1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
33 #include "fold-const.h"
34 #include "stor-layout.h"
37 #include "gimple-pretty-print.h"
38 #include "internal-fn.h"
41 #include "gimple-iterator.h"
42 #include "gimplify-me.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "tree-ssa-loop.h"
47 #include "tree-chrec.h"
48 #include "tree-scalar-evolution.h"
49 #include "tree-vectorizer.h"
50 #include "diagnostic-core.h"
52 /* Need to include rtl.h, expr.h, etc. for optabs. */
54 #include "insn-config.h"
63 #include "insn-codes.h"
68 /* Return true if load- or store-lanes optab OPTAB is implemented for
69 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
72 vect_lanes_optab_supported_p (const char *name
, convert_optab optab
,
73 tree vectype
, unsigned HOST_WIDE_INT count
)
75 machine_mode mode
, array_mode
;
78 mode
= TYPE_MODE (vectype
);
79 limit_p
= !targetm
.array_mode_supported_p (mode
, count
);
80 array_mode
= mode_for_size (count
* GET_MODE_BITSIZE (mode
),
83 if (array_mode
== BLKmode
)
85 if (dump_enabled_p ())
86 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
87 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC
"]\n",
88 GET_MODE_NAME (mode
), count
);
92 if (convert_optab_handler (optab
, array_mode
, mode
) == CODE_FOR_nothing
)
94 if (dump_enabled_p ())
95 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
96 "cannot use %s<%s><%s>\n", name
,
97 GET_MODE_NAME (array_mode
), GET_MODE_NAME (mode
));
101 if (dump_enabled_p ())
102 dump_printf_loc (MSG_NOTE
, vect_location
,
103 "can use %s<%s><%s>\n", name
, GET_MODE_NAME (array_mode
),
104 GET_MODE_NAME (mode
));
110 /* Return the smallest scalar part of STMT.
111 This is used to determine the vectype of the stmt. We generally set the
112 vectype according to the type of the result (lhs). For stmts whose
113 result-type is different than the type of the arguments (e.g., demotion,
114 promotion), vectype will be reset appropriately (later). Note that we have
115 to visit the smallest datatype in this function, because that determines the
116 VF. If the smallest datatype in the loop is present only as the rhs of a
117 promotion operation - we'd miss it.
118 Such a case, where a variable of this datatype does not appear in the lhs
119 anywhere in the loop, can only occur if it's an invariant: e.g.:
120 'int_x = (int) short_inv', which we'd expect to have been optimized away by
121 invariant motion. However, we cannot rely on invariant motion to always
122 take invariants out of the loop, and so in the case of promotion we also
123 have to check the rhs.
124 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
128 vect_get_smallest_scalar_type (gimple stmt
, HOST_WIDE_INT
*lhs_size_unit
,
129 HOST_WIDE_INT
*rhs_size_unit
)
131 tree scalar_type
= gimple_expr_type (stmt
);
132 HOST_WIDE_INT lhs
, rhs
;
134 lhs
= rhs
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type
));
136 if (is_gimple_assign (stmt
)
137 && (gimple_assign_cast_p (stmt
)
138 || gimple_assign_rhs_code (stmt
) == WIDEN_MULT_EXPR
139 || gimple_assign_rhs_code (stmt
) == WIDEN_LSHIFT_EXPR
140 || gimple_assign_rhs_code (stmt
) == FLOAT_EXPR
))
142 tree rhs_type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
144 rhs
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type
));
146 scalar_type
= rhs_type
;
149 *lhs_size_unit
= lhs
;
150 *rhs_size_unit
= rhs
;
155 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
156 tested at run-time. Return TRUE if DDR was successfully inserted.
157 Return false if versioning is not supported. */
160 vect_mark_for_runtime_alias_test (ddr_p ddr
, loop_vec_info loop_vinfo
)
162 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
164 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS
) == 0)
167 if (dump_enabled_p ())
169 dump_printf_loc (MSG_NOTE
, vect_location
,
170 "mark for run-time aliasing test between ");
171 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (DDR_A (ddr
)));
172 dump_printf (MSG_NOTE
, " and ");
173 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (DDR_B (ddr
)));
174 dump_printf (MSG_NOTE
, "\n");
177 if (optimize_loop_nest_for_size_p (loop
))
179 if (dump_enabled_p ())
180 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
181 "versioning not supported when optimizing"
186 /* FORNOW: We don't support versioning with outer-loop vectorization. */
189 if (dump_enabled_p ())
190 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
191 "versioning not yet supported for outer-loops.\n");
195 /* FORNOW: We don't support creating runtime alias tests for non-constant
197 if (TREE_CODE (DR_STEP (DDR_A (ddr
))) != INTEGER_CST
198 || TREE_CODE (DR_STEP (DDR_B (ddr
))) != INTEGER_CST
)
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
202 "versioning not yet supported for non-constant "
207 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
).safe_push (ddr
);
212 /* Function vect_analyze_data_ref_dependence.
214 Return TRUE if there (might) exist a dependence between a memory-reference
215 DRA and a memory-reference DRB. When versioning for alias may check a
216 dependence at run-time, return FALSE. Adjust *MAX_VF according to
217 the data dependence. */
220 vect_analyze_data_ref_dependence (struct data_dependence_relation
*ddr
,
221 loop_vec_info loop_vinfo
, int *max_vf
)
224 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
225 struct data_reference
*dra
= DDR_A (ddr
);
226 struct data_reference
*drb
= DDR_B (ddr
);
227 stmt_vec_info stmtinfo_a
= vinfo_for_stmt (DR_STMT (dra
));
228 stmt_vec_info stmtinfo_b
= vinfo_for_stmt (DR_STMT (drb
));
229 lambda_vector dist_v
;
230 unsigned int loop_depth
;
232 /* In loop analysis all data references should be vectorizable. */
233 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a
)
234 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b
))
237 /* Independent data accesses. */
238 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
242 || (DR_IS_READ (dra
) && DR_IS_READ (drb
)))
245 /* Even if we have an anti-dependence then, as the vectorized loop covers at
246 least two scalar iterations, there is always also a true dependence.
247 As the vectorizer does not re-order loads and stores we can ignore
248 the anti-dependence if TBAA can disambiguate both DRs similar to the
249 case with known negative distance anti-dependences (positive
250 distance anti-dependences would violate TBAA constraints). */
251 if (((DR_IS_READ (dra
) && DR_IS_WRITE (drb
))
252 || (DR_IS_WRITE (dra
) && DR_IS_READ (drb
)))
253 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra
)),
254 get_alias_set (DR_REF (drb
))))
257 /* Unknown data dependence. */
258 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
260 /* If user asserted safelen consecutive iterations can be
261 executed concurrently, assume independence. */
262 if (loop
->safelen
>= 2)
264 if (loop
->safelen
< *max_vf
)
265 *max_vf
= loop
->safelen
;
266 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo
) = false;
270 if (STMT_VINFO_GATHER_P (stmtinfo_a
)
271 || STMT_VINFO_GATHER_P (stmtinfo_b
))
273 if (dump_enabled_p ())
275 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
276 "versioning for alias not supported for: "
277 "can't determine dependence between ");
278 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
280 dump_printf (MSG_MISSED_OPTIMIZATION
, " and ");
281 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
283 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
288 if (dump_enabled_p ())
290 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
291 "versioning for alias required: "
292 "can't determine dependence between ");
293 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
295 dump_printf (MSG_MISSED_OPTIMIZATION
, " and ");
296 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
298 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
301 /* Add to list of ddrs that need to be tested at run-time. */
302 return !vect_mark_for_runtime_alias_test (ddr
, loop_vinfo
);
305 /* Known data dependence. */
306 if (DDR_NUM_DIST_VECTS (ddr
) == 0)
308 /* If user asserted safelen consecutive iterations can be
309 executed concurrently, assume independence. */
310 if (loop
->safelen
>= 2)
312 if (loop
->safelen
< *max_vf
)
313 *max_vf
= loop
->safelen
;
314 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo
) = false;
318 if (STMT_VINFO_GATHER_P (stmtinfo_a
)
319 || STMT_VINFO_GATHER_P (stmtinfo_b
))
321 if (dump_enabled_p ())
323 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
324 "versioning for alias not supported for: "
325 "bad dist vector for ");
326 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
328 dump_printf (MSG_MISSED_OPTIMIZATION
, " and ");
329 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
331 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
336 if (dump_enabled_p ())
338 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
339 "versioning for alias required: "
340 "bad dist vector for ");
341 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, DR_REF (dra
));
342 dump_printf (MSG_MISSED_OPTIMIZATION
, " and ");
343 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, DR_REF (drb
));
344 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
346 /* Add to list of ddrs that need to be tested at run-time. */
347 return !vect_mark_for_runtime_alias_test (ddr
, loop_vinfo
);
350 loop_depth
= index_in_loop_nest (loop
->num
, DDR_LOOP_NEST (ddr
));
351 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), i
, dist_v
)
353 int dist
= dist_v
[loop_depth
];
355 if (dump_enabled_p ())
356 dump_printf_loc (MSG_NOTE
, vect_location
,
357 "dependence distance = %d.\n", dist
);
361 if (dump_enabled_p ())
363 dump_printf_loc (MSG_NOTE
, vect_location
,
364 "dependence distance == 0 between ");
365 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dra
));
366 dump_printf (MSG_NOTE
, " and ");
367 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (drb
));
368 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
371 /* When we perform grouped accesses and perform implicit CSE
372 by detecting equal accesses and doing disambiguation with
373 runtime alias tests like for
381 where we will end up loading { a[i], a[i+1] } once, make
382 sure that inserting group loads before the first load and
383 stores after the last store will do the right thing.
384 Similar for groups like
388 where loads from the group interleave with the store. */
389 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a
)
390 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b
))
393 earlier_stmt
= get_earlier_stmt (DR_STMT (dra
), DR_STMT (drb
));
395 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt
))))
397 if (dump_enabled_p ())
398 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
399 "READ_WRITE dependence in interleaving."
408 if (dist
> 0 && DDR_REVERSED_P (ddr
))
410 /* If DDR_REVERSED_P the order of the data-refs in DDR was
411 reversed (to make distance vector positive), and the actual
412 distance is negative. */
413 if (dump_enabled_p ())
414 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
415 "dependence distance negative.\n");
416 /* Record a negative dependence distance to later limit the
417 amount of stmt copying / unrolling we can perform.
418 Only need to handle read-after-write dependence. */
420 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b
) == 0
421 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b
) > (unsigned)dist
))
422 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b
) = dist
;
427 && abs (dist
) < *max_vf
)
429 /* The dependence distance requires reduction of the maximal
430 vectorization factor. */
431 *max_vf
= abs (dist
);
432 if (dump_enabled_p ())
433 dump_printf_loc (MSG_NOTE
, vect_location
,
434 "adjusting maximal vectorization factor to %i\n",
438 if (abs (dist
) >= *max_vf
)
440 /* Dependence distance does not create dependence, as far as
441 vectorization is concerned, in this case. */
442 if (dump_enabled_p ())
443 dump_printf_loc (MSG_NOTE
, vect_location
,
444 "dependence distance >= VF.\n");
448 if (dump_enabled_p ())
450 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
451 "not vectorized, possible dependence "
452 "between data-refs ");
453 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dra
));
454 dump_printf (MSG_NOTE
, " and ");
455 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (drb
));
456 dump_printf (MSG_NOTE
, "\n");
465 /* Function vect_analyze_data_ref_dependences.
467 Examine all the data references in the loop, and make sure there do not
468 exist any data dependences between them. Set *MAX_VF according to
469 the maximum vectorization factor the data dependences allow. */
472 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo
, int *max_vf
)
475 struct data_dependence_relation
*ddr
;
477 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE
, vect_location
,
479 "=== vect_analyze_data_ref_dependences ===\n");
481 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo
) = true;
482 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo
),
483 &LOOP_VINFO_DDRS (loop_vinfo
),
484 LOOP_VINFO_LOOP_NEST (loop_vinfo
), true))
487 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo
), i
, ddr
)
488 if (vect_analyze_data_ref_dependence (ddr
, loop_vinfo
, max_vf
))
495 /* Function vect_slp_analyze_data_ref_dependence.
497 Return TRUE if there (might) exist a dependence between a memory-reference
498 DRA and a memory-reference DRB. When versioning for alias may check a
499 dependence at run-time, return FALSE. Adjust *MAX_VF according to
500 the data dependence. */
503 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation
*ddr
)
505 struct data_reference
*dra
= DDR_A (ddr
);
506 struct data_reference
*drb
= DDR_B (ddr
);
508 /* We need to check dependences of statements marked as unvectorizable
509 as well, they still can prohibit vectorization. */
511 /* Independent data accesses. */
512 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
518 /* Read-read is OK. */
519 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
522 /* If dra and drb are part of the same interleaving chain consider
524 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra
)))
525 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra
)))
526 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb
)))))
529 /* Unknown data dependence. */
530 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
532 if (dump_enabled_p ())
534 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
535 "can't determine dependence between ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, DR_REF (dra
));
537 dump_printf (MSG_MISSED_OPTIMIZATION
, " and ");
538 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, DR_REF (drb
));
539 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
542 else if (dump_enabled_p ())
544 dump_printf_loc (MSG_NOTE
, vect_location
,
545 "determined dependence between ");
546 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dra
));
547 dump_printf (MSG_NOTE
, " and ");
548 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (drb
));
549 dump_printf (MSG_NOTE
, "\n");
552 /* We do not vectorize basic blocks with write-write dependencies. */
553 if (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
))
556 /* If we have a read-write dependence check that the load is before the store.
557 When we vectorize basic blocks, vector load can be only before
558 corresponding scalar load, and vector store can be only after its
559 corresponding scalar store. So the order of the acceses is preserved in
560 case the load is before the store. */
561 gimple earlier_stmt
= get_earlier_stmt (DR_STMT (dra
), DR_STMT (drb
));
562 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt
))))
564 /* That only holds for load-store pairs taking part in vectorization. */
565 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra
)))
566 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb
))))
574 /* Function vect_analyze_data_ref_dependences.
576 Examine all the data references in the basic-block, and make sure there
577 do not exist any data dependences between them. Set *MAX_VF according to
578 the maximum vectorization factor the data dependences allow. */
581 vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo
)
583 struct data_dependence_relation
*ddr
;
586 if (dump_enabled_p ())
587 dump_printf_loc (MSG_NOTE
, vect_location
,
588 "=== vect_slp_analyze_data_ref_dependences ===\n");
590 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo
),
591 &BB_VINFO_DDRS (bb_vinfo
),
595 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo
), i
, ddr
)
596 if (vect_slp_analyze_data_ref_dependence (ddr
))
603 /* Function vect_compute_data_ref_alignment
605 Compute the misalignment of the data reference DR.
608 1. If during the misalignment computation it is found that the data reference
609 cannot be vectorized then false is returned.
610 2. DR_MISALIGNMENT (DR) is defined.
612 FOR NOW: No analysis is actually performed. Misalignment is calculated
613 only for trivial cases. TODO. */
616 vect_compute_data_ref_alignment (struct data_reference
*dr
)
618 gimple stmt
= DR_STMT (dr
);
619 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
620 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
621 struct loop
*loop
= NULL
;
622 tree ref
= DR_REF (dr
);
624 tree base
, base_addr
;
625 tree misalign
= NULL_TREE
;
627 unsigned HOST_WIDE_INT alignment
;
629 if (dump_enabled_p ())
630 dump_printf_loc (MSG_NOTE
, vect_location
,
631 "vect_compute_data_ref_alignment:\n");
634 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
636 /* Initialize misalignment to unknown. */
637 SET_DR_MISALIGNMENT (dr
, -1);
639 /* Strided accesses perform only component accesses, misalignment information
640 is irrelevant for them. */
641 if (STMT_VINFO_STRIDED_P (stmt_info
)
642 && !STMT_VINFO_GROUPED_ACCESS (stmt_info
))
645 if (tree_fits_shwi_p (DR_STEP (dr
)))
646 misalign
= DR_INIT (dr
);
647 aligned_to
= DR_ALIGNED_TO (dr
);
648 base_addr
= DR_BASE_ADDRESS (dr
);
649 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
651 /* In case the dataref is in an inner-loop of the loop that is being
652 vectorized (LOOP), we use the base and misalignment information
653 relative to the outer-loop (LOOP). This is ok only if the misalignment
654 stays the same throughout the execution of the inner-loop, which is why
655 we have to check that the stride of the dataref in the inner-loop evenly
656 divides by the vector size. */
657 if (loop
&& nested_in_vect_loop_p (loop
, stmt
))
659 tree step
= DR_STEP (dr
);
661 if (tree_fits_shwi_p (step
)
662 && tree_to_shwi (step
) % GET_MODE_SIZE (TYPE_MODE (vectype
)) == 0)
664 if (dump_enabled_p ())
665 dump_printf_loc (MSG_NOTE
, vect_location
,
666 "inner step divides the vector-size.\n");
667 misalign
= STMT_VINFO_DR_INIT (stmt_info
);
668 aligned_to
= STMT_VINFO_DR_ALIGNED_TO (stmt_info
);
669 base_addr
= STMT_VINFO_DR_BASE_ADDRESS (stmt_info
);
673 if (dump_enabled_p ())
674 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
675 "inner step doesn't divide the vector-size.\n");
676 misalign
= NULL_TREE
;
680 /* Similarly we can only use base and misalignment information relative to
681 an innermost loop if the misalignment stays the same throughout the
682 execution of the loop. As above, this is the case if the stride of
683 the dataref evenly divides by the vector size. */
686 tree step
= DR_STEP (dr
);
687 unsigned vf
= loop
? LOOP_VINFO_VECT_FACTOR (loop_vinfo
) : 1;
689 if (tree_fits_shwi_p (step
)
690 && ((tree_to_shwi (step
) * vf
)
691 % GET_MODE_SIZE (TYPE_MODE (vectype
)) != 0))
693 if (dump_enabled_p ())
694 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
695 "step doesn't divide the vector-size.\n");
696 misalign
= NULL_TREE
;
700 /* To look at alignment of the base we have to preserve an inner MEM_REF
701 as that carries alignment information of the actual access. */
703 while (handled_component_p (base
))
704 base
= TREE_OPERAND (base
, 0);
705 if (TREE_CODE (base
) == MEM_REF
)
706 base
= build2 (MEM_REF
, TREE_TYPE (base
), base_addr
,
707 build_int_cst (TREE_TYPE (TREE_OPERAND (base
, 1)), 0));
708 unsigned int base_alignment
= get_object_alignment (base
);
710 if (base_alignment
>= TYPE_ALIGN (TREE_TYPE (vectype
)))
711 DR_VECT_AUX (dr
)->base_element_aligned
= true;
713 alignment
= TYPE_ALIGN_UNIT (vectype
);
715 if ((compare_tree_int (aligned_to
, alignment
) < 0)
718 if (dump_enabled_p ())
720 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
721 "Unknown alignment for access: ");
722 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, ref
);
723 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
728 if (base_alignment
< TYPE_ALIGN (vectype
))
730 /* Strip an inner MEM_REF to a bare decl if possible. */
731 if (TREE_CODE (base
) == MEM_REF
732 && integer_zerop (TREE_OPERAND (base
, 1))
733 && TREE_CODE (TREE_OPERAND (base
, 0)) == ADDR_EXPR
)
734 base
= TREE_OPERAND (TREE_OPERAND (base
, 0), 0);
736 if (!vect_can_force_dr_alignment_p (base
, TYPE_ALIGN (vectype
)))
738 if (dump_enabled_p ())
740 dump_printf_loc (MSG_NOTE
, vect_location
,
741 "can't force alignment of ref: ");
742 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
743 dump_printf (MSG_NOTE
, "\n");
748 /* Force the alignment of the decl.
749 NOTE: This is the only change to the code we make during
750 the analysis phase, before deciding to vectorize the loop. */
751 if (dump_enabled_p ())
753 dump_printf_loc (MSG_NOTE
, vect_location
, "force alignment of ");
754 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
755 dump_printf (MSG_NOTE
, "\n");
758 DR_VECT_AUX (dr
)->base_decl
= base
;
759 DR_VECT_AUX (dr
)->base_misaligned
= true;
760 DR_VECT_AUX (dr
)->base_element_aligned
= true;
763 /* If this is a backward running DR then first access in the larger
764 vectype actually is N-1 elements before the address in the DR.
765 Adjust misalign accordingly. */
766 if (tree_int_cst_sgn (DR_STEP (dr
)) < 0)
768 tree offset
= ssize_int (TYPE_VECTOR_SUBPARTS (vectype
) - 1);
769 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
770 otherwise we wouldn't be here. */
771 offset
= fold_build2 (MULT_EXPR
, ssizetype
, offset
, DR_STEP (dr
));
772 /* PLUS because DR_STEP was negative. */
773 misalign
= size_binop (PLUS_EXPR
, misalign
, offset
);
776 SET_DR_MISALIGNMENT (dr
,
777 wi::mod_floor (misalign
, alignment
, SIGNED
).to_uhwi ());
779 if (dump_enabled_p ())
781 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
782 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr
));
783 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, ref
);
784 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
791 /* Function vect_compute_data_refs_alignment
793 Compute the misalignment of data references in the loop.
794 Return FALSE if a data reference is found that cannot be vectorized. */
797 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo
,
798 bb_vec_info bb_vinfo
)
800 vec
<data_reference_p
> datarefs
;
801 struct data_reference
*dr
;
805 datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
807 datarefs
= BB_VINFO_DATAREFS (bb_vinfo
);
809 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
810 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr
)))
811 && !vect_compute_data_ref_alignment (dr
))
815 /* Mark unsupported statement as unvectorizable. */
816 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr
))) = false;
827 /* Function vect_update_misalignment_for_peel
829 DR - the data reference whose misalignment is to be adjusted.
830 DR_PEEL - the data reference whose misalignment is being made
831 zero in the vector loop by the peel.
832 NPEEL - the number of iterations in the peel loop if the misalignment
833 of DR_PEEL is known at compile time. */
836 vect_update_misalignment_for_peel (struct data_reference
*dr
,
837 struct data_reference
*dr_peel
, int npeel
)
840 vec
<dr_p
> same_align_drs
;
841 struct data_reference
*current_dr
;
842 int dr_size
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr
))));
843 int dr_peel_size
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel
))));
844 stmt_vec_info stmt_info
= vinfo_for_stmt (DR_STMT (dr
));
845 stmt_vec_info peel_stmt_info
= vinfo_for_stmt (DR_STMT (dr_peel
));
847 /* For interleaved data accesses the step in the loop must be multiplied by
848 the size of the interleaving group. */
849 if (STMT_VINFO_GROUPED_ACCESS (stmt_info
))
850 dr_size
*= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info
)));
851 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info
))
852 dr_peel_size
*= GROUP_SIZE (peel_stmt_info
);
854 /* It can be assumed that the data refs with the same alignment as dr_peel
855 are aligned in the vector loop. */
857 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel
)));
858 FOR_EACH_VEC_ELT (same_align_drs
, i
, current_dr
)
860 if (current_dr
!= dr
)
862 gcc_assert (DR_MISALIGNMENT (dr
) / dr_size
==
863 DR_MISALIGNMENT (dr_peel
) / dr_peel_size
);
864 SET_DR_MISALIGNMENT (dr
, 0);
868 if (known_alignment_for_access_p (dr
)
869 && known_alignment_for_access_p (dr_peel
))
871 bool negative
= tree_int_cst_compare (DR_STEP (dr
), size_zero_node
) < 0;
872 int misal
= DR_MISALIGNMENT (dr
);
873 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
874 misal
+= negative
? -npeel
* dr_size
: npeel
* dr_size
;
875 misal
&= (TYPE_ALIGN (vectype
) / BITS_PER_UNIT
) - 1;
876 SET_DR_MISALIGNMENT (dr
, misal
);
880 if (dump_enabled_p ())
881 dump_printf_loc (MSG_NOTE
, vect_location
, "Setting misalignment to -1.\n");
882 SET_DR_MISALIGNMENT (dr
, -1);
886 /* Function vect_verify_datarefs_alignment
888 Return TRUE if all data references in the loop can be
889 handled with respect to alignment. */
892 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo
, bb_vec_info bb_vinfo
)
894 vec
<data_reference_p
> datarefs
;
895 struct data_reference
*dr
;
896 enum dr_alignment_support supportable_dr_alignment
;
900 datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
902 datarefs
= BB_VINFO_DATAREFS (bb_vinfo
);
904 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
906 gimple stmt
= DR_STMT (dr
);
907 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
909 if (!STMT_VINFO_RELEVANT_P (stmt_info
))
912 /* For interleaving, only the alignment of the first access matters.
913 Skip statements marked as not vectorizable. */
914 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info
)
915 && GROUP_FIRST_ELEMENT (stmt_info
) != stmt
)
916 || !STMT_VINFO_VECTORIZABLE (stmt_info
))
919 /* Strided accesses perform only component accesses, alignment is
920 irrelevant for them. */
921 if (STMT_VINFO_STRIDED_P (stmt_info
)
922 && !STMT_VINFO_GROUPED_ACCESS (stmt_info
))
925 supportable_dr_alignment
= vect_supportable_dr_alignment (dr
, false);
926 if (!supportable_dr_alignment
)
928 if (dump_enabled_p ())
931 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
932 "not vectorized: unsupported unaligned load.");
934 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
935 "not vectorized: unsupported unaligned "
938 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
940 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
944 if (supportable_dr_alignment
!= dr_aligned
&& dump_enabled_p ())
945 dump_printf_loc (MSG_NOTE
, vect_location
,
946 "Vectorizing an unaligned access.\n");
951 /* Given an memory reference EXP return whether its alignment is less
955 not_size_aligned (tree exp
)
957 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp
))))
960 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp
)))
961 > get_object_alignment (exp
));
964 /* Function vector_alignment_reachable_p
966 Return true if vector alignment for DR is reachable by peeling
967 a few loop iterations. Return false otherwise. */
970 vector_alignment_reachable_p (struct data_reference
*dr
)
972 gimple stmt
= DR_STMT (dr
);
973 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
974 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
976 if (STMT_VINFO_GROUPED_ACCESS (stmt_info
))
978 /* For interleaved access we peel only if number of iterations in
979 the prolog loop ({VF - misalignment}), is a multiple of the
980 number of the interleaved accesses. */
981 int elem_size
, mis_in_elements
;
982 int nelements
= TYPE_VECTOR_SUBPARTS (vectype
);
984 /* FORNOW: handle only known alignment. */
985 if (!known_alignment_for_access_p (dr
))
988 elem_size
= GET_MODE_SIZE (TYPE_MODE (vectype
)) / nelements
;
989 mis_in_elements
= DR_MISALIGNMENT (dr
) / elem_size
;
991 if ((nelements
- mis_in_elements
) % GROUP_SIZE (stmt_info
))
995 /* If misalignment is known at the compile time then allow peeling
996 only if natural alignment is reachable through peeling. */
997 if (known_alignment_for_access_p (dr
) && !aligned_access_p (dr
))
999 HOST_WIDE_INT elmsize
=
1000 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype
)));
1001 if (dump_enabled_p ())
1003 dump_printf_loc (MSG_NOTE
, vect_location
,
1004 "data size =" HOST_WIDE_INT_PRINT_DEC
, elmsize
);
1005 dump_printf (MSG_NOTE
,
1006 ". misalignment = %d.\n", DR_MISALIGNMENT (dr
));
1008 if (DR_MISALIGNMENT (dr
) % elmsize
)
1010 if (dump_enabled_p ())
1011 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1012 "data size does not divide the misalignment.\n");
1017 if (!known_alignment_for_access_p (dr
))
1019 tree type
= TREE_TYPE (DR_REF (dr
));
1020 bool is_packed
= not_size_aligned (DR_REF (dr
));
1021 if (dump_enabled_p ())
1022 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1023 "Unknown misalignment, is_packed = %d\n",is_packed
);
1024 if ((TYPE_USER_ALIGN (type
) && !is_packed
)
1025 || targetm
.vectorize
.vector_alignment_reachable (type
, is_packed
))
1035 /* Calculate the cost of the memory access represented by DR. */
1038 vect_get_data_access_cost (struct data_reference
*dr
,
1039 unsigned int *inside_cost
,
1040 unsigned int *outside_cost
,
1041 stmt_vector_for_cost
*body_cost_vec
)
1043 gimple stmt
= DR_STMT (dr
);
1044 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1045 int nunits
= TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info
));
1046 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
1047 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1048 int ncopies
= vf
/ nunits
;
1050 if (DR_IS_READ (dr
))
1051 vect_get_load_cost (dr
, ncopies
, true, inside_cost
, outside_cost
,
1052 NULL
, body_cost_vec
, false);
1054 vect_get_store_cost (dr
, ncopies
, inside_cost
, body_cost_vec
);
1056 if (dump_enabled_p ())
1057 dump_printf_loc (MSG_NOTE
, vect_location
,
1058 "vect_get_data_access_cost: inside_cost = %d, "
1059 "outside_cost = %d.\n", *inside_cost
, *outside_cost
);
1063 /* Insert DR into peeling hash table with NPEEL as key. */
1066 vect_peeling_hash_insert (loop_vec_info loop_vinfo
, struct data_reference
*dr
,
1069 struct _vect_peel_info elem
, *slot
;
1070 _vect_peel_info
**new_slot
;
1071 bool supportable_dr_alignment
= vect_supportable_dr_alignment (dr
, true);
1074 slot
= LOOP_VINFO_PEELING_HTAB (loop_vinfo
)->find (&elem
);
1079 slot
= XNEW (struct _vect_peel_info
);
1080 slot
->npeel
= npeel
;
1084 = LOOP_VINFO_PEELING_HTAB (loop_vinfo
)->find_slot (slot
, INSERT
);
1088 if (!supportable_dr_alignment
1089 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo
)))
1090 slot
->count
+= VECT_MAX_COST
;
1094 /* Traverse peeling hash table to find peeling option that aligns maximum
1095 number of data accesses. */
1098 vect_peeling_hash_get_most_frequent (_vect_peel_info
**slot
,
1099 _vect_peel_extended_info
*max
)
1101 vect_peel_info elem
= *slot
;
1103 if (elem
->count
> max
->peel_info
.count
1104 || (elem
->count
== max
->peel_info
.count
1105 && max
->peel_info
.npeel
> elem
->npeel
))
1107 max
->peel_info
.npeel
= elem
->npeel
;
1108 max
->peel_info
.count
= elem
->count
;
1109 max
->peel_info
.dr
= elem
->dr
;
1116 /* Traverse peeling hash table and calculate cost for each peeling option.
1117 Find the one with the lowest cost. */
1120 vect_peeling_hash_get_lowest_cost (_vect_peel_info
**slot
,
1121 _vect_peel_extended_info
*min
)
1123 vect_peel_info elem
= *slot
;
1124 int save_misalignment
, dummy
;
1125 unsigned int inside_cost
= 0, outside_cost
= 0, i
;
1126 gimple stmt
= DR_STMT (elem
->dr
);
1127 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1128 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
1129 vec
<data_reference_p
> datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
1130 struct data_reference
*dr
;
1131 stmt_vector_for_cost prologue_cost_vec
, body_cost_vec
, epilogue_cost_vec
;
1133 prologue_cost_vec
.create (2);
1134 body_cost_vec
.create (2);
1135 epilogue_cost_vec
.create (2);
1137 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1139 stmt
= DR_STMT (dr
);
1140 stmt_info
= vinfo_for_stmt (stmt
);
1141 /* For interleaving, only the alignment of the first access
1143 if (STMT_VINFO_GROUPED_ACCESS (stmt_info
)
1144 && GROUP_FIRST_ELEMENT (stmt_info
) != stmt
)
1147 save_misalignment
= DR_MISALIGNMENT (dr
);
1148 vect_update_misalignment_for_peel (dr
, elem
->dr
, elem
->npeel
);
1149 vect_get_data_access_cost (dr
, &inside_cost
, &outside_cost
,
1151 SET_DR_MISALIGNMENT (dr
, save_misalignment
);
1154 outside_cost
+= vect_get_known_peeling_cost
1155 (loop_vinfo
, elem
->npeel
, &dummy
,
1156 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo
),
1157 &prologue_cost_vec
, &epilogue_cost_vec
);
1159 /* Prologue and epilogue costs are added to the target model later.
1160 These costs depend only on the scalar iteration cost, the
1161 number of peeling iterations finally chosen, and the number of
1162 misaligned statements. So discard the information found here. */
1163 prologue_cost_vec
.release ();
1164 epilogue_cost_vec
.release ();
1166 if (inside_cost
< min
->inside_cost
1167 || (inside_cost
== min
->inside_cost
&& outside_cost
< min
->outside_cost
))
1169 min
->inside_cost
= inside_cost
;
1170 min
->outside_cost
= outside_cost
;
1171 min
->body_cost_vec
.release ();
1172 min
->body_cost_vec
= body_cost_vec
;
1173 min
->peel_info
.dr
= elem
->dr
;
1174 min
->peel_info
.npeel
= elem
->npeel
;
1177 body_cost_vec
.release ();
1183 /* Choose best peeling option by traversing peeling hash table and either
1184 choosing an option with the lowest cost (if cost model is enabled) or the
1185 option that aligns as many accesses as possible. */
1187 static struct data_reference
*
1188 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo
,
1189 unsigned int *npeel
,
1190 stmt_vector_for_cost
*body_cost_vec
)
1192 struct _vect_peel_extended_info res
;
1194 res
.peel_info
.dr
= NULL
;
1195 res
.body_cost_vec
= stmt_vector_for_cost ();
1197 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo
)))
1199 res
.inside_cost
= INT_MAX
;
1200 res
.outside_cost
= INT_MAX
;
1201 LOOP_VINFO_PEELING_HTAB (loop_vinfo
)
1202 ->traverse
<_vect_peel_extended_info
*,
1203 vect_peeling_hash_get_lowest_cost
> (&res
);
1207 res
.peel_info
.count
= 0;
1208 LOOP_VINFO_PEELING_HTAB (loop_vinfo
)
1209 ->traverse
<_vect_peel_extended_info
*,
1210 vect_peeling_hash_get_most_frequent
> (&res
);
1213 *npeel
= res
.peel_info
.npeel
;
1214 *body_cost_vec
= res
.body_cost_vec
;
1215 return res
.peel_info
.dr
;
1219 /* Function vect_enhance_data_refs_alignment
1221 This pass will use loop versioning and loop peeling in order to enhance
1222 the alignment of data references in the loop.
1224 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1225 original loop is to be vectorized. Any other loops that are created by
1226 the transformations performed in this pass - are not supposed to be
1227 vectorized. This restriction will be relaxed.
1229 This pass will require a cost model to guide it whether to apply peeling
1230 or versioning or a combination of the two. For example, the scheme that
1231 intel uses when given a loop with several memory accesses, is as follows:
1232 choose one memory access ('p') which alignment you want to force by doing
1233 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1234 other accesses are not necessarily aligned, or (2) use loop versioning to
1235 generate one loop in which all accesses are aligned, and another loop in
1236 which only 'p' is necessarily aligned.
1238 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1239 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1240 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1242 Devising a cost model is the most critical aspect of this work. It will
1243 guide us on which access to peel for, whether to use loop versioning, how
1244 many versions to create, etc. The cost model will probably consist of
1245 generic considerations as well as target specific considerations (on
1246 powerpc for example, misaligned stores are more painful than misaligned
1249 Here are the general steps involved in alignment enhancements:
1251 -- original loop, before alignment analysis:
1252 for (i=0; i<N; i++){
1253 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1254 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1257 -- After vect_compute_data_refs_alignment:
1258 for (i=0; i<N; i++){
1259 x = q[i]; # DR_MISALIGNMENT(q) = 3
1260 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1263 -- Possibility 1: we do loop versioning:
1265 for (i=0; i<N; i++){ # loop 1A
1266 x = q[i]; # DR_MISALIGNMENT(q) = 3
1267 p[i] = y; # DR_MISALIGNMENT(p) = 0
1271 for (i=0; i<N; i++){ # loop 1B
1272 x = q[i]; # DR_MISALIGNMENT(q) = 3
1273 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1277 -- Possibility 2: we do loop peeling:
1278 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1282 for (i = 3; i < N; i++){ # loop 2A
1283 x = q[i]; # DR_MISALIGNMENT(q) = 0
1284 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1287 -- Possibility 3: combination of loop peeling and versioning:
1288 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1293 for (i = 3; i<N; i++){ # loop 3A
1294 x = q[i]; # DR_MISALIGNMENT(q) = 0
1295 p[i] = y; # DR_MISALIGNMENT(p) = 0
1299 for (i = 3; i<N; i++){ # loop 3B
1300 x = q[i]; # DR_MISALIGNMENT(q) = 0
1301 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1305 These loops are later passed to loop_transform to be vectorized. The
1306 vectorizer will use the alignment information to guide the transformation
1307 (whether to generate regular loads/stores, or with special handling for
1311 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo
)
1313 vec
<data_reference_p
> datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
1314 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1315 enum dr_alignment_support supportable_dr_alignment
;
1316 struct data_reference
*dr0
= NULL
, *first_store
= NULL
;
1317 struct data_reference
*dr
;
1319 bool do_peeling
= false;
1320 bool do_versioning
= false;
1323 stmt_vec_info stmt_info
;
1324 unsigned int npeel
= 0;
1325 bool all_misalignments_unknown
= true;
1326 unsigned int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1327 unsigned possible_npeel_number
= 1;
1329 unsigned int nelements
, mis
, same_align_drs_max
= 0;
1330 stmt_vector_for_cost body_cost_vec
= stmt_vector_for_cost ();
1332 if (dump_enabled_p ())
1333 dump_printf_loc (MSG_NOTE
, vect_location
,
1334 "=== vect_enhance_data_refs_alignment ===\n");
1336 /* While cost model enhancements are expected in the future, the high level
1337 view of the code at this time is as follows:
1339 A) If there is a misaligned access then see if peeling to align
1340 this access can make all data references satisfy
1341 vect_supportable_dr_alignment. If so, update data structures
1342 as needed and return true.
1344 B) If peeling wasn't possible and there is a data reference with an
1345 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1346 then see if loop versioning checks can be used to make all data
1347 references satisfy vect_supportable_dr_alignment. If so, update
1348 data structures as needed and return true.
1350 C) If neither peeling nor versioning were successful then return false if
1351 any data reference does not satisfy vect_supportable_dr_alignment.
1353 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1355 Note, Possibility 3 above (which is peeling and versioning together) is not
1356 being done at this time. */
1358 /* (1) Peeling to force alignment. */
1360 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1362 + How many accesses will become aligned due to the peeling
1363 - How many accesses will become unaligned due to the peeling,
1364 and the cost of misaligned accesses.
1365 - The cost of peeling (the extra runtime checks, the increase
1368 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1370 stmt
= DR_STMT (dr
);
1371 stmt_info
= vinfo_for_stmt (stmt
);
1373 if (!STMT_VINFO_RELEVANT_P (stmt_info
))
1376 /* For interleaving, only the alignment of the first access
1378 if (STMT_VINFO_GROUPED_ACCESS (stmt_info
)
1379 && GROUP_FIRST_ELEMENT (stmt_info
) != stmt
)
1382 /* For invariant accesses there is nothing to enhance. */
1383 if (integer_zerop (DR_STEP (dr
)))
1386 /* Strided accesses perform only component accesses, alignment is
1387 irrelevant for them. */
1388 if (STMT_VINFO_STRIDED_P (stmt_info
)
1389 && !STMT_VINFO_GROUPED_ACCESS (stmt_info
))
1392 supportable_dr_alignment
= vect_supportable_dr_alignment (dr
, true);
1393 do_peeling
= vector_alignment_reachable_p (dr
);
1396 if (known_alignment_for_access_p (dr
))
1398 unsigned int npeel_tmp
;
1399 bool negative
= tree_int_cst_compare (DR_STEP (dr
),
1400 size_zero_node
) < 0;
1402 /* Save info about DR in the hash table. */
1403 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo
))
1404 LOOP_VINFO_PEELING_HTAB (loop_vinfo
)
1405 = new hash_table
<peel_info_hasher
> (1);
1407 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
1408 nelements
= TYPE_VECTOR_SUBPARTS (vectype
);
1409 mis
= DR_MISALIGNMENT (dr
) / GET_MODE_SIZE (TYPE_MODE (
1410 TREE_TYPE (DR_REF (dr
))));
1411 npeel_tmp
= (negative
1412 ? (mis
- nelements
) : (nelements
- mis
))
1415 /* For multiple types, it is possible that the bigger type access
1416 will have more than one peeling option. E.g., a loop with two
1417 types: one of size (vector size / 4), and the other one of
1418 size (vector size / 8). Vectorization factor will 8. If both
1419 access are misaligned by 3, the first one needs one scalar
1420 iteration to be aligned, and the second one needs 5. But the
1421 the first one will be aligned also by peeling 5 scalar
1422 iterations, and in that case both accesses will be aligned.
1423 Hence, except for the immediate peeling amount, we also want
1424 to try to add full vector size, while we don't exceed
1425 vectorization factor.
1426 We do this automtically for cost model, since we calculate cost
1427 for every peeling option. */
1428 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo
)))
1430 if (STMT_SLP_TYPE (stmt_info
))
1431 possible_npeel_number
1432 = (vf
* GROUP_SIZE (stmt_info
)) / nelements
;
1434 possible_npeel_number
= vf
/ nelements
;
1437 /* Handle the aligned case. We may decide to align some other
1438 access, making DR unaligned. */
1439 if (DR_MISALIGNMENT (dr
) == 0)
1442 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo
)))
1443 possible_npeel_number
++;
1446 for (j
= 0; j
< possible_npeel_number
; j
++)
1448 vect_peeling_hash_insert (loop_vinfo
, dr
, npeel_tmp
);
1449 npeel_tmp
+= nelements
;
1452 all_misalignments_unknown
= false;
1453 /* Data-ref that was chosen for the case that all the
1454 misalignments are unknown is not relevant anymore, since we
1455 have a data-ref with known alignment. */
1460 /* If we don't know any misalignment values, we prefer
1461 peeling for data-ref that has the maximum number of data-refs
1462 with the same alignment, unless the target prefers to align
1463 stores over load. */
1464 if (all_misalignments_unknown
)
1466 unsigned same_align_drs
1467 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info
).length ();
1469 || same_align_drs_max
< same_align_drs
)
1471 same_align_drs_max
= same_align_drs
;
1474 /* For data-refs with the same number of related
1475 accesses prefer the one where the misalign
1476 computation will be invariant in the outermost loop. */
1477 else if (same_align_drs_max
== same_align_drs
)
1479 struct loop
*ivloop0
, *ivloop
;
1480 ivloop0
= outermost_invariant_loop_for_expr
1481 (loop
, DR_BASE_ADDRESS (dr0
));
1482 ivloop
= outermost_invariant_loop_for_expr
1483 (loop
, DR_BASE_ADDRESS (dr
));
1484 if ((ivloop
&& !ivloop0
)
1485 || (ivloop
&& ivloop0
1486 && flow_loop_nested_p (ivloop
, ivloop0
)))
1490 if (!first_store
&& DR_IS_WRITE (dr
))
1494 /* If there are both known and unknown misaligned accesses in the
1495 loop, we choose peeling amount according to the known
1497 if (!supportable_dr_alignment
)
1500 if (!first_store
&& DR_IS_WRITE (dr
))
1507 if (!aligned_access_p (dr
))
1509 if (dump_enabled_p ())
1510 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1511 "vector alignment may not be reachable\n");
1517 /* Check if we can possibly peel the loop. */
1518 if (!vect_can_advance_ivs_p (loop_vinfo
)
1519 || !slpeel_can_duplicate_loop_p (loop
, single_exit (loop
))
1524 && all_misalignments_unknown
1525 && vect_supportable_dr_alignment (dr0
, false))
1527 /* Check if the target requires to prefer stores over loads, i.e., if
1528 misaligned stores are more expensive than misaligned loads (taking
1529 drs with same alignment into account). */
1530 if (first_store
&& DR_IS_READ (dr0
))
1532 unsigned int load_inside_cost
= 0, load_outside_cost
= 0;
1533 unsigned int store_inside_cost
= 0, store_outside_cost
= 0;
1534 unsigned int load_inside_penalty
= 0, load_outside_penalty
= 0;
1535 unsigned int store_inside_penalty
= 0, store_outside_penalty
= 0;
1536 stmt_vector_for_cost dummy
;
1539 vect_get_data_access_cost (dr0
, &load_inside_cost
, &load_outside_cost
,
1541 vect_get_data_access_cost (first_store
, &store_inside_cost
,
1542 &store_outside_cost
, &dummy
);
1546 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1547 aligning the load DR0). */
1548 load_inside_penalty
= store_inside_cost
;
1549 load_outside_penalty
= store_outside_cost
;
1551 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1552 DR_STMT (first_store
))).iterate (i
, &dr
);
1554 if (DR_IS_READ (dr
))
1556 load_inside_penalty
+= load_inside_cost
;
1557 load_outside_penalty
+= load_outside_cost
;
1561 load_inside_penalty
+= store_inside_cost
;
1562 load_outside_penalty
+= store_outside_cost
;
1565 /* Calculate the penalty for leaving DR0 unaligned (by
1566 aligning the FIRST_STORE). */
1567 store_inside_penalty
= load_inside_cost
;
1568 store_outside_penalty
= load_outside_cost
;
1570 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1571 DR_STMT (dr0
))).iterate (i
, &dr
);
1573 if (DR_IS_READ (dr
))
1575 store_inside_penalty
+= load_inside_cost
;
1576 store_outside_penalty
+= load_outside_cost
;
1580 store_inside_penalty
+= store_inside_cost
;
1581 store_outside_penalty
+= store_outside_cost
;
1584 if (load_inside_penalty
> store_inside_penalty
1585 || (load_inside_penalty
== store_inside_penalty
1586 && load_outside_penalty
> store_outside_penalty
))
1590 /* In case there are only loads with different unknown misalignments, use
1591 peeling only if it may help to align other accesses in the loop or
1592 if it may help improving load bandwith when we'd end up using
1594 tree dr0_vt
= STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr0
)));
1596 && !STMT_VINFO_SAME_ALIGN_REFS (
1597 vinfo_for_stmt (DR_STMT (dr0
))).length ()
1598 && (vect_supportable_dr_alignment (dr0
, false)
1599 != dr_unaligned_supported
1600 || (builtin_vectorization_cost (vector_load
, dr0_vt
, 0)
1601 == builtin_vectorization_cost (unaligned_load
, dr0_vt
, -1))))
1605 if (do_peeling
&& !dr0
)
1607 /* Peeling is possible, but there is no data access that is not supported
1608 unless aligned. So we try to choose the best possible peeling. */
1610 /* We should get here only if there are drs with known misalignment. */
1611 gcc_assert (!all_misalignments_unknown
);
1613 /* Choose the best peeling from the hash table. */
1614 dr0
= vect_peeling_hash_choose_best_peeling (loop_vinfo
, &npeel
,
1622 stmt
= DR_STMT (dr0
);
1623 stmt_info
= vinfo_for_stmt (stmt
);
1624 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
1625 nelements
= TYPE_VECTOR_SUBPARTS (vectype
);
1627 if (known_alignment_for_access_p (dr0
))
1629 bool negative
= tree_int_cst_compare (DR_STEP (dr0
),
1630 size_zero_node
) < 0;
1633 /* Since it's known at compile time, compute the number of
1634 iterations in the peeled loop (the peeling factor) for use in
1635 updating DR_MISALIGNMENT values. The peeling factor is the
1636 vectorization factor minus the misalignment as an element
1638 mis
= DR_MISALIGNMENT (dr0
);
1639 mis
/= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0
))));
1640 npeel
= ((negative
? mis
- nelements
: nelements
- mis
)
1644 /* For interleaved data access every iteration accesses all the
1645 members of the group, therefore we divide the number of iterations
1646 by the group size. */
1647 stmt_info
= vinfo_for_stmt (DR_STMT (dr0
));
1648 if (STMT_VINFO_GROUPED_ACCESS (stmt_info
))
1649 npeel
/= GROUP_SIZE (stmt_info
);
1651 if (dump_enabled_p ())
1652 dump_printf_loc (MSG_NOTE
, vect_location
,
1653 "Try peeling by %d\n", npeel
);
1656 /* Ensure that all data refs can be vectorized after the peel. */
1657 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1659 int save_misalignment
;
1664 stmt
= DR_STMT (dr
);
1665 stmt_info
= vinfo_for_stmt (stmt
);
1666 /* For interleaving, only the alignment of the first access
1668 if (STMT_VINFO_GROUPED_ACCESS (stmt_info
)
1669 && GROUP_FIRST_ELEMENT (stmt_info
) != stmt
)
1672 /* Strided accesses perform only component accesses, alignment is
1673 irrelevant for them. */
1674 if (STMT_VINFO_STRIDED_P (stmt_info
)
1675 && !STMT_VINFO_GROUPED_ACCESS (stmt_info
))
1678 save_misalignment
= DR_MISALIGNMENT (dr
);
1679 vect_update_misalignment_for_peel (dr
, dr0
, npeel
);
1680 supportable_dr_alignment
= vect_supportable_dr_alignment (dr
, false);
1681 SET_DR_MISALIGNMENT (dr
, save_misalignment
);
1683 if (!supportable_dr_alignment
)
1690 if (do_peeling
&& known_alignment_for_access_p (dr0
) && npeel
== 0)
1692 stat
= vect_verify_datarefs_alignment (loop_vinfo
, NULL
);
1697 body_cost_vec
.release ();
1702 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
1705 unsigned max_allowed_peel
1706 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT
);
1707 if (max_allowed_peel
!= (unsigned)-1)
1709 unsigned max_peel
= npeel
;
1712 gimple dr_stmt
= DR_STMT (dr0
);
1713 stmt_vec_info vinfo
= vinfo_for_stmt (dr_stmt
);
1714 tree vtype
= STMT_VINFO_VECTYPE (vinfo
);
1715 max_peel
= TYPE_VECTOR_SUBPARTS (vtype
) - 1;
1717 if (max_peel
> max_allowed_peel
)
1720 if (dump_enabled_p ())
1721 dump_printf_loc (MSG_NOTE
, vect_location
,
1722 "Disable peeling, max peels reached: %d\n", max_peel
);
1727 /* Cost model #2 - if peeling may result in a remaining loop not
1728 iterating enough to be vectorized then do not peel. */
1730 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
1733 = npeel
== 0 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo
) - 1 : npeel
;
1734 if (LOOP_VINFO_INT_NITERS (loop_vinfo
)
1735 < LOOP_VINFO_VECT_FACTOR (loop_vinfo
) + max_peel
)
1741 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1742 If the misalignment of DR_i is identical to that of dr0 then set
1743 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1744 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1745 by the peeling factor times the element size of DR_i (MOD the
1746 vectorization factor times the size). Otherwise, the
1747 misalignment of DR_i must be set to unknown. */
1748 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1750 vect_update_misalignment_for_peel (dr
, dr0
, npeel
);
1752 LOOP_VINFO_UNALIGNED_DR (loop_vinfo
) = dr0
;
1754 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) = npeel
;
1756 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
)
1757 = DR_MISALIGNMENT (dr0
);
1758 SET_DR_MISALIGNMENT (dr0
, 0);
1759 if (dump_enabled_p ())
1761 dump_printf_loc (MSG_NOTE
, vect_location
,
1762 "Alignment of access forced using peeling.\n");
1763 dump_printf_loc (MSG_NOTE
, vect_location
,
1764 "Peeling for alignment will be applied.\n");
1766 /* The inside-loop cost will be accounted for in vectorizable_load
1767 and vectorizable_store correctly with adjusted alignments.
1768 Drop the body_cst_vec on the floor here. */
1769 body_cost_vec
.release ();
1771 stat
= vect_verify_datarefs_alignment (loop_vinfo
, NULL
);
1777 body_cost_vec
.release ();
1779 /* (2) Versioning to force alignment. */
1781 /* Try versioning if:
1782 1) optimize loop for speed
1783 2) there is at least one unsupported misaligned data ref with an unknown
1785 3) all misaligned data refs with a known misalignment are supported, and
1786 4) the number of runtime alignment checks is within reason. */
1789 optimize_loop_nest_for_speed_p (loop
)
1790 && (!loop
->inner
); /* FORNOW */
1794 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1796 stmt
= DR_STMT (dr
);
1797 stmt_info
= vinfo_for_stmt (stmt
);
1799 /* For interleaving, only the alignment of the first access
1801 if (aligned_access_p (dr
)
1802 || (STMT_VINFO_GROUPED_ACCESS (stmt_info
)
1803 && GROUP_FIRST_ELEMENT (stmt_info
) != stmt
))
1806 if (STMT_VINFO_STRIDED_P (stmt_info
))
1808 /* Strided loads perform only component accesses, alignment is
1809 irrelevant for them. */
1810 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info
))
1812 do_versioning
= false;
1816 supportable_dr_alignment
= vect_supportable_dr_alignment (dr
, false);
1818 if (!supportable_dr_alignment
)
1824 if (known_alignment_for_access_p (dr
)
1825 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
).length ()
1826 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS
))
1828 do_versioning
= false;
1832 stmt
= DR_STMT (dr
);
1833 vectype
= STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt
));
1834 gcc_assert (vectype
);
1836 /* The rightmost bits of an aligned address must be zeros.
1837 Construct the mask needed for this test. For example,
1838 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1839 mask must be 15 = 0xf. */
1840 mask
= GET_MODE_SIZE (TYPE_MODE (vectype
)) - 1;
1842 /* FORNOW: use the same mask to test all potentially unaligned
1843 references in the loop. The vectorizer currently supports
1844 a single vector size, see the reference to
1845 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1846 vectorization factor is computed. */
1847 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo
)
1848 || LOOP_VINFO_PTR_MASK (loop_vinfo
) == mask
);
1849 LOOP_VINFO_PTR_MASK (loop_vinfo
) = mask
;
1850 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
).safe_push (
1855 /* Versioning requires at least one misaligned data reference. */
1856 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
))
1857 do_versioning
= false;
1858 else if (!do_versioning
)
1859 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
).truncate (0);
1864 vec
<gimple
> may_misalign_stmts
1865 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
);
1868 /* It can now be assumed that the data references in the statements
1869 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1870 of the loop being vectorized. */
1871 FOR_EACH_VEC_ELT (may_misalign_stmts
, i
, stmt
)
1873 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1874 dr
= STMT_VINFO_DATA_REF (stmt_info
);
1875 SET_DR_MISALIGNMENT (dr
, 0);
1876 if (dump_enabled_p ())
1877 dump_printf_loc (MSG_NOTE
, vect_location
,
1878 "Alignment of access forced using versioning.\n");
1881 if (dump_enabled_p ())
1882 dump_printf_loc (MSG_NOTE
, vect_location
,
1883 "Versioning for alignment will be applied.\n");
1885 /* Peeling and versioning can't be done together at this time. */
1886 gcc_assert (! (do_peeling
&& do_versioning
));
1888 stat
= vect_verify_datarefs_alignment (loop_vinfo
, NULL
);
1893 /* This point is reached if neither peeling nor versioning is being done. */
1894 gcc_assert (! (do_peeling
|| do_versioning
));
1896 stat
= vect_verify_datarefs_alignment (loop_vinfo
, NULL
);
1901 /* Function vect_find_same_alignment_drs.
1903 Update group and alignment relations according to the chosen
1904 vectorization factor. */
1907 vect_find_same_alignment_drs (struct data_dependence_relation
*ddr
,
1908 loop_vec_info loop_vinfo
)
1911 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1912 int vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1913 struct data_reference
*dra
= DDR_A (ddr
);
1914 struct data_reference
*drb
= DDR_B (ddr
);
1915 stmt_vec_info stmtinfo_a
= vinfo_for_stmt (DR_STMT (dra
));
1916 stmt_vec_info stmtinfo_b
= vinfo_for_stmt (DR_STMT (drb
));
1917 int dra_size
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra
))));
1918 int drb_size
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb
))));
1919 lambda_vector dist_v
;
1920 unsigned int loop_depth
;
1922 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
1928 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
1931 /* Loop-based vectorization and known data dependence. */
1932 if (DDR_NUM_DIST_VECTS (ddr
) == 0)
1935 /* Data-dependence analysis reports a distance vector of zero
1936 for data-references that overlap only in the first iteration
1937 but have different sign step (see PR45764).
1938 So as a sanity check require equal DR_STEP. */
1939 if (!operand_equal_p (DR_STEP (dra
), DR_STEP (drb
), 0))
1942 loop_depth
= index_in_loop_nest (loop
->num
, DDR_LOOP_NEST (ddr
));
1943 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr
), i
, dist_v
)
1945 int dist
= dist_v
[loop_depth
];
1947 if (dump_enabled_p ())
1948 dump_printf_loc (MSG_NOTE
, vect_location
,
1949 "dependence distance = %d.\n", dist
);
1951 /* Same loop iteration. */
1953 || (dist
% vectorization_factor
== 0 && dra_size
== drb_size
))
1955 /* Two references with distance zero have the same alignment. */
1956 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a
).safe_push (drb
);
1957 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b
).safe_push (dra
);
1958 if (dump_enabled_p ())
1960 dump_printf_loc (MSG_NOTE
, vect_location
,
1961 "accesses have the same alignment.\n");
1962 dump_printf (MSG_NOTE
,
1963 "dependence distance modulo vf == 0 between ");
1964 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dra
));
1965 dump_printf (MSG_NOTE
, " and ");
1966 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (drb
));
1967 dump_printf (MSG_NOTE
, "\n");
1974 /* Function vect_analyze_data_refs_alignment
1976 Analyze the alignment of the data-references in the loop.
1977 Return FALSE if a data reference is found that cannot be vectorized. */
1980 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo
,
1981 bb_vec_info bb_vinfo
)
1983 if (dump_enabled_p ())
1984 dump_printf_loc (MSG_NOTE
, vect_location
,
1985 "=== vect_analyze_data_refs_alignment ===\n");
1987 /* Mark groups of data references with same alignment using
1988 data dependence information. */
1991 vec
<ddr_p
> ddrs
= LOOP_VINFO_DDRS (loop_vinfo
);
1992 struct data_dependence_relation
*ddr
;
1995 FOR_EACH_VEC_ELT (ddrs
, i
, ddr
)
1996 vect_find_same_alignment_drs (ddr
, loop_vinfo
);
1999 if (!vect_compute_data_refs_alignment (loop_vinfo
, bb_vinfo
))
2001 if (dump_enabled_p ())
2002 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2003 "not vectorized: can't calculate alignment "
2012 /* Analyze groups of accesses: check that DR belongs to a group of
2013 accesses of legal size, step, etc. Detect gaps, single element
2014 interleaving, and other special cases. Set grouped access info.
2015 Collect groups of strided stores for further use in SLP analysis.
2016 Worker for vect_analyze_group_access. */
2019 vect_analyze_group_access_1 (struct data_reference
*dr
)
2021 tree step
= DR_STEP (dr
);
2022 tree scalar_type
= TREE_TYPE (DR_REF (dr
));
2023 HOST_WIDE_INT type_size
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type
));
2024 gimple stmt
= DR_STMT (dr
);
2025 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
2026 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
2027 bb_vec_info bb_vinfo
= STMT_VINFO_BB_VINFO (stmt_info
);
2028 HOST_WIDE_INT dr_step
= -1;
2029 HOST_WIDE_INT groupsize
, last_accessed_element
= 1;
2030 bool slp_impossible
= false;
2031 struct loop
*loop
= NULL
;
2034 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2036 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2037 size of the interleaving group (including gaps). */
2038 if (tree_fits_shwi_p (step
))
2040 dr_step
= tree_to_shwi (step
);
2041 groupsize
= absu_hwi (dr_step
) / type_size
;
2046 /* Not consecutive access is possible only if it is a part of interleaving. */
2047 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)))
2049 /* Check if it this DR is a part of interleaving, and is a single
2050 element of the group that is accessed in the loop. */
2052 /* Gaps are supported only for loads. STEP must be a multiple of the type
2053 size. The size of the group must be a power of 2. */
2055 && (dr_step
% type_size
) == 0
2057 && exact_log2 (groupsize
) != -1)
2059 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)) = stmt
;
2060 GROUP_SIZE (vinfo_for_stmt (stmt
)) = groupsize
;
2061 if (dump_enabled_p ())
2063 dump_printf_loc (MSG_NOTE
, vect_location
,
2064 "Detected single element interleaving ");
2065 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dr
));
2066 dump_printf (MSG_NOTE
, " step ");
2067 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, step
);
2068 dump_printf (MSG_NOTE
, "\n");
2073 if (dump_enabled_p ())
2074 dump_printf_loc (MSG_NOTE
, vect_location
,
2075 "Data access with gaps requires scalar "
2079 if (dump_enabled_p ())
2080 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2081 "Peeling for outer loop is not"
2086 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
) = true;
2092 if (dump_enabled_p ())
2094 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2095 "not consecutive access ");
2096 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
2097 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
2102 /* Mark the statement as unvectorizable. */
2103 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr
))) = false;
2110 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)) == stmt
)
2112 /* First stmt in the interleaving chain. Check the chain. */
2113 gimple next
= GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt
));
2114 struct data_reference
*data_ref
= dr
;
2115 unsigned int count
= 1;
2116 tree prev_init
= DR_INIT (data_ref
);
2118 HOST_WIDE_INT diff
, gaps
= 0;
2122 /* Skip same data-refs. In case that two or more stmts share
2123 data-ref (supported only for loads), we vectorize only the first
2124 stmt, and the rest get their vectorized loads from the first
2126 if (!tree_int_cst_compare (DR_INIT (data_ref
),
2127 DR_INIT (STMT_VINFO_DATA_REF (
2128 vinfo_for_stmt (next
)))))
2130 if (DR_IS_WRITE (data_ref
))
2132 if (dump_enabled_p ())
2133 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2134 "Two store stmts share the same dr.\n");
2138 /* For load use the same data-ref load. */
2139 GROUP_SAME_DR_STMT (vinfo_for_stmt (next
)) = prev
;
2142 next
= GROUP_NEXT_ELEMENT (vinfo_for_stmt (next
));
2147 data_ref
= STMT_VINFO_DATA_REF (vinfo_for_stmt (next
));
2149 /* All group members have the same STEP by construction. */
2150 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref
), step
, 0));
2152 /* Check that the distance between two accesses is equal to the type
2153 size. Otherwise, we have gaps. */
2154 diff
= (TREE_INT_CST_LOW (DR_INIT (data_ref
))
2155 - TREE_INT_CST_LOW (prev_init
)) / type_size
;
2158 /* FORNOW: SLP of accesses with gaps is not supported. */
2159 slp_impossible
= true;
2160 if (DR_IS_WRITE (data_ref
))
2162 if (dump_enabled_p ())
2163 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2164 "interleaved store with gaps\n");
2171 last_accessed_element
+= diff
;
2173 /* Store the gap from the previous member of the group. If there is no
2174 gap in the access, GROUP_GAP is always 1. */
2175 GROUP_GAP (vinfo_for_stmt (next
)) = diff
;
2177 prev_init
= DR_INIT (data_ref
);
2178 next
= GROUP_NEXT_ELEMENT (vinfo_for_stmt (next
));
2179 /* Count the number of data-refs in the chain. */
2184 groupsize
= count
+ gaps
;
2186 if (groupsize
> UINT_MAX
)
2188 if (dump_enabled_p ())
2189 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2190 "group is too large\n");
2194 /* Check that the size of the interleaving is equal to count for stores,
2195 i.e., that there are no gaps. */
2196 if (groupsize
!= count
2197 && !DR_IS_READ (dr
))
2199 if (dump_enabled_p ())
2200 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2201 "interleaved store with gaps\n");
2205 /* If there is a gap after the last load in the group it is the
2206 difference between the groupsize and the last accessed
2208 When there is no gap, this difference should be 0. */
2209 GROUP_GAP (vinfo_for_stmt (stmt
)) = groupsize
- last_accessed_element
;
2211 GROUP_SIZE (vinfo_for_stmt (stmt
)) = groupsize
;
2212 if (dump_enabled_p ())
2214 dump_printf_loc (MSG_NOTE
, vect_location
,
2215 "Detected interleaving ");
2216 if (DR_IS_READ (dr
))
2217 dump_printf (MSG_NOTE
, "load ");
2219 dump_printf (MSG_NOTE
, "store ");
2220 dump_printf (MSG_NOTE
, "of size %u starting with ",
2221 (unsigned)groupsize
);
2222 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt
, 0);
2223 if (GROUP_GAP (vinfo_for_stmt (stmt
)) != 0)
2224 dump_printf_loc (MSG_NOTE
, vect_location
,
2225 "There is a gap of %u elements after the group\n",
2226 GROUP_GAP (vinfo_for_stmt (stmt
)));
2229 /* SLP: create an SLP data structure for every interleaving group of
2230 stores for further analysis in vect_analyse_slp. */
2231 if (DR_IS_WRITE (dr
) && !slp_impossible
)
2234 LOOP_VINFO_GROUPED_STORES (loop_vinfo
).safe_push (stmt
);
2236 BB_VINFO_GROUPED_STORES (bb_vinfo
).safe_push (stmt
);
2239 /* If there is a gap in the end of the group or the group size cannot
2240 be made a multiple of the vector element count then we access excess
2241 elements in the last iteration and thus need to peel that off. */
2243 && (groupsize
- last_accessed_element
> 0
2244 || exact_log2 (groupsize
) == -1))
2247 if (dump_enabled_p ())
2248 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2249 "Data access with gaps requires scalar "
2253 if (dump_enabled_p ())
2254 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2255 "Peeling for outer loop is not supported\n");
2259 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
) = true;
2266 /* Analyze groups of accesses: check that DR belongs to a group of
2267 accesses of legal size, step, etc. Detect gaps, single element
2268 interleaving, and other special cases. Set grouped access info.
2269 Collect groups of strided stores for further use in SLP analysis. */
2272 vect_analyze_group_access (struct data_reference
*dr
)
2274 if (!vect_analyze_group_access_1 (dr
))
2276 /* Dissolve the group if present. */
2277 gimple next
, stmt
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dr
)));
2280 stmt_vec_info vinfo
= vinfo_for_stmt (stmt
);
2281 next
= GROUP_NEXT_ELEMENT (vinfo
);
2282 GROUP_FIRST_ELEMENT (vinfo
) = NULL
;
2283 GROUP_NEXT_ELEMENT (vinfo
) = NULL
;
2291 /* Analyze the access pattern of the data-reference DR.
2292 In case of non-consecutive accesses call vect_analyze_group_access() to
2293 analyze groups of accesses. */
2296 vect_analyze_data_ref_access (struct data_reference
*dr
)
2298 tree step
= DR_STEP (dr
);
2299 tree scalar_type
= TREE_TYPE (DR_REF (dr
));
2300 gimple stmt
= DR_STMT (dr
);
2301 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
2302 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
2303 struct loop
*loop
= NULL
;
2306 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2308 if (loop_vinfo
&& !step
)
2310 if (dump_enabled_p ())
2311 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2312 "bad data-ref access in loop\n");
2316 /* Allow loads with zero step in inner-loop vectorization. */
2317 if (loop_vinfo
&& integer_zerop (step
))
2319 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)) = NULL
;
2320 if (!nested_in_vect_loop_p (loop
, stmt
))
2321 return DR_IS_READ (dr
);
2322 /* Allow references with zero step for outer loops marked
2323 with pragma omp simd only - it guarantees absence of
2324 loop-carried dependencies between inner loop iterations. */
2325 if (!loop
->force_vectorize
)
2327 if (dump_enabled_p ())
2328 dump_printf_loc (MSG_NOTE
, vect_location
,
2329 "zero step in inner loop of nest\n");
2334 if (loop
&& nested_in_vect_loop_p (loop
, stmt
))
2336 /* Interleaved accesses are not yet supported within outer-loop
2337 vectorization for references in the inner-loop. */
2338 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)) = NULL
;
2340 /* For the rest of the analysis we use the outer-loop step. */
2341 step
= STMT_VINFO_DR_STEP (stmt_info
);
2342 if (integer_zerop (step
))
2344 if (dump_enabled_p ())
2345 dump_printf_loc (MSG_NOTE
, vect_location
,
2346 "zero step in outer loop.\n");
2347 if (DR_IS_READ (dr
))
2355 if (TREE_CODE (step
) == INTEGER_CST
)
2357 HOST_WIDE_INT dr_step
= TREE_INT_CST_LOW (step
);
2358 if (!tree_int_cst_compare (step
, TYPE_SIZE_UNIT (scalar_type
))
2360 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type
), -dr_step
)))
2362 /* Mark that it is not interleaving. */
2363 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)) = NULL
;
2368 if (loop
&& nested_in_vect_loop_p (loop
, stmt
))
2370 if (dump_enabled_p ())
2371 dump_printf_loc (MSG_NOTE
, vect_location
,
2372 "grouped access in outer loop.\n");
2377 /* Assume this is a DR handled by non-constant strided load case. */
2378 if (TREE_CODE (step
) != INTEGER_CST
)
2379 return (STMT_VINFO_STRIDED_P (stmt_info
)
2380 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info
)
2381 || vect_analyze_group_access (dr
)));
2383 /* Not consecutive access - check if it's a part of interleaving group. */
2384 return vect_analyze_group_access (dr
);
2389 /* A helper function used in the comparator function to sort data
2390 references. T1 and T2 are two data references to be compared.
2391 The function returns -1, 0, or 1. */
2394 compare_tree (tree t1
, tree t2
)
2397 enum tree_code code
;
2408 if (TREE_CODE (t1
) != TREE_CODE (t2
))
2409 return TREE_CODE (t1
) < TREE_CODE (t2
) ? -1 : 1;
2411 code
= TREE_CODE (t1
);
2414 /* For const values, we can just use hash values for comparisons. */
2422 hashval_t h1
= iterative_hash_expr (t1
, 0);
2423 hashval_t h2
= iterative_hash_expr (t2
, 0);
2425 return h1
< h2
? -1 : 1;
2430 cmp
= compare_tree (SSA_NAME_VAR (t1
), SSA_NAME_VAR (t2
));
2434 if (SSA_NAME_VERSION (t1
) != SSA_NAME_VERSION (t2
))
2435 return SSA_NAME_VERSION (t1
) < SSA_NAME_VERSION (t2
) ? -1 : 1;
2439 tclass
= TREE_CODE_CLASS (code
);
2441 /* For var-decl, we could compare their UIDs. */
2442 if (tclass
== tcc_declaration
)
2444 if (DECL_UID (t1
) != DECL_UID (t2
))
2445 return DECL_UID (t1
) < DECL_UID (t2
) ? -1 : 1;
2449 /* For expressions with operands, compare their operands recursively. */
2450 for (i
= TREE_OPERAND_LENGTH (t1
) - 1; i
>= 0; --i
)
2452 cmp
= compare_tree (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
2462 /* Compare two data-references DRA and DRB to group them into chunks
2463 suitable for grouping. */
2466 dr_group_sort_cmp (const void *dra_
, const void *drb_
)
2468 data_reference_p dra
= *(data_reference_p
*)const_cast<void *>(dra_
);
2469 data_reference_p drb
= *(data_reference_p
*)const_cast<void *>(drb_
);
2472 /* Stabilize sort. */
2476 /* Ordering of DRs according to base. */
2477 if (!operand_equal_p (DR_BASE_ADDRESS (dra
), DR_BASE_ADDRESS (drb
), 0))
2479 cmp
= compare_tree (DR_BASE_ADDRESS (dra
), DR_BASE_ADDRESS (drb
));
2484 /* And according to DR_OFFSET. */
2485 if (!dr_equal_offsets_p (dra
, drb
))
2487 cmp
= compare_tree (DR_OFFSET (dra
), DR_OFFSET (drb
));
2492 /* Put reads before writes. */
2493 if (DR_IS_READ (dra
) != DR_IS_READ (drb
))
2494 return DR_IS_READ (dra
) ? -1 : 1;
2496 /* Then sort after access size. */
2497 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra
))),
2498 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb
))), 0))
2500 cmp
= compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra
))),
2501 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb
))));
2506 /* And after step. */
2507 if (!operand_equal_p (DR_STEP (dra
), DR_STEP (drb
), 0))
2509 cmp
= compare_tree (DR_STEP (dra
), DR_STEP (drb
));
2514 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2515 cmp
= tree_int_cst_compare (DR_INIT (dra
), DR_INIT (drb
));
2517 return gimple_uid (DR_STMT (dra
)) < gimple_uid (DR_STMT (drb
)) ? -1 : 1;
2521 /* Function vect_analyze_data_ref_accesses.
2523 Analyze the access pattern of all the data references in the loop.
2525 FORNOW: the only access pattern that is considered vectorizable is a
2526 simple step 1 (consecutive) access.
2528 FORNOW: handle only arrays and pointer accesses. */
2531 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo
, bb_vec_info bb_vinfo
)
2534 vec
<data_reference_p
> datarefs
;
2535 struct data_reference
*dr
;
2537 if (dump_enabled_p ())
2538 dump_printf_loc (MSG_NOTE
, vect_location
,
2539 "=== vect_analyze_data_ref_accesses ===\n");
2542 datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
2544 datarefs
= BB_VINFO_DATAREFS (bb_vinfo
);
2546 if (datarefs
.is_empty ())
2549 /* Sort the array of datarefs to make building the interleaving chains
2550 linear. Don't modify the original vector's order, it is needed for
2551 determining what dependencies are reversed. */
2552 vec
<data_reference_p
> datarefs_copy
= datarefs
.copy ();
2553 datarefs_copy
.qsort (dr_group_sort_cmp
);
2555 /* Build the interleaving chains. */
2556 for (i
= 0; i
< datarefs_copy
.length () - 1;)
2558 data_reference_p dra
= datarefs_copy
[i
];
2559 stmt_vec_info stmtinfo_a
= vinfo_for_stmt (DR_STMT (dra
));
2560 stmt_vec_info lastinfo
= NULL
;
2561 for (i
= i
+ 1; i
< datarefs_copy
.length (); ++i
)
2563 data_reference_p drb
= datarefs_copy
[i
];
2564 stmt_vec_info stmtinfo_b
= vinfo_for_stmt (DR_STMT (drb
));
2566 /* ??? Imperfect sorting (non-compatible types, non-modulo
2567 accesses, same accesses) can lead to a group to be artificially
2568 split here as we don't just skip over those. If it really
2569 matters we can push those to a worklist and re-iterate
2570 over them. The we can just skip ahead to the next DR here. */
2572 /* Check that the data-refs have same first location (except init)
2573 and they are both either store or load (not load and store,
2574 not masked loads or stores). */
2575 if (DR_IS_READ (dra
) != DR_IS_READ (drb
)
2576 || !operand_equal_p (DR_BASE_ADDRESS (dra
),
2577 DR_BASE_ADDRESS (drb
), 0)
2578 || !dr_equal_offsets_p (dra
, drb
)
2579 || !gimple_assign_single_p (DR_STMT (dra
))
2580 || !gimple_assign_single_p (DR_STMT (drb
)))
2583 /* Check that the data-refs have the same constant size. */
2584 tree sza
= TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra
)));
2585 tree szb
= TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb
)));
2586 if (!tree_fits_uhwi_p (sza
)
2587 || !tree_fits_uhwi_p (szb
)
2588 || !tree_int_cst_equal (sza
, szb
))
2591 /* Check that the data-refs have the same step. */
2592 if (!operand_equal_p (DR_STEP (dra
), DR_STEP (drb
), 0))
2595 /* Do not place the same access in the interleaving chain twice. */
2596 if (tree_int_cst_compare (DR_INIT (dra
), DR_INIT (drb
)) == 0)
2599 /* Check the types are compatible.
2600 ??? We don't distinguish this during sorting. */
2601 if (!types_compatible_p (TREE_TYPE (DR_REF (dra
)),
2602 TREE_TYPE (DR_REF (drb
))))
2605 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2606 HOST_WIDE_INT init_a
= TREE_INT_CST_LOW (DR_INIT (dra
));
2607 HOST_WIDE_INT init_b
= TREE_INT_CST_LOW (DR_INIT (drb
));
2608 gcc_assert (init_a
< init_b
);
2610 /* If init_b == init_a + the size of the type * k, we have an
2611 interleaving, and DRA is accessed before DRB. */
2612 HOST_WIDE_INT type_size_a
= tree_to_uhwi (sza
);
2613 if ((init_b
- init_a
) % type_size_a
!= 0)
2616 /* If we have a store, the accesses are adjacent. This splits
2617 groups into chunks we support (we don't support vectorization
2618 of stores with gaps). */
2619 if (!DR_IS_READ (dra
)
2620 && (init_b
- (HOST_WIDE_INT
) TREE_INT_CST_LOW
2621 (DR_INIT (datarefs_copy
[i
-1]))
2625 /* If the step (if not zero or non-constant) is greater than the
2626 difference between data-refs' inits this splits groups into
2628 if (tree_fits_shwi_p (DR_STEP (dra
)))
2630 HOST_WIDE_INT step
= tree_to_shwi (DR_STEP (dra
));
2631 if (step
!= 0 && step
<= (init_b
- init_a
))
2635 if (dump_enabled_p ())
2637 dump_printf_loc (MSG_NOTE
, vect_location
,
2638 "Detected interleaving ");
2639 if (DR_IS_READ (dra
))
2640 dump_printf (MSG_NOTE
, "load ");
2642 dump_printf (MSG_NOTE
, "store ");
2643 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (dra
));
2644 dump_printf (MSG_NOTE
, " and ");
2645 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_REF (drb
));
2646 dump_printf (MSG_NOTE
, "\n");
2649 /* Link the found element into the group list. */
2650 if (!GROUP_FIRST_ELEMENT (stmtinfo_a
))
2652 GROUP_FIRST_ELEMENT (stmtinfo_a
) = DR_STMT (dra
);
2653 lastinfo
= stmtinfo_a
;
2655 GROUP_FIRST_ELEMENT (stmtinfo_b
) = DR_STMT (dra
);
2656 GROUP_NEXT_ELEMENT (lastinfo
) = DR_STMT (drb
);
2657 lastinfo
= stmtinfo_b
;
2661 FOR_EACH_VEC_ELT (datarefs_copy
, i
, dr
)
2662 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr
)))
2663 && !vect_analyze_data_ref_access (dr
))
2665 if (dump_enabled_p ())
2666 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2667 "not vectorized: complicated access pattern.\n");
2671 /* Mark the statement as not vectorizable. */
2672 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr
))) = false;
2677 datarefs_copy
.release ();
2682 datarefs_copy
.release ();
2687 /* Operator == between two dr_with_seg_len objects.
2689 This equality operator is used to make sure two data refs
2690 are the same one so that we will consider to combine the
2691 aliasing checks of those two pairs of data dependent data
2695 operator == (const dr_with_seg_len
& d1
,
2696 const dr_with_seg_len
& d2
)
2698 return operand_equal_p (DR_BASE_ADDRESS (d1
.dr
),
2699 DR_BASE_ADDRESS (d2
.dr
), 0)
2700 && compare_tree (d1
.offset
, d2
.offset
) == 0
2701 && compare_tree (d1
.seg_len
, d2
.seg_len
) == 0;
2704 /* Function comp_dr_with_seg_len_pair.
2706 Comparison function for sorting objects of dr_with_seg_len_pair_t
2707 so that we can combine aliasing checks in one scan. */
2710 comp_dr_with_seg_len_pair (const void *p1_
, const void *p2_
)
2712 const dr_with_seg_len_pair_t
* p1
= (const dr_with_seg_len_pair_t
*) p1_
;
2713 const dr_with_seg_len_pair_t
* p2
= (const dr_with_seg_len_pair_t
*) p2_
;
2715 const dr_with_seg_len
&p11
= p1
->first
,
2720 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2721 if a and c have the same basic address snd step, and b and d have the same
2722 address and step. Therefore, if any a&c or b&d don't have the same address
2723 and step, we don't care the order of those two pairs after sorting. */
2726 if ((comp_res
= compare_tree (DR_BASE_ADDRESS (p11
.dr
),
2727 DR_BASE_ADDRESS (p21
.dr
))) != 0)
2729 if ((comp_res
= compare_tree (DR_BASE_ADDRESS (p12
.dr
),
2730 DR_BASE_ADDRESS (p22
.dr
))) != 0)
2732 if ((comp_res
= compare_tree (DR_STEP (p11
.dr
), DR_STEP (p21
.dr
))) != 0)
2734 if ((comp_res
= compare_tree (DR_STEP (p12
.dr
), DR_STEP (p22
.dr
))) != 0)
2736 if ((comp_res
= compare_tree (p11
.offset
, p21
.offset
)) != 0)
2738 if ((comp_res
= compare_tree (p12
.offset
, p22
.offset
)) != 0)
2744 /* Function vect_vfa_segment_size.
2746 Create an expression that computes the size of segment
2747 that will be accessed for a data reference. The functions takes into
2748 account that realignment loads may access one more vector.
2751 DR: The data reference.
2752 LENGTH_FACTOR: segment length to consider.
2754 Return an expression whose value is the size of segment which will be
2758 vect_vfa_segment_size (struct data_reference
*dr
, tree length_factor
)
2760 tree segment_length
;
2762 if (integer_zerop (DR_STEP (dr
)))
2763 segment_length
= TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr
)));
2765 segment_length
= size_binop (MULT_EXPR
,
2766 fold_convert (sizetype
, DR_STEP (dr
)),
2767 fold_convert (sizetype
, length_factor
));
2769 if (vect_supportable_dr_alignment (dr
, false)
2770 == dr_explicit_realign_optimized
)
2772 tree vector_size
= TYPE_SIZE_UNIT
2773 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr
))));
2775 segment_length
= size_binop (PLUS_EXPR
, segment_length
, vector_size
);
2777 return segment_length
;
2780 /* Function vect_prune_runtime_alias_test_list.
2782 Prune a list of ddrs to be tested at run-time by versioning for alias.
2783 Merge several alias checks into one if possible.
2784 Return FALSE if resulting list of ddrs is longer then allowed by
2785 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2788 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo
)
2790 vec
<ddr_p
> may_alias_ddrs
=
2791 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
);
2792 vec
<dr_with_seg_len_pair_t
>& comp_alias_ddrs
=
2793 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo
);
2794 int vect_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2795 tree scalar_loop_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2801 if (dump_enabled_p ())
2802 dump_printf_loc (MSG_NOTE
, vect_location
,
2803 "=== vect_prune_runtime_alias_test_list ===\n");
2805 if (may_alias_ddrs
.is_empty ())
2808 /* Basically, for each pair of dependent data refs store_ptr_0
2809 and load_ptr_0, we create an expression:
2811 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2812 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2814 for aliasing checks. However, in some cases we can decrease
2815 the number of checks by combining two checks into one. For
2816 example, suppose we have another pair of data refs store_ptr_0
2817 and load_ptr_1, and if the following condition is satisfied:
2819 load_ptr_0 < load_ptr_1 &&
2820 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2822 (this condition means, in each iteration of vectorized loop,
2823 the accessed memory of store_ptr_0 cannot be between the memory
2824 of load_ptr_0 and load_ptr_1.)
2826 we then can use only the following expression to finish the
2827 alising checks between store_ptr_0 & load_ptr_0 and
2828 store_ptr_0 & load_ptr_1:
2830 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2831 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2833 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2834 same basic address. */
2836 comp_alias_ddrs
.create (may_alias_ddrs
.length ());
2838 /* First, we collect all data ref pairs for aliasing checks. */
2839 FOR_EACH_VEC_ELT (may_alias_ddrs
, i
, ddr
)
2841 struct data_reference
*dr_a
, *dr_b
;
2842 gimple dr_group_first_a
, dr_group_first_b
;
2843 tree segment_length_a
, segment_length_b
;
2844 gimple stmt_a
, stmt_b
;
2847 stmt_a
= DR_STMT (DDR_A (ddr
));
2848 dr_group_first_a
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a
));
2849 if (dr_group_first_a
)
2851 stmt_a
= dr_group_first_a
;
2852 dr_a
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a
));
2856 stmt_b
= DR_STMT (DDR_B (ddr
));
2857 dr_group_first_b
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b
));
2858 if (dr_group_first_b
)
2860 stmt_b
= dr_group_first_b
;
2861 dr_b
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b
));
2864 if (!operand_equal_p (DR_STEP (dr_a
), DR_STEP (dr_b
), 0))
2865 length_factor
= scalar_loop_iters
;
2867 length_factor
= size_int (vect_factor
);
2868 segment_length_a
= vect_vfa_segment_size (dr_a
, length_factor
);
2869 segment_length_b
= vect_vfa_segment_size (dr_b
, length_factor
);
2871 dr_with_seg_len_pair_t dr_with_seg_len_pair
2872 (dr_with_seg_len (dr_a
, segment_length_a
),
2873 dr_with_seg_len (dr_b
, segment_length_b
));
2875 if (compare_tree (DR_BASE_ADDRESS (dr_a
), DR_BASE_ADDRESS (dr_b
)) > 0)
2876 std::swap (dr_with_seg_len_pair
.first
, dr_with_seg_len_pair
.second
);
2878 comp_alias_ddrs
.safe_push (dr_with_seg_len_pair
);
2881 /* Second, we sort the collected data ref pairs so that we can scan
2882 them once to combine all possible aliasing checks. */
2883 comp_alias_ddrs
.qsort (comp_dr_with_seg_len_pair
);
2885 /* Third, we scan the sorted dr pairs and check if we can combine
2886 alias checks of two neighbouring dr pairs. */
2887 for (size_t i
= 1; i
< comp_alias_ddrs
.length (); ++i
)
2889 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
2890 dr_with_seg_len
*dr_a1
= &comp_alias_ddrs
[i
-1].first
,
2891 *dr_b1
= &comp_alias_ddrs
[i
-1].second
,
2892 *dr_a2
= &comp_alias_ddrs
[i
].first
,
2893 *dr_b2
= &comp_alias_ddrs
[i
].second
;
2895 /* Remove duplicate data ref pairs. */
2896 if (*dr_a1
== *dr_a2
&& *dr_b1
== *dr_b2
)
2898 if (dump_enabled_p ())
2900 dump_printf_loc (MSG_NOTE
, vect_location
,
2901 "found equal ranges ");
2902 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2903 DR_REF (dr_a1
->dr
));
2904 dump_printf (MSG_NOTE
, ", ");
2905 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2906 DR_REF (dr_b1
->dr
));
2907 dump_printf (MSG_NOTE
, " and ");
2908 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2909 DR_REF (dr_a2
->dr
));
2910 dump_printf (MSG_NOTE
, ", ");
2911 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2912 DR_REF (dr_b2
->dr
));
2913 dump_printf (MSG_NOTE
, "\n");
2916 comp_alias_ddrs
.ordered_remove (i
--);
2920 if (*dr_a1
== *dr_a2
|| *dr_b1
== *dr_b2
)
2922 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2923 and DR_A1 and DR_A2 are two consecutive memrefs. */
2924 if (*dr_a1
== *dr_a2
)
2926 std::swap (dr_a1
, dr_b1
);
2927 std::swap (dr_a2
, dr_b2
);
2930 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1
->dr
),
2931 DR_BASE_ADDRESS (dr_a2
->dr
),
2933 || !tree_fits_shwi_p (dr_a1
->offset
)
2934 || !tree_fits_shwi_p (dr_a2
->offset
))
2937 HOST_WIDE_INT diff
= (tree_to_shwi (dr_a2
->offset
)
2938 - tree_to_shwi (dr_a1
->offset
));
2941 /* Now we check if the following condition is satisfied:
2943 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2945 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2946 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2947 have to make a best estimation. We can get the minimum value
2948 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2949 then either of the following two conditions can guarantee the
2952 1: DIFF <= MIN_SEG_LEN_B
2953 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2957 HOST_WIDE_INT min_seg_len_b
= (tree_fits_shwi_p (dr_b1
->seg_len
)
2958 ? tree_to_shwi (dr_b1
->seg_len
)
2961 if (diff
<= min_seg_len_b
2962 || (tree_fits_shwi_p (dr_a1
->seg_len
)
2963 && diff
- tree_to_shwi (dr_a1
->seg_len
) < min_seg_len_b
))
2965 if (dump_enabled_p ())
2967 dump_printf_loc (MSG_NOTE
, vect_location
,
2968 "merging ranges for ");
2969 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2970 DR_REF (dr_a1
->dr
));
2971 dump_printf (MSG_NOTE
, ", ");
2972 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2973 DR_REF (dr_b1
->dr
));
2974 dump_printf (MSG_NOTE
, " and ");
2975 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2976 DR_REF (dr_a2
->dr
));
2977 dump_printf (MSG_NOTE
, ", ");
2978 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
2979 DR_REF (dr_b2
->dr
));
2980 dump_printf (MSG_NOTE
, "\n");
2983 dr_a1
->seg_len
= size_binop (PLUS_EXPR
,
2984 dr_a2
->seg_len
, size_int (diff
));
2985 comp_alias_ddrs
.ordered_remove (i
--);
2990 dump_printf_loc (MSG_NOTE
, vect_location
,
2991 "improved number of alias checks from %d to %d\n",
2992 may_alias_ddrs
.length (), comp_alias_ddrs
.length ());
2993 if ((int) comp_alias_ddrs
.length () >
2994 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS
))
3000 /* Check whether a non-affine read in stmt is suitable for gather load
3001 and if so, return a builtin decl for that operation. */
3004 vect_check_gather (gimple stmt
, loop_vec_info loop_vinfo
, tree
*basep
,
3005 tree
*offp
, int *scalep
)
3007 HOST_WIDE_INT scale
= 1, pbitpos
, pbitsize
;
3008 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3009 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
3010 struct data_reference
*dr
= STMT_VINFO_DATA_REF (stmt_info
);
3011 tree offtype
= NULL_TREE
;
3012 tree decl
, base
, off
;
3014 int punsignedp
, pvolatilep
;
3017 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
3018 see if we can use the def stmt of the address. */
3019 if (is_gimple_call (stmt
)
3020 && gimple_call_internal_p (stmt
)
3021 && (gimple_call_internal_fn (stmt
) == IFN_MASK_LOAD
3022 || gimple_call_internal_fn (stmt
) == IFN_MASK_STORE
)
3023 && TREE_CODE (base
) == MEM_REF
3024 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
3025 && integer_zerop (TREE_OPERAND (base
, 1))
3026 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (base
, 0)))
3028 gimple def_stmt
= SSA_NAME_DEF_STMT (TREE_OPERAND (base
, 0));
3029 if (is_gimple_assign (def_stmt
)
3030 && gimple_assign_rhs_code (def_stmt
) == ADDR_EXPR
)
3031 base
= TREE_OPERAND (gimple_assign_rhs1 (def_stmt
), 0);
3034 /* The gather builtins need address of the form
3035 loop_invariant + vector * {1, 2, 4, 8}
3037 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3038 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3039 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3040 multiplications and additions in it. To get a vector, we need
3041 a single SSA_NAME that will be defined in the loop and will
3042 contain everything that is not loop invariant and that can be
3043 vectorized. The following code attempts to find such a preexistng
3044 SSA_NAME OFF and put the loop invariants into a tree BASE
3045 that can be gimplified before the loop. */
3046 base
= get_inner_reference (base
, &pbitsize
, &pbitpos
, &off
,
3047 &pmode
, &punsignedp
, &pvolatilep
, false);
3048 gcc_assert (base
!= NULL_TREE
&& (pbitpos
% BITS_PER_UNIT
) == 0);
3050 if (TREE_CODE (base
) == MEM_REF
)
3052 if (!integer_zerop (TREE_OPERAND (base
, 1)))
3054 if (off
== NULL_TREE
)
3056 offset_int moff
= mem_ref_offset (base
);
3057 off
= wide_int_to_tree (sizetype
, moff
);
3060 off
= size_binop (PLUS_EXPR
, off
,
3061 fold_convert (sizetype
, TREE_OPERAND (base
, 1)));
3063 base
= TREE_OPERAND (base
, 0);
3066 base
= build_fold_addr_expr (base
);
3068 if (off
== NULL_TREE
)
3069 off
= size_zero_node
;
3071 /* If base is not loop invariant, either off is 0, then we start with just
3072 the constant offset in the loop invariant BASE and continue with base
3073 as OFF, otherwise give up.
3074 We could handle that case by gimplifying the addition of base + off
3075 into some SSA_NAME and use that as off, but for now punt. */
3076 if (!expr_invariant_in_loop_p (loop
, base
))
3078 if (!integer_zerop (off
))
3081 base
= size_int (pbitpos
/ BITS_PER_UNIT
);
3083 /* Otherwise put base + constant offset into the loop invariant BASE
3084 and continue with OFF. */
3087 base
= fold_convert (sizetype
, base
);
3088 base
= size_binop (PLUS_EXPR
, base
, size_int (pbitpos
/ BITS_PER_UNIT
));
3091 /* OFF at this point may be either a SSA_NAME or some tree expression
3092 from get_inner_reference. Try to peel off loop invariants from it
3093 into BASE as long as possible. */
3095 while (offtype
== NULL_TREE
)
3097 enum tree_code code
;
3098 tree op0
, op1
, add
= NULL_TREE
;
3100 if (TREE_CODE (off
) == SSA_NAME
)
3102 gimple def_stmt
= SSA_NAME_DEF_STMT (off
);
3104 if (expr_invariant_in_loop_p (loop
, off
))
3107 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
3110 op0
= gimple_assign_rhs1 (def_stmt
);
3111 code
= gimple_assign_rhs_code (def_stmt
);
3112 op1
= gimple_assign_rhs2 (def_stmt
);
3116 if (get_gimple_rhs_class (TREE_CODE (off
)) == GIMPLE_TERNARY_RHS
)
3118 code
= TREE_CODE (off
);
3119 extract_ops_from_tree (off
, &code
, &op0
, &op1
);
3123 case POINTER_PLUS_EXPR
:
3125 if (expr_invariant_in_loop_p (loop
, op0
))
3130 add
= fold_convert (sizetype
, add
);
3132 add
= size_binop (MULT_EXPR
, add
, size_int (scale
));
3133 base
= size_binop (PLUS_EXPR
, base
, add
);
3136 if (expr_invariant_in_loop_p (loop
, op1
))
3144 if (expr_invariant_in_loop_p (loop
, op1
))
3146 add
= fold_convert (sizetype
, op1
);
3147 add
= size_binop (MINUS_EXPR
, size_zero_node
, add
);
3153 if (scale
== 1 && tree_fits_shwi_p (op1
))
3155 scale
= tree_to_shwi (op1
);
3164 if (!POINTER_TYPE_P (TREE_TYPE (op0
))
3165 && !INTEGRAL_TYPE_P (TREE_TYPE (op0
)))
3167 if (TYPE_PRECISION (TREE_TYPE (op0
))
3168 == TYPE_PRECISION (TREE_TYPE (off
)))
3173 if (TYPE_PRECISION (TREE_TYPE (op0
))
3174 < TYPE_PRECISION (TREE_TYPE (off
)))
3177 offtype
= TREE_TYPE (off
);
3188 /* If at the end OFF still isn't a SSA_NAME or isn't
3189 defined in the loop, punt. */
3190 if (TREE_CODE (off
) != SSA_NAME
3191 || expr_invariant_in_loop_p (loop
, off
))
3194 if (offtype
== NULL_TREE
)
3195 offtype
= TREE_TYPE (off
);
3197 decl
= targetm
.vectorize
.builtin_gather (STMT_VINFO_VECTYPE (stmt_info
),
3199 if (decl
== NULL_TREE
)
3211 /* Function vect_analyze_data_refs.
3213 Find all the data references in the loop or basic block.
3215 The general structure of the analysis of data refs in the vectorizer is as
3217 1- vect_analyze_data_refs(loop/bb): call
3218 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3219 in the loop/bb and their dependences.
3220 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3221 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3222 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3227 vect_analyze_data_refs (loop_vec_info loop_vinfo
,
3228 bb_vec_info bb_vinfo
,
3229 int *min_vf
, unsigned *n_stmts
)
3231 struct loop
*loop
= NULL
;
3232 basic_block bb
= NULL
;
3234 vec
<data_reference_p
> datarefs
;
3235 struct data_reference
*dr
;
3238 if (dump_enabled_p ())
3239 dump_printf_loc (MSG_NOTE
, vect_location
,
3240 "=== vect_analyze_data_refs ===\n");
3244 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
3246 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3247 datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
3248 if (!find_loop_nest (loop
, &LOOP_VINFO_LOOP_NEST (loop_vinfo
)))
3250 if (dump_enabled_p ())
3251 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3252 "not vectorized: loop contains function calls"
3253 " or data references that cannot be analyzed\n");
3257 for (i
= 0; i
< loop
->num_nodes
; i
++)
3259 gimple_stmt_iterator gsi
;
3261 for (gsi
= gsi_start_bb (bbs
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
3263 gimple stmt
= gsi_stmt (gsi
);
3264 if (is_gimple_debug (stmt
))
3267 if (!find_data_references_in_stmt (loop
, stmt
, &datarefs
))
3269 if (is_gimple_call (stmt
) && loop
->safelen
)
3271 tree fndecl
= gimple_call_fndecl (stmt
), op
;
3272 if (fndecl
!= NULL_TREE
)
3274 struct cgraph_node
*node
= cgraph_node::get (fndecl
);
3275 if (node
!= NULL
&& node
->simd_clones
!= NULL
)
3277 unsigned int j
, n
= gimple_call_num_args (stmt
);
3278 for (j
= 0; j
< n
; j
++)
3280 op
= gimple_call_arg (stmt
, j
);
3282 || (REFERENCE_CLASS_P (op
)
3283 && get_base_address (op
)))
3286 op
= gimple_call_lhs (stmt
);
3287 /* Ignore #pragma omp declare simd functions
3288 if they don't have data references in the
3289 call stmt itself. */
3293 || (REFERENCE_CLASS_P (op
)
3294 && get_base_address (op
)))))
3299 LOOP_VINFO_DATAREFS (loop_vinfo
) = datarefs
;
3300 if (dump_enabled_p ())
3301 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3302 "not vectorized: loop contains function "
3303 "calls or data references that cannot "
3310 LOOP_VINFO_DATAREFS (loop_vinfo
) = datarefs
;
3314 gimple_stmt_iterator gsi
;
3316 bb
= BB_VINFO_BB (bb_vinfo
);
3317 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3319 gimple stmt
= gsi_stmt (gsi
);
3320 if (is_gimple_debug (stmt
))
3323 if (!find_data_references_in_stmt (NULL
, stmt
,
3324 &BB_VINFO_DATAREFS (bb_vinfo
)))
3326 /* Mark the rest of the basic-block as unvectorizable. */
3327 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
3329 stmt
= gsi_stmt (gsi
);
3330 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt
)) = false;
3336 datarefs
= BB_VINFO_DATAREFS (bb_vinfo
);
3339 /* Go through the data-refs, check that the analysis succeeded. Update
3340 pointer from stmt_vec_info struct to DR and vectype. */
3342 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
3345 stmt_vec_info stmt_info
;
3346 tree base
, offset
, init
;
3347 bool gather
= false;
3348 bool simd_lane_access
= false;
3352 if (!dr
|| !DR_REF (dr
))
3354 if (dump_enabled_p ())
3355 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3356 "not vectorized: unhandled data-ref\n");
3360 stmt
= DR_STMT (dr
);
3361 stmt_info
= vinfo_for_stmt (stmt
);
3363 /* Discard clobbers from the dataref vector. We will remove
3364 clobber stmts during vectorization. */
3365 if (gimple_clobber_p (stmt
))
3368 if (i
== datarefs
.length () - 1)
3373 datarefs
.ordered_remove (i
);
3378 /* Check that analysis of the data-ref succeeded. */
3379 if (!DR_BASE_ADDRESS (dr
) || !DR_OFFSET (dr
) || !DR_INIT (dr
)
3384 && !TREE_THIS_VOLATILE (DR_REF (dr
))
3385 && targetm
.vectorize
.builtin_gather
!= NULL
;
3386 bool maybe_simd_lane_access
3387 = loop_vinfo
&& loop
->simduid
;
3389 /* If target supports vector gather loads, or if this might be
3390 a SIMD lane access, see if they can't be used. */
3392 && (maybe_gather
|| maybe_simd_lane_access
)
3393 && !nested_in_vect_loop_p (loop
, stmt
))
3395 struct data_reference
*newdr
3396 = create_data_ref (NULL
, loop_containing_stmt (stmt
),
3397 DR_REF (dr
), stmt
, true);
3398 gcc_assert (newdr
!= NULL
&& DR_REF (newdr
));
3399 if (DR_BASE_ADDRESS (newdr
)
3400 && DR_OFFSET (newdr
)
3403 && integer_zerop (DR_STEP (newdr
)))
3405 if (maybe_simd_lane_access
)
3407 tree off
= DR_OFFSET (newdr
);
3409 if (TREE_CODE (DR_INIT (newdr
)) == INTEGER_CST
3410 && TREE_CODE (off
) == MULT_EXPR
3411 && tree_fits_uhwi_p (TREE_OPERAND (off
, 1)))
3413 tree step
= TREE_OPERAND (off
, 1);
3414 off
= TREE_OPERAND (off
, 0);
3416 if (CONVERT_EXPR_P (off
)
3417 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off
,
3419 < TYPE_PRECISION (TREE_TYPE (off
)))
3420 off
= TREE_OPERAND (off
, 0);
3421 if (TREE_CODE (off
) == SSA_NAME
)
3423 gimple def
= SSA_NAME_DEF_STMT (off
);
3424 tree reft
= TREE_TYPE (DR_REF (newdr
));
3425 if (is_gimple_call (def
)
3426 && gimple_call_internal_p (def
)
3427 && (gimple_call_internal_fn (def
)
3428 == IFN_GOMP_SIMD_LANE
))
3430 tree arg
= gimple_call_arg (def
, 0);
3431 gcc_assert (TREE_CODE (arg
) == SSA_NAME
);
3432 arg
= SSA_NAME_VAR (arg
);
3433 if (arg
== loop
->simduid
3435 && tree_int_cst_equal
3436 (TYPE_SIZE_UNIT (reft
),
3439 DR_OFFSET (newdr
) = ssize_int (0);
3440 DR_STEP (newdr
) = step
;
3441 DR_ALIGNED_TO (newdr
)
3442 = size_int (BIGGEST_ALIGNMENT
);
3444 simd_lane_access
= true;
3450 if (!simd_lane_access
&& maybe_gather
)
3456 if (!gather
&& !simd_lane_access
)
3457 free_data_ref (newdr
);
3460 if (!gather
&& !simd_lane_access
)
3462 if (dump_enabled_p ())
3464 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3465 "not vectorized: data ref analysis "
3467 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3468 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3478 if (TREE_CODE (DR_BASE_ADDRESS (dr
)) == INTEGER_CST
)
3480 if (dump_enabled_p ())
3481 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3482 "not vectorized: base addr of dr is a "
3488 if (gather
|| simd_lane_access
)
3493 if (TREE_THIS_VOLATILE (DR_REF (dr
)))
3495 if (dump_enabled_p ())
3497 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3498 "not vectorized: volatile type ");
3499 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3500 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3509 if (stmt_can_throw_internal (stmt
))
3511 if (dump_enabled_p ())
3513 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3514 "not vectorized: statement can throw an "
3516 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3517 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3523 if (gather
|| simd_lane_access
)
3528 if (TREE_CODE (DR_REF (dr
)) == COMPONENT_REF
3529 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr
), 1)))
3531 if (dump_enabled_p ())
3533 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3534 "not vectorized: statement is bitfield "
3536 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3537 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3543 if (gather
|| simd_lane_access
)
3548 base
= unshare_expr (DR_BASE_ADDRESS (dr
));
3549 offset
= unshare_expr (DR_OFFSET (dr
));
3550 init
= unshare_expr (DR_INIT (dr
));
3552 if (is_gimple_call (stmt
)
3553 && (!gimple_call_internal_p (stmt
)
3554 || (gimple_call_internal_fn (stmt
) != IFN_MASK_LOAD
3555 && gimple_call_internal_fn (stmt
) != IFN_MASK_STORE
)))
3557 if (dump_enabled_p ())
3559 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3560 "not vectorized: dr in a call ");
3561 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3562 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3568 if (gather
|| simd_lane_access
)
3573 /* Update DR field in stmt_vec_info struct. */
3575 /* If the dataref is in an inner-loop of the loop that is considered for
3576 for vectorization, we also want to analyze the access relative to
3577 the outer-loop (DR contains information only relative to the
3578 inner-most enclosing loop). We do that by building a reference to the
3579 first location accessed by the inner-loop, and analyze it relative to
3581 if (loop
&& nested_in_vect_loop_p (loop
, stmt
))
3583 tree outer_step
, outer_base
, outer_init
;
3584 HOST_WIDE_INT pbitsize
, pbitpos
;
3587 int punsignedp
, pvolatilep
;
3588 affine_iv base_iv
, offset_iv
;
3591 /* Build a reference to the first location accessed by the
3592 inner-loop: *(BASE+INIT). (The first location is actually
3593 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3594 tree inner_base
= build_fold_indirect_ref
3595 (fold_build_pointer_plus (base
, init
));
3597 if (dump_enabled_p ())
3599 dump_printf_loc (MSG_NOTE
, vect_location
,
3600 "analyze in outer-loop: ");
3601 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, inner_base
);
3602 dump_printf (MSG_NOTE
, "\n");
3605 outer_base
= get_inner_reference (inner_base
, &pbitsize
, &pbitpos
,
3606 &poffset
, &pmode
, &punsignedp
, &pvolatilep
, false);
3607 gcc_assert (outer_base
!= NULL_TREE
);
3609 if (pbitpos
% BITS_PER_UNIT
!= 0)
3611 if (dump_enabled_p ())
3612 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3613 "failed: bit offset alignment.\n");
3617 outer_base
= build_fold_addr_expr (outer_base
);
3618 if (!simple_iv (loop
, loop_containing_stmt (stmt
), outer_base
,
3621 if (dump_enabled_p ())
3622 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3623 "failed: evolution of base is not affine.\n");
3630 poffset
= fold_build2 (PLUS_EXPR
, TREE_TYPE (offset
), offset
,
3638 offset_iv
.base
= ssize_int (0);
3639 offset_iv
.step
= ssize_int (0);
3641 else if (!simple_iv (loop
, loop_containing_stmt (stmt
), poffset
,
3644 if (dump_enabled_p ())
3645 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3646 "evolution of offset is not affine.\n");
3650 outer_init
= ssize_int (pbitpos
/ BITS_PER_UNIT
);
3651 split_constant_offset (base_iv
.base
, &base_iv
.base
, &dinit
);
3652 outer_init
= size_binop (PLUS_EXPR
, outer_init
, dinit
);
3653 split_constant_offset (offset_iv
.base
, &offset_iv
.base
, &dinit
);
3654 outer_init
= size_binop (PLUS_EXPR
, outer_init
, dinit
);
3656 outer_step
= size_binop (PLUS_EXPR
,
3657 fold_convert (ssizetype
, base_iv
.step
),
3658 fold_convert (ssizetype
, offset_iv
.step
));
3660 STMT_VINFO_DR_STEP (stmt_info
) = outer_step
;
3661 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3662 STMT_VINFO_DR_BASE_ADDRESS (stmt_info
) = base_iv
.base
;
3663 STMT_VINFO_DR_INIT (stmt_info
) = outer_init
;
3664 STMT_VINFO_DR_OFFSET (stmt_info
) =
3665 fold_convert (ssizetype
, offset_iv
.base
);
3666 STMT_VINFO_DR_ALIGNED_TO (stmt_info
) =
3667 size_int (highest_pow2_factor (offset_iv
.base
));
3669 if (dump_enabled_p ())
3671 dump_printf_loc (MSG_NOTE
, vect_location
,
3672 "\touter base_address: ");
3673 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3674 STMT_VINFO_DR_BASE_ADDRESS (stmt_info
));
3675 dump_printf (MSG_NOTE
, "\n\touter offset from base address: ");
3676 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3677 STMT_VINFO_DR_OFFSET (stmt_info
));
3678 dump_printf (MSG_NOTE
,
3679 "\n\touter constant offset from base address: ");
3680 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3681 STMT_VINFO_DR_INIT (stmt_info
));
3682 dump_printf (MSG_NOTE
, "\n\touter step: ");
3683 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3684 STMT_VINFO_DR_STEP (stmt_info
));
3685 dump_printf (MSG_NOTE
, "\n\touter aligned to: ");
3686 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3687 STMT_VINFO_DR_ALIGNED_TO (stmt_info
));
3688 dump_printf (MSG_NOTE
, "\n");
3692 if (STMT_VINFO_DATA_REF (stmt_info
))
3694 if (dump_enabled_p ())
3696 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3697 "not vectorized: more than one data ref "
3699 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3700 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3706 if (gather
|| simd_lane_access
)
3711 STMT_VINFO_DATA_REF (stmt_info
) = dr
;
3712 if (simd_lane_access
)
3714 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info
) = true;
3715 free_data_ref (datarefs
[i
]);
3719 /* Set vectype for STMT. */
3720 scalar_type
= TREE_TYPE (DR_REF (dr
));
3721 STMT_VINFO_VECTYPE (stmt_info
)
3722 = get_vectype_for_scalar_type (scalar_type
);
3723 if (!STMT_VINFO_VECTYPE (stmt_info
))
3725 if (dump_enabled_p ())
3727 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3728 "not vectorized: no vectype for stmt: ");
3729 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3730 dump_printf (MSG_MISSED_OPTIMIZATION
, " scalar_type: ");
3731 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_DETAILS
,
3733 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3739 if (gather
|| simd_lane_access
)
3741 STMT_VINFO_DATA_REF (stmt_info
) = NULL
;
3749 if (dump_enabled_p ())
3751 dump_printf_loc (MSG_NOTE
, vect_location
,
3752 "got vectype for stmt: ");
3753 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt
, 0);
3754 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3755 STMT_VINFO_VECTYPE (stmt_info
));
3756 dump_printf (MSG_NOTE
, "\n");
3760 /* Adjust the minimal vectorization factor according to the
3762 vf
= TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info
));
3770 gather
= 0 != vect_check_gather (stmt
, loop_vinfo
, NULL
, &off
, NULL
);
3772 && get_vectype_for_scalar_type (TREE_TYPE (off
)) == NULL_TREE
)
3776 STMT_VINFO_DATA_REF (stmt_info
) = NULL
;
3778 if (dump_enabled_p ())
3780 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3781 "not vectorized: not suitable for gather "
3783 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3784 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3790 STMT_VINFO_GATHER_P (stmt_info
) = true;
3793 && TREE_CODE (DR_STEP (dr
)) != INTEGER_CST
)
3795 if (nested_in_vect_loop_p (loop
, stmt
))
3797 if (dump_enabled_p ())
3799 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3800 "not vectorized: not suitable for strided "
3802 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, stmt
, 0);
3803 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
3807 STMT_VINFO_STRIDED_P (stmt_info
) = true;
3811 /* If we stopped analysis at the first dataref we could not analyze
3812 when trying to vectorize a basic-block mark the rest of the datarefs
3813 as not vectorizable and truncate the vector of datarefs. That
3814 avoids spending useless time in analyzing their dependence. */
3815 if (i
!= datarefs
.length ())
3817 gcc_assert (bb_vinfo
!= NULL
);
3818 for (unsigned j
= i
; j
< datarefs
.length (); ++j
)
3820 data_reference_p dr
= datarefs
[j
];
3821 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr
))) = false;
3824 datarefs
.truncate (i
);
3831 /* Function vect_get_new_vect_var.
3833 Returns a name for a new variable. The current naming scheme appends the
3834 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3835 the name of vectorizer generated variables, and appends that to NAME if
3839 vect_get_new_vect_var (tree type
, enum vect_var_kind var_kind
, const char *name
)
3846 case vect_simple_var
:
3849 case vect_scalar_var
:
3852 case vect_pointer_var
:
3861 char* tmp
= concat (prefix
, "_", name
, NULL
);
3862 new_vect_var
= create_tmp_reg (type
, tmp
);
3866 new_vect_var
= create_tmp_reg (type
, prefix
);
3868 return new_vect_var
;
3871 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
3874 vect_duplicate_ssa_name_ptr_info (tree name
, data_reference
*dr
,
3875 stmt_vec_info stmt_info
)
3877 duplicate_ssa_name_ptr_info (name
, DR_PTR_INFO (dr
));
3878 unsigned int align
= TYPE_ALIGN_UNIT (STMT_VINFO_VECTYPE (stmt_info
));
3879 int misalign
= DR_MISALIGNMENT (dr
);
3881 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name
));
3883 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name
), align
, misalign
);
3886 /* Function vect_create_addr_base_for_vector_ref.
3888 Create an expression that computes the address of the first memory location
3889 that will be accessed for a data reference.
3892 STMT: The statement containing the data reference.
3893 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3894 OFFSET: Optional. If supplied, it is be added to the initial address.
3895 LOOP: Specify relative to which loop-nest should the address be computed.
3896 For example, when the dataref is in an inner-loop nested in an
3897 outer-loop that is now being vectorized, LOOP can be either the
3898 outer-loop, or the inner-loop. The first memory location accessed
3899 by the following dataref ('in' points to short):
3906 if LOOP=i_loop: &in (relative to i_loop)
3907 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3908 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
3909 initial address. Unlike OFFSET, which is number of elements to
3910 be added, BYTE_OFFSET is measured in bytes.
3913 1. Return an SSA_NAME whose value is the address of the memory location of
3914 the first vector of the data reference.
3915 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3916 these statement(s) which define the returned SSA_NAME.
3918 FORNOW: We are only handling array accesses with step 1. */
3921 vect_create_addr_base_for_vector_ref (gimple stmt
,
3922 gimple_seq
*new_stmt_list
,
3927 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
3928 struct data_reference
*dr
= STMT_VINFO_DATA_REF (stmt_info
);
3930 const char *base_name
;
3933 gimple_seq seq
= NULL
;
3937 tree step
= TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr
)));
3938 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
3940 if (loop_vinfo
&& loop
&& loop
!= (gimple_bb (stmt
))->loop_father
)
3942 struct loop
*outer_loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3944 gcc_assert (nested_in_vect_loop_p (outer_loop
, stmt
));
3946 data_ref_base
= unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info
));
3947 base_offset
= unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info
));
3948 init
= unshare_expr (STMT_VINFO_DR_INIT (stmt_info
));
3952 data_ref_base
= unshare_expr (DR_BASE_ADDRESS (dr
));
3953 base_offset
= unshare_expr (DR_OFFSET (dr
));
3954 init
= unshare_expr (DR_INIT (dr
));
3958 base_name
= get_name (data_ref_base
);
3961 base_offset
= ssize_int (0);
3962 init
= ssize_int (0);
3963 base_name
= get_name (DR_REF (dr
));
3966 /* Create base_offset */
3967 base_offset
= size_binop (PLUS_EXPR
,
3968 fold_convert (sizetype
, base_offset
),
3969 fold_convert (sizetype
, init
));
3973 offset
= fold_build2 (MULT_EXPR
, sizetype
,
3974 fold_convert (sizetype
, offset
), step
);
3975 base_offset
= fold_build2 (PLUS_EXPR
, sizetype
,
3976 base_offset
, offset
);
3980 byte_offset
= fold_convert (sizetype
, byte_offset
);
3981 base_offset
= fold_build2 (PLUS_EXPR
, sizetype
,
3982 base_offset
, byte_offset
);
3985 /* base + base_offset */
3987 addr_base
= fold_build_pointer_plus (data_ref_base
, base_offset
);
3990 addr_base
= build1 (ADDR_EXPR
,
3991 build_pointer_type (TREE_TYPE (DR_REF (dr
))),
3992 unshare_expr (DR_REF (dr
)));
3995 vect_ptr_type
= build_pointer_type (STMT_VINFO_VECTYPE (stmt_info
));
3996 dest
= vect_get_new_vect_var (vect_ptr_type
, vect_pointer_var
, base_name
);
3997 addr_base
= force_gimple_operand (addr_base
, &seq
, true, dest
);
3998 gimple_seq_add_seq (new_stmt_list
, seq
);
4000 if (DR_PTR_INFO (dr
)
4001 && TREE_CODE (addr_base
) == SSA_NAME
4002 && !SSA_NAME_PTR_INFO (addr_base
))
4004 vect_duplicate_ssa_name_ptr_info (addr_base
, dr
, stmt_info
);
4005 if (offset
|| byte_offset
)
4006 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base
));
4009 if (dump_enabled_p ())
4011 dump_printf_loc (MSG_NOTE
, vect_location
, "created ");
4012 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, addr_base
);
4013 dump_printf (MSG_NOTE
, "\n");
4020 /* Function vect_create_data_ref_ptr.
4022 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
4023 location accessed in the loop by STMT, along with the def-use update
4024 chain to appropriately advance the pointer through the loop iterations.
4025 Also set aliasing information for the pointer. This pointer is used by
4026 the callers to this function to create a memory reference expression for
4027 vector load/store access.
4030 1. STMT: a stmt that references memory. Expected to be of the form
4031 GIMPLE_ASSIGN <name, data-ref> or
4032 GIMPLE_ASSIGN <data-ref, name>.
4033 2. AGGR_TYPE: the type of the reference, which should be either a vector
4035 3. AT_LOOP: the loop where the vector memref is to be created.
4036 4. OFFSET (optional): an offset to be added to the initial address accessed
4037 by the data-ref in STMT.
4038 5. BSI: location where the new stmts are to be placed if there is no loop
4039 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4040 pointing to the initial address.
4041 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4042 to the initial address accessed by the data-ref in STMT. This is
4043 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4047 1. Declare a new ptr to vector_type, and have it point to the base of the
4048 data reference (initial addressed accessed by the data reference).
4049 For example, for vector of type V8HI, the following code is generated:
4052 ap = (v8hi *)initial_address;
4054 if OFFSET is not supplied:
4055 initial_address = &a[init];
4056 if OFFSET is supplied:
4057 initial_address = &a[init + OFFSET];
4058 if BYTE_OFFSET is supplied:
4059 initial_address = &a[init] + BYTE_OFFSET;
4061 Return the initial_address in INITIAL_ADDRESS.
4063 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4064 update the pointer in each iteration of the loop.
4066 Return the increment stmt that updates the pointer in PTR_INCR.
4068 3. Set INV_P to true if the access pattern of the data reference in the
4069 vectorized loop is invariant. Set it to false otherwise.
4071 4. Return the pointer. */
4074 vect_create_data_ref_ptr (gimple stmt
, tree aggr_type
, struct loop
*at_loop
,
4075 tree offset
, tree
*initial_address
,
4076 gimple_stmt_iterator
*gsi
, gimple
*ptr_incr
,
4077 bool only_init
, bool *inv_p
, tree byte_offset
)
4079 const char *base_name
;
4080 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
4081 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
4082 struct loop
*loop
= NULL
;
4083 bool nested_in_vect_loop
= false;
4084 struct loop
*containing_loop
= NULL
;
4088 gimple_seq new_stmt_list
= NULL
;
4092 struct data_reference
*dr
= STMT_VINFO_DATA_REF (stmt_info
);
4094 gimple_stmt_iterator incr_gsi
;
4096 tree indx_before_incr
, indx_after_incr
;
4099 bb_vec_info bb_vinfo
= STMT_VINFO_BB_VINFO (stmt_info
);
4101 gcc_assert (TREE_CODE (aggr_type
) == ARRAY_TYPE
4102 || TREE_CODE (aggr_type
) == VECTOR_TYPE
);
4106 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
4107 nested_in_vect_loop
= nested_in_vect_loop_p (loop
, stmt
);
4108 containing_loop
= (gimple_bb (stmt
))->loop_father
;
4109 pe
= loop_preheader_edge (loop
);
4113 gcc_assert (bb_vinfo
);
4118 /* Check the step (evolution) of the load in LOOP, and record
4119 whether it's invariant. */
4120 if (nested_in_vect_loop
)
4121 step
= STMT_VINFO_DR_STEP (stmt_info
);
4123 step
= DR_STEP (STMT_VINFO_DATA_REF (stmt_info
));
4125 if (integer_zerop (step
))
4130 /* Create an expression for the first address accessed by this load
4132 base_name
= get_name (DR_BASE_ADDRESS (dr
));
4134 if (dump_enabled_p ())
4136 tree dr_base_type
= TREE_TYPE (DR_BASE_OBJECT (dr
));
4137 dump_printf_loc (MSG_NOTE
, vect_location
,
4138 "create %s-pointer variable to type: ",
4139 get_tree_code_name (TREE_CODE (aggr_type
)));
4140 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, aggr_type
);
4141 if (TREE_CODE (dr_base_type
) == ARRAY_TYPE
)
4142 dump_printf (MSG_NOTE
, " vectorizing an array ref: ");
4143 else if (TREE_CODE (dr_base_type
) == VECTOR_TYPE
)
4144 dump_printf (MSG_NOTE
, " vectorizing a vector ref: ");
4145 else if (TREE_CODE (dr_base_type
) == RECORD_TYPE
)
4146 dump_printf (MSG_NOTE
, " vectorizing a record based array ref: ");
4148 dump_printf (MSG_NOTE
, " vectorizing a pointer ref: ");
4149 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, DR_BASE_OBJECT (dr
));
4150 dump_printf (MSG_NOTE
, "\n");
4153 /* (1) Create the new aggregate-pointer variable.
4154 Vector and array types inherit the alias set of their component
4155 type by default so we need to use a ref-all pointer if the data
4156 reference does not conflict with the created aggregated data
4157 reference because it is not addressable. */
4158 bool need_ref_all
= false;
4159 if (!alias_sets_conflict_p (get_alias_set (aggr_type
),
4160 get_alias_set (DR_REF (dr
))))
4161 need_ref_all
= true;
4162 /* Likewise for any of the data references in the stmt group. */
4163 else if (STMT_VINFO_GROUP_SIZE (stmt_info
) > 1)
4165 gimple orig_stmt
= STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info
);
4168 stmt_vec_info sinfo
= vinfo_for_stmt (orig_stmt
);
4169 struct data_reference
*sdr
= STMT_VINFO_DATA_REF (sinfo
);
4170 if (!alias_sets_conflict_p (get_alias_set (aggr_type
),
4171 get_alias_set (DR_REF (sdr
))))
4173 need_ref_all
= true;
4176 orig_stmt
= STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo
);
4180 aggr_ptr_type
= build_pointer_type_for_mode (aggr_type
, ptr_mode
,
4182 aggr_ptr
= vect_get_new_vect_var (aggr_ptr_type
, vect_pointer_var
, base_name
);
4185 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4186 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4187 def-use update cycles for the pointer: one relative to the outer-loop
4188 (LOOP), which is what steps (3) and (4) below do. The other is relative
4189 to the inner-loop (which is the inner-most loop containing the dataref),
4190 and this is done be step (5) below.
4192 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4193 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4194 redundant. Steps (3),(4) create the following:
4197 LOOP: vp1 = phi(vp0,vp2)
4203 If there is an inner-loop nested in loop, then step (5) will also be
4204 applied, and an additional update in the inner-loop will be created:
4207 LOOP: vp1 = phi(vp0,vp2)
4209 inner: vp3 = phi(vp1,vp4)
4210 vp4 = vp3 + inner_step
4216 /* (2) Calculate the initial address of the aggregate-pointer, and set
4217 the aggregate-pointer to point to it before the loop. */
4219 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4221 new_temp
= vect_create_addr_base_for_vector_ref (stmt
, &new_stmt_list
,
4222 offset
, loop
, byte_offset
);
4227 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, new_stmt_list
);
4228 gcc_assert (!new_bb
);
4231 gsi_insert_seq_before (gsi
, new_stmt_list
, GSI_SAME_STMT
);
4234 *initial_address
= new_temp
;
4235 aggr_ptr_init
= new_temp
;
4237 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4238 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4239 inner-loop nested in LOOP (during outer-loop vectorization). */
4241 /* No update in loop is required. */
4242 if (only_init
&& (!loop_vinfo
|| at_loop
== loop
))
4243 aptr
= aggr_ptr_init
;
4246 /* The step of the aggregate pointer is the type size. */
4247 tree iv_step
= TYPE_SIZE_UNIT (aggr_type
);
4248 /* One exception to the above is when the scalar step of the load in
4249 LOOP is zero. In this case the step here is also zero. */
4251 iv_step
= size_zero_node
;
4252 else if (tree_int_cst_sgn (step
) == -1)
4253 iv_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (iv_step
), iv_step
);
4255 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
4257 create_iv (aggr_ptr_init
,
4258 fold_convert (aggr_ptr_type
, iv_step
),
4259 aggr_ptr
, loop
, &incr_gsi
, insert_after
,
4260 &indx_before_incr
, &indx_after_incr
);
4261 incr
= gsi_stmt (incr_gsi
);
4262 set_vinfo_for_stmt (incr
, new_stmt_vec_info (incr
, loop_vinfo
, NULL
));
4264 /* Copy the points-to information if it exists. */
4265 if (DR_PTR_INFO (dr
))
4267 vect_duplicate_ssa_name_ptr_info (indx_before_incr
, dr
, stmt_info
);
4268 vect_duplicate_ssa_name_ptr_info (indx_after_incr
, dr
, stmt_info
);
4273 aptr
= indx_before_incr
;
4276 if (!nested_in_vect_loop
|| only_init
)
4280 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4281 nested in LOOP, if exists. */
4283 gcc_assert (nested_in_vect_loop
);
4286 standard_iv_increment_position (containing_loop
, &incr_gsi
,
4288 create_iv (aptr
, fold_convert (aggr_ptr_type
, DR_STEP (dr
)), aggr_ptr
,
4289 containing_loop
, &incr_gsi
, insert_after
, &indx_before_incr
,
4291 incr
= gsi_stmt (incr_gsi
);
4292 set_vinfo_for_stmt (incr
, new_stmt_vec_info (incr
, loop_vinfo
, NULL
));
4294 /* Copy the points-to information if it exists. */
4295 if (DR_PTR_INFO (dr
))
4297 vect_duplicate_ssa_name_ptr_info (indx_before_incr
, dr
, stmt_info
);
4298 vect_duplicate_ssa_name_ptr_info (indx_after_incr
, dr
, stmt_info
);
4303 return indx_before_incr
;
4310 /* Function bump_vector_ptr
4312 Increment a pointer (to a vector type) by vector-size. If requested,
4313 i.e. if PTR-INCR is given, then also connect the new increment stmt
4314 to the existing def-use update-chain of the pointer, by modifying
4315 the PTR_INCR as illustrated below:
4317 The pointer def-use update-chain before this function:
4318 DATAREF_PTR = phi (p_0, p_2)
4320 PTR_INCR: p_2 = DATAREF_PTR + step
4322 The pointer def-use update-chain after this function:
4323 DATAREF_PTR = phi (p_0, p_2)
4325 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4327 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4330 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4332 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4333 the loop. The increment amount across iterations is expected
4335 BSI - location where the new update stmt is to be placed.
4336 STMT - the original scalar memory-access stmt that is being vectorized.
4337 BUMP - optional. The offset by which to bump the pointer. If not given,
4338 the offset is assumed to be vector_size.
4340 Output: Return NEW_DATAREF_PTR as illustrated above.
4345 bump_vector_ptr (tree dataref_ptr
, gimple ptr_incr
, gimple_stmt_iterator
*gsi
,
4346 gimple stmt
, tree bump
)
4348 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
4349 struct data_reference
*dr
= STMT_VINFO_DATA_REF (stmt_info
);
4350 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
4351 tree update
= TYPE_SIZE_UNIT (vectype
);
4354 use_operand_p use_p
;
4355 tree new_dataref_ptr
;
4360 if (TREE_CODE (dataref_ptr
) == SSA_NAME
)
4361 new_dataref_ptr
= copy_ssa_name (dataref_ptr
);
4363 new_dataref_ptr
= make_ssa_name (TREE_TYPE (dataref_ptr
));
4364 incr_stmt
= gimple_build_assign (new_dataref_ptr
, POINTER_PLUS_EXPR
,
4365 dataref_ptr
, update
);
4366 vect_finish_stmt_generation (stmt
, incr_stmt
, gsi
);
4368 /* Copy the points-to information if it exists. */
4369 if (DR_PTR_INFO (dr
))
4371 duplicate_ssa_name_ptr_info (new_dataref_ptr
, DR_PTR_INFO (dr
));
4372 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr
));
4376 return new_dataref_ptr
;
4378 /* Update the vector-pointer's cross-iteration increment. */
4379 FOR_EACH_SSA_USE_OPERAND (use_p
, ptr_incr
, iter
, SSA_OP_USE
)
4381 tree use
= USE_FROM_PTR (use_p
);
4383 if (use
== dataref_ptr
)
4384 SET_USE (use_p
, new_dataref_ptr
);
4386 gcc_assert (tree_int_cst_compare (use
, update
) == 0);
4389 return new_dataref_ptr
;
4393 /* Function vect_create_destination_var.
4395 Create a new temporary of type VECTYPE. */
4398 vect_create_destination_var (tree scalar_dest
, tree vectype
)
4404 enum vect_var_kind kind
;
4406 kind
= vectype
? vect_simple_var
: vect_scalar_var
;
4407 type
= vectype
? vectype
: TREE_TYPE (scalar_dest
);
4409 gcc_assert (TREE_CODE (scalar_dest
) == SSA_NAME
);
4411 name
= get_name (scalar_dest
);
4413 new_name
= xasprintf ("%s_%u", name
, SSA_NAME_VERSION (scalar_dest
));
4415 new_name
= xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest
));
4416 vec_dest
= vect_get_new_vect_var (type
, kind
, new_name
);
4422 /* Function vect_grouped_store_supported.
4424 Returns TRUE if interleave high and interleave low permutations
4425 are supported, and FALSE otherwise. */
4428 vect_grouped_store_supported (tree vectype
, unsigned HOST_WIDE_INT count
)
4430 machine_mode mode
= TYPE_MODE (vectype
);
4432 /* vect_permute_store_chain requires the group size to be equal to 3 or
4433 be a power of two. */
4434 if (count
!= 3 && exact_log2 (count
) == -1)
4436 if (dump_enabled_p ())
4437 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
4438 "the size of the group of accesses"
4439 " is not a power of 2 or not eqaul to 3\n");
4443 /* Check that the permutation is supported. */
4444 if (VECTOR_MODE_P (mode
))
4446 unsigned int i
, nelt
= GET_MODE_NUNITS (mode
);
4447 unsigned char *sel
= XALLOCAVEC (unsigned char, nelt
);
4451 unsigned int j0
= 0, j1
= 0, j2
= 0;
4454 for (j
= 0; j
< 3; j
++)
4456 int nelt0
= ((3 - j
) * nelt
) % 3;
4457 int nelt1
= ((3 - j
) * nelt
+ 1) % 3;
4458 int nelt2
= ((3 - j
) * nelt
+ 2) % 3;
4459 for (i
= 0; i
< nelt
; i
++)
4461 if (3 * i
+ nelt0
< nelt
)
4462 sel
[3 * i
+ nelt0
] = j0
++;
4463 if (3 * i
+ nelt1
< nelt
)
4464 sel
[3 * i
+ nelt1
] = nelt
+ j1
++;
4465 if (3 * i
+ nelt2
< nelt
)
4466 sel
[3 * i
+ nelt2
] = 0;
4468 if (!can_vec_perm_p (mode
, false, sel
))
4470 if (dump_enabled_p ())
4471 dump_printf (MSG_MISSED_OPTIMIZATION
,
4472 "permutaion op not supported by target.\n");
4476 for (i
= 0; i
< nelt
; i
++)
4478 if (3 * i
+ nelt0
< nelt
)
4479 sel
[3 * i
+ nelt0
] = 3 * i
+ nelt0
;
4480 if (3 * i
+ nelt1
< nelt
)
4481 sel
[3 * i
+ nelt1
] = 3 * i
+ nelt1
;
4482 if (3 * i
+ nelt2
< nelt
)
4483 sel
[3 * i
+ nelt2
] = nelt
+ j2
++;
4485 if (!can_vec_perm_p (mode
, false, sel
))
4487 if (dump_enabled_p ())
4488 dump_printf (MSG_MISSED_OPTIMIZATION
,
4489 "permutaion op not supported by target.\n");
4497 /* If length is not equal to 3 then only power of 2 is supported. */
4498 gcc_assert (exact_log2 (count
) != -1);
4500 for (i
= 0; i
< nelt
/ 2; i
++)
4503 sel
[i
* 2 + 1] = i
+ nelt
;
4505 if (can_vec_perm_p (mode
, false, sel
))
4507 for (i
= 0; i
< nelt
; i
++)
4509 if (can_vec_perm_p (mode
, false, sel
))
4515 if (dump_enabled_p ())
4516 dump_printf (MSG_MISSED_OPTIMIZATION
,
4517 "permutaion op not supported by target.\n");
4522 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4526 vect_store_lanes_supported (tree vectype
, unsigned HOST_WIDE_INT count
)
4528 return vect_lanes_optab_supported_p ("vec_store_lanes",
4529 vec_store_lanes_optab
,
4534 /* Function vect_permute_store_chain.
4536 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4537 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4538 the data correctly for the stores. Return the final references for stores
4541 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4542 The input is 4 vectors each containing 8 elements. We assign a number to
4543 each element, the input sequence is:
4545 1st vec: 0 1 2 3 4 5 6 7
4546 2nd vec: 8 9 10 11 12 13 14 15
4547 3rd vec: 16 17 18 19 20 21 22 23
4548 4th vec: 24 25 26 27 28 29 30 31
4550 The output sequence should be:
4552 1st vec: 0 8 16 24 1 9 17 25
4553 2nd vec: 2 10 18 26 3 11 19 27
4554 3rd vec: 4 12 20 28 5 13 21 30
4555 4th vec: 6 14 22 30 7 15 23 31
4557 i.e., we interleave the contents of the four vectors in their order.
4559 We use interleave_high/low instructions to create such output. The input of
4560 each interleave_high/low operation is two vectors:
4563 the even elements of the result vector are obtained left-to-right from the
4564 high/low elements of the first vector. The odd elements of the result are
4565 obtained left-to-right from the high/low elements of the second vector.
4566 The output of interleave_high will be: 0 4 1 5
4567 and of interleave_low: 2 6 3 7
4570 The permutation is done in log LENGTH stages. In each stage interleave_high
4571 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4572 where the first argument is taken from the first half of DR_CHAIN and the
4573 second argument from it's second half.
4576 I1: interleave_high (1st vec, 3rd vec)
4577 I2: interleave_low (1st vec, 3rd vec)
4578 I3: interleave_high (2nd vec, 4th vec)
4579 I4: interleave_low (2nd vec, 4th vec)
4581 The output for the first stage is:
4583 I1: 0 16 1 17 2 18 3 19
4584 I2: 4 20 5 21 6 22 7 23
4585 I3: 8 24 9 25 10 26 11 27
4586 I4: 12 28 13 29 14 30 15 31
4588 The output of the second stage, i.e. the final result is:
4590 I1: 0 8 16 24 1 9 17 25
4591 I2: 2 10 18 26 3 11 19 27
4592 I3: 4 12 20 28 5 13 21 30
4593 I4: 6 14 22 30 7 15 23 31. */
4596 vect_permute_store_chain (vec
<tree
> dr_chain
,
4597 unsigned int length
,
4599 gimple_stmt_iterator
*gsi
,
4600 vec
<tree
> *result_chain
)
4602 tree vect1
, vect2
, high
, low
;
4604 tree vectype
= STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt
));
4605 tree perm_mask_low
, perm_mask_high
;
4607 tree perm3_mask_low
, perm3_mask_high
;
4608 unsigned int i
, n
, log_length
= exact_log2 (length
);
4609 unsigned int j
, nelt
= TYPE_VECTOR_SUBPARTS (vectype
);
4610 unsigned char *sel
= XALLOCAVEC (unsigned char, nelt
);
4612 result_chain
->quick_grow (length
);
4613 memcpy (result_chain
->address (), dr_chain
.address (),
4614 length
* sizeof (tree
));
4618 unsigned int j0
= 0, j1
= 0, j2
= 0;
4620 for (j
= 0; j
< 3; j
++)
4622 int nelt0
= ((3 - j
) * nelt
) % 3;
4623 int nelt1
= ((3 - j
) * nelt
+ 1) % 3;
4624 int nelt2
= ((3 - j
) * nelt
+ 2) % 3;
4626 for (i
= 0; i
< nelt
; i
++)
4628 if (3 * i
+ nelt0
< nelt
)
4629 sel
[3 * i
+ nelt0
] = j0
++;
4630 if (3 * i
+ nelt1
< nelt
)
4631 sel
[3 * i
+ nelt1
] = nelt
+ j1
++;
4632 if (3 * i
+ nelt2
< nelt
)
4633 sel
[3 * i
+ nelt2
] = 0;
4635 perm3_mask_low
= vect_gen_perm_mask_checked (vectype
, sel
);
4637 for (i
= 0; i
< nelt
; i
++)
4639 if (3 * i
+ nelt0
< nelt
)
4640 sel
[3 * i
+ nelt0
] = 3 * i
+ nelt0
;
4641 if (3 * i
+ nelt1
< nelt
)
4642 sel
[3 * i
+ nelt1
] = 3 * i
+ nelt1
;
4643 if (3 * i
+ nelt2
< nelt
)
4644 sel
[3 * i
+ nelt2
] = nelt
+ j2
++;
4646 perm3_mask_high
= vect_gen_perm_mask_checked (vectype
, sel
);
4648 vect1
= dr_chain
[0];
4649 vect2
= dr_chain
[1];
4651 /* Create interleaving stmt:
4652 low = VEC_PERM_EXPR <vect1, vect2,
4653 {j, nelt, *, j + 1, nelt + j + 1, *,
4654 j + 2, nelt + j + 2, *, ...}> */
4655 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shuffle3_low");
4656 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
, vect1
,
4657 vect2
, perm3_mask_low
);
4658 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
4661 vect2
= dr_chain
[2];
4662 /* Create interleaving stmt:
4663 low = VEC_PERM_EXPR <vect1, vect2,
4664 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4665 6, 7, nelt + j + 2, ...}> */
4666 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shuffle3_high");
4667 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
, vect1
,
4668 vect2
, perm3_mask_high
);
4669 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
4670 (*result_chain
)[j
] = data_ref
;
4675 /* If length is not equal to 3 then only power of 2 is supported. */
4676 gcc_assert (exact_log2 (length
) != -1);
4678 for (i
= 0, n
= nelt
/ 2; i
< n
; i
++)
4681 sel
[i
* 2 + 1] = i
+ nelt
;
4683 perm_mask_high
= vect_gen_perm_mask_checked (vectype
, sel
);
4685 for (i
= 0; i
< nelt
; i
++)
4687 perm_mask_low
= vect_gen_perm_mask_checked (vectype
, sel
);
4689 for (i
= 0, n
= log_length
; i
< n
; i
++)
4691 for (j
= 0; j
< length
/2; j
++)
4693 vect1
= dr_chain
[j
];
4694 vect2
= dr_chain
[j
+length
/2];
4696 /* Create interleaving stmt:
4697 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4699 high
= make_temp_ssa_name (vectype
, NULL
, "vect_inter_high");
4700 perm_stmt
= gimple_build_assign (high
, VEC_PERM_EXPR
, vect1
,
4701 vect2
, perm_mask_high
);
4702 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
4703 (*result_chain
)[2*j
] = high
;
4705 /* Create interleaving stmt:
4706 low = VEC_PERM_EXPR <vect1, vect2,
4707 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4709 low
= make_temp_ssa_name (vectype
, NULL
, "vect_inter_low");
4710 perm_stmt
= gimple_build_assign (low
, VEC_PERM_EXPR
, vect1
,
4711 vect2
, perm_mask_low
);
4712 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
4713 (*result_chain
)[2*j
+1] = low
;
4715 memcpy (dr_chain
.address (), result_chain
->address (),
4716 length
* sizeof (tree
));
4721 /* Function vect_setup_realignment
4723 This function is called when vectorizing an unaligned load using
4724 the dr_explicit_realign[_optimized] scheme.
4725 This function generates the following code at the loop prolog:
4728 x msq_init = *(floor(p)); # prolog load
4729 realignment_token = call target_builtin;
4731 x msq = phi (msq_init, ---)
4733 The stmts marked with x are generated only for the case of
4734 dr_explicit_realign_optimized.
4736 The code above sets up a new (vector) pointer, pointing to the first
4737 location accessed by STMT, and a "floor-aligned" load using that pointer.
4738 It also generates code to compute the "realignment-token" (if the relevant
4739 target hook was defined), and creates a phi-node at the loop-header bb
4740 whose arguments are the result of the prolog-load (created by this
4741 function) and the result of a load that takes place in the loop (to be
4742 created by the caller to this function).
4744 For the case of dr_explicit_realign_optimized:
4745 The caller to this function uses the phi-result (msq) to create the
4746 realignment code inside the loop, and sets up the missing phi argument,
4749 msq = phi (msq_init, lsq)
4750 lsq = *(floor(p')); # load in loop
4751 result = realign_load (msq, lsq, realignment_token);
4753 For the case of dr_explicit_realign:
4755 msq = *(floor(p)); # load in loop
4757 lsq = *(floor(p')); # load in loop
4758 result = realign_load (msq, lsq, realignment_token);
4761 STMT - (scalar) load stmt to be vectorized. This load accesses
4762 a memory location that may be unaligned.
4763 BSI - place where new code is to be inserted.
4764 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4768 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4769 target hook, if defined.
4770 Return value - the result of the loop-header phi node. */
4773 vect_setup_realignment (gimple stmt
, gimple_stmt_iterator
*gsi
,
4774 tree
*realignment_token
,
4775 enum dr_alignment_support alignment_support_scheme
,
4777 struct loop
**at_loop
)
4779 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
4780 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
4781 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
4782 struct data_reference
*dr
= STMT_VINFO_DATA_REF (stmt_info
);
4783 struct loop
*loop
= NULL
;
4785 tree scalar_dest
= gimple_assign_lhs (stmt
);
4791 tree msq_init
= NULL_TREE
;
4794 tree msq
= NULL_TREE
;
4795 gimple_seq stmts
= NULL
;
4797 bool compute_in_loop
= false;
4798 bool nested_in_vect_loop
= false;
4799 struct loop
*containing_loop
= (gimple_bb (stmt
))->loop_father
;
4800 struct loop
*loop_for_initial_load
= NULL
;
4804 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
4805 nested_in_vect_loop
= nested_in_vect_loop_p (loop
, stmt
);
4808 gcc_assert (alignment_support_scheme
== dr_explicit_realign
4809 || alignment_support_scheme
== dr_explicit_realign_optimized
);
4811 /* We need to generate three things:
4812 1. the misalignment computation
4813 2. the extra vector load (for the optimized realignment scheme).
4814 3. the phi node for the two vectors from which the realignment is
4815 done (for the optimized realignment scheme). */
4817 /* 1. Determine where to generate the misalignment computation.
4819 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4820 calculation will be generated by this function, outside the loop (in the
4821 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4822 caller, inside the loop.
4824 Background: If the misalignment remains fixed throughout the iterations of
4825 the loop, then both realignment schemes are applicable, and also the
4826 misalignment computation can be done outside LOOP. This is because we are
4827 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4828 are a multiple of VS (the Vector Size), and therefore the misalignment in
4829 different vectorized LOOP iterations is always the same.
4830 The problem arises only if the memory access is in an inner-loop nested
4831 inside LOOP, which is now being vectorized using outer-loop vectorization.
4832 This is the only case when the misalignment of the memory access may not
4833 remain fixed throughout the iterations of the inner-loop (as explained in
4834 detail in vect_supportable_dr_alignment). In this case, not only is the
4835 optimized realignment scheme not applicable, but also the misalignment
4836 computation (and generation of the realignment token that is passed to
4837 REALIGN_LOAD) have to be done inside the loop.
4839 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4840 or not, which in turn determines if the misalignment is computed inside
4841 the inner-loop, or outside LOOP. */
4843 if (init_addr
!= NULL_TREE
|| !loop_vinfo
)
4845 compute_in_loop
= true;
4846 gcc_assert (alignment_support_scheme
== dr_explicit_realign
);
4850 /* 2. Determine where to generate the extra vector load.
4852 For the optimized realignment scheme, instead of generating two vector
4853 loads in each iteration, we generate a single extra vector load in the
4854 preheader of the loop, and in each iteration reuse the result of the
4855 vector load from the previous iteration. In case the memory access is in
4856 an inner-loop nested inside LOOP, which is now being vectorized using
4857 outer-loop vectorization, we need to determine whether this initial vector
4858 load should be generated at the preheader of the inner-loop, or can be
4859 generated at the preheader of LOOP. If the memory access has no evolution
4860 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4861 to be generated inside LOOP (in the preheader of the inner-loop). */
4863 if (nested_in_vect_loop
)
4865 tree outerloop_step
= STMT_VINFO_DR_STEP (stmt_info
);
4866 bool invariant_in_outerloop
=
4867 (tree_int_cst_compare (outerloop_step
, size_zero_node
) == 0);
4868 loop_for_initial_load
= (invariant_in_outerloop
? loop
: loop
->inner
);
4871 loop_for_initial_load
= loop
;
4873 *at_loop
= loop_for_initial_load
;
4875 if (loop_for_initial_load
)
4876 pe
= loop_preheader_edge (loop_for_initial_load
);
4878 /* 3. For the case of the optimized realignment, create the first vector
4879 load at the loop preheader. */
4881 if (alignment_support_scheme
== dr_explicit_realign_optimized
)
4883 /* Create msq_init = *(floor(p1)) in the loop preheader */
4886 gcc_assert (!compute_in_loop
);
4887 vec_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4888 ptr
= vect_create_data_ref_ptr (stmt
, vectype
, loop_for_initial_load
,
4889 NULL_TREE
, &init_addr
, NULL
, &inc
,
4891 if (TREE_CODE (ptr
) == SSA_NAME
)
4892 new_temp
= copy_ssa_name (ptr
);
4894 new_temp
= make_ssa_name (TREE_TYPE (ptr
));
4895 new_stmt
= gimple_build_assign
4896 (new_temp
, BIT_AND_EXPR
, ptr
,
4897 build_int_cst (TREE_TYPE (ptr
),
4898 -(HOST_WIDE_INT
)TYPE_ALIGN_UNIT (vectype
)));
4899 new_bb
= gsi_insert_on_edge_immediate (pe
, new_stmt
);
4900 gcc_assert (!new_bb
);
4902 = build2 (MEM_REF
, TREE_TYPE (vec_dest
), new_temp
,
4903 build_int_cst (reference_alias_ptr_type (DR_REF (dr
)), 0));
4904 new_stmt
= gimple_build_assign (vec_dest
, data_ref
);
4905 new_temp
= make_ssa_name (vec_dest
, new_stmt
);
4906 gimple_assign_set_lhs (new_stmt
, new_temp
);
4909 new_bb
= gsi_insert_on_edge_immediate (pe
, new_stmt
);
4910 gcc_assert (!new_bb
);
4913 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
4915 msq_init
= gimple_assign_lhs (new_stmt
);
4918 /* 4. Create realignment token using a target builtin, if available.
4919 It is done either inside the containing loop, or before LOOP (as
4920 determined above). */
4922 if (targetm
.vectorize
.builtin_mask_for_load
)
4927 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4930 /* Generate the INIT_ADDR computation outside LOOP. */
4931 init_addr
= vect_create_addr_base_for_vector_ref (stmt
, &stmts
,
4935 pe
= loop_preheader_edge (loop
);
4936 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
4937 gcc_assert (!new_bb
);
4940 gsi_insert_seq_before (gsi
, stmts
, GSI_SAME_STMT
);
4943 builtin_decl
= targetm
.vectorize
.builtin_mask_for_load ();
4944 new_stmt
= gimple_build_call (builtin_decl
, 1, init_addr
);
4946 vect_create_destination_var (scalar_dest
,
4947 gimple_call_return_type (new_stmt
));
4948 new_temp
= make_ssa_name (vec_dest
, new_stmt
);
4949 gimple_call_set_lhs (new_stmt
, new_temp
);
4951 if (compute_in_loop
)
4952 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
4955 /* Generate the misalignment computation outside LOOP. */
4956 pe
= loop_preheader_edge (loop
);
4957 new_bb
= gsi_insert_on_edge_immediate (pe
, new_stmt
);
4958 gcc_assert (!new_bb
);
4961 *realignment_token
= gimple_call_lhs (new_stmt
);
4963 /* The result of the CALL_EXPR to this builtin is determined from
4964 the value of the parameter and no global variables are touched
4965 which makes the builtin a "const" function. Requiring the
4966 builtin to have the "const" attribute makes it unnecessary
4967 to call mark_call_clobbered. */
4968 gcc_assert (TREE_READONLY (builtin_decl
));
4971 if (alignment_support_scheme
== dr_explicit_realign
)
4974 gcc_assert (!compute_in_loop
);
4975 gcc_assert (alignment_support_scheme
== dr_explicit_realign_optimized
);
4978 /* 5. Create msq = phi <msq_init, lsq> in loop */
4980 pe
= loop_preheader_edge (containing_loop
);
4981 vec_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4982 msq
= make_ssa_name (vec_dest
);
4983 phi_stmt
= create_phi_node (msq
, containing_loop
->header
);
4984 add_phi_arg (phi_stmt
, msq_init
, pe
, UNKNOWN_LOCATION
);
4990 /* Function vect_grouped_load_supported.
4992 Returns TRUE if even and odd permutations are supported,
4993 and FALSE otherwise. */
4996 vect_grouped_load_supported (tree vectype
, unsigned HOST_WIDE_INT count
)
4998 machine_mode mode
= TYPE_MODE (vectype
);
5000 /* vect_permute_load_chain requires the group size to be equal to 3 or
5001 be a power of two. */
5002 if (count
!= 3 && exact_log2 (count
) == -1)
5004 if (dump_enabled_p ())
5005 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5006 "the size of the group of accesses"
5007 " is not a power of 2 or not equal to 3\n");
5011 /* Check that the permutation is supported. */
5012 if (VECTOR_MODE_P (mode
))
5014 unsigned int i
, j
, nelt
= GET_MODE_NUNITS (mode
);
5015 unsigned char *sel
= XALLOCAVEC (unsigned char, nelt
);
5020 for (k
= 0; k
< 3; k
++)
5022 for (i
= 0; i
< nelt
; i
++)
5023 if (3 * i
+ k
< 2 * nelt
)
5027 if (!can_vec_perm_p (mode
, false, sel
))
5029 if (dump_enabled_p ())
5030 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5031 "shuffle of 3 loads is not supported by"
5035 for (i
= 0, j
= 0; i
< nelt
; i
++)
5036 if (3 * i
+ k
< 2 * nelt
)
5039 sel
[i
] = nelt
+ ((nelt
+ k
) % 3) + 3 * (j
++);
5040 if (!can_vec_perm_p (mode
, false, sel
))
5042 if (dump_enabled_p ())
5043 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5044 "shuffle of 3 loads is not supported by"
5053 /* If length is not equal to 3 then only power of 2 is supported. */
5054 gcc_assert (exact_log2 (count
) != -1);
5055 for (i
= 0; i
< nelt
; i
++)
5057 if (can_vec_perm_p (mode
, false, sel
))
5059 for (i
= 0; i
< nelt
; i
++)
5061 if (can_vec_perm_p (mode
, false, sel
))
5067 if (dump_enabled_p ())
5068 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5069 "extract even/odd not supported by target\n");
5073 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5077 vect_load_lanes_supported (tree vectype
, unsigned HOST_WIDE_INT count
)
5079 return vect_lanes_optab_supported_p ("vec_load_lanes",
5080 vec_load_lanes_optab
,
5084 /* Function vect_permute_load_chain.
5086 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5087 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5088 the input data correctly. Return the final references for loads in
5091 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5092 The input is 4 vectors each containing 8 elements. We assign a number to each
5093 element, the input sequence is:
5095 1st vec: 0 1 2 3 4 5 6 7
5096 2nd vec: 8 9 10 11 12 13 14 15
5097 3rd vec: 16 17 18 19 20 21 22 23
5098 4th vec: 24 25 26 27 28 29 30 31
5100 The output sequence should be:
5102 1st vec: 0 4 8 12 16 20 24 28
5103 2nd vec: 1 5 9 13 17 21 25 29
5104 3rd vec: 2 6 10 14 18 22 26 30
5105 4th vec: 3 7 11 15 19 23 27 31
5107 i.e., the first output vector should contain the first elements of each
5108 interleaving group, etc.
5110 We use extract_even/odd instructions to create such output. The input of
5111 each extract_even/odd operation is two vectors
5115 and the output is the vector of extracted even/odd elements. The output of
5116 extract_even will be: 0 2 4 6
5117 and of extract_odd: 1 3 5 7
5120 The permutation is done in log LENGTH stages. In each stage extract_even
5121 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5122 their order. In our example,
5124 E1: extract_even (1st vec, 2nd vec)
5125 E2: extract_odd (1st vec, 2nd vec)
5126 E3: extract_even (3rd vec, 4th vec)
5127 E4: extract_odd (3rd vec, 4th vec)
5129 The output for the first stage will be:
5131 E1: 0 2 4 6 8 10 12 14
5132 E2: 1 3 5 7 9 11 13 15
5133 E3: 16 18 20 22 24 26 28 30
5134 E4: 17 19 21 23 25 27 29 31
5136 In order to proceed and create the correct sequence for the next stage (or
5137 for the correct output, if the second stage is the last one, as in our
5138 example), we first put the output of extract_even operation and then the
5139 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5140 The input for the second stage is:
5142 1st vec (E1): 0 2 4 6 8 10 12 14
5143 2nd vec (E3): 16 18 20 22 24 26 28 30
5144 3rd vec (E2): 1 3 5 7 9 11 13 15
5145 4th vec (E4): 17 19 21 23 25 27 29 31
5147 The output of the second stage:
5149 E1: 0 4 8 12 16 20 24 28
5150 E2: 2 6 10 14 18 22 26 30
5151 E3: 1 5 9 13 17 21 25 29
5152 E4: 3 7 11 15 19 23 27 31
5154 And RESULT_CHAIN after reordering:
5156 1st vec (E1): 0 4 8 12 16 20 24 28
5157 2nd vec (E3): 1 5 9 13 17 21 25 29
5158 3rd vec (E2): 2 6 10 14 18 22 26 30
5159 4th vec (E4): 3 7 11 15 19 23 27 31. */
5162 vect_permute_load_chain (vec
<tree
> dr_chain
,
5163 unsigned int length
,
5165 gimple_stmt_iterator
*gsi
,
5166 vec
<tree
> *result_chain
)
5168 tree data_ref
, first_vect
, second_vect
;
5169 tree perm_mask_even
, perm_mask_odd
;
5170 tree perm3_mask_low
, perm3_mask_high
;
5172 tree vectype
= STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt
));
5173 unsigned int i
, j
, log_length
= exact_log2 (length
);
5174 unsigned nelt
= TYPE_VECTOR_SUBPARTS (vectype
);
5175 unsigned char *sel
= XALLOCAVEC (unsigned char, nelt
);
5177 result_chain
->quick_grow (length
);
5178 memcpy (result_chain
->address (), dr_chain
.address (),
5179 length
* sizeof (tree
));
5185 for (k
= 0; k
< 3; k
++)
5187 for (i
= 0; i
< nelt
; i
++)
5188 if (3 * i
+ k
< 2 * nelt
)
5192 perm3_mask_low
= vect_gen_perm_mask_checked (vectype
, sel
);
5194 for (i
= 0, j
= 0; i
< nelt
; i
++)
5195 if (3 * i
+ k
< 2 * nelt
)
5198 sel
[i
] = nelt
+ ((nelt
+ k
) % 3) + 3 * (j
++);
5200 perm3_mask_high
= vect_gen_perm_mask_checked (vectype
, sel
);
5202 first_vect
= dr_chain
[0];
5203 second_vect
= dr_chain
[1];
5205 /* Create interleaving stmt (low part of):
5206 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5208 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shuffle3_low");
5209 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
, first_vect
,
5210 second_vect
, perm3_mask_low
);
5211 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5213 /* Create interleaving stmt (high part of):
5214 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5216 first_vect
= data_ref
;
5217 second_vect
= dr_chain
[2];
5218 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shuffle3_high");
5219 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
, first_vect
,
5220 second_vect
, perm3_mask_high
);
5221 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5222 (*result_chain
)[k
] = data_ref
;
5227 /* If length is not equal to 3 then only power of 2 is supported. */
5228 gcc_assert (exact_log2 (length
) != -1);
5230 for (i
= 0; i
< nelt
; ++i
)
5232 perm_mask_even
= vect_gen_perm_mask_checked (vectype
, sel
);
5234 for (i
= 0; i
< nelt
; ++i
)
5236 perm_mask_odd
= vect_gen_perm_mask_checked (vectype
, sel
);
5238 for (i
= 0; i
< log_length
; i
++)
5240 for (j
= 0; j
< length
; j
+= 2)
5242 first_vect
= dr_chain
[j
];
5243 second_vect
= dr_chain
[j
+1];
5245 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5246 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_perm_even");
5247 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5248 first_vect
, second_vect
,
5250 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5251 (*result_chain
)[j
/2] = data_ref
;
5253 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5254 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_perm_odd");
5255 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5256 first_vect
, second_vect
,
5258 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5259 (*result_chain
)[j
/2+length
/2] = data_ref
;
5261 memcpy (dr_chain
.address (), result_chain
->address (),
5262 length
* sizeof (tree
));
5267 /* Function vect_shift_permute_load_chain.
5269 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5270 sequence of stmts to reorder the input data accordingly.
5271 Return the final references for loads in RESULT_CHAIN.
5272 Return true if successed, false otherwise.
5274 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5275 The input is 3 vectors each containing 8 elements. We assign a
5276 number to each element, the input sequence is:
5278 1st vec: 0 1 2 3 4 5 6 7
5279 2nd vec: 8 9 10 11 12 13 14 15
5280 3rd vec: 16 17 18 19 20 21 22 23
5282 The output sequence should be:
5284 1st vec: 0 3 6 9 12 15 18 21
5285 2nd vec: 1 4 7 10 13 16 19 22
5286 3rd vec: 2 5 8 11 14 17 20 23
5288 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5290 First we shuffle all 3 vectors to get correct elements order:
5292 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5293 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5294 3rd vec: (16 19 22) (17 20 23) (18 21)
5296 Next we unite and shift vector 3 times:
5299 shift right by 6 the concatenation of:
5300 "1st vec" and "2nd vec"
5301 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5302 "2nd vec" and "3rd vec"
5303 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5304 "3rd vec" and "1st vec"
5305 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5308 So that now new vectors are:
5310 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5311 2nd vec: (10 13) (16 19 22) (17 20 23)
5312 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5315 shift right by 5 the concatenation of:
5316 "1st vec" and "3rd vec"
5317 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5318 "2nd vec" and "1st vec"
5319 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5320 "3rd vec" and "2nd vec"
5321 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5324 So that now new vectors are:
5326 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5327 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5328 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5331 shift right by 5 the concatenation of:
5332 "1st vec" and "1st vec"
5333 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5334 shift right by 3 the concatenation of:
5335 "2nd vec" and "2nd vec"
5336 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5339 So that now all vectors are READY:
5340 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5341 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5342 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5344 This algorithm is faster than one in vect_permute_load_chain if:
5345 1. "shift of a concatination" is faster than general permutation.
5347 2. The TARGET machine can't execute vector instructions in parallel.
5348 This is because each step of the algorithm depends on previous.
5349 The algorithm in vect_permute_load_chain is much more parallel.
5351 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5355 vect_shift_permute_load_chain (vec
<tree
> dr_chain
,
5356 unsigned int length
,
5358 gimple_stmt_iterator
*gsi
,
5359 vec
<tree
> *result_chain
)
5361 tree vect
[3], vect_shift
[3], data_ref
, first_vect
, second_vect
;
5362 tree perm2_mask1
, perm2_mask2
, perm3_mask
;
5363 tree select_mask
, shift1_mask
, shift2_mask
, shift3_mask
, shift4_mask
;
5366 tree vectype
= STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt
));
5368 unsigned nelt
= TYPE_VECTOR_SUBPARTS (vectype
);
5369 unsigned char *sel
= XALLOCAVEC (unsigned char, nelt
);
5370 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
5371 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
5373 result_chain
->quick_grow (length
);
5374 memcpy (result_chain
->address (), dr_chain
.address (),
5375 length
* sizeof (tree
));
5377 if (exact_log2 (length
) != -1 && LOOP_VINFO_VECT_FACTOR (loop_vinfo
) > 4)
5379 unsigned int j
, log_length
= exact_log2 (length
);
5380 for (i
= 0; i
< nelt
/ 2; ++i
)
5382 for (i
= 0; i
< nelt
/ 2; ++i
)
5383 sel
[nelt
/ 2 + i
] = i
* 2 + 1;
5384 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5386 if (dump_enabled_p ())
5387 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5388 "shuffle of 2 fields structure is not \
5389 supported by target\n");
5392 perm2_mask1
= vect_gen_perm_mask_checked (vectype
, sel
);
5394 for (i
= 0; i
< nelt
/ 2; ++i
)
5396 for (i
= 0; i
< nelt
/ 2; ++i
)
5397 sel
[nelt
/ 2 + i
] = i
* 2;
5398 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5400 if (dump_enabled_p ())
5401 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5402 "shuffle of 2 fields structure is not \
5403 supported by target\n");
5406 perm2_mask2
= vect_gen_perm_mask_checked (vectype
, sel
);
5408 /* Generating permutation constant to shift all elements.
5409 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5410 for (i
= 0; i
< nelt
; i
++)
5411 sel
[i
] = nelt
/ 2 + i
;
5412 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5414 if (dump_enabled_p ())
5415 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5416 "shift permutation is not supported by target\n");
5419 shift1_mask
= vect_gen_perm_mask_checked (vectype
, sel
);
5421 /* Generating permutation constant to select vector from 2.
5422 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5423 for (i
= 0; i
< nelt
/ 2; i
++)
5425 for (i
= nelt
/ 2; i
< nelt
; i
++)
5427 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5429 if (dump_enabled_p ())
5430 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5431 "select is not supported by target\n");
5434 select_mask
= vect_gen_perm_mask_checked (vectype
, sel
);
5436 for (i
= 0; i
< log_length
; i
++)
5438 for (j
= 0; j
< length
; j
+= 2)
5440 first_vect
= dr_chain
[j
];
5441 second_vect
= dr_chain
[j
+ 1];
5443 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shuffle2");
5444 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5445 first_vect
, first_vect
,
5447 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5450 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shuffle2");
5451 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5452 second_vect
, second_vect
,
5454 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5457 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shift");
5458 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5459 vect
[0], vect
[1], shift1_mask
);
5460 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5461 (*result_chain
)[j
/2 + length
/2] = data_ref
;
5463 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_select");
5464 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5465 vect
[0], vect
[1], select_mask
);
5466 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5467 (*result_chain
)[j
/2] = data_ref
;
5469 memcpy (dr_chain
.address (), result_chain
->address (),
5470 length
* sizeof (tree
));
5474 if (length
== 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo
) > 2)
5476 unsigned int k
= 0, l
= 0;
5478 /* Generating permutation constant to get all elements in rigth order.
5479 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5480 for (i
= 0; i
< nelt
; i
++)
5482 if (3 * k
+ (l
% 3) >= nelt
)
5485 l
+= (3 - (nelt
% 3));
5487 sel
[i
] = 3 * k
+ (l
% 3);
5490 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5492 if (dump_enabled_p ())
5493 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5494 "shuffle of 3 fields structure is not \
5495 supported by target\n");
5498 perm3_mask
= vect_gen_perm_mask_checked (vectype
, sel
);
5500 /* Generating permutation constant to shift all elements.
5501 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5502 for (i
= 0; i
< nelt
; i
++)
5503 sel
[i
] = 2 * (nelt
/ 3) + (nelt
% 3) + i
;
5504 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5506 if (dump_enabled_p ())
5507 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5508 "shift permutation is not supported by target\n");
5511 shift1_mask
= vect_gen_perm_mask_checked (vectype
, sel
);
5513 /* Generating permutation constant to shift all elements.
5514 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5515 for (i
= 0; i
< nelt
; i
++)
5516 sel
[i
] = 2 * (nelt
/ 3) + 1 + i
;
5517 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5519 if (dump_enabled_p ())
5520 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5521 "shift permutation is not supported by target\n");
5524 shift2_mask
= vect_gen_perm_mask_checked (vectype
, sel
);
5526 /* Generating permutation constant to shift all elements.
5527 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5528 for (i
= 0; i
< nelt
; i
++)
5529 sel
[i
] = (nelt
/ 3) + (nelt
% 3) / 2 + i
;
5530 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5532 if (dump_enabled_p ())
5533 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5534 "shift permutation is not supported by target\n");
5537 shift3_mask
= vect_gen_perm_mask_checked (vectype
, sel
);
5539 /* Generating permutation constant to shift all elements.
5540 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5541 for (i
= 0; i
< nelt
; i
++)
5542 sel
[i
] = 2 * (nelt
/ 3) + (nelt
% 3) / 2 + i
;
5543 if (!can_vec_perm_p (TYPE_MODE (vectype
), false, sel
))
5545 if (dump_enabled_p ())
5546 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
5547 "shift permutation is not supported by target\n");
5550 shift4_mask
= vect_gen_perm_mask_checked (vectype
, sel
);
5552 for (k
= 0; k
< 3; k
++)
5554 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shuffle3");
5555 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5556 dr_chain
[k
], dr_chain
[k
],
5558 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5562 for (k
= 0; k
< 3; k
++)
5564 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shift1");
5565 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5566 vect
[k
% 3], vect
[(k
+ 1) % 3],
5568 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5569 vect_shift
[k
] = data_ref
;
5572 for (k
= 0; k
< 3; k
++)
5574 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shift2");
5575 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
,
5576 vect_shift
[(4 - k
) % 3],
5577 vect_shift
[(3 - k
) % 3],
5579 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5583 (*result_chain
)[3 - (nelt
% 3)] = vect
[2];
5585 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shift3");
5586 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
, vect
[0],
5587 vect
[0], shift3_mask
);
5588 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5589 (*result_chain
)[nelt
% 3] = data_ref
;
5591 data_ref
= make_temp_ssa_name (vectype
, NULL
, "vect_shift4");
5592 perm_stmt
= gimple_build_assign (data_ref
, VEC_PERM_EXPR
, vect
[1],
5593 vect
[1], shift4_mask
);
5594 vect_finish_stmt_generation (stmt
, perm_stmt
, gsi
);
5595 (*result_chain
)[0] = data_ref
;
5601 /* Function vect_transform_grouped_load.
5603 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5604 to perform their permutation and ascribe the result vectorized statements to
5605 the scalar statements.
5609 vect_transform_grouped_load (gimple stmt
, vec
<tree
> dr_chain
, int size
,
5610 gimple_stmt_iterator
*gsi
)
5613 vec
<tree
> result_chain
= vNULL
;
5615 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5616 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5617 vectors, that are ready for vector computation. */
5618 result_chain
.create (size
);
5620 /* If reassociation width for vector type is 2 or greater target machine can
5621 execute 2 or more vector instructions in parallel. Otherwise try to
5622 get chain for loads group using vect_shift_permute_load_chain. */
5623 mode
= TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt
)));
5624 if (targetm
.sched
.reassociation_width (VEC_PERM_EXPR
, mode
) > 1
5625 || exact_log2 (size
) != -1
5626 || !vect_shift_permute_load_chain (dr_chain
, size
, stmt
,
5627 gsi
, &result_chain
))
5628 vect_permute_load_chain (dr_chain
, size
, stmt
, gsi
, &result_chain
);
5629 vect_record_grouped_load_vectors (stmt
, result_chain
);
5630 result_chain
.release ();
5633 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5634 generated as part of the vectorization of STMT. Assign the statement
5635 for each vector to the associated scalar statement. */
5638 vect_record_grouped_load_vectors (gimple stmt
, vec
<tree
> result_chain
)
5640 gimple first_stmt
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
));
5641 gimple next_stmt
, new_stmt
;
5642 unsigned int i
, gap_count
;
5645 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5646 Since we scan the chain starting from it's first node, their order
5647 corresponds the order of data-refs in RESULT_CHAIN. */
5648 next_stmt
= first_stmt
;
5650 FOR_EACH_VEC_ELT (result_chain
, i
, tmp_data_ref
)
5655 /* Skip the gaps. Loads created for the gaps will be removed by dead
5656 code elimination pass later. No need to check for the first stmt in
5657 the group, since it always exists.
5658 GROUP_GAP is the number of steps in elements from the previous
5659 access (if there is no gap GROUP_GAP is 1). We skip loads that
5660 correspond to the gaps. */
5661 if (next_stmt
!= first_stmt
5662 && gap_count
< GROUP_GAP (vinfo_for_stmt (next_stmt
)))
5670 new_stmt
= SSA_NAME_DEF_STMT (tmp_data_ref
);
5671 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5672 copies, and we put the new vector statement in the first available
5674 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt
)))
5675 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt
)) = new_stmt
;
5678 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt
)))
5681 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt
));
5683 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt
));
5686 prev_stmt
= rel_stmt
;
5688 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt
));
5691 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt
)) =
5696 next_stmt
= GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt
));
5698 /* If NEXT_STMT accesses the same DR as the previous statement,
5699 put the same TMP_DATA_REF as its vectorized statement; otherwise
5700 get the next data-ref from RESULT_CHAIN. */
5701 if (!next_stmt
|| !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt
)))
5707 /* Function vect_force_dr_alignment_p.
5709 Returns whether the alignment of a DECL can be forced to be aligned
5710 on ALIGNMENT bit boundary. */
5713 vect_can_force_dr_alignment_p (const_tree decl
, unsigned int alignment
)
5715 if (TREE_CODE (decl
) != VAR_DECL
)
5718 if (decl_in_symtab_p (decl
)
5719 && !symtab_node::get (decl
)->can_increase_alignment_p ())
5722 if (TREE_STATIC (decl
))
5723 return (alignment
<= MAX_OFILE_ALIGNMENT
);
5725 return (alignment
<= MAX_STACK_ALIGNMENT
);
5729 /* Return whether the data reference DR is supported with respect to its
5731 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5732 it is aligned, i.e., check if it is possible to vectorize it with different
5735 enum dr_alignment_support
5736 vect_supportable_dr_alignment (struct data_reference
*dr
,
5737 bool check_aligned_accesses
)
5739 gimple stmt
= DR_STMT (dr
);
5740 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
5741 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
5742 machine_mode mode
= TYPE_MODE (vectype
);
5743 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
5744 struct loop
*vect_loop
= NULL
;
5745 bool nested_in_vect_loop
= false;
5747 if (aligned_access_p (dr
) && !check_aligned_accesses
)
5750 /* For now assume all conditional loads/stores support unaligned
5751 access without any special code. */
5752 if (is_gimple_call (stmt
)
5753 && gimple_call_internal_p (stmt
)
5754 && (gimple_call_internal_fn (stmt
) == IFN_MASK_LOAD
5755 || gimple_call_internal_fn (stmt
) == IFN_MASK_STORE
))
5756 return dr_unaligned_supported
;
5760 vect_loop
= LOOP_VINFO_LOOP (loop_vinfo
);
5761 nested_in_vect_loop
= nested_in_vect_loop_p (vect_loop
, stmt
);
5764 /* Possibly unaligned access. */
5766 /* We can choose between using the implicit realignment scheme (generating
5767 a misaligned_move stmt) and the explicit realignment scheme (generating
5768 aligned loads with a REALIGN_LOAD). There are two variants to the
5769 explicit realignment scheme: optimized, and unoptimized.
5770 We can optimize the realignment only if the step between consecutive
5771 vector loads is equal to the vector size. Since the vector memory
5772 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5773 is guaranteed that the misalignment amount remains the same throughout the
5774 execution of the vectorized loop. Therefore, we can create the
5775 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5776 at the loop preheader.
5778 However, in the case of outer-loop vectorization, when vectorizing a
5779 memory access in the inner-loop nested within the LOOP that is now being
5780 vectorized, while it is guaranteed that the misalignment of the
5781 vectorized memory access will remain the same in different outer-loop
5782 iterations, it is *not* guaranteed that is will remain the same throughout
5783 the execution of the inner-loop. This is because the inner-loop advances
5784 with the original scalar step (and not in steps of VS). If the inner-loop
5785 step happens to be a multiple of VS, then the misalignment remains fixed
5786 and we can use the optimized realignment scheme. For example:
5792 When vectorizing the i-loop in the above example, the step between
5793 consecutive vector loads is 1, and so the misalignment does not remain
5794 fixed across the execution of the inner-loop, and the realignment cannot
5795 be optimized (as illustrated in the following pseudo vectorized loop):
5797 for (i=0; i<N; i+=4)
5798 for (j=0; j<M; j++){
5799 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5800 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5801 // (assuming that we start from an aligned address).
5804 We therefore have to use the unoptimized realignment scheme:
5806 for (i=0; i<N; i+=4)
5807 for (j=k; j<M; j+=4)
5808 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5809 // that the misalignment of the initial address is
5812 The loop can then be vectorized as follows:
5814 for (k=0; k<4; k++){
5815 rt = get_realignment_token (&vp[k]);
5816 for (i=0; i<N; i+=4){
5818 for (j=k; j<M; j+=4){
5820 va = REALIGN_LOAD <v1,v2,rt>;
5827 if (DR_IS_READ (dr
))
5829 bool is_packed
= false;
5830 tree type
= (TREE_TYPE (DR_REF (dr
)));
5832 if (optab_handler (vec_realign_load_optab
, mode
) != CODE_FOR_nothing
5833 && (!targetm
.vectorize
.builtin_mask_for_load
5834 || targetm
.vectorize
.builtin_mask_for_load ()))
5836 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
5837 if ((nested_in_vect_loop
5838 && (TREE_INT_CST_LOW (DR_STEP (dr
))
5839 != GET_MODE_SIZE (TYPE_MODE (vectype
))))
5841 return dr_explicit_realign
;
5843 return dr_explicit_realign_optimized
;
5845 if (!known_alignment_for_access_p (dr
))
5846 is_packed
= not_size_aligned (DR_REF (dr
));
5848 if ((TYPE_USER_ALIGN (type
) && !is_packed
)
5849 || targetm
.vectorize
.
5850 support_vector_misalignment (mode
, type
,
5851 DR_MISALIGNMENT (dr
), is_packed
))
5852 /* Can't software pipeline the loads, but can at least do them. */
5853 return dr_unaligned_supported
;
5857 bool is_packed
= false;
5858 tree type
= (TREE_TYPE (DR_REF (dr
)));
5860 if (!known_alignment_for_access_p (dr
))
5861 is_packed
= not_size_aligned (DR_REF (dr
));
5863 if ((TYPE_USER_ALIGN (type
) && !is_packed
)
5864 || targetm
.vectorize
.
5865 support_vector_misalignment (mode
, type
,
5866 DR_MISALIGNMENT (dr
), is_packed
))
5867 return dr_unaligned_supported
;
5871 return dr_unaligned_unsupported
;