1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "tree-pass.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "fold-const.h"
32 #include "gimple-iterator.h"
37 /* This implements the pass that does predicate aware warning on uses of
38 possibly uninitialized variables. The pass first collects the set of
39 possibly uninitialized SSA names. For each such name, it walks through
40 all its immediate uses. For each immediate use, it rebuilds the condition
41 expression (the predicate) that guards the use. The predicate is then
42 examined to see if the variable is always defined under that same condition.
43 This is done either by pruning the unrealizable paths that lead to the
44 default definitions or by checking if the predicate set that guards the
45 defining paths is a superset of the use predicate. */
47 /* Max PHI args we can handle in pass. */
48 const unsigned max_phi_args
= 32;
50 /* Pointer set of potentially undefined ssa names, i.e.,
51 ssa names that are defined by phi with operands that
52 are not defined or potentially undefined. */
53 static hash_set
<tree
> *possibly_undefined_names
= 0;
55 /* Bit mask handling macros. */
56 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
57 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
58 #define MASK_EMPTY(mask) (mask == 0)
60 /* Returns the first bit position (starting from LSB)
61 in mask that is non zero. Returns -1 if the mask is empty. */
63 get_mask_first_set_bit (unsigned mask
)
69 while ((mask
& (1 << pos
)) == 0)
74 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
76 /* Return true if T, an SSA_NAME, has an undefined value. */
78 has_undefined_value_p (tree t
)
80 return (ssa_undefined_value_p (t
)
81 || (possibly_undefined_names
82 && possibly_undefined_names
->contains (t
)));
85 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
86 is set on SSA_NAME_VAR. */
89 uninit_undefined_value_p (tree t
)
91 if (!has_undefined_value_p (t
))
93 if (SSA_NAME_VAR (t
) && TREE_NO_WARNING (SSA_NAME_VAR (t
)))
98 /* Emit warnings for uninitialized variables. This is done in two passes.
100 The first pass notices real uses of SSA names with undefined values.
101 Such uses are unconditionally uninitialized, and we can be certain that
102 such a use is a mistake. This pass is run before most optimizations,
103 so that we catch as many as we can.
105 The second pass follows PHI nodes to find uses that are potentially
106 uninitialized. In this case we can't necessarily prove that the use
107 is really uninitialized. This pass is run after most optimizations,
108 so that we thread as many jumps and possible, and delete as much dead
109 code as possible, in order to reduce false positives. We also look
110 again for plain uninitialized variables, since optimization may have
111 changed conditionally uninitialized to unconditionally uninitialized. */
113 /* Emit a warning for EXPR based on variable VAR at the point in the
114 program T, an SSA_NAME, is used being uninitialized. The exact
115 warning text is in MSGID and DATA is the gimple stmt with info about
116 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
117 gives which argument of the phi node to take the location from. WC
118 is the warning code. */
121 warn_uninit (enum opt_code wc
, tree t
, tree expr
, tree var
,
122 const char *gmsgid
, void *data
, location_t phiarg_loc
)
124 gimple
*context
= (gimple
*) data
;
125 location_t location
, cfun_loc
;
126 expanded_location xloc
, floc
;
128 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
129 turns in a COMPLEX_EXPR with the not initialized part being
130 set to its previous (undefined) value. */
131 if (is_gimple_assign (context
)
132 && gimple_assign_rhs_code (context
) == COMPLEX_EXPR
)
134 if (!has_undefined_value_p (t
))
137 /* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
138 can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR
139 created for conversion from scalar to complex. Use the underlying var of
140 the COMPLEX_EXPRs real part in that case. See PR71581. */
141 if (expr
== NULL_TREE
143 && SSA_NAME_VAR (t
) == NULL_TREE
144 && is_gimple_assign (SSA_NAME_DEF_STMT (t
))
145 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t
)) == COMPLEX_EXPR
)
147 tree v
= gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t
));
148 if (TREE_CODE (v
) == SSA_NAME
149 && has_undefined_value_p (v
)
150 && zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t
))))
152 expr
= SSA_NAME_VAR (v
);
157 if (expr
== NULL_TREE
)
160 /* TREE_NO_WARNING either means we already warned, or the front end
161 wishes to suppress the warning. */
163 && (gimple_no_warning_p (context
)
164 || (gimple_assign_single_p (context
)
165 && TREE_NO_WARNING (gimple_assign_rhs1 (context
)))))
166 || TREE_NO_WARNING (expr
))
169 if (context
!= NULL
&& gimple_has_location (context
))
170 location
= gimple_location (context
);
171 else if (phiarg_loc
!= UNKNOWN_LOCATION
)
172 location
= phiarg_loc
;
174 location
= DECL_SOURCE_LOCATION (var
);
175 location
= linemap_resolve_location (line_table
, location
,
176 LRK_SPELLING_LOCATION
, NULL
);
177 cfun_loc
= DECL_SOURCE_LOCATION (cfun
->decl
);
178 xloc
= expand_location (location
);
179 floc
= expand_location (cfun_loc
);
180 if (warning_at (location
, wc
, gmsgid
, expr
))
182 TREE_NO_WARNING (expr
) = 1;
184 if (location
== DECL_SOURCE_LOCATION (var
))
186 if (xloc
.file
!= floc
.file
187 || linemap_location_before_p (line_table
, location
, cfun_loc
)
188 || linemap_location_before_p (line_table
, cfun
->function_end_locus
,
190 inform (DECL_SOURCE_LOCATION (var
), "%qD was declared here", var
);
194 struct check_defs_data
196 /* If we found any may-defs besides must-def clobbers. */
200 /* Callback for walk_aliased_vdefs. */
203 check_defs (ao_ref
*ref
, tree vdef
, void *data_
)
205 check_defs_data
*data
= (check_defs_data
*)data_
;
206 gimple
*def_stmt
= SSA_NAME_DEF_STMT (vdef
);
207 /* If this is a clobber then if it is not a kill walk past it. */
208 if (gimple_clobber_p (def_stmt
))
210 if (stmt_kills_ref_p (def_stmt
, ref
))
214 /* Found a may-def on this path. */
215 data
->found_may_defs
= true;
220 warn_uninitialized_vars (bool warn_possibly_uninitialized
)
222 gimple_stmt_iterator gsi
;
224 unsigned int vdef_cnt
= 0;
225 unsigned int oracle_cnt
= 0;
228 FOR_EACH_BB_FN (bb
, cfun
)
230 basic_block succ
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
231 bool always_executed
= dominated_by_p (CDI_POST_DOMINATORS
, succ
, bb
);
232 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
234 gimple
*stmt
= gsi_stmt (gsi
);
239 if (is_gimple_debug (stmt
))
242 /* We only do data flow with SSA_NAMEs, so that's all we
244 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, op_iter
, SSA_OP_USE
)
246 /* BIT_INSERT_EXPR first operand should not be considered
247 a use for the purpose of uninit warnings. */
248 if (gassign
*ass
= dyn_cast
<gassign
*> (stmt
))
250 if (gimple_assign_rhs_code (ass
) == BIT_INSERT_EXPR
251 && use_p
->use
== gimple_assign_rhs1_ptr (ass
))
254 use
= USE_FROM_PTR (use_p
);
256 warn_uninit (OPT_Wuninitialized
, use
, SSA_NAME_VAR (use
),
258 "%qD is used uninitialized in this function", stmt
,
260 else if (warn_possibly_uninitialized
)
261 warn_uninit (OPT_Wmaybe_uninitialized
, use
, SSA_NAME_VAR (use
),
263 "%qD may be used uninitialized in this function",
264 stmt
, UNKNOWN_LOCATION
);
267 /* For limiting the alias walk below we count all
268 vdefs in the function. */
269 if (gimple_vdef (stmt
))
272 if (gimple_assign_load_p (stmt
)
273 && gimple_has_location (stmt
))
275 tree rhs
= gimple_assign_rhs1 (stmt
);
276 if (TREE_NO_WARNING (rhs
))
280 ao_ref_init (&ref
, rhs
);
282 /* Do not warn if it can be initialized outside this function. */
283 tree base
= ao_ref_base (&ref
);
285 || DECL_HARD_REGISTER (base
)
286 || is_global_var (base
)
287 || TREE_NO_WARNING (base
))
290 /* Do not warn if the access is fully outside of the
293 && ref
.max_size
== ref
.size
294 && (ref
.offset
+ ref
.size
<= 0
296 && TREE_CODE (DECL_SIZE (base
)) == INTEGER_CST
297 && compare_tree_int (DECL_SIZE (base
),
301 /* Limit the walking to a constant number of stmts after
302 we overcommit quadratic behavior for small functions
303 and O(n) behavior. */
304 if (oracle_cnt
> 128 * 128
305 && oracle_cnt
> vdef_cnt
* 2)
307 check_defs_data data
;
308 data
.found_may_defs
= false;
309 use
= gimple_vuse (stmt
);
310 int res
= walk_aliased_vdefs (&ref
, use
,
311 check_defs
, &data
, NULL
,
319 if (data
.found_may_defs
)
322 /* We didn't find any may-defs so on all paths either
323 reached function entry or a killing clobber. */
325 = linemap_resolve_location (line_table
, gimple_location (stmt
),
326 LRK_SPELLING_LOCATION
, NULL
);
329 if (warning_at (location
, OPT_Wuninitialized
,
330 "%qE is used uninitialized in this function",
332 /* ??? This is only effective for decls as in
333 gcc.dg/uninit-B-O0.c. Avoid doing this for
334 maybe-uninit uses as it may hide important
336 TREE_NO_WARNING (rhs
) = 1;
338 else if (warn_possibly_uninitialized
)
339 warning_at (location
, OPT_Wmaybe_uninitialized
,
340 "%qE may be used uninitialized in this function",
349 /* Checks if the operand OPND of PHI is defined by
350 another phi with one operand defined by this PHI,
351 but the rest operands are all defined. If yes,
352 returns true to skip this operand as being
353 redundant. Can be enhanced to be more general. */
356 can_skip_redundant_opnd (tree opnd
, gimple
*phi
)
362 phi_def
= gimple_phi_result (phi
);
363 op_def
= SSA_NAME_DEF_STMT (opnd
);
364 if (gimple_code (op_def
) != GIMPLE_PHI
)
366 n
= gimple_phi_num_args (op_def
);
367 for (i
= 0; i
< n
; ++i
)
369 tree op
= gimple_phi_arg_def (op_def
, i
);
370 if (TREE_CODE (op
) != SSA_NAME
)
372 if (op
!= phi_def
&& uninit_undefined_value_p (op
))
379 /* Returns a bit mask holding the positions of arguments in PHI
380 that have empty (or possibly empty) definitions. */
383 compute_uninit_opnds_pos (gphi
*phi
)
386 unsigned uninit_opnds
= 0;
388 n
= gimple_phi_num_args (phi
);
389 /* Bail out for phi with too many args. */
390 if (n
> max_phi_args
)
393 for (i
= 0; i
< n
; ++i
)
395 tree op
= gimple_phi_arg_def (phi
, i
);
396 if (TREE_CODE (op
) == SSA_NAME
397 && uninit_undefined_value_p (op
)
398 && !can_skip_redundant_opnd (op
, phi
))
400 if (cfun
->has_nonlocal_label
|| cfun
->calls_setjmp
)
402 /* Ignore SSA_NAMEs that appear on abnormal edges
404 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
407 MASK_SET_BIT (uninit_opnds
, i
);
413 /* Find the immediate postdominator PDOM of the specified
414 basic block BLOCK. */
416 static inline basic_block
417 find_pdom (basic_block block
)
419 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
420 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
423 basic_block bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
425 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
430 /* Find the immediate DOM of the specified basic block BLOCK. */
432 static inline basic_block
433 find_dom (basic_block block
)
435 if (block
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
436 return ENTRY_BLOCK_PTR_FOR_FN (cfun
);
439 basic_block bb
= get_immediate_dominator (CDI_DOMINATORS
, block
);
441 return ENTRY_BLOCK_PTR_FOR_FN (cfun
);
446 /* Returns true if BB1 is postdominating BB2 and BB1 is
447 not a loop exit bb. The loop exit bb check is simple and does
448 not cover all cases. */
451 is_non_loop_exit_postdominating (basic_block bb1
, basic_block bb2
)
453 if (!dominated_by_p (CDI_POST_DOMINATORS
, bb2
, bb1
))
456 if (single_pred_p (bb1
) && !single_succ_p (bb2
))
462 /* Find the closest postdominator of a specified BB, which is control
465 static inline basic_block
466 find_control_equiv_block (basic_block bb
)
470 pdom
= find_pdom (bb
);
472 /* Skip the postdominating bb that is also loop exit. */
473 if (!is_non_loop_exit_postdominating (pdom
, bb
))
476 if (dominated_by_p (CDI_DOMINATORS
, pdom
, bb
))
482 #define MAX_NUM_CHAINS 8
483 #define MAX_CHAIN_LEN 5
484 #define MAX_POSTDOM_CHECK 8
485 #define MAX_SWITCH_CASES 40
487 /* Computes the control dependence chains (paths of edges)
488 for DEP_BB up to the dominating basic block BB (the head node of a
489 chain should be dominated by it). CD_CHAINS is pointer to an
490 array holding the result chains. CUR_CD_CHAIN is the current
491 chain being computed. *NUM_CHAINS is total number of chains. The
492 function returns true if the information is successfully computed,
493 return false if there is no control dependence or not computed. */
496 compute_control_dep_chain (basic_block bb
, basic_block dep_bb
,
497 vec
<edge
> *cd_chains
,
499 vec
<edge
> *cur_cd_chain
,
505 bool found_cd_chain
= false;
506 size_t cur_chain_len
= 0;
508 if (EDGE_COUNT (bb
->succs
) < 2)
511 if (*num_calls
> PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS
))
515 /* Could use a set instead. */
516 cur_chain_len
= cur_cd_chain
->length ();
517 if (cur_chain_len
> MAX_CHAIN_LEN
)
520 for (i
= 0; i
< cur_chain_len
; i
++)
522 edge e
= (*cur_cd_chain
)[i
];
523 /* Cycle detected. */
528 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
531 int post_dom_check
= 0;
532 if (e
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
))
536 cur_cd_chain
->safe_push (e
);
537 while (!is_non_loop_exit_postdominating (cd_bb
, bb
))
541 /* Found a direct control dependence. */
542 if (*num_chains
< MAX_NUM_CHAINS
)
544 cd_chains
[*num_chains
] = cur_cd_chain
->copy ();
547 found_cd_chain
= true;
548 /* Check path from next edge. */
552 /* Now check if DEP_BB is indirectly control dependent on BB. */
553 if (compute_control_dep_chain (cd_bb
, dep_bb
, cd_chains
, num_chains
,
554 cur_cd_chain
, num_calls
))
556 found_cd_chain
= true;
560 cd_bb
= find_pdom (cd_bb
);
562 if (cd_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
563 || post_dom_check
> MAX_POSTDOM_CHECK
)
566 cur_cd_chain
->pop ();
567 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
569 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
571 return found_cd_chain
;
574 /* The type to represent a simple predicate. */
580 enum tree_code cond_code
;
584 /* The type to represent a sequence of predicates grouped
585 with .AND. operation. */
587 typedef vec
<pred_info
, va_heap
, vl_ptr
> pred_chain
;
589 /* The type to represent a sequence of pred_chains grouped
590 with .OR. operation. */
592 typedef vec
<pred_chain
, va_heap
, vl_ptr
> pred_chain_union
;
594 /* Converts the chains of control dependence edges into a set of
595 predicates. A control dependence chain is represented by a vector
596 edges. DEP_CHAINS points to an array of dependence chains.
597 NUM_CHAINS is the size of the chain array. One edge in a dependence
598 chain is mapped to predicate expression represented by pred_info
599 type. One dependence chain is converted to a composite predicate that
600 is the result of AND operation of pred_info mapped to each edge.
601 A composite predicate is presented by a vector of pred_info. On
602 return, *PREDS points to the resulting array of composite predicates.
603 *NUM_PREDS is the number of composite predictes. */
606 convert_control_dep_chain_into_preds (vec
<edge
> *dep_chains
,
608 pred_chain_union
*preds
)
610 bool has_valid_pred
= false;
612 if (num_chains
== 0 || num_chains
>= MAX_NUM_CHAINS
)
615 /* Now convert the control dep chain into a set
617 preds
->reserve (num_chains
);
619 for (i
= 0; i
< num_chains
; i
++)
621 vec
<edge
> one_cd_chain
= dep_chains
[i
];
623 has_valid_pred
= false;
624 pred_chain t_chain
= vNULL
;
625 for (j
= 0; j
< one_cd_chain
.length (); j
++)
628 gimple_stmt_iterator gsi
;
629 basic_block guard_bb
;
635 gsi
= gsi_last_bb (guard_bb
);
638 has_valid_pred
= false;
641 cond_stmt
= gsi_stmt (gsi
);
642 if (is_gimple_call (cond_stmt
) && EDGE_COUNT (e
->src
->succs
) >= 2)
643 /* Ignore EH edge. Can add assertion on the other edge's flag. */
645 /* Skip if there is essentially one succesor. */
646 if (EDGE_COUNT (e
->src
->succs
) == 2)
652 FOR_EACH_EDGE (e1
, ei1
, e
->src
->succs
)
654 if (EDGE_COUNT (e1
->dest
->succs
) == 0)
663 if (gimple_code (cond_stmt
) == GIMPLE_COND
)
665 one_pred
.pred_lhs
= gimple_cond_lhs (cond_stmt
);
666 one_pred
.pred_rhs
= gimple_cond_rhs (cond_stmt
);
667 one_pred
.cond_code
= gimple_cond_code (cond_stmt
);
668 one_pred
.invert
= !!(e
->flags
& EDGE_FALSE_VALUE
);
669 t_chain
.safe_push (one_pred
);
670 has_valid_pred
= true;
672 else if (gswitch
*gs
= dyn_cast
<gswitch
*> (cond_stmt
))
674 /* Avoid quadratic behavior. */
675 if (gimple_switch_num_labels (gs
) > MAX_SWITCH_CASES
)
677 has_valid_pred
= false;
680 /* Find the case label. */
683 for (idx
= 0; idx
< gimple_switch_num_labels (gs
); ++idx
)
685 tree tl
= gimple_switch_label (gs
, idx
);
686 if (e
->dest
== label_to_block (CASE_LABEL (tl
)))
697 /* If more than one label reaches this block or the case
698 label doesn't have a single value (like the default one)
703 && !operand_equal_p (CASE_LOW (l
), CASE_HIGH (l
), 0)))
705 has_valid_pred
= false;
708 one_pred
.pred_lhs
= gimple_switch_index (gs
);
709 one_pred
.pred_rhs
= CASE_LOW (l
);
710 one_pred
.cond_code
= EQ_EXPR
;
711 one_pred
.invert
= false;
712 t_chain
.safe_push (one_pred
);
713 has_valid_pred
= true;
717 has_valid_pred
= false;
725 preds
->safe_push (t_chain
);
727 return has_valid_pred
;
730 /* Computes all control dependence chains for USE_BB. The control
731 dependence chains are then converted to an array of composite
732 predicates pointed to by PREDS. PHI_BB is the basic block of
733 the phi whose result is used in USE_BB. */
736 find_predicates (pred_chain_union
*preds
,
740 size_t num_chains
= 0, i
;
742 vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
743 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_chain
;
744 bool has_valid_pred
= false;
745 basic_block cd_root
= 0;
747 /* First find the closest bb that is control equivalent to PHI_BB
748 that also dominates USE_BB. */
750 while (dominated_by_p (CDI_DOMINATORS
, use_bb
, cd_root
))
752 basic_block ctrl_eq_bb
= find_control_equiv_block (cd_root
);
753 if (ctrl_eq_bb
&& dominated_by_p (CDI_DOMINATORS
, use_bb
, ctrl_eq_bb
))
754 cd_root
= ctrl_eq_bb
;
759 compute_control_dep_chain (cd_root
, use_bb
, dep_chains
, &num_chains
,
760 &cur_chain
, &num_calls
);
763 = convert_control_dep_chain_into_preds (dep_chains
, num_chains
, preds
);
764 for (i
= 0; i
< num_chains
; i
++)
765 dep_chains
[i
].release ();
766 return has_valid_pred
;
769 /* Computes the set of incoming edges of PHI that have non empty
770 definitions of a phi chain. The collection will be done
771 recursively on operands that are defined by phis. CD_ROOT
772 is the control dependence root. *EDGES holds the result, and
773 VISITED_PHIS is a pointer set for detecting cycles. */
776 collect_phi_def_edges (gphi
*phi
, basic_block cd_root
,
777 auto_vec
<edge
> *edges
,
778 hash_set
<gimple
*> *visited_phis
)
784 if (visited_phis
->add (phi
))
787 n
= gimple_phi_num_args (phi
);
788 for (i
= 0; i
< n
; i
++)
790 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
791 opnd
= gimple_phi_arg_def (phi
, i
);
793 if (TREE_CODE (opnd
) != SSA_NAME
)
795 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
797 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ", (int) i
);
798 print_gimple_stmt (dump_file
, phi
, 0, 0);
800 edges
->safe_push (opnd_edge
);
804 gimple
*def
= SSA_NAME_DEF_STMT (opnd
);
806 if (gimple_code (def
) == GIMPLE_PHI
807 && dominated_by_p (CDI_DOMINATORS
, gimple_bb (def
), cd_root
))
808 collect_phi_def_edges (as_a
<gphi
*> (def
), cd_root
, edges
,
810 else if (!uninit_undefined_value_p (opnd
))
812 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
814 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ",
816 print_gimple_stmt (dump_file
, phi
, 0, 0);
818 edges
->safe_push (opnd_edge
);
824 /* For each use edge of PHI, computes all control dependence chains.
825 The control dependence chains are then converted to an array of
826 composite predicates pointed to by PREDS. */
829 find_def_preds (pred_chain_union
*preds
, gphi
*phi
)
831 size_t num_chains
= 0, i
, n
;
832 vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
833 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_chain
;
834 auto_vec
<edge
> def_edges
;
835 bool has_valid_pred
= false;
836 basic_block phi_bb
, cd_root
= 0;
838 phi_bb
= gimple_bb (phi
);
839 /* First find the closest dominating bb to be
840 the control dependence root. */
841 cd_root
= find_dom (phi_bb
);
845 hash_set
<gimple
*> visited_phis
;
846 collect_phi_def_edges (phi
, cd_root
, &def_edges
, &visited_phis
);
848 n
= def_edges
.length ();
852 for (i
= 0; i
< n
; i
++)
858 opnd_edge
= def_edges
[i
];
859 prev_nc
= num_chains
;
860 compute_control_dep_chain (cd_root
, opnd_edge
->src
, dep_chains
,
861 &num_chains
, &cur_chain
, &num_calls
);
863 /* Now update the newly added chains with
864 the phi operand edge: */
865 if (EDGE_COUNT (opnd_edge
->src
->succs
) > 1)
867 if (prev_nc
== num_chains
&& num_chains
< MAX_NUM_CHAINS
)
868 dep_chains
[num_chains
++] = vNULL
;
869 for (j
= prev_nc
; j
< num_chains
; j
++)
870 dep_chains
[j
].safe_push (opnd_edge
);
875 = convert_control_dep_chain_into_preds (dep_chains
, num_chains
, preds
);
876 for (i
= 0; i
< num_chains
; i
++)
877 dep_chains
[i
].release ();
878 return has_valid_pred
;
881 /* Dumps the predicates (PREDS) for USESTMT. */
884 dump_predicates (gimple
*usestmt
, pred_chain_union preds
, const char *msg
)
887 pred_chain one_pred_chain
= vNULL
;
888 fprintf (dump_file
, "%s", msg
);
889 print_gimple_stmt (dump_file
, usestmt
, 0, 0);
890 fprintf (dump_file
, "is guarded by :\n\n");
891 size_t num_preds
= preds
.length ();
892 /* Do some dumping here: */
893 for (i
= 0; i
< num_preds
; i
++)
897 one_pred_chain
= preds
[i
];
898 np
= one_pred_chain
.length ();
900 for (j
= 0; j
< np
; j
++)
902 pred_info one_pred
= one_pred_chain
[j
];
904 fprintf (dump_file
, " (.NOT.) ");
905 print_generic_expr (dump_file
, one_pred
.pred_lhs
, 0);
906 fprintf (dump_file
, " %s ", op_symbol_code (one_pred
.cond_code
));
907 print_generic_expr (dump_file
, one_pred
.pred_rhs
, 0);
909 fprintf (dump_file
, " (.AND.) ");
911 fprintf (dump_file
, "\n");
913 if (i
< num_preds
- 1)
914 fprintf (dump_file
, "(.OR.)\n");
916 fprintf (dump_file
, "\n\n");
920 /* Destroys the predicate set *PREDS. */
923 destroy_predicate_vecs (pred_chain_union
*preds
)
927 size_t n
= preds
->length ();
928 for (i
= 0; i
< n
; i
++)
929 (*preds
)[i
].release ();
933 /* Computes the 'normalized' conditional code with operand
934 swapping and condition inversion. */
936 static enum tree_code
937 get_cmp_code (enum tree_code orig_cmp_code
, bool swap_cond
, bool invert
)
939 enum tree_code tc
= orig_cmp_code
;
942 tc
= swap_tree_comparison (orig_cmp_code
);
944 tc
= invert_tree_comparison (tc
, false);
961 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
962 all values in the range satisfies (x CMPC BOUNDARY) == true. */
965 is_value_included_in (tree val
, tree boundary
, enum tree_code cmpc
)
967 bool inverted
= false;
971 /* Only handle integer constant here. */
972 if (TREE_CODE (val
) != INTEGER_CST
|| TREE_CODE (boundary
) != INTEGER_CST
)
975 is_unsigned
= TYPE_UNSIGNED (TREE_TYPE (val
));
977 if (cmpc
== GE_EXPR
|| cmpc
== GT_EXPR
|| cmpc
== NE_EXPR
)
979 cmpc
= invert_tree_comparison (cmpc
, false);
986 result
= tree_int_cst_equal (val
, boundary
);
987 else if (cmpc
== LT_EXPR
)
988 result
= tree_int_cst_lt (val
, boundary
);
991 gcc_assert (cmpc
== LE_EXPR
);
992 result
= tree_int_cst_le (val
, boundary
);
998 result
= tree_int_cst_equal (val
, boundary
);
999 else if (cmpc
== LT_EXPR
)
1000 result
= tree_int_cst_lt (val
, boundary
);
1003 gcc_assert (cmpc
== LE_EXPR
);
1004 result
= (tree_int_cst_equal (val
, boundary
)
1005 || tree_int_cst_lt (val
, boundary
));
1015 /* Returns true if PRED is common among all the predicate
1016 chains (PREDS) (and therefore can be factored out).
1017 NUM_PRED_CHAIN is the size of array PREDS. */
1020 find_matching_predicate_in_rest_chains (pred_info pred
,
1021 pred_chain_union preds
,
1022 size_t num_pred_chains
)
1027 if (num_pred_chains
== 1)
1030 for (i
= 1; i
< num_pred_chains
; i
++)
1033 pred_chain one_chain
= preds
[i
];
1034 n
= one_chain
.length ();
1035 for (j
= 0; j
< n
; j
++)
1037 pred_info pred2
= one_chain
[j
];
1038 /* Can relax the condition comparison to not
1039 use address comparison. However, the most common
1040 case is that multiple control dependent paths share
1041 a common path prefix, so address comparison should
1044 if (operand_equal_p (pred2
.pred_lhs
, pred
.pred_lhs
, 0)
1045 && operand_equal_p (pred2
.pred_rhs
, pred
.pred_rhs
, 0)
1046 && pred2
.invert
== pred
.invert
)
1058 /* Forward declaration. */
1059 static bool is_use_properly_guarded (gimple
*use_stmt
,
1062 unsigned uninit_opnds
,
1063 pred_chain_union
*def_preds
,
1064 hash_set
<gphi
*> *visited_phis
);
1066 /* Returns true if all uninitialized opnds are pruned. Returns false
1067 otherwise. PHI is the phi node with uninitialized operands,
1068 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
1069 FLAG_DEF is the statement defining the flag guarding the use of the
1070 PHI output, BOUNDARY_CST is the const value used in the predicate
1071 associated with the flag, CMP_CODE is the comparison code used in
1072 the predicate, VISITED_PHIS is the pointer set of phis visited, and
1073 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
1079 flag_1 = phi <0, 1> // (1)
1080 var_1 = phi <undef, some_val>
1084 flag_2 = phi <0, flag_1, flag_1> // (2)
1085 var_2 = phi <undef, var_1, var_1>
1092 Because some flag arg in (1) is not constant, if we do not look into the
1093 flag phis recursively, it is conservatively treated as unknown and var_1
1094 is thought to be flowed into use at (3). Since var_1 is potentially
1095 uninitialized a false warning will be emitted.
1096 Checking recursively into (1), the compiler can find out that only some_val
1097 (which is defined) can flow into (3) which is OK. */
1100 prune_uninit_phi_opnds (gphi
*phi
, unsigned uninit_opnds
, gphi
*flag_def
,
1101 tree boundary_cst
, enum tree_code cmp_code
,
1102 hash_set
<gphi
*> *visited_phis
,
1103 bitmap
*visited_flag_phis
)
1107 for (i
= 0; i
< MIN (max_phi_args
, gimple_phi_num_args (flag_def
)); i
++)
1111 if (!MASK_TEST_BIT (uninit_opnds
, i
))
1114 flag_arg
= gimple_phi_arg_def (flag_def
, i
);
1115 if (!is_gimple_constant (flag_arg
))
1117 gphi
*flag_arg_def
, *phi_arg_def
;
1119 unsigned uninit_opnds_arg_phi
;
1121 if (TREE_CODE (flag_arg
) != SSA_NAME
)
1123 flag_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (flag_arg
));
1127 phi_arg
= gimple_phi_arg_def (phi
, i
);
1128 if (TREE_CODE (phi_arg
) != SSA_NAME
)
1131 phi_arg_def
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (phi_arg
));
1135 if (gimple_bb (phi_arg_def
) != gimple_bb (flag_arg_def
))
1138 if (!*visited_flag_phis
)
1139 *visited_flag_phis
= BITMAP_ALLOC (NULL
);
1141 tree phi_result
= gimple_phi_result (flag_arg_def
);
1142 if (bitmap_bit_p (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
)))
1145 bitmap_set_bit (*visited_flag_phis
,
1146 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
)));
1148 /* Now recursively prune the uninitialized phi args. */
1149 uninit_opnds_arg_phi
= compute_uninit_opnds_pos (phi_arg_def
);
1150 if (!prune_uninit_phi_opnds
1151 (phi_arg_def
, uninit_opnds_arg_phi
, flag_arg_def
, boundary_cst
,
1152 cmp_code
, visited_phis
, visited_flag_phis
))
1155 phi_result
= gimple_phi_result (flag_arg_def
);
1156 bitmap_clear_bit (*visited_flag_phis
, SSA_NAME_VERSION (phi_result
));
1160 /* Now check if the constant is in the guarded range. */
1161 if (is_value_included_in (flag_arg
, boundary_cst
, cmp_code
))
1166 /* Now that we know that this undefined edge is not
1167 pruned. If the operand is defined by another phi,
1168 we can further prune the incoming edges of that
1169 phi by checking the predicates of this operands. */
1171 opnd
= gimple_phi_arg_def (phi
, i
);
1172 opnd_def
= SSA_NAME_DEF_STMT (opnd
);
1173 if (gphi
*opnd_def_phi
= dyn_cast
<gphi
*> (opnd_def
))
1176 unsigned uninit_opnds2
= compute_uninit_opnds_pos (opnd_def_phi
);
1177 if (!MASK_EMPTY (uninit_opnds2
))
1179 pred_chain_union def_preds
= vNULL
;
1181 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
1182 ok
= is_use_properly_guarded (phi
,
1188 destroy_predicate_vecs (&def_preds
);
1201 /* A helper function that determines if the predicate set
1202 of the use is not overlapping with that of the uninit paths.
1203 The most common senario of guarded use is in Example 1:
1216 The real world examples are usually more complicated, but similar
1217 and usually result from inlining:
1219 bool init_func (int * x)
1231 if (!init_func (&x))
1238 Another possible use scenario is in the following trivial example:
1250 Predicate analysis needs to compute the composite predicate:
1252 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1253 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1254 (the predicate chain for phi operand defs can be computed
1255 starting from a bb that is control equivalent to the phi's
1256 bb and is dominating the operand def.)
1258 and check overlapping:
1259 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1262 This implementation provides framework that can handle
1263 scenarios. (Note that many simple cases are handled properly
1264 without the predicate analysis -- this is due to jump threading
1265 transformation which eliminates the merge point thus makes
1266 path sensitive analysis unnecessary.)
1268 PHI is the phi node whose incoming (undefined) paths need to be
1269 pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
1270 positions. VISITED_PHIS is the pointer set of phi stmts being
1274 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds
,
1275 gphi
*phi
, unsigned uninit_opnds
,
1276 hash_set
<gphi
*> *visited_phis
)
1279 gimple
*flag_def
= 0;
1280 tree boundary_cst
= 0;
1281 enum tree_code cmp_code
;
1282 bool swap_cond
= false;
1283 bool invert
= false;
1284 pred_chain the_pred_chain
= vNULL
;
1285 bitmap visited_flag_phis
= NULL
;
1286 bool all_pruned
= false;
1287 size_t num_preds
= preds
.length ();
1289 gcc_assert (num_preds
> 0);
1290 /* Find within the common prefix of multiple predicate chains
1291 a predicate that is a comparison of a flag variable against
1293 the_pred_chain
= preds
[0];
1294 n
= the_pred_chain
.length ();
1295 for (i
= 0; i
< n
; i
++)
1297 tree cond_lhs
, cond_rhs
, flag
= 0;
1299 pred_info the_pred
= the_pred_chain
[i
];
1301 invert
= the_pred
.invert
;
1302 cond_lhs
= the_pred
.pred_lhs
;
1303 cond_rhs
= the_pred
.pred_rhs
;
1304 cmp_code
= the_pred
.cond_code
;
1306 if (cond_lhs
!= NULL_TREE
&& TREE_CODE (cond_lhs
) == SSA_NAME
1307 && cond_rhs
!= NULL_TREE
&& is_gimple_constant (cond_rhs
))
1309 boundary_cst
= cond_rhs
;
1312 else if (cond_rhs
!= NULL_TREE
&& TREE_CODE (cond_rhs
) == SSA_NAME
1313 && cond_lhs
!= NULL_TREE
&& is_gimple_constant (cond_lhs
))
1315 boundary_cst
= cond_lhs
;
1323 flag_def
= SSA_NAME_DEF_STMT (flag
);
1328 if ((gimple_code (flag_def
) == GIMPLE_PHI
)
1329 && (gimple_bb (flag_def
) == gimple_bb (phi
))
1330 && find_matching_predicate_in_rest_chains (the_pred
, preds
,
1340 /* Now check all the uninit incoming edge has a constant flag value
1341 that is in conflict with the use guard/predicate. */
1342 cmp_code
= get_cmp_code (cmp_code
, swap_cond
, invert
);
1344 if (cmp_code
== ERROR_MARK
)
1347 all_pruned
= prune_uninit_phi_opnds
1348 (phi
, uninit_opnds
, as_a
<gphi
*> (flag_def
), boundary_cst
, cmp_code
,
1349 visited_phis
, &visited_flag_phis
);
1351 if (visited_flag_phis
)
1352 BITMAP_FREE (visited_flag_phis
);
1357 /* The helper function returns true if two predicates X1 and X2
1358 are equivalent. It assumes the expressions have already
1359 properly re-associated. */
1362 pred_equal_p (pred_info x1
, pred_info x2
)
1364 enum tree_code c1
, c2
;
1365 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
1366 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
1370 if (x1
.invert
!= x2
.invert
1371 && TREE_CODE_CLASS (x2
.cond_code
) == tcc_comparison
)
1372 c2
= invert_tree_comparison (x2
.cond_code
, false);
1379 /* Returns true if the predication is testing !=. */
1382 is_neq_relop_p (pred_info pred
)
1385 return ((pred
.cond_code
== NE_EXPR
&& !pred
.invert
)
1386 || (pred
.cond_code
== EQ_EXPR
&& pred
.invert
));
1389 /* Returns true if pred is of the form X != 0. */
1392 is_neq_zero_form_p (pred_info pred
)
1394 if (!is_neq_relop_p (pred
) || !integer_zerop (pred
.pred_rhs
)
1395 || TREE_CODE (pred
.pred_lhs
) != SSA_NAME
)
1400 /* The helper function returns true if two predicates X1
1401 is equivalent to X2 != 0. */
1404 pred_expr_equal_p (pred_info x1
, tree x2
)
1406 if (!is_neq_zero_form_p (x1
))
1409 return operand_equal_p (x1
.pred_lhs
, x2
, 0);
1412 /* Returns true of the domain of single predicate expression
1413 EXPR1 is a subset of that of EXPR2. Returns false if it
1414 can not be proved. */
1417 is_pred_expr_subset_of (pred_info expr1
, pred_info expr2
)
1419 enum tree_code code1
, code2
;
1421 if (pred_equal_p (expr1
, expr2
))
1424 if ((TREE_CODE (expr1
.pred_rhs
) != INTEGER_CST
)
1425 || (TREE_CODE (expr2
.pred_rhs
) != INTEGER_CST
))
1428 if (!operand_equal_p (expr1
.pred_lhs
, expr2
.pred_lhs
, 0))
1431 code1
= expr1
.cond_code
;
1433 code1
= invert_tree_comparison (code1
, false);
1434 code2
= expr2
.cond_code
;
1436 code2
= invert_tree_comparison (code2
, false);
1438 if ((code1
== EQ_EXPR
|| code1
== BIT_AND_EXPR
) && code2
== BIT_AND_EXPR
)
1439 return wi::eq_p (expr1
.pred_rhs
,
1440 wi::bit_and (expr1
.pred_rhs
, expr2
.pred_rhs
));
1442 if (code1
!= code2
&& code2
!= NE_EXPR
)
1445 if (is_value_included_in (expr1
.pred_rhs
, expr2
.pred_rhs
, code2
))
1451 /* Returns true if the domain of PRED1 is a subset
1452 of that of PRED2. Returns false if it can not be proved so. */
1455 is_pred_chain_subset_of (pred_chain pred1
, pred_chain pred2
)
1457 size_t np1
, np2
, i1
, i2
;
1459 np1
= pred1
.length ();
1460 np2
= pred2
.length ();
1462 for (i2
= 0; i2
< np2
; i2
++)
1465 pred_info info2
= pred2
[i2
];
1466 for (i1
= 0; i1
< np1
; i1
++)
1468 pred_info info1
= pred1
[i1
];
1469 if (is_pred_expr_subset_of (info1
, info2
))
1481 /* Returns true if the domain defined by
1482 one pred chain ONE_PRED is a subset of the domain
1483 of *PREDS. It returns false if ONE_PRED's domain is
1484 not a subset of any of the sub-domains of PREDS
1485 (corresponding to each individual chains in it), even
1486 though it may be still be a subset of whole domain
1487 of PREDS which is the union (ORed) of all its subdomains.
1488 In other words, the result is conservative. */
1491 is_included_in (pred_chain one_pred
, pred_chain_union preds
)
1494 size_t n
= preds
.length ();
1496 for (i
= 0; i
< n
; i
++)
1498 if (is_pred_chain_subset_of (one_pred
, preds
[i
]))
1505 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1506 true if the domain defined by PREDS1 is a superset
1507 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1508 PREDS2 respectively. The implementation chooses not to build
1509 generic trees (and relying on the folding capability of the
1510 compiler), but instead performs brute force comparison of
1511 individual predicate chains (won't be a compile time problem
1512 as the chains are pretty short). When the function returns
1513 false, it does not necessarily mean *PREDS1 is not a superset
1514 of *PREDS2, but mean it may not be so since the analysis can
1515 not prove it. In such cases, false warnings may still be
1519 is_superset_of (pred_chain_union preds1
, pred_chain_union preds2
)
1522 pred_chain one_pred_chain
= vNULL
;
1524 n2
= preds2
.length ();
1526 for (i
= 0; i
< n2
; i
++)
1528 one_pred_chain
= preds2
[i
];
1529 if (!is_included_in (one_pred_chain
, preds1
))
1536 /* Returns true if TC is AND or OR. */
1539 is_and_or_or_p (enum tree_code tc
, tree type
)
1541 return (tc
== BIT_IOR_EXPR
1542 || (tc
== BIT_AND_EXPR
1543 && (type
== 0 || TREE_CODE (type
) == BOOLEAN_TYPE
)));
1546 /* Returns true if X1 is the negate of X2. */
1549 pred_neg_p (pred_info x1
, pred_info x2
)
1551 enum tree_code c1
, c2
;
1552 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
1553 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
1557 if (x1
.invert
== x2
.invert
)
1558 c2
= invert_tree_comparison (x2
.cond_code
, false);
1565 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1566 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1567 3) X OR (!X AND Y) is equivalent to (X OR Y);
1568 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1570 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1573 PREDS is the predicate chains, and N is the number of chains. */
1575 /* Helper function to implement rule 1 above. ONE_CHAIN is
1576 the AND predication to be simplified. */
1579 simplify_pred (pred_chain
*one_chain
)
1582 bool simplified
= false;
1583 pred_chain s_chain
= vNULL
;
1585 n
= one_chain
->length ();
1587 for (i
= 0; i
< n
; i
++)
1589 pred_info
*a_pred
= &(*one_chain
)[i
];
1591 if (!a_pred
->pred_lhs
)
1593 if (!is_neq_zero_form_p (*a_pred
))
1596 gimple
*def_stmt
= SSA_NAME_DEF_STMT (a_pred
->pred_lhs
);
1597 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1599 if (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
)
1601 for (j
= 0; j
< n
; j
++)
1603 pred_info
*b_pred
= &(*one_chain
)[j
];
1605 if (!b_pred
->pred_lhs
)
1607 if (!is_neq_zero_form_p (*b_pred
))
1610 if (pred_expr_equal_p (*b_pred
, gimple_assign_rhs1 (def_stmt
))
1611 || pred_expr_equal_p (*b_pred
, gimple_assign_rhs2 (def_stmt
)))
1613 /* Mark a_pred for removal. */
1614 a_pred
->pred_lhs
= NULL
;
1615 a_pred
->pred_rhs
= NULL
;
1626 for (i
= 0; i
< n
; i
++)
1628 pred_info
*a_pred
= &(*one_chain
)[i
];
1629 if (!a_pred
->pred_lhs
)
1631 s_chain
.safe_push (*a_pred
);
1634 one_chain
->release ();
1635 *one_chain
= s_chain
;
1638 /* The helper function implements the rule 2 for the
1641 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1644 simplify_preds_2 (pred_chain_union
*preds
)
1647 bool simplified
= false;
1648 pred_chain_union s_preds
= vNULL
;
1650 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1651 (X AND Y) OR (X AND !Y) is equivalent to X. */
1653 n
= preds
->length ();
1654 for (i
= 0; i
< n
; i
++)
1657 pred_chain
*a_chain
= &(*preds
)[i
];
1659 if (a_chain
->length () != 2)
1665 for (j
= 0; j
< n
; j
++)
1667 pred_chain
*b_chain
;
1673 b_chain
= &(*preds
)[j
];
1674 if (b_chain
->length () != 2)
1680 if (pred_equal_p (x
, x2
) && pred_neg_p (y
, y2
))
1683 a_chain
->release ();
1684 b_chain
->release ();
1685 b_chain
->safe_push (x
);
1689 if (pred_neg_p (x
, x2
) && pred_equal_p (y
, y2
))
1692 a_chain
->release ();
1693 b_chain
->release ();
1694 b_chain
->safe_push (y
);
1700 /* Now clean up the chain. */
1703 for (i
= 0; i
< n
; i
++)
1705 if ((*preds
)[i
].is_empty ())
1707 s_preds
.safe_push ((*preds
)[i
]);
1717 /* The helper function implements the rule 2 for the
1720 3) x OR (!x AND y) is equivalent to x OR y. */
1723 simplify_preds_3 (pred_chain_union
*preds
)
1726 bool simplified
= false;
1728 /* Now iteratively simplify X OR (!X AND Z ..)
1729 into X OR (Z ...). */
1731 n
= preds
->length ();
1735 for (i
= 0; i
< n
; i
++)
1738 pred_chain
*a_chain
= &(*preds
)[i
];
1740 if (a_chain
->length () != 1)
1745 for (j
= 0; j
< n
; j
++)
1747 pred_chain
*b_chain
;
1754 b_chain
= &(*preds
)[j
];
1755 if (b_chain
->length () < 2)
1758 for (k
= 0; k
< b_chain
->length (); k
++)
1761 if (pred_neg_p (x
, x2
))
1763 b_chain
->unordered_remove (k
);
1773 /* The helper function implements the rule 4 for the
1776 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1777 (x != 0 ANd y != 0). */
1780 simplify_preds_4 (pred_chain_union
*preds
)
1783 bool simplified
= false;
1784 pred_chain_union s_preds
= vNULL
;
1787 n
= preds
->length ();
1788 for (i
= 0; i
< n
; i
++)
1791 pred_chain
*a_chain
= &(*preds
)[i
];
1793 if (a_chain
->length () != 1)
1798 if (!is_neq_zero_form_p (z
))
1801 def_stmt
= SSA_NAME_DEF_STMT (z
.pred_lhs
);
1802 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1805 if (gimple_assign_rhs_code (def_stmt
) != BIT_AND_EXPR
)
1808 for (j
= 0; j
< n
; j
++)
1810 pred_chain
*b_chain
;
1816 b_chain
= &(*preds
)[j
];
1817 if (b_chain
->length () != 2)
1822 if (!is_neq_zero_form_p (x2
) || !is_neq_zero_form_p (y2
))
1825 if ((pred_expr_equal_p (x2
, gimple_assign_rhs1 (def_stmt
))
1826 && pred_expr_equal_p (y2
, gimple_assign_rhs2 (def_stmt
)))
1827 || (pred_expr_equal_p (x2
, gimple_assign_rhs2 (def_stmt
))
1828 && pred_expr_equal_p (y2
, gimple_assign_rhs1 (def_stmt
))))
1831 a_chain
->release ();
1837 /* Now clean up the chain. */
1840 for (i
= 0; i
< n
; i
++)
1842 if ((*preds
)[i
].is_empty ())
1844 s_preds
.safe_push ((*preds
)[i
]);
1855 /* This function simplifies predicates in PREDS. */
1858 simplify_preds (pred_chain_union
*preds
, gimple
*use_or_def
, bool is_use
)
1861 bool changed
= false;
1863 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1865 fprintf (dump_file
, "[BEFORE SIMPLICATION -- ");
1866 dump_predicates (use_or_def
, *preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
1869 for (i
= 0; i
< preds
->length (); i
++)
1870 simplify_pred (&(*preds
)[i
]);
1872 n
= preds
->length ();
1879 if (simplify_preds_2 (preds
))
1882 /* Now iteratively simplify X OR (!X AND Z ..)
1883 into X OR (Z ...). */
1884 if (simplify_preds_3 (preds
))
1887 if (simplify_preds_4 (preds
))
1895 /* This is a helper function which attempts to normalize predicate chains
1896 by following UD chains. It basically builds up a big tree of either IOR
1897 operations or AND operations, and convert the IOR tree into a
1898 pred_chain_union or BIT_AND tree into a pred_chain.
1908 then _t != 0 will be normalized into a pred_chain_union
1910 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1920 then _t != 0 will be normalized into a pred_chain:
1921 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1925 /* This is a helper function that stores a PRED into NORM_PREDS. */
1928 push_pred (pred_chain_union
*norm_preds
, pred_info pred
)
1930 pred_chain pred_chain
= vNULL
;
1931 pred_chain
.safe_push (pred
);
1932 norm_preds
->safe_push (pred_chain
);
1935 /* A helper function that creates a predicate of the form
1936 OP != 0 and push it WORK_LIST. */
1939 push_to_worklist (tree op
, vec
<pred_info
, va_heap
, vl_ptr
> *work_list
,
1940 hash_set
<tree
> *mark_set
)
1942 if (mark_set
->contains (op
))
1947 arg_pred
.pred_lhs
= op
;
1948 arg_pred
.pred_rhs
= integer_zero_node
;
1949 arg_pred
.cond_code
= NE_EXPR
;
1950 arg_pred
.invert
= false;
1951 work_list
->safe_push (arg_pred
);
1954 /* A helper that generates a pred_info from a gimple assignment
1955 CMP_ASSIGN with comparison rhs. */
1958 get_pred_info_from_cmp (gimple
*cmp_assign
)
1961 n_pred
.pred_lhs
= gimple_assign_rhs1 (cmp_assign
);
1962 n_pred
.pred_rhs
= gimple_assign_rhs2 (cmp_assign
);
1963 n_pred
.cond_code
= gimple_assign_rhs_code (cmp_assign
);
1964 n_pred
.invert
= false;
1968 /* Returns true if the PHI is a degenerated phi with
1969 all args with the same value (relop). In that case, *PRED
1970 will be updated to that value. */
1973 is_degenerated_phi (gimple
*phi
, pred_info
*pred_p
)
1980 n
= gimple_phi_num_args (phi
);
1981 op0
= gimple_phi_arg_def (phi
, 0);
1983 if (TREE_CODE (op0
) != SSA_NAME
)
1986 def0
= SSA_NAME_DEF_STMT (op0
);
1987 if (gimple_code (def0
) != GIMPLE_ASSIGN
)
1989 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0
)) != tcc_comparison
)
1991 pred0
= get_pred_info_from_cmp (def0
);
1993 for (i
= 1; i
< n
; ++i
)
1997 tree op
= gimple_phi_arg_def (phi
, i
);
1999 if (TREE_CODE (op
) != SSA_NAME
)
2002 def
= SSA_NAME_DEF_STMT (op
);
2003 if (gimple_code (def
) != GIMPLE_ASSIGN
)
2005 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def
)) != tcc_comparison
)
2007 pred
= get_pred_info_from_cmp (def
);
2008 if (!pred_equal_p (pred
, pred0
))
2016 /* Normalize one predicate PRED
2017 1) if PRED can no longer be normlized, put it into NORM_PREDS.
2018 2) otherwise if PRED is of the form x != 0, follow x's definition
2019 and put normalized predicates into WORK_LIST. */
2022 normalize_one_pred_1 (pred_chain_union
*norm_preds
,
2023 pred_chain
*norm_chain
,
2025 enum tree_code and_or_code
,
2026 vec
<pred_info
, va_heap
, vl_ptr
> *work_list
,
2027 hash_set
<tree
> *mark_set
)
2029 if (!is_neq_zero_form_p (pred
))
2031 if (and_or_code
== BIT_IOR_EXPR
)
2032 push_pred (norm_preds
, pred
);
2034 norm_chain
->safe_push (pred
);
2038 gimple
*def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
2040 if (gimple_code (def_stmt
) == GIMPLE_PHI
2041 && is_degenerated_phi (def_stmt
, &pred
))
2042 work_list
->safe_push (pred
);
2043 else if (gimple_code (def_stmt
) == GIMPLE_PHI
&& and_or_code
== BIT_IOR_EXPR
)
2046 n
= gimple_phi_num_args (def_stmt
);
2048 /* If we see non zero constant, we should punt. The predicate
2049 * should be one guarding the phi edge. */
2050 for (i
= 0; i
< n
; ++i
)
2052 tree op
= gimple_phi_arg_def (def_stmt
, i
);
2053 if (TREE_CODE (op
) == INTEGER_CST
&& !integer_zerop (op
))
2055 push_pred (norm_preds
, pred
);
2060 for (i
= 0; i
< n
; ++i
)
2062 tree op
= gimple_phi_arg_def (def_stmt
, i
);
2063 if (integer_zerop (op
))
2066 push_to_worklist (op
, work_list
, mark_set
);
2069 else if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
2071 if (and_or_code
== BIT_IOR_EXPR
)
2072 push_pred (norm_preds
, pred
);
2074 norm_chain
->safe_push (pred
);
2076 else if (gimple_assign_rhs_code (def_stmt
) == and_or_code
)
2078 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2079 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt
)))
2081 /* But treat x & 3 as condition. */
2082 if (and_or_code
== BIT_AND_EXPR
)
2085 n_pred
.pred_lhs
= gimple_assign_rhs1 (def_stmt
);
2086 n_pred
.pred_rhs
= gimple_assign_rhs2 (def_stmt
);
2087 n_pred
.cond_code
= and_or_code
;
2088 n_pred
.invert
= false;
2089 norm_chain
->safe_push (n_pred
);
2094 push_to_worklist (gimple_assign_rhs1 (def_stmt
), work_list
, mark_set
);
2095 push_to_worklist (gimple_assign_rhs2 (def_stmt
), work_list
, mark_set
);
2098 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
2101 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
2102 if (and_or_code
== BIT_IOR_EXPR
)
2103 push_pred (norm_preds
, n_pred
);
2105 norm_chain
->safe_push (n_pred
);
2109 if (and_or_code
== BIT_IOR_EXPR
)
2110 push_pred (norm_preds
, pred
);
2112 norm_chain
->safe_push (pred
);
2116 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2119 normalize_one_pred (pred_chain_union
*norm_preds
, pred_info pred
)
2121 vec
<pred_info
, va_heap
, vl_ptr
> work_list
= vNULL
;
2122 enum tree_code and_or_code
= ERROR_MARK
;
2123 pred_chain norm_chain
= vNULL
;
2125 if (!is_neq_zero_form_p (pred
))
2127 push_pred (norm_preds
, pred
);
2131 gimple
*def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
2132 if (gimple_code (def_stmt
) == GIMPLE_ASSIGN
)
2133 and_or_code
= gimple_assign_rhs_code (def_stmt
);
2134 if (and_or_code
!= BIT_IOR_EXPR
&& and_or_code
!= BIT_AND_EXPR
)
2136 if (TREE_CODE_CLASS (and_or_code
) == tcc_comparison
)
2138 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
2139 push_pred (norm_preds
, n_pred
);
2142 push_pred (norm_preds
, pred
);
2146 work_list
.safe_push (pred
);
2147 hash_set
<tree
> mark_set
;
2149 while (!work_list
.is_empty ())
2151 pred_info a_pred
= work_list
.pop ();
2152 normalize_one_pred_1 (norm_preds
, &norm_chain
, a_pred
, and_or_code
,
2153 &work_list
, &mark_set
);
2155 if (and_or_code
== BIT_AND_EXPR
)
2156 norm_preds
->safe_push (norm_chain
);
2158 work_list
.release ();
2162 normalize_one_pred_chain (pred_chain_union
*norm_preds
, pred_chain one_chain
)
2164 vec
<pred_info
, va_heap
, vl_ptr
> work_list
= vNULL
;
2165 hash_set
<tree
> mark_set
;
2166 pred_chain norm_chain
= vNULL
;
2169 for (i
= 0; i
< one_chain
.length (); i
++)
2171 work_list
.safe_push (one_chain
[i
]);
2172 mark_set
.add (one_chain
[i
].pred_lhs
);
2175 while (!work_list
.is_empty ())
2177 pred_info a_pred
= work_list
.pop ();
2178 normalize_one_pred_1 (0, &norm_chain
, a_pred
, BIT_AND_EXPR
, &work_list
,
2182 norm_preds
->safe_push (norm_chain
);
2183 work_list
.release ();
2186 /* Normalize predicate chains PREDS and returns the normalized one. */
2188 static pred_chain_union
2189 normalize_preds (pred_chain_union preds
, gimple
*use_or_def
, bool is_use
)
2191 pred_chain_union norm_preds
= vNULL
;
2192 size_t n
= preds
.length ();
2195 if (dump_file
&& dump_flags
& TDF_DETAILS
)
2197 fprintf (dump_file
, "[BEFORE NORMALIZATION --");
2198 dump_predicates (use_or_def
, preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
2201 for (i
= 0; i
< n
; i
++)
2203 if (preds
[i
].length () != 1)
2204 normalize_one_pred_chain (&norm_preds
, preds
[i
]);
2207 normalize_one_pred (&norm_preds
, preds
[i
][0]);
2208 preds
[i
].release ();
2214 fprintf (dump_file
, "[AFTER NORMALIZATION -- ");
2215 dump_predicates (use_or_def
, norm_preds
,
2216 is_use
? "[USE]:\n" : "[DEF]:\n");
2219 destroy_predicate_vecs (&preds
);
2223 /* Return TRUE if PREDICATE can be invalidated by any individual
2224 predicate in WORKLIST. */
2227 can_one_predicate_be_invalidated_p (pred_info predicate
,
2228 pred_chain use_guard
)
2230 for (size_t i
= 0; i
< use_guard
.length (); ++i
)
2232 /* NOTE: This is a very simple check, and only understands an
2233 exact opposite. So, [i == 0] is currently only invalidated
2234 by [.NOT. i == 0] or [i != 0]. Ideally we should also
2235 invalidate with say [i > 5] or [i == 8]. There is certainly
2236 room for improvement here. */
2237 if (pred_neg_p (predicate
, use_guard
[i
]))
2243 /* Return TRUE if all predicates in UNINIT_PRED are invalidated by
2244 USE_GUARD being true. */
2247 can_chain_union_be_invalidated_p (pred_chain_union uninit_pred
,
2248 pred_chain use_guard
)
2250 if (uninit_pred
.is_empty ())
2252 for (size_t i
= 0; i
< uninit_pred
.length (); ++i
)
2254 pred_chain c
= uninit_pred
[i
];
2255 for (size_t j
= 0; j
< c
.length (); ++j
)
2256 if (!can_one_predicate_be_invalidated_p (c
[j
], use_guard
))
2262 /* Return TRUE if none of the uninitialized operands in UNINT_OPNDS
2263 can actually happen if we arrived at a use for PHI.
2265 PHI_USE_GUARDS are the guard conditions for the use of the PHI. */
2268 uninit_uses_cannot_happen (gphi
*phi
, unsigned uninit_opnds
,
2269 pred_chain_union phi_use_guards
)
2271 unsigned phi_args
= gimple_phi_num_args (phi
);
2272 if (phi_args
> max_phi_args
)
2275 /* PHI_USE_GUARDS are OR'ed together. If we have more than one
2276 possible guard, there's no way of knowing which guard was true.
2277 Since we need to be absolutely sure that the uninitialized
2278 operands will be invalidated, bail. */
2279 if (phi_use_guards
.length () != 1)
2282 /* Look for the control dependencies of all the uninitialized
2283 operands and build guard predicates describing them. */
2284 pred_chain_union uninit_preds
;
2286 for (unsigned i
= 0; i
< phi_args
; ++i
)
2288 if (!MASK_TEST_BIT (uninit_opnds
, i
))
2291 edge e
= gimple_phi_arg_edge (phi
, i
);
2292 vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
2293 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_chain
;
2294 size_t num_chains
= 0;
2297 /* Build the control dependency chain for uninit operand `i'... */
2298 uninit_preds
= vNULL
;
2299 if (!compute_control_dep_chain (find_dom (e
->src
),
2300 e
->src
, dep_chains
, &num_chains
,
2301 &cur_chain
, &num_calls
))
2306 /* ...and convert it into a set of predicates. */
2307 convert_control_dep_chain_into_preds (dep_chains
, num_chains
,
2309 for (size_t j
= 0; j
< num_chains
; ++j
)
2310 dep_chains
[j
].release ();
2311 simplify_preds (&uninit_preds
, NULL
, false);
2312 uninit_preds
= normalize_preds (uninit_preds
, NULL
, false);
2314 /* Can the guard for this uninitialized operand be invalidated
2316 if (!can_chain_union_be_invalidated_p (uninit_preds
, phi_use_guards
[0]))
2322 destroy_predicate_vecs (&uninit_preds
);
2326 /* Computes the predicates that guard the use and checks
2327 if the incoming paths that have empty (or possibly
2328 empty) definition can be pruned/filtered. The function returns
2329 true if it can be determined that the use of PHI's def in
2330 USE_STMT is guarded with a predicate set not overlapping with
2331 predicate sets of all runtime paths that do not have a definition.
2333 Returns false if it is not or it can not be determined. USE_BB is
2334 the bb of the use (for phi operand use, the bb is not the bb of
2335 the phi stmt, but the src bb of the operand edge).
2337 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2338 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2339 set of phis being visited.
2341 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2342 If *DEF_PREDS is the empty vector, the defining predicate chains of
2343 PHI will be computed and stored into *DEF_PREDS as needed.
2345 VISITED_PHIS is a pointer set of phis being visited. */
2348 is_use_properly_guarded (gimple
*use_stmt
,
2351 unsigned uninit_opnds
,
2352 pred_chain_union
*def_preds
,
2353 hash_set
<gphi
*> *visited_phis
)
2356 pred_chain_union preds
= vNULL
;
2357 bool has_valid_preds
= false;
2358 bool is_properly_guarded
= false;
2360 if (visited_phis
->add (phi
))
2363 phi_bb
= gimple_bb (phi
);
2365 if (is_non_loop_exit_postdominating (use_bb
, phi_bb
))
2368 has_valid_preds
= find_predicates (&preds
, phi_bb
, use_bb
);
2370 if (!has_valid_preds
)
2372 destroy_predicate_vecs (&preds
);
2376 /* Try to prune the dead incoming phi edges. */
2378 = use_pred_not_overlap_with_undef_path_pred (preds
, phi
, uninit_opnds
,
2381 /* We might be able to prove that if the control dependencies
2382 for UNINIT_OPNDS are true, that the control dependencies for
2383 USE_STMT can never be true. */
2384 if (!is_properly_guarded
)
2385 is_properly_guarded
|= uninit_uses_cannot_happen (phi
, uninit_opnds
,
2388 if (is_properly_guarded
)
2390 destroy_predicate_vecs (&preds
);
2394 if (def_preds
->is_empty ())
2396 has_valid_preds
= find_def_preds (def_preds
, phi
);
2398 if (!has_valid_preds
)
2400 destroy_predicate_vecs (&preds
);
2404 simplify_preds (def_preds
, phi
, false);
2405 *def_preds
= normalize_preds (*def_preds
, phi
, false);
2408 simplify_preds (&preds
, use_stmt
, true);
2409 preds
= normalize_preds (preds
, use_stmt
, true);
2411 is_properly_guarded
= is_superset_of (*def_preds
, preds
);
2413 destroy_predicate_vecs (&preds
);
2414 return is_properly_guarded
;
2417 /* Searches through all uses of a potentially
2418 uninitialized variable defined by PHI and returns a use
2419 statement if the use is not properly guarded. It returns
2420 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2421 holding the position(s) of uninit PHI operands. WORKLIST
2422 is the vector of candidate phis that may be updated by this
2423 function. ADDED_TO_WORKLIST is the pointer set tracking
2424 if the new phi is already in the worklist. */
2427 find_uninit_use (gphi
*phi
, unsigned uninit_opnds
,
2428 vec
<gphi
*> *worklist
,
2429 hash_set
<gphi
*> *added_to_worklist
)
2432 use_operand_p use_p
;
2434 imm_use_iterator iter
;
2435 pred_chain_union def_preds
= vNULL
;
2438 phi_result
= gimple_phi_result (phi
);
2440 FOR_EACH_IMM_USE_FAST (use_p
, iter
, phi_result
)
2444 use_stmt
= USE_STMT (use_p
);
2445 if (is_gimple_debug (use_stmt
))
2448 if (gphi
*use_phi
= dyn_cast
<gphi
*> (use_stmt
))
2449 use_bb
= gimple_phi_arg_edge (use_phi
,
2450 PHI_ARG_INDEX_FROM_USE (use_p
))->src
;
2452 use_bb
= gimple_bb (use_stmt
);
2454 hash_set
<gphi
*> visited_phis
;
2455 if (is_use_properly_guarded (use_stmt
, use_bb
, phi
, uninit_opnds
,
2456 &def_preds
, &visited_phis
))
2459 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2461 fprintf (dump_file
, "[CHECK]: Found unguarded use: ");
2462 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
2464 /* Found one real use, return. */
2465 if (gimple_code (use_stmt
) != GIMPLE_PHI
)
2471 /* Found a phi use that is not guarded,
2472 add the phi to the worklist. */
2473 if (!added_to_worklist
->add (as_a
<gphi
*> (use_stmt
)))
2475 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2477 fprintf (dump_file
, "[WORKLIST]: Update worklist with phi: ");
2478 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
2481 worklist
->safe_push (as_a
<gphi
*> (use_stmt
));
2482 possibly_undefined_names
->add (phi_result
);
2486 destroy_predicate_vecs (&def_preds
);
2490 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2491 and gives warning if there exists a runtime path from the entry to a
2492 use of the PHI def that does not contain a definition. In other words,
2493 the warning is on the real use. The more dead paths that can be pruned
2494 by the compiler, the fewer false positives the warning is. WORKLIST
2495 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2496 a pointer set tracking if the new phi is added to the worklist or not. */
2499 warn_uninitialized_phi (gphi
*phi
, vec
<gphi
*> *worklist
,
2500 hash_set
<gphi
*> *added_to_worklist
)
2502 unsigned uninit_opnds
;
2503 gimple
*uninit_use_stmt
= 0;
2508 /* Don't look at virtual operands. */
2509 if (virtual_operand_p (gimple_phi_result (phi
)))
2512 uninit_opnds
= compute_uninit_opnds_pos (phi
);
2514 if (MASK_EMPTY (uninit_opnds
))
2517 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2519 fprintf (dump_file
, "[CHECK]: examining phi: ");
2520 print_gimple_stmt (dump_file
, phi
, 0, 0);
2523 /* Now check if we have any use of the value without proper guard. */
2524 uninit_use_stmt
= find_uninit_use (phi
, uninit_opnds
,
2525 worklist
, added_to_worklist
);
2527 /* All uses are properly guarded. */
2528 if (!uninit_use_stmt
)
2531 phiarg_index
= MASK_FIRST_SET_BIT (uninit_opnds
);
2532 uninit_op
= gimple_phi_arg_def (phi
, phiarg_index
);
2533 if (SSA_NAME_VAR (uninit_op
) == NULL_TREE
)
2535 if (gimple_phi_arg_has_location (phi
, phiarg_index
))
2536 loc
= gimple_phi_arg_location (phi
, phiarg_index
);
2538 loc
= UNKNOWN_LOCATION
;
2539 warn_uninit (OPT_Wmaybe_uninitialized
, uninit_op
, SSA_NAME_VAR (uninit_op
),
2540 SSA_NAME_VAR (uninit_op
),
2541 "%qD may be used uninitialized in this function",
2542 uninit_use_stmt
, loc
);
2546 gate_warn_uninitialized (void)
2548 return warn_uninitialized
|| warn_maybe_uninitialized
;
2553 const pass_data pass_data_late_warn_uninitialized
=
2555 GIMPLE_PASS
, /* type */
2556 "uninit", /* name */
2557 OPTGROUP_NONE
, /* optinfo_flags */
2558 TV_NONE
, /* tv_id */
2559 PROP_ssa
, /* properties_required */
2560 0, /* properties_provided */
2561 0, /* properties_destroyed */
2562 0, /* todo_flags_start */
2563 0, /* todo_flags_finish */
2566 class pass_late_warn_uninitialized
: public gimple_opt_pass
2569 pass_late_warn_uninitialized (gcc::context
*ctxt
)
2570 : gimple_opt_pass (pass_data_late_warn_uninitialized
, ctxt
)
2573 /* opt_pass methods: */
2574 opt_pass
*clone () { return new pass_late_warn_uninitialized (m_ctxt
); }
2575 virtual bool gate (function
*) { return gate_warn_uninitialized (); }
2576 virtual unsigned int execute (function
*);
2578 }; // class pass_late_warn_uninitialized
2581 pass_late_warn_uninitialized::execute (function
*fun
)
2585 vec
<gphi
*> worklist
= vNULL
;
2587 calculate_dominance_info (CDI_DOMINATORS
);
2588 calculate_dominance_info (CDI_POST_DOMINATORS
);
2589 /* Re-do the plain uninitialized variable check, as optimization may have
2590 straightened control flow. Do this first so that we don't accidentally
2591 get a "may be" warning when we'd have seen an "is" warning later. */
2592 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2594 timevar_push (TV_TREE_UNINIT
);
2596 possibly_undefined_names
= new hash_set
<tree
>;
2597 hash_set
<gphi
*> added_to_worklist
;
2599 /* Initialize worklist */
2600 FOR_EACH_BB_FN (bb
, fun
)
2601 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2603 gphi
*phi
= gsi
.phi ();
2606 n
= gimple_phi_num_args (phi
);
2608 /* Don't look at virtual operands. */
2609 if (virtual_operand_p (gimple_phi_result (phi
)))
2612 for (i
= 0; i
< n
; ++i
)
2614 tree op
= gimple_phi_arg_def (phi
, i
);
2615 if (TREE_CODE (op
) == SSA_NAME
&& uninit_undefined_value_p (op
))
2617 worklist
.safe_push (phi
);
2618 added_to_worklist
.add (phi
);
2619 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2621 fprintf (dump_file
, "[WORKLIST]: add to initial list: ");
2622 print_gimple_stmt (dump_file
, phi
, 0, 0);
2629 while (worklist
.length () != 0)
2632 cur_phi
= worklist
.pop ();
2633 warn_uninitialized_phi (cur_phi
, &worklist
, &added_to_worklist
);
2636 worklist
.release ();
2637 delete possibly_undefined_names
;
2638 possibly_undefined_names
= NULL
;
2639 free_dominance_info (CDI_POST_DOMINATORS
);
2640 timevar_pop (TV_TREE_UNINIT
);
2647 make_pass_late_warn_uninitialized (gcc::context
*ctxt
)
2649 return new pass_late_warn_uninitialized (ctxt
);
2653 execute_early_warn_uninitialized (void)
2655 /* Currently, this pass runs always but
2656 execute_late_warn_uninitialized only runs with optimization. With
2657 optimization we want to warn about possible uninitialized as late
2658 as possible, thus don't do it here. However, without
2659 optimization we need to warn here about "may be uninitialized". */
2660 calculate_dominance_info (CDI_POST_DOMINATORS
);
2662 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize
);
2664 /* Post-dominator information can not be reliably updated. Free it
2667 free_dominance_info (CDI_POST_DOMINATORS
);
2673 const pass_data pass_data_early_warn_uninitialized
=
2675 GIMPLE_PASS
, /* type */
2676 "*early_warn_uninitialized", /* name */
2677 OPTGROUP_NONE
, /* optinfo_flags */
2678 TV_TREE_UNINIT
, /* tv_id */
2679 PROP_ssa
, /* properties_required */
2680 0, /* properties_provided */
2681 0, /* properties_destroyed */
2682 0, /* todo_flags_start */
2683 0, /* todo_flags_finish */
2686 class pass_early_warn_uninitialized
: public gimple_opt_pass
2689 pass_early_warn_uninitialized (gcc::context
*ctxt
)
2690 : gimple_opt_pass (pass_data_early_warn_uninitialized
, ctxt
)
2693 /* opt_pass methods: */
2694 virtual bool gate (function
*) { return gate_warn_uninitialized (); }
2695 virtual unsigned int execute (function
*)
2697 return execute_early_warn_uninitialized ();
2700 }; // class pass_early_warn_uninitialized
2705 make_pass_early_warn_uninitialized (gcc::context
*ctxt
)
2707 return new pass_early_warn_uninitialized (ctxt
);