raw (x
);
4186 add_insn_after (last
, after
, bb
);
4194 /* Make an insn of code JUMP_INSN with body X
4195 and output it after the insn AFTER. */
4198 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4204 switch (GET_CODE (x
))
4212 last
= emit_insn_after_1 (x
, after
, NULL
);
4215 #ifdef ENABLE_RTL_CHECKING
4222 last
= make_jump_insn_raw (x
);
4223 add_insn_after (last
, after
, NULL
);
4230 /* Make an instruction with body X and code CALL_INSN
4231 and output it after the instruction AFTER. */
4234 emit_call_insn_after_noloc (rtx x
, rtx after
)
4240 switch (GET_CODE (x
))
4248 last
= emit_insn_after_1 (x
, after
, NULL
);
4251 #ifdef ENABLE_RTL_CHECKING
4258 last
= make_call_insn_raw (x
);
4259 add_insn_after (last
, after
, NULL
);
4266 /* Make an insn of code BARRIER
4267 and output it after the insn AFTER. */
4270 emit_barrier_after (rtx after
)
4272 rtx insn
= rtx_alloc (BARRIER
);
4274 INSN_UID (insn
) = cur_insn_uid
++;
4276 add_insn_after (insn
, after
, NULL
);
4280 /* Emit the label LABEL after the insn AFTER. */
4283 emit_label_after (rtx label
, rtx after
)
4285 /* This can be called twice for the same label
4286 as a result of the confusion that follows a syntax error!
4287 So make it harmless. */
4288 if (INSN_UID (label
) == 0)
4290 INSN_UID (label
) = cur_insn_uid
++;
4291 add_insn_after (label
, after
, NULL
);
4297 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4300 emit_note_after (enum insn_note subtype
, rtx after
)
4302 rtx note
= rtx_alloc (NOTE
);
4303 INSN_UID (note
) = cur_insn_uid
++;
4304 NOTE_KIND (note
) = subtype
;
4305 BLOCK_FOR_INSN (note
) = NULL
;
4306 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4307 add_insn_after (note
, after
, NULL
);
4311 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4313 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4315 rtx last
= emit_insn_after_noloc (pattern
, after
, NULL
);
4317 if (pattern
== NULL_RTX
|| !loc
)
4320 after
= NEXT_INSN (after
);
4323 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4324 INSN_LOCATOR (after
) = loc
;
4327 after
= NEXT_INSN (after
);
4332 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4334 emit_insn_after (rtx pattern
, rtx after
)
4337 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4339 return emit_insn_after_noloc (pattern
, after
, NULL
);
4342 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4344 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4346 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4348 if (pattern
== NULL_RTX
|| !loc
)
4351 after
= NEXT_INSN (after
);
4354 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4355 INSN_LOCATOR (after
) = loc
;
4358 after
= NEXT_INSN (after
);
4363 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4365 emit_jump_insn_after (rtx pattern
, rtx after
)
4368 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4370 return emit_jump_insn_after_noloc (pattern
, after
);
4373 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4375 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4377 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4379 if (pattern
== NULL_RTX
|| !loc
)
4382 after
= NEXT_INSN (after
);
4385 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4386 INSN_LOCATOR (after
) = loc
;
4389 after
= NEXT_INSN (after
);
4394 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4396 emit_call_insn_after (rtx pattern
, rtx after
)
4399 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4401 return emit_call_insn_after_noloc (pattern
, after
);
4404 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4406 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4408 rtx first
= PREV_INSN (before
);
4409 rtx last
= emit_insn_before_noloc (pattern
, before
, NULL
);
4411 if (pattern
== NULL_RTX
|| !loc
)
4415 first
= get_insns ();
4417 first
= NEXT_INSN (first
);
4420 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4421 INSN_LOCATOR (first
) = loc
;
4424 first
= NEXT_INSN (first
);
4429 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4431 emit_insn_before (rtx pattern
, rtx before
)
4433 if (INSN_P (before
))
4434 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4436 return emit_insn_before_noloc (pattern
, before
, NULL
);
4439 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4441 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4443 rtx first
= PREV_INSN (before
);
4444 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4446 if (pattern
== NULL_RTX
)
4449 first
= NEXT_INSN (first
);
4452 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4453 INSN_LOCATOR (first
) = loc
;
4456 first
= NEXT_INSN (first
);
4461 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4463 emit_jump_insn_before (rtx pattern
, rtx before
)
4465 if (INSN_P (before
))
4466 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4468 return emit_jump_insn_before_noloc (pattern
, before
);
4471 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4473 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4475 rtx first
= PREV_INSN (before
);
4476 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4478 if (pattern
== NULL_RTX
)
4481 first
= NEXT_INSN (first
);
4484 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4485 INSN_LOCATOR (first
) = loc
;
4488 first
= NEXT_INSN (first
);
4493 /* like emit_call_insn_before_noloc,
4494 but set insn_locator according to before. */
4496 emit_call_insn_before (rtx pattern
, rtx before
)
4498 if (INSN_P (before
))
4499 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4501 return emit_call_insn_before_noloc (pattern
, before
);
4504 /* Take X and emit it at the end of the doubly-linked
4507 Returns the last insn emitted. */
4512 rtx last
= last_insn
;
4518 switch (GET_CODE (x
))
4529 rtx next
= NEXT_INSN (insn
);
4536 #ifdef ENABLE_RTL_CHECKING
4543 last
= make_insn_raw (x
);
4551 /* Make an insn of code JUMP_INSN with pattern X
4552 and add it to the end of the doubly-linked list. */
4555 emit_jump_insn (rtx x
)
4557 rtx last
= NULL_RTX
, insn
;
4559 switch (GET_CODE (x
))
4570 rtx next
= NEXT_INSN (insn
);
4577 #ifdef ENABLE_RTL_CHECKING
4584 last
= make_jump_insn_raw (x
);
4592 /* Make an insn of code CALL_INSN with pattern X
4593 and add it to the end of the doubly-linked list. */
4596 emit_call_insn (rtx x
)
4600 switch (GET_CODE (x
))
4608 insn
= emit_insn (x
);
4611 #ifdef ENABLE_RTL_CHECKING
4618 insn
= make_call_insn_raw (x
);
4626 /* Add the label LABEL to the end of the doubly-linked list. */
4629 emit_label (rtx label
)
4631 /* This can be called twice for the same label
4632 as a result of the confusion that follows a syntax error!
4633 So make it harmless. */
4634 if (INSN_UID (label
) == 0)
4636 INSN_UID (label
) = cur_insn_uid
++;
4642 /* Make an insn of code BARRIER
4643 and add it to the end of the doubly-linked list. */
4648 rtx barrier
= rtx_alloc (BARRIER
);
4649 INSN_UID (barrier
) = cur_insn_uid
++;
4654 /* Emit a copy of note ORIG. */
4657 emit_note_copy (rtx orig
)
4661 note
= rtx_alloc (NOTE
);
4663 INSN_UID (note
) = cur_insn_uid
++;
4664 NOTE_DATA (note
) = NOTE_DATA (orig
);
4665 NOTE_KIND (note
) = NOTE_KIND (orig
);
4666 BLOCK_FOR_INSN (note
) = NULL
;
4672 /* Make an insn of code NOTE or type NOTE_NO
4673 and add it to the end of the doubly-linked list. */
4676 emit_note (enum insn_note kind
)
4680 note
= rtx_alloc (NOTE
);
4681 INSN_UID (note
) = cur_insn_uid
++;
4682 NOTE_KIND (note
) = kind
;
4683 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4684 BLOCK_FOR_INSN (note
) = NULL
;
4689 /* Emit a clobber of lvalue X. */
4692 emit_clobber (rtx x
)
4694 /* CONCATs should not appear in the insn stream. */
4695 if (GET_CODE (x
) == CONCAT
)
4697 emit_clobber (XEXP (x
, 0));
4698 return emit_clobber (XEXP (x
, 1));
4700 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4703 /* Return a sequence of insns to clobber lvalue X. */
4717 /* Emit a use of rvalue X. */
4722 /* CONCATs should not appear in the insn stream. */
4723 if (GET_CODE (x
) == CONCAT
)
4725 emit_use (XEXP (x
, 0));
4726 return emit_use (XEXP (x
, 1));
4728 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4731 /* Return a sequence of insns to use rvalue X. */
4745 /* Cause next statement to emit a line note even if the line number
4749 force_next_line_note (void)
4754 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4755 note of this type already exists, remove it first. */
4758 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4760 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4766 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4767 has multiple sets (some callers assume single_set
4768 means the insn only has one set, when in fact it
4769 means the insn only has one * useful * set). */
4770 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4776 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4777 It serves no useful purpose and breaks eliminate_regs. */
4778 if (GET_CODE (datum
) == ASM_OPERANDS
)
4783 XEXP (note
, 0) = datum
;
4784 df_notes_rescan (insn
);
4792 XEXP (note
, 0) = datum
;
4798 add_reg_note (insn
, kind
, datum
);
4804 df_notes_rescan (insn
);
4810 return REG_NOTES (insn
);
4813 /* Return an indication of which type of insn should have X as a body.
4814 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4816 static enum rtx_code
4817 classify_insn (rtx x
)
4821 if (GET_CODE (x
) == CALL
)
4823 if (GET_CODE (x
) == RETURN
)
4825 if (GET_CODE (x
) == SET
)
4827 if (SET_DEST (x
) == pc_rtx
)
4829 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4834 if (GET_CODE (x
) == PARALLEL
)
4837 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4838 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4840 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4841 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4843 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4844 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4850 /* Emit the rtl pattern X as an appropriate kind of insn.
4851 If X is a label, it is simply added into the insn chain. */
4856 enum rtx_code code
= classify_insn (x
);
4861 return emit_label (x
);
4863 return emit_insn (x
);
4866 rtx insn
= emit_jump_insn (x
);
4867 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4868 return emit_barrier ();
4872 return emit_call_insn (x
);
4878 /* Space for free sequence stack entries. */
4879 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4881 /* Begin emitting insns to a sequence. If this sequence will contain
4882 something that might cause the compiler to pop arguments to function
4883 calls (because those pops have previously been deferred; see
4884 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4885 before calling this function. That will ensure that the deferred
4886 pops are not accidentally emitted in the middle of this sequence. */
4889 start_sequence (void)
4891 struct sequence_stack
*tem
;
4893 if (free_sequence_stack
!= NULL
)
4895 tem
= free_sequence_stack
;
4896 free_sequence_stack
= tem
->next
;
4899 tem
= GGC_NEW (struct sequence_stack
);
4901 tem
->next
= seq_stack
;
4902 tem
->first
= first_insn
;
4903 tem
->last
= last_insn
;
4911 /* Set up the insn chain starting with FIRST as the current sequence,
4912 saving the previously current one. See the documentation for
4913 start_sequence for more information about how to use this function. */
4916 push_to_sequence (rtx first
)
4922 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4928 /* Like push_to_sequence, but take the last insn as an argument to avoid
4929 looping through the list. */
4932 push_to_sequence2 (rtx first
, rtx last
)
4940 /* Set up the outer-level insn chain
4941 as the current sequence, saving the previously current one. */
4944 push_topmost_sequence (void)
4946 struct sequence_stack
*stack
, *top
= NULL
;
4950 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4953 first_insn
= top
->first
;
4954 last_insn
= top
->last
;
4957 /* After emitting to the outer-level insn chain, update the outer-level
4958 insn chain, and restore the previous saved state. */
4961 pop_topmost_sequence (void)
4963 struct sequence_stack
*stack
, *top
= NULL
;
4965 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4968 top
->first
= first_insn
;
4969 top
->last
= last_insn
;
4974 /* After emitting to a sequence, restore previous saved state.
4976 To get the contents of the sequence just made, you must call
4977 `get_insns' *before* calling here.
4979 If the compiler might have deferred popping arguments while
4980 generating this sequence, and this sequence will not be immediately
4981 inserted into the instruction stream, use do_pending_stack_adjust
4982 before calling get_insns. That will ensure that the deferred
4983 pops are inserted into this sequence, and not into some random
4984 location in the instruction stream. See INHIBIT_DEFER_POP for more
4985 information about deferred popping of arguments. */
4990 struct sequence_stack
*tem
= seq_stack
;
4992 first_insn
= tem
->first
;
4993 last_insn
= tem
->last
;
4994 seq_stack
= tem
->next
;
4996 memset (tem
, 0, sizeof (*tem
));
4997 tem
->next
= free_sequence_stack
;
4998 free_sequence_stack
= tem
;
5001 /* Return 1 if currently emitting into a sequence. */
5004 in_sequence_p (void)
5006 return seq_stack
!= 0;
5009 /* Put the various virtual registers into REGNO_REG_RTX. */
5012 init_virtual_regs (void)
5014 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5015 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5016 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5017 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5018 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5022 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5023 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5024 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5025 static int copy_insn_n_scratches
;
5027 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5028 copied an ASM_OPERANDS.
5029 In that case, it is the original input-operand vector. */
5030 static rtvec orig_asm_operands_vector
;
5032 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5033 copied an ASM_OPERANDS.
5034 In that case, it is the copied input-operand vector. */
5035 static rtvec copy_asm_operands_vector
;
5037 /* Likewise for the constraints vector. */
5038 static rtvec orig_asm_constraints_vector
;
5039 static rtvec copy_asm_constraints_vector
;
5041 /* Recursively create a new copy of an rtx for copy_insn.
5042 This function differs from copy_rtx in that it handles SCRATCHes and
5043 ASM_OPERANDs properly.
5044 Normally, this function is not used directly; use copy_insn as front end.
5045 However, you could first copy an insn pattern with copy_insn and then use
5046 this function afterwards to properly copy any REG_NOTEs containing
5050 copy_insn_1 (rtx orig
)
5055 const char *format_ptr
;
5060 code
= GET_CODE (orig
);
5075 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5080 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5081 if (copy_insn_scratch_in
[i
] == orig
)
5082 return copy_insn_scratch_out
[i
];
5086 if (shared_const_p (orig
))
5090 /* A MEM with a constant address is not sharable. The problem is that
5091 the constant address may need to be reloaded. If the mem is shared,
5092 then reloading one copy of this mem will cause all copies to appear
5093 to have been reloaded. */
5099 /* Copy the various flags, fields, and other information. We assume
5100 that all fields need copying, and then clear the fields that should
5101 not be copied. That is the sensible default behavior, and forces
5102 us to explicitly document why we are *not* copying a flag. */
5103 copy
= shallow_copy_rtx (orig
);
5105 /* We do not copy the USED flag, which is used as a mark bit during
5106 walks over the RTL. */
5107 RTX_FLAG (copy
, used
) = 0;
5109 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5112 RTX_FLAG (copy
, jump
) = 0;
5113 RTX_FLAG (copy
, call
) = 0;
5114 RTX_FLAG (copy
, frame_related
) = 0;
5117 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5119 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5120 switch (*format_ptr
++)
5123 if (XEXP (orig
, i
) != NULL
)
5124 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5129 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5130 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5131 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5132 XVEC (copy
, i
) = copy_asm_operands_vector
;
5133 else if (XVEC (orig
, i
) != NULL
)
5135 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5136 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5137 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5148 /* These are left unchanged. */
5155 if (code
== SCRATCH
)
5157 i
= copy_insn_n_scratches
++;
5158 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5159 copy_insn_scratch_in
[i
] = orig
;
5160 copy_insn_scratch_out
[i
] = copy
;
5162 else if (code
== ASM_OPERANDS
)
5164 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5165 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5166 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5167 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5173 /* Create a new copy of an rtx.
5174 This function differs from copy_rtx in that it handles SCRATCHes and
5175 ASM_OPERANDs properly.
5176 INSN doesn't really have to be a full INSN; it could be just the
5179 copy_insn (rtx insn
)
5181 copy_insn_n_scratches
= 0;
5182 orig_asm_operands_vector
= 0;
5183 orig_asm_constraints_vector
= 0;
5184 copy_asm_operands_vector
= 0;
5185 copy_asm_constraints_vector
= 0;
5186 return copy_insn_1 (insn
);
5189 /* Initialize data structures and variables in this file
5190 before generating rtl for each function. */
5198 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5199 last_location
= UNKNOWN_LOCATION
;
5200 first_label_num
= label_num
;
5203 /* Init the tables that describe all the pseudo regs. */
5205 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5207 crtl
->emit
.regno_pointer_align
5208 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5211 = GGC_NEWVEC (rtx
, crtl
->emit
.regno_pointer_align_length
);
5213 /* Put copies of all the hard registers into regno_reg_rtx. */
5214 memcpy (regno_reg_rtx
,
5215 static_regno_reg_rtx
,
5216 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5218 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5219 init_virtual_regs ();
5221 /* Indicate that the virtual registers and stack locations are
5223 REG_POINTER (stack_pointer_rtx
) = 1;
5224 REG_POINTER (frame_pointer_rtx
) = 1;
5225 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5226 REG_POINTER (arg_pointer_rtx
) = 1;
5228 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5229 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5230 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5231 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5232 REG_POINTER (virtual_cfa_rtx
) = 1;
5234 #ifdef STACK_BOUNDARY
5235 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5236 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5237 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5238 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5240 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5241 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5242 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5243 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5244 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5247 #ifdef INIT_EXPANDERS
5252 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5255 gen_const_vector (enum machine_mode mode
, int constant
)
5260 enum machine_mode inner
;
5262 units
= GET_MODE_NUNITS (mode
);
5263 inner
= GET_MODE_INNER (mode
);
5265 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5267 v
= rtvec_alloc (units
);
5269 /* We need to call this function after we set the scalar const_tiny_rtx
5271 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5273 for (i
= 0; i
< units
; ++i
)
5274 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5276 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5280 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5281 all elements are zero, and the one vector when all elements are one. */
5283 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5285 enum machine_mode inner
= GET_MODE_INNER (mode
);
5286 int nunits
= GET_MODE_NUNITS (mode
);
5290 /* Check to see if all of the elements have the same value. */
5291 x
= RTVEC_ELT (v
, nunits
- 1);
5292 for (i
= nunits
- 2; i
>= 0; i
--)
5293 if (RTVEC_ELT (v
, i
) != x
)
5296 /* If the values are all the same, check to see if we can use one of the
5297 standard constant vectors. */
5300 if (x
== CONST0_RTX (inner
))
5301 return CONST0_RTX (mode
);
5302 else if (x
== CONST1_RTX (inner
))
5303 return CONST1_RTX (mode
);
5306 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5309 /* Initialise global register information required by all functions. */
5312 init_emit_regs (void)
5316 /* Reset register attributes */
5317 htab_empty (reg_attrs_htab
);
5319 /* We need reg_raw_mode, so initialize the modes now. */
5320 init_reg_modes_target ();
5322 /* Assign register numbers to the globally defined register rtx. */
5323 pc_rtx
= gen_rtx_PC (VOIDmode
);
5324 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5325 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5326 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5327 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5328 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5329 virtual_incoming_args_rtx
=
5330 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5331 virtual_stack_vars_rtx
=
5332 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5333 virtual_stack_dynamic_rtx
=
5334 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5335 virtual_outgoing_args_rtx
=
5336 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5337 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5339 /* Initialize RTL for commonly used hard registers. These are
5340 copied into regno_reg_rtx as we begin to compile each function. */
5341 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5342 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5344 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5345 return_address_pointer_rtx
5346 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5349 #ifdef STATIC_CHAIN_REGNUM
5350 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5352 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5353 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5354 static_chain_incoming_rtx
5355 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5358 static_chain_incoming_rtx
= static_chain_rtx
;
5362 static_chain_rtx
= STATIC_CHAIN
;
5364 #ifdef STATIC_CHAIN_INCOMING
5365 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5367 static_chain_incoming_rtx
= static_chain_rtx
;
5371 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5372 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5374 pic_offset_table_rtx
= NULL_RTX
;
5377 /* Create some permanent unique rtl objects shared between all functions.
5378 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5381 init_emit_once (int line_numbers
)
5384 enum machine_mode mode
;
5385 enum machine_mode double_mode
;
5387 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5389 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5390 const_int_htab_eq
, NULL
);
5392 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5393 const_double_htab_eq
, NULL
);
5395 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5396 const_fixed_htab_eq
, NULL
);
5398 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5399 mem_attrs_htab_eq
, NULL
);
5400 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5401 reg_attrs_htab_eq
, NULL
);
5403 no_line_numbers
= ! line_numbers
;
5405 /* Compute the word and byte modes. */
5407 byte_mode
= VOIDmode
;
5408 word_mode
= VOIDmode
;
5409 double_mode
= VOIDmode
;
5411 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5413 mode
= GET_MODE_WIDER_MODE (mode
))
5415 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5416 && byte_mode
== VOIDmode
)
5419 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5420 && word_mode
== VOIDmode
)
5424 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5426 mode
= GET_MODE_WIDER_MODE (mode
))
5428 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5429 && double_mode
== VOIDmode
)
5433 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5435 #ifdef INIT_EXPANDERS
5436 /* This is to initialize {init|mark|free}_machine_status before the first
5437 call to push_function_context_to. This is needed by the Chill front
5438 end which calls push_function_context_to before the first call to
5439 init_function_start. */
5443 /* Create the unique rtx's for certain rtx codes and operand values. */
5445 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5446 tries to use these variables. */
5447 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5448 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5449 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5451 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5452 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5453 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5455 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5457 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5458 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5459 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5464 dconsthalf
= dconst1
;
5465 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5467 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5469 const REAL_VALUE_TYPE
*const r
=
5470 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5472 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5474 mode
= GET_MODE_WIDER_MODE (mode
))
5475 const_tiny_rtx
[i
][(int) mode
] =
5476 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5478 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5480 mode
= GET_MODE_WIDER_MODE (mode
))
5481 const_tiny_rtx
[i
][(int) mode
] =
5482 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5484 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5486 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5488 mode
= GET_MODE_WIDER_MODE (mode
))
5489 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5491 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5493 mode
= GET_MODE_WIDER_MODE (mode
))
5494 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5497 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5499 mode
= GET_MODE_WIDER_MODE (mode
))
5501 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5502 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5505 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5507 mode
= GET_MODE_WIDER_MODE (mode
))
5509 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5510 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5513 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5515 mode
= GET_MODE_WIDER_MODE (mode
))
5517 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5518 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5521 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5523 mode
= GET_MODE_WIDER_MODE (mode
))
5525 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5526 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5529 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5531 mode
= GET_MODE_WIDER_MODE (mode
))
5533 FCONST0(mode
).data
.high
= 0;
5534 FCONST0(mode
).data
.low
= 0;
5535 FCONST0(mode
).mode
= mode
;
5536 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5537 FCONST0 (mode
), mode
);
5540 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5542 mode
= GET_MODE_WIDER_MODE (mode
))
5544 FCONST0(mode
).data
.high
= 0;
5545 FCONST0(mode
).data
.low
= 0;
5546 FCONST0(mode
).mode
= mode
;
5547 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5548 FCONST0 (mode
), mode
);
5551 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5553 mode
= GET_MODE_WIDER_MODE (mode
))
5555 FCONST0(mode
).data
.high
= 0;
5556 FCONST0(mode
).data
.low
= 0;
5557 FCONST0(mode
).mode
= mode
;
5558 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5559 FCONST0 (mode
), mode
);
5561 /* We store the value 1. */
5562 FCONST1(mode
).data
.high
= 0;
5563 FCONST1(mode
).data
.low
= 0;
5564 FCONST1(mode
).mode
= mode
;
5565 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5566 2 * HOST_BITS_PER_WIDE_INT
,
5567 &FCONST1(mode
).data
.low
,
5568 &FCONST1(mode
).data
.high
,
5569 SIGNED_FIXED_POINT_MODE_P (mode
));
5570 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5571 FCONST1 (mode
), mode
);
5574 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5576 mode
= GET_MODE_WIDER_MODE (mode
))
5578 FCONST0(mode
).data
.high
= 0;
5579 FCONST0(mode
).data
.low
= 0;
5580 FCONST0(mode
).mode
= mode
;
5581 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5582 FCONST0 (mode
), mode
);
5584 /* We store the value 1. */
5585 FCONST1(mode
).data
.high
= 0;
5586 FCONST1(mode
).data
.low
= 0;
5587 FCONST1(mode
).mode
= mode
;
5588 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5589 2 * HOST_BITS_PER_WIDE_INT
,
5590 &FCONST1(mode
).data
.low
,
5591 &FCONST1(mode
).data
.high
,
5592 SIGNED_FIXED_POINT_MODE_P (mode
));
5593 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5594 FCONST1 (mode
), mode
);
5597 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5599 mode
= GET_MODE_WIDER_MODE (mode
))
5601 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5604 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5606 mode
= GET_MODE_WIDER_MODE (mode
))
5608 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5611 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5613 mode
= GET_MODE_WIDER_MODE (mode
))
5615 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5616 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5619 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5621 mode
= GET_MODE_WIDER_MODE (mode
))
5623 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5624 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5627 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5628 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5629 const_tiny_rtx
[0][i
] = const0_rtx
;
5631 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5632 if (STORE_FLAG_VALUE
== 1)
5633 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5636 /* Produce exact duplicate of insn INSN after AFTER.
5637 Care updating of libcall regions if present. */
5640 emit_copy_of_insn_after (rtx insn
, rtx after
)
5644 switch (GET_CODE (insn
))
5647 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5651 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5655 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5656 if (CALL_INSN_FUNCTION_USAGE (insn
))
5657 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5658 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5659 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5660 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5661 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5662 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5663 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5670 /* Update LABEL_NUSES. */
5671 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5673 INSN_LOCATOR (new_rtx
) = INSN_LOCATOR (insn
);
5675 /* If the old insn is frame related, then so is the new one. This is
5676 primarily needed for IA-64 unwind info which marks epilogue insns,
5677 which may be duplicated by the basic block reordering code. */
5678 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5680 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5681 will make them. REG_LABEL_TARGETs are created there too, but are
5682 supposed to be sticky, so we copy them. */
5683 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5684 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5686 if (GET_CODE (link
) == EXPR_LIST
)
5687 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5688 copy_insn_1 (XEXP (link
, 0)));
5690 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5693 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5697 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5699 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5701 if (hard_reg_clobbers
[mode
][regno
])
5702 return hard_reg_clobbers
[mode
][regno
];
5704 return (hard_reg_clobbers
[mode
][regno
] =
5705 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5708 #include "gt-emit-rtl.h"