1 /* Liveness for SSA trees.
2 Copyright (C) 2003 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
24 #include "coretypes.h"
28 #include "basic-block.h"
30 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-gimple.h"
34 #include "tree-inline.h"
38 #include "tree-dump.h"
39 #include "tree-ssa-live.h"
42 static void live_worklist (tree_live_info_p
, varray_type
, int);
43 static tree_live_info_p
new_tree_live_info (var_map
);
44 static inline void set_if_valid (var_map
, bitmap
, tree
);
45 static inline void add_livein_if_notdef (tree_live_info_p
, bitmap
,
47 static inline void register_ssa_partition (var_map
, tree
, bool);
48 static inline void add_conflicts_if_valid (tpa_p
, conflict_graph
,
49 var_map
, bitmap
, tree
);
50 static partition_pair_p
find_partition_pair (coalesce_list_p
, int, int, bool);
52 /* This is where the mapping from SSA version number to real storage variable
55 All SSA versions of the same variable may not ultimately be mapped back to
56 the same real variable. In that instance, we need to detect the live
57 range overlap, and give one of the variable new storage. The vector
58 'partition_to_var' tracks which partition maps to which variable.
60 Given a VAR, it is sometimes desirable to know which partition that VAR
61 represents. There is an additional field in the variable annotation to
62 track that information. */
64 /* Create a variable partition map of SIZE, initialize and return it. */
67 init_var_map (int size
)
71 map
= (var_map
) xmalloc (sizeof (struct _var_map
));
72 map
->var_partition
= partition_new (size
);
74 = (tree
*)xmalloc (size
* sizeof (tree
));
75 memset (map
->partition_to_var
, 0, size
* sizeof (tree
));
77 map
->partition_to_compact
= NULL
;
78 map
->compact_to_partition
= NULL
;
79 map
->num_partitions
= size
;
80 map
->partition_size
= size
;
81 map
->ref_count
= NULL
;
86 /* Free memory associated with MAP. */
89 delete_var_map (var_map map
)
91 free (map
->partition_to_var
);
92 partition_delete (map
->var_partition
);
93 if (map
->partition_to_compact
)
94 free (map
->partition_to_compact
);
95 if (map
->compact_to_partition
)
96 free (map
->compact_to_partition
);
98 free (map
->ref_count
);
103 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
104 Returns the partition which represents the new partition. If the two
105 partitions cannot be combined, NO_PARTITION is returned. */
108 var_union (var_map map
, tree var1
, tree var2
)
111 tree root_var
= NULL_TREE
;
112 tree other_var
= NULL_TREE
;
114 /* This is independent of partition_to_compact. If partition_to_compact is
115 on, then whichever one of these partitions is absorbed will never have a
116 dereference into the partition_to_compact array any more. */
118 if (TREE_CODE (var1
) == SSA_NAME
)
119 p1
= partition_find (map
->var_partition
, SSA_NAME_VERSION (var1
));
122 p1
= var_to_partition (map
, var1
);
123 if (map
->compact_to_partition
)
124 p1
= map
->compact_to_partition
[p1
];
128 if (TREE_CODE (var2
) == SSA_NAME
)
129 p2
= partition_find (map
->var_partition
, SSA_NAME_VERSION (var2
));
132 p2
= var_to_partition (map
, var2
);
133 if (map
->compact_to_partition
)
134 p2
= map
->compact_to_partition
[p2
];
136 /* If there is no root_var set, or it's not a user variable, set the
137 root_var to this one. */
138 if (!root_var
|| (DECL_P (root_var
) && DECL_IGNORED_P (root_var
)))
140 other_var
= root_var
;
147 gcc_assert (p1
!= NO_PARTITION
);
148 gcc_assert (p2
!= NO_PARTITION
);
153 p3
= partition_union (map
->var_partition
, p1
, p2
);
155 if (map
->partition_to_compact
)
156 p3
= map
->partition_to_compact
[p3
];
159 change_partition_var (map
, root_var
, p3
);
161 change_partition_var (map
, other_var
, p3
);
167 /* Compress the partition numbers in MAP such that they fall in the range
168 0..(num_partitions-1) instead of wherever they turned out during
169 the partitioning exercise. This removes any references to unused
170 partitions, thereby allowing bitmaps and other vectors to be much
171 denser. Compression type is controlled by FLAGS.
173 This is implemented such that compaction doesn't affect partitioning.
174 Ie., once partitions are created and possibly merged, running one
175 or more different kind of compaction will not affect the partitions
176 themselves. Their index might change, but all the same variables will
177 still be members of the same partition group. This allows work on reduced
178 sets, and no loss of information when a larger set is later desired.
180 In particular, coalescing can work on partitions which have 2 or more
181 definitions, and then 'recompact' later to include all the single
182 definitions for assignment to program variables. */
185 compact_var_map (var_map map
, int flags
)
188 int x
, limit
, count
, tmp
, root
, root_i
;
190 root_var_p rv
= NULL
;
192 limit
= map
->partition_size
;
193 used
= sbitmap_alloc (limit
);
196 /* Already compressed? Abandon the old one. */
197 if (map
->partition_to_compact
)
199 free (map
->partition_to_compact
);
200 map
->partition_to_compact
= NULL
;
202 if (map
->compact_to_partition
)
204 free (map
->compact_to_partition
);
205 map
->compact_to_partition
= NULL
;
208 map
->num_partitions
= map
->partition_size
;
210 if (flags
& VARMAP_NO_SINGLE_DEFS
)
211 rv
= root_var_init (map
);
213 map
->partition_to_compact
= (int *)xmalloc (limit
* sizeof (int));
214 memset (map
->partition_to_compact
, 0xff, (limit
* sizeof (int)));
216 /* Find out which partitions are actually referenced. */
218 for (x
= 0; x
< limit
; x
++)
220 tmp
= partition_find (map
->var_partition
, x
);
221 if (!TEST_BIT (used
, tmp
) && map
->partition_to_var
[tmp
] != NULL_TREE
)
223 /* It is referenced, check to see if there is more than one version
224 in the root_var table, if one is available. */
227 root
= root_var_find (rv
, tmp
);
228 root_i
= root_var_first_partition (rv
, root
);
229 /* If there is only one, don't include this in the compaction. */
230 if (root_var_next_partition (rv
, root_i
) == ROOT_VAR_NONE
)
238 /* Build a compacted partitioning. */
241 map
->compact_to_partition
= (int *)xmalloc (count
* sizeof (int));
243 /* SSA renaming begins at 1, so skip 0 when compacting. */
244 EXECUTE_IF_SET_IN_SBITMAP (used
, 1, x
,
246 map
->partition_to_compact
[x
] = count
;
247 map
->compact_to_partition
[count
] = x
;
248 var
= map
->partition_to_var
[x
];
249 if (TREE_CODE (var
) != SSA_NAME
)
250 change_partition_var (map
, var
, count
);
256 free (map
->partition_to_compact
);
257 map
->partition_to_compact
= NULL
;
260 map
->num_partitions
= count
;
263 root_var_delete (rv
);
268 /* This function is used to change the representative variable in MAP for VAR's
269 partition from an SSA_NAME variable to a regular variable. This allows
270 partitions to be mapped back to real variables. */
273 change_partition_var (var_map map
, tree var
, int part
)
277 gcc_assert (TREE_CODE (var
) != SSA_NAME
);
280 ann
->out_of_ssa_tag
= 1;
281 VAR_ANN_PARTITION (ann
) = part
;
282 if (map
->compact_to_partition
)
283 map
->partition_to_var
[map
->compact_to_partition
[part
]] = var
;
287 /* Helper function for mark_all_vars_used, called via walk_tree. */
290 mark_all_vars_used_1 (tree
*tp
, int *walk_subtrees
,
291 void *data ATTRIBUTE_UNUSED
)
295 /* Only need to mark VAR_DECLS; parameters and return results are not
296 eliminated as unused. */
297 if (TREE_CODE (t
) == VAR_DECL
)
300 if (DECL_P (t
) || TYPE_P (t
))
306 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
307 eliminated during the tree->rtl conversion process. */
310 mark_all_vars_used (tree
*expr_p
)
312 walk_tree (expr_p
, mark_all_vars_used_1
, NULL
, NULL
);
315 /* This function looks through the program and uses FLAGS to determine what
316 SSA versioned variables are given entries in a new partition table. This
317 new partition map is returned. */
320 create_ssa_var_map (int flags
)
322 block_stmt_iterator bsi
;
329 #ifdef ENABLE_CHECKING
330 sbitmap used_in_real_ops
;
331 sbitmap used_in_virtual_ops
;
334 map
= init_var_map (num_ssa_names
+ 1);
336 #ifdef ENABLE_CHECKING
337 used_in_real_ops
= sbitmap_alloc (num_referenced_vars
);
338 sbitmap_zero (used_in_real_ops
);
340 used_in_virtual_ops
= sbitmap_alloc (num_referenced_vars
);
341 sbitmap_zero (used_in_virtual_ops
);
344 if (flags
& SSA_VAR_MAP_REF_COUNT
)
347 = (int *)xmalloc (((num_ssa_names
+ 1) * sizeof (int)));
348 memset (map
->ref_count
, 0, (num_ssa_names
+ 1) * sizeof (int));
354 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
357 register_ssa_partition (map
, PHI_RESULT (phi
), false);
358 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
360 arg
= PHI_ARG_DEF (phi
, i
);
361 if (TREE_CODE (arg
) == SSA_NAME
)
362 register_ssa_partition (map
, arg
, true);
364 mark_all_vars_used (&PHI_ARG_DEF_TREE (phi
, i
));
368 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
370 stmt
= bsi_stmt (bsi
);
371 get_stmt_operands (stmt
);
372 ann
= stmt_ann (stmt
);
374 /* Register USE and DEF operands in each statement. */
375 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
377 register_ssa_partition (map
, use
, true);
379 #ifdef ENABLE_CHECKING
380 SET_BIT (used_in_real_ops
, var_ann (SSA_NAME_VAR (use
))->uid
);
384 FOR_EACH_SSA_TREE_OPERAND (dest
, stmt
, iter
, SSA_OP_DEF
)
386 register_ssa_partition (map
, dest
, false);
388 #ifdef ENABLE_CHECKING
389 SET_BIT (used_in_real_ops
, var_ann (SSA_NAME_VAR (dest
))->uid
);
393 #ifdef ENABLE_CHECKING
394 /* Validate that virtual ops don't get used in funny ways. */
395 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
,
396 SSA_OP_VIRTUAL_USES
| SSA_OP_VMUSTDEF
)
398 SET_BIT (used_in_virtual_ops
, var_ann (SSA_NAME_VAR (use
))->uid
);
401 #endif /* ENABLE_CHECKING */
403 mark_all_vars_used (bsi_stmt_ptr (bsi
));
407 #if defined ENABLE_CHECKING
410 sbitmap both
= sbitmap_alloc (num_referenced_vars
);
411 sbitmap_a_and_b (both
, used_in_real_ops
, used_in_virtual_ops
);
412 if (sbitmap_first_set_bit (both
) >= 0)
414 EXECUTE_IF_SET_IN_SBITMAP (both
, 0, i
,
415 fprintf (stderr
, "Variable %s used in real and virtual operands\n",
416 get_name (referenced_var (i
))));
417 internal_error ("SSA corruption");
420 sbitmap_free (used_in_real_ops
);
421 sbitmap_free (used_in_virtual_ops
);
430 /* Allocate and return a new live range information object base on MAP. */
432 static tree_live_info_p
433 new_tree_live_info (var_map map
)
435 tree_live_info_p live
;
438 live
= (tree_live_info_p
) xmalloc (sizeof (struct tree_live_info_d
));
440 live
->num_blocks
= last_basic_block
;
442 live
->global
= BITMAP_XMALLOC ();
444 live
->livein
= (bitmap
*)xmalloc (num_var_partitions (map
) * sizeof (bitmap
));
445 for (x
= 0; x
< num_var_partitions (map
); x
++)
446 live
->livein
[x
] = BITMAP_XMALLOC ();
448 /* liveout is deferred until it is actually requested. */
449 live
->liveout
= NULL
;
454 /* Free storage for live range info object LIVE. */
457 delete_tree_live_info (tree_live_info_p live
)
462 for (x
= live
->num_blocks
- 1; x
>= 0; x
--)
463 BITMAP_XFREE (live
->liveout
[x
]);
464 free (live
->liveout
);
468 for (x
= num_var_partitions (live
->map
) - 1; x
>= 0; x
--)
469 BITMAP_XFREE (live
->livein
[x
]);
473 BITMAP_XFREE (live
->global
);
479 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
480 for partition I. STACK is a varray used for temporary memory which is
481 passed in rather than being allocated on every call. */
484 live_worklist (tree_live_info_p live
, varray_type stack
, int i
)
488 basic_block def_bb
= NULL
;
490 var_map map
= live
->map
;
492 var
= partition_to_var (map
, i
);
493 if (SSA_NAME_DEF_STMT (var
))
494 def_bb
= bb_for_stmt (SSA_NAME_DEF_STMT (var
));
496 EXECUTE_IF_SET_IN_BITMAP (live
->livein
[i
], 0, b
,
498 VARRAY_PUSH_INT (stack
, b
);
501 while (VARRAY_ACTIVE_SIZE (stack
) > 0)
503 b
= VARRAY_TOP_INT (stack
);
506 for (e
= BASIC_BLOCK (b
)->pred
; e
; e
= e
->pred_next
)
507 if (e
->src
!= ENTRY_BLOCK_PTR
)
509 /* Its not live on entry to the block its defined in. */
510 if (e
->src
== def_bb
)
512 if (!bitmap_bit_p (live
->livein
[i
], e
->src
->index
))
514 bitmap_set_bit (live
->livein
[i
], e
->src
->index
);
515 VARRAY_PUSH_INT (stack
, e
->src
->index
);
522 /* If VAR is in a partition of MAP, set the bit for that partition in VEC. */
525 set_if_valid (var_map map
, bitmap vec
, tree var
)
527 int p
= var_to_partition (map
, var
);
528 if (p
!= NO_PARTITION
)
529 bitmap_set_bit (vec
, p
);
533 /* If VAR is in a partition and it isn't defined in DEF_VEC, set the livein and
534 global bit for it in the LIVE object. BB is the block being processed. */
537 add_livein_if_notdef (tree_live_info_p live
, bitmap def_vec
,
538 tree var
, basic_block bb
)
540 int p
= var_to_partition (live
->map
, var
);
541 if (p
== NO_PARTITION
|| bb
== ENTRY_BLOCK_PTR
)
543 if (!bitmap_bit_p (def_vec
, p
))
545 bitmap_set_bit (live
->livein
[p
], bb
->index
);
546 bitmap_set_bit (live
->global
, p
);
551 /* Given partition map MAP, calculate all the live on entry bitmaps for
552 each basic block. Return a live info object. */
555 calculate_live_on_entry (var_map map
)
557 tree_live_info_p live
;
565 block_stmt_iterator bsi
;
568 #ifdef ENABLE_CHECKING
573 saw_def
= BITMAP_XMALLOC ();
575 live
= new_tree_live_info (map
);
579 bitmap_clear (saw_def
);
581 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
583 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
585 var
= PHI_ARG_DEF (phi
, i
);
586 if (!phi_ssa_name_p (var
))
588 stmt
= SSA_NAME_DEF_STMT (var
);
589 e
= PHI_ARG_EDGE (phi
, i
);
591 /* Any uses in PHIs which either don't have def's or are not
592 defined in the block from which the def comes, will be live
593 on entry to that block. */
594 if (!stmt
|| e
->src
!= bb_for_stmt (stmt
))
595 add_livein_if_notdef (live
, saw_def
, var
, e
->src
);
599 /* Don't mark PHI results as defined until all the PHI nodes have
600 been processed. If the PHI sequence is:
603 The a_3 referred to in b_3's PHI node is the one incoming on the
604 edge, *not* the PHI node just seen. */
606 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
608 var
= PHI_RESULT (phi
);
609 set_if_valid (map
, saw_def
, var
);
612 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
614 stmt
= bsi_stmt (bsi
);
615 get_stmt_operands (stmt
);
616 ann
= stmt_ann (stmt
);
618 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, iter
, SSA_OP_USE
)
620 add_livein_if_notdef (live
, saw_def
, op
, bb
);
623 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, iter
, SSA_OP_DEF
)
625 set_if_valid (map
, saw_def
, op
);
630 VARRAY_INT_INIT (stack
, last_basic_block
, "stack");
631 EXECUTE_IF_SET_IN_BITMAP (live
->global
, 0, i
,
633 live_worklist (live
, stack
, i
);
636 #ifdef ENABLE_CHECKING
637 /* Check for live on entry partitions and report those with a DEF in
638 the program. This will typically mean an optimization has done
641 bb
= ENTRY_BLOCK_PTR
;
643 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
645 int entry_block
= e
->dest
->index
;
646 if (e
->dest
== EXIT_BLOCK_PTR
)
648 for (i
= 0; i
< num_var_partitions (map
); i
++)
652 var
= partition_to_var (map
, i
);
653 stmt
= SSA_NAME_DEF_STMT (var
);
654 tmp
= bb_for_stmt (stmt
);
655 d
= default_def (SSA_NAME_VAR (var
));
657 if (bitmap_bit_p (live_entry_blocks (live
, i
), entry_block
))
659 if (!IS_EMPTY_STMT (stmt
))
662 print_generic_expr (stderr
, var
, TDF_SLIM
);
663 fprintf (stderr
, " is defined ");
665 fprintf (stderr
, " in BB%d, ", tmp
->index
);
666 fprintf (stderr
, "by:\n");
667 print_generic_expr (stderr
, stmt
, TDF_SLIM
);
668 fprintf (stderr
, "\nIt is also live-on-entry to entry BB %d",
670 fprintf (stderr
, " So it appears to have multiple defs.\n");
677 print_generic_expr (stderr
, var
, TDF_SLIM
);
678 fprintf (stderr
, " is live-on-entry to BB%d ",entry_block
);
681 fprintf (stderr
, " but is not the default def of ");
682 print_generic_expr (stderr
, d
, TDF_SLIM
);
683 fprintf (stderr
, "\n");
686 fprintf (stderr
, " and there is no default def.\n");
693 /* The only way this var shouldn't be marked live on entry is
694 if it occurs in a PHI argument of the block. */
696 for (phi
= phi_nodes (e
->dest
);
698 phi
= PHI_CHAIN (phi
))
700 for (z
= 0; z
< PHI_NUM_ARGS (phi
); z
++)
701 if (var
== PHI_ARG_DEF (phi
, z
))
710 print_generic_expr (stderr
, var
, TDF_SLIM
);
711 fprintf (stderr
, " is not marked live-on-entry to entry BB%d ",
713 fprintf (stderr
, "but it is a default def so it should be.\n");
717 gcc_assert (num
<= 0);
720 BITMAP_XFREE (saw_def
);
726 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
729 calculate_live_on_exit (tree_live_info_p liveinfo
)
738 var_map map
= liveinfo
->map
;
740 on_exit
= (bitmap
*)xmalloc (last_basic_block
* sizeof (bitmap
));
741 for (x
= 0; x
< last_basic_block
; x
++)
742 on_exit
[x
] = BITMAP_XMALLOC ();
744 /* Set all the live-on-exit bits for uses in PHIs. */
747 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
748 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
750 t
= PHI_ARG_DEF (phi
, i
);
751 e
= PHI_ARG_EDGE (phi
, i
);
752 if (!phi_ssa_name_p (t
) || e
->src
== ENTRY_BLOCK_PTR
)
754 set_if_valid (map
, on_exit
[e
->src
->index
], t
);
758 /* Set live on exit for all predecessors of live on entry's. */
759 for (i
= 0; i
< num_var_partitions (map
); i
++)
761 on_entry
= live_entry_blocks (liveinfo
, i
);
762 EXECUTE_IF_SET_IN_BITMAP (on_entry
, 0, b
,
764 for (e
= BASIC_BLOCK(b
)->pred
; e
; e
= e
->pred_next
)
765 if (e
->src
!= ENTRY_BLOCK_PTR
)
766 bitmap_set_bit (on_exit
[e
->src
->index
], i
);
770 liveinfo
->liveout
= on_exit
;
774 /* Initialize a tree_partition_associator object using MAP. */
777 tpa_init (var_map map
)
780 int num_partitions
= num_var_partitions (map
);
783 if (num_partitions
== 0)
786 tpa
= (tpa_p
) xmalloc (sizeof (struct tree_partition_associator_d
));
788 tpa
->uncompressed_num
= -1;
790 tpa
->next_partition
= (int *)xmalloc (num_partitions
* sizeof (int));
791 memset (tpa
->next_partition
, TPA_NONE
, num_partitions
* sizeof (int));
793 tpa
->partition_to_tree_map
= (int *)xmalloc (num_partitions
* sizeof (int));
794 memset (tpa
->partition_to_tree_map
, TPA_NONE
, num_partitions
* sizeof (int));
796 x
= MAX (40, (num_partitions
/ 20));
797 VARRAY_TREE_INIT (tpa
->trees
, x
, "trees");
798 VARRAY_INT_INIT (tpa
->first_partition
, x
, "first_partition");
805 /* Remove PARTITION_INDEX from TREE_INDEX's list in the tpa structure TPA. */
808 tpa_remove_partition (tpa_p tpa
, int tree_index
, int partition_index
)
812 i
= tpa_first_partition (tpa
, tree_index
);
813 if (i
== partition_index
)
815 VARRAY_INT (tpa
->first_partition
, tree_index
) = tpa
->next_partition
[i
];
819 for ( ; i
!= TPA_NONE
; i
= tpa_next_partition (tpa
, i
))
821 if (tpa
->next_partition
[i
] == partition_index
)
823 tpa
->next_partition
[i
] = tpa
->next_partition
[partition_index
];
831 /* Free the memory used by tree_partition_associator object TPA. */
834 tpa_delete (tpa_p tpa
)
839 free (tpa
->partition_to_tree_map
);
840 free (tpa
->next_partition
);
845 /* This function will remove any tree entries from TPA which have only a single
846 element. This will help keep the size of the conflict graph down. The
847 function returns the number of remaining tree lists. */
850 tpa_compact (tpa_p tpa
)
852 int last
, x
, y
, first
, swap_i
;
855 /* Find the last list which has more than 1 partition. */
856 for (last
= tpa
->num_trees
- 1; last
> 0; last
--)
858 first
= tpa_first_partition (tpa
, last
);
859 if (tpa_next_partition (tpa
, first
) != NO_PARTITION
)
866 first
= tpa_first_partition (tpa
, x
);
868 /* If there is not more than one partition, swap with the current end
870 if (tpa_next_partition (tpa
, first
) == NO_PARTITION
)
872 swap_t
= VARRAY_TREE (tpa
->trees
, last
);
873 swap_i
= VARRAY_INT (tpa
->first_partition
, last
);
875 /* Update the last entry. Since it is known to only have one
876 partition, there is nothing else to update. */
877 VARRAY_TREE (tpa
->trees
, last
) = VARRAY_TREE (tpa
->trees
, x
);
878 VARRAY_INT (tpa
->first_partition
, last
)
879 = VARRAY_INT (tpa
->first_partition
, x
);
880 tpa
->partition_to_tree_map
[tpa_first_partition (tpa
, last
)] = last
;
882 /* Since this list is known to have more than one partition, update
883 the list owner entries. */
884 VARRAY_TREE (tpa
->trees
, x
) = swap_t
;
885 VARRAY_INT (tpa
->first_partition
, x
) = swap_i
;
886 for (y
= tpa_first_partition (tpa
, x
);
888 y
= tpa_next_partition (tpa
, y
))
889 tpa
->partition_to_tree_map
[y
] = x
;
891 /* Ensure last is a list with more than one partition. */
893 for (; last
> x
; last
--)
895 first
= tpa_first_partition (tpa
, last
);
896 if (tpa_next_partition (tpa
, first
) != NO_PARTITION
)
903 first
= tpa_first_partition (tpa
, x
);
904 if (tpa_next_partition (tpa
, first
) != NO_PARTITION
)
906 tpa
->uncompressed_num
= tpa
->num_trees
;
912 /* Initialize a root_var object with SSA partitions from MAP which are based
913 on each root variable. */
916 root_var_init (var_map map
)
919 int num_partitions
= num_var_partitions (map
);
929 seen
= sbitmap_alloc (num_partitions
);
932 /* Start at the end and work towards the front. This will provide a list
933 that is ordered from smallest to largest. */
934 for (x
= num_partitions
- 1; x
>= 0; x
--)
936 t
= partition_to_var (map
, x
);
938 /* The var map may not be compacted yet, so check for NULL. */
942 p
= var_to_partition (map
, t
);
944 gcc_assert (p
!= NO_PARTITION
);
946 /* Make sure we only put coalesced partitions into the list once. */
947 if (TEST_BIT (seen
, p
))
950 if (TREE_CODE (t
) == SSA_NAME
)
951 t
= SSA_NAME_VAR (t
);
953 if (ann
->root_var_processed
)
955 rv
->next_partition
[p
] = VARRAY_INT (rv
->first_partition
,
956 VAR_ANN_ROOT_INDEX (ann
));
957 VARRAY_INT (rv
->first_partition
, VAR_ANN_ROOT_INDEX (ann
)) = p
;
961 ann
->root_var_processed
= 1;
962 VAR_ANN_ROOT_INDEX (ann
) = rv
->num_trees
++;
963 VARRAY_PUSH_TREE (rv
->trees
, t
);
964 VARRAY_PUSH_INT (rv
->first_partition
, p
);
966 rv
->partition_to_tree_map
[p
] = VAR_ANN_ROOT_INDEX (ann
);
969 /* Reset the out_of_ssa_tag flag on each variable for later use. */
970 for (x
= 0; x
< rv
->num_trees
; x
++)
972 t
= VARRAY_TREE (rv
->trees
, x
);
973 var_ann (t
)->root_var_processed
= 0;
981 /* Initialize a type_var structure which associates all the partitions in MAP
982 of the same type to the type node's index. Volatiles are ignored. */
985 type_var_init (var_map map
)
989 int num_partitions
= num_var_partitions (map
);
993 seen
= sbitmap_alloc (num_partitions
);
1000 for (x
= num_partitions
- 1; x
>= 0; x
--)
1002 t
= partition_to_var (map
, x
);
1004 /* Disallow coalescing of these types of variables. */
1006 || TREE_THIS_VOLATILE (t
)
1007 || TREE_CODE (t
) == RESULT_DECL
1008 || TREE_CODE (t
) == PARM_DECL
1010 && (DECL_REGISTER (t
)
1011 || !DECL_IGNORED_P (t
)
1012 || DECL_RTL_SET_P (t
))))
1015 p
= var_to_partition (map
, t
);
1017 gcc_assert (p
!= NO_PARTITION
);
1019 /* If partitions have been coalesced, only add the representative
1020 for the partition to the list once. */
1021 if (TEST_BIT (seen
, p
))
1026 /* Find the list for this type. */
1027 for (y
= 0; y
< tv
->num_trees
; y
++)
1028 if (t
== VARRAY_TREE (tv
->trees
, y
))
1030 if (y
== tv
->num_trees
)
1033 VARRAY_PUSH_TREE (tv
->trees
, t
);
1034 VARRAY_PUSH_INT (tv
->first_partition
, p
);
1038 tv
->next_partition
[p
] = VARRAY_INT (tv
->first_partition
, y
);
1039 VARRAY_INT (tv
->first_partition
, y
) = p
;
1041 tv
->partition_to_tree_map
[p
] = y
;
1043 sbitmap_free (seen
);
1048 /* Create a new coalesce list object from MAP and return it. */
1051 create_coalesce_list (var_map map
)
1053 coalesce_list_p list
;
1055 list
= (coalesce_list_p
) xmalloc (sizeof (struct coalesce_list_d
));
1058 list
->add_mode
= true;
1059 list
->list
= (partition_pair_p
*) xcalloc (num_var_partitions (map
),
1060 sizeof (struct partition_pair_d
));
1065 /* Delete coalesce list CL. */
1068 delete_coalesce_list (coalesce_list_p cl
)
1075 /* Find a matching coalesce pair object in CL for partitions P1 and P2. If
1076 one isn't found, return NULL if CREATE is false, otherwise create a new
1077 coalesce pair object and return it. */
1079 static partition_pair_p
1080 find_partition_pair (coalesce_list_p cl
, int p1
, int p2
, bool create
)
1082 partition_pair_p node
, tmp
;
1085 /* Normalize so that p1 is the smaller value. */
1095 /* The list is sorted such that if we find a value greater than p2,
1096 p2 is not in the list. */
1097 for (node
= cl
->list
[p1
]; node
; node
= node
->next
)
1099 if (node
->second_partition
== p2
)
1102 if (node
->second_partition
> p2
)
1110 node
= (partition_pair_p
) xmalloc (sizeof (struct partition_pair_d
));
1111 node
->first_partition
= p1
;
1112 node
->second_partition
= p2
;
1117 node
->next
= tmp
->next
;
1122 /* This is now the first node in the list. */
1123 node
->next
= cl
->list
[p1
];
1124 cl
->list
[p1
] = node
;
1131 /* Add a potential coalesce between P1 and P2 in CL with a cost of VALUE. */
1134 add_coalesce (coalesce_list_p cl
, int p1
, int p2
, int value
)
1136 partition_pair_p node
;
1138 gcc_assert (cl
->add_mode
);
1143 node
= find_partition_pair (cl
, p1
, p2
, true);
1145 node
->cost
+= value
;
1149 /* Comparison function to allow qsort to sort P1 and P2 in descending order. */
1152 int compare_pairs (const void *p1
, const void *p2
)
1154 return (*(partition_pair_p
*)p2
)->cost
- (*(partition_pair_p
*)p1
)->cost
;
1158 /* Prepare CL for removal of preferred pairs. When finished, list element
1159 0 has all the coalesce pairs, sorted in order from most important coalesce
1160 to least important. */
1163 sort_coalesce_list (coalesce_list_p cl
)
1166 partition_pair_p chain
, p
;
1167 partition_pair_p
*list
;
1169 gcc_assert (cl
->add_mode
);
1171 cl
->add_mode
= false;
1173 /* Compact the array of lists to a single list, and count the elements. */
1176 for (x
= 0; x
< num_var_partitions (cl
->map
); x
++)
1177 if (cl
->list
[x
] != NULL
)
1179 for (p
= cl
->list
[x
]; p
->next
!= NULL
; p
= p
->next
)
1183 chain
= cl
->list
[x
];
1187 /* Only call qsort if there are more than 2 items. */
1190 list
= xmalloc (sizeof (partition_pair_p
) * num
);
1192 for (p
= chain
; p
!= NULL
; p
= p
->next
)
1195 gcc_assert (count
== num
);
1197 qsort (list
, count
, sizeof (partition_pair_p
), compare_pairs
);
1200 for (x
= 1; x
< num
; x
++)
1206 cl
->list
[0] = list
[0];
1211 cl
->list
[0] = chain
;
1214 /* Simply swap the two elements if they are in the wrong order. */
1215 if (chain
->cost
< chain
->next
->cost
)
1217 cl
->list
[0] = chain
->next
;
1218 cl
->list
[0]->next
= chain
;
1226 /* Retrieve the best remaining pair to coalesce from CL. Returns the 2
1227 partitions via P1 and P2. Their calculated cost is returned by the function.
1228 NO_BEST_COALESCE is returned if the coalesce list is empty. */
1231 pop_best_coalesce (coalesce_list_p cl
, int *p1
, int *p2
)
1233 partition_pair_p node
;
1236 gcc_assert (!cl
->add_mode
);
1240 return NO_BEST_COALESCE
;
1242 cl
->list
[0] = node
->next
;
1244 *p1
= node
->first_partition
;
1245 *p2
= node
->second_partition
;
1253 /* If variable VAR is in a partition in MAP, add a conflict in GRAPH between
1254 VAR and any other live partitions in VEC which are associated via TPA.
1255 Reset the live bit in VEC. */
1258 add_conflicts_if_valid (tpa_p tpa
, conflict_graph graph
,
1259 var_map map
, bitmap vec
, tree var
)
1262 p
= var_to_partition (map
, var
);
1263 if (p
!= NO_PARTITION
)
1265 bitmap_clear_bit (vec
, p
);
1266 first
= tpa_find_tree (tpa
, p
);
1267 /* If find returns nothing, this object isn't interesting. */
1268 if (first
== TPA_NONE
)
1270 /* Only add interferences between objects in the same list. */
1271 for (y
= tpa_first_partition (tpa
, first
);
1273 y
= tpa_next_partition (tpa
, y
))
1275 if (bitmap_bit_p (vec
, y
))
1276 conflict_graph_add (graph
, p
, y
);
1282 /* Return a conflict graph for the information contained in LIVE_INFO. Only
1283 conflicts between items in the same TPA list are added. If optional
1284 coalesce list CL is passed in, any copies encountered are added. */
1287 build_tree_conflict_graph (tree_live_info_p liveinfo
, tpa_p tpa
,
1290 conflict_graph graph
;
1295 varray_type partition_link
, tpa_to_clear
, tpa_nodes
;
1299 map
= live_var_map (liveinfo
);
1300 graph
= conflict_graph_new (num_var_partitions (map
));
1302 if (tpa_num_trees (tpa
) == 0)
1305 live
= BITMAP_XMALLOC ();
1307 VARRAY_INT_INIT (partition_link
, num_var_partitions (map
) + 1, "part_link");
1308 VARRAY_INT_INIT (tpa_nodes
, tpa_num_trees (tpa
), "tpa nodes");
1309 VARRAY_INT_INIT (tpa_to_clear
, 50, "tpa to clear");
1313 block_stmt_iterator bsi
;
1316 /* Start with live on exit temporaries. */
1317 bitmap_copy (live
, live_on_exit (liveinfo
, bb
));
1319 for (bsi
= bsi_last (bb
); !bsi_end_p (bsi
); bsi_prev (&bsi
))
1321 bool is_a_copy
= false;
1322 tree stmt
= bsi_stmt (bsi
);
1325 get_stmt_operands (stmt
);
1326 ann
= stmt_ann (stmt
);
1328 /* A copy between 2 partitions does not introduce an interference
1329 by itself. If they did, you would never be able to coalesce
1330 two things which are copied. If the two variables really do
1331 conflict, they will conflict elsewhere in the program.
1333 This is handled specially here since we may also be interested
1334 in copies between real variables and SSA_NAME variables. We may
1335 be interested in trying to coalesce SSA_NAME variables with
1336 root variables in some cases. */
1338 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
1340 tree lhs
= TREE_OPERAND (stmt
, 0);
1341 tree rhs
= TREE_OPERAND (stmt
, 1);
1345 if (DECL_P (lhs
) || TREE_CODE (lhs
) == SSA_NAME
)
1346 p1
= var_to_partition (map
, lhs
);
1350 if (DECL_P (rhs
) || TREE_CODE (rhs
) == SSA_NAME
)
1351 p2
= var_to_partition (map
, rhs
);
1355 if (p1
!= NO_PARTITION
&& p2
!= NO_PARTITION
)
1358 bit
= bitmap_bit_p (live
, p2
);
1359 /* If the RHS is live, make it not live while we add
1360 the conflicts, then make it live again. */
1362 bitmap_clear_bit (live
, p2
);
1363 add_conflicts_if_valid (tpa
, graph
, map
, live
, lhs
);
1365 bitmap_set_bit (live
, p2
);
1367 add_coalesce (cl
, p1
, p2
, 1);
1368 set_if_valid (map
, live
, rhs
);
1375 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_DEF
)
1377 add_conflicts_if_valid (tpa
, graph
, map
, live
, var
);
1380 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_USE
)
1382 set_if_valid (map
, live
, var
);
1387 /* If result of a PHI is unused, then the loops over the statements
1388 will not record any conflicts. However, since the PHI node is
1389 going to be translated out of SSA form we must record a conflict
1390 between the result of the PHI and any variables with are live.
1391 Otherwise the out-of-ssa translation may create incorrect code. */
1392 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
1394 tree result
= PHI_RESULT (phi
);
1395 int p
= var_to_partition (map
, result
);
1397 if (p
!= NO_PARTITION
&& ! bitmap_bit_p (live
, p
))
1398 add_conflicts_if_valid (tpa
, graph
, map
, live
, result
);
1401 /* Anything which is still live at this point interferes.
1402 In order to implement this efficiently, only conflicts between
1403 partitions which have the same TPA root need be added.
1404 TPA roots which have been seen are tracked in 'tpa_nodes'. A nonzero
1405 entry points to an index into 'partition_link', which then indexes
1406 into itself forming a linked list of partitions sharing a tpa root
1407 which have been seen as live up to this point. Since partitions start
1408 at index zero, all entries in partition_link are (partition + 1).
1410 Conflicts are added between the current partition and any already seen.
1411 tpa_clear contains all the tpa_roots processed, and these are the only
1412 entries which need to be zero'd out for a clean restart. */
1414 EXECUTE_IF_SET_IN_BITMAP (live
, 0, x
,
1416 i
= tpa_find_tree (tpa
, x
);
1419 int start
= VARRAY_INT (tpa_nodes
, i
);
1420 /* If start is 0, a new root reference list is being started.
1421 Register it to be cleared. */
1423 VARRAY_PUSH_INT (tpa_to_clear
, i
);
1425 /* Add interferences to other tpa members seen. */
1426 for (y
= start
; y
!= 0; y
= VARRAY_INT (partition_link
, y
))
1427 conflict_graph_add (graph
, x
, y
- 1);
1428 VARRAY_INT (tpa_nodes
, i
) = x
+ 1;
1429 VARRAY_INT (partition_link
, x
+ 1) = start
;
1433 /* Now clear the used tpa root references. */
1434 for (l
= 0; l
< VARRAY_ACTIVE_SIZE (tpa_to_clear
); l
++)
1435 VARRAY_INT (tpa_nodes
, VARRAY_INT (tpa_to_clear
, l
)) = 0;
1436 VARRAY_POP_ALL (tpa_to_clear
);
1439 BITMAP_XFREE (live
);
1444 /* This routine will attempt to coalesce the elements in TPA subject to the
1445 conflicts found in GRAPH. If optional coalesce_list CL is provided,
1446 only coalesces specified within the coalesce list are attempted. Otherwise
1447 an attempt is made to coalesce as many partitions within each TPA grouping
1448 as possible. If DEBUG is provided, debug output will be sent there. */
1451 coalesce_tpa_members (tpa_p tpa
, conflict_graph graph
, var_map map
,
1452 coalesce_list_p cl
, FILE *debug
)
1457 /* Attempt to coalesce any items in a coalesce list. */
1460 while (pop_best_coalesce (cl
, &x
, &y
) != NO_BEST_COALESCE
)
1464 fprintf (debug
, "Coalesce list: (%d)", x
);
1465 print_generic_expr (debug
, partition_to_var (map
, x
), TDF_SLIM
);
1466 fprintf (debug
, " & (%d)", y
);
1467 print_generic_expr (debug
, partition_to_var (map
, y
), TDF_SLIM
);
1470 w
= tpa_find_tree (tpa
, x
);
1471 z
= tpa_find_tree (tpa
, y
);
1472 if (w
!= z
|| w
== TPA_NONE
|| z
== TPA_NONE
)
1477 fprintf (debug
, ": Fail, Non-matching TPA's\n");
1479 fprintf (debug
, ": Fail %d non TPA.\n", x
);
1481 fprintf (debug
, ": Fail %d non TPA.\n", y
);
1485 var
= partition_to_var (map
, x
);
1486 tmp
= partition_to_var (map
, y
);
1487 x
= var_to_partition (map
, var
);
1488 y
= var_to_partition (map
, tmp
);
1490 fprintf (debug
, " [map: %d, %d] ", x
, y
);
1494 fprintf (debug
, ": Already Coalesced.\n");
1497 if (!conflict_graph_conflict_p (graph
, x
, y
))
1499 z
= var_union (map
, var
, tmp
);
1500 if (z
== NO_PARTITION
)
1503 fprintf (debug
, ": Unable to perform partition union.\n");
1507 /* z is the new combined partition. We need to remove the other
1508 partition from the list. Set x to be that other partition. */
1511 conflict_graph_merge_regs (graph
, x
, y
);
1512 w
= tpa_find_tree (tpa
, y
);
1513 tpa_remove_partition (tpa
, w
, y
);
1517 conflict_graph_merge_regs (graph
, y
, x
);
1518 w
= tpa_find_tree (tpa
, x
);
1519 tpa_remove_partition (tpa
, w
, x
);
1523 fprintf (debug
, ": Success -> %d\n", z
);
1527 fprintf (debug
, ": Fail due to conflict\n");
1529 /* If using a coalesce list, don't try to coalesce anything else. */
1533 for (x
= 0; x
< tpa_num_trees (tpa
); x
++)
1535 while (tpa_first_partition (tpa
, x
) != TPA_NONE
)
1538 /* Coalesce first partition with anything that doesn't conflict. */
1539 y
= tpa_first_partition (tpa
, x
);
1540 tpa_remove_partition (tpa
, x
, y
);
1542 var
= partition_to_var (map
, y
);
1543 /* p1 is the partition representative to which y belongs. */
1544 p1
= var_to_partition (map
, var
);
1546 for (z
= tpa_next_partition (tpa
, y
);
1548 z
= tpa_next_partition (tpa
, z
))
1550 tmp
= partition_to_var (map
, z
);
1551 /* p2 is the partition representative to which z belongs. */
1552 p2
= var_to_partition (map
, tmp
);
1555 fprintf (debug
, "Coalesce : ");
1556 print_generic_expr (debug
, var
, TDF_SLIM
);
1557 fprintf (debug
, " &");
1558 print_generic_expr (debug
, tmp
, TDF_SLIM
);
1559 fprintf (debug
, " (%d ,%d)", p1
, p2
);
1562 /* If partitions are already merged, don't check for conflict. */
1565 tpa_remove_partition (tpa
, x
, z
);
1567 fprintf (debug
, ": Already coalesced\n");
1570 if (!conflict_graph_conflict_p (graph
, p1
, p2
))
1573 if (tpa_find_tree (tpa
, y
) == TPA_NONE
1574 || tpa_find_tree (tpa
, z
) == TPA_NONE
)
1577 fprintf (debug
, ": Fail non-TPA member\n");
1580 if ((v
= var_union (map
, var
, tmp
)) == NO_PARTITION
)
1583 fprintf (debug
, ": Fail cannot combine partitions\n");
1587 tpa_remove_partition (tpa
, x
, z
);
1589 conflict_graph_merge_regs (graph
, v
, z
);
1592 /* Update the first partition's representative. */
1593 conflict_graph_merge_regs (graph
, v
, y
);
1597 /* The root variable of the partition may be changed
1599 var
= partition_to_var (map
, p1
);
1602 fprintf (debug
, ": Success -> %d\n", v
);
1606 fprintf (debug
, ": Fail, Conflict\n");
1613 /* Send debug info for coalesce list CL to file F. */
1616 dump_coalesce_list (FILE *f
, coalesce_list_p cl
)
1618 partition_pair_p node
;
1624 fprintf (f
, "Coalesce List:\n");
1625 num
= num_var_partitions (cl
->map
);
1626 for (x
= 0; x
< num
; x
++)
1632 print_generic_expr (f
, partition_to_var (cl
->map
, x
), TDF_SLIM
);
1633 fprintf (f
, "] - ");
1634 for ( ; node
; node
= node
->next
)
1636 var
= partition_to_var (cl
->map
, node
->second_partition
);
1637 print_generic_expr (f
, var
, TDF_SLIM
);
1638 fprintf (f
, "(%1d), ", node
->cost
);
1646 fprintf (f
, "Sorted Coalesce list:\n");
1647 for (node
= cl
->list
[0]; node
; node
= node
->next
)
1649 fprintf (f
, "(%d) ", node
->cost
);
1650 var
= partition_to_var (cl
->map
, node
->first_partition
);
1651 print_generic_expr (f
, var
, TDF_SLIM
);
1653 var
= partition_to_var (cl
->map
, node
->second_partition
);
1654 print_generic_expr (f
, var
, TDF_SLIM
);
1661 /* Output tree_partition_associator object TPA to file F.. */
1664 tpa_dump (FILE *f
, tpa_p tpa
)
1671 for (x
= 0; x
< tpa_num_trees (tpa
); x
++)
1673 print_generic_expr (f
, tpa_tree (tpa
, x
), TDF_SLIM
);
1674 fprintf (f
, " : (");
1675 for (i
= tpa_first_partition (tpa
, x
);
1677 i
= tpa_next_partition (tpa
, i
))
1679 fprintf (f
, "(%d)",i
);
1680 print_generic_expr (f
, partition_to_var (tpa
->map
, i
), TDF_SLIM
);
1683 #ifdef ENABLE_CHECKING
1684 if (tpa_find_tree (tpa
, i
) != x
)
1685 fprintf (f
, "**find tree incorrectly set** ");
1695 /* Output partition map MAP to file F. */
1698 dump_var_map (FILE *f
, var_map map
)
1704 fprintf (f
, "\nPartition map \n\n");
1706 for (x
= 0; x
< map
->num_partitions
; x
++)
1708 if (map
->compact_to_partition
!= NULL
)
1709 p
= map
->compact_to_partition
[x
];
1713 if (map
->partition_to_var
[p
] == NULL_TREE
)
1717 for (y
= 1; y
< num_ssa_names
; y
++)
1719 p
= partition_find (map
->var_partition
, y
);
1720 if (map
->partition_to_compact
)
1721 p
= map
->partition_to_compact
[p
];
1726 fprintf(f
, "Partition %d (", x
);
1727 print_generic_expr (f
, partition_to_var (map
, p
), TDF_SLIM
);
1730 fprintf (f
, "%d ", y
);
1740 /* Output live range info LIVE to file F, controlled by FLAG. */
1743 dump_live_info (FILE *f
, tree_live_info_p live
, int flag
)
1747 var_map map
= live
->map
;
1749 if ((flag
& LIVEDUMP_ENTRY
) && live
->livein
)
1753 fprintf (f
, "\nLive on entry to BB%d : ", bb
->index
);
1754 for (i
= 0; i
< num_var_partitions (map
); i
++)
1756 if (bitmap_bit_p (live_entry_blocks (live
, i
), bb
->index
))
1758 print_generic_expr (f
, partition_to_var (map
, i
), TDF_SLIM
);
1766 if ((flag
& LIVEDUMP_EXIT
) && live
->liveout
)
1770 fprintf (f
, "\nLive on exit from BB%d : ", bb
->index
);
1771 EXECUTE_IF_SET_IN_BITMAP (live
->liveout
[bb
->index
], 0, i
,
1773 print_generic_expr (f
, partition_to_var (map
, i
), TDF_SLIM
);
1781 #ifdef ENABLE_CHECKING
1783 register_ssa_partition_check (tree ssa_var
)
1785 gcc_assert (TREE_CODE (ssa_var
) == SSA_NAME
);
1786 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var
)))
1788 fprintf (stderr
, "Illegally registering a virtual SSA name :");
1789 print_generic_expr (stderr
, ssa_var
, TDF_SLIM
);
1790 fprintf (stderr
, " in the SSA->Normal phase.\n");
1791 internal_error ("SSA corruption");