1 // boehm.cc - interface between libjava and Boehm GC.
3 /* Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
18 #include <java/lang/Class.h>
19 #include <java/lang/reflect/Modifier.h>
20 #include <java-interp.h>
22 // More nastiness: the GC wants to define TRUE and FALSE. We don't
23 // need the Java definitions (themselves a hack), so we undefine them.
29 #include <private/gc_pmark.h>
32 #ifdef THREAD_LOCAL_ALLOC
33 # define GC_REDIRECT_TO_LOCAL
34 # include <gc_local_alloc.h>
37 // These aren't declared in any Boehm GC header.
38 void GC_finalize_all (void);
39 ptr_t
GC_debug_generic_malloc (size_t size
, int k
, GC_EXTRA_PARAMS
);
42 // We must check for plausibility ourselves.
43 #define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
44 Top=GC_MARK_AND_PUSH((GC_PTR)Obj, Top, Limit, (GC_PTR *)Source)
46 // `kind' index used when allocating Java arrays.
47 static int array_kind_x
;
49 // Freelist used for Java arrays.
50 static ptr_t
*array_free_list
;
52 // Lock used to protect access to Boehm's GC_enable/GC_disable functions.
53 static _Jv_Mutex_t disable_gc_mutex
;
57 // This is called by the GC during the mark phase. It marks a Java
58 // object. We use `void *' arguments and return, and not what the
59 // Boehm GC wants, to avoid pollution in our headers.
61 _Jv_MarkObj (void *addr
, void *msp
, void *msl
, void * /* env */)
63 mse
*mark_stack_ptr
= (mse
*) msp
;
64 mse
*mark_stack_limit
= (mse
*) msl
;
65 jobject obj
= (jobject
) addr
;
67 // FIXME: if env is 1, this object was allocated through the debug
68 // interface, and addr points to the beginning of the debug header.
69 // In that case, we should really add the size of the header to addr.
71 _Jv_VTable
*dt
= *(_Jv_VTable
**) addr
;
72 // The object might not yet have its vtable set, or it might
73 // really be an object on the freelist. In either case, the vtable slot
74 // will either be 0, or it will point to a cleared object.
75 // This assumes Java objects have size at least 3 words,
76 // including the header. But this should remain true, since this
77 // should only be used with debugging allocation or with large objects.
78 if (__builtin_expect (! dt
|| !(dt
-> get_finalizer()), false))
79 return mark_stack_ptr
;
80 jclass klass
= dt
->clas
;
83 # ifndef JV_HASH_SYNCHRONIZATION
84 // Every object has a sync_info pointer.
85 p
= (ptr_t
) obj
->sync_info
;
86 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, obj
, o1label
);
88 // Mark the object's class.
90 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, obj
, o2label
);
92 if (__builtin_expect (klass
== &java::lang::Class::class$
, false))
94 // Currently we allocate some of the memory referenced from class objects
95 // as pointerfree memory, and then mark it more intelligently here.
96 // We ensure that the ClassClass mark descriptor forces invocation of
98 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
99 // collector, we need to make sure that the class object is written whenever
100 // any of the subobjects are altered and may need rescanning. This may be tricky
101 // during construction, and this may not be the right way to do this with
102 // incremental collection.
103 // If we overflow the mark stack, we will rescan the class object, so we should
104 // be OK. The same applies if we redo the mark phase because win32 unmapped part
105 // of our root set. - HB
106 jclass c
= (jclass
) addr
;
109 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c3label
);
110 p
= (ptr_t
) c
->superclass
;
111 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c4label
);
112 for (int i
= 0; i
< c
->constants
.size
; ++i
)
114 /* FIXME: We could make this more precise by using the tags -KKT */
115 p
= (ptr_t
) c
->constants
.data
[i
].p
;
116 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5label
);
120 if (_Jv_IsInterpretedClass (c
))
122 p
= (ptr_t
) c
->constants
.tags
;
123 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5alabel
);
124 p
= (ptr_t
) c
->constants
.data
;
125 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5blabel
);
126 p
= (ptr_t
) c
->vtable
;
127 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c5clabel
);
131 // If the class is an array, then the methods field holds a
132 // pointer to the element class. If the class is primitive,
133 // then the methods field holds a pointer to the array class.
134 p
= (ptr_t
) c
->methods
;
135 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c6label
);
137 // The vtable might have been set, but the rest of the class
138 // could still be uninitialized. If this is the case, then
139 // c.isArray will SEGV. We check for this, and if it is the
140 // case we just return.
141 if (__builtin_expect (c
->name
== NULL
, false))
142 return mark_stack_ptr
;
144 if (! c
->isArray() && ! c
->isPrimitive())
146 // Scan each method in the cases where `methods' really
147 // points to a methods structure.
148 for (int i
= 0; i
< c
->method_count
; ++i
)
150 p
= (ptr_t
) c
->methods
[i
].name
;
151 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
,
153 p
= (ptr_t
) c
->methods
[i
].signature
;
154 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
,
157 // FIXME: `ncode' entry?
160 // The interpreter installs a heap-allocated
161 // trampoline here, so we'll mark it.
162 if (_Jv_IsInterpretedClass (c
))
164 p
= (ptr_t
) c
->methods
[i
].ncode
;
165 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
,
172 // Mark all the fields.
173 p
= (ptr_t
) c
->fields
;
174 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8label
);
175 for (int i
= 0; i
< c
->field_count
; ++i
)
177 _Jv_Field
* field
= &c
->fields
[i
];
179 #ifndef COMPACT_FIELDS
180 p
= (ptr_t
) field
->name
;
181 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8alabel
);
183 p
= (ptr_t
) field
->type
;
184 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8blabel
);
186 // For the interpreter, we also need to mark the memory
187 // containing static members
188 if ((field
->flags
& java::lang::reflect::Modifier::STATIC
))
190 p
= (ptr_t
) field
->u
.addr
;
191 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c8clabel
);
193 // also, if the static member is a reference,
194 // mark also the value pointed to. We check for isResolved
195 // since marking can happen before memory is allocated for
197 if (JvFieldIsRef (field
) && field
->isResolved())
199 jobject val
= *(jobject
*) field
->u
.addr
;
201 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
,
207 p
= (ptr_t
) c
->vtable
;
208 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, c9label
);
209 p
= (ptr_t
) c
->interfaces
;
210 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cAlabel
);
211 for (int i
= 0; i
< c
->interface_count
; ++i
)
213 p
= (ptr_t
) c
->interfaces
[i
];
214 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cClabel
);
216 p
= (ptr_t
) c
->loader
;
217 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cBlabel
);
218 p
= (ptr_t
) c
->arrayclass
;
219 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, c
, cDlabel
);
222 if (_Jv_IsInterpretedClass (c
))
224 _Jv_InterpClass
* ic
= (_Jv_InterpClass
*)c
;
226 p
= (ptr_t
) ic
->interpreted_methods
;
227 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, ic
, cElabel
);
229 for (int i
= 0; i
< c
->method_count
; i
++)
231 p
= (ptr_t
) ic
->interpreted_methods
[i
];
232 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, ic
, \
236 p
= (ptr_t
) ic
->field_initializers
;
237 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, ic
, cGlabel
);
245 // NOTE: each class only holds information about the class
246 // itself. So we must do the marking for the entire inheritance
247 // tree in order to mark all fields. FIXME: what about
248 // interfaces? We skip Object here, because Object only has a
249 // sync_info, and we handled that earlier.
250 // Note: occasionally `klass' can be null. For instance, this
251 // can happen if a GC occurs between the point where an object
252 // is allocated and where the vtbl slot is set.
253 while (klass
&& klass
!= &java::lang::Object::class$
)
255 jfieldID field
= JvGetFirstInstanceField (klass
);
256 jint max
= JvNumInstanceFields (klass
);
258 for (int i
= 0; i
< max
; ++i
)
260 if (JvFieldIsRef (field
))
262 jobject val
= JvGetObjectField (obj
, field
);
264 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
,
267 field
= field
->getNextField ();
269 klass
= klass
->getSuperclass();
273 return mark_stack_ptr
;
276 // This is called by the GC during the mark phase. It marks a Java
277 // array (of objects). We use `void *' arguments and return, and not
278 // what the Boehm GC wants, to avoid pollution in our headers.
280 _Jv_MarkArray (void *addr
, void *msp
, void *msl
, void * /*env*/)
282 mse
*mark_stack_ptr
= (mse
*) msp
;
283 mse
*mark_stack_limit
= (mse
*) msl
;
284 jobjectArray array
= (jobjectArray
) addr
;
286 _Jv_VTable
*dt
= *(_Jv_VTable
**) addr
;
287 // Assumes size >= 3 words. That's currently true since arrays have
288 // a vtable, sync pointer, and size. If the sync pointer goes away,
289 // we may need to round up the size.
290 if (__builtin_expect (! dt
|| !(dt
-> get_finalizer()), false))
291 return mark_stack_ptr
;
292 jclass klass
= dt
->clas
;
295 # ifndef JV_HASH_SYNCHRONIZATION
296 // Every object has a sync_info pointer.
297 p
= (ptr_t
) array
->sync_info
;
298 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, array
, e1label
);
300 // Mark the object's class.
302 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, &(dt
-> clas
), o2label
);
304 for (int i
= 0; i
< JvGetArrayLength (array
); ++i
)
306 jobject obj
= elements (array
)[i
];
308 MAYBE_MARK (p
, mark_stack_ptr
, mark_stack_limit
, array
, e2label
);
311 return mark_stack_ptr
;
314 // Generate a GC marking descriptor for a class.
316 // We assume that the gcj mark proc has index 0. This is a dubious assumption,
317 // since another one could be registered first. But the compiler also
318 // knows this, so in that case everything else will break, too.
319 #define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
321 _Jv_BuildGCDescr(jclass
)
323 /* FIXME: We should really look at the class and build the descriptor. */
324 return (void *)(GCJ_DEFAULT_DESCR
);
327 // Allocate some space that is known to be pointer-free.
329 _Jv_AllocBytes (jsize size
)
331 void *r
= GC_MALLOC_ATOMIC (size
);
332 // We have to explicitly zero memory here, as the GC doesn't
333 // guarantee that PTRFREE allocations are zeroed. Note that we
334 // don't have to do this for other allocation types because we set
335 // the `ok_init' flag in the type descriptor.
340 // Allocate space for a new Java array.
341 // Used only for arrays of objects.
343 _Jv_AllocArray (jsize size
, jclass klass
)
346 const jsize min_heap_addr
= 16*1024;
347 // A heuristic. If size is less than this value, the size
348 // stored in the array can't possibly be misinterpreted as
349 // a pointer. Thus we lose nothing by scanning the object
350 // completely conservatively, since no misidentification can
354 // There isn't much to lose by scanning this conservatively.
355 // If we didn't, the mark proc would have to understand that
356 // it needed to skip the header.
357 obj
= GC_MALLOC(size
);
359 if (size
< min_heap_addr
)
360 obj
= GC_MALLOC(size
);
362 obj
= GC_generic_malloc (size
, array_kind_x
);
364 *((_Jv_VTable
**) obj
) = klass
->vtable
;
368 /* Allocate space for a new non-Java object, which does not have the usual
369 Java object header but may contain pointers to other GC'ed objects. */
371 _Jv_AllocRawObj (jsize size
)
373 return (void *) GC_MALLOC (size
);
377 call_finalizer (GC_PTR obj
, GC_PTR client_data
)
379 _Jv_FinalizerFunc
*fn
= (_Jv_FinalizerFunc
*) client_data
;
380 jobject jobj
= (jobject
) obj
;
386 _Jv_RegisterFinalizer (void *object
, _Jv_FinalizerFunc
*meth
)
388 GC_REGISTER_FINALIZER_NO_ORDER (object
, call_finalizer
, (GC_PTR
) meth
,
393 _Jv_RunFinalizers (void)
395 GC_invoke_finalizers ();
399 _Jv_RunAllFinalizers (void)
411 _Jv_GCTotalMemory (void)
413 return GC_get_heap_size ();
417 _Jv_GCFreeMemory (void)
419 return GC_get_free_bytes ();
423 _Jv_GCSetInitialHeapSize (size_t size
)
425 size_t current
= GC_get_heap_size ();
427 GC_expand_hp (size
- current
);
431 _Jv_GCSetMaximumHeapSize (size_t size
)
433 GC_set_max_heap_size ((GC_word
) size
);
436 // From boehm's misc.c
437 extern "C" void GC_enable();
438 extern "C" void GC_disable();
443 _Jv_MutexLock (&disable_gc_mutex
);
445 _Jv_MutexUnlock (&disable_gc_mutex
);
451 _Jv_MutexLock (&disable_gc_mutex
);
453 _Jv_MutexUnlock (&disable_gc_mutex
);
456 static void * handle_out_of_memory(size_t)
466 // Ignore pointers that do not point to the start of an object.
467 GC_all_interior_pointers
= 0;
469 // Configure the collector to use the bitmap marking descriptors that we
470 // stash in the class vtable.
471 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj
);
473 // Cause an out of memory error to be thrown from the allocators,
474 // instead of returning 0. This is cheaper than checking on allocation.
475 GC_oom_fn
= handle_out_of_memory
;
477 GC_java_finalization
= 1;
479 // We use a different mark procedure for object arrays. This code
480 // configures a different object `kind' for object array allocation and
481 // marking. FIXME: see above.
482 array_free_list
= (ptr_t
*) GC_generic_malloc_inner ((MAXOBJSZ
+ 1)
485 memset (array_free_list
, 0, (MAXOBJSZ
+ 1) * sizeof (ptr_t
));
487 proc
= GC_n_mark_procs
++;
488 GC_mark_procs
[proc
] = (GC_mark_proc
) _Jv_MarkArray
;
490 array_kind_x
= GC_n_kinds
++;
491 GC_obj_kinds
[array_kind_x
].ok_freelist
= array_free_list
;
492 GC_obj_kinds
[array_kind_x
].ok_reclaim_list
= 0;
493 GC_obj_kinds
[array_kind_x
].ok_descriptor
= GC_MAKE_PROC (proc
, 0);
494 GC_obj_kinds
[array_kind_x
].ok_relocate_descr
= FALSE
;
495 GC_obj_kinds
[array_kind_x
].ok_init
= TRUE
;
497 _Jv_MutexInit (&disable_gc_mutex
);
500 #ifdef JV_HASH_SYNCHRONIZATION
501 // Allocate an object with a fake vtable pointer, which causes only
502 // the first field (beyond the fake vtable pointer) to be traced.
503 // Eventually this should probably be generalized.
505 static _Jv_VTable trace_one_vtable
= {
507 (void *)(2 * sizeof(void *)),
508 // descriptor; scan 2 words incl. vtable ptr.
509 // Least significant bits must be zero to
510 // identify this as a length descriptor
515 _Jv_AllocTraceOne (jsize size
/* includes vtable slot */)
517 return GC_GCJ_MALLOC (size
, &trace_one_vtable
);
520 // Ditto for two words.
521 // the first field (beyond the fake vtable pointer) to be traced.
522 // Eventually this should probably be generalized.
524 static _Jv_VTable trace_two_vtable
=
527 (void *)(3 * sizeof(void *)),
528 // descriptor; scan 3 words incl. vtable ptr.
533 _Jv_AllocTraceTwo (jsize size
/* includes vtable slot */)
535 return GC_GCJ_MALLOC (size
, &trace_two_vtable
);
538 #endif /* JV_HASH_SYNCHRONIZATION */
541 _Jv_GCInitializeFinalizers (void (*notifier
) (void))
543 GC_finalize_on_demand
= 1;
544 GC_finalizer_notifier
= notifier
;
548 _Jv_GCRegisterDisappearingLink (jobject
*objp
)
550 GC_general_register_disappearing_link ((GC_PTR
*) objp
, (GC_PTR
) *objp
);
554 _Jv_GCCanReclaimSoftReference (jobject
)
556 // For now, always reclaim soft references. FIXME.