Creating Intel BID library branch
[official-gcc.git] / gcc / cfgcleanup.c
blobb34a2dbe6ab30029c91bad9b04984ae4be0e3770
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains optimizer of the control flow. The main entry point is
24 cleanup_cfg. Following optimizations are performed:
26 - Unreachable blocks removal
27 - Edge forwarding (edge to the forwarder block is forwarded to its
28 successor. Simplification of the branch instruction is performed by
29 underlying infrastructure so branch can be converted to simplejump or
30 eliminated).
31 - Cross jumping (tail merging)
32 - Conditional jump-around-simplejump simplification
33 - Basic block merging. */
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "rtl.h"
40 #include "hard-reg-set.h"
41 #include "regs.h"
42 #include "timevar.h"
43 #include "output.h"
44 #include "insn-config.h"
45 #include "flags.h"
46 #include "recog.h"
47 #include "toplev.h"
48 #include "cselib.h"
49 #include "params.h"
50 #include "tm_p.h"
51 #include "target.h"
52 #include "cfglayout.h"
53 #include "emit-rtl.h"
54 #include "tree-pass.h"
55 #include "cfgloop.h"
56 #include "expr.h"
57 #include "df.h"
58 #include "dce.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
64 static bool try_crossjump_to_edge (int, edge, edge);
65 static bool try_crossjump_bb (int, basic_block);
66 static bool outgoing_edges_match (int, basic_block, basic_block);
67 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
68 static bool old_insns_match_p (int, rtx, rtx);
70 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
71 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
72 static bool try_optimize_cfg (int);
73 static bool try_simplify_condjump (basic_block);
74 static bool try_forward_edges (int, basic_block);
75 static edge thread_jump (edge, basic_block);
76 static bool mark_effect (rtx, bitmap);
77 static void notice_new_block (basic_block);
78 static void update_forwarder_flag (basic_block);
79 static int mentions_nonequal_regs (rtx *, void *);
80 static void merge_memattrs (rtx, rtx);
82 /* Set flags for newly created block. */
84 static void
85 notice_new_block (basic_block bb)
87 if (!bb)
88 return;
90 if (forwarder_block_p (bb))
91 bb->flags |= BB_FORWARDER_BLOCK;
94 /* Recompute forwarder flag after block has been modified. */
96 static void
97 update_forwarder_flag (basic_block bb)
99 if (forwarder_block_p (bb))
100 bb->flags |= BB_FORWARDER_BLOCK;
101 else
102 bb->flags &= ~BB_FORWARDER_BLOCK;
105 /* Simplify a conditional jump around an unconditional jump.
106 Return true if something changed. */
108 static bool
109 try_simplify_condjump (basic_block cbranch_block)
111 basic_block jump_block, jump_dest_block, cbranch_dest_block;
112 edge cbranch_jump_edge, cbranch_fallthru_edge;
113 rtx cbranch_insn;
115 /* Verify that there are exactly two successors. */
116 if (EDGE_COUNT (cbranch_block->succs) != 2)
117 return false;
119 /* Verify that we've got a normal conditional branch at the end
120 of the block. */
121 cbranch_insn = BB_END (cbranch_block);
122 if (!any_condjump_p (cbranch_insn))
123 return false;
125 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
126 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
128 /* The next block must not have multiple predecessors, must not
129 be the last block in the function, and must contain just the
130 unconditional jump. */
131 jump_block = cbranch_fallthru_edge->dest;
132 if (!single_pred_p (jump_block)
133 || jump_block->next_bb == EXIT_BLOCK_PTR
134 || !FORWARDER_BLOCK_P (jump_block))
135 return false;
136 jump_dest_block = single_succ (jump_block);
138 /* If we are partitioning hot/cold basic blocks, we don't want to
139 mess up unconditional or indirect jumps that cross between hot
140 and cold sections.
142 Basic block partitioning may result in some jumps that appear to
143 be optimizable (or blocks that appear to be mergeable), but which really
144 must be left untouched (they are required to make it safely across
145 partition boundaries). See the comments at the top of
146 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
148 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
149 || (cbranch_jump_edge->flags & EDGE_CROSSING))
150 return false;
152 /* The conditional branch must target the block after the
153 unconditional branch. */
154 cbranch_dest_block = cbranch_jump_edge->dest;
156 if (cbranch_dest_block == EXIT_BLOCK_PTR
157 || !can_fallthru (jump_block, cbranch_dest_block))
158 return false;
160 /* Invert the conditional branch. */
161 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
162 return false;
164 if (dump_file)
165 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
166 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
168 /* Success. Update the CFG to match. Note that after this point
169 the edge variable names appear backwards; the redirection is done
170 this way to preserve edge profile data. */
171 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
172 cbranch_dest_block);
173 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
174 jump_dest_block);
175 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
176 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
177 update_br_prob_note (cbranch_block);
179 /* Delete the block with the unconditional jump, and clean up the mess. */
180 delete_basic_block (jump_block);
181 tidy_fallthru_edge (cbranch_jump_edge);
182 update_forwarder_flag (cbranch_block);
184 return true;
187 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
188 on register. Used by jump threading. */
190 static bool
191 mark_effect (rtx exp, regset nonequal)
193 int regno;
194 rtx dest;
195 switch (GET_CODE (exp))
197 /* In case we do clobber the register, mark it as equal, as we know the
198 value is dead so it don't have to match. */
199 case CLOBBER:
200 if (REG_P (XEXP (exp, 0)))
202 dest = XEXP (exp, 0);
203 regno = REGNO (dest);
204 CLEAR_REGNO_REG_SET (nonequal, regno);
205 if (regno < FIRST_PSEUDO_REGISTER)
207 int n = hard_regno_nregs[regno][GET_MODE (dest)];
208 while (--n > 0)
209 CLEAR_REGNO_REG_SET (nonequal, regno + n);
212 return false;
214 case SET:
215 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
216 return false;
217 dest = SET_DEST (exp);
218 if (dest == pc_rtx)
219 return false;
220 if (!REG_P (dest))
221 return true;
222 regno = REGNO (dest);
223 SET_REGNO_REG_SET (nonequal, regno);
224 if (regno < FIRST_PSEUDO_REGISTER)
226 int n = hard_regno_nregs[regno][GET_MODE (dest)];
227 while (--n > 0)
228 SET_REGNO_REG_SET (nonequal, regno + n);
230 return false;
232 default:
233 return false;
237 /* Return nonzero if X is a register set in regset DATA.
238 Called via for_each_rtx. */
239 static int
240 mentions_nonequal_regs (rtx *x, void *data)
242 regset nonequal = (regset) data;
243 if (REG_P (*x))
245 int regno;
247 regno = REGNO (*x);
248 if (REGNO_REG_SET_P (nonequal, regno))
249 return 1;
250 if (regno < FIRST_PSEUDO_REGISTER)
252 int n = hard_regno_nregs[regno][GET_MODE (*x)];
253 while (--n > 0)
254 if (REGNO_REG_SET_P (nonequal, regno + n))
255 return 1;
258 return 0;
260 /* Attempt to prove that the basic block B will have no side effects and
261 always continues in the same edge if reached via E. Return the edge
262 if exist, NULL otherwise. */
264 static edge
265 thread_jump (edge e, basic_block b)
267 rtx set1, set2, cond1, cond2, insn;
268 enum rtx_code code1, code2, reversed_code2;
269 bool reverse1 = false;
270 unsigned i;
271 regset nonequal;
272 bool failed = false;
273 reg_set_iterator rsi;
275 if (b->flags & BB_NONTHREADABLE_BLOCK)
276 return NULL;
278 /* At the moment, we do handle only conditional jumps, but later we may
279 want to extend this code to tablejumps and others. */
280 if (EDGE_COUNT (e->src->succs) != 2)
281 return NULL;
282 if (EDGE_COUNT (b->succs) != 2)
284 b->flags |= BB_NONTHREADABLE_BLOCK;
285 return NULL;
288 /* Second branch must end with onlyjump, as we will eliminate the jump. */
289 if (!any_condjump_p (BB_END (e->src)))
290 return NULL;
292 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
294 b->flags |= BB_NONTHREADABLE_BLOCK;
295 return NULL;
298 set1 = pc_set (BB_END (e->src));
299 set2 = pc_set (BB_END (b));
300 if (((e->flags & EDGE_FALLTHRU) != 0)
301 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
302 reverse1 = true;
304 cond1 = XEXP (SET_SRC (set1), 0);
305 cond2 = XEXP (SET_SRC (set2), 0);
306 if (reverse1)
307 code1 = reversed_comparison_code (cond1, BB_END (e->src));
308 else
309 code1 = GET_CODE (cond1);
311 code2 = GET_CODE (cond2);
312 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
314 if (!comparison_dominates_p (code1, code2)
315 && !comparison_dominates_p (code1, reversed_code2))
316 return NULL;
318 /* Ensure that the comparison operators are equivalent.
319 ??? This is far too pessimistic. We should allow swapped operands,
320 different CCmodes, or for example comparisons for interval, that
321 dominate even when operands are not equivalent. */
322 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
323 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
324 return NULL;
326 /* Short circuit cases where block B contains some side effects, as we can't
327 safely bypass it. */
328 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
329 insn = NEXT_INSN (insn))
330 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
332 b->flags |= BB_NONTHREADABLE_BLOCK;
333 return NULL;
336 cselib_init (false);
338 /* First process all values computed in the source basic block. */
339 for (insn = NEXT_INSN (BB_HEAD (e->src));
340 insn != NEXT_INSN (BB_END (e->src));
341 insn = NEXT_INSN (insn))
342 if (INSN_P (insn))
343 cselib_process_insn (insn);
345 nonequal = BITMAP_ALLOC (NULL);
346 CLEAR_REG_SET (nonequal);
348 /* Now assume that we've continued by the edge E to B and continue
349 processing as if it were same basic block.
350 Our goal is to prove that whole block is an NOOP. */
352 for (insn = NEXT_INSN (BB_HEAD (b));
353 insn != NEXT_INSN (BB_END (b)) && !failed;
354 insn = NEXT_INSN (insn))
356 if (INSN_P (insn))
358 rtx pat = PATTERN (insn);
360 if (GET_CODE (pat) == PARALLEL)
362 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
363 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
365 else
366 failed |= mark_effect (pat, nonequal);
369 cselib_process_insn (insn);
372 /* Later we should clear nonequal of dead registers. So far we don't
373 have life information in cfg_cleanup. */
374 if (failed)
376 b->flags |= BB_NONTHREADABLE_BLOCK;
377 goto failed_exit;
380 /* cond2 must not mention any register that is not equal to the
381 former block. */
382 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
383 goto failed_exit;
385 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
386 goto failed_exit;
388 BITMAP_FREE (nonequal);
389 cselib_finish ();
390 if ((comparison_dominates_p (code1, code2) != 0)
391 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
392 return BRANCH_EDGE (b);
393 else
394 return FALLTHRU_EDGE (b);
396 failed_exit:
397 BITMAP_FREE (nonequal);
398 cselib_finish ();
399 return NULL;
402 /* Attempt to forward edges leaving basic block B.
403 Return true if successful. */
405 static bool
406 try_forward_edges (int mode, basic_block b)
408 bool changed = false;
409 edge_iterator ei;
410 edge e, *threaded_edges = NULL;
412 /* If we are partitioning hot/cold basic blocks, we don't want to
413 mess up unconditional or indirect jumps that cross between hot
414 and cold sections.
416 Basic block partitioning may result in some jumps that appear to
417 be optimizable (or blocks that appear to be mergeable), but which really m
418 ust be left untouched (they are required to make it safely across
419 partition boundaries). See the comments at the top of
420 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
422 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
423 return false;
425 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
427 basic_block target, first;
428 int counter;
429 bool threaded = false;
430 int nthreaded_edges = 0;
431 bool may_thread = first_pass | df_get_bb_dirty (b);
433 /* Skip complex edges because we don't know how to update them.
435 Still handle fallthru edges, as we can succeed to forward fallthru
436 edge to the same place as the branch edge of conditional branch
437 and turn conditional branch to an unconditional branch. */
438 if (e->flags & EDGE_COMPLEX)
440 ei_next (&ei);
441 continue;
444 target = first = e->dest;
445 counter = NUM_FIXED_BLOCKS;
447 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
448 up jumps that cross between hot/cold sections.
450 Basic block partitioning may result in some jumps that appear
451 to be optimizable (or blocks that appear to be mergeable), but which
452 really must be left untouched (they are required to make it safely
453 across partition boundaries). See the comments at the top of
454 bb-reorder.c:partition_hot_cold_basic_blocks for complete
455 details. */
457 if (first != EXIT_BLOCK_PTR
458 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
459 return false;
461 while (counter < n_basic_blocks)
463 basic_block new_target = NULL;
464 bool new_target_threaded = false;
465 may_thread |= df_get_bb_dirty (target);
467 if (FORWARDER_BLOCK_P (target)
468 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
469 && single_succ (target) != EXIT_BLOCK_PTR)
471 /* Bypass trivial infinite loops. */
472 new_target = single_succ (target);
473 if (target == new_target)
474 counter = n_basic_blocks;
477 /* Allow to thread only over one edge at time to simplify updating
478 of probabilities. */
479 else if ((mode & CLEANUP_THREADING) && may_thread)
481 edge t = thread_jump (e, target);
482 if (t)
484 if (!threaded_edges)
485 threaded_edges = XNEWVEC (edge, n_basic_blocks);
486 else
488 int i;
490 /* Detect an infinite loop across blocks not
491 including the start block. */
492 for (i = 0; i < nthreaded_edges; ++i)
493 if (threaded_edges[i] == t)
494 break;
495 if (i < nthreaded_edges)
497 counter = n_basic_blocks;
498 break;
502 /* Detect an infinite loop across the start block. */
503 if (t->dest == b)
504 break;
506 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
507 threaded_edges[nthreaded_edges++] = t;
509 new_target = t->dest;
510 new_target_threaded = true;
514 if (!new_target)
515 break;
517 counter++;
518 target = new_target;
519 threaded |= new_target_threaded;
522 if (counter >= n_basic_blocks)
524 if (dump_file)
525 fprintf (dump_file, "Infinite loop in BB %i.\n",
526 target->index);
528 else if (target == first)
529 ; /* We didn't do anything. */
530 else
532 /* Save the values now, as the edge may get removed. */
533 gcov_type edge_count = e->count;
534 int edge_probability = e->probability;
535 int edge_frequency;
536 int n = 0;
538 /* Don't force if target is exit block. */
539 if (threaded && target != EXIT_BLOCK_PTR)
541 notice_new_block (redirect_edge_and_branch_force (e, target));
542 if (dump_file)
543 fprintf (dump_file, "Conditionals threaded.\n");
545 else if (!redirect_edge_and_branch (e, target))
547 if (dump_file)
548 fprintf (dump_file,
549 "Forwarding edge %i->%i to %i failed.\n",
550 b->index, e->dest->index, target->index);
551 ei_next (&ei);
552 continue;
555 /* We successfully forwarded the edge. Now update profile
556 data: for each edge we traversed in the chain, remove
557 the original edge's execution count. */
558 edge_frequency = ((edge_probability * b->frequency
559 + REG_BR_PROB_BASE / 2)
560 / REG_BR_PROB_BASE);
562 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
563 b->flags |= BB_FORWARDER_BLOCK;
567 edge t;
569 if (!single_succ_p (first))
571 gcc_assert (n < nthreaded_edges);
572 t = threaded_edges [n++];
573 gcc_assert (t->src == first);
574 update_bb_profile_for_threading (first, edge_frequency,
575 edge_count, t);
576 update_br_prob_note (first);
578 else
580 first->count -= edge_count;
581 if (first->count < 0)
582 first->count = 0;
583 first->frequency -= edge_frequency;
584 if (first->frequency < 0)
585 first->frequency = 0;
586 /* It is possible that as the result of
587 threading we've removed edge as it is
588 threaded to the fallthru edge. Avoid
589 getting out of sync. */
590 if (n < nthreaded_edges
591 && first == threaded_edges [n]->src)
592 n++;
593 t = single_succ_edge (first);
596 t->count -= edge_count;
597 if (t->count < 0)
598 t->count = 0;
599 first = t->dest;
601 while (first != target);
603 changed = true;
604 continue;
606 ei_next (&ei);
609 if (threaded_edges)
610 free (threaded_edges);
611 return changed;
615 /* Blocks A and B are to be merged into a single block. A has no incoming
616 fallthru edge, so it can be moved before B without adding or modifying
617 any jumps (aside from the jump from A to B). */
619 static void
620 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
622 rtx barrier;
624 /* If we are partitioning hot/cold basic blocks, we don't want to
625 mess up unconditional or indirect jumps that cross between hot
626 and cold sections.
628 Basic block partitioning may result in some jumps that appear to
629 be optimizable (or blocks that appear to be mergeable), but which really
630 must be left untouched (they are required to make it safely across
631 partition boundaries). See the comments at the top of
632 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
634 if (BB_PARTITION (a) != BB_PARTITION (b))
635 return;
637 barrier = next_nonnote_insn (BB_END (a));
638 gcc_assert (BARRIER_P (barrier));
639 delete_insn (barrier);
641 /* Scramble the insn chain. */
642 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
643 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
644 df_set_bb_dirty (a);
646 if (dump_file)
647 fprintf (dump_file, "Moved block %d before %d and merged.\n",
648 a->index, b->index);
650 /* Swap the records for the two blocks around. */
652 unlink_block (a);
653 link_block (a, b->prev_bb);
655 /* Now blocks A and B are contiguous. Merge them. */
656 merge_blocks (a, b);
659 /* Blocks A and B are to be merged into a single block. B has no outgoing
660 fallthru edge, so it can be moved after A without adding or modifying
661 any jumps (aside from the jump from A to B). */
663 static void
664 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
666 rtx barrier, real_b_end;
667 rtx label, table;
669 /* If we are partitioning hot/cold basic blocks, we don't want to
670 mess up unconditional or indirect jumps that cross between hot
671 and cold sections.
673 Basic block partitioning may result in some jumps that appear to
674 be optimizable (or blocks that appear to be mergeable), but which really
675 must be left untouched (they are required to make it safely across
676 partition boundaries). See the comments at the top of
677 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
679 if (BB_PARTITION (a) != BB_PARTITION (b))
680 return;
682 real_b_end = BB_END (b);
684 /* If there is a jump table following block B temporarily add the jump table
685 to block B so that it will also be moved to the correct location. */
686 if (tablejump_p (BB_END (b), &label, &table)
687 && prev_active_insn (label) == BB_END (b))
689 BB_END (b) = table;
692 /* There had better have been a barrier there. Delete it. */
693 barrier = NEXT_INSN (BB_END (b));
694 if (barrier && BARRIER_P (barrier))
695 delete_insn (barrier);
698 /* Scramble the insn chain. */
699 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
701 /* Restore the real end of b. */
702 BB_END (b) = real_b_end;
704 if (dump_file)
705 fprintf (dump_file, "Moved block %d after %d and merged.\n",
706 b->index, a->index);
708 /* Now blocks A and B are contiguous. Merge them. */
709 merge_blocks (a, b);
712 /* Attempt to merge basic blocks that are potentially non-adjacent.
713 Return NULL iff the attempt failed, otherwise return basic block
714 where cleanup_cfg should continue. Because the merging commonly
715 moves basic block away or introduces another optimization
716 possibility, return basic block just before B so cleanup_cfg don't
717 need to iterate.
719 It may be good idea to return basic block before C in the case
720 C has been moved after B and originally appeared earlier in the
721 insn sequence, but we have no information available about the
722 relative ordering of these two. Hopefully it is not too common. */
724 static basic_block
725 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
727 basic_block next;
729 /* If we are partitioning hot/cold basic blocks, we don't want to
730 mess up unconditional or indirect jumps that cross between hot
731 and cold sections.
733 Basic block partitioning may result in some jumps that appear to
734 be optimizable (or blocks that appear to be mergeable), but which really
735 must be left untouched (they are required to make it safely across
736 partition boundaries). See the comments at the top of
737 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
739 if (BB_PARTITION (b) != BB_PARTITION (c))
740 return NULL;
742 /* If B has a fallthru edge to C, no need to move anything. */
743 if (e->flags & EDGE_FALLTHRU)
745 int b_index = b->index, c_index = c->index;
746 merge_blocks (b, c);
747 update_forwarder_flag (b);
749 if (dump_file)
750 fprintf (dump_file, "Merged %d and %d without moving.\n",
751 b_index, c_index);
753 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
756 /* Otherwise we will need to move code around. Do that only if expensive
757 transformations are allowed. */
758 else if (mode & CLEANUP_EXPENSIVE)
760 edge tmp_edge, b_fallthru_edge;
761 bool c_has_outgoing_fallthru;
762 bool b_has_incoming_fallthru;
763 edge_iterator ei;
765 /* Avoid overactive code motion, as the forwarder blocks should be
766 eliminated by edge redirection instead. One exception might have
767 been if B is a forwarder block and C has no fallthru edge, but
768 that should be cleaned up by bb-reorder instead. */
769 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
770 return NULL;
772 /* We must make sure to not munge nesting of lexical blocks,
773 and loop notes. This is done by squeezing out all the notes
774 and leaving them there to lie. Not ideal, but functional. */
776 FOR_EACH_EDGE (tmp_edge, ei, c->succs)
777 if (tmp_edge->flags & EDGE_FALLTHRU)
778 break;
780 c_has_outgoing_fallthru = (tmp_edge != NULL);
782 FOR_EACH_EDGE (tmp_edge, ei, b->preds)
783 if (tmp_edge->flags & EDGE_FALLTHRU)
784 break;
786 b_has_incoming_fallthru = (tmp_edge != NULL);
787 b_fallthru_edge = tmp_edge;
788 next = b->prev_bb;
789 if (next == c)
790 next = next->prev_bb;
792 /* Otherwise, we're going to try to move C after B. If C does
793 not have an outgoing fallthru, then it can be moved
794 immediately after B without introducing or modifying jumps. */
795 if (! c_has_outgoing_fallthru)
797 merge_blocks_move_successor_nojumps (b, c);
798 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
801 /* If B does not have an incoming fallthru, then it can be moved
802 immediately before C without introducing or modifying jumps.
803 C cannot be the first block, so we do not have to worry about
804 accessing a non-existent block. */
806 if (b_has_incoming_fallthru)
808 basic_block bb;
810 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
811 return NULL;
812 bb = force_nonfallthru (b_fallthru_edge);
813 if (bb)
814 notice_new_block (bb);
817 merge_blocks_move_predecessor_nojumps (b, c);
818 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
821 return NULL;
825 /* Removes the memory attributes of MEM expression
826 if they are not equal. */
828 void
829 merge_memattrs (rtx x, rtx y)
831 int i;
832 int j;
833 enum rtx_code code;
834 const char *fmt;
836 if (x == y)
837 return;
838 if (x == 0 || y == 0)
839 return;
841 code = GET_CODE (x);
843 if (code != GET_CODE (y))
844 return;
846 if (GET_MODE (x) != GET_MODE (y))
847 return;
849 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
851 if (! MEM_ATTRS (x))
852 MEM_ATTRS (y) = 0;
853 else if (! MEM_ATTRS (y))
854 MEM_ATTRS (x) = 0;
855 else
857 rtx mem_size;
859 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
861 set_mem_alias_set (x, 0);
862 set_mem_alias_set (y, 0);
865 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
867 set_mem_expr (x, 0);
868 set_mem_expr (y, 0);
869 set_mem_offset (x, 0);
870 set_mem_offset (y, 0);
872 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
874 set_mem_offset (x, 0);
875 set_mem_offset (y, 0);
878 if (!MEM_SIZE (x))
879 mem_size = NULL_RTX;
880 else if (!MEM_SIZE (y))
881 mem_size = NULL_RTX;
882 else
883 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
884 INTVAL (MEM_SIZE (y))));
885 set_mem_size (x, mem_size);
886 set_mem_size (y, mem_size);
888 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
889 set_mem_align (y, MEM_ALIGN (x));
893 fmt = GET_RTX_FORMAT (code);
894 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
896 switch (fmt[i])
898 case 'E':
899 /* Two vectors must have the same length. */
900 if (XVECLEN (x, i) != XVECLEN (y, i))
901 return;
903 for (j = 0; j < XVECLEN (x, i); j++)
904 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
906 break;
908 case 'e':
909 merge_memattrs (XEXP (x, i), XEXP (y, i));
912 return;
916 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
918 static bool
919 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
921 rtx p1, p2;
923 /* Verify that I1 and I2 are equivalent. */
924 if (GET_CODE (i1) != GET_CODE (i2))
925 return false;
927 p1 = PATTERN (i1);
928 p2 = PATTERN (i2);
930 if (GET_CODE (p1) != GET_CODE (p2))
931 return false;
933 /* If this is a CALL_INSN, compare register usage information.
934 If we don't check this on stack register machines, the two
935 CALL_INSNs might be merged leaving reg-stack.c with mismatching
936 numbers of stack registers in the same basic block.
937 If we don't check this on machines with delay slots, a delay slot may
938 be filled that clobbers a parameter expected by the subroutine.
940 ??? We take the simple route for now and assume that if they're
941 equal, they were constructed identically. */
943 if (CALL_P (i1)
944 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
945 CALL_INSN_FUNCTION_USAGE (i2))
946 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
947 return false;
949 #ifdef STACK_REGS
950 /* If cross_jump_death_matters is not 0, the insn's mode
951 indicates whether or not the insn contains any stack-like
952 regs. */
954 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
956 /* If register stack conversion has already been done, then
957 death notes must also be compared before it is certain that
958 the two instruction streams match. */
960 rtx note;
961 HARD_REG_SET i1_regset, i2_regset;
963 CLEAR_HARD_REG_SET (i1_regset);
964 CLEAR_HARD_REG_SET (i2_regset);
966 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
967 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
968 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
970 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
971 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
972 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
974 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
975 return false;
977 #endif
979 if (reload_completed
980 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
981 return true;
983 /* Do not do EQUIV substitution after reload. First, we're undoing the
984 work of reload_cse. Second, we may be undoing the work of the post-
985 reload splitting pass. */
986 /* ??? Possibly add a new phase switch variable that can be used by
987 targets to disallow the troublesome insns after splitting. */
988 if (!reload_completed)
990 /* The following code helps take care of G++ cleanups. */
991 rtx equiv1 = find_reg_equal_equiv_note (i1);
992 rtx equiv2 = find_reg_equal_equiv_note (i2);
994 if (equiv1 && equiv2
995 /* If the equivalences are not to a constant, they may
996 reference pseudos that no longer exist, so we can't
997 use them. */
998 && (! reload_completed
999 || (CONSTANT_P (XEXP (equiv1, 0))
1000 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1002 rtx s1 = single_set (i1);
1003 rtx s2 = single_set (i2);
1004 if (s1 != 0 && s2 != 0
1005 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1007 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1008 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1009 if (! rtx_renumbered_equal_p (p1, p2))
1010 cancel_changes (0);
1011 else if (apply_change_group ())
1012 return true;
1017 return false;
1020 /* Look through the insns at the end of BB1 and BB2 and find the longest
1021 sequence that are equivalent. Store the first insns for that sequence
1022 in *F1 and *F2 and return the sequence length.
1024 To simplify callers of this function, if the blocks match exactly,
1025 store the head of the blocks in *F1 and *F2. */
1027 static int
1028 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1029 basic_block bb2, rtx *f1, rtx *f2)
1031 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1032 int ninsns = 0;
1034 /* Skip simple jumps at the end of the blocks. Complex jumps still
1035 need to be compared for equivalence, which we'll do below. */
1037 i1 = BB_END (bb1);
1038 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1039 if (onlyjump_p (i1)
1040 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1042 last1 = i1;
1043 i1 = PREV_INSN (i1);
1046 i2 = BB_END (bb2);
1047 if (onlyjump_p (i2)
1048 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1050 last2 = i2;
1051 /* Count everything except for unconditional jump as insn. */
1052 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1053 ninsns++;
1054 i2 = PREV_INSN (i2);
1057 while (true)
1059 /* Ignore notes. */
1060 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1061 i1 = PREV_INSN (i1);
1063 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1064 i2 = PREV_INSN (i2);
1066 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1067 break;
1069 if (!old_insns_match_p (mode, i1, i2))
1070 break;
1072 merge_memattrs (i1, i2);
1074 /* Don't begin a cross-jump with a NOTE insn. */
1075 if (INSN_P (i1))
1077 /* If the merged insns have different REG_EQUAL notes, then
1078 remove them. */
1079 rtx equiv1 = find_reg_equal_equiv_note (i1);
1080 rtx equiv2 = find_reg_equal_equiv_note (i2);
1082 if (equiv1 && !equiv2)
1083 remove_note (i1, equiv1);
1084 else if (!equiv1 && equiv2)
1085 remove_note (i2, equiv2);
1086 else if (equiv1 && equiv2
1087 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1089 remove_note (i1, equiv1);
1090 remove_note (i2, equiv2);
1093 afterlast1 = last1, afterlast2 = last2;
1094 last1 = i1, last2 = i2;
1095 ninsns++;
1098 i1 = PREV_INSN (i1);
1099 i2 = PREV_INSN (i2);
1102 #ifdef HAVE_cc0
1103 /* Don't allow the insn after a compare to be shared by
1104 cross-jumping unless the compare is also shared. */
1105 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1106 last1 = afterlast1, last2 = afterlast2, ninsns--;
1107 #endif
1109 /* Include preceding notes and labels in the cross-jump. One,
1110 this may bring us to the head of the blocks as requested above.
1111 Two, it keeps line number notes as matched as may be. */
1112 if (ninsns)
1114 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1115 last1 = PREV_INSN (last1);
1117 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1118 last1 = PREV_INSN (last1);
1120 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1121 last2 = PREV_INSN (last2);
1123 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1124 last2 = PREV_INSN (last2);
1126 *f1 = last1;
1127 *f2 = last2;
1130 return ninsns;
1133 /* Return true iff the condbranches at the end of BB1 and BB2 match. */
1134 bool
1135 condjump_equiv_p (struct equiv_info *info, bool call_init)
1137 basic_block bb1 = info->x_block;
1138 basic_block bb2 = info->y_block;
1139 edge b1 = BRANCH_EDGE (bb1);
1140 edge b2 = BRANCH_EDGE (bb2);
1141 edge f1 = FALLTHRU_EDGE (bb1);
1142 edge f2 = FALLTHRU_EDGE (bb2);
1143 bool reverse, match;
1144 rtx set1, set2, cond1, cond2;
1145 rtx src1, src2;
1146 enum rtx_code code1, code2;
1148 /* Get around possible forwarders on fallthru edges. Other cases
1149 should be optimized out already. */
1150 if (FORWARDER_BLOCK_P (f1->dest))
1151 f1 = single_succ_edge (f1->dest);
1153 if (FORWARDER_BLOCK_P (f2->dest))
1154 f2 = single_succ_edge (f2->dest);
1156 /* To simplify use of this function, return false if there are
1157 unneeded forwarder blocks. These will get eliminated later
1158 during cleanup_cfg. */
1159 if (FORWARDER_BLOCK_P (f1->dest)
1160 || FORWARDER_BLOCK_P (f2->dest)
1161 || FORWARDER_BLOCK_P (b1->dest)
1162 || FORWARDER_BLOCK_P (b2->dest))
1163 return false;
1165 if (f1->dest == f2->dest && b1->dest == b2->dest)
1166 reverse = false;
1167 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1168 reverse = true;
1169 else
1170 return false;
1172 set1 = pc_set (BB_END (bb1));
1173 set2 = pc_set (BB_END (bb2));
1174 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1175 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1176 reverse = !reverse;
1178 src1 = SET_SRC (set1);
1179 src2 = SET_SRC (set2);
1180 cond1 = XEXP (src1, 0);
1181 cond2 = XEXP (src2, 0);
1182 code1 = GET_CODE (cond1);
1183 if (reverse)
1184 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1185 else
1186 code2 = GET_CODE (cond2);
1188 if (code2 == UNKNOWN)
1189 return false;
1191 if (call_init && !struct_equiv_init (STRUCT_EQUIV_START | info->mode, info))
1192 gcc_unreachable ();
1193 /* Make the sources of the pc sets unreadable so that when we call
1194 insns_match_p it won't process them.
1195 The death_notes_match_p from insns_match_p won't see the local registers
1196 used for the pc set, but that could only cause missed optimizations when
1197 there are actually condjumps that use stack registers. */
1198 SET_SRC (set1) = pc_rtx;
1199 SET_SRC (set2) = pc_rtx;
1200 /* Verify codes and operands match. */
1201 if (code1 == code2)
1203 match = (insns_match_p (BB_END (bb1), BB_END (bb2), info)
1204 && rtx_equiv_p (&XEXP (cond1, 0), XEXP (cond2, 0), 1, info)
1205 && rtx_equiv_p (&XEXP (cond1, 1), XEXP (cond2, 1), 1, info));
1208 else if (code1 == swap_condition (code2))
1210 match = (insns_match_p (BB_END (bb1), BB_END (bb2), info)
1211 && rtx_equiv_p (&XEXP (cond1, 1), XEXP (cond2, 0), 1, info)
1212 && rtx_equiv_p (&XEXP (cond1, 0), XEXP (cond2, 1), 1, info));
1215 else
1216 match = false;
1217 SET_SRC (set1) = src1;
1218 SET_SRC (set2) = src2;
1219 match &= verify_changes (0);
1221 /* If we return true, we will join the blocks. Which means that
1222 we will only have one branch prediction bit to work with. Thus
1223 we require the existing branches to have probabilities that are
1224 roughly similar. */
1225 if (match
1226 && !optimize_size
1227 && maybe_hot_bb_p (bb1)
1228 && maybe_hot_bb_p (bb2))
1230 int prob2;
1232 if (b1->dest == b2->dest)
1233 prob2 = b2->probability;
1234 else
1235 /* Do not use f2 probability as f2 may be forwarded. */
1236 prob2 = REG_BR_PROB_BASE - b2->probability;
1238 /* Fail if the difference in probabilities is greater than 50%.
1239 This rules out two well-predicted branches with opposite
1240 outcomes. */
1241 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1243 if (dump_file)
1244 fprintf (dump_file,
1245 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1246 bb1->index, bb2->index, b1->probability, prob2);
1248 match = false;
1252 if (dump_file && match)
1253 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1254 bb1->index, bb2->index);
1256 if (!match)
1257 cancel_changes (0);
1258 return match;
1261 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1262 the branch instruction. This means that if we commonize the control
1263 flow before end of the basic block, the semantic remains unchanged.
1265 We may assume that there exists one edge with a common destination. */
1267 static bool
1268 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1270 int nehedges1 = 0, nehedges2 = 0;
1271 edge fallthru1 = 0, fallthru2 = 0;
1272 edge e1, e2;
1273 edge_iterator ei;
1275 /* If BB1 has only one successor, we may be looking at either an
1276 unconditional jump, or a fake edge to exit. */
1277 if (single_succ_p (bb1)
1278 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1279 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1280 return (single_succ_p (bb2)
1281 && (single_succ_edge (bb2)->flags
1282 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1283 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1285 /* Match conditional jumps - this may get tricky when fallthru and branch
1286 edges are crossed. */
1287 if (EDGE_COUNT (bb1->succs) == 2
1288 && any_condjump_p (BB_END (bb1))
1289 && onlyjump_p (BB_END (bb1)))
1291 edge b1, f1, b2, f2;
1292 bool reverse, match;
1293 rtx set1, set2, cond1, cond2;
1294 enum rtx_code code1, code2;
1296 if (EDGE_COUNT (bb2->succs) != 2
1297 || !any_condjump_p (BB_END (bb2))
1298 || !onlyjump_p (BB_END (bb2)))
1299 return false;
1301 b1 = BRANCH_EDGE (bb1);
1302 b2 = BRANCH_EDGE (bb2);
1303 f1 = FALLTHRU_EDGE (bb1);
1304 f2 = FALLTHRU_EDGE (bb2);
1306 /* Get around possible forwarders on fallthru edges. Other cases
1307 should be optimized out already. */
1308 if (FORWARDER_BLOCK_P (f1->dest))
1309 f1 = single_succ_edge (f1->dest);
1311 if (FORWARDER_BLOCK_P (f2->dest))
1312 f2 = single_succ_edge (f2->dest);
1314 /* To simplify use of this function, return false if there are
1315 unneeded forwarder blocks. These will get eliminated later
1316 during cleanup_cfg. */
1317 if (FORWARDER_BLOCK_P (f1->dest)
1318 || FORWARDER_BLOCK_P (f2->dest)
1319 || FORWARDER_BLOCK_P (b1->dest)
1320 || FORWARDER_BLOCK_P (b2->dest))
1321 return false;
1323 if (f1->dest == f2->dest && b1->dest == b2->dest)
1324 reverse = false;
1325 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1326 reverse = true;
1327 else
1328 return false;
1330 set1 = pc_set (BB_END (bb1));
1331 set2 = pc_set (BB_END (bb2));
1332 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1333 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1334 reverse = !reverse;
1336 cond1 = XEXP (SET_SRC (set1), 0);
1337 cond2 = XEXP (SET_SRC (set2), 0);
1338 code1 = GET_CODE (cond1);
1339 if (reverse)
1340 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1341 else
1342 code2 = GET_CODE (cond2);
1344 if (code2 == UNKNOWN)
1345 return false;
1347 /* Verify codes and operands match. */
1348 match = ((code1 == code2
1349 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1350 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1351 || (code1 == swap_condition (code2)
1352 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1353 XEXP (cond2, 0))
1354 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1355 XEXP (cond2, 1))));
1357 /* If we return true, we will join the blocks. Which means that
1358 we will only have one branch prediction bit to work with. Thus
1359 we require the existing branches to have probabilities that are
1360 roughly similar. */
1361 if (match
1362 && !optimize_size
1363 && maybe_hot_bb_p (bb1)
1364 && maybe_hot_bb_p (bb2))
1366 int prob2;
1368 if (b1->dest == b2->dest)
1369 prob2 = b2->probability;
1370 else
1371 /* Do not use f2 probability as f2 may be forwarded. */
1372 prob2 = REG_BR_PROB_BASE - b2->probability;
1374 /* Fail if the difference in probabilities is greater than 50%.
1375 This rules out two well-predicted branches with opposite
1376 outcomes. */
1377 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1379 if (dump_file)
1380 fprintf (dump_file,
1381 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1382 bb1->index, bb2->index, b1->probability, prob2);
1384 return false;
1388 if (dump_file && match)
1389 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1390 bb1->index, bb2->index);
1392 return match;
1395 /* Generic case - we are seeing a computed jump, table jump or trapping
1396 instruction. */
1398 /* Check whether there are tablejumps in the end of BB1 and BB2.
1399 Return true if they are identical. */
1401 rtx label1, label2;
1402 rtx table1, table2;
1404 if (tablejump_p (BB_END (bb1), &label1, &table1)
1405 && tablejump_p (BB_END (bb2), &label2, &table2)
1406 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1408 /* The labels should never be the same rtx. If they really are same
1409 the jump tables are same too. So disable crossjumping of blocks BB1
1410 and BB2 because when deleting the common insns in the end of BB1
1411 by delete_basic_block () the jump table would be deleted too. */
1412 /* If LABEL2 is referenced in BB1->END do not do anything
1413 because we would loose information when replacing
1414 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1415 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1417 /* Set IDENTICAL to true when the tables are identical. */
1418 bool identical = false;
1419 rtx p1, p2;
1421 p1 = PATTERN (table1);
1422 p2 = PATTERN (table2);
1423 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1425 identical = true;
1427 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1428 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1429 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1430 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1432 int i;
1434 identical = true;
1435 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1436 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1437 identical = false;
1440 if (identical)
1442 replace_label_data rr;
1443 bool match;
1445 /* Temporarily replace references to LABEL1 with LABEL2
1446 in BB1->END so that we could compare the instructions. */
1447 rr.r1 = label1;
1448 rr.r2 = label2;
1449 rr.update_label_nuses = false;
1450 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1452 match = old_insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1453 if (dump_file && match)
1454 fprintf (dump_file,
1455 "Tablejumps in bb %i and %i match.\n",
1456 bb1->index, bb2->index);
1458 /* Set the original label in BB1->END because when deleting
1459 a block whose end is a tablejump, the tablejump referenced
1460 from the instruction is deleted too. */
1461 rr.r1 = label2;
1462 rr.r2 = label1;
1463 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1465 return match;
1468 return false;
1472 /* First ensure that the instructions match. There may be many outgoing
1473 edges so this test is generally cheaper. */
1474 if (!old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1475 return false;
1477 /* Search the outgoing edges, ensure that the counts do match, find possible
1478 fallthru and exception handling edges since these needs more
1479 validation. */
1480 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1481 return false;
1483 FOR_EACH_EDGE (e1, ei, bb1->succs)
1485 e2 = EDGE_SUCC (bb2, ei.index);
1487 if (e1->flags & EDGE_EH)
1488 nehedges1++;
1490 if (e2->flags & EDGE_EH)
1491 nehedges2++;
1493 if (e1->flags & EDGE_FALLTHRU)
1494 fallthru1 = e1;
1495 if (e2->flags & EDGE_FALLTHRU)
1496 fallthru2 = e2;
1499 /* If number of edges of various types does not match, fail. */
1500 if (nehedges1 != nehedges2
1501 || (fallthru1 != 0) != (fallthru2 != 0))
1502 return false;
1504 /* fallthru edges must be forwarded to the same destination. */
1505 if (fallthru1)
1507 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1508 ? single_succ (fallthru1->dest): fallthru1->dest);
1509 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1510 ? single_succ (fallthru2->dest): fallthru2->dest);
1512 if (d1 != d2)
1513 return false;
1516 /* Ensure the same EH region. */
1518 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1519 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1521 if (!n1 && n2)
1522 return false;
1524 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1525 return false;
1528 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1529 version of sequence abstraction. */
1530 FOR_EACH_EDGE (e1, ei, bb2->succs)
1532 edge e2;
1533 edge_iterator ei;
1534 basic_block d1 = e1->dest;
1536 if (FORWARDER_BLOCK_P (d1))
1537 d1 = EDGE_SUCC (d1, 0)->dest;
1539 FOR_EACH_EDGE (e2, ei, bb1->succs)
1541 basic_block d2 = e2->dest;
1542 if (FORWARDER_BLOCK_P (d2))
1543 d2 = EDGE_SUCC (d2, 0)->dest;
1544 if (d1 == d2)
1545 break;
1548 if (!e2)
1549 return false;
1552 return true;
1555 /* Returns true if BB basic block has a preserve label. */
1557 static bool
1558 block_has_preserve_label (basic_block bb)
1560 return (bb
1561 && block_label (bb)
1562 && LABEL_PRESERVE_P (block_label (bb)));
1565 /* E1 and E2 are edges with the same destination block. Search their
1566 predecessors for common code. If found, redirect control flow from
1567 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1569 static bool
1570 try_crossjump_to_edge (int mode, edge e1, edge e2)
1572 int nmatch;
1573 basic_block src1 = e1->src, src2 = e2->src;
1574 basic_block redirect_to, redirect_from, to_remove;
1575 rtx newpos1, newpos2;
1576 edge s;
1577 edge_iterator ei;
1579 newpos1 = newpos2 = NULL_RTX;
1581 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1582 to try this optimization.
1584 Basic block partitioning may result in some jumps that appear to
1585 be optimizable (or blocks that appear to be mergeable), but which really
1586 must be left untouched (they are required to make it safely across
1587 partition boundaries). See the comments at the top of
1588 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1590 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1591 return false;
1593 /* Search backward through forwarder blocks. We don't need to worry
1594 about multiple entry or chained forwarders, as they will be optimized
1595 away. We do this to look past the unconditional jump following a
1596 conditional jump that is required due to the current CFG shape. */
1597 if (single_pred_p (src1)
1598 && FORWARDER_BLOCK_P (src1))
1599 e1 = single_pred_edge (src1), src1 = e1->src;
1601 if (single_pred_p (src2)
1602 && FORWARDER_BLOCK_P (src2))
1603 e2 = single_pred_edge (src2), src2 = e2->src;
1605 /* Nothing to do if we reach ENTRY, or a common source block. */
1606 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1607 return false;
1608 if (src1 == src2)
1609 return false;
1611 /* Seeing more than 1 forwarder blocks would confuse us later... */
1612 if (FORWARDER_BLOCK_P (e1->dest)
1613 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1614 return false;
1616 if (FORWARDER_BLOCK_P (e2->dest)
1617 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1618 return false;
1620 /* Likewise with dead code (possibly newly created by the other optimizations
1621 of cfg_cleanup). */
1622 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1623 return false;
1625 /* Look for the common insn sequence, part the first ... */
1626 if (!outgoing_edges_match (mode, src1, src2))
1627 return false;
1629 /* ... and part the second. */
1630 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1632 /* Don't proceed with the crossjump unless we found a sufficient number
1633 of matching instructions or the 'from' block was totally matched
1634 (such that its predecessors will hopefully be redirected and the
1635 block removed). */
1636 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1637 && (newpos1 != BB_HEAD (src1)))
1638 return false;
1640 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1641 if (block_has_preserve_label (e1->dest)
1642 && (e1->flags & EDGE_ABNORMAL))
1643 return false;
1645 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1646 will be deleted.
1647 If we have tablejumps in the end of SRC1 and SRC2
1648 they have been already compared for equivalence in outgoing_edges_match ()
1649 so replace the references to TABLE1 by references to TABLE2. */
1651 rtx label1, label2;
1652 rtx table1, table2;
1654 if (tablejump_p (BB_END (src1), &label1, &table1)
1655 && tablejump_p (BB_END (src2), &label2, &table2)
1656 && label1 != label2)
1658 replace_label_data rr;
1659 rtx insn;
1661 /* Replace references to LABEL1 with LABEL2. */
1662 rr.r1 = label1;
1663 rr.r2 = label2;
1664 rr.update_label_nuses = true;
1665 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1667 /* Do not replace the label in SRC1->END because when deleting
1668 a block whose end is a tablejump, the tablejump referenced
1669 from the instruction is deleted too. */
1670 if (insn != BB_END (src1))
1671 for_each_rtx (&insn, replace_label, &rr);
1676 /* Avoid splitting if possible. We must always split when SRC2 has
1677 EH predecessor edges, or we may end up with basic blocks with both
1678 normal and EH predecessor edges. */
1679 if (newpos2 == BB_HEAD (src2)
1680 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1681 redirect_to = src2;
1682 else
1684 if (newpos2 == BB_HEAD (src2))
1686 /* Skip possible basic block header. */
1687 if (LABEL_P (newpos2))
1688 newpos2 = NEXT_INSN (newpos2);
1689 if (NOTE_P (newpos2))
1690 newpos2 = NEXT_INSN (newpos2);
1693 if (dump_file)
1694 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1695 src2->index, nmatch);
1696 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1699 if (dump_file)
1700 fprintf (dump_file,
1701 "Cross jumping from bb %i to bb %i; %i common insns\n",
1702 src1->index, src2->index, nmatch);
1704 redirect_to->count += src1->count;
1705 redirect_to->frequency += src1->frequency;
1706 /* We may have some registers visible through the block. */
1707 df_set_bb_dirty (redirect_to);
1709 /* Recompute the frequencies and counts of outgoing edges. */
1710 FOR_EACH_EDGE (s, ei, redirect_to->succs)
1712 edge s2;
1713 edge_iterator ei;
1714 basic_block d = s->dest;
1716 if (FORWARDER_BLOCK_P (d))
1717 d = single_succ (d);
1719 FOR_EACH_EDGE (s2, ei, src1->succs)
1721 basic_block d2 = s2->dest;
1722 if (FORWARDER_BLOCK_P (d2))
1723 d2 = single_succ (d2);
1724 if (d == d2)
1725 break;
1728 s->count += s2->count;
1730 /* Take care to update possible forwarder blocks. We verified
1731 that there is no more than one in the chain, so we can't run
1732 into infinite loop. */
1733 if (FORWARDER_BLOCK_P (s->dest))
1735 single_succ_edge (s->dest)->count += s2->count;
1736 s->dest->count += s2->count;
1737 s->dest->frequency += EDGE_FREQUENCY (s);
1740 if (FORWARDER_BLOCK_P (s2->dest))
1742 single_succ_edge (s2->dest)->count -= s2->count;
1743 if (single_succ_edge (s2->dest)->count < 0)
1744 single_succ_edge (s2->dest)->count = 0;
1745 s2->dest->count -= s2->count;
1746 s2->dest->frequency -= EDGE_FREQUENCY (s);
1747 if (s2->dest->frequency < 0)
1748 s2->dest->frequency = 0;
1749 if (s2->dest->count < 0)
1750 s2->dest->count = 0;
1753 if (!redirect_to->frequency && !src1->frequency)
1754 s->probability = (s->probability + s2->probability) / 2;
1755 else
1756 s->probability
1757 = ((s->probability * redirect_to->frequency +
1758 s2->probability * src1->frequency)
1759 / (redirect_to->frequency + src1->frequency));
1762 update_br_prob_note (redirect_to);
1764 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1766 /* Skip possible basic block header. */
1767 if (LABEL_P (newpos1))
1768 newpos1 = NEXT_INSN (newpos1);
1770 if (NOTE_P (newpos1))
1771 newpos1 = NEXT_INSN (newpos1);
1773 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1774 to_remove = single_succ (redirect_from);
1776 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
1777 delete_basic_block (to_remove);
1779 update_forwarder_flag (redirect_from);
1780 if (redirect_to != src2)
1781 update_forwarder_flag (src2);
1783 return true;
1786 /* Search the predecessors of BB for common insn sequences. When found,
1787 share code between them by redirecting control flow. Return true if
1788 any changes made. */
1790 static bool
1791 try_crossjump_bb (int mode, basic_block bb)
1793 edge e, e2, fallthru;
1794 bool changed;
1795 unsigned max, ix, ix2;
1796 basic_block ev, ev2;
1797 edge_iterator ei;
1799 /* Nothing to do if there is not at least two incoming edges. */
1800 if (EDGE_COUNT (bb->preds) < 2)
1801 return false;
1803 /* Don't crossjump if this block ends in a computed jump,
1804 unless we are optimizing for size. */
1805 if (!optimize_size
1806 && bb != EXIT_BLOCK_PTR
1807 && computed_jump_p (BB_END (bb)))
1808 return false;
1810 /* If we are partitioning hot/cold basic blocks, we don't want to
1811 mess up unconditional or indirect jumps that cross between hot
1812 and cold sections.
1814 Basic block partitioning may result in some jumps that appear to
1815 be optimizable (or blocks that appear to be mergeable), but which really
1816 must be left untouched (they are required to make it safely across
1817 partition boundaries). See the comments at the top of
1818 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1820 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
1821 BB_PARTITION (EDGE_PRED (bb, 1)->src)
1822 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
1823 return false;
1825 /* It is always cheapest to redirect a block that ends in a branch to
1826 a block that falls through into BB, as that adds no branches to the
1827 program. We'll try that combination first. */
1828 fallthru = NULL;
1829 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1831 if (EDGE_COUNT (bb->preds) > max)
1832 return false;
1834 FOR_EACH_EDGE (e, ei, bb->preds)
1836 if (e->flags & EDGE_FALLTHRU)
1837 fallthru = e;
1840 changed = false;
1841 for (ix = 0, ev = bb; ix < EDGE_COUNT (ev->preds); )
1843 e = EDGE_PRED (ev, ix);
1844 ix++;
1846 /* As noted above, first try with the fallthru predecessor. */
1847 if (fallthru)
1849 /* Don't combine the fallthru edge into anything else.
1850 If there is a match, we'll do it the other way around. */
1851 if (e == fallthru)
1852 continue;
1853 /* If nothing changed since the last attempt, there is nothing
1854 we can do. */
1855 if (!first_pass
1856 && (!(df_get_bb_dirty (e->src))
1857 && !(df_get_bb_dirty (fallthru->src))))
1858 continue;
1860 if (try_crossjump_to_edge (mode, e, fallthru))
1862 changed = true;
1863 ix = 0;
1864 ev = bb;
1865 continue;
1869 /* Non-obvious work limiting check: Recognize that we're going
1870 to call try_crossjump_bb on every basic block. So if we have
1871 two blocks with lots of outgoing edges (a switch) and they
1872 share lots of common destinations, then we would do the
1873 cross-jump check once for each common destination.
1875 Now, if the blocks actually are cross-jump candidates, then
1876 all of their destinations will be shared. Which means that
1877 we only need check them for cross-jump candidacy once. We
1878 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1879 choosing to do the check from the block for which the edge
1880 in question is the first successor of A. */
1881 if (EDGE_SUCC (e->src, 0) != e)
1882 continue;
1884 for (ix2 = 0, ev2 = bb; ix2 < EDGE_COUNT (ev2->preds); )
1886 e2 = EDGE_PRED (ev2, ix2);
1887 ix2++;
1889 if (e2 == e)
1890 continue;
1892 /* We've already checked the fallthru edge above. */
1893 if (e2 == fallthru)
1894 continue;
1896 /* The "first successor" check above only prevents multiple
1897 checks of crossjump(A,B). In order to prevent redundant
1898 checks of crossjump(B,A), require that A be the block
1899 with the lowest index. */
1900 if (e->src->index > e2->src->index)
1901 continue;
1903 /* If nothing changed since the last attempt, there is nothing
1904 we can do. */
1905 if (!first_pass
1906 && (!(df_get_bb_dirty (e->src))
1907 && !(df_get_bb_dirty (e2->src))))
1908 continue;
1910 if (try_crossjump_to_edge (mode, e, e2))
1912 changed = true;
1913 ev2 = bb;
1914 ix = 0;
1915 break;
1920 return changed;
1923 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1924 instructions etc. Return nonzero if changes were made. */
1926 static bool
1927 try_optimize_cfg (int mode)
1929 bool changed_overall = false;
1930 bool changed;
1931 int iterations = 0;
1932 basic_block bb, b, next;
1934 if (mode & CLEANUP_CROSSJUMP)
1935 add_noreturn_fake_exit_edges ();
1937 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1938 clear_bb_flags ();
1940 FOR_EACH_BB (bb)
1941 update_forwarder_flag (bb);
1943 if (! targetm.cannot_modify_jumps_p ())
1945 first_pass = true;
1946 /* Attempt to merge blocks as made possible by edge removal. If
1947 a block has only one successor, and the successor has only
1948 one predecessor, they may be combined. */
1951 changed = false;
1952 iterations++;
1954 if (dump_file)
1955 fprintf (dump_file,
1956 "\n\ntry_optimize_cfg iteration %i\n\n",
1957 iterations);
1959 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1961 basic_block c;
1962 edge s;
1963 bool changed_here = false;
1965 /* Delete trivially dead basic blocks. */
1966 if (EDGE_COUNT (b->preds) == 0)
1968 c = b->prev_bb;
1969 if (dump_file)
1970 fprintf (dump_file, "Deleting block %i.\n",
1971 b->index);
1973 delete_basic_block (b);
1974 if (!(mode & CLEANUP_CFGLAYOUT))
1975 changed = true;
1976 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
1977 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
1978 continue;
1981 /* Remove code labels no longer used. */
1982 if (single_pred_p (b)
1983 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
1984 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
1985 && LABEL_P (BB_HEAD (b))
1986 /* If the previous block ends with a branch to this
1987 block, we can't delete the label. Normally this
1988 is a condjump that is yet to be simplified, but
1989 if CASE_DROPS_THRU, this can be a tablejump with
1990 some element going to the same place as the
1991 default (fallthru). */
1992 && (single_pred (b) == ENTRY_BLOCK_PTR
1993 || !JUMP_P (BB_END (single_pred (b)))
1994 || ! label_is_jump_target_p (BB_HEAD (b),
1995 BB_END (single_pred (b)))))
1997 rtx label = BB_HEAD (b);
1999 delete_insn_chain (label, label, false);
2000 /* If the case label is undeletable, move it after the
2001 BASIC_BLOCK note. */
2002 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2004 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2006 reorder_insns_nobb (label, label, bb_note);
2007 BB_HEAD (b) = bb_note;
2008 if (BB_END (b) == bb_note)
2009 BB_END (b) = label;
2011 if (dump_file)
2012 fprintf (dump_file, "Deleted label in block %i.\n",
2013 b->index);
2016 /* If we fall through an empty block, we can remove it. */
2017 if (!(mode & CLEANUP_CFGLAYOUT)
2018 && single_pred_p (b)
2019 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2020 && !LABEL_P (BB_HEAD (b))
2021 && FORWARDER_BLOCK_P (b)
2022 /* Note that forwarder_block_p true ensures that
2023 there is a successor for this block. */
2024 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2025 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2027 if (dump_file)
2028 fprintf (dump_file,
2029 "Deleting fallthru block %i.\n",
2030 b->index);
2032 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2033 redirect_edge_succ_nodup (single_pred_edge (b),
2034 single_succ (b));
2035 delete_basic_block (b);
2036 changed = true;
2037 b = c;
2040 if (single_succ_p (b)
2041 && (s = single_succ_edge (b))
2042 && !(s->flags & EDGE_COMPLEX)
2043 && (c = s->dest) != EXIT_BLOCK_PTR
2044 && single_pred_p (c)
2045 && b != c)
2047 /* When not in cfg_layout mode use code aware of reordering
2048 INSN. This code possibly creates new basic blocks so it
2049 does not fit merge_blocks interface and is kept here in
2050 hope that it will become useless once more of compiler
2051 is transformed to use cfg_layout mode. */
2053 if ((mode & CLEANUP_CFGLAYOUT)
2054 && can_merge_blocks_p (b, c))
2056 merge_blocks (b, c);
2057 update_forwarder_flag (b);
2058 changed_here = true;
2060 else if (!(mode & CLEANUP_CFGLAYOUT)
2061 /* If the jump insn has side effects,
2062 we can't kill the edge. */
2063 && (!JUMP_P (BB_END (b))
2064 || (reload_completed
2065 ? simplejump_p (BB_END (b))
2066 : (onlyjump_p (BB_END (b))
2067 && !tablejump_p (BB_END (b),
2068 NULL, NULL))))
2069 && (next = merge_blocks_move (s, b, c, mode)))
2071 b = next;
2072 changed_here = true;
2076 /* Simplify branch over branch. */
2077 if ((mode & CLEANUP_EXPENSIVE)
2078 && !(mode & CLEANUP_CFGLAYOUT)
2079 && try_simplify_condjump (b))
2080 changed_here = true;
2082 /* If B has a single outgoing edge, but uses a
2083 non-trivial jump instruction without side-effects, we
2084 can either delete the jump entirely, or replace it
2085 with a simple unconditional jump. */
2086 if (single_succ_p (b)
2087 && single_succ (b) != EXIT_BLOCK_PTR
2088 && onlyjump_p (BB_END (b))
2089 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2090 && try_redirect_by_replacing_jump (single_succ_edge (b),
2091 single_succ (b),
2092 (mode & CLEANUP_CFGLAYOUT) != 0))
2094 update_forwarder_flag (b);
2095 changed_here = true;
2098 /* Simplify branch to branch. */
2099 if (try_forward_edges (mode, b))
2100 changed_here = true;
2102 /* Look for shared code between blocks. */
2103 if ((mode & CLEANUP_CROSSJUMP)
2104 && try_crossjump_bb (mode, b))
2105 changed_here = true;
2107 /* Don't get confused by the index shift caused by
2108 deleting blocks. */
2109 if (!changed_here)
2110 b = b->next_bb;
2111 else
2112 changed = true;
2115 if ((mode & CLEANUP_CROSSJUMP)
2116 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2117 changed = true;
2119 #ifdef ENABLE_CHECKING
2120 if (changed)
2121 verify_flow_info ();
2122 #endif
2124 changed_overall |= changed;
2125 first_pass = false;
2127 while (changed);
2130 if (mode & CLEANUP_CROSSJUMP)
2131 remove_fake_exit_edges ();
2133 FOR_ALL_BB (b)
2134 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2136 return changed_overall;
2139 /* Delete all unreachable basic blocks. */
2141 bool
2142 delete_unreachable_blocks (void)
2144 bool changed = false;
2145 basic_block b, next_bb;
2147 find_unreachable_blocks ();
2149 /* Delete all unreachable basic blocks. */
2151 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2153 next_bb = b->next_bb;
2155 if (!(b->flags & BB_REACHABLE))
2157 delete_basic_block (b);
2158 changed = true;
2162 if (changed)
2163 tidy_fallthru_edges ();
2164 return changed;
2167 /* Delete any jump tables never referenced. We can't delete them at the
2168 time of removing tablejump insn as they are referenced by the preceding
2169 insns computing the destination, so we delay deleting and garbagecollect
2170 them once life information is computed. */
2171 void
2172 delete_dead_jumptables (void)
2174 basic_block bb;
2176 /* A dead jump table does not belong to any basic block. Scan insns
2177 between two adjacent basic blocks. */
2178 FOR_EACH_BB (bb)
2180 rtx insn, next;
2182 for (insn = NEXT_INSN (BB_END (bb));
2183 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2184 insn = next)
2186 next = NEXT_INSN (insn);
2187 if (LABEL_P (insn)
2188 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2189 && JUMP_P (next)
2190 && (GET_CODE (PATTERN (next)) == ADDR_VEC
2191 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
2193 rtx label = insn, jump = next;
2195 if (dump_file)
2196 fprintf (dump_file, "Dead jumptable %i removed\n",
2197 INSN_UID (insn));
2199 next = NEXT_INSN (next);
2200 delete_insn (jump);
2201 delete_insn (label);
2208 /* Tidy the CFG by deleting unreachable code and whatnot. */
2210 bool
2211 cleanup_cfg (int mode)
2213 bool changed = false;
2215 /* Set the cfglayout mode flag here. We could update all the callers
2216 but that is just inconvenient, especially given that we eventually
2217 want to have cfglayout mode as the default. */
2218 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2219 mode |= CLEANUP_CFGLAYOUT;
2221 timevar_push (TV_CLEANUP_CFG);
2222 if (delete_unreachable_blocks ())
2224 changed = true;
2225 /* We've possibly created trivially dead code. Cleanup it right
2226 now to introduce more opportunities for try_optimize_cfg. */
2227 if (!(mode & (CLEANUP_NO_INSN_DEL))
2228 && !reload_completed)
2229 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2232 compact_blocks ();
2234 while (try_optimize_cfg (mode))
2236 delete_unreachable_blocks (), changed = true;
2237 if (!(mode & CLEANUP_NO_INSN_DEL)
2238 && (mode & CLEANUP_EXPENSIVE)
2239 && !reload_completed)
2241 if (!delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2242 break;
2244 else
2245 break;
2248 /* Don't call delete_dead_jumptables in cfglayout mode, because
2249 that function assumes that jump tables are in the insns stream.
2250 But we also don't _have_ to delete dead jumptables in cfglayout
2251 mode because we shouldn't even be looking at things that are
2252 not in a basic block. Dead jumptables are cleaned up when
2253 going out of cfglayout mode. */
2254 if (!(mode & CLEANUP_CFGLAYOUT))
2255 delete_dead_jumptables ();
2257 timevar_pop (TV_CLEANUP_CFG);
2259 return changed;
2262 static unsigned int
2263 rest_of_handle_jump (void)
2265 delete_unreachable_blocks ();
2267 if (cfun->tail_call_emit)
2268 fixup_tail_calls ();
2269 return 0;
2272 struct tree_opt_pass pass_jump =
2274 "sibling", /* name */
2275 NULL, /* gate */
2276 rest_of_handle_jump, /* execute */
2277 NULL, /* sub */
2278 NULL, /* next */
2279 0, /* static_pass_number */
2280 TV_JUMP, /* tv_id */
2281 0, /* properties_required */
2282 0, /* properties_provided */
2283 0, /* properties_destroyed */
2284 TODO_ggc_collect, /* todo_flags_start */
2285 TODO_dump_func |
2286 TODO_verify_flow, /* todo_flags_finish */
2287 'i' /* letter */
2291 static unsigned int
2292 rest_of_handle_jump2 (void)
2294 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2295 if (dump_file)
2296 dump_flow_info (dump_file, dump_flags);
2297 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2298 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2299 return 0;
2303 struct tree_opt_pass pass_jump2 =
2305 "jump", /* name */
2306 NULL, /* gate */
2307 rest_of_handle_jump2, /* execute */
2308 NULL, /* sub */
2309 NULL, /* next */
2310 0, /* static_pass_number */
2311 TV_JUMP, /* tv_id */
2312 0, /* properties_required */
2313 0, /* properties_provided */
2314 0, /* properties_destroyed */
2315 TODO_ggc_collect, /* todo_flags_start */
2316 TODO_dump_func, /* todo_flags_finish */
2317 'j' /* letter */