gcc/java/
[official-gcc.git] / gcc / fortran / trans-types.c
blob1785908f8119aa843be1665663479a45d10d6315
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* trans-types.c -- gfortran backend types */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tree.h"
29 #include "langhooks.h"
30 #include "tm.h"
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h"
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "real.h"
39 #include "flags.h"
40 #include "dwarf2out.h"
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
56 static tree gfc_get_derived_type (gfc_symbol * derived);
58 tree gfc_array_index_type;
59 tree gfc_array_range_type;
60 tree gfc_character1_type_node;
61 tree pvoid_type_node;
62 tree ppvoid_type_node;
63 tree pchar_type_node;
64 tree pfunc_type_node;
66 tree gfc_charlen_type_node;
68 static GTY(()) tree gfc_desc_dim_type;
69 static GTY(()) tree gfc_max_array_element_size;
70 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
72 /* Arrays for all integral and real kinds. We'll fill this in at runtime
73 after the target has a chance to process command-line options. */
75 #define MAX_INT_KINDS 5
76 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
77 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
79 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
81 #define MAX_REAL_KINDS 5
82 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
84 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
86 #define MAX_CHARACTER_KINDS 2
87 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
89 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
95 int gfc_index_integer_kind;
97 /* The default kinds of the various types. */
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
120 gfc_try
121 gfc_check_any_c_kind (gfc_typespec *ts)
123 int i;
125 for (i = 0; i < ISOCBINDING_NUMBER; i++)
127 /* Check for any C interoperable kind for the given type/kind in ts.
128 This can be used after verify_c_interop to make sure that the
129 Fortran kind being used exists in at least some form for C. */
130 if (c_interop_kinds_table[i].f90_type == ts->type &&
131 c_interop_kinds_table[i].value == ts->kind)
132 return SUCCESS;
135 return FAILURE;
139 static int
140 get_real_kind_from_node (tree type)
142 int i;
144 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
145 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
146 return gfc_real_kinds[i].kind;
148 return -4;
151 static int
152 get_int_kind_from_node (tree type)
154 int i;
156 if (!type)
157 return -2;
159 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
160 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
161 return gfc_integer_kinds[i].kind;
163 return -1;
166 /* Return a typenode for the "standard" C type with a given name. */
167 static tree
168 get_typenode_from_name (const char *name)
170 if (name == NULL || *name == '\0')
171 return NULL_TREE;
173 if (strcmp (name, "char") == 0)
174 return char_type_node;
175 if (strcmp (name, "unsigned char") == 0)
176 return unsigned_char_type_node;
177 if (strcmp (name, "signed char") == 0)
178 return signed_char_type_node;
180 if (strcmp (name, "short int") == 0)
181 return short_integer_type_node;
182 if (strcmp (name, "short unsigned int") == 0)
183 return short_unsigned_type_node;
185 if (strcmp (name, "int") == 0)
186 return integer_type_node;
187 if (strcmp (name, "unsigned int") == 0)
188 return unsigned_type_node;
190 if (strcmp (name, "long int") == 0)
191 return long_integer_type_node;
192 if (strcmp (name, "long unsigned int") == 0)
193 return long_unsigned_type_node;
195 if (strcmp (name, "long long int") == 0)
196 return long_long_integer_type_node;
197 if (strcmp (name, "long long unsigned int") == 0)
198 return long_long_unsigned_type_node;
200 gcc_unreachable ();
203 static int
204 get_int_kind_from_name (const char *name)
206 return get_int_kind_from_node (get_typenode_from_name (name));
210 /* Get the kind number corresponding to an integer of given size,
211 following the required return values for ISO_FORTRAN_ENV INT* constants:
212 -2 is returned if we support a kind of larger size, -1 otherwise. */
214 gfc_get_int_kind_from_width_isofortranenv (int size)
216 int i;
218 /* Look for a kind with matching storage size. */
219 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
220 if (gfc_integer_kinds[i].bit_size == size)
221 return gfc_integer_kinds[i].kind;
223 /* Look for a kind with larger storage size. */
224 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
225 if (gfc_integer_kinds[i].bit_size > size)
226 return -2;
228 return -1;
231 /* Get the kind number corresponding to a real of given storage size,
232 following the required return values for ISO_FORTRAN_ENV REAL* constants:
233 -2 is returned if we support a kind of larger size, -1 otherwise. */
235 gfc_get_real_kind_from_width_isofortranenv (int size)
237 int i;
239 size /= 8;
241 /* Look for a kind with matching storage size. */
242 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
243 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
244 return gfc_real_kinds[i].kind;
246 /* Look for a kind with larger storage size. */
247 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
248 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
249 return -2;
251 return -1;
256 static int
257 get_int_kind_from_width (int size)
259 int i;
261 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
262 if (gfc_integer_kinds[i].bit_size == size)
263 return gfc_integer_kinds[i].kind;
265 return -2;
268 static int
269 get_int_kind_from_minimal_width (int size)
271 int i;
273 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
274 if (gfc_integer_kinds[i].bit_size >= size)
275 return gfc_integer_kinds[i].kind;
277 return -2;
281 /* Generate the CInteropKind_t objects for the C interoperable
282 kinds. */
284 static
285 void init_c_interop_kinds (void)
287 int i;
289 /* init all pointers in the list to NULL */
290 for (i = 0; i < ISOCBINDING_NUMBER; i++)
292 /* Initialize the name and value fields. */
293 c_interop_kinds_table[i].name[0] = '\0';
294 c_interop_kinds_table[i].value = -100;
295 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
298 #define NAMED_INTCST(a,b,c,d) \
299 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
300 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
301 c_interop_kinds_table[a].value = c;
302 #define NAMED_REALCST(a,b,c) \
303 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
304 c_interop_kinds_table[a].f90_type = BT_REAL; \
305 c_interop_kinds_table[a].value = c;
306 #define NAMED_CMPXCST(a,b,c) \
307 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
308 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
309 c_interop_kinds_table[a].value = c;
310 #define NAMED_LOGCST(a,b,c) \
311 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
312 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
313 c_interop_kinds_table[a].value = c;
314 #define NAMED_CHARKNDCST(a,b,c) \
315 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
316 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
317 c_interop_kinds_table[a].value = c;
318 #define NAMED_CHARCST(a,b,c) \
319 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
320 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
321 c_interop_kinds_table[a].value = c;
322 #define DERIVED_TYPE(a,b,c) \
323 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
324 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
325 c_interop_kinds_table[a].value = c;
326 #define PROCEDURE(a,b) \
327 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
328 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
329 c_interop_kinds_table[a].value = 0;
330 #include "iso-c-binding.def"
334 /* Query the target to determine which machine modes are available for
335 computation. Choose KIND numbers for them. */
337 void
338 gfc_init_kinds (void)
340 unsigned int mode;
341 int i_index, r_index, kind;
342 bool saw_i4 = false, saw_i8 = false;
343 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
345 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
347 int kind, bitsize;
349 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
350 continue;
352 /* The middle end doesn't support constants larger than 2*HWI.
353 Perhaps the target hook shouldn't have accepted these either,
354 but just to be safe... */
355 bitsize = GET_MODE_BITSIZE (mode);
356 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
357 continue;
359 gcc_assert (i_index != MAX_INT_KINDS);
361 /* Let the kind equal the bit size divided by 8. This insulates the
362 programmer from the underlying byte size. */
363 kind = bitsize / 8;
365 if (kind == 4)
366 saw_i4 = true;
367 if (kind == 8)
368 saw_i8 = true;
370 gfc_integer_kinds[i_index].kind = kind;
371 gfc_integer_kinds[i_index].radix = 2;
372 gfc_integer_kinds[i_index].digits = bitsize - 1;
373 gfc_integer_kinds[i_index].bit_size = bitsize;
375 gfc_logical_kinds[i_index].kind = kind;
376 gfc_logical_kinds[i_index].bit_size = bitsize;
378 i_index += 1;
381 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
382 used for large file access. */
384 if (saw_i8)
385 gfc_intio_kind = 8;
386 else
387 gfc_intio_kind = 4;
389 /* If we do not at least have kind = 4, everything is pointless. */
390 gcc_assert(saw_i4);
392 /* Set the maximum integer kind. Used with at least BOZ constants. */
393 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
395 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
397 const struct real_format *fmt =
398 REAL_MODE_FORMAT ((enum machine_mode) mode);
399 int kind;
401 if (fmt == NULL)
402 continue;
403 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
404 continue;
406 /* Only let float/double/long double go through because the fortran
407 library assumes these are the only floating point types. */
409 if (mode != TYPE_MODE (float_type_node)
410 && (mode != TYPE_MODE (double_type_node))
411 && (mode != TYPE_MODE (long_double_type_node)))
412 continue;
414 /* Let the kind equal the precision divided by 8, rounding up. Again,
415 this insulates the programmer from the underlying byte size.
417 Also, it effectively deals with IEEE extended formats. There, the
418 total size of the type may equal 16, but it's got 6 bytes of padding
419 and the increased size can get in the way of a real IEEE quad format
420 which may also be supported by the target.
422 We round up so as to handle IA-64 __floatreg (RFmode), which is an
423 82 bit type. Not to be confused with __float80 (XFmode), which is
424 an 80 bit type also supported by IA-64. So XFmode should come out
425 to be kind=10, and RFmode should come out to be kind=11. Egads. */
427 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
429 if (kind == 4)
430 saw_r4 = true;
431 if (kind == 8)
432 saw_r8 = true;
433 if (kind == 16)
434 saw_r16 = true;
436 /* Careful we don't stumble a weird internal mode. */
437 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
438 /* Or have too many modes for the allocated space. */
439 gcc_assert (r_index != MAX_REAL_KINDS);
441 gfc_real_kinds[r_index].kind = kind;
442 gfc_real_kinds[r_index].radix = fmt->b;
443 gfc_real_kinds[r_index].digits = fmt->p;
444 gfc_real_kinds[r_index].min_exponent = fmt->emin;
445 gfc_real_kinds[r_index].max_exponent = fmt->emax;
446 if (fmt->pnan < fmt->p)
447 /* This is an IBM extended double format (or the MIPS variant)
448 made up of two IEEE doubles. The value of the long double is
449 the sum of the values of the two parts. The most significant
450 part is required to be the value of the long double rounded
451 to the nearest double. If we use emax of 1024 then we can't
452 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
453 rounding will make the most significant part overflow. */
454 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
455 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
456 r_index += 1;
459 /* Choose the default integer kind. We choose 4 unless the user
460 directs us otherwise. */
461 if (gfc_option.flag_default_integer)
463 if (!saw_i8)
464 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
465 gfc_default_integer_kind = 8;
467 /* Even if the user specified that the default integer kind be 8,
468 the numeric storage size isn't 64. In this case, a warning will
469 be issued when NUMERIC_STORAGE_SIZE is used. */
470 gfc_numeric_storage_size = 4 * 8;
472 else if (saw_i4)
474 gfc_default_integer_kind = 4;
475 gfc_numeric_storage_size = 4 * 8;
477 else
479 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
480 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
483 /* Choose the default real kind. Again, we choose 4 when possible. */
484 if (gfc_option.flag_default_real)
486 if (!saw_r8)
487 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
488 gfc_default_real_kind = 8;
490 else if (saw_r4)
491 gfc_default_real_kind = 4;
492 else
493 gfc_default_real_kind = gfc_real_kinds[0].kind;
495 /* Choose the default double kind. If -fdefault-real and -fdefault-double
496 are specified, we use kind=8, if it's available. If -fdefault-real is
497 specified without -fdefault-double, we use kind=16, if it's available.
498 Otherwise we do not change anything. */
499 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
500 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
502 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
503 gfc_default_double_kind = 8;
504 else if (gfc_option.flag_default_real && saw_r16)
505 gfc_default_double_kind = 16;
506 else if (saw_r4 && saw_r8)
507 gfc_default_double_kind = 8;
508 else
510 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
511 real ... occupies two contiguous numeric storage units.
513 Therefore we must be supplied a kind twice as large as we chose
514 for single precision. There are loopholes, in that double
515 precision must *occupy* two storage units, though it doesn't have
516 to *use* two storage units. Which means that you can make this
517 kind artificially wide by padding it. But at present there are
518 no GCC targets for which a two-word type does not exist, so we
519 just let gfc_validate_kind abort and tell us if something breaks. */
521 gfc_default_double_kind
522 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
525 /* The default logical kind is constrained to be the same as the
526 default integer kind. Similarly with complex and real. */
527 gfc_default_logical_kind = gfc_default_integer_kind;
528 gfc_default_complex_kind = gfc_default_real_kind;
530 /* We only have two character kinds: ASCII and UCS-4.
531 ASCII corresponds to a 8-bit integer type, if one is available.
532 UCS-4 corresponds to a 32-bit integer type, if one is available. */
533 i_index = 0;
534 if ((kind = get_int_kind_from_width (8)) > 0)
536 gfc_character_kinds[i_index].kind = kind;
537 gfc_character_kinds[i_index].bit_size = 8;
538 gfc_character_kinds[i_index].name = "ascii";
539 i_index++;
541 if ((kind = get_int_kind_from_width (32)) > 0)
543 gfc_character_kinds[i_index].kind = kind;
544 gfc_character_kinds[i_index].bit_size = 32;
545 gfc_character_kinds[i_index].name = "iso_10646";
546 i_index++;
549 /* Choose the smallest integer kind for our default character. */
550 gfc_default_character_kind = gfc_character_kinds[0].kind;
551 gfc_character_storage_size = gfc_default_character_kind * 8;
553 /* Choose the integer kind the same size as "void*" for our index kind. */
554 gfc_index_integer_kind = POINTER_SIZE / 8;
555 /* Pick a kind the same size as the C "int" type. */
556 gfc_c_int_kind = INT_TYPE_SIZE / 8;
558 /* initialize the C interoperable kinds */
559 init_c_interop_kinds();
562 /* Make sure that a valid kind is present. Returns an index into the
563 associated kinds array, -1 if the kind is not present. */
565 static int
566 validate_integer (int kind)
568 int i;
570 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
571 if (gfc_integer_kinds[i].kind == kind)
572 return i;
574 return -1;
577 static int
578 validate_real (int kind)
580 int i;
582 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
583 if (gfc_real_kinds[i].kind == kind)
584 return i;
586 return -1;
589 static int
590 validate_logical (int kind)
592 int i;
594 for (i = 0; gfc_logical_kinds[i].kind; i++)
595 if (gfc_logical_kinds[i].kind == kind)
596 return i;
598 return -1;
601 static int
602 validate_character (int kind)
604 int i;
606 for (i = 0; gfc_character_kinds[i].kind; i++)
607 if (gfc_character_kinds[i].kind == kind)
608 return i;
610 return -1;
613 /* Validate a kind given a basic type. The return value is the same
614 for the child functions, with -1 indicating nonexistence of the
615 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
618 gfc_validate_kind (bt type, int kind, bool may_fail)
620 int rc;
622 switch (type)
624 case BT_REAL: /* Fall through */
625 case BT_COMPLEX:
626 rc = validate_real (kind);
627 break;
628 case BT_INTEGER:
629 rc = validate_integer (kind);
630 break;
631 case BT_LOGICAL:
632 rc = validate_logical (kind);
633 break;
634 case BT_CHARACTER:
635 rc = validate_character (kind);
636 break;
638 default:
639 gfc_internal_error ("gfc_validate_kind(): Got bad type");
642 if (rc < 0 && !may_fail)
643 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
645 return rc;
649 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
650 Reuse common type nodes where possible. Recognize if the kind matches up
651 with a C type. This will be used later in determining which routines may
652 be scarfed from libm. */
654 static tree
655 gfc_build_int_type (gfc_integer_info *info)
657 int mode_precision = info->bit_size;
659 if (mode_precision == CHAR_TYPE_SIZE)
660 info->c_char = 1;
661 if (mode_precision == SHORT_TYPE_SIZE)
662 info->c_short = 1;
663 if (mode_precision == INT_TYPE_SIZE)
664 info->c_int = 1;
665 if (mode_precision == LONG_TYPE_SIZE)
666 info->c_long = 1;
667 if (mode_precision == LONG_LONG_TYPE_SIZE)
668 info->c_long_long = 1;
670 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
671 return intQI_type_node;
672 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
673 return intHI_type_node;
674 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
675 return intSI_type_node;
676 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
677 return intDI_type_node;
678 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
679 return intTI_type_node;
681 return make_signed_type (mode_precision);
684 tree
685 gfc_build_uint_type (int size)
687 if (size == CHAR_TYPE_SIZE)
688 return unsigned_char_type_node;
689 if (size == SHORT_TYPE_SIZE)
690 return short_unsigned_type_node;
691 if (size == INT_TYPE_SIZE)
692 return unsigned_type_node;
693 if (size == LONG_TYPE_SIZE)
694 return long_unsigned_type_node;
695 if (size == LONG_LONG_TYPE_SIZE)
696 return long_long_unsigned_type_node;
698 return make_unsigned_type (size);
702 static tree
703 gfc_build_real_type (gfc_real_info *info)
705 int mode_precision = info->mode_precision;
706 tree new_type;
708 if (mode_precision == FLOAT_TYPE_SIZE)
709 info->c_float = 1;
710 if (mode_precision == DOUBLE_TYPE_SIZE)
711 info->c_double = 1;
712 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
713 info->c_long_double = 1;
715 if (TYPE_PRECISION (float_type_node) == mode_precision)
716 return float_type_node;
717 if (TYPE_PRECISION (double_type_node) == mode_precision)
718 return double_type_node;
719 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
720 return long_double_type_node;
722 new_type = make_node (REAL_TYPE);
723 TYPE_PRECISION (new_type) = mode_precision;
724 layout_type (new_type);
725 return new_type;
728 static tree
729 gfc_build_complex_type (tree scalar_type)
731 tree new_type;
733 if (scalar_type == NULL)
734 return NULL;
735 if (scalar_type == float_type_node)
736 return complex_float_type_node;
737 if (scalar_type == double_type_node)
738 return complex_double_type_node;
739 if (scalar_type == long_double_type_node)
740 return complex_long_double_type_node;
742 new_type = make_node (COMPLEX_TYPE);
743 TREE_TYPE (new_type) = scalar_type;
744 layout_type (new_type);
745 return new_type;
748 static tree
749 gfc_build_logical_type (gfc_logical_info *info)
751 int bit_size = info->bit_size;
752 tree new_type;
754 if (bit_size == BOOL_TYPE_SIZE)
756 info->c_bool = 1;
757 return boolean_type_node;
760 new_type = make_unsigned_type (bit_size);
761 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
762 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
763 TYPE_PRECISION (new_type) = 1;
765 return new_type;
769 #if 0
770 /* Return the bit size of the C "size_t". */
772 static unsigned int
773 c_size_t_size (void)
775 #ifdef SIZE_TYPE
776 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
777 return INT_TYPE_SIZE;
778 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
779 return LONG_TYPE_SIZE;
780 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
781 return SHORT_TYPE_SIZE;
782 gcc_unreachable ();
783 #else
784 return LONG_TYPE_SIZE;
785 #endif
787 #endif
789 /* Create the backend type nodes. We map them to their
790 equivalent C type, at least for now. We also give
791 names to the types here, and we push them in the
792 global binding level context.*/
794 void
795 gfc_init_types (void)
797 char name_buf[18];
798 int index;
799 tree type;
800 unsigned n;
801 unsigned HOST_WIDE_INT hi;
802 unsigned HOST_WIDE_INT lo;
804 /* Create and name the types. */
805 #define PUSH_TYPE(name, node) \
806 pushdecl (build_decl (input_location, \
807 TYPE_DECL, get_identifier (name), node))
809 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
811 type = gfc_build_int_type (&gfc_integer_kinds[index]);
812 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
813 if (TYPE_STRING_FLAG (type))
814 type = make_signed_type (gfc_integer_kinds[index].bit_size);
815 gfc_integer_types[index] = type;
816 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
817 gfc_integer_kinds[index].kind);
818 PUSH_TYPE (name_buf, type);
821 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
823 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
824 gfc_logical_types[index] = type;
825 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
826 gfc_logical_kinds[index].kind);
827 PUSH_TYPE (name_buf, type);
830 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
832 type = gfc_build_real_type (&gfc_real_kinds[index]);
833 gfc_real_types[index] = type;
834 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
835 gfc_real_kinds[index].kind);
836 PUSH_TYPE (name_buf, type);
838 type = gfc_build_complex_type (type);
839 gfc_complex_types[index] = type;
840 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
841 gfc_real_kinds[index].kind);
842 PUSH_TYPE (name_buf, type);
845 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
847 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
848 type = build_qualified_type (type, TYPE_UNQUALIFIED);
849 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
850 gfc_character_kinds[index].kind);
851 PUSH_TYPE (name_buf, type);
852 gfc_character_types[index] = type;
853 gfc_pcharacter_types[index] = build_pointer_type (type);
855 gfc_character1_type_node = gfc_character_types[0];
857 PUSH_TYPE ("byte", unsigned_char_type_node);
858 PUSH_TYPE ("void", void_type_node);
860 /* DBX debugging output gets upset if these aren't set. */
861 if (!TYPE_NAME (integer_type_node))
862 PUSH_TYPE ("c_integer", integer_type_node);
863 if (!TYPE_NAME (char_type_node))
864 PUSH_TYPE ("c_char", char_type_node);
866 #undef PUSH_TYPE
868 pvoid_type_node = build_pointer_type (void_type_node);
869 ppvoid_type_node = build_pointer_type (pvoid_type_node);
870 pchar_type_node = build_pointer_type (gfc_character1_type_node);
871 pfunc_type_node
872 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
874 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
875 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
876 since this function is called before gfc_init_constants. */
877 gfc_array_range_type
878 = build_range_type (gfc_array_index_type,
879 build_int_cst (gfc_array_index_type, 0),
880 NULL_TREE);
882 /* The maximum array element size that can be handled is determined
883 by the number of bits available to store this field in the array
884 descriptor. */
886 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
887 lo = ~ (unsigned HOST_WIDE_INT) 0;
888 if (n > HOST_BITS_PER_WIDE_INT)
889 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
890 else
891 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
892 gfc_max_array_element_size
893 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
895 size_type_node = gfc_array_index_type;
897 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
898 boolean_true_node = build_int_cst (boolean_type_node, 1);
899 boolean_false_node = build_int_cst (boolean_type_node, 0);
901 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
902 gfc_charlen_int_kind = 4;
903 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
906 /* Get the type node for the given type and kind. */
908 tree
909 gfc_get_int_type (int kind)
911 int index = gfc_validate_kind (BT_INTEGER, kind, true);
912 return index < 0 ? 0 : gfc_integer_types[index];
915 tree
916 gfc_get_real_type (int kind)
918 int index = gfc_validate_kind (BT_REAL, kind, true);
919 return index < 0 ? 0 : gfc_real_types[index];
922 tree
923 gfc_get_complex_type (int kind)
925 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
926 return index < 0 ? 0 : gfc_complex_types[index];
929 tree
930 gfc_get_logical_type (int kind)
932 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
933 return index < 0 ? 0 : gfc_logical_types[index];
936 tree
937 gfc_get_char_type (int kind)
939 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
940 return index < 0 ? 0 : gfc_character_types[index];
943 tree
944 gfc_get_pchar_type (int kind)
946 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
947 return index < 0 ? 0 : gfc_pcharacter_types[index];
951 /* Create a character type with the given kind and length. */
953 tree
954 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
956 tree bounds, type;
958 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
959 type = build_array_type (eltype, bounds);
960 TYPE_STRING_FLAG (type) = 1;
962 return type;
965 tree
966 gfc_get_character_type_len (int kind, tree len)
968 gfc_validate_kind (BT_CHARACTER, kind, false);
969 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
973 /* Get a type node for a character kind. */
975 tree
976 gfc_get_character_type (int kind, gfc_charlen * cl)
978 tree len;
980 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
982 return gfc_get_character_type_len (kind, len);
985 /* Covert a basic type. This will be an array for character types. */
987 tree
988 gfc_typenode_for_spec (gfc_typespec * spec)
990 tree basetype;
992 switch (spec->type)
994 case BT_UNKNOWN:
995 gcc_unreachable ();
997 case BT_INTEGER:
998 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
999 has been resolved. This is done so we can convert C_PTR and
1000 C_FUNPTR to simple variables that get translated to (void *). */
1001 if (spec->f90_type == BT_VOID)
1003 if (spec->derived
1004 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
1005 basetype = ptr_type_node;
1006 else
1007 basetype = pfunc_type_node;
1009 else
1010 basetype = gfc_get_int_type (spec->kind);
1011 break;
1013 case BT_REAL:
1014 basetype = gfc_get_real_type (spec->kind);
1015 break;
1017 case BT_COMPLEX:
1018 basetype = gfc_get_complex_type (spec->kind);
1019 break;
1021 case BT_LOGICAL:
1022 basetype = gfc_get_logical_type (spec->kind);
1023 break;
1025 case BT_CHARACTER:
1026 basetype = gfc_get_character_type (spec->kind, spec->cl);
1027 break;
1029 case BT_DERIVED:
1030 basetype = gfc_get_derived_type (spec->derived);
1032 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1033 type and kind to fit a (void *) and the basetype returned was a
1034 ptr_type_node. We need to pass up this new information to the
1035 symbol that was declared of type C_PTR or C_FUNPTR. */
1036 if (spec->derived->attr.is_iso_c)
1038 spec->type = spec->derived->ts.type;
1039 spec->kind = spec->derived->ts.kind;
1040 spec->f90_type = spec->derived->ts.f90_type;
1042 break;
1043 case BT_VOID:
1044 /* This is for the second arg to c_f_pointer and c_f_procpointer
1045 of the iso_c_binding module, to accept any ptr type. */
1046 basetype = ptr_type_node;
1047 if (spec->f90_type == BT_VOID)
1049 if (spec->derived
1050 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
1051 basetype = ptr_type_node;
1052 else
1053 basetype = pfunc_type_node;
1055 break;
1056 default:
1057 gcc_unreachable ();
1059 return basetype;
1062 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1064 static tree
1065 gfc_conv_array_bound (gfc_expr * expr)
1067 /* If expr is an integer constant, return that. */
1068 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1069 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1071 /* Otherwise return NULL. */
1072 return NULL_TREE;
1075 tree
1076 gfc_get_element_type (tree type)
1078 tree element;
1080 if (GFC_ARRAY_TYPE_P (type))
1082 if (TREE_CODE (type) == POINTER_TYPE)
1083 type = TREE_TYPE (type);
1084 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1085 element = TREE_TYPE (type);
1087 else
1089 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1090 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1092 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1093 element = TREE_TYPE (element);
1095 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1096 element = TREE_TYPE (element);
1099 return element;
1102 /* Build an array. This function is called from gfc_sym_type().
1103 Actually returns array descriptor type.
1105 Format of array descriptors is as follows:
1107 struct gfc_array_descriptor
1109 array *data
1110 index offset;
1111 index dtype;
1112 struct descriptor_dimension dimension[N_DIM];
1115 struct descriptor_dimension
1117 index stride;
1118 index lbound;
1119 index ubound;
1122 Translation code should use gfc_conv_descriptor_* rather than
1123 accessing the descriptor directly. Any changes to the array
1124 descriptor type will require changes in gfc_conv_descriptor_* and
1125 gfc_build_array_initializer.
1127 This is represented internally as a RECORD_TYPE. The index nodes
1128 are gfc_array_index_type and the data node is a pointer to the
1129 data. See below for the handling of character types.
1131 The dtype member is formatted as follows:
1132 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1133 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1134 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1136 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1137 this generated poor code for assumed/deferred size arrays. These
1138 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1139 of the GENERIC grammar. Also, there is no way to explicitly set
1140 the array stride, so all data must be packed(1). I've tried to
1141 mark all the functions which would require modification with a GCC
1142 ARRAYS comment.
1144 The data component points to the first element in the array. The
1145 offset field is the position of the origin of the array (i.e. element
1146 (0, 0 ...)). This may be outside the bounds of the array.
1148 An element is accessed by
1149 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1150 This gives good performance as the computation does not involve the
1151 bounds of the array. For packed arrays, this is optimized further
1152 by substituting the known strides.
1154 This system has one problem: all array bounds must be within 2^31
1155 elements of the origin (2^63 on 64-bit machines). For example
1156 integer, dimension (80000:90000, 80000:90000, 2) :: array
1157 may not work properly on 32-bit machines because 80000*80000 >
1158 2^31, so the calculation for stride2 would overflow. This may
1159 still work, but I haven't checked, and it relies on the overflow
1160 doing the right thing.
1162 The way to fix this problem is to access elements as follows:
1163 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1164 Obviously this is much slower. I will make this a compile time
1165 option, something like -fsmall-array-offsets. Mixing code compiled
1166 with and without this switch will work.
1168 (1) This can be worked around by modifying the upper bound of the
1169 previous dimension. This requires extra fields in the descriptor
1170 (both real_ubound and fake_ubound). */
1173 /* Returns true if the array sym does not require a descriptor. */
1176 gfc_is_nodesc_array (gfc_symbol * sym)
1178 gcc_assert (sym->attr.dimension);
1180 /* We only want local arrays. */
1181 if (sym->attr.pointer || sym->attr.allocatable)
1182 return 0;
1184 if (sym->attr.dummy)
1186 if (sym->as->type != AS_ASSUMED_SHAPE)
1187 return 1;
1188 else
1189 return 0;
1192 if (sym->attr.result || sym->attr.function)
1193 return 0;
1195 gcc_assert (sym->as->type == AS_EXPLICIT);
1197 return 1;
1201 /* Create an array descriptor type. */
1203 static tree
1204 gfc_build_array_type (tree type, gfc_array_spec * as,
1205 enum gfc_array_kind akind)
1207 tree lbound[GFC_MAX_DIMENSIONS];
1208 tree ubound[GFC_MAX_DIMENSIONS];
1209 int n;
1211 for (n = 0; n < as->rank; n++)
1213 /* Create expressions for the known bounds of the array. */
1214 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1215 lbound[n] = gfc_index_one_node;
1216 else
1217 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1218 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1221 if (as->type == AS_ASSUMED_SHAPE)
1222 akind = GFC_ARRAY_ASSUMED_SHAPE;
1223 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0, akind);
1226 /* Returns the struct descriptor_dimension type. */
1228 static tree
1229 gfc_get_desc_dim_type (void)
1231 tree type;
1232 tree decl;
1233 tree fieldlist;
1235 if (gfc_desc_dim_type)
1236 return gfc_desc_dim_type;
1238 /* Build the type node. */
1239 type = make_node (RECORD_TYPE);
1241 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1242 TYPE_PACKED (type) = 1;
1244 /* Consists of the stride, lbound and ubound members. */
1245 decl = build_decl (input_location,
1246 FIELD_DECL,
1247 get_identifier ("stride"), gfc_array_index_type);
1248 DECL_CONTEXT (decl) = type;
1249 TREE_NO_WARNING (decl) = 1;
1250 fieldlist = decl;
1252 decl = build_decl (input_location,
1253 FIELD_DECL,
1254 get_identifier ("lbound"), gfc_array_index_type);
1255 DECL_CONTEXT (decl) = type;
1256 TREE_NO_WARNING (decl) = 1;
1257 fieldlist = chainon (fieldlist, decl);
1259 decl = build_decl (input_location,
1260 FIELD_DECL,
1261 get_identifier ("ubound"), gfc_array_index_type);
1262 DECL_CONTEXT (decl) = type;
1263 TREE_NO_WARNING (decl) = 1;
1264 fieldlist = chainon (fieldlist, decl);
1266 /* Finish off the type. */
1267 TYPE_FIELDS (type) = fieldlist;
1269 gfc_finish_type (type);
1270 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1272 gfc_desc_dim_type = type;
1273 return type;
1277 /* Return the DTYPE for an array. This describes the type and type parameters
1278 of the array. */
1279 /* TODO: Only call this when the value is actually used, and make all the
1280 unknown cases abort. */
1282 tree
1283 gfc_get_dtype (tree type)
1285 tree size;
1286 int n;
1287 HOST_WIDE_INT i;
1288 tree tmp;
1289 tree dtype;
1290 tree etype;
1291 int rank;
1293 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1295 if (GFC_TYPE_ARRAY_DTYPE (type))
1296 return GFC_TYPE_ARRAY_DTYPE (type);
1298 rank = GFC_TYPE_ARRAY_RANK (type);
1299 etype = gfc_get_element_type (type);
1301 switch (TREE_CODE (etype))
1303 case INTEGER_TYPE:
1304 n = GFC_DTYPE_INTEGER;
1305 break;
1307 case BOOLEAN_TYPE:
1308 n = GFC_DTYPE_LOGICAL;
1309 break;
1311 case REAL_TYPE:
1312 n = GFC_DTYPE_REAL;
1313 break;
1315 case COMPLEX_TYPE:
1316 n = GFC_DTYPE_COMPLEX;
1317 break;
1319 /* We will never have arrays of arrays. */
1320 case RECORD_TYPE:
1321 n = GFC_DTYPE_DERIVED;
1322 break;
1324 case ARRAY_TYPE:
1325 n = GFC_DTYPE_CHARACTER;
1326 break;
1328 default:
1329 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1330 /* We can strange array types for temporary arrays. */
1331 return gfc_index_zero_node;
1334 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1335 size = TYPE_SIZE_UNIT (etype);
1337 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1338 if (size && INTEGER_CST_P (size))
1340 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1341 internal_error ("Array element size too big");
1343 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1345 dtype = build_int_cst (gfc_array_index_type, i);
1347 if (size && !INTEGER_CST_P (size))
1349 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1350 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1351 fold_convert (gfc_array_index_type, size), tmp);
1352 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1354 /* If we don't know the size we leave it as zero. This should never happen
1355 for anything that is actually used. */
1356 /* TODO: Check this is actually true, particularly when repacking
1357 assumed size parameters. */
1359 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1360 return dtype;
1364 /* Build an array type for use without a descriptor, packed according
1365 to the value of PACKED. */
1367 tree
1368 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1370 tree range;
1371 tree type;
1372 tree tmp;
1373 int n;
1374 int known_stride;
1375 int known_offset;
1376 mpz_t offset;
1377 mpz_t stride;
1378 mpz_t delta;
1379 gfc_expr *expr;
1381 mpz_init_set_ui (offset, 0);
1382 mpz_init_set_ui (stride, 1);
1383 mpz_init (delta);
1385 /* We don't use build_array_type because this does not include include
1386 lang-specific information (i.e. the bounds of the array) when checking
1387 for duplicates. */
1388 type = make_node (ARRAY_TYPE);
1390 GFC_ARRAY_TYPE_P (type) = 1;
1391 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1392 ggc_alloc_cleared (sizeof (struct lang_type));
1394 known_stride = (packed != PACKED_NO);
1395 known_offset = 1;
1396 for (n = 0; n < as->rank; n++)
1398 /* Fill in the stride and bound components of the type. */
1399 if (known_stride)
1400 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1401 else
1402 tmp = NULL_TREE;
1403 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1405 expr = as->lower[n];
1406 if (expr->expr_type == EXPR_CONSTANT)
1408 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1409 gfc_index_integer_kind);
1411 else
1413 known_stride = 0;
1414 tmp = NULL_TREE;
1416 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1418 if (known_stride)
1420 /* Calculate the offset. */
1421 mpz_mul (delta, stride, as->lower[n]->value.integer);
1422 mpz_sub (offset, offset, delta);
1424 else
1425 known_offset = 0;
1427 expr = as->upper[n];
1428 if (expr && expr->expr_type == EXPR_CONSTANT)
1430 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1431 gfc_index_integer_kind);
1433 else
1435 tmp = NULL_TREE;
1436 known_stride = 0;
1438 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1440 if (known_stride)
1442 /* Calculate the stride. */
1443 mpz_sub (delta, as->upper[n]->value.integer,
1444 as->lower[n]->value.integer);
1445 mpz_add_ui (delta, delta, 1);
1446 mpz_mul (stride, stride, delta);
1449 /* Only the first stride is known for partial packed arrays. */
1450 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1451 known_stride = 0;
1454 if (known_offset)
1456 GFC_TYPE_ARRAY_OFFSET (type) =
1457 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1459 else
1460 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1462 if (known_stride)
1464 GFC_TYPE_ARRAY_SIZE (type) =
1465 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1467 else
1468 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1470 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1471 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1472 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1473 NULL_TREE);
1474 /* TODO: use main type if it is unbounded. */
1475 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1476 build_pointer_type (build_array_type (etype, range));
1478 if (known_stride)
1480 mpz_sub_ui (stride, stride, 1);
1481 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1483 else
1484 range = NULL_TREE;
1486 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1487 TYPE_DOMAIN (type) = range;
1489 build_pointer_type (etype);
1490 TREE_TYPE (type) = etype;
1492 layout_type (type);
1494 mpz_clear (offset);
1495 mpz_clear (stride);
1496 mpz_clear (delta);
1498 /* Represent packed arrays as multi-dimensional if they have rank >
1499 1 and with proper bounds, instead of flat arrays. This makes for
1500 better debug info. */
1501 if (known_offset)
1503 tree gtype = etype, rtype, type_decl;
1505 for (n = as->rank - 1; n >= 0; n--)
1507 rtype = build_range_type (gfc_array_index_type,
1508 GFC_TYPE_ARRAY_LBOUND (type, n),
1509 GFC_TYPE_ARRAY_UBOUND (type, n));
1510 gtype = build_array_type (gtype, rtype);
1512 TYPE_NAME (type) = type_decl = build_decl (input_location,
1513 TYPE_DECL, NULL, gtype);
1514 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1517 if (packed != PACKED_STATIC || !known_stride)
1519 /* For dummy arrays and automatic (heap allocated) arrays we
1520 want a pointer to the array. */
1521 type = build_pointer_type (type);
1522 GFC_ARRAY_TYPE_P (type) = 1;
1523 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1525 return type;
1528 /* Return or create the base type for an array descriptor. */
1530 static tree
1531 gfc_get_array_descriptor_base (int dimen)
1533 tree fat_type, fieldlist, decl, arraytype;
1534 char name[16 + GFC_RANK_DIGITS + 1];
1536 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1537 if (gfc_array_descriptor_base[dimen - 1])
1538 return gfc_array_descriptor_base[dimen - 1];
1540 /* Build the type node. */
1541 fat_type = make_node (RECORD_TYPE);
1543 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1544 TYPE_NAME (fat_type) = get_identifier (name);
1546 /* Add the data member as the first element of the descriptor. */
1547 decl = build_decl (input_location,
1548 FIELD_DECL, get_identifier ("data"), ptr_type_node);
1550 DECL_CONTEXT (decl) = fat_type;
1551 fieldlist = decl;
1553 /* Add the base component. */
1554 decl = build_decl (input_location,
1555 FIELD_DECL, get_identifier ("offset"),
1556 gfc_array_index_type);
1557 DECL_CONTEXT (decl) = fat_type;
1558 TREE_NO_WARNING (decl) = 1;
1559 fieldlist = chainon (fieldlist, decl);
1561 /* Add the dtype component. */
1562 decl = build_decl (input_location,
1563 FIELD_DECL, get_identifier ("dtype"),
1564 gfc_array_index_type);
1565 DECL_CONTEXT (decl) = fat_type;
1566 TREE_NO_WARNING (decl) = 1;
1567 fieldlist = chainon (fieldlist, decl);
1569 /* Build the array type for the stride and bound components. */
1570 arraytype =
1571 build_array_type (gfc_get_desc_dim_type (),
1572 build_range_type (gfc_array_index_type,
1573 gfc_index_zero_node,
1574 gfc_rank_cst[dimen - 1]));
1576 decl = build_decl (input_location,
1577 FIELD_DECL, get_identifier ("dim"), arraytype);
1578 DECL_CONTEXT (decl) = fat_type;
1579 TREE_NO_WARNING (decl) = 1;
1580 fieldlist = chainon (fieldlist, decl);
1582 /* Finish off the type. */
1583 TYPE_FIELDS (fat_type) = fieldlist;
1585 gfc_finish_type (fat_type);
1586 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1588 gfc_array_descriptor_base[dimen - 1] = fat_type;
1589 return fat_type;
1592 /* Build an array (descriptor) type with given bounds. */
1594 tree
1595 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1596 tree * ubound, int packed,
1597 enum gfc_array_kind akind)
1599 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1600 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1601 const char *type_name;
1602 int n;
1604 base_type = gfc_get_array_descriptor_base (dimen);
1605 fat_type = build_variant_type_copy (base_type);
1607 tmp = TYPE_NAME (etype);
1608 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1609 tmp = DECL_NAME (tmp);
1610 if (tmp)
1611 type_name = IDENTIFIER_POINTER (tmp);
1612 else
1613 type_name = "unknown";
1614 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1615 GFC_MAX_SYMBOL_LEN, type_name);
1616 TYPE_NAME (fat_type) = get_identifier (name);
1618 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1619 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1620 ggc_alloc_cleared (sizeof (struct lang_type));
1622 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1623 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1624 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1626 /* Build an array descriptor record type. */
1627 if (packed != 0)
1628 stride = gfc_index_one_node;
1629 else
1630 stride = NULL_TREE;
1631 for (n = 0; n < dimen; n++)
1633 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1635 if (lbound)
1636 lower = lbound[n];
1637 else
1638 lower = NULL_TREE;
1640 if (lower != NULL_TREE)
1642 if (INTEGER_CST_P (lower))
1643 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1644 else
1645 lower = NULL_TREE;
1648 upper = ubound[n];
1649 if (upper != NULL_TREE)
1651 if (INTEGER_CST_P (upper))
1652 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1653 else
1654 upper = NULL_TREE;
1657 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1659 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1660 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1661 gfc_index_one_node);
1662 stride =
1663 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1664 /* Check the folding worked. */
1665 gcc_assert (INTEGER_CST_P (stride));
1667 else
1668 stride = NULL_TREE;
1670 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1672 /* TODO: known offsets for descriptors. */
1673 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1675 /* We define data as an array with the correct size if possible.
1676 Much better than doing pointer arithmetic. */
1677 if (stride)
1678 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1679 int_const_binop (MINUS_EXPR, stride,
1680 integer_one_node, 0));
1681 else
1682 rtype = gfc_array_range_type;
1683 arraytype = build_array_type (etype, rtype);
1684 arraytype = build_pointer_type (arraytype);
1685 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1687 /* This will generate the base declarations we need to emit debug
1688 information for this type. FIXME: there must be a better way to
1689 avoid divergence between compilations with and without debug
1690 information. */
1692 struct array_descr_info info;
1693 gfc_get_array_descr_info (fat_type, &info);
1694 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1697 return fat_type;
1700 /* Build a pointer type. This function is called from gfc_sym_type(). */
1702 static tree
1703 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1705 /* Array pointer types aren't actually pointers. */
1706 if (sym->attr.dimension)
1707 return type;
1708 else
1709 return build_pointer_type (type);
1712 /* Return the type for a symbol. Special handling is required for character
1713 types to get the correct level of indirection.
1714 For functions return the return type.
1715 For subroutines return void_type_node.
1716 Calling this multiple times for the same symbol should be avoided,
1717 especially for character and array types. */
1719 tree
1720 gfc_sym_type (gfc_symbol * sym)
1722 tree type;
1723 int byref;
1725 /* Procedure Pointers inside COMMON blocks. */
1726 if (sym->attr.proc_pointer && sym->attr.in_common)
1728 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1729 sym->attr.proc_pointer = 0;
1730 type = build_pointer_type (gfc_get_function_type (sym));
1731 sym->attr.proc_pointer = 1;
1732 return type;
1735 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1736 return void_type_node;
1738 /* In the case of a function the fake result variable may have a
1739 type different from the function type, so don't return early in
1740 that case. */
1741 if (sym->backend_decl && !sym->attr.function)
1742 return TREE_TYPE (sym->backend_decl);
1744 if (sym->ts.type == BT_CHARACTER
1745 && ((sym->attr.function && sym->attr.is_bind_c)
1746 || (sym->attr.result
1747 && sym->ns->proc_name
1748 && sym->ns->proc_name->attr.is_bind_c)))
1749 type = gfc_character1_type_node;
1750 else
1751 type = gfc_typenode_for_spec (&sym->ts);
1753 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1754 byref = 1;
1755 else
1756 byref = 0;
1758 if (sym->attr.dimension)
1760 if (gfc_is_nodesc_array (sym))
1762 /* If this is a character argument of unknown length, just use the
1763 base type. */
1764 if (sym->ts.type != BT_CHARACTER
1765 || !(sym->attr.dummy || sym->attr.function)
1766 || sym->ts.cl->backend_decl)
1768 type = gfc_get_nodesc_array_type (type, sym->as,
1769 byref ? PACKED_FULL
1770 : PACKED_STATIC);
1771 byref = 0;
1774 else
1776 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1777 if (sym->attr.pointer)
1778 akind = GFC_ARRAY_POINTER;
1779 else if (sym->attr.allocatable)
1780 akind = GFC_ARRAY_ALLOCATABLE;
1781 type = gfc_build_array_type (type, sym->as, akind);
1784 else
1786 if (sym->attr.allocatable || sym->attr.pointer)
1787 type = gfc_build_pointer_type (sym, type);
1788 if (sym->attr.pointer)
1789 GFC_POINTER_TYPE_P (type) = 1;
1792 /* We currently pass all parameters by reference.
1793 See f95_get_function_decl. For dummy function parameters return the
1794 function type. */
1795 if (byref)
1797 /* We must use pointer types for potentially absent variables. The
1798 optimizers assume a reference type argument is never NULL. */
1799 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1800 type = build_pointer_type (type);
1801 else
1802 type = build_reference_type (type);
1805 return (type);
1808 /* Layout and output debug info for a record type. */
1810 void
1811 gfc_finish_type (tree type)
1813 tree decl;
1815 decl = build_decl (input_location,
1816 TYPE_DECL, NULL_TREE, type);
1817 TYPE_STUB_DECL (type) = decl;
1818 layout_type (type);
1819 rest_of_type_compilation (type, 1);
1820 rest_of_decl_compilation (decl, 1, 0);
1823 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1824 or RECORD_TYPE pointed to by STYPE. The new field is chained
1825 to the fieldlist pointed to by FIELDLIST.
1827 Returns a pointer to the new field. */
1829 tree
1830 gfc_add_field_to_struct (tree *fieldlist, tree context,
1831 tree name, tree type)
1833 tree decl;
1835 decl = build_decl (input_location,
1836 FIELD_DECL, name, type);
1838 DECL_CONTEXT (decl) = context;
1839 DECL_INITIAL (decl) = 0;
1840 DECL_ALIGN (decl) = 0;
1841 DECL_USER_ALIGN (decl) = 0;
1842 TREE_CHAIN (decl) = NULL_TREE;
1843 *fieldlist = chainon (*fieldlist, decl);
1845 return decl;
1849 /* Copy the backend_decl and component backend_decls if
1850 the two derived type symbols are "equal", as described
1851 in 4.4.2 and resolved by gfc_compare_derived_types. */
1853 static int
1854 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1856 gfc_component *to_cm;
1857 gfc_component *from_cm;
1859 if (from->backend_decl == NULL
1860 || !gfc_compare_derived_types (from, to))
1861 return 0;
1863 to->backend_decl = from->backend_decl;
1865 to_cm = to->components;
1866 from_cm = from->components;
1868 /* Copy the component declarations. If a component is itself
1869 a derived type, we need a copy of its component declarations.
1870 This is done by recursing into gfc_get_derived_type and
1871 ensures that the component's component declarations have
1872 been built. If it is a character, we need the character
1873 length, as well. */
1874 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1876 to_cm->backend_decl = from_cm->backend_decl;
1877 if (!from_cm->attr.pointer && from_cm->ts.type == BT_DERIVED)
1878 gfc_get_derived_type (to_cm->ts.derived);
1880 else if (from_cm->ts.type == BT_CHARACTER)
1881 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1884 return 1;
1888 /* Build a tree node for a procedure pointer component. */
1890 tree
1891 gfc_get_ppc_type (gfc_component* c)
1893 tree t;
1894 if (c->attr.function && !c->attr.dimension)
1895 t = gfc_typenode_for_spec (&c->ts);
1896 else
1897 t = void_type_node;
1898 /* TODO: Build argument list. */
1899 return build_pointer_type (build_function_type (t, NULL_TREE));
1903 /* Build a tree node for a derived type. If there are equal
1904 derived types, with different local names, these are built
1905 at the same time. If an equal derived type has been built
1906 in a parent namespace, this is used. */
1908 static tree
1909 gfc_get_derived_type (gfc_symbol * derived)
1911 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1912 gfc_component *c;
1913 gfc_dt_list *dt;
1915 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1917 /* See if it's one of the iso_c_binding derived types. */
1918 if (derived->attr.is_iso_c == 1)
1920 if (derived->backend_decl)
1921 return derived->backend_decl;
1923 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1924 derived->backend_decl = ptr_type_node;
1925 else
1926 derived->backend_decl = pfunc_type_node;
1928 /* Create a backend_decl for the __c_ptr_c_address field. */
1929 derived->components->backend_decl =
1930 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1931 derived->backend_decl,
1932 get_identifier (derived->components->name),
1933 gfc_typenode_for_spec (
1934 &(derived->components->ts)));
1936 derived->ts.kind = gfc_index_integer_kind;
1937 derived->ts.type = BT_INTEGER;
1938 /* Set the f90_type to BT_VOID as a way to recognize something of type
1939 BT_INTEGER that needs to fit a void * for the purpose of the
1940 iso_c_binding derived types. */
1941 derived->ts.f90_type = BT_VOID;
1943 return derived->backend_decl;
1946 /* derived->backend_decl != 0 means we saw it before, but its
1947 components' backend_decl may have not been built. */
1948 if (derived->backend_decl)
1949 return derived->backend_decl;
1950 else
1952 /* We see this derived type first time, so build the type node. */
1953 typenode = make_node (RECORD_TYPE);
1954 TYPE_NAME (typenode) = get_identifier (derived->name);
1955 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1956 derived->backend_decl = typenode;
1959 /* Go through the derived type components, building them as
1960 necessary. The reason for doing this now is that it is
1961 possible to recurse back to this derived type through a
1962 pointer component (PR24092). If this happens, the fields
1963 will be built and so we can return the type. */
1964 for (c = derived->components; c; c = c->next)
1966 if (c->ts.type != BT_DERIVED)
1967 continue;
1969 if (!c->attr.pointer || c->ts.derived->backend_decl == NULL)
1970 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1972 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1974 /* Need to copy the modified ts from the derived type. The
1975 typespec was modified because C_PTR/C_FUNPTR are translated
1976 into (void *) from derived types. */
1977 c->ts.type = c->ts.derived->ts.type;
1978 c->ts.kind = c->ts.derived->ts.kind;
1979 c->ts.f90_type = c->ts.derived->ts.f90_type;
1980 if (c->initializer)
1982 c->initializer->ts.type = c->ts.type;
1983 c->initializer->ts.kind = c->ts.kind;
1984 c->initializer->ts.f90_type = c->ts.f90_type;
1985 c->initializer->expr_type = EXPR_NULL;
1990 if (TYPE_FIELDS (derived->backend_decl))
1991 return derived->backend_decl;
1993 /* Build the type member list. Install the newly created RECORD_TYPE
1994 node as DECL_CONTEXT of each FIELD_DECL. */
1995 fieldlist = NULL_TREE;
1996 for (c = derived->components; c; c = c->next)
1998 if (c->ts.type == BT_DERIVED)
1999 field_type = c->ts.derived->backend_decl;
2000 else if (c->attr.proc_pointer)
2001 field_type = gfc_get_ppc_type (c);
2002 else
2004 if (c->ts.type == BT_CHARACTER)
2006 /* Evaluate the string length. */
2007 gfc_conv_const_charlen (c->ts.cl);
2008 gcc_assert (c->ts.cl->backend_decl);
2011 field_type = gfc_typenode_for_spec (&c->ts);
2014 /* This returns an array descriptor type. Initialization may be
2015 required. */
2016 if (c->attr.dimension && !c->attr.proc_pointer)
2018 if (c->attr.pointer || c->attr.allocatable)
2020 enum gfc_array_kind akind;
2021 if (c->attr.pointer)
2022 akind = GFC_ARRAY_POINTER;
2023 else
2024 akind = GFC_ARRAY_ALLOCATABLE;
2025 /* Pointers to arrays aren't actually pointer types. The
2026 descriptors are separate, but the data is common. */
2027 field_type = gfc_build_array_type (field_type, c->as, akind);
2029 else
2030 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2031 PACKED_STATIC);
2033 else if (c->attr.pointer)
2034 field_type = build_pointer_type (field_type);
2036 field = gfc_add_field_to_struct (&fieldlist, typenode,
2037 get_identifier (c->name),
2038 field_type);
2039 if (c->loc.lb)
2040 gfc_set_decl_location (field, &c->loc);
2041 else if (derived->declared_at.lb)
2042 gfc_set_decl_location (field, &derived->declared_at);
2044 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2046 gcc_assert (field);
2047 if (!c->backend_decl)
2048 c->backend_decl = field;
2051 /* Now we have the final fieldlist. Record it, then lay out the
2052 derived type, including the fields. */
2053 TYPE_FIELDS (typenode) = fieldlist;
2055 gfc_finish_type (typenode);
2056 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2057 if (derived->module && derived->ns->proc_name
2058 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2060 if (derived->ns->proc_name->backend_decl
2061 && TREE_CODE (derived->ns->proc_name->backend_decl)
2062 == NAMESPACE_DECL)
2064 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2065 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2066 = derived->ns->proc_name->backend_decl;
2070 derived->backend_decl = typenode;
2072 /* Add this backend_decl to all the other, equal derived types. */
2073 for (dt = gfc_derived_types; dt; dt = dt->next)
2074 copy_dt_decls_ifequal (derived, dt->derived);
2076 return derived->backend_decl;
2081 gfc_return_by_reference (gfc_symbol * sym)
2083 if (!sym->attr.function)
2084 return 0;
2086 if (sym->attr.dimension)
2087 return 1;
2089 if (sym->ts.type == BT_CHARACTER
2090 && !sym->attr.is_bind_c
2091 && (!sym->attr.result
2092 || !sym->ns->proc_name
2093 || !sym->ns->proc_name->attr.is_bind_c))
2094 return 1;
2096 /* Possibly return complex numbers by reference for g77 compatibility.
2097 We don't do this for calls to intrinsics (as the library uses the
2098 -fno-f2c calling convention), nor for calls to functions which always
2099 require an explicit interface, as no compatibility problems can
2100 arise there. */
2101 if (gfc_option.flag_f2c
2102 && sym->ts.type == BT_COMPLEX
2103 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2104 return 1;
2106 return 0;
2109 static tree
2110 gfc_get_mixed_entry_union (gfc_namespace *ns)
2112 tree type;
2113 tree decl;
2114 tree fieldlist;
2115 char name[GFC_MAX_SYMBOL_LEN + 1];
2116 gfc_entry_list *el, *el2;
2118 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2119 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2121 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2123 /* Build the type node. */
2124 type = make_node (UNION_TYPE);
2126 TYPE_NAME (type) = get_identifier (name);
2127 fieldlist = NULL;
2129 for (el = ns->entries; el; el = el->next)
2131 /* Search for duplicates. */
2132 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2133 if (el2->sym->result == el->sym->result)
2134 break;
2136 if (el == el2)
2138 decl = build_decl (input_location,
2139 FIELD_DECL,
2140 get_identifier (el->sym->result->name),
2141 gfc_sym_type (el->sym->result));
2142 DECL_CONTEXT (decl) = type;
2143 fieldlist = chainon (fieldlist, decl);
2147 /* Finish off the type. */
2148 TYPE_FIELDS (type) = fieldlist;
2150 gfc_finish_type (type);
2151 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2152 return type;
2155 tree
2156 gfc_get_function_type (gfc_symbol * sym)
2158 tree type;
2159 tree typelist;
2160 gfc_formal_arglist *f;
2161 gfc_symbol *arg;
2162 int nstr;
2163 int alternate_return;
2165 /* Make sure this symbol is a function, a subroutine or the main
2166 program. */
2167 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2168 || sym->attr.flavor == FL_PROGRAM);
2170 if (sym->backend_decl)
2171 return TREE_TYPE (sym->backend_decl);
2173 nstr = 0;
2174 alternate_return = 0;
2175 typelist = NULL_TREE;
2177 if (sym->attr.entry_master)
2179 /* Additional parameter for selecting an entry point. */
2180 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2183 if (sym->result)
2184 arg = sym->result;
2185 else
2186 arg = sym;
2188 if (arg->ts.type == BT_CHARACTER)
2189 gfc_conv_const_charlen (arg->ts.cl);
2191 /* Some functions we use an extra parameter for the return value. */
2192 if (gfc_return_by_reference (sym))
2194 type = gfc_sym_type (arg);
2195 if (arg->ts.type == BT_COMPLEX
2196 || arg->attr.dimension
2197 || arg->ts.type == BT_CHARACTER)
2198 type = build_reference_type (type);
2200 typelist = gfc_chainon_list (typelist, type);
2201 if (arg->ts.type == BT_CHARACTER)
2202 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2205 /* Build the argument types for the function. */
2206 for (f = sym->formal; f; f = f->next)
2208 arg = f->sym;
2209 if (arg)
2211 /* Evaluate constant character lengths here so that they can be
2212 included in the type. */
2213 if (arg->ts.type == BT_CHARACTER)
2214 gfc_conv_const_charlen (arg->ts.cl);
2216 if (arg->attr.flavor == FL_PROCEDURE)
2218 type = gfc_get_function_type (arg);
2219 type = build_pointer_type (type);
2221 else
2222 type = gfc_sym_type (arg);
2224 /* Parameter Passing Convention
2226 We currently pass all parameters by reference.
2227 Parameters with INTENT(IN) could be passed by value.
2228 The problem arises if a function is called via an implicit
2229 prototype. In this situation the INTENT is not known.
2230 For this reason all parameters to global functions must be
2231 passed by reference. Passing by value would potentially
2232 generate bad code. Worse there would be no way of telling that
2233 this code was bad, except that it would give incorrect results.
2235 Contained procedures could pass by value as these are never
2236 used without an explicit interface, and cannot be passed as
2237 actual parameters for a dummy procedure. */
2238 if (arg->ts.type == BT_CHARACTER)
2239 nstr++;
2240 typelist = gfc_chainon_list (typelist, type);
2242 else
2244 if (sym->attr.subroutine)
2245 alternate_return = 1;
2249 /* Add hidden string length parameters. */
2250 while (nstr--)
2251 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2253 if (typelist)
2254 typelist = gfc_chainon_list (typelist, void_type_node);
2256 if (alternate_return)
2257 type = integer_type_node;
2258 else if (!sym->attr.function || gfc_return_by_reference (sym))
2259 type = void_type_node;
2260 else if (sym->attr.mixed_entry_master)
2261 type = gfc_get_mixed_entry_union (sym->ns);
2262 else if (gfc_option.flag_f2c
2263 && sym->ts.type == BT_REAL
2264 && sym->ts.kind == gfc_default_real_kind
2265 && !sym->attr.always_explicit)
2267 /* Special case: f2c calling conventions require that (scalar)
2268 default REAL functions return the C type double instead. f2c
2269 compatibility is only an issue with functions that don't
2270 require an explicit interface, as only these could be
2271 implemented in Fortran 77. */
2272 sym->ts.kind = gfc_default_double_kind;
2273 type = gfc_typenode_for_spec (&sym->ts);
2274 sym->ts.kind = gfc_default_real_kind;
2276 else if (sym->result && sym->result->attr.proc_pointer)
2277 /* Procedure pointer return values. */
2279 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2281 /* Unset proc_pointer as gfc_get_function_type
2282 is called recursively. */
2283 sym->result->attr.proc_pointer = 0;
2284 type = build_pointer_type (gfc_get_function_type (sym->result));
2285 sym->result->attr.proc_pointer = 1;
2287 else
2288 type = gfc_sym_type (sym->result);
2290 else
2291 type = gfc_sym_type (sym);
2293 type = build_function_type (type, typelist);
2295 return type;
2298 /* Language hooks for middle-end access to type nodes. */
2300 /* Return an integer type with BITS bits of precision,
2301 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2303 tree
2304 gfc_type_for_size (unsigned bits, int unsignedp)
2306 if (!unsignedp)
2308 int i;
2309 for (i = 0; i <= MAX_INT_KINDS; ++i)
2311 tree type = gfc_integer_types[i];
2312 if (type && bits == TYPE_PRECISION (type))
2313 return type;
2316 /* Handle TImode as a special case because it is used by some backends
2317 (e.g. ARM) even though it is not available for normal use. */
2318 #if HOST_BITS_PER_WIDE_INT >= 64
2319 if (bits == TYPE_PRECISION (intTI_type_node))
2320 return intTI_type_node;
2321 #endif
2323 else
2325 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2326 return unsigned_intQI_type_node;
2327 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2328 return unsigned_intHI_type_node;
2329 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2330 return unsigned_intSI_type_node;
2331 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2332 return unsigned_intDI_type_node;
2333 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2334 return unsigned_intTI_type_node;
2337 return NULL_TREE;
2340 /* Return a data type that has machine mode MODE. If the mode is an
2341 integer, then UNSIGNEDP selects between signed and unsigned types. */
2343 tree
2344 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2346 int i;
2347 tree *base;
2349 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2350 base = gfc_real_types;
2351 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2352 base = gfc_complex_types;
2353 else if (SCALAR_INT_MODE_P (mode))
2354 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2355 else if (VECTOR_MODE_P (mode))
2357 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2358 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2359 if (inner_type != NULL_TREE)
2360 return build_vector_type_for_mode (inner_type, mode);
2361 return NULL_TREE;
2363 else
2364 return NULL_TREE;
2366 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2368 tree type = base[i];
2369 if (type && mode == TYPE_MODE (type))
2370 return type;
2373 return NULL_TREE;
2376 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2377 in that case. */
2379 bool
2380 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2382 int rank, dim;
2383 bool indirect = false;
2384 tree etype, ptype, field, t, base_decl;
2385 tree data_off, offset_off, dim_off, dim_size, elem_size;
2386 tree lower_suboff, upper_suboff, stride_suboff;
2388 if (! GFC_DESCRIPTOR_TYPE_P (type))
2390 if (! POINTER_TYPE_P (type))
2391 return false;
2392 type = TREE_TYPE (type);
2393 if (! GFC_DESCRIPTOR_TYPE_P (type))
2394 return false;
2395 indirect = true;
2398 rank = GFC_TYPE_ARRAY_RANK (type);
2399 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2400 return false;
2402 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2403 gcc_assert (POINTER_TYPE_P (etype));
2404 etype = TREE_TYPE (etype);
2405 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2406 etype = TREE_TYPE (etype);
2407 /* Can't handle variable sized elements yet. */
2408 if (int_size_in_bytes (etype) <= 0)
2409 return false;
2410 /* Nor non-constant lower bounds in assumed shape arrays. */
2411 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2413 for (dim = 0; dim < rank; dim++)
2414 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2415 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2416 return false;
2419 memset (info, '\0', sizeof (*info));
2420 info->ndimensions = rank;
2421 info->element_type = etype;
2422 ptype = build_pointer_type (gfc_array_index_type);
2423 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2424 if (!base_decl)
2426 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2427 indirect ? build_pointer_type (ptype) : ptype);
2428 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2430 info->base_decl = base_decl;
2431 if (indirect)
2432 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2434 if (GFC_TYPE_ARRAY_SPAN (type))
2435 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2436 else
2437 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2438 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2439 data_off = byte_position (field);
2440 field = TREE_CHAIN (field);
2441 offset_off = byte_position (field);
2442 field = TREE_CHAIN (field);
2443 field = TREE_CHAIN (field);
2444 dim_off = byte_position (field);
2445 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2446 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2447 stride_suboff = byte_position (field);
2448 field = TREE_CHAIN (field);
2449 lower_suboff = byte_position (field);
2450 field = TREE_CHAIN (field);
2451 upper_suboff = byte_position (field);
2453 t = base_decl;
2454 if (!integer_zerop (data_off))
2455 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2456 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2457 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2458 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2459 info->allocated = build2 (NE_EXPR, boolean_type_node,
2460 info->data_location, null_pointer_node);
2461 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER)
2462 info->associated = build2 (NE_EXPR, boolean_type_node,
2463 info->data_location, null_pointer_node);
2465 for (dim = 0; dim < rank; dim++)
2467 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2468 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2469 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2470 info->dimen[dim].lower_bound = t;
2471 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2472 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2473 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2474 info->dimen[dim].upper_bound = t;
2475 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2477 /* Assumed shape arrays have known lower bounds. */
2478 info->dimen[dim].upper_bound
2479 = build2 (MINUS_EXPR, gfc_array_index_type,
2480 info->dimen[dim].upper_bound,
2481 info->dimen[dim].lower_bound);
2482 info->dimen[dim].lower_bound
2483 = fold_convert (gfc_array_index_type,
2484 GFC_TYPE_ARRAY_LBOUND (type, dim));
2485 info->dimen[dim].upper_bound
2486 = build2 (PLUS_EXPR, gfc_array_index_type,
2487 info->dimen[dim].lower_bound,
2488 info->dimen[dim].upper_bound);
2490 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2491 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2492 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2493 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2494 info->dimen[dim].stride = t;
2495 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2498 return true;
2501 #include "gt-fortran-trans-types.h"